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Fig. 4.30. Phylomorphospace representing the evolutionary history of anthropoid lunate 

morphology, based on phylogenetic PCA. The phylogeny is projected onto the 

first two phylogenetic principal components of all extant and fossil lunate shape 

variables, with ancestral states estimated via maximum likelihood. Pan-Homo 

and great ape LCAs are highlighted. See Table 4.5c for eigenvalues .............. 327 

Fig. 4.31. Phylomorphospace representing the evolutionary history of anthropoid 

triquetrum morphology, based on phylogenetic PCA. The phylogeny is projected 

onto the first two phylogenetic principal components of all extant and fossil lunate 



 

xxii 
 

shape variables, with ancestral states estimated via maximum likelihood. Pan-

Homo and great ape LCAs are highlighted. See Table 4.5d for eigenvalues ... 328 
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Abstract 

Catarrhine wrist elements are commonly preserved in the fossil record, and the 

morphology of these specimens plays a prominent role in shaping our understanding of 

hominoid evolution. This joint complex may have special utility both in understanding 

how morphology tends to change in association with positional behavior, and in 

reconstructing the prevalence of these behaviors in extinct primates. However, we 

continue to lack a detailed understanding of the relationships among function, 

phylogeny and wrist morphology, including the degree to which quantifiably similar 

morphological variation should be expected in behaviorally convergent lineages. 

Quantitatively-confirmed morpho-functional links within the anthropoid wrist therefore 

remain exceedingly rare, hindering our ability to characterize the locomotor evolution of 

early catarrhine groups, including that of our own lineage. 

This dissertation addresses this gap through analysis of 3D morphometrics 

derived from µCT and laser scans of a broad sample of extant and fossil anthropoid 

carpals, while ameliorating the confounding influences of allometry and phylogeny 

through their explicit inclusion in statistical models. Several cases of morphological 

convergence are identified in association with each of several behavioral modes. 

Features determined to meet both statistical and biomechanical criteria are selected as 

plausible locomotor or postural adaptations, and multivariate predictive models are 

demonstrated to be highly accurate in predicting differing degrees of reliance on the 

major anthropoid positional behaviors. 
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These predictive models and other insights are applied along with additional 

analytical techniques to a sample of seven morphologically diverse, formerly-

undescribed catarrhine capitates from sites in the early Miocene Tinderet sequence of 

Western Kenya. Each specimen is formally described, and its taxonomic identity 

determined or constrained through estimation of body mass and analyses of taxonomic, 

phylogenetic, and functional affinities. The functional diversity of this fossil sample is 

also quantified, and found to be comparable to that of broad extant groups, with two 

specimens demonstrating substantial suspensory affinities, and another being uniquely 

great ape-like among capitates known from the early Miocene. The latter specimen is 

assigned to Rangwapithecus gordoni, and a new criterion by which to distinguish 

specimens of this taxon from Proconsul africanus is suggested. The range of variation 

in functionally diagnostic traits within this sample indicates a greater diversity of 

positional behavior among early Miocene catarrhines than what is generally recognized, 

and results add further support for the presence of a mid-sized, behaviorally-derived 

catarrhine at Songhor. 

This study also contributes to the ongoing debate over human locomotor 

ancestry by modeling the adaptive landscape during hominoid locomotor evolution. It 

reconstructs various adaptive transitions across the clade, and estimates the 

prevalence of different positional behaviors in the populations ancestral to each of the 

various nested clades within Anthropoidea. While there is inconsistency in the patterns 

of morphological covariation among the different carpal elements, results are consistent 

in providing further support for the frequency of parallelism in the locomotor evolution of 

hominoids, particularly as it applies to suspension, with the last common ancestors of 
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both hominoids and great apes predicted to have been more generalized than any of 

the clade’s extant representatives. The last common ancestor of humans and 

chimpanzees is also estimated to have lacked adaptations in association with knuckle-

walking, providing further support for a relatively generalized ancestral morphotype at 

the root of the hominin clade – one that is not well modeled by any of the surviving 

hominoid lineages. 

These results advance our understanding of the complex relationships among 

form, function, and phylogeny, and of the locomotor evolution of extant and fossil 

anthropoids, with important caveats, and provide guidance for future analyses of extant 

and fossil anthropoid functional morphology.
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Chapter 1 

Introduction 

 

This dissertation represents an attempt to untangle the influence of positional 

behavior from the complex and overlapping influences of phylogeny and allometry on 

the morphology of the wrist in anthropoid primates, and to apply resulting insights 

toward increasing our understanding of human and ape1 evolution, particularly as it 

relates to positional behavior (i.e., modes of locomotion and posture; Prost, 1965). From 

the first application of the paleobiological approach to primate evolution (Napier and 

Davis, 1959), morphology of the wrist, comprising either 8 or 9 carpals (due to fusion of 

the scaphoid and os centrale among hominines), the proximal metacarpal epiphyses, 

and the distal radius and ulna, has played a vital role in our understanding of positional 

behavior in fossil catarrhines, including that of our own putative ancestors. However, the 

reliability of functional inferences derived from carpal morphology is dependent on the 

fidelity of our understanding regarding how it is influenced by function. While there has 

been substantial progress on this front, the degree to which wrist morphology reliably 

reflects locomotor behavior across anthropoid lineages remains unclear, and specific 

                                            
1 In discussing groups within Hominoidea, the superfamily to which humans belong, “hominid” is used to 
refer to the clade we share with great apes, “hominine” to the clade we share with chimpanzees, 
bonobos, and gorillas, and “hominin” to all members of the human clade since our divergence from Pan. 
While the relatively recent understanding of our close relationship with other hominoids sometimes results 
in attempts to redefine long-established colloquial terms, their utility in referring to the paraphyletic subset 
of a clade’s non-hominin representatives is retained here. To wit, “apes” refers to non-hominin hominoids, 
“great apes” to non-hominin hominids, and “African apes” to non-hominin hominines. “Asian apes” 
likewise refers to the paraphyletic group comprising pongines and hylobatids. 
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morphological traits quantitatively demonstrated to be diagnostic of a given locomotor 

mode remain rare. 

Much of the lack of consensus in interpreting morpho-functional relationships 

within the wrist of hominoids and other anthropoids is due to confounding factors 

affecting the broader fields of functional morphology and biology in general. As with all 

biological traits, the skeletal elements comprising the wrists of anthropoids have evolved 

in each lineage to facilitate multiple functions while simultaneously reflecting a legion of 

non-adaptive influences. Even a brief summary of the confounds associated with 

inferring function from morphology is beyond the scope of this work (see also Abrams, 

2001; Smith, 2016 and references therein). Several of these confounds feature 

prominently in subsequent chapters, chief among them the phylogenetic autocorrelation 

of biological data.  

Morphological change associated with non-adaptive mechanisms tends to 

accumulate within lineages over time, which, along with that resulting from recent or 

ancestral selection, results in a strong tendency toward greater similarity in more closely 

related species. The essence of this phenomenon has long been understood, as 

demonstrated by its having served as the primary basis for the seminal work of both 

Linnæus (1735) and Darwin (1859). In accord with this tendency, adaptation associated 

with different positional behaviors in closely-related species tends to result in smaller-

scale modification of a shared pattern (Lovejoy et al., 1999, Hamrick, 1999). Biological 

samples derived from multiple species are therefore statistically nonindependent, 

violating the assumptions of standard quantitative methods. A statistical toolkit allowing 

the phylogenetic autocorrelation of biological data to be accounted for in quantitative 
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models has begun to take shape over the last three or so decades (Felsenstein, 1985). 

This work employs a variety of these tools in an attempt to account for some of the non-

adaptive influences complicating our understanding of morpho-functional relationships 

in the anthropoid carpus.  

This dissertation comprises three semi-autonomous studies neatly sandwiched 

between brief introductory and concluding chapters in fulfillment of the sacred rite by 

which the academy is instilled with a solidarity born of having formatted a roughly book-

length document in Microsoft Word. Each chapter is intended to contain the information 

necessary to contextualize its goals, results, and conclusions; a thorough introduction to 

the issues addressed is therefore not attempted here. 

Chapter 2 serves as the foundation of this work. In addition to summarizing my 

thought process in embarking on this project and introducing many of the methods 

employed, results from this chapter are the basis of several analyses in subsequent 

chapters. I test several dozen morpho-functional hypotheses in the wrists of 

anthropoids, and identify cases of morphological convergence in association with 

positional behavior while accounting for the influence of both phylogeny and allometry. 

The biomechanical underpinnings of each statistical relationship are then evaluated to 

gauge its plausibility as having emerged due to adaptation. I also build multivariate 

models to test the degree of correspondence between carpal morphology and positional 

behavior in extant anthropoids, thereby evaluating the generalizability and potential 

efficacy of these models in predicting the behavior of extinct members of the clade, and 

also explore the relative influences of different positional behaviors in shaping 

anthropoid wrist morphology. 
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In Chapter 3, I analyze a rare, morphologically diverse sample of catarrhine 

specimens of a single postcranial element, all recovered from the same geographically- 

and temporally-constrained setting of the early Miocene. I provide morphological 

descriptions for each of seven previously-undescribed capitates from Tinderet sites in 

Western Kenya, and constrain their taxonomic identities through body mass estimation, 

taxonomic and phylogenetic analyses, as well as reconstructions of positional behavior, 

in comparison with Ekembo heseloni and a large extant sample. The range of 

behavioral diversity implied by the Tinderet sample is also compared to those of 

different extant anthropoid groups. Results are contextualized in terms of their 

implications for early hominoid locomotor evolution and diversity, and a new criterion by 

which to distinguish specimens of Proconsul africanus and Rangwapithecus gordoni is 

suggested. 

In Chapter 4, I analyze a broad range of hominin and non-hominin fossil 

specimens with the primary goal of contributing to the debate regarding the ancestral 

locomotor repertoire from which hominin bipedalism emerged. This study assesses both 

the overall morphology and the functional affinities of the human ulnar carpus, and 

those of the sampled fossil taxa, relative to those of a large non-hominin anthropoid 

sample. I reconstruct the locomotor evolution of the anthropoid clade as reflected in 

each of the analyzed carpal elements, and in the four combined, to assess the 

prevalence of homoplasy during hominoid locomotor evolution and to test competing 

hypotheses related to the ancestral positional repertoire of Hominoidea and those of its 

major nested clades. Additional analyses are conducted to test for functional distinctions 

among hominin taxa, with an emphasis on Australopithecus sediba.  
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The final chapter provides a brief summary of my conclusions, and describes 

some related caveats along with some future plans that may ameliorate some of them. 

Other research planned to build on and elaborate the results presented here are also 

outlined.
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Chapter 2 

Computational relationships between carpal joint surface morphology and 

positional behavior in extant anthropoids 

 

Abstract 

Despite the wrist theoretically having special utility in diagnosing the positional 

behavior of extinct primates, traits of the carpus quantitatively identified to consistently 

covary with positional behavior across the anthropoid clade remain exceedingly rare. 

This study seeks to remedy this by testing for covariance between positional behavior 

and aspects of carpal morphology in a broad sample of extant anthropoids. Shape traits 

hypothesized to be functionally significant were quantified using µCT and laser scan 

data, and analyzed along with quantitative and categorical characterizations of 

positional behavior while accounting for the confounding influences of allometry and 

phylogeny. The biomechanical underpinnings of univariate morpho-functional links are 

evaluated to determine which of the identified statistical relationships most plausibly 

result from adaptation. Multivariate relationships between shape and behavior are also 

explored – the differential influences wielded by locomotor and postural behaviors in 

shaping anthropoid wrist morphology are characterized, and the efficacy of carpal 

morphology in predicting anthropoid behavioral repertoires is evaluated. 

Results indicate that morphology strongly covaries with positional behavior 

across the anthropoid clade. Instances of morphological convergence are identified in 
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association with each of several behavioral modes, and multivariate models predict the 

behavior of extant anthropoids with high accuracy. These results advance our 

understanding of the complex relationships among form, function, and phylogeny, and 

of the locomotor evolution of extant catarrhine groups, while guiding future behavioral 

reconstructions of fossil carpal specimens. 

 

Introduction 

The hands of anthropoid primates (catarrhines and platyrrhines) are used for a 

variety of tasks, including object manipulation (e.g., tool use, foraging, and social 

grooming), gathering sensory information, communication, and providing affection or 

comfort to other individuals (Fragaszy and Crast, 2016 and references therein). Much of 

the diversity in positional behavior among this clade’s members can also be broadly 

construed according to differential use of the forelimbs (Schmitt et al., 2016 and 

references therein). Suspension, vertical climbing, leaping, and the various types of 

quadrupedalism performed by anthropoids each generate distinct loading regimes (e.g., 

Fleagle, 1981; Rose, 1988; Swartz et al., 1989; Carlson and Patel, 2006; Patel and 

Carlson, 2007, 2008; Tsegai et al., 2013; Hunt, 2016), and to be best facilitated by 

different degrees of mobility (e.g., Sarmiento, 1988; Orr, 2010; Daver et al., 2012). As a 

result, the anthropoid forelimb is thought to be especially adaptable (Rose, 1997).  

Adaptability seems to be further enhanced in the carpus relative to more proximal 

skeletal elements. Variation in hand and wrist mobility among anthropoids results 

largely from corresponding variation in carpal morphology (Kivell, 2016), and this 

morphology is also important in maintaining stability and transmitting the forces 

generated during locomotion. Developmental constraints have been observed to 
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decrease in the forelimb on a gradient from proximal to distal (Hinchliffe, 1994, 2002; 

Shubin et al., 1997; Hamrick, 2001, 2003, 2007), and analyses of primate forelimbs 

confirm that morphological variability increases distally, largely in accord with behavior 

(Etter, 1973; Hamrick, 1998, 1999, 2007; Cullinane, 2000). Aspects of carpal 

morphology may therefore have special utility in understanding morpho-functional 

relationships in extant anthropoids, and in reconstructing the behavior of extinct 

members of the clade.  

The ulnar side of the wrist may have particular relevance in understanding how 

locomotor behavior is reflected in morphology. Suspension and vertical climbing are 

associated with greater mobility in ulnar deviation and supination (e.g. Lewis, 1969; 

Sarmiento, 1988; Rose, 1988) and greater strength in flexion (e.g., Susman and Stern, 

1979), while differential loading of the ulnar side of the wrist has been hypothesized to 

distinguish these and other functional and taxonomic groups. For example, gorillas are 

hypothesized to transmit a greater proportion of ground reaction forces ulnarly relative 

to chimpanzees (Sarmiento, 1988; Inouye, 1994a, b; Dainton and Macho, 1999a; 

Matarazzo, 2013a, b). In addition, while the functional significance of variation among 

hominoids in features of the radial wrist has received ample attention (e.g., Tuttle, 1967; 

Rose, 1997; Richmond and Strait, 2000; Richmond et al., 2001; Tocheri et al., 2003, 

2005; Begun, 2004; Marzke, 2010; Tallman, 2012; Orr, 2017), there has arguably been 

less attention paid to the condition of similarly important features in more ulnar wrist 

elements. 
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Fig. 2.1. Left wrist of Cercopithecus mitis (AMNH 82411) in dorsal view, with elements analyzed in this 
study highlighted. 

 

Elements of the forelimb are commonly preserved in the catarrhine fossil record, 

and analysis of this material has been prominent in developing our understanding of 

ape and human evolution (reviewed in Nakatsukasa et al., 2016 and Richmond et al., 

2016, respectively). However, the identification of reliable behavioral indicators in the 

anthropoid wrist is an ongoing concern, as cases of morphological convergence in 

behaviorally similar anthropoids have been more difficult to identify in the wrist relative 
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to the more proximal joint complexes of the forelimb (e.g., Rose, 1996; Larson, 1998; 

Young, 2003; Patel, 2010a). Aspects of carpal morphology are often assigned functional 

significance, but quantitative testing of these hypothesized morpho-functional links, 

including assessment of their generalizability across anthropoid lineages, has been 

substantially less common. As a result, specific wrist traits known to consistently covary 

with a given locomotor mode, or that are demonstrated to statistically distinguish among 

anthropoid behavioral repertoires, remain exceedingly rare.  

An expectation of anatomical convergence in functionally convergent lineages is 

confounded by a host of factors (see Smith, 2016 and references therein), but there are 

additional complications to which the wrist is especially susceptible. The more proximal 

joint complexes of the appendicular skeleton are relatively simple, and may therefore 

have fewer adaptive pathways in facilitating similar behaviors, potentially increasing 

adaptive uniformity in behaviorally convergent lineages (Rose, 1997; Schmitt et al., 

2016; Byron et al., in press). In contrast, the complex, interrelated joints of the carpus 

(as well as the tarsus; see Throckmorton, 2013) may provide a similar degree of 

mobility and stability in a variety of configurations (e.g., Lemelin and Schmitt, 1998; 

Jouffroy and Medina, 2002), with adaptive architectures and the relative contributions of 

constituent bones varying among lineages of similar function. The complexity of the 

small, oddly-shaped, and intricately-arranged elements of the carpus presents an 

additional, methodological barrier to understanding. While a great deal of information is 

contained in this morphology, much of it cannot be properly extracted using linear 

measurements, until recently the primary means of morphological quantification. These 

elements may be particularly productive targets of the modern 3D imaging and analysis 
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techniques utilized by a growing number of researchers (see Orr, 2016 and references 

therein). 

If the degree to which positional behavior is reflected in skeletal morphology 

increases as a function of proximity with the substrate, distinct adaptive complexes may 

be induced in the wrist by variation within a broad behavioral class, such as grasping 

versus non-grasping palmigrady, contralateral versus ipsilateral grasping in different 

lineages of brachiators (Jenkins, 1981; Schmitt et al., 2016, Byron et al., in press), or 

even idiosyncratically in accord with more subtle variations in substrate use or hand 

posture. The need to maintain the grasping capability required for feeding, grooming, 

and other manipulative behaviors practiced among anthropoids may also limit the 

degree to which their hands and wrists can become specialized for locomotion (Vilensky 

and Larson, 1989). These factors have the potential to severely attenuate detectable 

covariance between wrist morphology and broadly-construed positional classes. 

From within the noise of these myriad factors influencing anthropoid carpal 

morphology, this study attempts to isolate a functional signal associated with each of 

several positional behaviors. To this end, associated carpal elements from a broad set 

of anthropoid taxa are analyzed, with the confounding influences wielded by allometry 

and phylogeny ameliorated through their explicit inclusion in statistical models. The 

goals of this study are fourfold. The first is to investigate the consistency with which 

wrist morphology covaries with different locomotor and postural behaviors between 

lineages within the anthropoid clade, and to identify specific cases of morphological 

convergence in association with each. The second goal is to determine which of the 

traits found to covary with a function are most likely to be adaptive to that function. This 
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necessarily involves a degree of subjective interpretation, but is an essential step in 

separating statistical aberration from biological adaptation, with the latter becoming 

more likely as the plausibility of the underlying biomechanical relationship increases. 

The two remaining goals involve exploration of multivariate relationships between shape 

and behavior: this study evaluates the differential influences wielded by locomotor and 

postural behaviors in shaping anthropoid wrist morphology, as well as the efficacy with 

which anthropoid behavioral repertoires can be predicted based on functionally 

diagnostic aspects of carpal morphology. 

 

 

Materials and methods 

Sampling procedure 

An associated set of four carpal elements – the capitate, hamate, lunate, and 

triquetrum – was sampled from each of 336 individuals representing 28 extant 

anthropoid taxa (Table 2.1). Most specimens (n = 1136) were scanned with a GE 

Healthcare model Pxs5-928EA μCT scanner, operating at an accelerated potential of 55 

kV with a beam current of 450 μA, producing scan data with a resolution of 92 microns. 

An isosurface was derived from each of these scans and exported as a triangular mesh. 

The remaining specimens (n = 208) were scanned with a NextEngine 3D Scanner HD 

(Macro setting, two families of 6 scans with autorotation, 160k ppi for smaller 

specimens, 40k ppi for larger ones), creating a triangular mesh comparable to those 

produced by the μCT workflow. The efficacy of pooling scan data of different types has 

been demonstrated (Slizewski et al., 2010, Tocheri, et al., 2011; Polo and Felicismino, 

2012). All meshes were processed to correct imperfections stemming from the scanning 
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process, osteochondral defects, or other minor issues of pathology or preservation to 

ensure comparability across the sample. Completed 3D models were then digitally 

segmented along articular margins with reference to the original specimen or high-

resolution photographs thereof (see Fig. 2.2). 

 

 

Fig. 2.2. A schematic representing the sampling workflow of this study. Each specimen, here represented 
by a left capitate of Pan troglodytes troglodytes (UMMZ 39507) in lateral view (a), was scanned (b), 
exported as a triangular mesh isosurface (c), processed and smoothed (d), and digitally segmented (e), 
followed by variable extraction (f).  
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Table 2.1. Comparative sample 
    Total proportionsf  Arboreal-only proportions   

Taxon n ♂ ♀ Quada Suspb Climbc Leapd Arbe   QuadA SuspA ClimbA LeapA Classg References 

Pan troglodytes schweinfurthii 10 7 3 0.93 0.01 0.06 0 0.10  0.31 0.08 0.59 0.02 KW 
Doran and Hunt, 1994; 
Carlson, 2005 

Pan troglodytes troglodytes 12 6 6           KW  

Pan troglodytes verus 13 7 6 0.86 0.01 0.11 0 0.16  0.21 0.06 0.68 0.01 KW Doran, 1993a; Carlson, 2005 

Pan troglodytes ellioti 5 2 3           KW  

Pan paniscus 4 2 2 0.87 0.01 0.09 0 0.17  0.35 0.09 0.51 0.04 KW Doran and Hunt, 1994h 

Gorilla gorilla 26 15 11 0.92 0.01 0.06 0 0.10  0.19 0.13 0.62 0.02 KW Remis, 1994i 

Gorilla beringei 11 8 3 0.96 0.01 0.04 0 0.09  0.53 0.06 0.40 0.01 KW Doran, 1996, 1997 

Pongo pygmaeus 19 9 10 0.12 0.43 0.37 0.01 0.95  0.12 0.43 0.37 0.01 S Cant, 1987j 

Pongo abelii 14 4 10 0.18 0.38 0.35 0.01 0.95  0.18 0.38 0.35 0.01 S Thorpe and Crompton, 2006 

Hoolock hoolock 7 3 4 0 0.55 0.20 0.22 0.99  0 0.55 0.20 0.22 S Sati and Alfred, 2002 

Hylobates muelleri 4 2 2           S  

Hylobates lar 15 9 6 0 0.59 0.19 0.16 0.99  0 0.59 0.19 0.16 S Nowak and Reichard, 2016 

Symphalangus syndactylus 3 1 2 0 0.59 0.32 0.02 0.99  0 0.59 0.32 0.02 S Hunt, 2004 

Papio anubis 14 8 6 0.99 0 0.01 0.01 0.05  0.68 0 0.21 0.10 DG Hunt, 1991 

Lophocebus albigena 6 5 1 0.42 0 0.36 0.21 0.95  0.42 0 0.36 0.21 PG 
Gebo and Chapman, 1995; 
Aronsen, 2004k 

Mandrillus sphinx 8 6 2           DG  

Cercocebus agilis 2 2 0           PG  

Macaca fascicularis 18 11 7 0.68 0 0.26 0.06 0.97  0.68 0 0.26 0.06 PG Cant, 1988l 

Erythrocebus patas 7 5 2 0.94 0 0.05 0.01 0.08  0.60 0 0.30 0.10 DG Isbell et al., 1998m 

Cercopithecus mitis 10 6 4 0.54 0 0.35 0.11 0.95  0.54 0 0.35 0.11 PG Gebo and Chapman, 1995 

Colobus guereza 9 6 3 0.41 0.01 0.20 0.38 0.96  0.41 0.01 0.20 0.38 PG Gebo and Chapman, 1995 

Procolobus rufomitratus 12 6 6 0.35 0.01 0.29 0.35 0.95  0.35 0.01 0.29 0.35 PG 
Gebo and Chapman, 1995; 
Aronsen, 2004k 

Nasalis larvatus 17 9 8           PG  

Trachypithecus sp. 17 7 10 0.60 0 0.13 0.28 0.99  0.60 0 0.13 0.28 PG Fleagle, 1980 

Presbytis melalophos 2 1 1 0.28 0.02 0.19 0.50 0.99  0.28 0.02 0.19 0.50 PG Fleagle, 1980 

Alouatta sp. 32 13 19 0.61 0.02 0.33 0.05 0.95  0.61 0.02 0.33 0.05 PG Youlatos and Guillot, 2015n 

Ateles geoffroyi 11 2 9 0.42 0.25 0.25 0.07 0.99  0.42 0.25 0.25 0.07 S 
Mittermeier, 1978; Cant, 1986; 
Fontaine, 1990k 

Cebus apella 28 20 8 0.37 0 0.40 0.21 0.95   0.37 0 0.40 0.21 PG Wright, 2007; Youlatos, 1998k 

Total n 336 182 154                         
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a Includes both quadrupedal and tripedal walking. 
b Includes brachiation, forelimb swinging, orthograde clambering and transfering, and inverted walking or running (after Thorpe and Crompton, 2006). 
c Includes vertical climbing and descent, scrambling, sliding, swaying, and bridging (after Doran, 1996). 
d Includes both leap and drop. 
e Refers to the proportion of all locomotion occuring on an arboreal substrate. When combined locomotion is not quantified but travel and feeding 
locomotion are, an average was taken, weighted by number of observations when available. Male and female data were also averaged if combined 
proportion was not provided. When no terrestrial locomotion was reported, Arb was estimated at .99. 
f Highly arboreal species (Arb ≥ .95) are generally studied in terms of arboreal-only locomotor proportions; the total proportions of these taxa were not 
adjusted to reflect minor differences in Arb. 
g Characterizes the dominant positional behavior in each taxon's locomotor repertoire; KW, knuckle-walking; S, orthograde clambering, climbing, 
suspension, and/or brachiation; PG, arboreal palmigrade quadrupedalism; DG, terrestrial digitigrade quadrupedalism. 
h Arb estimated based on Doran, 1993b, total proportions extrapolated. 
i Arb estimated and total proportions extrapolated. 
j Arb calculated from Galdikas, 1978; Leap estimated based on P. abelii and subtracted from horizontal clambering, classified here under suspension. 
k Average of reported values. 
l Arb from Wheatley, 1982. 
m Arb estimated, arboreal proportions extrapolated. 
n Compiled values for sampled species averaged. 
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Shape variables 

33 morphometric variables (Table 2.2) were extracted from the set of segmented 

models belonging to each individual. The relative size of an articulation was 

characterized by indexing its surface area against that of its parent bone. The average 

orientation of selected surfaces was characterized by a fitted least-squares plane. Most 

angular metrics are dihedral angles calculated between these planes; in one case 

(LuCpRaA), the first inertial axis (i.e., the normal vector) of the lunate’s capitate facet 

was used to limit the metric’s variation to within a parasagittal plane, and in another 

case (Tq1LuA) the first inertial axis of the triquetrum was used to characterize the 

orientation of its long axis relative to its lunate facet. In these cases, the angle is 

calculated between the inertial axis and its orthogonal projection onto the least-squares 

plane of interest. An additional four compound metrics were derived from these angular 

metrics by summing adjacent angles, or in one case (MCJAR) by indexing two such 

compound angles against each other.  

Four additional shape variables were calculated for each individual. The 

concavity of the capitate’s hamate facet (CpHmC) and the lunate’s capitate facet 

(LuCpC) were characterized by the difference between the maximum and minimum 

deviance of the facet relative to its fitted plane, divided by the maximum length of the 

facet parallel to the axis of concavity. The topological complexity of the capitate’s Mc3 

surface (Cp3SD) was characterized by the standard deviation of its vertices relative to 

its fitted plane (weighted to account for triangle size), divided by the cube root of 

capitate volume. Capitate head position (CpHP) was measured linearly from its most 

proximal point to a plane extending from the dorsal nonarticular region of the bone 
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orthogonal to the plane of the Mc3 facet, divided by the square root of Mc3 surface area 

to account for isometry. Each shape variable characterizes a morphological trait 

hypothesized either here or elsewhere in the literature to be associated with one or 

more anthropoid functions (Table 2.2). In many cases, these hypotheses were left 

implicit by previous researchers, or limited in context; this study seeks to quantitatively 

test for the existence of these links, and to assess their generalizability to other 

anthropoids. 
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Table 2.2. Description of shape variables and associated functional hypotheses in non-hominin anthropoids. Listed hypotheses were not 
necessarily endorsed or explicitly stated in the provided references, and were often applied in a more limited taxonomic setting. See text for 
measurement details. 

Metric Description Hypothesized Functional Implications References 

CpPx Capitate proximoradial 
surface area 

Greater area may reflect medial and/or lateral expansion of the capitate 
head or expansion of the concave distal portion of the scaphoid/centrale 
surface, perhaps associated with greater midcarpal mobility in supination, 
extension, and/or radial deviation in suspensors, or with a stable midcarpal 
joint during limited extension during terrestrial behavior, particularly in 
knuckle-walkers. 

Jenkins, 1981; Rose, 1984; 
Ward, 1998 

CpDn Capitate dorsal nonarticular 
surface area 

Greater area may correspond with a smaller articular arc on the dorsum of 
the capitate associated with limited extension of the midcarpus, possibly 
associated with terrestriality, especially knuckle-walking. 

Richmond et al., 2001; 
Begun, 2004; Orr, 2017 

Cp2 Capitate Mc2 surface area Restricted to the palmar portion of the capitate as part of the stable CJC of 
great apes; greater surface area may reflect a more proximal Mc2 origin as 
part of the distal wrist mortise in terrestrial cercopithecoids. 

Lovejoy et al., 2009; Selby 
et al., 2016 

Cp4 Capitate Mc4 surface area A lack of articulation may reflect offset Mc3&4 bases and increased CMC 
stability in knuckle-walking taxa, while extensive articulation may aid axial 
load transmission in digitigrade taxa 

Marzke et al., 1994 

Cp23A Interior angle between the 
Mc2 and Mc3 facets of the 
capitate 

Sagittal alignment of the Mc2 facet said to be unique to great apes and key 
to their CJC stability, although the more proximal origin of the Mc2 in 
digitigrade cercopithecoids may also be reflected in a more acute angle 

Selby et al., 2016 

CpPxA Interior angle between the 
proximoradial surface and 
the hamate facet of the 
capitate 

Larger values reflect a stouter capitate and a lower degree of midcarpal 
joint curvature associated with terrestriality, whereas smaller values reflect 
a narrower capitate and greater midcarpal joint curvature associated with 
greater mobility in climbing or suspensory primates 

Tuttle, 1967; Jenkins and 
Fleagle, 1975; Sarmiento, 
1988; Hamrick, 1996b 

CpScA Interior angle between the 
scaphoid/centrale facet and 
the dorsal nonarticular 
surface of the capitate 

Lower values reflect a more radial (as opposed to dorsal) orientation of the 
scaphoid/centrale facet, thought to be associated with habitual supination of 
the midcarpal joint in suspensory taxa 

Jenkins and Fleagle, 1975; 
Jenkins, 1981; Rose, 1984 

Cp3SD Capitate Mc3 facet 
complexity 

Larger values reflect topographical complexity or keeling related to 
increased CMC stability, usually thought to be associated with knuckle-
walking, less commonly with suspension 

McHenry, 1983; Marzke, 
1983; Marzke and Marzke, 
1987; Richmond et al., 
2001; Begun, 2004; Selby 
et al., 2016 

CpHmC Capitate hamate surface 
concavity 

Greater concavity may reduce shear during knuckle-walking or perhaps 
vertical-manus quadrupedalism more generally. 

Sarmiento, 1985; 
Richmond et al., 2001; 
Begun and Kivell, 2011 
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CpHP Dorsopalmar position of the 
capitate head 

Larger values reflect a more palmarly positioned capitate head, suggested 
to be associated with greater extension of the midcarpal joint as found in 
palmigrade primates 

Lovejoy et al., 2009; Selby 
et al., 2016 

HmPx Hamate proximomedial 
surface area 

Larger values may be associated with habitual loading of the wrist in ulnar 
deviation, and perhaps also increased mobility; smaller values may reflect 
limited ulnar deviation in knuckle-walkers 

Spoor et al., 1991; 
Preuschoft et al., 1993; 
Richmond et al., 2001; 
Begun and Kivell, 2011 

Hm5 Hamate Mc5 surface area Greater values may be associated with CMC mobility and/or ulnar loading in 
digitigrade primates, whereas lower values may reflect relatively low ulnar 
loading, especially of the fifth ray, during knuckle-walking 

Marzke, 1983; Marzke et 
al., 1992 

Hm45A Interior angle between the 
Mc5 and Mc4 facets of the 
hamate 

Smaller values may reflect a more ulnar orientation of the Mc5 facet, 
perhaps related to the distal wrist mortise in cercopithecoids, particularly in 
accomodating the styloid-like proximomedially projecting Mc5 base in 
digitigrade taxa. 

Selby et al., 2016 

HmPxA Interior angle between the 
proximomedial surface and 
capitate facet of the hamate 

Lower values indicate a narrow hamate and greater curvature of the 
midcarpal joint, which facilitates mobility in rotation and ulnar deviation at 
the midcarpal joint 

Tuttle, 1967; Jenkins and 
Fleagle, 1975; Jenkins, 
1981; Sarmiento, 1988; Orr 
and Atkinson, 2016 

CpHmPxAa Interior angle between the 
proximal surfaces of the 
capitate and hamate 
(CpPxA + HmPxA) 

Lower values indicate higher curvature of the midcarpal joint facilitating 
midcarpal mobility; higher values indicate a midcarpal joint oriented 
orthogonal to axial compressive loads experienced among African apes and 
terrestrial cercopithecids 

Tuttle, 1967; Jenkins and 
Fleagle, 1975; Jenkins, 
1981; Sarmiento, 1988; 
Hamrick 1996b; Richmond, 
2006 

CMC34A Exterior angle between the 
capitate Mc3 facet and the 
hamate Mc4 facet 

Said to be parallel in most cercopithecoids but forming a V-shaped angle in 
baboons, may play a role in converting shear to compression during 
digitigrade quadrupedalism 

Selby et al., 2016 

LuDs Lunate distal surface area Greater values may be associated with the transmission of axial loads 
during knuckle-walking 

Jenkins and Fleagle, 1975 

LuTq Lunate triquetrum surface 
area 

Larger values may be associated with increased compressive loading and 
stability; smaller values may reflect a reduced role in weight-bearing in 
suspensory taxa 

Kivell et al., 2013 

LuSc Lunate scaphoid/centrale 
surface area 

Smaller values may be associated with greater loading of the radiolunate 
joint in wrist adduction during climbing 

Kivell et al., 2013 

LuRa Lunate radius surface area Larger values may reflect enhanced ulnar loading in Asian apes relative to 
African apes, but have also been associated with climbing in hominoids; 
large and small values have both also been linked to pronograde weight 
support or terrestriality 

Jenkins and Fleagle, 1975; 
Heinrich et al., 1993; 
Zylstra, 1999; Richmond et 
al., 2001; Lovejoy et al., 
2009; Ward et al., 2012; 
Kivell et al., 2013 
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LuDsTqA Interior angle between the 
distal surface and triquetral 
facet of the lunate 

A more obtuse angle orients the triquetrum distally, and may correspond 
with increased ulnar loading and/or distal migration of the triquetrum, 
associated with greater supination and ulnar deviation in suspensors 

Corruccini, 1978; 
Sarmiento, 1985, 1988; 
Begun, 2004 

LuDsScA Interior angle between the 
distal surface and 
scaphoid/centrale facet of 
the lunate 

Larger values serve to orient the distal facet normal to compressive axial 
forces produced during pronograde weight bearing; smaller values may be 
associated with a more curved midcarpal joint and greater midcarpal 
mobility 

Sarmiento, 1988 

LuScRaA Interior angle of 
scaphoid/centrale and 
radius facets of the lunate 

A more obtuse angle may be associated with the radial facets of the lunate 
and scaphoid being relatively coplanar to transmit axial compressive loads; 
a more acute angle may reflect a more radioulnarly curved and mobile 
proximal wrist joint. 

Tuttle, 1967, 1969; Beard 
et al., 1986; Begun, 2004; 
Richmond, 2006 

LuCpRaA Orientation of the radius 
facet of lunate relative to 
the first inertial axis of the 
capitate facet 

May reflect the neutral or most stable position of the wrist in flexion-
extension, characterizing the orientation of the radiocarpal and midcarpal 
joints relative to each other; greater values may be found in habitually 
palmigrade or palmigrade-capable species 

Robertson, 1984; Rose, 
1988 

LuCpC Lunate capitate surface 
dorsopalmar concavity 

Greater concavity may enhance midcarpal stability throughout a larger 
range of motion during suspension 

Dainton and Macho, 1999 

TqHm Triquetrum hamate facet 
area 

Larger area may reflect greater midcarpal mobility in supination and ulnar 
deviation; and may be associated with more a distal origin of the pisiform, 
increasing leverage of the flexor carpi ulnaris during flexion 

Kivell, 2011, Sarmiento, 
1988 

TqLu Triquetrum lunate facet 
area 

Larger values may be associated with greater compressive loading and 
stability; smaller values may reflect a reduced role in weight-bearing. Both 
large and small values have been associated with greater midcarpal 
mobility 

Kivell, 2011; Kivell et al., 
2013 

TqPi Triquetrum pisiform facet 
area 

Larger area may reflect increased intrinsic or extrinsic loading of triquetrum 
and pisiform, perhaps associated with terrestriality, while smaller values 
may reflect both lesser loading and the facet being limited to the more distal 
part of the bone 

Sarmiento 1985, 1988 

TqSt Triquetrum ulnar styloid 
facet area 

When present, a larger articulation may reflect greater distomedial 
displacement of the ulnar styloid, allowing greater ulnar deviation and 
supination at the proximal carpal joint 

Beard et al., 1986; Godinot 
and Beard, 1993 

TqHmPiA Orientation of pisiform facet 
of triquetrum relative to 
hamate facet 

Larger values reflect a more distal or palmar  (as opposed to proximal or 
medial) orientation of the pisiform facet, which may be reflected in the 
orientation of the pisiform, thought to increase flexor carpi ulnaris leverage 
during flexion in suspensory taxa 

Sarmiento, 1988; Lewis, 
1989; Hamrick, 1997 

Tq1LuA Orientation of the long axis 
(first inertial axis) of the 
triquetrum relative to lunate 
facet 

Larger values may reflect a more distal orientation of the long axis of the 
triquetrum, associated with greater mobility in ulnar deviation and supination 

Sarmiento, 1988 
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LuTqDsAa Exterior angle between the 
distal surface of the lunate 
and the hamate facet of the 
triquetrum (360 - (LuDsTqA 
+ TqHmLuA); the latter 
angle is not analyzed here) 

Smaller values correspond with a narrower and more curved proximal 
surface of the midcarpal joint, which facilitates midcarpal mobility and the 
transmission of a greater variety of load vectors, but lesser ability in 
transmitting axial/unidirectional loading 

Tuttle, 1967; Jenkins and 
Fleagle, 1975; Sarmiento, 
1988; Hamrick, 1996a, b, c 

MCJARa Ratio between the angles of 
the opposing midcarpal joint 
surfaces 
(LuTqDsA/CpHmPxA) 

Greater congruence of opposing midcarpal joint surface curvature (values 
closer to 1) enhances load transmission, whereas larger values indicate 
relatively greater curvature of the distal surface, thought to enhance mobility 

Bullough et al., 1968; 
Sarmiento, 1988 

a Denotes a compound metric 
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Behavioral data 

Quantitative characterizations of locomotor behavior were compiled from 

published observations available for 22 of 28 sampled taxa (Table 2.1). The resulting 

locomotor variables represent the proportion of locomotor time spent in four different 

modes of locomotion: Quad = quadrupedalism/tripedalism; Susp = orthograde 

suspension, including brachiation, forelimb swinging, orthograde clambering and 

transferring, and inverted walking or running (after Thorpe and Crompton, 2006); Climb 

= vertical climbing, quadrupedal climbing and scrambling, vertical descent, bridging, 

sliding, and swaying (after Doran, 1996); Leap =  leaping and dropping (see Hunt et al., 

1996 for definitions and discussion of behavioral terms). When locomotion during travel 

and feeding were quantified separately, these values were averaged, weighted by 

number of observations when available. Male and female proportions were similarly 

averaged if combined data were not provided. 

Non-locomotor postures such as arm-hanging while feeding have been proposed 

to play important adaptive roles in hominoid evolution (e.g. Hunt, 1991), and there is a 

growing recognition that locomotion changes during ontogeny, and that behaviors 

preferred by sub-adults may disproportionately influence adult morphology (e.g., 

Sarringhaus et al., 2016). However, the current lack of comparable ontogenetic and 

postural data for most of the sampled taxa made locomotor proportions a more feasible 

quantitative behavioral proxy.  

Each locomotor mode is represented by an additional variable ending in the letter 

A, which measure arboreal-only locomotor proportions (e.g., SuspA). A final locomotor 

variable, Arb, characterizes the proportion of locomotion occurring on arboreal 
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substrates as opposed to on the ground. In highly arboreal species for which no or very 

limited terrestrial locomotion was observed, Arb was estimated at .99. Quantitative 

observations of the types and frequency of terrestrial locomotion in highly arboreal 

primates are uncommon; the total proportions of these species are therefore identical to 

their arboreal-only proportions, and do not reflect minor differences in Arb values. 

Proportions of bipedalism were also compiled, but are not analyzed here due to an 

expected lack of morphological association, as well as its strong collinearity with 

suspension in the sampled taxa. Some taxa therefore have total and arboreal-only 

proportions that do not sum to 1. 

Sampled taxa were also assigned to one of four broad classes characterizing the 

hand/wrist postures most frequently employed during locomotion: KW = knuckle-

walking; S = orthograde climbing, clambering, suspension and/or brachiation; PG = 

arboreal palmigrade quadrupedalism; DG = terrestrial digitigrade quadrupedalism. 

Some analyses were repeated using different combinations of these positional classes; 

KW and DG taxa combine to form a vertical manus group (VM), S and PG taxa form a 

palmigrade-capable group (after Orr, 2010), and PG and DG taxa form a pronograde 

monkey group. While categorical schemes are frequently used in analyzing behavioral 

variation in primates (e.g., Orr, 2010; Patel and Wunderlich, 2010; Polk et al., 2010; 

Begun and Kivell, 2011; Fernandez et al., 2015; Lewton, 2015; Selby et al., 2016; Selby 

and Lovejoy, 2017), it is recognized that these are crude characterizations of the many 

behaviors performed by these animals (e.g., Hunt et al., 1996; Walker, 1998). Members 

of the KW class, for example, are also all capable suspensors, but employ this behavior 
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relatively infrequently in adulthood, whereas members of the S class are more 

committed suspensors. 

Included among the sampled taxa are several “phylogenetically-targeted” (Arnold 

and Nunn, 2010) dyads of closely-related but behaviorally dissimilar taxa, in an attempt 

to maximize the number of sampled lineages having undergone evolutionary changes in 

positional repertoire, which provide the best opportunities for testing functional 

hypotheses (Coddington, 1994). For example, each of the digitigrade taxa contribute to 

one of these dyads, with Papio, Mandrillus, and Erythrocebus having evolved digitigrady 

independently of each other (e.g., Gilbert et al. 2010; Gosselin-Ildari, 2013), in contrast 

to their closest relatives in the sample, respectively Lophocebus, Cercocebus, and 

Cercopithecus. Macaca serves as an outgroup to the papionin dyads, and Cebus the 

outgroup to an Ateles-Alouatta dyad. The colobine sample lacks positional class 

diversity, but captures substantial variation in locomotor proportions. 

 

Preparatory analysis 

The distributions of several locomotor proportions and two-thirds of the shape 

variables depart significantly from normality, as measured by Shapiro-Wilk (1965) tests. 

This is to be expected, however, given the statistical non-independence of biological 

data. Phylogenetic residuals of linear models were found to depart from normality only 

very rarely, and with no greater occurrence in the analysis of non-normally distributed 

variables. Shape and locomotor variables were therefore analyzed without 

transformation. For non-phylogenetic analyses, methods less sensitive to 

heteroscedasticity were preferred. Shape variables were scaled to units of standard 



 

26 
 

deviation for ease of regression coefficient comparison and to prevent bias in 

multivariate models due to unit heterogeneity.  

The inclusion of redundant or irrelevant variables can cause important problems 

in multivariate models (e.g., Miller, 2002; Ritter, 2015). Shape variables were therefore 

subjected to a series of feature selection criteria. Pairwise collinearity was measured via 

Spearman correlation of combined sex-specific phylogenetic independent contrasts 

(PICs; Felsenstein, 1985). A certain amount of collinearity is expected in association 

with functional adaptation, phylogenetic or developmental constraints, and other 

influences, but variables with pairwise rho values exceeding 0.5 were prevented from 

inclusion in the same model. Multicollinearity was assessed in each subset selected for 

multivariate analysis via calculation of condition numbers. 

A size surrogate was included as a covariate during hypothesis testing and 

feature selection, but not as a predictor in multivariate analyses. While potentially 

attenuating significance and predictive power, these steps increase the generalizability 

of the resulting models to taxa for which similar relationships among size, shape, and 

positional behavior cannot necessarily be assumed. The log-transformed volume of 

each carpal and combinations thereof were tested for size surrogate suitability via 

ordinary least squares (OLS) regression against log-transformed sex-specific body 

mass means and phylogenetic generalized least squares (PGLS; Grafen, 1989) of 

taxon means. Body mass data of sampled individuals were gathered from museum 

records when available, supplemented by data from Smith and Jungers (1997) and 

Delson and colleagues (2000). Analysis of covariance (ANCOVA) was used to detect 

heterogeneity of OLS regression slopes between sexes and superfamilies. Cases of 
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significant heterogeneity were further explored with post hoc Tukey (1949) tests with 

false discovery rate adjustment (Benjamini and Hochberg, 1995) to detect between-

group differences. Spearman correlations between the PICs of each variable and the 

size surrogate were calculated to test for allometric scaling of shape and locomotor 

variables. Relationships between body size and positional classes were assessed using 

PGLS. Multivariate phylogenetic allometry of shape and locomotor variables was tested 

with a distance-based PGLS method (D-PGLS; Adams, 2014a). 

 

 

Fig. 2.3. Molecular relationships of the extant sample used in phylogenetic analyses. 
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The phylogenetic signal of individual shape and locomotor variables was 

estimated using both Pagel’s lambda (Pagel, 1999) and Blomberg’s K (Blomberg et al., 

2003); multivariate phylogenetic signal was estimated by Kmult, a generalization of the 

latter metric (Adams, 2014b). A consensus molecular tree based on Genbank data from 

version 3 of the 10ktrees project (Arnold et al., 2010; Fig. 2.3) was used in analyses 

incorporating phylogenetic information. 

 

Univariate hypothesis testing and feature selection 

 Shape and locomotor variable values were often extreme in sampled hylobatids, 

giving these data points high leverage in many of the functional analyses, and therefore 

the potential to yield significant correlations across the sample that in fact have no 

discernable functional pattern in the non-hylobatid sample (discussed further below). To 

take this into account, each of the analyses described in this section were repeated with 

hylobatids excluded. 

Univariate relationships between the shape variables and the positional classes 

were assessed with PGLS regression, with λ estimated during model fitting. PGLS 

cannot be used with a categorical response variable, and therefore has limited utility in 

analyzing shape variation between positional classes while accounting for size. This 

limitation was overcome using phylogenetic generalized linear mixed modeling 

(PGLMM), of which PGLS can be considered a special case (de Villemereuil and 

Nakagawa, 2014). Unlike PGLS, the Bayesian Markov chain Monte Carlo (MCMC) 

PGLMM approach used here can also analyze multiple observations per taxon, allowing 

consideration of intra-taxon variation. Like other forms of multinomial logistic regression, 
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this method assigns a log odds ratio to each pairwise combination of the predictor 

variables and the non-reference classes of the dependent variable. With a palmigrade 

reference group, the coefficients therefore characterize the expected change in 

probability of belonging to DG, KW, and S relative to PG given a one standard deviation 

increase in the shape variable while holding the size variable constant. The use of 

PGLMM is described in detail elsewhere (Hadfield, 2010; Hadfield and Nakagawa, 

2010; Carter and Worthington, 2016). This study takes the parameter expanded priors 

of the Bernoulli procedure followed by Carter and Worthington (2016; see Worthington, 

2016 for R code), adjusted to accommodate a multiclass response variable (see 

Gelman, 2006 for background on this procedure). pMCMC values were also calculated 

for convenience in feature selection and hypothesis testing.  

Investigation of the individual morpho-functional hypotheses (Table 2.2) was 

further supplemented through analysis of different positional schemes. KW and S were 

analyzed relative to pronograde monkeys, DG and KW relative to palmigrade-capable, 

VM relative to palmigrade-capable, and VM and S relative to PG. Inter- and intra-taxon 

variation were considered in separate analyses of each positional scheme, the former 

through analysis of taxon means, and the latter through analysis of all observations 

without taxonomic differentiation beyond that imposed by the phylogenetic structure. 

Due to the time- and hardware-intensive nature of fitting a separate MCMC 

model for each shape variable in each of several different analyses, the number of 

iterations used to fit each model was limited. 5e6 iterations (5e5 burn-in period, 1e3 

thinning interval) generally resulted in effective sample sizes (samples adjusted for 

Markov chain autocorrelation) exceeding 1000 for each coefficient, the minimum 
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recommended by de Villemereuil (2012). Analyses of observations especially prone to 

autocorrelation were repeated with 1e7 iterations to meet this threshold. 

Results of phylogenetic regressions aided in selecting the subset of shape 

variables used to build multivariate classification models (Barr and Scott, 2014). Initially, 

shape variables were selected if found to significantly distinguish the taxon means of at 

least one of the three of three non-reference classes from those of the palmigrade class 

with hylobatids excluded. This subset was further winnowed to eliminate collinear 

variables, as discussed above. Finally, any variables excessively hindering the 

prediction of classes for which they were not chosen as significant were eliminated. This 

was done by averaging the p-values of each shape variable for the three non-reference 

classes and eliminating any with a mean greater than 0.4. 

Univariate relationships between the shape variables and locomotor proportions 

were analyzed via PGLS. Allometry was accounted for by including the size surrogate 

as a covariate of shape with the locomotor proportion as the dependent variable. In 

addition to their use in testing the individual functional hypotheses (Table 2.2), results of 

these analyses aided in building a predictive model for each of the locomotor 

proportions. Shape variables found to correlate with a given locomotor proportion while 

accounting for allometry with hylobatids excluded were subjected to further model 

selection criteria as outlined below. 
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Multivariate analysis 

Positional classes 

Shape variables selected for inclusion in the positional classification model were 

first included in a final PGLMM analysis to estimate the subset’s phylogenetic signal 

relative to the positional classes. The model’s posterior mean λ did not differ 

significantly from zero. Because a phylogenetic model lacking phylogenetic signal yields 

results equivalent to those of non-phylogenetic methods, non-phylogenetic methods 

were chosen to construct and evaluate the classification model. Discriminant function 

analysis (DFA) was chosen for ease of visualization and interpretation. DFA assumes 

that all variables are normally distributed and that all classes have equal covariance 

matrices, is prone to over-fitting, and cannot detect non-linear relationships (Kovarovic 

et al., 2011; Mitteroecker and Bookstein, 2011). A supplementary classifier was 

therefore built with a regularized multinomial logistic regression machine learning 

algorithm (glmnet; Friedman et al., 2010), chosen for its less strict assumptions and 

ability to detect nonlinear relationships while further protecting against over-fitting and 

bias due to collinearity. This method incorporates elastic net regularization, in which 

predictor coefficients are shrunk in accord with collinearity as in ridge regression, while 

allowing uninformative or redundant variables to be ignored entirely as in LASSO 

regression (Tibshirani, 1996).  

The classification accuracy of both models was calculated after 100 repetitions of 

k-fold cross-validation with random, non-stratified sampling. This technique reduces 

overfitting and variance while increasing model applicability to out-of-sample data (e.g., 

Kovarovic et al., 2011). 10-fold CV was chosen for its favorable combination of variance 
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reduction and low bias relative to other CV techniques (Kuhn and Johnson, 2013). 

Models were trained and evaluated with priors proportional to class size (Sanchez, 

1974). glmnet output was optimized by tuning alpha and lambda parameters (the 

regularization term and its weight, respectively; the latter not to be confused with 

Pagel’s) on repeated runs. 

 

Locomotor proportions  

The subset of shape variables found to correlate with each locomotor proportion 

were subjected to a model selection algorithm detecting the PGLS models associated 

with the lowest second-order Akaike Information Criterion (AICc) values (Burnham and 

Anderson, 2002). A subset of three or four models was chosen for each locomotor 

proportion based on delta-AICc. From these, the final model for each locomotor 

proportion was chosen based on their relative accuracy in predicting extant locomotor 

proportions. λ was again estimated at 0 during the fitting of each candidate model; 

prediction and model evaluation was therefore carried out using non-phylogenetic 

quasibinomial logistic regression.  

The six taxa for which quantitative locomotor observations were unavailable were 

used to aid model evaluation. Although not useful for quantifying prediction error, 

locomotor proportions estimated for these taxa were compared to published qualitative 

observations and to quantitative observations of taxa thought to be behaviorally similar. 

This approach was deemed superior to withholding taxa from the training set, as 

reducing the number of training taxa risks impoverishing the model-building process. 

Quantification of prediction error was carried out by calculating the percent standard 
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error of estimate (%SEE) of individual predictions generated during 100 repetitions of 

10-fold cross validation. 

The degree to which carpal morphology covaries with locomotion was further 

explored via calculation of RV coefficients (Escoufier, 1973; Klingenberg, 2009) 

between matrices (or blocks) of shape and locomotor variables and PICs thereof. 

Correspondence of the shape data with locomotion was assessed in turn relative to 

various combinations of locomotor proportions, including arboreal-only proportions and 

total proportions, with and without Arb. Relationships between shape and locomotor 

proportions were further assessed using two-block partial least squares (PLS) 

regression (Rohlf and Corti, 2000), which maximizes the covariance between blocks 

along each axis, as well as a phylogenetic equivalent (rPLS; Adams and Felice, 2014; 

Adams and Collyer, 2016). Taxa for which locomotor observations were not available 

were projected into PLS shape-space by scaling their shape data to match the training 

sample and multiplying the resulting matrix by one containing the singular vectors of the 

shape block.  

A standardized Euclidean distance was calculated between each taxon’s position 

in PLS shape-space and behavior-space, defined by the first two axes of each block’s 

PLS scores scaled to match their proportions of covariance. This metric allows the 

average distance between shape and locomotor behavior to be compared between 

models with different inputs, and the degree to which form follows function to be 

compared between taxa. 
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Computational details 

Computations were done in R (R Core Team, 2016) within RStudio (RStudio 

Team, 2016). PGLS was done with caper (Orme et al., 2013); PGLMMs were fitted with 

MCMCglmm (Hadfield, 2010); RV tests were done with FactoMineR (Le et al., 2008); 

two-block PLS was done with Morpho (Schlager, 2016) and geomorph (Adams and 

Otarola-Castillo, 2013); DFA was done with MASS (Venables and Ripley, 2002). Cross-

validation of DFA and GLM models incorporated code taken from ipred (Peters and 

Hothorn, 2015); AICc model selection was done with MuMIn (Barton, 2016); glmnet 

(Friedman et al., 2010) was used via wrapper functions in caret (Kuhn, 2016); %SEE 

was calculated with MASSTIMATE (Campione, 2016); Spearman correlations were 

done with Hmisc (Harrell et al., 2016); Tukey tests were done with multcomp (Hothorn 

et al., 2008). ape (Paradis et al., 2004) was used to calculate PICs and to modify and 

visualize phylogenetic trees, the latter with the help of phyclust (Chen, 2011). Fig. 2.4, 

Fig. 2.6, Fig. 2.7, and Fig. 2.8 were produced with the aid of ggplot2 (Wickham, 2009); 

3D visualizations were produced in 3-Matic. 

Note: Hundreds of p-values were generated in the course of this study. They are 

considered for convenience in the aid of variable selection and interpreting relationship 

strengths, but are not individually relied upon as evidence for the validity of any 

conclusions presented. Multivariate models are instead evaluated through cross-

validated prediction accuracy, while individual morpho-functional relationships are 

evaluated with consideration of prior functional hypotheses, results from multiple 

analyses with varying inputs, and the plausibility of their biomechanical underpinnings. 

p-values are therefore not adjusted for multiple comparison except where noted. 
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Despite the arbitrary nature of the p ≤ 0.05 threshold, it is held here to indicate 

“statistical significance” for convenience in discussion. 

 

 

Results 

Univariate analysis 

Log-transformed volumes of the capitate, lunate, and the four carpals combined 

were each determined to be effective surrogates for body size (Table 2.3). These 

variables each had OLS R2 ≥ 0.97, with slopes remaining homogenous between 

different sexes and superfamilies. Log-transformed sum carpal volume was chosen for 

use as the size surrogate in this study due to its higher R2 and lower residual standard 

error values in both OLS and PGLS regression, and its lower λ estimate. Log-

transformed hamate and triquetrum volumes were found to be less effective size 

surrogates. Log triquetrum volume slopes are very similar in hominoids and other 

anthropoids, but the intercept of hominoids is significantly different, as expected owing 

to their lack of stylotriquetrum articulation (Lewis, 1965 and references therein; note: 

ulnocarpal contact is often maintained in hylobatids via a novel accessory bone (Lewis, 

1971; Jenkins, 1981; Sarmiento, 1988) that is not analyzed here). Meanwhile, the log 

hamate volume slope is significantly different in hominoids. Hylobatid carpals are large 

relative to body mass among the sampled taxa (save the triquetrum, which is large only 

relative to other hominoids), but their hamates are particularly disproportionate, which, 

combined with their small body size, is responsible for much of this heterogeneity. 
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Table 2.3. Results regression and analysis of covariance between sex-specific means (OLS) and taxon means (PGLS) of log-transformed body 
mass and log-transformed carpal volumes 

 OLS  ANCOVA  PGLS 

  R2 
Inter-
cept b p RSE   

p 
(sex) 

p 
(superfamily) 

 
R2 λ 

Inter-
cept b p RSE 

Capitate 0.974 -2.404 0.806 0.000 0.166  0.317 0.420  0.973 0.411 -2.475 0.823 0.000 0.022 

Hamate 0.956 -2.752 0.854 0.000 0.215  0.397 0.005a  0.945 0.824 -2.968 0.895 0.000 0.034 

Lunate 0.971 -2.448 0.833 0.000 0.176  0.439 0.378  0.965 0.419 -2.441 0.838 0.000 0.025 

Triquetrum 0.924 -3.633 1.069 0.000 0.283  0.463 0.044  0.919 0.878 -2.985 0.943 0.000 0.042 

Sum 0.979 -4.033 0.883 0.000 0.151   0.292 0.068  0.985 0.000 -3.983 0.876 0.000 0.018 
a Denotes significant between-group differences between anthropoid superfamilies in FDR-adjusted post hoc Tukey tests 
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Results of PGLS and PGLMM analyses for covariance between individual shape 

variables and positional classes are summarized in Table 2.4, with results of secondary 

positional scheme analyses available in Table 2.8. 16 of the 33 shape variables 

significantly distinguish suspensory and palmigrade taxon means, increasing to 21 with 

the size surrogate as a covariate. Seven of these shape traits remain significant when 

accounting for intra-taxon variation. With hylobatids excluded, 16 shape variables 

distinguish suspensory taxon means, 11 when accounting for size, and 5 when 

analyzing individual observations. Ten shape variables separate knuckle-walking and 

palmigrade taxon means. Only a single shape variable significantly distinguishes 

knuckle-walking taxon means when accounting for size, although this number increases 

to 6 in analysis of individual observations. Knuckle-walking is better distinguished with 

hylobatids excluded. Seven and 13 shape means distinguish knuckle-walking from 

palmigrady with and without accounting for allometry, as do 8 shape variables’ 

individual observations. Digitigrady is the least distinguishable of the non-reference 

classes, with only 4 and 5 variables distinguishing taxon means with and without 

hylobatids, respectively. This drops to 2 and 3, respectively, when accounting for 

allometry, and 4 and 1 when analyzing individual observations, although several others 

fall just short of this threshold. 
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Table 2.4. Covariance of shape variables with positional classes relative to the palmigrade (PG) reference class. Reported results are from 
univariate phylogenetic generalized least squares (PGLS) regression of taxon means except where noted. 

   DG  KW  S 

  R2 λ b p ORa pa ORb pb  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.18 0.82 0.19 0.64 1.62 0.21 1.21 0.20  0.69 0.35 -0.15 0.88 -0.22 0.81  -0.61 0.29 -2.48 0.04 -1.20 0.21 

CpDn 0.02 0.99 0.26 0.58 1.61 0.14 0.97 0.22  -0.45 0.70 0.10 0.93 0.08 0.92  -0.39 0.65 -0.28 0.80 -0.51 0.52 

Cp2 0.27 0.99 0.49 0.10 2.16 0.09 2.23 0.04  -1.56 0.03 -1.94 0.16 -1.34 0.19  -0.98 0.07 -3.03 0.03 -1.39 0.17 

Cp4 0.16 1.00 -0.15 0.60 -0.03 1.00 0.18 0.88  -1.47 0.06 -2.54 0.09 -2.86 0.02  -0.42 0.44 1.23 0.30 0.90 0.41 

Cp23A 0.23 0.89 -0.77 0.08 -1.74 0.12 -1.02 0.28  -0.54 0.52 -1.00 0.41 -1.22 0.19  0.64 0.32 1.41 0.19 0.72 0.41 

CpPxA 0.69 0.79 -0.24 0.33 -0.71 0.57 0.20 0.86  0.26 0.53 1.37 0.34 1.06 0.32  -1.73 0.00 -4.41 0.00 -3.15 0.00 

CpScA 0.25 1.00 -0.37 0.14 -1.17 0.26 -0.61 0.53  0.12 0.85 0.48 0.71 1.28 0.22  -0.84 0.08 -2.58 0.01 -1.43 0.14 

Cp3SD 0.06 0.77 -0.19 0.73 0.66 0.55 0.53 0.58  0.84 0.37 0.37 0.78 -0.20 0.83  -0.07 0.92 -0.77 0.45 -0.53 0.58 

CpHmC 0.38 1.00 0.23 0.38 1.97 0.17 2.18 0.06  0.23 0.72 0.75 0.61 -0.30 0.78  -1.31 0.01 -3.52 0.01 -2.53 0.03 

CpHP 0.50 0.00 0.74 0.14 1.40 0.22 1.03 0.24  -1.42 0.00 -2.29 0.09 -1.45 0.12  -0.01 0.97 0.12 0.92 -0.13 0.87 

HmPx 0.18 0.98 -0.47 0.24 -2.18 0.09 -1.62 0.11  -0.89 0.35 -0.86 0.53 0.28 0.80  0.55 0.43 1.64 0.14 0.85 0.38 

Hm5 0.44 0.94 0.33 0.16 1.73 0.19 1.63 0.09  -1.23 0.03 -2.43 0.05 -2.17 0.04  -1.57 0.00 -3.15 0.01 -1.77 0.08 

Hm45A 0.28 0.00 -0.78 0.20 -1.93 0.12 -0.89 0.32  0.26 0.55 -0.71 0.54 -0.54 0.55  0.97 0.04 1.44 0.19 0.61 0.51 

HmPxA 0.13 0.93 0.35 0.39 1.24 0.34 0.96 0.33  0.61 0.49 -0.36 0.75 -0.10 0.93  -0.51 0.44 -2.01 0.07 -0.70 0.47 

CpHmPxA 0.50 0.98 0.02 0.92 0.37 0.82 1.19 0.29  0.48 0.36 1.05 0.50 1.46 0.20  -1.25 0.00 -4.30 0.00 -3.95 0.00 

CMC34A 0.52 0.00 -1.05 0.04 -2.82 0.02 -1.87 0.07  1.34 0.00 1.17 0.38 0.82 0.43  0.32 0.38 0.13 0.91 0.28 0.78 

LuDs 0.76 0.00 -0.90 0.01 -3.00 0.03 -1.98 0.03  1.80 0.00 2.58 0.05 2.54 0.01  0.41 0.12 -0.10 0.95 -0.26 0.79 

LuTq 0.67 0.00 0.69 0.09 1.72 0.16 0.98 0.25  0.46 0.13 1.26 0.32 0.71 0.39  -1.53 0.00 -3.78 0.01 -1.22 0.15 

LuSc 0.19 0.98 0.02 0.95 0.96 0.48 0.81 0.39  -1.40 0.03 -2.19 0.11 -1.45 0.15  -0.35 0.46 -0.04 0.98 -0.16 0.85 

LuRa 0.14 0.98 -0.01 0.97 0.80 0.51 0.62 0.48  0.64 0.47 1.79 0.20 0.54 0.55  -0.70 0.29 -2.27 0.05 -0.80 0.38 

LuDsTqA 0.51 0.95 -0.30 0.26 -0.86 0.53 -1.14 0.30  -1.20 0.05 -2.10 0.14 -4.13 0.00  1.03 0.03 3.64 0.00 4.33 0.00 

LuDsScA 0.27 0.80 0.46 0.23 1.76 0.13 0.84 0.30  0.36 0.60 0.80 0.53 0.43 0.62  -0.92 0.09 -3.11 0.01 -1.16 0.17 

LuScRaA 0.19 0.80 -0.11 0.78 -0.56 0.58 0.47 0.58  -0.19 0.79 -0.47 0.68 0.22 0.79  -1.14 0.05 -3.13 0.01 -1.02 0.25 

LuCpRaA 0.64 0.95 -1.27 0.00 -1.26 0.28 -0.09 0.93  -2.08 0.00 -3.69 0.00 -3.99 0.00  -1.16 0.01 -2.46 0.04 -0.24 0.81 

LuCpC 0.68 0.00 -0.60 0.14 -2.21 0.11 -1.88 0.04  0.66 0.03 0.38 0.77 0.45 0.63  1.80 0.00 3.68 0.00 1.76 0.06 

TqHm 0.14 0.87 -0.28 0.36 -1.79 0.19 -1.71 0.09  0.40 0.50 1.14 0.35 0.43 0.66  0.75 0.11 2.64 0.03 1.38 0.17 

TqLu 0.08 0.97 0.05 0.86 -0.64 0.62 -0.53 0.61  0.78 0.25 1.66 0.22 0.49 0.64  0.01 0.98 0.48 0.69 0.46 0.66 

TqPi 0.45 0.70 -0.23 0.53 -0.81 0.56 -0.12 0.92  0.88 0.12 2.27 0.12 1.33 0.20  -1.05 0.03 -3.77 0.00 -1.47 0.14 
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TqSt 0.36 1.00 0.19 0.17 1.30 0.34 2.43 0.05  -1.00 0.01 -2.08 0.11 -2.39 0.06  -0.75 0.01 -2.60 0.04 -1.25 0.30 

TqHmPiA 0.46 0.59 0.35 0.34 0.14 0.90 -0.83 0.43  0.99 0.06 0.72 0.58 -0.75 0.47  1.83 0.00 4.44 0.00 2.45 0.02 

Tq1LuA 0.83 0.00 -0.94 0.00 -2.17 0.09 -1.70 0.11  -1.40 0.00 -2.39 0.08 -3.12 0.00  1.01 0.00 3.07 0.02 2.84 0.01 

LuTqDsA 0.44 0.80 0.40 0.23 2.08 0.14 1.89 0.07  0.56 0.33 0.48 0.71 0.25 0.82  -1.15 0.01 -3.73 0.00 -2.62 0.01 

MCJAR 0.33 0.80 0.19 0.59 0.87 0.53 0.06 0.93   -0.17 0.78 -1.37 0.39 -1.03 0.34   1.25 0.02 3.90 0.00 1.67 0.11 

Without hylobatids                     

   DG  KW  S 

  R2 λ b p ORa pa ORb pb  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.07 0.47 0.50 0.41 1.63 0.14 0.99 0.27  0.44 0.55 0.14 0.90 -0.01 0.99  -0.21 0.77 -1.03 0.35 -0.76 0.39 

CpDn 0.09 0.97 0.31 0.47 2.34 0.05 1.24 0.15  -0.27 0.79 0.15 0.90 -0.55 0.51  -0.86 0.28 -2.22 0.08 -1.40 0.10 

Cp2 0.28 0.99 0.47 0.13 2.21 0.08 1.94 0.05  -1.49 0.05 -2.11 0.14 -1.43 0.16  -0.94 0.11 -2.27 0.10 -1.34 0.19 

Cp4 0.30 1.00 -0.15 0.46 0.20 0.86 0.67 0.52  -1.40 0.01 -3.05 0.05 -3.04 0.01  -0.89 0.04 -0.02 1.00 0.33 0.77 

Cp23A 0.19 0.92 -0.94 0.07 -1.73 0.09 -0.62 0.50  -0.56 0.60 -1.15 0.28 -1.20 0.18  0.34 0.69 0.19 0.86 0.38 0.66 

CpPxA 0.75 0.00 -0.63 0.09 -0.94 0.38 -0.02 0.98  0.29 0.28 1.23 0.32 0.78 0.43  -2.42 0.00 -3.36 0.00 -2.34 0.02 

CpScA 0.18 1.00 -0.49 0.11 -1.80 0.11 -1.21 0.21  -0.03 0.97 0.53 0.63 1.47 0.13  -0.67 0.27 -1.01 0.38 -0.56 0.57 

Cp3SD 0.07 0.96 -0.40 0.41 0.66 0.50 0.47 0.64  0.87 0.44 0.47 0.71 -0.23 0.81  0.40 0.64 -0.49 0.66 -0.49 0.61 

CpHmC 0.35 0.93 0.41 0.25 2.32 0.05 1.74 0.09  0.12 0.88 1.10 0.39 -0.08 0.96  -1.50 0.02 -2.29 0.05 -1.73 0.09 

CpHP 0.61 0.00 0.76 0.10 1.59 0.14 1.21 0.18  -1.46 0.00 -2.82 0.02 -2.06 0.03  -0.71 0.12 -1.15 0.32 -0.79 0.39 

HmPx 0.18 0.94 -0.59 0.14 -2.20 0.06 -1.62 0.10  -0.89 0.30 -1.12 0.37 0.41 0.66  0.22 0.75 0.86 0.44 0.96 0.32 

Hm5 0.84 0.00 0.40 0.16 1.92 0.14 1.29 0.16  -1.83 0.00 -2.90 0.03 -1.89 0.05  -1.43 0.00 -2.14 0.08 -1.39 0.15 

Hm45A 0.52 0.00 -0.76 0.13 -2.22 0.07 -1.19 0.21  0.26 0.49 -0.53 0.65 -0.18 0.86  1.91 0.00 2.46 0.04 1.29 0.18 

HmPxA 0.15 0.00 0.52 0.43 1.30 0.23 0.66 0.46  -0.60 0.22 0.02 0.99 0.15 0.87  -0.59 0.37 -0.38 0.69 -0.16 0.87 

CpHmPxA 0.51 0.92 0.01 0.99 0.08 0.96 0.74 0.43  0.63 0.39 0.60 0.66 0.94 0.33  -1.94 0.00 -3.31 0.01 -2.82 0.01 

CMC34A 0.62 0.00 -1.03 0.03 -2.71 0.03 -2.41 0.02  1.31 0.00 1.58 0.24 1.48 0.14  0.84 0.06 0.94 0.44 0.95 0.34 

LuDs 0.89 0.00 -0.87 0.00 -2.89 0.03 -1.79 0.06  1.75 0.00 2.99 0.02 2.66 0.01  -0.23 0.33 -1.17 0.34 -0.60 0.52 

LuTq 0.45 0.00 0.96 0.08 1.87 0.10 0.79 0.32  0.64 0.11 1.53 0.17 0.58 0.49  -1.32 0.02 -2.69 0.02 -1.16 0.17 

LuSc 0.27 0.94 0.02 0.91 1.31 0.38 1.73 0.08  -1.30 0.02 -3.02 0.03 -2.32 0.03  -0.82 0.05 -1.94 0.16 -1.36 0.17 

LuRa 0.06 0.96 0.01 0.98 0.75 0.49 0.38 0.65  0.60 0.53 2.10 0.10 0.54 0.54  -0.33 0.66 -1.02 0.38 -0.59 0.50 

LuDsTqA 0.58 0.92 -0.41 0.17 -0.90 0.45 -1.02 0.32  -1.58 0.02 -2.50 0.06 -3.76 0.00  1.15 0.03 2.40 0.04 3.59 0.00 

LuDsScA 0.31 0.00 1.27 0.04 1.73 0.06 0.66 0.39  0.34 0.44 1.01 0.34 0.45 0.58  -0.81 0.18 -1.73 0.16 -0.78 0.33 

LuScRaA 0.32 0.00 -0.75 0.21 -0.74 0.44 0.15 0.87  -1.04 0.02 -0.49 0.65 0.19 0.82  -1.41 0.02 -1.87 0.09 -0.67 0.40 
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LuCpRaA 0.77 0.91 -1.26 0.00 -2.04 0.13 -0.76 0.47  -2.18 0.00 -4.05 0.00 -4.12 0.00  -0.88 0.01 -0.06 0.97 0.79 0.46 

LuCpC 0.62 0.00 -0.78 0.08 -2.34 0.05 -1.48 0.10  0.86 0.01 0.35 0.77 0.45 0.62  1.90 0.00 2.81 0.03 1.57 0.08 

TqHm 0.14 0.78 -0.33 0.35 -2.05 0.12 -1.46 0.15  0.74 0.23 1.19 0.34 0.40 0.70  0.62 0.24 1.59 0.19 1.19 0.23 

TqLu 0.06 0.97 0.04 0.87 -0.28 0.82 -0.07 0.94  0.65 0.28 1.83 0.17 0.53 0.62  0.23 0.63 0.40 0.75 0.38 0.72 

TqPi 0.64 0.00 -0.42 0.33 -1.33 0.34 -0.37 0.67  1.45 0.00 2.25 0.07 1.10 0.21  -0.68 0.12 -2.27 0.10 -0.80 0.37 

TqSt 0.37 1.00 0.19 0.19 1.42 0.31 2.41 0.05  -1.08 0.01 -2.52 0.08 -2.36 0.07  -0.61 0.04 -1.14 0.39 -1.05 0.38 

TqHmPiA 0.56 0.63 0.34 0.30 0.22 0.87 -0.77 0.46  0.96 0.05 0.65 0.62 -0.40 0.70  2.11 0.00 3.80 0.00 2.71 0.01 

Tq1LuA 0.84 0.00 -0.96 0.00 -2.19 0.08 -1.47 0.15  -1.45 0.00 -2.55 0.04 -2.84 0.01  1.32 0.00 2.36 0.04 2.83 0.02 

LuTqDsA 0.40 0.31 0.81 0.11 2.41 0.04 1.67 0.10  0.35 0.50 0.59 0.61 0.34 0.73  -1.38 0.02 -2.46 0.03 -1.94 0.06 

MCJAR 0.43 0.68 0.69 0.14 1.53 0.15 0.45 0.62   -0.02 0.98 -0.64 0.56 -0.61 0.49   1.89 0.01 2.76 0.01 0.78 0.36 
a Based on Bayesian phylogenetic generalized linear mixed model (PGLMM) regression of taxon means with size (log-transformed sum carpal 
volume) as a covariate. OR, odds ratio (log scale) 
b Based on PGLMM analysis of all observations rather than taxon means 
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Covariance between shape and locomotor variables is reported in Table 2.5 and 

Table 2.9. SuspA and Susp are each correlated with 16 shape variables; without 

hylobatids, they maintain correlations with 10 and 7 traits, respectively. Quad and 

ClimbA share correlations with 8 and 6 shape metrics, respectively, regardless of 

whether hylobatids are included. Climb correlates with only 3 variables with hylobatids, 

but 12 without, the highest of the nine locomotor proportions. Arb is correlated with 9 

and 10 shape variables with and without hylobatids. QuadA is correlated with the largest 

number of shape variables, with 17 significant relationships while accounting for 

allometry. However, the high-leverage data of hylobatids is especially apparent here – 

with this group excluded, significant covariance with QuadA is found in only four shape 

traits. Leap and LeapA covary with the fewest number of shape traits; only a single 

shape trait is correlated with either of the two leaping proportions across the sample, 

with one additional correlation revealed when excluding hylobatids. 

Only four shape variables share an association with both ClimbA and Climb, and 

in three of these cases they covary in opposite directions. Only LuSc covaries in the 

same direction with both climbing proportions, and this is due to controlling for allometry 

– without size as a covariate it also covaries in opposite directions with the two climbing 

proportions. The implications of climbing’s dichotomous shape correlations are 

investigated below. 
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Table 2.5. Relationships between shape variables and selected locomotor proportions based on PGLS 
regression 

a   Quad    b   SuspA    

 R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.54 0.00 0.73 0.00 0.68 0.00  0.15 0.00 -0.28 0.07 -0.91 0.00 

CpDn 0.06 1.00 0.20 0.26 0.23 0.14  0.00 1.00 -0.01 0.93 -0.01 0.92 

Cp2 0.00 1.00 0.02 0.95 0.22 0.36  0.02 1.00 -0.11 0.56 -0.14 0.49 

Cp4 0.05 1.00 -0.28 0.32 0.11 0.72  0.04 1.00 0.19 0.35 0.22 0.37 

Cp23A 0.17 1.00 -0.44 0.06 -0.12 0.54  0.19 1.00 0.30 0.04 0.30 0.05 

CpPxA 0.42 0.76 0.70 0.00 0.57 0.01  0.84 0.00 -0.86 0.00 -0.96 0.00 

CpScA 0.02 1.00 0.21 0.54 0.28 0.34  0.32 1.00 -0.59 0.01 -0.60 0.01 

Cp3SD 0.18 1.00 0.40 0.05 0.28 0.14  0.08 1.00 -0.19 0.20 -0.19 0.23 

CpHmC 0.42 1.00 0.71 0.00 0.36 0.12  0.42 0.97 -0.54 0.00 -0.63 0.00 

CpHP 0.00 1.00 0.04 0.80 0.04 0.79  0.01 1.00 0.06 0.64 0.06 0.65 

HmPx 0.15 1.00 -0.35 0.08 -0.23 0.21  0.13 1.00 0.23 0.10 0.24 0.11 

Hm5 0.21 1.00 0.59 0.03 0.46 0.06  0.21 1.00 -0.42 0.03 -0.42 0.04 

Hm45A 0.01 1.00 -0.07 0.66 -0.12 0.35  0.01 1.00 0.05 0.62 0.06 0.59 

HmPxA 0.10 1.00 0.30 0.15 0.21 0.26  0.16 1.00 -0.27 0.06 -0.27 0.07 

CpHmPxA 0.39 0.97 0.74 0.00 0.50 0.05  0.73 0.00 -0.81 0.00 -0.95 0.00 

CMC34A 0.06 1.00 0.20 0.27 0.10 0.58  0.01 1.00 -0.04 0.74 -0.04 0.80 

LuDs 0.01 1.00 0.08 0.75 0.03 0.90  0.02 1.00 -0.11 0.53 -0.10 0.55 

LuTq 0.56 0.99 0.75 0.00 0.24 0.12  0.20 1.00 -0.25 0.04 -0.25 0.04 

LuSc 0.01 1.00 -0.14 0.63 0.09 0.75  0.09 1.00 0.28 0.17 0.29 0.19 

LuRa 0.26 1.00 0.57 0.01 0.38 0.09  0.27 1.00 -0.41 0.01 -0.45 0.01 

LuDsTqA 0.63 0.00 -0.79 0.00 -0.74 0.00  0.38 1.00 0.47 0.00 0.49 0.00 

LuDsScA 0.24 0.99 0.51 0.02 0.24 0.20  0.29 1.00 -0.36 0.01 -0.36 0.01 

LuScRaA 0.07 1.00 0.25 0.22 0.11 0.57  0.05 1.00 -0.14 0.32 -0.14 0.36 

LuCpRaA 0.26 1.00 -0.59 0.02 -0.35 0.19  0.02 1.00 -0.11 0.54 -0.22 0.34 

LuCpC 0.07 1.00 -0.21 0.22 -0.21 0.17  0.05 1.00 0.13 0.30 0.13 0.31 

TqHm 0.13 1.00 -0.43 0.10 -0.42 0.06  0.31 1.00 0.48 0.01 0.48 0.01 

TqLu 0.04 1.00 0.30 0.38 0.06 0.84  0.01 1.00 -0.13 0.59 -0.12 0.65 

TqPi 0.49 1.00 0.70 0.00 0.16 0.36  0.10 1.00 -0.20 0.15 -0.20 0.16 

TqSt 0.04 1.00 0.46 0.36 0.88 0.05  0.19 1.00 -0.71 0.04 -0.81 0.03 

TqHmPiA 0.05 0.00 -0.20 0.31 -0.88 0.00  0.08 0.98 0.18 0.19 0.32 0.06 

Tq1LuA 0.68 0.72 -0.79 0.00 -0.69 0.00  0.24 1.00 0.29 0.02 0.32 0.02 

LuTqDsA 0.55 0.00 0.74 0.00 0.68 0.00  0.26 0.00 -0.33 0.02 -0.92 0.00 

MCJAR 0.12 1.00 -0.42 0.12 -0.30 0.20   0.48 0.98 0.60 0.00 0.62 0.00 

Without hylobatids                       

 R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.25 0.00 0.50 0.03 0.42 0.08  0.00 1.00 -0.01 0.93 -0.03 0.87 

CpDn 0.28 1.00 0.50 0.02 0.50 0.01  0.14 1.00 -0.28 0.11 -0.30 0.09 

Cp2 0.00 1.00 0.00 0.99 0.27 0.42  0.03 1.00 -0.18 0.50 -0.08 0.77 

Cp4 0.00 1.00 -0.07 0.89 0.45 0.39  0.07 1.00 -0.42 0.29 -0.28 0.53 

Cp23A 0.00 1.00 -0.03 0.88 -0.01 0.98  0.04 1.00 0.14 0.39 0.15 0.34 
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CpPxA 0.17 0.61 0.41 0.08 0.51 0.02  0.63 0.63 -0.71 0.00 -0.75 0.00 

CpScA 0.02 1.00 -0.22 0.56 0.06 0.88  0.10 1.00 -0.39 0.20 -0.30 0.35 

Cp3SD 0.10 1.00 0.34 0.18 0.27 0.27  0.00 1.00 -0.04 0.85 -0.08 0.69 

CpHmC 0.22 0.65 0.57 0.04 0.28 0.30  0.15 1.00 -0.36 0.11 -0.48 0.04 

CpHP 0.05 1.00 0.19 0.37 0.17 0.37  0.02 1.00 -0.10 0.56 -0.11 0.52 

HmPx 0.10 1.00 -0.35 0.18 -0.23 0.36  0.01 1.00 0.08 0.71 0.15 0.49 

Hm5 0.10 1.00 0.41 0.18 0.38 0.18  0.03 1.00 -0.18 0.48 -0.19 0.44 

Hm45A 0.02 1.00 -0.13 0.52 -0.16 0.39  0.06 1.00 0.16 0.32 0.60 0.00 

HmPxA 0.02 1.00 0.09 0.57 0.10 0.51  0.00 1.00 -0.03 0.80 -0.03 0.82 

CpHmPxA 0.19 0.74 0.46 0.06 0.41 0.09  0.45 0.93 -0.60 0.00 -0.71 0.00 

CMC34A 0.06 1.00 -0.24 0.33 -0.14 0.54  0.00 1.00 -0.02 0.93 0.03 0.87 

LuDs 0.18 0.53 0.51 0.07 0.15 0.62  0.13 1.00 -0.39 0.13 -0.41 0.11 

LuTq 0.32 0.00 0.57 0.01 0.50 0.03  0.10 1.00 -0.18 0.19 -0.60 0.00 

LuSc 0.02 1.00 0.26 0.53 0.36 0.36  0.01 1.00 -0.15 0.64 -0.11 0.73 

LuRa 0.17 0.99 0.54 0.08 0.36 0.24  0.06 1.00 -0.26 0.30 -0.40 0.13 

LuDsTqA 0.46 0.00 -0.68 0.00 -0.63 0.00  0.37 0.99 0.56 0.01 0.72 0.00 

LuDsScA 0.01 1.00 0.06 0.76 0.10 0.55  0.09 1.00 -0.18 0.21 -0.16 0.27 

LuScRaA 0.02 1.00 0.13 0.54 0.06 0.74  0.00 1.00 0.03 0.83 0.00 0.98 

LuCpRaA 0.54 1.00 -0.99 0.00 -1.22 0.00  0.00 1.00 0.02 0.95 0.52 0.17 

LuCpC 0.05 1.00 -0.19 0.34 -0.26 0.16  0.53 0.00 0.73 0.00 0.62 0.00 

TqHm 0.07 1.00 -0.32 0.28 -0.37 0.16  0.21 1.00 0.44 0.05 0.42 0.06 

TqLu 0.01 1.00 0.17 0.74 -0.15 0.76  0.03 1.00 0.29 0.48 0.17 0.70 

TqPi 0.19 0.00 0.43 0.06 0.05 0.75  0.00 1.00 0.01 0.91 0.05 0.70 

TqSt 0.01 1.00 0.18 0.77 0.98 0.13  0.09 1.00 -0.60 0.22 -0.44 0.43 

TqHmPiA 0.05 1.00 -0.21 0.38 -1.02 0.00  0.61 0.56 0.85 0.00 1.01 0.00 

Tq1LuA 0.51 0.74 -0.70 0.00 -0.66 0.00  0.09 1.00 0.22 0.21 0.35 0.05 

LuTqDsA 0.28 0.00 0.53 0.02 0.48 0.03  0.09 1.00 -0.18 0.21 -0.63 0.00 

MCJAR 0.02 1.00 -0.12 0.60 -0.19 0.37   0.32 0.93 0.45 0.01 0.42 0.02 

c ClimbA d Arb 

 R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.12 0.51 0.35 0.11 0.23 0.31  0.21 0.00 -0.49 0.03 -0.30 0.09 

CpDn 0.01 0.00 -0.09 0.64 -0.01 0.97  0.04 1.00 -0.19 0.36 -0.22 0.14 

Cp2 0.02 0.00 -0.16 0.54 -0.11 0.66  0.01 1.00 -0.11 0.71 -0.42 0.08 

Cp4 0.18 0.65 -0.48 0.05 -0.39 0.23  0.29 1.00 0.54 0.01 -0.43 0.12 

Cp23A 0.20 0.00 -0.46 0.04 -0.33 0.05  0.19 0.00 0.49 0.04 0.37 0.02 

CpPxA 0.25 0.69 0.54 0.02 0.45 0.04  0.12 0.00 -0.39 0.12 -0.31 0.05 

CpScA 0.01 0.00 0.15 0.61 0.14 0.46  0.00 1.00 0.07 0.85 -0.03 0.92 

Cp3SD 0.00 0.00 0.02 0.91 -0.02 0.91  0.18 1.00 -0.44 0.05 -0.08 0.69 

CpHmC 0.16 0.51 0.41 0.07 0.30 0.18  0.28 0.00 -0.58 0.01 -0.37 0.03 

CpHP 0.06 0.00 -0.23 0.25 -0.30 0.11  0.01 1.00 -0.07 0.70 -0.07 0.63 

HmPx 0.06 0.00 -0.22 0.28 -0.12 0.61  0.46 1.00 0.68 0.00 0.20 0.27 

Hm5 0.00 0.00 0.03 0.92 -0.01 0.94  0.09 1.00 -0.43 0.18 -0.24 0.35 

Hm45A 0.06 0.63 0.19 0.29 0.09 0.62  0.03 1.00 0.12 0.48 0.20 0.11 

HmPxA 0.01 0.00 0.11 0.63 0.04 0.84  0.03 1.00 -0.19 0.42 -0.05 0.78 
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CpHmPxA 0.15 0.61 0.43 0.08 0.31 0.17  0.13 1.00 -0.43 0.10 -0.05 0.86 

CMC34A 0.06 0.00 0.24 0.28 0.24 0.25  0.01 1.00 -0.08 0.72 0.10 0.56 

LuDs 0.20 0.00 0.46 0.04 0.40 0.05  0.01 1.00 0.09 0.75 0.16 0.44 

LuTq 0.04 0.00 0.18 0.39 0.14 0.45  0.31 0.00 -0.57 0.01 -0.42 0.01 

LuSc 0.71 0.00 -0.84 0.00 -0.86 0.00  0.33 1.00 0.58 0.00 -0.17 0.52 

LuRa 0.36 0.00 0.58 0.00 0.45 0.04  0.53 1.00 -0.73 0.00 -0.34 0.13 

LuDsTqA 0.33 0.62 -0.57 0.01 -0.49 0.01  0.29 0.00 0.55 0.01 0.42 0.01 

LuDsScA 0.12 0.41 0.34 0.12 0.27 0.17  0.22 1.00 -0.50 0.03 -0.18 0.31 

LuScRaA 0.03 0.46 0.18 0.43 0.03 0.90  0.04 1.00 -0.20 0.40 0.02 0.90 

LuCpRaA 0.01 0.45 -0.12 0.65 0.04 0.89  0.46 1.00 0.89 0.00 0.58 0.02 

LuCpC 0.01 0.46 -0.08 0.71 -0.08 0.69  0.04 0.00 0.17 0.39 0.35 0.03 

TqHm 0.05 0.66 0.30 0.30 0.19 0.47  0.04 1.00 0.26 0.39 0.25 0.28 

TqLu 0.33 0.32 0.66 0.00 0.52 0.10  0.33 1.00 -0.57 0.01 0.01 0.96 

TqPi 0.31 0.43 0.53 0.01 0.45 0.02  0.16 1.00 -0.40 0.07 -0.05 0.75 

TqSt 0.09 0.58 -0.51 0.18 -0.27 0.46  0.00 1.00 -0.01 0.99 -0.55 0.23 

TqHmPiA 0.00 0.00 -0.07 0.77 -0.35 0.11  0.01 0.00 0.10 0.67 0.56 0.00 

Tq1LuA 0.25 0.00 -0.45 0.02 -0.41 0.02  0.65 0.00 0.79 0.00 0.65 0.00 

LuTqDsA 0.09 0.49 0.31 0.16 0.20 0.35  0.23 0.00 -0.51 0.02 -0.34 0.04 

MCJAR 0.13 0.57 -0.40 0.09 -0.30 0.17   0.02 1.00 0.17 0.59 -0.01 0.96 

Without hylobatids                       

 R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.01 0.75 0.08 0.70 0.05 0.83  0.17 0.35 -0.42 0.08 -0.28 0.15 

CpDn 0.00 0.77 -0.02 0.91 0.04 0.84  0.13 1.00 -0.33 0.14 -0.42 0.02 

Cp2 0.06 0.69 -0.26 0.31 -0.21 0.50  0.01 1.00 -0.11 0.75 -0.51 0.05 

Cp4 0.04 0.71 -0.26 0.42 -0.14 0.73  0.25 0.00 0.50 0.03 -0.64 0.14 

Cp23A 0.15 0.81 -0.32 0.11 -0.31 0.12  0.13 0.74 0.34 0.13 0.42 0.02 

CpPxA 0.16 0.83 0.33 0.09 0.34 0.09  0.00 1.00 0.01 0.95 -0.33 0.06 

CpScA 0.02 0.73 -0.15 0.60 -0.07 0.81  0.05 1.00 0.34 0.37 -0.07 0.84 

Cp3SD 0.05 0.84 -0.21 0.37 -0.20 0.40  0.11 0.48 -0.35 0.17 -0.09 0.65 

CpHmC 0.06 0.71 0.24 0.32 0.22 0.38  0.28 0.44 -0.59 0.02 -0.39 0.04 

CpHP 0.09 0.72 -0.26 0.23 -0.34 0.10  0.03 1.00 -0.15 0.47 -0.13 0.44 

HmPx 0.02 0.70 -0.13 0.58 -0.08 0.77  0.48 0.00 0.69 0.00 0.25 0.24 

Hm5 0.10 0.62 -0.33 0.18 -0.40 0.13  0.05 1.00 -0.29 0.34 -0.25 0.29 

Hm45A 0.01 0.78 0.08 0.68 0.03 0.88  0.11 0.72 0.31 0.17 0.41 0.02 

HmPxA 0.06 0.77 -0.18 0.30 -0.19 0.28  0.01 1.00 -0.06 0.72 -0.07 0.59 

CpHmPxA 0.03 0.78 0.15 0.49 0.14 0.50  0.06 0.72 -0.24 0.33 -0.33 0.07 

CMC34A 0.03 0.71 -0.19 0.45 -0.27 0.25  0.00 1.00 0.06 0.80 -0.09 0.64 

LuDs 0.34 0.50 0.58 0.01 0.57 0.01  0.26 0.00 -0.51 0.03 0.13 0.62 

LuTq 0.00 0.77 -0.03 0.89 0.05 0.81  0.24 0.35 -0.48 0.03 -0.41 0.02 

LuSc 0.69 0.00 -0.83 0.00 -0.89 0.00  0.28 0.00 0.53 0.02 -0.14 0.67 

LuRa 0.40 0.28 0.63 0.00 0.56 0.03  0.55 0.00 -0.74 0.00 -0.43 0.09 

LuDsTqA 0.20 0.75 -0.40 0.06 -0.38 0.06  0.27 0.41 0.50 0.02 0.46 0.01 

LuDsScA 0.01 0.73 0.08 0.71 0.15 0.46  0.15 0.56 -0.38 0.10 -0.24 0.13 

LuScRaA 0.02 0.70 -0.13 0.54 -0.27 0.22  0.02 1.00 -0.11 0.60 -0.02 0.92 
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LuCpRaA 0.44 0.00 -0.66 0.00 -0.49 0.25  0.69 1.00 1.11 0.00 1.02 0.00 

LuCpC 0.03 0.77 0.17 0.46 0.13 0.60  0.03 1.00 0.15 0.47 0.24 0.11 

TqHm 0.24 0.63 0.55 0.03 0.52 0.07  0.02 1.00 0.16 0.58 0.24 0.28 

TqLu 0.35 0.39 0.69 0.01 0.74 0.04  0.33 0.00 -0.58 0.01 0.13 0.76 

TqPi 0.27 0.59 0.42 0.02 0.50 0.01  0.21 0.00 -0.46 0.05 -0.07 0.60 

TqSt 0.58 0.00 -0.76 0.00 -1.19 0.01  0.31 0.00 0.56 0.01 -0.82 0.12 

TqHmPiA 0.00 0.76 0.01 0.98 -0.39 0.22  0.01 1.00 0.08 0.75 0.85 0.00 

Tq1LuA 0.05 0.73 -0.18 0.37 -0.25 0.20  0.39 0.75 0.59 0.00 0.50 0.00 

LuTqDsA 0.00 0.76 0.01 0.97 0.00 0.98  0.17 0.55 -0.41 0.08 -0.36 0.05 

MCJAR 0.09 0.83 -0.26 0.20 -0.27 0.19   0.00 1.00 -0.05 0.83 0.05 0.80 
a Based on PGLS model with size as a covariate 

 

 

Evaluation of individual morpho-functional hypotheses 

 Discussion is based on analyses accounting for allometry and phylogeny except 

where noted. See Table 2.2 for metric descriptions, functional hypotheses, and 

references. 

 

CpPx The proximoradial surface of the capitate was hypothesized to be enlarged to 

facilitate either suspension or terrestrialism. The size of the capitate’s proximal surface 

tends to be somewhat reduced in suspensors relative to palmigrade anthropoids (Table 

2.4), and is negatively correlated with SuspA (Table 2.5b) and Susp (Table 2.9b). 

However, the association of this trait with suspension is driven largely by the especially 

small size of this region in hylobatids (owing to a greatly increased contribution of the 

hamate to the midcarpal joint); with them excluded, all coefficients remain negative but 

none is significant.  

Evidence for a positive association with terrestrialism is similarly weak. This trait 

does not distinguish knuckle-walkers (Table 2.4, Table 2.8a, b), and although values 

tend to be slightly greater in digitigrade taxa relative to palmigrade monkeys, the 
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relationship falls well short of significance (Table 2.4). It does covary significantly with 

Quad unless hylobatids are excluded (Table 2.5a), and inversely with Arb to a nearly-

significant degree, but no functional relationships can be supported in the current 

sample.  

 

CpDn The capitate’s dorsal nonarticular region was hypothesized to be enlarged in 

association with limited midcarpal extension in terrestrial taxa, particular knuckle-

walkers. This hypothesis is not supported as it relates to knuckle-walkers, which do not 

differ from most other anthropoids in this metric (see Fig. 2.6a, Table 2.4, Table 2.8a, 

b). However, the association of this trait with terrestriality among monkeys is very 

tentatively supported. The relative size of this region significantly separates the taxon 

means of the digitigrade sample from those of palmigrade anthropoids when hylobatids 

are excluded from the analysis (due to the effect their inclusion has on the estimated 

phylogenetic signal of the model; discussed further below). Intra-taxon variation of this 

trait is high, however, so this distinction drops below significance when all observations 

are analyzed. This trait also positively covaries with Quad and QuadA with hylobatids 

excluded, and negatively with Arb, reflecting both the weak association of this trait with 

digitigrady as well as the slightly elevated mean values of the African apes relative to 

Pongo but not hylobatids.  

This shape variable is alone in sharing a significant relationship with leaping. It is 

negatively correlated with both Leap and LeapA, the latter falling just short of 

significance (Table 2.9d, e). This association is driven by the region tending to be 

smaller in colobines than cercopithecines, with the lowest values found Presbytis and 
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Colobus, the most prolific leapers of the sample. While this relationship may be 

coincidental, it may also be that leaping colobines are especially aided by mobility in 

extension, in association with either forceful flexion of the wrist at take-off or 

deceleration at landing, for which the forelimbs are largely responsible (Hunt, 2016). 

 

Cp2 The size of the capitate’s articulation with the Mc2 is thought to be low in the great 

apes, and was hypothesized here to be highest in digitigrade cercopithecines. 

Digitigrade individuals are indeed distinguished from palmigrade ones, although 

distinction of the classes’ taxon means falls short of significance (Table 2.4). This trait 

also tends to be somewhat smaller in suspensory taxa, but knuckle-walking individuals 

are not distinct, and their taxon means are only distinguishable if allometry is not 

considered (Table 2.4, Table 2.8a).  

 

Cp4 The size of the Mc4 articulation of the capitate was hypothesized to be lower in 

knuckle-walkers and higher in digitigrade primates. Knuckle-walkers are significantly 

distinguished from both palmigrade and palmigrade-capable anthropoids (Table 2.4, 

Table 2.8b), but the condition of this trait is similar in Pongo and Gorilla, and it also 

tends to covary with both ClimbA and Climb (Table 2.5c, Table 2.9c) Its association with 

knuckle-walking is therefore unclear (discussed further below). The hypothesized 

association of this trait with digitigrady is not supported, as this trait does not differ in the 

two positional classes of pronograde monkeys. 
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Cp23A The Mc2 facet of the capitate was hypothesized to share a more acute angle 

with the distal facet in great apes, and perhaps also in digitigrade primates. This angle 

is acute in great apes only relative to hylobatids; great apes are intermediate relative to 

sampled non-hominoids. Although neither knuckle-walking nor digitigrady is significantly 

distinguished from palmigrady by this metric (Table 2.4), vertical manus taxon means 

are significantly distinguished from those of both palmigrade and palmigrade-capable 

anthropoids (Table 2.8c, d). This trait is also positively correlated with Arb with or 

without including hylobatids (Table 2.5), reinforcing its inverse relationship with 

terrestriality. 

 

CpPxA The proximal angle of the capitate was expected to be more acute in 

suspensors and more obtuse in terrestrial primates. An association with suspension is 

strongly supported. This angle is markedly acute in each of the hylobatid species as 

well as Ateles and P. abelii. Values are also usually low in P. pygmaeus, but variation is 

high, and a few individuals overlap with African apes (see Fig. 2.4a). This is 

nevertheless among the most effective sampled traits in distinguishing suspensory 

primates from other positional classes (Table 2.4, Table 2.8a, c), and shares a strong 

negative correlation with Susp and SuspA (Table 2.5, Table 2.9).  

A relationship between this trait and terrestriality is unclear. It is positively 

correlated with QuadA, Quad, and ClimbA across the sample, and, with hylobatids 

excluded, maintains a positive correlation with Quad, and a negative one with Climb 

(the often-contradictory relationships of ClimbA and Climb are discussed below). While 

the positive correlations between this trait and the quadrupedal proportions would seem 
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consistent with its hypothesized terrestrial association, these correlations are highly 

driven by the low values of suspensors. This trait does not distinguish digitigrade, 

knuckle-walking, or vertical manus anthropoids from palmigrade or palmigrade-capable 

ones (Table 2.4, Table 2.8). 

 

CpScA The orientation of the scaphoid/centrale facet relative to the dorsum of the 

capitate was expected to be more acute in suspensors. While Asian apes depart from 

the remainder of the sample, Ateles is not distinguished from other ceboids by this 

metric, in which this angle is especially obtuse. However, this may result from a failure 

of the metric to capture the desired variation; sampled Ateles specimens frequently 

possess significant palmar expansion of the centrale facet, corresponding with 

enhanced midcarpal supination, but reduced articulation of the capitate head with the 

lunate leaves more of its dorsal surface to articulate with the centrale, resulting in the 

average orientation of the centrale facet shifting dorsally. Variability of this trait is also 

high in the Pongo species, particularly in P. pygmaeus. As a result, this trait does not 

distinguish suspensory individuals, and significant covariance of taxon means with 

suspension is lost with hylobatids removed (Table 2.4, Table 2.5b, and Table 2.9b).  

This trait is notable as the only one in the sample with a significant relationship to 

LeapA, and one of only two associated with Leap with hylobatids excluded (Table 2.9d, 

e). This is driven by an especially dorsal orientation of the centrale facet in Colobus and 

Presbytis and, to a lesser extent, in Procolobus (see Fig. 2.6b). The biomechanical 

underpinnings of this relationship, if any, are opaque, however. 
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Fig. 2.4. Comparisons of selected shape variables. Boxes represent 25th and 75th percentiles, centerlines the medians, and whiskers the non-
outlier ranges. Visualized models demonstrate the extremes of variation captured by the metric. Note that plotted values are not adjusted to 
account for phylogeny or allometry. 
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Cp3SD Capitate Mc3 facet topography is generally thought to be more complex in 

knuckle-walkers, and less often in suspensors as well. Neither hypothesis is supported 

here. Prior to isometric correction, the metric’s characterization of articular complexity 

matches a qualitative assessment of the sample, with the Gorilla species having the 

highest values followed by Pongo and Pan, hylobatids having low values, and Ateles 

having higher values than the other ceboids. These results also correspond with 

observations of CMC mobility except in Pongo, for which this joint remains quite mobile 

despite their complex articular geometry (Orr, 2010). However, this trait is highly related 

to size across the sample – accounting for isometry eliminates any clear patterns of 

covariation (see Fig. 2.6c), and accounting for allometry causes most p-values to 

approach one (Table 2.4, Table 2.8). The raw metric also captures dorsopalmar 

concavity of the Mc3 surface, leading to slightly elevated values in digitigrade taxa 

relative to palmigrade ones. Accounting for isometry again eliminates this pattern, 

however.  

Relatively high raw values in Ateles and Pongo indicate the possible benefit of 

this condition to suspension or climbing, particularly as body size increases. Low values 

in hylobatids and in the monkeys most reliant on climbing would likely require this 

narrative to be limited to the great apes, however, and this condition also seems to have 

been exapted in African apes to facilitate knuckle-walking. 

 

CpHmC Concavity of the capitate’s hamate facet was hypothesized here to be greater 

in terrestrial taxa, perhaps especially in knuckle-walkers. Concavity does tend to be 

greater in digitigrade anthropoids than in palmigrade or palmigrade-capable ones, 
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although the distinctions usually only approach significance (Table 2.4, Table 2.8b), and 

three Mandrillus specimens with low concavity depress this taxon’s mean value. Mean 

concavity in P. paniscus and the Gorilla species rivals that of Papio and Erythrocebus 

for the highest of the sample, but P. troglodytes subspecies overlap extensively with the 

cercopithecoid sample (see Fig. 2.4b), and knuckle-walkers are indistinguishable from 

palmigrade anthropoids as a result. 

The condition of this trait is most noteworthy in the brachiators, Ateles and the 

hylobatids, in which concavity is very low, with most specimens having negative 

concavity values as defined here. As a result, this trait distinguishes suspensory taxon 

means from those of palmigrade anthropoids and pronograde monkeys (Table 2.4, 

Table 2.8a, c), and shares significant negative correlations with SuspA and Susp (Table 

2.5b, Table 2.9b). However, concavity in Pongo is not distinct from that of Pan, 

suggesting a functional relationship with brachiation rather than suspension more 

generally. This conclusion is further supported by other aspects of capitohamate joint 

morphology, discussed below. 

 

CpHP The head of the capitate was hypothesized to be more palmarly positioned in 

palmigrade anthropoids relative to the other positional classes in association with their 

greater mobility in extension at the midcarpal joint. This hypothesis is tentatively 

supported only as it relates to the stiff midcarpal joints of knuckle-walkers, in which the 

capitate head is positioned dorsally relative to the palmigrade sample. However, this 

distinction reaches significance only with hylobatids excluded (Table 2.4), and P. 

pygmaeus values do not differ from those of Gorilla. Neither suspension nor digitigrady 
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is distinguished from palmigrady by this metric, and the capitate head tends to be 

positioned more palmarly in the digitigrade sample despite their lesser midcarpal 

mobility.  

 

Fig. 2.5. Visualization of CpHP demonstrating variation in the dorsopalmar position of the capitate head. It 
tends to be more dorsally positioned in knuckle-walkers than in other positional classes, but does not 
otherwise covary with function. 

 

HmPx The size of the hamate’s proximal articulation was hypothesized to be reduced in 

knuckle-walkers, and expanded in association with either a more mobile midcarpus or 

with habitual loading during midcarpal ulnar deviation, perhaps as required during 

vertical climbing. The hypothesized reduction of this trait in knuckle-walkers is not 

supported, as it was not found to differ in knuckle-walkers compared to other 

anthropoids (Table 2.4, Table 2.8a, b). 
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This facet is relatively smaller in the digitigrade sample than the palmigrade 

sample, but to a degree only approaching significance (Table 2.4). An association of 

this trait with climbing is also not supported – it does share a weak positive correlation 

with Climb if allometry is not considered (Table 2.9c), but with size as a covariate the 

relationship is eliminated. 

 

Hm5 The Mc5 facet of the hamate was hypothesized to be larger in digitigrade primates 

and smaller in knuckle-walkers. It is somewhat larger in the digitigrade sample, but 

again to a degree only approaching significance. An association with knuckle-walking 

has better statistical support, as this trait distinguishes the taxon means and individuals 

of the knuckle-walking and palmigrade samples with and without hylobatids included 

(Table 2.4). However, Gorilla is not distinguished from Pongo in this trait, and values are 

depressed across the hominoid sample (see Fig. 2.4c), which is at least partially 

attributable to hamulus expansion increasing the surface area against which facet area 

is indexed to account for isometry. This effect is largely accounted for by the 

phylogenetic component in the models, and the similarly reduced values of Ateles and 

even lower values of hylobatids point to suspensory behavior as the common factor. 

Nevertheless, the suspensors are less well distinguished from the palmigrade sample 

by this metric than are knuckle-walkers, and significant covariance with SuspA and 

Susp is lost with hylobatids excluded. 

 

Hm45A The angle between the metacarpal facets of the hamate was hypothesized to 

be more acute in digitigrade taxa. This hypothesis is only tentatively supported here. 
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Mean values are reduced relative to the closest palmigrade relative of each digitigrade 

lineage, but the distinction again only approaches significance (Table 2.4). Significance 

is reached in distinguishing digitigrade taxon means from those of palmigrade-capable 

anthropoids (Table 2.8b), owing to these facets being closer to parallel in Pongo and 

Ateles (see Table 2.4, Table 2.5b, and Table 2.9b). This trait is also positively correlated 

with Climb (Table 2.9c), and to Arb without hylobatids (Table 2.5d), consistent with a 

negative association between this trait and terrestrialism in monkeys. 

 

HmPxA The proximal angle of the hamate was expected to be more acute in 

suspensors and more obtuse in terrestrial primates. These hypotheses are mostly 

unsupported here. This angle is very acute in hylobatids, sufficient to produce a 

significant negative correlation with Susp (Table 2.9b), but values tend to be higher in 

Ateles than other ceboids, and are not notably reduced in P. abelii. P. pygmaeus is 

again extremely variable in this trait, with a mean value lower than that of Gorilla and P. 

paniscus, but not P. troglodytes. With hylobatids removed, SuspA and Susp coefficients 

are near zero. 

The highest values in the sample belong to Gorilla and Mandrillus, but there is 

otherwise no terrestrial signal in the sample either. Values are lower in P. troglodytes 

than most sampled monkeys, and Papio and Erythrocebus are not dissimilar from the 

palmigrade sample. 

 

CpHmPxA As the sum of the adjacent proximal angles of the capitate and hamate 

(CpPxA and HmPxA, discussed above), this trait estimates the degree of curvature of 
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the distal surface of the midcarpal joint. This angle was expected to be high in terrestrial 

taxa and low in suspensory ones. Because variance in HmPxA lacks a functional 

pattern, the functional signal of CpHmPxA resembles that of CpPxA. Suspensory taxon 

means and individuals are significantly distinguished from those of other positional 

classes with or without consideration of hylobatids (Table 2.4, Table 2.8a, c). The trait 

covaries negatively with SuspA and Susp, and positively with Quad and QuadA across 

the sample (Table 2.5a, b, Table 2.9a, b), maintaining the inverse relationship with the 

suspensory proportions and adding one with Climb with hylobatids excluded. By this 

metric, the midcarpal joints of knuckle-walkers and digitigrade cercopithecines are not 

found to be significantly broader than those of the palmigrade sample. 

 

CMC34A The Mc3 facet of the capitate and the Mc4 facet of the hamate were 

hypothesized to be angled toward each other in digitigrade monkeys, relative to a more 

parallel arrangement in other anthropoids (Fig. 2.6d). This hypothesis is tentatively 

supported here, as this angle significantly distinguishes digitigrade cercopithecines from 

both palmigrade and palmigrade-capable anthropoids (Table 2.4,Table 2.8b). However, 

this result is largely due to the condition of this trait in Mandrillus and Erythrocebus, as 

Papio is not distinguished from Lophocebus, in which this trait is highly variable. 

 

LuDs The distal surface of the lunate is hypothesized to be expanded in knuckle-

walkers. This hypothesis is supported, with mean individual knuckle-walking values 

significantly distinguished from palmigrade and palmigrade-capable ones (Table 2.4, 

Table 2.8b). This trait is also positively correlated with ClimbA (Table 2.5c), driven by its 
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high values in African apes, raising ambiguity regarding the trait’s more important 

functional association in this group (discussed below).  

This trait is also noteworthy in being among those best distinguishing digitigrady 

and palmigrady, as values are significantly reduced in association with the former 

(Table 2.4; Table 2.8e). This is unexpected under an assumed regime of relatively 

anisotropic, axially-oriented forces like that of knuckle-walkers. The implications of this 

finding are discussed below. 

 

LuTq The triquetrum facet of the lunate was hypothesized to be expanded in terrestrial 

taxa and reduced in suspensors. A negative association with suspension is supported – 

suspensory taxon means are all below those of their nearest relatives, and are 

significantly distinguished from those of the palmigrade sample (Table 2.4). This trait 

also covaries negatively with SuspA and Susp, maintaining significance with the former 

with hylobatids excluded (Table 2.5b, Table 2.9b). However, intra-taxon variability was 

high across the sample, resulting in analyses considering this variation falling short of 

significance.  

A positive association between this trait and terrestrialism is only very tentatively 

supported. This facet tends to be somewhat larger in both digitigrade and knuckle-

walking taxa, but not to a significant degree (Table 2.4, Table 2.8b). When considered in 

combination, the means of vertical manus taxa are significantly distinguishable from 

palmigrade-capable ones, but only approach significance in separating them from the 

palmigrade sample (Table 2.8c, d). This trait does positively correlate with Quad, and 
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negatively with Arb (Table 2.5a, d), providing additional support for some relationship 

with terrestriality. 

 

LuSc The size of the scaphoid/centrale articulation of the lunate was hypothesized to be 

negatively correlated with climbing behavior. This hypothesis is supported, as its 

association with ClimbA is the strongest of the shape variables (Table 2.5c), driven by 

low values among the great apes as well as slightly reduced values in the monkeys 

most reliant on climbing. However, it is also found to significantly distinguish knuckle-

walkers from palmigrade-capable anthropoids (Table 2.8b), and, with hylobatids 

removed, from palmigrade monkeys (Table 2.4). The functional association of this trait 

is therefore ambiguous; this is discussed further below. 
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Fig. 2.6. Comparisons of additional shape variables. Boxes represent 25th and 75th percentiles, centerlines the medians, and whiskers the non-
outlier ranges. Visualized models demonstrate the extremes of variation captured by the metric. Note that plotted values are not adjusted to 
account for phylogeny or allometry. 
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LuRa The size of the radial facet of the lunate has been hypothesized to vary positively 

in association with both suspension and climbing, and both positively and negatively in 

association with pronograde weight support. Some of the confusion regarding this trait 

seems related to how it is measured. Functional hypotheses are often premised on this 

facet being larger in Asian apes than in African apes, but when indexed against total 

lunate surface area, its average size is actually 7 and 3% smaller in Pongo than in Pan 

and Gorilla, respectively. Lunate surface area as a proportion of the sum of the four 

carpals is 19 and 27% greater in Pongo, however, and when this is used as the index, 

the radius facet is indeed 17 and 19% larger in Pongo. It is not clear whether this 

alternative procedure yields a metric more likely to reflect function, however.  

Mean values of this trait (indexed against lunate surface area) are lowest in the 

hylobatids and Ateles, and are negatively correlated across the sample with SuspA and 

Susp (Table 2.5b, Table 2.9b), in contrast to the hypothesized positive association. The 

climbing hypothesis fares better, as this trait is positively correlated with ClimbA (Table 

2.5c), driven by uniformly high values in great ape taxa. Hypotheses related to 

pronograde weight support are not supported – this trait does not distinguish digitigrade, 

knuckle-walking, or vertical manus taxa from palmigrade or palmigrade-capable ones 

(Table 2.4, Table 2.8a-d), and does not covary with Quad or Arb. 

 

LuDsTqA The angle between the distal and triquetrum surfaces of the lunate was 

hypothesized to be more obtuse in suspensors. This hypothesis is supported. There is 

no overlap between Asian and African apes, and Ateles values are also high relative to 

the monkey sample, although its mean value falls below that of Cebus (see Fig. 2.6f). 
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Suspensors are significantly distinguished from other anthropoids by this trait (Table 

2.4, Table 2.8a, c), which also strongly correlates with SuspA and Susp with and without 

hylobatids (Table 2.5b, Table 2.9b).  

This angle is also found to be particularly acute in knuckle-walkers. Although the 

extreme values of Asian apes bias a phylogenetically-aware analysis in favor of this 

conclusion, the mean values of Pan taxa are the lowest of the sample, and those of the 

Gorilla species are lower than in any of the remaining taxa save Mandrillus. As a result, 

knuckle-walkers are significantly distinguished from both palmigrade and palmigrade-

capable anthropoids (Table 2.4, Table 2.8a, b). This angle also covaries negatively with 

Quad and QuadA, but this angle is found to be only insignificantly more acute in the 

digitigrade sample despite its low value in Mandrillus. 

 

LuDsScA The angle between the distal and scaphoid/centrale surfaces of the lunate 

was hypothesized to be more acute in suspensory taxa and more obtuse in terrestrial 

taxa. This trait does distinguish suspensory and palmigrade taxon means (Table 2.4) 

while sharing negative correlations with SuspA and Susp (Table 2.5b, Table 2.9b). 

These relationships owe to the very acute angle found in hylobatids, however. Pongo 

and Ateles do not differ from their nearest relatives, and no association with suspension 

remains with hylobatid observations excluded.  

Knuckle-walking and digitigrade taxon means are somewhat elevated, but only 

the latter approaches significance (Table 2.4). African ape means are only slightly 

higher than those of the Pongo species, and while Erythrocebus and Mandrillus have 

the highest mean values of the sample, Papio’s is lower than the other cercopithecine 
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taxa. Vertical manus taxon means are nevertheless significantly higher than those of 

palmigrade-capable taxa (Table 2.8d). Intra-taxon variation of this metric is high, 

however, leading analyses in which it is considered to yield insignificant results. 

 

LuScRaA The angle between the scaphoid/centrale and radial surfaces of the lunate 

was hypothesized to be more acute in suspensory taxa and more obtuse in terrestrial 

taxa. Neither hypothesis is strongly supported; although mean values in suspensory 

taxa are indeed significantly more acute than those of palmigrade taxa, this is largely 

due to the trait’s condition among hylobatids (Table 2.4, Table 2.8c), as Ateles does not 

differ from other ceboids and this angle is only mildly more acute in Pongo species than 

in African apes. In this case, separation from palmigrade taxon means still approaches 

significance with hylobatids excluded, but this angle is again highly variable within taxa, 

yielding insignificant results when considering individual observations. 

This trait also lacks the tentative terrestrial association of the previous one – 

values are elevated only in Papio of the digitigrade taxa, and the African apes do not 

differ from sampled monkeys. Furthermore, this trait does not correlate with any 

locomotor proportions, with or without hylobatids (Table 2.5, Table 2.9). 

 

LuCpRaA In distinguishing Pongo from the African apes, the wrist of the former was 

said to have an “extension set” in association with its habitual slight extension during 

below-branch grasping (Robertson, 1984; see also Rose, 1988). As characterized by 

the angle between capitate and radial surfaces of the lunate (see Fig. 2.4d), this 

condition was hypothesized here to be further elaborated in the wrists of palmigrade 



 

63 
 

anthropoids, with these facets being closer to parallel in vertical manus taxa. This 

hypothesis is supported, and perhaps strongly so; interpretation is encumbered by the 

allometric signal of this trait far exceeding that of any other analyzed shape variable 

(Table 2.15a). Knuckle-walkers are significantly distinguished from palmigrade and 

palmigrade-capable anthropoids (Table 2.4, Table 2.8b), and the digitigrade taxa are all 

highly distinct from their nearest palmigrade relatives. However, accounting for 

allometry renders the latter covariance insignificant (Table 2.4). When combined, 

vertical manus anthropoids are significantly distinguished from palmigrade ones, and, to 

a lesser extent, from palmigrade-capable ones (Table 2.9c, d).  

This trait also shares a strong positive correlation with Climb and Arb, and, with 

hylobatids removed, an additional negative correlation with Quad (Table 2.5a, d, Table 

2.9c), in further support of its hypothesized function. The increased significance of this 

trait’s relationships with terrestriality and postures thereof when allometric scaling is not 

considered likely reflects the reality of these relationships more accurately; problems 

introduced by accounting for allometry in analysis of morphological covariance with 

terrestriality are discussed below. 

 

LuCpC The concavity of the capitate facet of the lunate was hypothesized to be 

enhanced in suspensory taxa and reduced in terrestrial taxa. The association with 

suspension is supported, as suspensors have significantly higher concavity than 

palmigrade quadrupeds in the sample (Table 2.4). This trait also shares a significant 

correlation with SuspA, although this is revealed only when hylobatids are excluded, 

despite their having the highest values of both concavity and suspension of the sample 
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(this is again related to their inclusion drastically reducing the estimated phylogenetic 

signal of the model; see Table 2.5b). An association between this trait and terrestriality 

is equivocal, as knuckle-walkers do not differ from palmigrade anthropoids in this trait. 

Digitigrady is, however, distinguished from palmigrady (Table 2.4), and digitigrade taxon 

means are distinct from palmigrade-capable ones (Table 2.8b). This trait is also 

positively correlated with Arb (Table 2.5d), offering some additional support for an 

inverse relationship with terrestriality. 

 

TqHm The hamate facet of the triquetrum was hypothesized to be expanded in 

suspensory taxa. Support for this hypothesis is equivocal. Values are elevated in each 

of the hominoids relative to the monkeys, but this is at least largely due to the smaller 

triquetra of the former group (mean triquetrum volume of sampled monkeys is roughly 

double that of sampled apes as a proportion of the summed volume of the four carpals 

under analysis; see also Sarmiento, 1985). Values are particularly high among the 

Asian apes, however, and suspensory taxon means are therefore distinct from those of 

the palmigrade sample (Table 2.4) and share a positive correlation with SuspA (Table 

2.5b). Ateles values are significantly lower than those of the other ceboids, however, so 

with hylobatids removed suspension and palmigrady are no longer distinct and the 

SuspA correlation falls just short of significance.  

This trait also tends to be lower in digitigrade anthropoids, albeit not quite 

significantly so (Table 2.4). It also shares a strong inverse correlation with QuadA, and 

adds a positive correlation with Climb without hylobatids (Table 2.9a, c), potentially 

supporting a positive association between the size of this facet and midcarpal mobility 
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thought to facilitate more acrobatic arboreal behaviors. The sampled variation of this 

trait does comport reasonably well with available data on mobility in rotation and ulnar 

deviation (O’Connor and Rarey, 1979; Sarmiento, 2002; Orr, 2010; Orr and Atkinson, 

2016), but these data are not analyzed here. 

 

TqLu The lunate facet of the triquetrum was hypothesized to be expanded in terrestrial 

taxa and reduced in suspensory taxa. An association with terrestriality is not supported 

here. Knuckle-walking taxon means are elevated only insignificantly relative to those of 

the palmigrade sample, values do not differ between the digitigrade and palmigrade 

samples (Table 2.4), and its Quad and Arb coefficients are flat (Table 2.5a, d). A 

relationship with suspension is also not supported for this trait. Pongo values are not 

distinguishable from those of African apes, and suspensory coefficients are also near 

zero (Table 2.4, Table 2.8a, c). Reduction of this facet in the brachiators relative to their 

closest relatives leaves open the possibility of a relationship exclusive to this type of 

suspension, however. 

 

TqPi The pisiform facet of the triquetrum was hypothesized to be expanded in terrestrial 

taxa and reduced in suspensory taxa. Results in both cases are equivocal. Six of seven 

sampled African ape taxa have mean values greater than the remainder of the sample, 

and values are markedly low in hylobatids (see Fig. 2.6g). However, the Ateles mean is 

only slightly reduced, and variation with the genus nearly encompasses that of all other 

sampled monkeys. G. beringei and the Pongo species are likewise indistinguishable 

from the monkey sample. This trait does distinguish suspensory and palmigrade means 
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(Table 2.4), and is negatively correlated with Susp (Table 2.9b), but these associations 

fall well short of significance with hylobatids excluded. Meanwhile, this trait does not 

differ between digitigrade and palmigrade primates, falls just short of significance in 

distinguishing knuckle-walking and palmigrady, and does not covary with Quad or Arb. 

Knuckle-walking taxon means are, however, distinguished from palmigrade-capable 

ones, and this trait covaries positively with ClimbA (Table 2.5c), owing to its large size in 

the African apes and in Cebus and Lophocebus to a lesser extent. 

 

TqSt When present, the styloid facet of the triquetrum was hypothesized to be positively 

associated with mobility in supination and ulnar deviation at the antebrachiocarpal joint, 

perhaps in association with suspension. Results are equivocal. With only one monkey in 

the sample heavily reliant on suspension, the hypothesis cannot be properly assessed 

as it applies to this behavior. Ateles does have the highest mean value of the sample, 

and the occasional suspensors, most notably Presbytis and Alouatta, also have 

somewhat expanded styloid facets, consistent with the hypothesis. 

 The stronger relationship of this trait in the sample is with pronograde weight 

support. A larger styloid facet was found to distinguish digitigrade from palmigrade 

individuals (Table 2.4), and the size of this facet correlates positively with both Quad 

and QuadA across the sample despite its absence in apes (Table 2.5a, Table 2.9a). 

 

TqHmPiA The angle between the hamate and pisiform facets of the triquetrum was 

hypothesized to be more obtuse in suspensory taxa. This hypothesis is strongly 

supported. Suspensors are significantly distinguished from palmigrade and pronograde 
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monkeys (Table 2.4, Table 2.8a, c), and the trait is positively correlated with both SuspA 

and Susp (Table 2.5b, Table 2.9b). In many cases, these associations are further 

strengthened by removing hylobatids, in which this trait is especially variable (see Fig. 

2.6h). Although values are high in Hoolock and somewhat elevated in Symphalangus, 

the Hylobates species are not distinct from the African apes except in their greater 

variability. With or without the hylobatids, this trait is also correlated positively with Arb 

and negatively with Quad (Table 2.5a, d). 

 

Tq1LuA The long axis of the triquetrum was hypothesized to be orthogonal relative to its 

lunate facet in suspensory taxa. This hypothesis is supported. The Pongo species and 

H. lar have the highest values in the sample, while the other hylobatid species are 

somewhat lower but still near the top of the monkey range, represented by Ateles (Fig. 

2.4e). Suspensors are significantly distinguished from both palmigrade and pronograde 

monkeys (Table 2.4, Table 2.8a), and the trait is positively correlated with SuspA and 

Susp (Table 2.5b, Table 2.9b).  

Lower values of this trait are associated with terrestriality. This angle is 

significantly more acute in each of the digitigrade taxa than in their closest palmigrade 

relatives (see Fig. 2.4e), although much of this variation is attributed to allometry, 

resulting in this distinction falling short of significance (Table 2.4). However, both 

knuckle-walking and vertical manus individuals have significantly less orthogonal 

triquetra than palmigrade ones (Table 2.4, Table 2.8c), and mean values of digitigrade, 

knuckle-walking, and vertical manus taxa are distinguished from those of palmigrade-
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capable taxa (Table 2.8b, d). This angle also covaries negatively with Quad and 

ClimbA, and positively with Climb and Arb. 

 

LuTqDsA The angle between the distal surfaces of the lunate and triquetrum was 

expected to be more acute in suspensors and more obtuse in terrestrial taxa. This 

compound metric incorporates LuDsTqA, discussed above, and results for the two traits 

are similar. The hypothesized association with suspension is supported. Each of the 

suspensory taxa tend to have lower values than their closest relatives of other positional 

classes, although the Ateles range of variation overlaps entirely with other ceboids (see 

Fig. 2.4f). Suspensory means and individual observations are significantly distinguished 

from those of palmigrade anthropoids with and without hylobatids (Table 2.4), and this 

angle covaries inversely with both SuspA and Susp (Table 2.5b, Table 2.9b).  

An association with terrestrialism is also supported, albeit tentatively. This angle 

is slightly more obtuse on average in Mandrillus and Erythrocebus than their closest 

palmigrade relatives, but Papio is again not distinct from Lophocebus, so the distinction 

between digitigrade and palmigrade monkeys only approaches significance (Table 2.4). 

Knuckle-walkers are indistinguishable from other anthropoids in this metric, but when 

combined, vertical manus taxon means are significantly distinguished from palmigrade-

capable ones (Table 2.8d). In further support of a terrestrial association, this trait is 

positively correlated with Quad and negatively correlated with Arb (Table 2.5a, d). 

 

MCJAR The ratio between the angles of the opposing proximal and distal surfaces of 

the midcarpal joint was hypothesized to be greater in suspensors, and closer to 1 in 
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terrestrial taxa. The hypothesized association with suspension is supported. While this 

ratio is far higher in hylobatids than any other taxa, this trait distinguishes suspensory 

taxon means from those of palmigrade taxa even with this high-leverage data excluded 

(Table 2.4, Table 2.8c), and correlates with SuspA and Susp (Table 2.5b, Table 2.9b).  

Knuckle-walkers do not differ from other anthropoids in this metric, and it tends to 

be slightly higher rather than lower in digitigrade taxa than palmigrade ones, albeit not 

significantly so. This trait also shares no relationship with either Quad or Arb (Table 

2.5a, d). The congruence of midcarpal curvature may yet be functionally related to 

terrestriality, as the contribution of the scaphoid/centrale to the midcarpal joint is not 

considered here, but as characterized by this metric, an association with terrestriality is 

not supported. 

 

 

Multivariate Analyses 

Positional classification  

The shape metrics of this study demonstrate remarkable effectiveness in 

distinguishing among anthropoid positional repertoires. This is particularly true for 

knuckle-walkers and suspensors, but despite individual traits separating digitigrade and 

palmigrade anthropoids only narrowly and inconsistently, the multivariate classifiers built 

in this study are also very effective in distinguishing these groups. Twenty shape 

variables significantly distinguish at least one of the non-reference positional classes 

from palmigrady with hylobatids excluded. The number of shape variables used to build 

the positional classifier number was winnowed to 16, with two variables eliminated due 
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to collinearity, and two others for adding excessive noise to the model, as described 

above. 

Discriminant scores are visualized in Fig. 2.7. Variance along the first 

discriminant axis, which explains 58.3% of the variation, distinguishes knuckle-walkers 

from the other positional classes, with Tq1LuA, LuCpRaA, and LuDsTqA wielding the 

largest influence (Discriminant functions are shown in Table 2.6a; compare with glmnet 

coefficients, Table 2.6b). Suspensors are well separated from pronograde monkeys by 

the second discriminant function, which accounts for 35.4% of the sampled variation. 

Palmigrade and digitigrade anthropoids are distinguished almost entirely in the third 

dimension (Fig. 2.7b), comprising only 6.4% of the sampled variance, with inter-group 

differences in LuCpRaA, CpPxA, LuDs, and CMC34A having the greatest influence. 

Unlike the first two axes, the third axis does not cleanly distinguish between groups; two 

specimens of Cercopithecus are positioned on the digitigrade side of the decision 

boundary, and one of Papio on the palmigrade side. 
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Fig. 2.7. Discriminant function analysis of 16 shape variables found to best distinguish positional classes. (a) visualizes the first two discriminant 
functions, and (b) the second and third. Observations are colored by taxonomic group (see legend) and shaped according to predicted positional 
classes (diamond = palmigrade; triangle = knuckle-walking; circle = suspensory; square = digitigrade). Black lines represent decision boundaries. 
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DFA results are consistent before and after cross-validation. One additional 

specimen of Papio was misclassified as palmigrade post-CV, with an initial DG posterior 

probability of 0.63 compared to a cross-validated mean of 0.45 (See Table 2.17). One 

Cercopithecus specimen, the individual most confidently misclassified by the DFA 

model, was also misclassified by the glmnet model. The only other inaccuracy of the 

final glmnet classifier is an Ateles specimen assigned a suspensory probability of 0.49, 

compared to the 0.60 assigned by the DFA classifier. The raw and balanced accuracy 

of both classifiers, calculated based on 33600 cross-validation trials, exceeded 98% 

(Table 2.6c). Both models identified suspensory and knuckle-walking anthropoids with 

extreme accuracy, with only rare misclassification during CV runs (Table 2.10a). 

 
Table 2.6. Positional classification results 

a Discriminant functions b glmnet variable importancea 

 DF1 DF2 DF3   DG KW PG S 

CpDn 0.02 0.27 -0.16  0.96 0.00 0.00 0.78 

Cp2 -0.49 0.43 -0.12  0.28 0.48 0.61 0.41 

CpPxA 0.38 0.50 0.79  0.00 0.07 0.69 1.05 

CpHmC 0.43 0.15 -0.43  0.61 0.17 0.25 0.53 

CpHP -0.44 0.09 -0.14  0.31 0.56 0.36 0.11 

Hm5 -0.40 0.55 -0.46  0.85 0.44 0.27 0.68 

Hm45A -0.34 -0.15 0.02  0.09 0.07 0.00 0.39 

CMC34A 0.46 -0.07 0.54  1.29 0.41 0.19 0.00 

LuDs 0.33 0.25 0.60  0.80 0.45 0.58 0.23 

LuTq 0.13 0.21 0.00  0.52 0.01 0.05 0.48 

LuSc -0.45 0.50 0.09  0.03 0.67 0.69 0.05 

LuDsTqA -0.56 -0.50 0.17  0.00 0.51 0.00 1.08 

LuCpRaA -0.65 0.69 1.04  0.55 0.71 2.37 0.00 

LuCpC 0.05 -0.14 0.06  0.85 0.00 0.00 0.19 

Tq1LuA -0.89 -0.64 0.17  0.73 0.88 0.24 1.38 

MCJAR 0.36 -0.20 -0.07   0.53 0.00 0.78 0.00 

c              Classification accuracyb 

Model Total DG KW PG S Balc 

DFA 0.986 0.941 1.000 0.982 0.995 0.984 

glmnet 0.993 0.978 1.000 0.992 0.994 0.993 
a Absolute value of tuned model coefficients 
b glmnet parameters were tuned with 20 repetitions of 10-fold CV; both DFA and glmnet model accuracy 
was calculated after 100 repetitions of 10-fold CV. 
c Balanced accuracy is an average of a model's sensitivity and specificity (true positive rate and true 
negative rate) 
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Despite hylobatids being excluded from model building criteria, hylobatids were 

never misclassified during cross-validation, and mean posterior probabilities of both 

models exceeded 0.99 in every case (Table 2.17). The most notable difference between 

the classifiers was their ability to distinguish between digitigrade and palmigrade 

anthropoids. The DFA model misclassified palmigrade specimens as digitigrade 248% 

more often (265 vs. 107 trials; see Table 2.10a), and digitigrade specimens as 

palmigrade 271% more often than the glmnet model (171 vs. 63 trials). The DFA 

classifier was nevertheless highly accurate in classifying digitigrade specimens 

(sensitivity = 0.91, specificity = 0.99; see Table 2.10b). 

 

Locomotor proportion estimation  

Multivariate carpal shape strongly corresponds with each of the locomotor 

proportions apart from Leap and LeapA, which lacked sufficient morphological 

correspondence to allow predictive modeling. Models for the non-leaping proportions 

each consist of between 3 and 6 shape variables. In each case, PGLS R2 exceeds 0.8 

and λ is estimated at zero (Table 2.7a and Table 2.11a). 
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Table 2.7. Prediction results for selected locomotor proportions 

a                                                Predictive models 

 PGLS  GLM 

  R2 λ p   Terms Coef SE T p SEE%a 

Quad 0.878 0.000 0.000  (Intercept) 0.22 0.05 4.2 0.000 16.0 

     CpDn 0.05 0.05 1.0 0.321  

     LuTq 0.18 0.06 2.8 0.006  

     LuTqDsA 0.69 0.07 9.3 0.000  

     Tq1LuA -0.94 0.06 -14.8 0.000  

SuspA 0.987 0.000 0.000  (Intercept) -2.58 0.07 -38.1 0.000 7.9 

     CpHmC -0.40 0.07 -5.9 0.000  

     CpPxA -0.36 0.08 -4.6 0.000  

     Tq1LuA 0.19 0.05 3.7 0.000  

     TqHm 0.52 0.06 8.9 0.000  

     TqHmPiA 0.55 0.06 9.7 0.000  

ClimbA 0.806 0.000 0.000  (Intercept) -0.63 0.03 -24.3 0.000 9.6 

     LuDs 0.16 0.03 5.8 0.000  

     LuDsTqA -0.15 0.03 -5.4 0.000  

     LuSc -0.37 0.03 -13.1 0.000  

Arb 0.906 0.000 0.000  (Intercept) 1.74 0.11 15.8 0.000 16.9 

     Cp23A 0.70 0.12 5.8 0.000  

     CpDn -0.38 0.09 -4.4 0.000  

     CpHmC -1.40 0.13 -10.4 0.000  

     LuCpRaA 1.92 0.12 15.8 0.000  

          LuTq -0.43 0.10 -4.3 0.000   

b                                                 Predicted locomotor proportions of training taxab 

 Quad  SuspA  ClimbA  Arb 

  Obs Pred Δ  Obs Pred Δ  Obs Pred Δ  Obs Pred Δ 

P. t. schweinfurthii 0.93 0.82 0.11  0.08 0.06 0.02  0.59 0.54 0.05  0.10 0.27 0.17 

P. t. verus 0.86 0.83 0.03  0.06 0.08 0.02  0.68 0.57 0.11  0.16 0.22 0.06 

P. paniscus 0.87 0.80 0.07  0.09 0.09 0.00  0.51 0.58 0.07  0.17 0.19 0.02 

G. gorilla 0.92 0.86 0.06  0.13 0.07 0.06  0.62 0.48 0.14  0.10 0.17 0.07 
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G. beringei 0.96 0.88 0.08  0.06 0.05 0.01  0.40 0.49 0.09  0.09 0.09 0.00 

P. pygmaeus 0.12 0.17 0.05  0.43 0.40 0.03  0.37 0.38 0.01  0.95 0.82 0.13 

P. abelii 0.18 0.25 0.07  0.38 0.34 0.04  0.35 0.38 0.03  0.95 0.87 0.08 

Hoolock 0.00 0.13 0.13  0.55 0.57 0.02  0.20 0.21 0.01  0.99 0.89 0.10 

H. lar 0.00 0.09 0.09  0.59 0.55 0.04  0.19 0.22 0.03  0.99 0.99 0.00 

Symphalangus 0.00 0.21 0.21  0.59 0.64 0.05  0.32 0.29 0.03  0.99 0.96 0.03 

Papio 0.99 0.79 0.20  0.00 0.03 0.03  0.21 0.29 0.08  0.05 0.39 0.34 

Lophocebus 0.42 0.66 0.24  0.00 0.03 0.03  0.36 0.33 0.03  0.95 0.82 0.13 

Macaca 0.68 0.60 0.08  0.00 0.04 0.04  0.26 0.31 0.05  0.97 0.90 0.07 

Erythrocebus 0.94 0.85 0.09  0.00 0.02 0.02  0.30 0.29 0.01  0.08 0.26 0.18 

Cercopithecus 0.54 0.69 0.15  0.00 0.03 0.03  0.35 0.32 0.03  0.95 0.77 0.18 

Colobus 0.41 0.58 0.17  0.01 0.03 0.02  0.20 0.30 0.10  0.96 0.92 0.04 

Procolobus 0.35 0.53 0.18  0.01 0.04 0.03  0.29 0.31 0.02  0.95 0.88 0.07 

Trachypithecus 0.60 0.60 0.00  0.00 0.03 0.03  0.13 0.25 0.12  0.99 0.90 0.09 

Presbytis 0.28 0.63 0.35  0.02 0.04 0.02  0.19 0.29 0.10  0.99 0.94 0.05 

Alouatta 0.61 0.50 0.11  0.02 0.04 0.02  0.33 0.36 0.03  0.95 0.96 0.01 

Ateles 0.42 0.27 0.15  0.25 0.13 0.12  0.25 0.31 0.06  0.99 0.98 0.01 

Cebus 0.37 0.45 0.08  0.00 0.03 0.03  0.40 0.30 0.10  0.95 0.96 0.01 

 c                     Predicted locomotor proportions for other taxa 

  Quad SuspA ClimbA Arb 

P. t. troglodytes 0.78 0.09 0.58 0.31 

P. t. ellioti 0.79 0.08 0.58 0.28 

H. muelleri 0.12 0.48 0.26 0.99 

Mandrillus 0.87 0.04 0.31 0.22 

Cercocebus 0.69 0.04 0.28 0.82 

Nasalis 0.74 0.03 0.33 0.85 
a Percent standard error of the estimate based on repeated individual predictions generated during cross validation 
b Predictions calculated after 100 repetitions of 10-fold cross validation of quasibinomial logistic regression. Obs, observed proportions. Pred, 
predicted proportions. Δ, residual. 
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The SuspA model is the most accurate as characterized by %SEE. The only 

prediction delta of this model exceeding 0.06 is Ateles, which, while correctly predicted 

to be the most suspensory of the sample outside the Asian apes, is nevertheless 

underestimated by half (Table 2.7b). The other notable source of error in SuspA 

prediction was a general baseline proportion of 0.02-0.04 assigned to the 

nonsuspensory taxa. The Susp model was similarly accurate overall. Its Ateles 

prediction is slightly more accurate, and the baseline assigned to non-suspensors is 

closer to zero, but Symphalangus is underestimated by 0.15 (Table 2.11b). The ClimbA 

and Climb models are only slightly less accurate than the suspensory ones. The largest 

sources of error in the former are the greater a priori variance among African apes than 

predicted and overestimation of three of the four taxa most reliant on leaping. 

The Quad and Arb models have the highest %SEE of the predictive models. Much of 

this is attributable to the high variance of these proportions, which range between 0 and 

0.99 and between 0.05 and 0.99, respectively. Both of these models produce accurate 

predictions for most of the extant sample (Table 2.7b). The least accurate prediction of 

the Quad model is that for Presbytis, the taxon most reliant on leaping. The Quad model 

was conservative in predicting extreme values, resulting in inaccuracy due to the often-

extreme values in the sample. It was nevertheless effective in distinguishing among 

highly terrestrial quadrupeds, arboreal quadrupeds, and the rarely-quadrupedal Asian 

apes, although the highest value among those assigned to the arboreal quadrupeds of 

the training sample falls only 0.10 short of the value predicted for Papio. Of the non-

training taxa, Nasalis is predicted within only .05 of Papio. Although the former has been 
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suspected to have a significant terrestrial habit (Kawabe and Mano, 1972; Boonratana, 

2000), this is likely a significant overestimate.  

The Arb model was more accurate in most cases, but consistently over-

estimated the arboreality of the most terrestrial taxa. The prediction for Mandrillus is 

lower than for the terrestrial cercopithecines of the training sample (Table 2.7c), but is 

still likely to be high, as this taxon is suspected to be nearly as terrestrial as the others 

(Sabater Pi, 1972; Hoshino, 1985). The Arb model is nevertheless effective in 

distinguishing between the terrestrial and arboreal taxa, with the nearest predictions 

between the two groups separated by a gulf of 0.38. 

Predictions for the six taxa not used to train the prediction models (Table 2.7c, 

Table 2.11c) generally hold to expectations, save the Quad prediction for Nasalis 

discussed above. Predictions for the chimpanzee subspecies are consistent with those 

of the training subspecies, Mandrillus mirrors Papio and Erythrocebus, H. muelleri 

resembles the other hylobatids, and Cercocebus and Nasalis are similar to other 

arboreal quadrupeds in the sample. 

 

Combined locomotor proportions 

When shape is analyzed with locomotor proportions in concert, carpal 

morphology has a greater correlation with arboreal-only locomotor proportions than with 

total locomotor proportions (RV = 0.76 and 0.67, respectively; all p-values < 0.0001; 

Table 2.12a), despite the former providing a less complete characterization of a taxon’s 

behavioral repertoire. This was hypothesized to be attributable to retention of 

suspensory and climbing adaptations in the African apes that belie their highly terrestrial 
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lifestyles post-adolescence, and tested by repeating the analyses with African apes 

removed. A greater association with arboreal proportions persisted (RV = 0.74 versus 

0.71; Table 2.12a). 

The shape-behavior correlation improves slightly when Arb is added to the 

arboreal proportions (RV = 0.77), whereas its addition to the total proportions further 

weakens the relationship (RV = 0.62). This is consistent with expectation given that the 

proportion of arboreality adds only redundant information to total locomotor proportions, 

whereas this information is not inherent in arboreal proportions. That the improvement is 

only incremental is notable, however. Due to the lack of morphological association with 

leaping, the shape-behavior relationship is maximized if LeapA is removed (RV = 0.80). 

When phylogeny is considered, shape-behavior correlation decreases substantially, 

corresponding with the high phylogenetic signal of most of the morphological variables 

under study, although it remains significant (total proportions RV = 0.40; arboreal 

proportions 0.41; with Arb added = 0.43; a best-fit set of Quad, SuspA, and ClimbA = 

0.49; see Table 2.12b).  

The structure of these relationships is highly influenced by the hylobatids; if they 

are excluded, shape is maximally correlated with a locomotor block consisting of Arb 

and the arboreal proportions whether or not phylogeny is considered (RV = 0.38 and 

0.75, respectively; Table 2.12a, b). This set of proportions was used in the PLS 

analysis. Fig. 2.8a plots the first two resulting shape axes, which visualizes the 

correspondence between functional carpal traits and locomotion in each taxon, as well 

as the relative influences of locomotion and phylogeny in the evolution of carpal 

morphology. Old and New World monkeys form a tight group in shape-space, with only 
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Ateles a slight outlier. Phylogenetic structure is also evident within the large group of 

monkeys, with, for example, Cebus and Lophocebus having similar locomotor 

repertoires but morphology most like that of their closer, less behaviorally similar 

relatives. The terrestrial quadrupeds also loosely grouped in shape-space, but are not 

obviously distinguished from their close non-terrestrial relatives.  

Fig. 2.8b depicts PLS behavior-space, a visualization of the sample’s behavioral 

repertoires as characterized by the first two locomotion PLS axes. Pongo and Ateles are 

better separated from their closest relatives than in shape-space, as are the terrestrial 

monkeys. Despite the lack of correspondence between carpal morphology and leaping, 

the four taxa most reliant on leaping (Presbytis, Colobus, Procolobus, and 

Trachypithecus) are distinguished from the others in accord with their lower proportions 

of other behavioral modes. As shown in Table 2.13a, PLS1 positions more suspensory 

taxa toward the left and more quadrupedal taxa toward the right, while PLS2 places 

those more reliant on climbing during arboreal locomotion toward the bottom, and those 

more reliant on arboreal locomotion in general toward the top, particularly those doing 

the most leaping.  
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Fig. 2.8. Two-block partial least squares (PLS) analysis of shape and selected locomotor proportions (QuadA, SuspA, ClimbA, LeapA, Arb). (a) 
Shape-space, including projections of taxa lacking quantitative locomotor observations. (b) Behavior-space; (c) Overlay of a and b; arrows lead 
from each taxon’s position in shape-space to its position in behavior-space, with length equal to standardized Euclidean distances. (d) Correlation 
circle depicting relationships between all shape and locomotor variables. See Table 2.13 for PLS vectors and Euclidean distances. 
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A comparison of Fig. 2.8a and Fig. 2.8b shows that locomotion varies more 

within broad taxonomic groups than does shape. This trend is visualized in Fig. 2.8c, an 

overlay of PLS shape-space and behavior-space including only the taxa used to train 

the model. Arrows lead from the position of each taxon in shape-space to its position in 

behavior-space, with length equal to the standardized Euclidean distance (listed in 

Table 2.13c). The monkeys and great apes are generally pulled away from their 

respective corners, with the more terrestrial monkeys and mountain gorillas pulled 

toward each other in behavior-space, the colobines moving laterally, and the ceboids 

and cercopithecines sharing a general downward trajectory. The latter trend 

corresponds to a shared preference in these groups for climbing over leaping during 

arboreal locomotion, as climbing is generally not reflected in the wrists of these animals 

in the same way as in the great apes (discussed below). Because of its very low 

correspondence with carpal morphology, taxa more reliant on leaping, led by Presbytis 

and Colobus, traverse greater distances between shape- and behavior-space than most 

other monkeys. The exception is Ateles, which is pulled downward in accord with its 

climbing habit and leftward toward the other suspensors, further separating this species 

from close relatives. The Pongo species also have relatively large Euclidean distances, 

reflecting the greater phylogenetic structure of morphological variance in the sample 

relative to locomotor variance. 

Fig. 2.8d plots Pearson correlations between the shape variables and the first 

two PLS shape axes, with the light gray vectors representing r values between 0 (the 

origin) and 1 (represented by the circle). Correlations between the locomotor variables 

and shape axes are plotted in the same way, shown in dark gray. For example, the size 
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of the styloid facet on the triquetrum (TqSt) is correlated with the first axis at r = 0.36 

and with the second axis at r = 0.93. The resulting vector is of length 1 and points 

toward the position in shape-space (Fig. 2.8a) of the non-hominoids, i.e., the sampled 

taxa with non-zero values for this trait. This assists interpretation of the other PLS plots 

by displaying how each shape and locomotor variable contributes to the structure of the 

analysis. All 9 locomotor variables are included in this plot, but the vectors of the 

variables contributing to Fig. 2.8a-c are not substantially changed. The correlation 

between any two variables is represented in Fig. 2.8d by the angle between their 

associated vectors, where angles approaching 90° represent no correlation and angles 

approaching 0° or 180° represent strongly positive or negative correlations, respectively. 

Hylobatids, the taxa with the highest SuspA and Arb and lowest QuadA values, are 

positioned far to the left in behavior-space (Fig. 2.8b,c), while their commensurately 

high values of, for example, MCJAR and LuDsTqA and low values of CpPxA and 

CpHmC (Fig. 2.8d) leave them positioned far to the left in shape-space as well (Fig. 

2.8a,c). The African apes have high values of ClimbA and low values of LeapA and Arb, 

and are therefore positioned toward the bottom right corner, commensurate with their 

low values of, e.g., LuSc and Cp4, and high values of LuRa and TqLu. 
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Discussion 

Adaptive convergence in the anthropoid carpus 

This study successfully identifies aspects of wrist morphology that have evolved 

in association with various positional modes practiced among anthropoids. As noted at 

the outset, supporting these links as having evolved directly in adaptation to a given 

behavior is more difficult, but patterns of variation in several traits are consistent with 

their having convergently adapted to similar locomotor behavior in separate lineages, 

and are therefore worthy of further research. However, this study also demonstrates the 

complex, subtle, and variable nature of functional morphology, with many shape 

variables, particularly the surface area ratios, found to be highly variable within taxa and 

within positional classes. While this is consistent with our understanding of adaptation 

as a non-optimizing process (Abrams, 2001 and references therein), it potentially 

attenuates the utility of some morpho-functional units when inferring fossil behavior 

based on small sample sizes.  

3D variables of the type analyzed here are thought to be especially well-suited to 

the complex articular geometry of the carpus (e.g., Orr, 2016), and they were generally 

found to be effective in quantifying important variation in anthropoid joint surface 

morphology. However, few articular features of the hamate were hypothesized to be 

related to function, and these were found to have little functional correspondence 

relative to the other carpal elements analyzed. Overall hamate morphology was still 

found to be significantly correlated with locomotor proportions (RV = 0.53, p < 0.0001), 

but a previous analysis found a greater correspondence of 0.73 between similar 

locomotor data and hamate morphology based on landmark data (Almecija et al., 2015). 
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This may, however, reflect the functional signal of the hamulus, which is not analyzed 

here, particularly given the proportionally greater representation from hominoid taxa in 

their sample. 

Results of this study also demonstrate some of the important drawbacks of 

accounting for the statistical non-independence associated with allometry and 

phylogeny inherent in biological research. Allometry seemed to wield only mild influence 

on the analyzed shape data. Multivariate phylogenetic allometry was low (R2 = 0.04, p = 

0.03), and only one variable was found to correlate with size at rho ≥ |0.5| and p ≤ 0.05) 

when accounting for phylogeny (Table 2.15). However, size was found to have a 

significant relationship with positional behavior. Climb and Arb were both significantly 

allometric, with Leap, LeapA, and Quad falling just short, while knuckle-walking and 

digitigrady were found to be significantly correlated with body size. Hence, accounting 

for allometric correlations between shape and positional variables stands to remove 

much of the very information being sought, particularly when analyzing traits associated 

with terrestriality or postures thereof. This was done to avoid making assumptions about 

size-function relationships being similar outside of the present sample, but constraints 

related to body size on substrate and positional mode preference have likely been 

present throughout the evolution of anthropoids (Remis, 1998 and references therein), 

with highly terrestrial species tending toward larger body sizes due to its greater 

energetic efficiency as well as a lesser need for arboreal agility (Hunt, 2016). 

 Similar problems are inherent in accounting for phylogeny. Despite attempts to 

bias the sample toward greater behavioral diversity within clades and limiting shape 

metrics to only those thought to have functional significance, the phylogenetic signal of 
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all shape and locomotor variables remains significant (Table 2.14a, b), and the 

multivariate phylogenetic signal of each set is similarly high (Kmult = 0.74 and 0.78, 

respectively). As with size, much of the morphological variance associated with a given 

function is therefore often instead attributed to phylogeny, despite shared functional 

adaptation likely playing a large role in the morphological differentiation between 

phylogenetic groups (Polly et al., 2013).  

This problem is exacerbated by the hylobatids, in which suspensory behavior and 

its associated morphology likely evolved largely in parallel with Pongo (Straus, 1949; 

Begun, 1993; Rose, 1997; Larson, 1998; Ward, 2015; Lovejoy et al., 2009). 

Commonality of behavior and morphology between these groups is nevertheless treated 

as the result of homologous inheritance from a common ancestor by phylogenetic 

models. The already high-leverage data of hylobatids is given further influence by their 

basal position within the hominoid clade, often heavily influencing the phylogenetic 

signal estimated during the fitting of each model. As noted above, the statistical strength 

of a correlation between a shape variable and positional variable in which values of 

each are most extreme in hylobatids are often unintuitively hindered rather than helped 

by their presence, and other analyses in which their presence should not be relevant, 

such as traits separating digitigrady from palmigrady, can be significantly altered, due to 

their inclusion greatly altering the estimated phylogenetic signal of the model. For 

example, the hylobatid species have the highest SuspA values of sample, and among 

the highest LuCpC values as well (Hylobates species have the highest taxon means, 

Hoolock and Symphalangus are somewhat lower but still exceed those of nearly all 

other sampled taxa). Nevertheless, a strong positive correlation between these two 
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variables disappears at the inclusion of hylobatids – their presence in the model 

changes its estimated phylogenetic signal from 0 to 1 (Table 2.5b), reattributing almost 

all of the variation from suspensory frequency to phylogeny. 

Despite these confounds, this study identifies morphologically convergent traits 

and complexes thereof in association with several anthropoid behaviors. The remainder 

of this subsection discusses the traits associated with some of these behaviors in turn, 

and evaluates the adaptive plausibility of each morpho-functional unit. 

 

Suspension  

Results presented here are consistent with the hypothesis that much of the 

forelimb morphology distinguishing suspensors from other anthropoids is related to 

facilitating greater mobility (e.g., Cartmill and Milton, 1977; Lewis, 1985a, b). Previous 

observations have found suspensors to have greater mediolateral curvature of the 

midcarpal joint (Tuttle, 1967; Sarmiento, 1988; Hamrick 1996b). A highly curved distal 

midcarpal surface in suspensors is confirmed, although as characterized here this 

condition results almost entirely from variation of the capitate, which is derived in each 

of the sampled suspensors (CpPxA; Fig. 2.4a). As observed previously by Kivell and 

colleagues (2013) and confirmed here, the proximal angle of the hamate (HmPxA) does 

not covary with suspension outside of hylobatids. Variation in curvature of the proximal 

midcarpal surface (LuTqDsA; Fig. 2.4f) also distinguishes suspensors, but this was 

again found to be attributable to only one of the two bones, as the lunate’s contribution 

(LuDsTqA; Fig. 2.6f) distinguishes suspensory individuals better than the compound 

variable (LuTqDsA; see also Table 2.4, Table 2.8a, c). The ratio between proximal and 
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distal midcarpal curvature (MCJAR) was also highest in suspensors, in accord with the 

enhanced joint mobility such a lack of congruence is thought to provide (Bullough et al., 

1968; Sarmiento, 1988). Dorsopalmar curvature of the midcarpal joint, which is thought 

to covary with stability through a wider range of flexion/extension (Dainton and Macho, 

1999), was also highest in sampled suspensors, as characterized by concavity of the 

lunate’s capitate facet (LuCpC). 

 Other traits found to covary with suspension do not seem related to wrist mobility. 

Most of these seem instead to contribute to a functional complex of the ulnar carpus 

enhancing flexor carpi ulnaris leverage and transmitting forces generated thereby (see 

Fig. 2.9). The long axes of suspensory triquetra are more orthogonal to the lunate facet 

at their bases than in other anthropoids (Tq1LuA; Fig. 2.4e), which, in concert with a 

more distally oriented triquetrum facet of the lunate (LuDsTqA; Fig. 2.6f), gives the 

triquetra of suspensors a markedly distal orientation. This serves to reposition the distal-

most portion of the triquetrum distally, an effect most pronounced in Pongo, in which the 

lunate’s triquetrum facet, along with being distally reoriented has also been distally 

repositioned, resulting in the triquetrum having essentially joined the distal carpal row. 

The pisiform of suspensors is further displaced by its articulation being limited in most 

cases to the distal portion of the triquetrum; this change is reflected in the relative size 

of this facet being reduced in suspensors (TqPi; Fig. 2.6g). The distal position of the 

pisiform within the carpus in turn repositions the palmar-most extent of the flexor carpi 

ulnaris, resulting in its palmar relief from the wrist also being maximized more distally. 

This would seem to impart this muscle with especially high leverage as it crosses the 

midcarpal and ulnar carpometacarpal joints. 
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Fig. 2.9. Comparison of ulnar carpus reorganization in association with knuckle-walking and suspension. 
These positional classes are oppositely distinguished from palmigrade anthropoids in the size and 
orientation of the lunate’s triquetrum facet (LuTq, LuDsTqA), the orientation of the long axis of the 
triquetrum (Tq1LuA), and the size and orientation of the triquetrum’s pisiform facet (TqPi, TqHmPiA). In 
addition to differential loading regime mitigation, these features contribute to distal migration and 
reorientation of the pisiform in suspensors. 

 

 The distal orientation of the pisiform in suspensors arranges its long axis 

perpendicular to that of the forearm during mild wrist flexion, maximizing flexor carpi 

ulnaris leverage in this posture rather than during extension (Sarmiento, 1988; Lewis, 

1989; Hamrick, 1997). Results of this study suggest the root of this reorientation may be 

found in the triquetrum rather than the pisiform itself: the facet on the triquetrum with 

which the pisiform articulates faces more palmarly and slightly distally in suspensors 

rather than proximoulnarly (TqHmPiA; Fig. 2.6h), which, in concert with their more 
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distally rather than palmarly oriented triquetra, is sufficient to significantly reorient the 

pisiform without any change in pisiform morphology. Whether the proximal morphology 

of suspensory pisiforms has been modified in furtherance of this effect is not analyzed 

here.  

Two additional traits distinguishing suspensors may also participate in this ulnar 

functional complex. The size of the lunate’s triquetrum facet (LuTq) is reduced, and, in 

Asian apes but not Ateles, the triquetrum’s hamate facet (TqHm) tends to be slightly 

enlarged (Table 2.4, Table 2.5b, Table 2.8a, c, Table 2.9b). The former may simply 

reflect the triquetrum’s reduced role in weight-bearing in these taxa (Kivell et al., 2013), 

although the reorientation of this facet would suggest that the suspensory morphology 

reflects adaptation to a distinct loading regime rather than a similar regime of lesser 

magnitude. The distal repositioning of the triquetrum in suspensors would also likely 

result in a substantial portion of forces directed across the carpus, such as those 

originating in the pisiform, being more readily transmitted from the triquetrum into the 

hamate rather than the lunate, perhaps facilitated by its inconsistently enlarged 

articulation with the former.  

The final trait distinguishing suspensors from other anthropoids is functionally 

distinct from the others. The hamate facet of the capitate in hylobatids and Ateles lacks 

the proximodistal concavity of all other taxa in the sample, often being assigned 

negative concavity values due to the facet’s most medial extent often occurring near its 

center (CpHmC; Fig. 2.4b). This trait is also reduced in both Pongo species relative to 

Gorilla, and in P. abelii relative to Pan, although the high variability of P. pygmaeus 

encompasses the range of all five Pan taxa.  
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Fig. 2.10. Comparison of capitohamate joints in dorsal view. Most anthropoids display substantial 
proximodistal curvature, but this joint tends to be more planar in committed suspensors, especially in 
brachiators.  

 

This trait seemingly contributes to a functional complex stabilizing the 

capitohamate joint against extrinsic forces. The distinct condition of this trait in the 

hylobatids and Ateles, along with several other aspects of capitohamate joint anatomy, 

point to a morphological reorganization of this joint in adaptation to brachiation. The 

opposing articular surfaces of the capitate-hamate joint span the dorsopalmar width of 

each bone both proximally and distally in each of the sampled brachiators, and the 

proximal and distal articulations are often separated from each other by large pits for the 

attachment of powerful capitohamate interosseous ligaments (Fig. 2.11). Distinct 

proximal and distal facets for articulation with the hamate are present in 12 of 13 Ateles 

capitate specimens and 26 of 29 sampled hylobatids, and similar discontinuity is found 

on the opposing surface of the hamate in 6 of 14 Ateles specimens and 27 of 29 
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hylobatids (Table 2.16b, c). This condition was rare in the remainder of the sample, with 

discontinuity present only in a minority of Pongo (8 of 34 capitates, 5 of 35 hamates) 

and Nasalis (4 of 17 capitates, 3 of 17 hamates), and in a single, possibly pathological 

Procolobus hamate. 

 

 

Fig. 2.11. Comparison of opposing capitohamate articulations. In each pairing, the hamate is shown on 
the left in lateral view, and the capitate on the right in medial view. Proximal is down, distal is up. All 
elements from the right side. Pan and Alouatta demonstrate the typical condition of most anthropoids; the 
others display a discontinuous articulation and deep ligament pits associated with reinforcement of the 
capitohamate joint, most commonly present in sampled brachiators. 
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The form of the discontinuity in Pongo, when present, is distinct from those found 

in the brachiating taxa. The distal articulations of the opposing surfaces are limited to 

the dorsal portion of each bone, as seen in most other anthropoids, and the ligament pit 

is palmarly positioned in most instances, rather than directly between the separate 

facets. The discontinuity seems less related to hypertrophy of the interosseous 

ligament, and may instead be related to medial displacement of the distal portion of the 

articulation. This condition is common in sampled Pongo specimens, but is often 

especially pronounced in specimens with the proximodistal articular discontinuity. 

The condition of this joint in Nasalis also seems to be that of a brachiator. 

Proximodistal curvature is more similar to Pongo in being only slightly reduced relative 

to most of the sample, but in other ways its articulation with the hamate resembles 

those of the brachiating taxa. In addition to the occasional separation of the proximal 

and distal capitohamate articulations discussed above, the interosseous ligament pits of 

Nasalis specimens tend to be especially excavated. In 14 of 17 capitates there is also 

an accessory facet positioned palmarly to, and oriented opposite of, the palmarly-

oriented distal portion of the hamate facet (or the dorsodistal facet when distinct; see 

Table 2.16b). This is akin to the condition of hylobatids, in which the distal hamate facet 

of the capitate is curved such that its palmar and dorsal portions face each other, 

although they are less often split into distinct facets (13 of 29 specimens). This 

morphology forms a mortise that articulates both palmarly and dorsally with the 

reciprocally beveled distal portion of the hamate, enhancing the ability of the 

capitohamate joint to resist dislocation due to dorsopalmar shear, such as might be 

generated by differential loading of the third and fourth rays during brachiation. 
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Meanwhile, more of the responsibility for resisting shear caused by force vectors 

concentrated near the proximodistal axis, for which the proximodistal curvature of the 

capitohamate joint seen in most of the sampled taxa is presumably useful, seems to 

have been shifted onto soft tissue structures in the brachiating taxa, including 

hypertrophied inter-carpal ligaments. 

It is unclear whether the enhanced capitohamate joint stability that Nasalis 

seems to share with sampled brachiators actually relates to brachiation, to some other 

behavior with a matching loading regime, or to non-adaptive factors. Although Nasalis is 

closely related to known Old World brachiators Rhinopithecus (Le, 2014) and Pygathrix 

(Wright et al., 2008), and has been suspected of brachiation based on its limb 

proportions (Byron and Covert, 2004; Byron et al., 2015), its locomotor repertoire 

remains largely unknown.  

Suspension seems to have a complex relationship with size. It is most commonly 

practiced by hominoids, most of whom are large, but large body size does not by itself 

correlate with suspensory behavior. Furthermore, its detected covariance with 

morphology actually increases when accounting for size, contrary to the other studied 

behaviors. Morphological adaptation to suspension may therefore be modulated as a 

function of body size, perhaps due to compromises necessary at larger body sizes to 

allow for transferring greater loads or in association with terrestrialism. Its lack of 

correlation with body size in the sample likely enhances the ability of this study’s 

methodology to identify associated wrist traits, perhaps partially accounting for the 

number and strength of the suspensory correlations detected. 
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Knuckle-walking  

Identification of knuckle-walking adaptations is confounded by its practice among 

anthropoids being isolated to a single lineage of large-bodied apes also reliant on 

suspension and vertical climbing. Morphology adapted for knuckle-walking is 

necessarily compromised to facilitate these other behaviors, and as discussed above, 

much of their uniqueness is obscured when accounting for allometric scaling. Several 

traits are nevertheless identified here as functionally distinct in African apes. The distal 

surface of the lunate is larger (LuDs; Fig. 2.6e), shares a more acute angle with the 

triquetrum facet (LuDsTqA; Fig. 2.6f), and is oriented nearly parallel with the radius 

facet (LuCpRaA; Fig. 2.4d). African apes also have relatively smaller capitate Mc4 and 

hamate Mc5 facets (Cp4 and Hm5; Fig. 2.4c), and the long axis of the triquetrum is 

highly angled relative to its articulation with the lunate (Tq1LuA; Fig. 2.4e). African apes 

also less reliably tend to have a more dorsally positioned capitate head (CpHP) and a 

smaller scaphoid facet on the lunate (LuSc).  

Half of these eight potentially knuckle-walking-related traits – LuDs, LuSc, 

LuDsTqA, and Tq1LuA – also covary significantly with ClimbA (Table 2.5c). However, 

with one exception these correlations seem to be dictated by the African apes rather 

than reflecting generalizable morpho-functional relationships – only LuSc maintains a 

significant relationship with climbing behavior if African apes are excluded (this trait is 

discussed further below). 

African apes are consistently distinguished by their low Hm5 values, in accord 

with hypotheses related to reduced loading of the fifth ray during knuckle-walking 

(Marzke, 1983; Marzke et al., 1992). However, the pattern of variation in the sample 
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makes interpretation of this trait difficult. As discussed above, the lowest mean value of 

this trait outside of hominoids is found in Ateles, and the four hylobatid species have the 

lowest values of all (see Fig. 2.4c), indicating this condition may have a better 

relationship with brachiation than knuckle-walking. Furthermore, the size of this facet is 

not notably reduced in the Gorilla species – G. beringei is indistinguishable from Pongo, 

while G. gorilla has the highest values of the hominoid sample. It may be that the 

condition of this trait in Pan is related to their preferential loading of rays 2-4, whereas 

differences in hand posture result in a more even distribution of loading across the 

medial digits in Gorilla (Sarmiento 1988; Inouye 1994a, b; Dainton and Macho 1999; 

Matarazzo 2013a, b). Morphology associated with reduced loading of the fifth ray 

therefore cannot be considered adaptive to knuckle-walking more broadly. 

Two more of the remaining traits have a dubious relationship to knuckle-walking 

despite statistically significant covariance. A lack of Mc4-capitate articulation has been 

noted in association with the bases of the third and fourth metacarpals being offset, 

hypothesized to increase the stability of the carpometacarpal joints in knuckle-walking 

taxa (Marzke et al., 1994). A facet for the Mc4 was indeed absent in all sampled Pan 

capitates, and in 58% of the Gorilla sample (Table 2.16a). However, it was also absent 

in 41% of Pongo specimens. Loss or reduction of this articulation may therefore be 

better attributed to phylogeny, with its variable presence having emerged due to either 

nonadaptive factors or in association with vertical climbing or some other ancestral 

function benefited from increased CMC stability above a certain body size.  

Capitate head position (CpHP) was hypothesized to covary with mobility in 

midcarpal extension among hominoids (Lovejoy et al., 2009), the rigid-wristed African 
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apes presumably having the most dorsally-positioned capitate heads and therefore 

lowest values of this trait (see Fig. 2.5). African apes are only distinct with hylobatids 

removed, however, and the Gorilla and Pongo ranges overlap extensively. Ateles is also 

found to have a significantly more dorsal capitate head than other ceboids, and it tends 

to be somewhat more palmarly positioned in the relatively rigid-wristed digitigrade 

sample relative to their palmigrade relatives. The lack of covariance between this trait 

and mobility in midcarpal extension across the sample renders its hypothesized 

adaptive significance in African apes somewhat dubious.  

The remaining traits, LuDs, LuCpRaA, LuDsTqA, and Tq1LuA, are the best 

candidates for being adapted to knuckle-walking. In each case, African apes are clearly 

and consistently distinguished from other anthropoids, and the African ape variant of 

each trait has a plausible biomechanical link to knuckle-walking. Axial compressive 

loading is high during knuckle-walking (e.g., Tuttle, 1967; Jenkins and Fleagle, 1975). 

Because stress across the distal facet of the lunate (LuDs) resulting from these forces 

decreases as a function of its surface area, its large size in knuckle-walkers (Fig. 2.6e) 

is of clear benefit. The adaptive benefit of a near-parallel orientation of the lunate’s 

proximal and distal facets (LuCpRaA) is likewise straight-forward. The angle between 

these surfaces, which is most extreme in the palmigrade sample (Fig. 2.4d), seems to 

indicate the degree of extension associated with maximum stability, and likely 

corresponds to wrist posture during habitual locomotion. In accord with their especially 

limited mobility in extension at the antebrachiocarpal joint (Orr, 2010), the proximal and 

distal surfaces of African ape lunates are both oriented orthogonally relative to axial 

compressive loading, enhancing the bone’s ability to transmit these forces into the 
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radius during maximum extension. The lack of distinction in this metric between the 

African ape genera seems to contrast with observed kinematic differences between the 

African ape genera (Kivell and Schmitt, 2009). Gorillas are thought to load their wrists in 

a neutral posture rather than at full extension as is generally the case in terrestrial 

mammals, including Pan. The near-parallel orientation of the distal and radius surfaces 

of the lunate in both genera would best comport with a more neutral posture for both, 

however. This morphology may therefore be compromised by the need to maintain 

stability during wrist flexion during suspension and vertical climbing.  

The angle between the distal and triquetrum surfaces of the lunate (LuDsTqA) 

has been repeatedly noted as relatively obtuse in Asian apes (Corruccini, 1978; 

Sarmiento, 1985, 1988; Begun, 2004). Results of this study confirm this observation, as 

discussed above, but also find this angle to be especially acute in African apes (Fig. 

2.6f). During knuckle-walking, loading is generally considered to be biased toward the 

radial side of the wrist (Heinrich et al., 1993; Begun, 2004; Ward et al., 2012), although 

this has not been experimentally confirmed (e.g., Kivell, 2016). In apparent association 

with this loading bias, the scaphoid of African apes is medially expanded, which results 

in the lunate being displaced medially (Begun, 2004). This displacement seems to result 

in the proximodistal alignment of the capitate and lunate with the axis of the forearm 

being increased somewhat during ulnar deviation. This in turn results in the distal lunate 

surface facing somewhat laterally in anatomical position. This being the case, the angle 

between this surface and the triquetrum facet will naturally be more acute given the 

same absolute orientation of the latter.  
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Perhaps more importantly, the midcarpal joint of Pan possesses a “screw-clamp” 

mechanism, originally identified in humans (MacConaill, 1941) and later confirmed 

experimentally in Pan (Orr, 2010), in which the lunate is pinned between the scaphoid 

and triquetrum during extension as the latter twists within its spiral facet on the hamate 

into a close-packed position. Although the morphology of Gorilla is consistent with this 

mechanism, its existence has not been experimentally confirmed. The more acute angle 

of African apes may reflect a reorientation of the lunate-triquetrum articulation to 

increase its orthogonality relative to transverse loading of the proximal carpal row as a 

result of the screw-clamp. A more acute angle also tends to reflect a wider (i.e., less 

curved) proximal surface of the midcarpal joint, as characterized by LuTqDsA, although 

this was found to be the case only in Gorilla and P. paniscus of the sample, with 

estimated curvature in the four P. troglodytes subspecies exceeding that of most 

sampled cercopithecoids (Fig. 2.4f). 

The acute angle observed here between the lunate facet and long axis of the 

triquetrum (Tq1LuA; Fig. 2.4e) in African apes also has a straight-forward 

biomechanical link with knuckle-walking. The palmarly-leaning triquetrum of African 

apes yields a more proximally- (i.e., less distally-) directed pisiform, without requiring 

morphological change in the pisiform itself. This deepens the carpal tunnel and 

enhances the leverage of the flexor carpi ulnaris during wrist extension to the degree an 

equivalent change in pisiform morphology would; the advantage of the triquetrum being 

the source of this reorientation rather than the pisiform itself seems to be that in 

maintaining the spacial relationship between the triquetrum and pisiform while 

displacing the articulation between them palmarly, forces entering the carpus via the 
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pisiform are transmitted by the triquetrum largely as compression into the lunate and 

hamate, rather than as shear, allowing them to be safely transmitted across the carpus 

and into the forearm via the radius. This is facilitated not only by the triquetrum’s now 

more oblique rather than orthogonal relationship with the lunate, but also due to a large 

portion of the hamate now being positioned dorsal to the triquetrum, opposite the 

pisiform. This mechanism is distinct from that of digitigrade monkeys, in which Tq1LuA 

is nearly as acute, as they can transmit pisiform-originating forces directly from the 

pisiform and triquetrum into the antebrachium via their articulation with the ulnar styloid 

process, eliminating much of the potential peril to the soft tissue of the ulnar carpus. The 

potential utility of this condition for digitigrady is discussed below. 

 

Climbing 

Climbing is unlike the other locomotor modes analyzed here in that arboreal and 

total proportions are uncorrelated in the sample (rho = 0.01), and there is almost no 

consistency between them in morphological correspondence. The lack of collinearity 

between ClimbA and Climb is due to larger primates tending to be less arboreal but 

more prone to climbing when they do take to the trees. Furthermore, since all climbing 

is arboreal by definition, the difference between a taxon’s total and arboreal-only 

proportions is a function of its arboreality (see Fig. 2.8d). The African apes are the most 

reliant of the sample on climbing during arboreal locomotion, so their high degree of 

terrestriality results in these differences being drastic. Their distinct anatomy further 

exacerbates this problem, giving African apes sufficient influence to dictate the 

morphology associated with high values of ClimbA, and to an only slightly lesser extent, 
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with low values of Climb. This makes congruence between traits associated with ClimbA 

and Climb virtually impossible. 

The lack of consistent morphological covariance with climbing may be further 

explained by observational methodology. Climbing has often been a broad or 

amorphous designation in the literature, and although steps have been taken to remedy 

this (Hunt et al., 1996 and succeeding studies), continuing methodological 

discrepancies in field observations and a necessary reliance on older studies due to a 

lack of recent ones for many taxa necessitate grouping several behaviors of dubious 

kinematic and kinetic similarity into a single class. Even vertical climbing in the most 

limited sense seems to be comparable across anthropoids only in purpose, with the 

hand-over-hand climbing of African apes bearing very little resemblance to the series of 

vertical leaps (“pulse-climbing”; Hunt, 1992) used by baboons to the same end. This 

may further explain the lack of overlap between traits associated with ClimbA and Climb 

– those related to the former are more likely to correspond to stereotypical vertical 

climbing as performed by great apes, while those related to the latter more likely reflect 

a suite of behaviors practiced by highly arboreal monkeys.  

 Only a single trait – the size of the scaphoid facet of the lunate (LuSc) – 

overcomes these confounds to demonstrate a consistent relationship with Climb and 

ClimbA. This trait covaries negatively with ClimbA, and the significance of this 

relationship is maintained with the exclusion of hylobatids, African apes, or both. 

Coefficients relative to Climb are also negative, approaching significance despite the 

low Climb values of African apes, and becoming highly significant upon the exclusion of 

this group. Reduction in the size of this facet and expansion of the radius facet were 
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noted by Kivell and colleagues (2013) as distinguishing Pan and Pongo from other 

anthropoids, which they hypothesized to reflect high loading of the radiolunate joint in 

adduction during climbing. As measured here, the lunate’s scaphoid facet is only 

marginally larger in the Gorilla species than in Pan and Pongo, with all three genera 

having significantly lower values than other taxa of the sample. However, it is not 

obvious how this condition assists in mitigating loads borne during ulnar deviation. 

Because the radius, lunate, and capitate are somewhat aligned with the axis of the 

forearm during wrist adduction, an increase in the proportion of loading along this axis 

being transmitted directly into the antebrachium without passing between the scaphoid 

and lunate may be worthy of experimental testing. Utility not requiring ulnar deviation 

may be more likely given this trait’s covariance with climbing in sampled monkeys as 

well, unless this covariance is coincidental in the sample. 

The size of the capitate’s Mc4 facet (Cp4) may also have some relationship with 

climbing at larger body sizes. It is inversely correlated with both ClimbA and Climb when 

accounting for size (Table 2.5c, Table 2.9c), due to its substantial reduction or absense 

in great apes, but has no relationship to either with African apes removed. The size of 

the lunate’s radius facet (LuRa), the other trait noted by Kivell and colleagues (2013) as 

potentially related to climbing, is again distinct in each of the great ape genera as 

measured here, and positively correlated with ClimbA with and without hylobatids. 

Coefficients relative to Climb are negative, however, indicating its relationship with 

climbing is limited to the great apes, consistent with its hypothesized utility in 

transmitting loads during ulnar deviation of the antebrachiocarpal joint, which is limited 

in non-hominoid anthropoids.  
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Hm45A is the only other trait with a tenuous relationship to climbing; the 

hamate’s metacarpal facets tend to become nearer to parallel as values of Climb 

increase, a relationship remaining significant with either hylobatids or African apes 

removed. This trait also covaries with ClimbA in the same direction, although to a 

degree that only approaches significance with African apes excluded from the analysis. 

While this angle was predicted to be more acute in digitigrade cercopithecines, in which 

Climb values are indeed low, the benefit of larger values of this trait to climbing is not 

apparent. 

 

Digitigrady 

Given the sometimes-subtle differences in wrist postures between digitigrade and 

palmigrade monkeys (e.g., Patel, 2009, 2010b), and the difficulty of previous 

researchers in finding corresponding anatomy (e.g., Patel, 2010a), the number of shape 

variables found to distinguish these groups is surprisingly high. As with the sampled 

suspensors, digitigrady is thought to have emerged independently in each of the 

sampled terrestrial monkey lineages (Gilbert et al. 2010; Gosselin-Ildari, 2013), so these 

traits may be examples of adaptive convergence. However, these features are spread 

throughout the carpus, effect sizes are often low, and statistically significant correlations 

sometimes belie a lack of consistency among the digitigrade genera. For example, there 

are several variables in which Mandrillus and Erythrocebus are distinct from their 

closest palmigrade relatives in accord with the associated morpho-functional 

hypothesis, while Papio does not differ from Lophocebus or other palmigrade 

cercopithecines. This is unexpected given the more vertical manus of Papio relative to 
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Erythrocebus (Richmond, 2006; Patel, 2009) and the more distant relationship of 

Erythrocebus relative to the digitigrade papionins. This may correspond with adaptive 

variation between lineages, or it may be a function of a single adaptive complex being 

spread throughout the carpus, rendering poor predictors of most individual metrics but 

allowing a combination thereof to be highly diagnostic.  

Traits distinguishing digitigrady seem to contribute to a small number of discrete 

functional complexes, most prominently the distal wrist mortise. Much like the proximal 

mortise formed by the radial and ulnar styloid processes articulating the proximal carpal 

row medially and laterally, the distal wrist mortise of digitigrade taxa is formed by the 

more proximal origin of the second and fifth metacarpals, which therefore have a more 

mediolateral relationship with the distal-most portions of the capitate and hamate than is 

found in other primates. To wit, the Mc2 facet of the capitate (Cp2) tends to be larger 

and more radially oriented (Cp23A), and the Mc5 facet of the hamate tends to be 

oriented (Hm45A) ulnarly to articulate with the cylindrical and proximoulnarly projecting 

metacarpal base. As part of this complex, the Mc3 facet of the capitate and adjacent 

Mc4 facet of the hamate tend to be angled slightly toward each other in digitigrade taxa 

(CMC34A), as opposed to the more planar relationship found in palmigrade taxa. During 

CMC extension, Mc2 and Mc3 supinate slightly, and MC4 and MC5 pronate slightly, so 

that at full extension the arch formed by the metacarpals is reduced, aligning them 

transversely with each other and locking them together (Marzke, 1983). The angulation 

of the third and fourth metacarpal facets may aid in redirecting resulting mediolateral 

force vectors proximally through the capitate and hamate (Selby et al., 2016). 
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The central column of the wrist seems to have narrowed in digitigrade taxa, 

judging by the reduced size of the lunate and capitate’s distal surfaces (LuDs, Cp3; see 

Chapter 3), both of which are apparently due to mediolateral narrowing, and a variable 

tendency toward a narrower proximal angle of the capitate (CpPxA). Force vectors 

transmitted through this portion of the wrist have been hypothesized to be similar during 

knuckle-walking and digitigrady (see Schmitt et al., 2016 and references therein), but 

these groups are distinguished from palmigrade primates in opposite directions by this 

metric. The narrowing of the central column in digitigrade taxa may accord with their 

habitual reliance on a locomotor mode prioritizing parasagittal movement at body sizes 

low enough to not require articular expansion. 

Additional traits may reflect reduced mobility and greater stability in association 

with digitigrady. Mean concavity values of the capitate’s hamate facet (CpHmC; Fig. 

2.4b) are slightly increased in digitigrade lineages, while the lunate’s capitate facet is 

less concave (LuCpC) and significantly closer to parallel with the radius facet in each of 

the digitigrade taxa relative to their closest palmigrade relatives (LuCpRaA; see Fig. 

2.4d, Fig. 2.12). However, despite the latter trait being among the most distinctive 

digitigrade traits, it falls short of significance in the statistical models – the larger body 

size of the digitigrade member of each dyad conspire with similarly low values among 

African apes to cause most of this trait’s variance to be attributed to allometry. The 

extent of the hamate-triquetrum articulation, as characterized by HmPx and TqHm, is 

also somewhat reduced in accord with limited midcarpal mobility, although the 

relationship with both variables is significant only at p < 0.1. 
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Fig. 2.12. Comparison of the angle between the radius and capitate facets of the lunate (LuCpRaA) 
demonstrating its covariance with wrist posture during habitual loading among cercopithecoids. Postural 
diagram modified from Patel, 2009. 

 

Other than LuCpRaA, Tq1LuA is the trait best distinguishing the digitigrade and 

palmigrade samples when allometry is not accounted for, as the long axis of the 

triquetrum is significantly less orthogonal relative to its lunate surface in each of the 

digitigrade taxa relative to other cercopithecines. Ape triquetra, even those of knuckle-

walkers, are oriented distally relative to those of non-hominoids, which are more 

transversely aligned with the lunate and scaphoid. Because of this, the lower Tq1LuA 

values of knuckle-walkers reflect the triquetrum leaning palmarly, whereas similarly low 

values in digitigrade anthropoids correspond to the distal portion of the triquetrum being 
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displaced medially as well as palmarly. This reorients both the pisiform and styloid 

articulations somewhat proximally, with the latter facet also facing slightly more ulnarly.  

This reorientation of the pisiform facet could have analogous utility as discussed 

above for knuckle-walkers, but implications for the styloid articulation are less clear. The 

styloid facet is bounded dorsally by a process extending away from the body of the 

triquetrum, and it is this projection that interrupts the motion of the styloid at maximum 

supination. A process directed more dorsally (i.e., a more proximally-facing styloid facet) 

rather than proximally (i.e., a more palmarly-facing styloid facet) would seem to be less 

effective in limiting supination or maintaining stability at its extent. However, this 

condition may reorient the styloid facet more orthogonally relative to the ulnar axis 

during terrestrial quadrupedalism, in which the wrist is maximally pronated and 

extended, and somewhat ulnarly deviated (Jenkins and Fleagle, 1975). In this posture, 

the styloid process is positioned more palmarly relative to the carpus, and the styloid 

facet of the triquetrum is rotated palmarly to match. This would potentially increase the 

stability of the ulnar column of the wrist, loading of which may be higher in digitigrade 

primates due to ground reaction forces at higher body sizes in addition to the thumb not 

participating in weight support (Whitehead, 1993). 

 

Terrestriality 

Several traits were found to distinguish between vertical manus and palmigrade-

capable taxa. However, in some cases this owes to the signal being sufficiently strong 

in either the digitigrade or knuckle-walking class to overcome a lack of signal, or even 

an opposite one, in the other. As evident in Fig. 2.7, even the metrics in which 
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digitigrade taxa are most distinct share far greater resemblance with palmigrade 

monkeys than with knuckle-walking apes. Arb is the locomotor variable with the 

strongest relationship to body size (Table 2.15b), and allometry therefore plays an 

especially large role in searching for a terrestrial signal in morphology, since accounting 

for allometric effects removes much of the morphological correlation associated with a 

size-correlated behavior. Greater consideration was therefore given to analyses not 

accounting for allometry in evaluating terrestrial traits. Shape variables discussed in this 

section are those distinguishing vertical manus and palmigrade-capable taxa and in 

which the digitigrade and knuckle-walking classes vary in same direction relative to the 

palmigrade or palmigrade-capable samples, while also covarying with Quad and 

oppositely with Arb. Seven traits were found to meet these criteria. Of these, LuTqDsA 

is less significant than one of its constituents, LuDsTqA, and was eliminated, leaving six 

traits potentially corresponding with terrestriality per se, rather than with a specific 

postural class. These are discussed in order of increasing significance. 

The orientation of the capitate’s Mc2 surface (Cp23A) is positively correlated with 

Arb, but a negative covariance with Quad only approaches significance, reaching it 

when African apes are removed due to the resulting decrease in estimated λ value. This 

angle was hypothesized to be acute in all great apes (Selby et al., 2016); it is here 

found to be slightly more acute in African apes than in Pongo, and slightly more acute in 

digitigrade vs palmigrade anthropoids, although the distinction of both groups from the 

palmigrade sample falls short of significance. When combined, it does distinguish 

vertical manus taxon means from those of palmigrade and palmigrade-capable taxa. 

The hypothesized function in both cases is in enhancing CMC stability from transverse 
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force vectors, but there is sufficient noise in the data for this morpho-functional link to be 

considered very tentative. 

The triquetrum facet of the lunate (LuTq) is slightly expanded in African apes 

relative to Asian apes and in digitigrade versus palmigrade cercopithecines. Intra-taxon 

variability is high, however, leading to a great deal of overlap and significance only in 

distinguishing taxon means. Concavity of the capitate’s hamate facet (CpHmC) also 

seems somewhat related to terrestriality, but its significance is again tentative. This trait 

distinguishes digitigrade taxa with borderline significance and average concavity is 

greatest in the Gorilla species and P. paniscus, but values in Pan are similar to those of 

various palmigrade monkeys. Even so, this trait’s covariance with Quad, Arb, and 

vertical manus postures is significant to a degree similar to Cp23A.  

LuDsTqA covaries negatively with Quad and positively with Arb with or without 

hylobatids, distinguishes vertical manus individuals from palmigrade ones, and vertical 

manus taxon means from palmigrade-capable ones. However, while this angle is 

markedly acute in Mandrillus, it is only slightly reduced in Erythrocebus and not at all in 

Papio (Fig. 2.6f), so the association with general terrestriality is again inconsistent. 

Furthermore, the biomechanics of how this trait would facilitate digitigrady is not clear. 

While it is plausibly related to the screw-clamp mechanism in knuckle-walkers, a similar 

mechanism does not exist in cercopithecoids, in which stability of the proximal row is 

instead maintained by short and strong inter-carpal ligaments (Orr, 2010), resulting in 

far less inter-carpal mobility throughout the wrist’s range of flexion and extension and 

obviating the need for a mechanism enhancing midcarpal stability only at full extension. 

The association of this angle with terrestriality could be found in its contribution to a 
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wider, less curved wrist joint, but while greater curvature of both distal and proximal 

midcarpal surfaces were found to be associated with suspension, there is little 

functional pattern in these traits among non-suspensors. 

 As discussed above, LuCpRaA and Tq1LuA distinguish digitigrady and knuckle-

walking from palmigrady, although their significance in distinguishing digitigrady is 

mostly lost to allometry. The mechanism of the latter trait in facilitating terrestriality also 

seems to be at least somewhat distinct between the two postures, as also discussed 

above. Both traits significantly distinguish the taxon means and individual observations 

of vertical manus anthropoids from those of palmigrade ones. The degree to which 

terrestriality per se is reflected in wrist anatomy remains unclear, but these two traits 

seem to have the strongest case of those analyzed here. 

 

Adaptive influence of different positional behaviors 

 Of the variety of anthropoid behaviors, some have greater correspondence to 

wrist morphology than others. As noted above, leaping was found to have very little 

correlation with carpal morphology, whereas suspension, quadrupedalism, and 

arboreality are strongly reflected in carpal shape. The prominence of the former two 

locomotor modes is especially apparent in the PLS analyses (Fig. 2.8), in which much of 

the variation is shown to occur along an axis separating more suspensory taxa from 

more quadrupedal ones. Statistical results ostensibly indicate that climbing also wields a 

significant adaptive influence on the wrist, but fewer shape variables are found to covary 

with ClimbA or Climb (Fig. 2.8d, Table 2.5c, Table 2.9c), and even fewer of these 

statistical relationships are found to be consistent across the sample. Metrics 
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associated with ClimbA may be worthy of further study, but the distinct biomechanics of 

different climbing behaviors may obviate the utility of the phylogenetic method in 

seeking a consistent morphological signal, particularly in the analysis of available 

quantitative behavioral observations. 

Results of this study can also address the degree to which specialization results 

in unique adaptations as opposed to elaboration of traits possessed by taxa performing 

similar behaviors with less frequency. There is a great deal of overlap in the shape 

variables associated with Quad and QuadA in univariate analyses, with the exceptions 

involving traits that distinguish digitigrady or knuckle-walking. When accounting for size, 

the number of traits associated with Quad decreases significantly, but the remaining 

variables are all correlated in the same direction, and usually to a somewhat smaller 

degree, with QuadA. This supports the intuitive notion that highly quadrupedal primates 

possess many of the same traits as moderate quadrupeds, and often in exaggerated 

form, reflecting a degree of similarity in loading regimes regardless of substrate. It is 

also apparent, however, that the different postures used during quadrupedalism also 

result in morphological divergence.  

There is also a high degree of overlap between traits associated with SuspA and 

Susp, as expected given that the two variables differ only among the African apes, with 

all other suspensors being highly arboreal. Differences between total and arboreal 

suspensory proportions in African apes have very little effect on multivariate 

morphological correspondence, and most individual correlations remain largely 

unchanged. Notable exceptions include the size and orientation of the pisiform facet, 

which are correlated with Susp but not SuspA due to the more terrestrial morphology of 
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African apes, as discussed above. Another way to address this question is by assessing 

the presence of nascent suspensory traits in the occasional suspensors of the sample. 

The suspensory predictions for Alouatta, Presbytis, Colobus, and Procolobus (Table 

2.7b) are no higher than the baseline values assigned to non-suspensors, and in 

individual shape metrics these taxa show no discernible pattern of variation in the 

direction of more suspensory primates, suggesting that the occasional suspensory 

behavior of these taxa has not resulted in significant carpal reorganization. This finding 

may imply that occasional suspension does not require substantial adaptation in the 

carpus, potentially rendering this morphology useful only in recognizing committed 

suspensors in the fossil record and not incipient or facultative ones. 

PLS results and RV correlations indicate that total locomotor proportions have a 

weaker relationship with carpal morphology than do arboreal-only locomotor 

proportions. This is counterintuitive, as the total proportions attempt to characterize the 

entirety of each taxon’s locomotor repertoire, whereas arboreal-only proportions provide 

no information about terrestriality, which represents a large majority of the repertoire in 

a quarter of the sampled taxa. Much of this effect is attributable to African apes, as the 

discrepancy is reduced by more than half with them excluded from the analysis. 

Climbing and suspensory behaviors in African apes become increasingly rare in the 

years approaching adulthood (Doran, 1997; Remis, 1998; Sarringhaus et al., 2014), so 

these activities may have an outsized morphological impact relative to the adult 

locomotor proportions analyzed here. The discrepancy is also partially attributable to the 

terrestrial cercopithecines, however, the only other sampled taxa in which arboreal and 

total locomotor proportions differ.  
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The quantitative behavioral variables analyzed here do not account for time 

spent using different postures or substrates in non-locomotor activities. Many of the 

sampled highly terrestrial taxa are known to spend a far greater proportion of their time 

in the canopy than might be suggested by the Arb values assigned here (e.g., E. patas, 

Nakagawa, 1989; P. anubis and P. t. schweinfurthii, Hunt, 1989; P. t. verus, Doran, 

1993), but a greater proportion of this time is spent eating or resting. It may seem 

counterintuitive to expect time spent sitting in trees to be relevant in analyzing locomotor 

morphology, but this proportion may serve as a better proxy for the adaptive benefit of 

being able to access the trees. Given the utility of trees in providing food, protection 

from predators, and other survival essentials, the retention of arboreal adaptations in 

highly terrestrial anthropoids may be somewhat reminiscent of fallback foods (Marshall 

and Wrangham, 2007) in making an outsized contribution to survival relative to 

proportional utilization. Knuckle-walking has been characterized as an adaptive 

compromise that facilitates a terrestrial lifestyle while allowing maintenance of arboreal 

abilities (e.g., Tuttle, 1969; Richmond et al., 2001; Begun and Kivell, 2011); a similarly 

important compromise may be found in other terrestrial primates as well. The need to 

maintain the grasping capability required for feeding, grooming, and other manipulative 

behaviors may also contribute to explaining these results (Vilensky and Larson, 1989), 

perhaps in concert with the relative recency of the behavioral shifts within the sampled 

terrestrial lineages. 

 

 

 

Conclusion 
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Results indicate that when accounting for allometry and phylogeny, carpal 

morphology strongly covaries with positional behavior across the anthropoid clade, 

allowing extant anthropoids to be classified according to positional behavior with high 

accuracy, and for the frequency of different locomotor modes to be accurately 

estimated. Both locomotor behavior and the morphological traits with which it covaries 

most strongly are found to maintain high phylogenetic signal, with locomotion tending to 

vary to a greater extent than morphology within phylogenetic groups, and locomotor and 

morphological diversity are found to be far greater among hominoids than in other 

anthropoids. Wrist morphology is found to have greater correspondence to arboreal-

only locomotor proportions than to total locomotor proportions, suggesting an outsized 

importance of arboreal behaviors on survivorship relative to their frequency of use in 

terrestrial anthropoids. 

This study also identifies several cases of morphological convergence in 

association with each of several positional modes. Potential suspensory adaptations 

function to increase midcarpal and antebrachiocarpal mobility, enhance flexor carpi 

ulnaris leverage and transmit forces generated thereby, and stabilize the capitohamate 

joint against non-stereotypical force vectors.  

Features associated with digitigrady function to stabilize the midcarpal joint 

during loading at maximum extension, contribute to a distal mortise aiding the stability of 

the ulnar carpometacarpal joints, and facilitate load transmission across the ulnocarpal 

joint. Although various confounds complicate interpretation of potential knuckle-walking 

adaptations, several traits common to African apes are found to have statisitical and 

biomechanical relationships with this behavior, largely related to facilitating transmission 
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of compressive axial loading. Several features shared by knuckle-walkers and 

digitigrade cercopithecines are also identified as potentially diagnostic of terrestriality 

more generally. Climbing is found to be reflected differently in the wrists of apes and 

monkeys, consistent with the biomechanical dissimilarity of the behaviors between the 

groups, while leaping is found to have very little influence on wrist morphology. 
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Supplementary material 

Table 2.8. Covariance of shape variables with positional classes relative to the reference class. Results based on univariate phylogenetic 
generalized least squares (PGLS) of taxon means except where noted 

a KW & S vs pronograde monkeys 

    KW  S 

  R2 λ  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.17 0.83  0.68 0.36 0.41 0.81 0.23 0.84  -0.62 0.27 -1.77 0.23 -0.53 0.65 

CpDn 0.01 0.99  -0.48 0.68 0.27 0.87 0.27 0.78  -0.41 0.63 -0.57 0.66 -0.39 0.69 

Cp2 0.18 0.99  -1.61 0.04 -1.38 0.38 -0.74 0.53  -1.02 0.07 -2.32 0.15 -0.53 0.64 

Cp4 0.15 1.00  -1.46 0.05 -2.21 0.18 -2.49 0.07  -0.41 0.45 0.82 0.59 0.77 0.53 

Cp23A 0.11 0.92  -0.48 0.60 -0.86 0.56 -0.86 0.42  0.69 0.33 1.81 0.18 0.72 0.49 

CpPxA 0.67 0.80  0.29 0.49 1.32 0.41 1.12 0.37  -1.70 0.00 -3.74 0.01 -2.52 0.04 

CpScA 0.18 1.00  0.15 0.81 0.45 0.78 1.06 0.37  -0.81 0.09 -2.07 0.14 -1.43 0.23 

Cp3SD 0.06 0.72  0.84 0.34 0.59 0.70 0.11 0.93  -0.07 0.91 -0.22 0.86 0.03 0.99 

CpHmC 0.35 1.00  0.21 0.75 1.09 0.50 0.31 0.81  -1.33 0.01 -3.24 0.03 -1.65 0.20 

CpHP 0.29 0.42  -1.61 0.01 -2.01 0.16 -1.30 0.29  -0.27 0.57 0.43 0.76 0.13 0.92 

HmPx 0.13 0.98  -0.84 0.39 -0.89 0.58 -0.11 0.92  0.59 0.41 1.30 0.36 0.28 0.81 

Hm5 0.41 0.93  -1.27 0.02 -2.13 0.14 -1.29 0.30  -1.60 0.00 -2.78 0.06 -0.73 0.55 

Hm45A 0.22 0.00  0.43 0.32 -0.65 0.63 -0.41 0.71  1.13 0.01 1.57 0.24 0.61 0.58 

HmPxA 0.10 0.93  0.57 0.51 -0.06 0.96 0.01 0.98  -0.54 0.41 -1.49 0.29 -0.55 0.63 

CpHmPxA 0.50 0.98  0.48 0.35 1.36 0.43 2.36 0.08  -1.26 0.00 -3.70 0.02 -3.39 0.01 

CMC34A 0.20 0.47  1.40 0.02 0.99 0.53 0.65 0.57  0.35 0.48 -0.04 0.99 -0.01 1.00 

LuDs 0.33 0.75  1.65 0.01 2.11 0.16 2.10 0.09  0.06 0.89 -0.76 0.62 -0.89 0.44 

LuTq 0.63 0.00  0.31 0.30 1.30 0.41 0.57 0.59  -1.68 0.00 -3.46 0.04 -0.90 0.39 

LuSc 0.19 0.98  -1.40 0.03 -1.68 0.28 -1.18 0.33  -0.35 0.45 0.34 0.83 0.04 0.98 

LuRa 0.14 0.98  0.64 0.46 1.57 0.31 0.42 0.71  -0.70 0.28 -1.95 0.18 -0.46 0.67 

LuDsTqA 0.80 0.00  -0.79 0.00 -1.84 0.22 -3.50 0.02  1.63 0.00 3.03 0.05 3.38 0.01 

LuDsScA 0.21 0.83  0.31 0.65 0.93 0.54 0.49 0.66  -0.94 0.09 -2.70 0.08 -0.72 0.53 

LuScRaA 0.19 0.81  -0.17 0.81 0.44 0.80 0.44 0.69  -1.11 0.05 -2.63 0.09 -0.91 0.42 

LuCpRaA 0.69 0.00  -1.93 0.00 -2.59 0.10 -3.12 0.02  -1.13 0.00 -0.68 0.64 0.80 0.53 

LuCpC 0.65 0.00  0.79 0.01 -0.03 0.99 -0.30 0.77  1.93 0.00 3.20 0.03 0.87 0.41 

TqHm 0.11 0.87  0.43 0.47 0.55 0.70 0.02 0.98  0.78 0.09 2.10 0.15 0.99 0.43 

TqLu 0.08 0.97  0.77 0.24 1.08 0.48 0.26 0.86  0.00 0.99 0.18 0.91 0.36 0.77 

TqPi 0.45 0.69  0.91 0.10 1.96 0.22 1.11 0.34  -1.02 0.03 -2.99 0.06 -1.17 0.31 
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TqSt 0.31 1.00  -1.01 0.01 -1.40 0.36 -1.15 0.44  -0.76 0.01 -1.96 0.19 -0.81 0.58 

TqHmPiA 0.44 0.61  0.93 0.07 0.00 0.99 -0.95 0.48  1.78 0.00 3.48 0.02 2.14 0.10 

Tq1LuA 0.75 0.00  -1.20 0.00 -1.89 0.22 -2.55 0.05  1.21 0.00 2.91 0.04 2.23 0.06 

LuTqDsA 0.40 0.81  0.52 0.37 0.93 0.60 0.85 0.49  -1.18 0.01 -3.25 0.04 -1.74 0.16 

MCJAR 0.32 0.81   -0.20 0.75 -1.33 0.44 -0.95 0.46   1.23 0.02 3.25 0.04 1.62 0.19 

Without hylobatids 

    KW  S 

  R2 λ  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.03 0.57  0.46 0.56 0.52 0.69 0.47 0.67  -0.19 0.79 -0.56 0.69 -0.13 0.91 

CpDn 0.06 0.98  -0.30 0.76 0.79 0.60 0.22 0.83  -0.88 0.26 -2.10 0.14 -0.54 0.59 

Cp2 0.18 0.99  -1.54 0.05 -1.60 0.32 -0.75 0.52  -0.97 0.11 -1.73 0.25 -0.46 0.69 

Cp4 0.28 1.00  -1.38 0.01 -2.58 0.13 -2.56 0.05  -0.88 0.04 -0.02 0.98 0.56 0.65 

Cp23A 0.03 0.95  -0.48 0.69 -0.94 0.50 -0.92 0.38  0.40 0.67 1.06 0.44 0.49 0.63 

CpPxA 0.71 0.00  0.42 0.12 1.28 0.37 0.93 0.40  -2.29 0.00 -2.85 0.03 -1.85 0.10 

CpScA 0.07 1.00  0.02 0.98 0.43 0.76 1.06 0.39  -0.63 0.31 -1.34 0.33 -1.17 0.33 

Cp3SD 0.04 0.92  0.89 0.39 0.84 0.57 0.26 0.81  0.42 0.61 0.03 0.98 0.22 0.84 

CpHmC 0.30 0.95  0.07 0.93 1.21 0.43 0.38 0.74  -1.54 0.02 -2.32 0.09 -1.07 0.35 

CpHP 0.30 0.51  -1.62 0.01 -2.52 0.08 -1.40 0.22  -0.78 0.15 -0.56 0.68 -0.02 0.99 

HmPx 0.08 0.96  -0.83 0.37 -0.99 0.51 -0.27 0.81  0.27 0.70 0.69 0.63 0.09 0.95 

Hm5 0.83 0.00  -1.91 0.00 -2.65 0.05 -1.07 0.36  -1.51 0.00 -1.84 0.19 -0.46 0.69 

Hm45A 0.46 0.00  0.42 0.25 -0.77 0.60 -0.46 0.68  2.07 0.00 2.28 0.10 0.78 0.48 

HmPxA 0.13 0.00  -0.71 0.13 0.03 0.99 0.18 0.86  -0.70 0.27 -0.27 0.83 -0.17 0.88 

CpHmPxA 0.51 0.92  0.63 0.38 0.83 0.57 1.65 0.17  -1.94 0.00 -2.86 0.04 -2.35 0.04 

CMC34A 0.24 0.44  1.36 0.02 1.27 0.40 0.66 0.57  0.68 0.21 0.48 0.73 -0.01 1.00 

LuDs 0.81 0.00  1.94 0.00 2.79 0.07 2.18 0.07  -0.04 0.89 -1.56 0.31 -1.22 0.29 

LuTq 0.36 0.00  0.43 0.28 1.39 0.35 0.67 0.53  -1.53 0.01 -2.57 0.07 -0.69 0.51 

LuSc 0.27 0.94  -1.30 0.01 -2.34 0.13 -1.29 0.29  -0.82 0.05 -1.05 0.49 -0.23 0.84 

LuRa 0.06 0.96  0.60 0.52 1.98 0.20 0.56 0.61  -0.33 0.65 -1.09 0.45 -0.22 0.84 

LuDsTqA 0.54 0.90  -1.53 0.02 -2.04 0.18 -3.46 0.01  1.20 0.03 2.17 0.11 2.77 0.03 

LuDsScA 0.08 0.46  0.15 0.83 0.92 0.48 0.55 0.61  -0.74 0.30 -1.61 0.26 -0.41 0.70 

LuScRaA 0.10 0.63  -0.52 0.51 0.31 0.86 0.46 0.67  -1.05 0.15 -1.89 0.19 -0.65 0.53 

LuCpRaA 0.75 0.00  -1.93 0.00 -3.32 0.03 -3.64 0.01  -0.53 0.12 0.75 0.63 1.19 0.35 

LuCpC 0.56 0.00  1.03 0.00 0.09 0.89 -0.34 0.76  2.07 0.00 2.55 0.08 0.68 0.51 

TqHm 0.10 0.78  0.78 0.20 0.76 0.59 -0.01 0.99  0.65 0.21 1.21 0.41 0.80 0.52 

TqLu 0.06 0.97  0.64 0.27 1.32 0.38 0.37 0.78  0.22 0.62 0.32 0.83 0.50 0.70 
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TqPi 0.62 0.00  1.54 0.00 2.17 0.14 1.11 0.30  -0.59 0.17 -1.97 0.22 -0.64 0.56 

TqSt 0.32 1.00  -1.10 0.01 -2.02 0.21 -1.46 0.33  -0.62 0.04 -0.81 0.58 -0.44 0.76 

TqHmPiA 0.53 0.64  0.90 0.07 0.04 0.96 -0.82 0.54  2.07 0.00 3.09 0.03 2.18 0.08 

Tq1LuA 0.74 0.00  -1.24 0.00 -1.97 0.19 -2.58 0.05  1.53 0.00 2.42 0.10 2.28 0.07 

LuTqDsA 0.29 0.49  0.34 0.58 0.73 0.63 0.88 0.44  -1.37 0.03 -2.20 0.12 -1.20 0.30 

MCJAR 0.35 0.76   -0.14 0.85 -0.74 0.60 -0.58 0.57   1.80 0.01 2.54 0.07 0.90 0.37 

b DG & KW vs palmigrade-capable 

    DG  KW 

  R2 λ  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.14 0.86  0.20 0.62 1.91 0.15 0.84 0.41  1.18 0.06 0.44 0.70 0.00 0.99 

CpDn 0.01 0.99  0.27 0.56 1.94 0.10 0.92 0.30  -0.14 0.88 -0.52 0.75 -1.24 0.20 

Cp2 0.16 0.99  0.51 0.10 2.49 0.06 1.67 0.18  -0.76 0.21 -1.50 0.31 -1.85 0.16 

Cp4 0.14 1.00  -0.14 0.62 0.17 0.91 1.06 0.41  -1.13 0.07 -2.56 0.10 -3.16 0.03 

Cp23A 0.18 0.93  -0.77 0.07 -2.03 0.08 -0.69 0.54  -1.05 0.15 -0.85 0.51 -0.59 0.61 

CpPxA 0.25 0.96  -0.16 0.60 0.39 0.73 0.00 0.99  1.58 0.01 2.07 0.15 0.55 0.65 

CpScA 0.15 1.00  -0.35 0.18 -0.67 0.62 -0.45 0.71  0.80 0.14 0.78 0.59 0.47 0.71 

Cp3SD 0.06 0.78  -0.19 0.73 0.49 0.67 0.19 0.86  0.89 0.23 0.52 0.71 0.05 0.96 

CpHmC 0.18 1.00  0.26 0.38 2.34 0.09 1.86 0.15  1.30 0.04 1.07 0.45 -0.12 0.94 

CpHP 0.50 0.00  0.74 0.12 1.28 0.27 0.79 0.44  -1.41 0.00 -2.32 0.08 -1.90 0.09 

HmPx 0.16 0.98  -0.48 0.23 -2.17 0.10 -1.26 0.27  -1.34 0.09 -1.14 0.40 0.13 0.90 

Hm5 0.07 0.99  0.39 0.19 2.22 0.11 1.39 0.21  0.03 0.96 -1.22 0.38 -2.01 0.10 

Hm45A 0.11 0.61  -0.80 0.17 -2.30 0.05 -0.97 0.32  -0.71 0.28 -0.90 0.37 0.49 0.63 

HmPxA 0.10 0.96  0.36 0.36 1.71 0.18 1.30 0.27  1.04 0.16 0.22 0.86 -0.38 0.75 

CpHmPxA 0.26 0.99  0.05 0.83 1.15 0.42 1.00 0.41  1.50 0.01 1.53 0.34 -0.15 0.90 

CMC34A 0.31 0.46  -0.93 0.04 -2.55 0.05 -2.16 0.07  1.11 0.02 1.26 0.37 2.30 0.07 

LuDs 0.52 0.56  -0.79 0.02 -2.20 0.08 -1.44 0.19  1.56 0.00 2.59 0.04 2.35 0.05 

LuTq 0.26 0.72  0.70 0.12 2.13 0.08 0.50 0.61  1.40 0.02 1.76 0.15 0.66 0.50 

LuSc 0.17 0.98  0.03 0.92 1.12 0.47 1.15 0.36  -1.12 0.03 -2.55 0.07 -2.82 0.04 

LuRa 0.10 0.99  0.00 1.00 0.79 0.49 0.00 0.99  1.20 0.11 1.87 0.20 1.20 0.27 

LuDsTqA 0.38 0.98  -0.33 0.25 -1.61 0.15 0.05 0.98  -2.02 0.00 -2.91 0.02 -2.62 0.05 

LuDsScA 0.15 0.87  0.46 0.24 2.02 0.10 0.50 0.59  1.06 0.09 1.08 0.39 0.50 0.60 

LuScRaA 0.04 0.90  -0.01 0.98 0.42 0.74 0.31 0.76  0.71 0.30 -0.14 0.94 -0.50 0.63 

LuCpRaA 0.51 0.98  -1.25 0.00 -1.14 0.37 -0.21 0.87  -1.14 0.04 -2.92 0.03 -2.95 0.02 

LuCpC 0.11 0.78  -0.56 0.21 -2.70 0.05 -1.38 0.20  -0.75 0.22 -0.38 0.74 1.15 0.31 
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TqHm 0.04 0.93  -0.29 0.34 -2.34 0.11 -2.13 0.09  -0.21 0.69 0.78 0.61 2.19 0.08 

TqLu 0.08 0.97  0.05 0.86 -0.77 0.61 -1.43 0.24  0.77 0.15 2.31 0.12 2.39 0.06 

TqPi 0.27 0.85  -0.19 0.61 -0.05 0.98 -0.39 0.71  1.64 0.01 2.68 0.07 1.41 0.20 

TqSt 0.12 1.00  0.20 0.19 1.74 0.25 2.79 0.07  -0.39 0.22 -2.00 0.18 -3.43 0.03 

TqHmPiA 0.05 0.91  0.26 0.54 -0.80 0.53 -0.71 0.55  -0.63 0.36 -0.36 0.73 1.07 0.37 

Tq1LuA 0.62 0.62  -1.03 0.01 -2.58 0.01 -0.84 0.47  -2.22 0.00 -3.03 0.00 -1.66 0.17 

LuTqDsA 0.26 0.90  0.42 0.23 2.49 0.07 1.63 0.16  1.49 0.01 1.09 0.39 0.02 0.99 

MCJAR 0.12 0.92   0.14 0.71 -0.11 0.93 -0.09 0.95   -1.13 0.09 -1.63 0.33 -0.39 0.77 

Without hylobatids 

    DG  KW 

  R2 λ  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.06 0.51  0.48 0.41 1.65 0.18 0.61 0.56  0.56 0.39 0.37 0.72 -0.08 0.94 

CpDn 0.03 0.98  0.32 0.46 2.19 0.08 1.02 0.28  0.31 0.72 -0.24 0.91 -1.09 0.27 

Cp2 0.17 0.99  0.48 0.13 2.49 0.09 1.69 0.18  -0.85 0.20 -1.66 0.27 -1.85 0.16 

Cp4 0.12 1.00  -0.14 0.54 0.52 0.71 1.36 0.31  -0.79 0.12 -2.66 0.09 -3.07 0.04 

Cp23A 0.18 0.93  -0.94 0.06 -1.91 0.09 -0.59 0.61  -0.79 0.38 -0.84 0.48 -0.55 0.65 

CpPxA 0.21 0.86  -0.33 0.50 -0.10 0.97 -0.15 0.87  1.75 0.04 1.96 0.12 0.37 0.72 

CpScA 0.13 1.00  -0.48 0.12 -1.56 0.27 -0.73 0.51  0.43 0.52 0.51 0.70 0.20 0.87 

Cp3SD 0.06 0.96  -0.41 0.38 0.21 0.83 0.13 0.90  0.60 0.52 0.45 0.77 0.00 0.99 

CpHmC 0.13 0.98  0.42 0.29 2.47 0.03 1.45 0.23  1.15 0.16 1.31 0.30 -0.03 0.96 

CpHP 0.56 0.00  0.91 0.05 1.63 0.19 0.90 0.39  -1.31 0.00 -2.20 0.10 -1.76 0.12 

HmPx 0.18 0.93  -0.59 0.13 -2.11 0.12 -1.05 0.35  -1.04 0.16 -1.22 0.38 0.15 0.89 

Hm5 0.14 0.96  0.46 0.17 2.10 0.13 1.17 0.26  -0.72 0.27 -1.95 0.17 -1.97 0.10 

Hm45A 0.17 0.76  -0.78 0.15 -2.52 0.04 -1.01 0.32  -1.10 0.15 -1.02 0.35 0.42 0.70 

HmPxA 0.12 0.00  0.64 0.31 1.44 0.22 0.89 0.41  -0.47 0.31 0.15 0.89 -0.36 0.73 

CpHmPxA 0.22 0.97  0.06 0.88 0.88 0.44 0.50 0.63  1.98 0.02 1.55 0.20 -0.18 0.87 

CMC34A 0.28 0.69  -0.87 0.04 -2.69 0.04 -2.23 0.08  0.89 0.10 1.27 0.36 2.18 0.08 

LuDs 0.89 0.00  -0.82 0.00 -2.26 0.09 -1.47 0.19  1.80 0.00 2.94 0.04 2.28 0.06 

LuTq 0.25 0.20  1.08 0.06 2.16 0.05 0.36 0.70  1.01 0.05 1.90 0.09 0.58 0.54 

LuSc 0.10 0.97  0.05 0.85 1.48 0.34 1.30 0.29  -0.74 0.14 -2.39 0.10 -2.53 0.05 

LuRa 0.05 0.96  0.02 0.96 0.51 0.66 -0.20 0.83  0.83 0.31 1.89 0.19 1.02 0.33 

LuDsTqA 0.44 0.96  -0.44 0.17 -1.54 0.15 0.06 0.97  -2.36 0.00 -3.02 0.01 -2.36 0.07 

LuDsScA 0.18 0.33  1.10 0.06 1.85 0.07 0.29 0.74  0.57 0.31 1.21 0.24 0.37 0.71 

LuScRaA 0.01 0.77  -0.15 0.78 -0.05 0.96 0.19 0.84  0.16 0.84 -0.38 0.76 -0.49 0.60 

LuCpRaA 0.69 0.95  -1.25 0.00 -1.88 0.15 -0.20 0.88  -1.59 0.00 -3.63 0.01 -2.95 0.03 
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LuCpC 0.11 0.66  -0.73 0.15 -2.70 0.04 -1.20 0.25  -0.36 0.58 -0.32 0.76 1.04 0.34 

TqHm 0.06 0.87  -0.34 0.33 -2.34 0.13 -1.75 0.16  0.28 0.62 1.19 0.40 2.10 0.10 

TqLu 0.05 0.97  0.04 0.88 -0.99 0.52 -1.58 0.20  0.50 0.33 2.18 0.18 2.16 0.08 

TqPi 0.59 0.00  -0.27 0.53 -1.02 0.50 -0.55 0.58  1.59 0.00 2.61 0.05 0.99 0.31 

TqSt 0.22 1.00  0.20 0.20 1.76 0.27 2.81 0.07  -0.67 0.05 -2.32 0.14 -3.63 0.02 

TqHmPiA 0.05 0.90  0.27 0.52 -0.52 0.69 -0.67 0.58  -0.54 0.46 -0.11 0.90 0.99 0.42 

Tq1LuA 0.60 0.68  -1.04 0.01 -2.55 0.02 -0.76 0.51  -2.29 0.00 -3.06 0.01 -1.65 0.17 

LuTqDsA 0.22 0.69  0.74 0.15 2.71 0.03 1.21 0.26  1.30 0.06 1.29 0.23 0.03 0.99 

MCJAR 0.15 0.88   0.53 0.29 1.00 0.41 0.15 0.85   -1.28 0.14 -1.22 0.28 -0.19 0.88 

c S & vertical manus vs PG 

    S  VM 
 R2 λ  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.18 0.81  -0.80 0.11 -2.32 0.06 -0.72 0.47  0.30 0.41 0.81 0.51 0.65 0.51 

CpDn 0.01 0.99  -0.12 0.87 -0.13 0.91 -0.29 0.73  0.17 0.70 1.27 0.24 0.59 0.49 

Cp2 0.04 0.99  -0.22 0.67 -2.32 0.07 -0.53 0.62  0.23 0.46 0.54 0.67 0.47 0.66 

Cp4 0.06 1.00  0.08 0.87 0.94 0.47 0.24 0.84  -0.31 0.27 -1.15 0.39 -0.98 0.40 

Cp23A 0.22 0.90  0.56 0.31 1.15 0.29 0.34 0.72  -0.72 0.06 -2.21 0.07 -1.47 0.14 

CpPxA 0.66 0.82  -1.89 0.00 -4.16 0.00 -2.99 0.01  -0.12 0.56 0.57 0.68 0.62 0.58 

CpScA 0.24 1.00  -1.02 0.01 -2.42 0.02 -1.25 0.26  -0.31 0.18 -0.42 0.70 0.10 0.93 

Cp3SD 0.03 0.71  -0.41 0.51 -0.67 0.52 -0.35 0.74  0.13 0.79 0.73 0.53 0.26 0.80 

CpHmC 0.38 1.00  -1.31 0.00 -3.43 0.01 -1.72 0.16  0.23 0.34 2.27 0.11 1.03 0.39 

CpHP 0.02 0.86  0.19 0.76 0.06 0.93 -0.06 0.96  -0.22 0.62 -0.15 0.92 -0.12 0.91 

HmPx 0.17 0.98  0.71 0.22 1.45 0.25 0.35 0.74  -0.52 0.16 -2.02 0.13 -0.93 0.37 

Hm5 0.24 0.98  -0.97 0.02 -2.76 0.01 -0.89 0.35  0.13 0.59 -0.36 0.72 0.13 0.89 

Hm45A 0.16 0.50  0.74 0.19 1.15 0.30 0.41 0.69  -0.44 0.36 -1.77 0.14 -0.88 0.39 

HmPxA 0.13 0.93  -0.61 0.27 -1.87 0.08 -0.47 0.67  0.39 0.29 0.63 0.61 0.65 0.54 

CpHmPxA 0.48 0.98  -1.42 0.00 -4.22 0.00 -3.48 0.01  0.08 0.68 1.30 0.40 1.73 0.15 

CMC34A 0.07 0.90  -0.64 0.29 -0.06 0.96 -0.13 0.91  -0.48 0.26 -1.45 0.20 -0.61 0.56 

LuDs 0.13 0.94  -0.96 0.06 -0.43 0.71 -0.52 0.59  -0.31 0.36 -0.38 0.74 -0.07 0.96 

LuTq 0.67 0.00  -1.53 0.00 -3.73 0.01 -0.72 0.41  0.53 0.05 2.02 0.14 1.09 0.23 

LuSc 0.03 0.98  0.18 0.67 -0.10 0.94 -0.17 0.87  -0.17 0.52 -0.63 0.65 -0.12 0.93 

LuRa 0.13 0.98  -0.94 0.09 -1.99 0.09 -0.42 0.68  0.07 0.83 1.53 0.20 0.73 0.46 

LuDsTqA 0.46 0.97  1.35 0.00 3.44 0.02 3.53 0.01  -0.43 0.09 -2.12 0.13 -3.04 0.02 

LuDsScA 0.27 0.80  -0.88 0.06 -2.97 0.03 -0.80 0.36  0.44 0.20 1.98 0.10 0.79 0.36 
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LuScRaA 0.19 0.80  -1.11 0.03 -3.09 0.01 -0.87 0.36  -0.13 0.71 -0.61 0.54 0.50 0.60 

LuCpRaA 0.60 0.96  -0.86 0.02 -2.41 0.03 -0.87 0.46  -1.39 0.00 -2.86 0.02 -2.46 0.04 

LuCpC 0.37 0.46  1.26 0.00 3.31 0.01 0.92 0.35  -0.15 0.66 -1.34 0.27 -1.00 0.31 

TqHm 0.09 0.91  0.46 0.26 2.29 0.06 0.87 0.43  -0.17 0.55 -0.66 0.58 -0.77 0.48 

TqLu 0.04 0.97  -0.26 0.53 0.51 0.67 0.52 0.66  0.15 0.57 0.28 0.80 0.02 0.99 

TqPi 0.35 0.77  -1.38 0.00 -3.45 0.01 -1.34 0.20  0.04 0.89 1.03 0.49 0.49 0.64 

TqSt 0.07 1.00  -0.30 0.23 -2.40 0.05 -1.40 0.31  0.04 0.78 -0.08 0.92 0.56 0.68 

TqHmPiA 0.41 0.69  1.62 0.00 4.24 0.00 2.12 0.07  0.50 0.12 0.08 0.93 -1.02 0.39 

Tq1LuA 0.81 0.00  1.01 0.00 2.79 0.05 2.17 0.07  -1.26 0.00 -3.18 0.02 -2.99 0.01 

LuTqDsA 0.45 0.79  -1.21 0.00 -3.54 0.01 -1.87 0.11  0.43 0.14 1.79 0.20 1.38 0.23 

MCJAR 0.32 0.80   1.38 0.00 3.67 0.00 1.57 0.19   0.11 0.73 -0.66 0.68 -0.44 0.72 

Without hylobatids 

    S  VM 

 R2 λ  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.07 0.49  -0.19 0.77 -0.74 0.49 -0.69 0.47  0.47 0.33 0.92 0.38 0.69 0.48 

CpDn 0.08 0.97  -0.66 0.33 -1.70 0.15 -0.30 0.71  0.22 0.56 1.61 0.12 0.60 0.47 

Cp2 0.04 0.99  -0.25 0.66 -1.64 0.19 -0.46 0.67  0.22 0.48 0.46 0.71 0.55 0.62 

Cp4 0.12 1.00  -0.46 0.25 -0.09 0.95 0.20 0.87  -0.30 0.16 -1.04 0.45 -1.03 0.37 

Cp23A 0.18 0.93  0.21 0.78 -0.08 0.91 0.36 0.71  -0.87 0.06 -2.23 0.02 -1.46 0.15 

CpPxA 0.67 0.32  -2.54 0.00 -3.19 0.00 -2.95 0.01  -0.17 0.58 0.08 0.97 0.62 0.59 

CpScA 0.17 1.00  -0.83 0.11 -1.12 0.33 -1.23 0.26  -0.44 0.12 -0.59 0.60 0.11 0.93 

Cp3SD 0.01 0.96  -0.04 0.96 -0.37 0.72 -0.35 0.73  -0.23 0.62 0.75 0.46 0.25 0.82 

CpHmC 0.34 0.94  -1.40 0.01 -2.14 0.05 -1.67 0.18  0.36 0.26 2.43 0.06 1.07 0.39 

CpHP 0.01 0.88  -0.24 0.71 -0.52 0.59 -0.12 0.91  -0.19 0.63 -0.25 0.76 -0.19 0.86 

HmPx 0.18 0.94  0.32 0.59 0.61 0.59 0.31 0.77  -0.64 0.08 -2.05 0.08 -0.95 0.37 

Hm5 0.12 0.97  -0.81 0.14 -1.58 0.15 -0.84 0.39  0.12 0.71 -0.41 0.70 0.19 0.86 

Hm45A 0.43 0.00  1.91 0.00 2.07 0.08 0.40 0.70  -0.05 0.89 -1.67 0.13 -0.89 0.39 

HmPxA 0.03 0.56  -0.08 0.92 -0.09 0.93 -0.46 0.67  0.37 0.49 0.78 0.44 0.66 0.55 

CpHmPxA 0.50 0.92  -2.16 0.00 -3.10 0.01 -3.49 0.01  0.11 0.73 0.61 0.63 1.74 0.17 

CMC34A 0.07 0.90  -0.42 0.50 0.44 0.69 -0.22 0.84  -0.48 0.22 -1.02 0.33 -0.69 0.51 

LuDs 0.24 0.93  -1.20 0.02 -1.41 0.19 -0.43 0.66  -0.27 0.36 -0.11 0.93 0.01 0.98 

LuTq 0.44 0.00  -1.32 0.02 -2.49 0.04 -0.71 0.43  0.74 0.04 2.06 0.08 1.09 0.23 

LuSc 0.04 0.97  -0.34 0.41 -1.52 0.25 -0.19 0.87  -0.15 0.52 -1.04 0.39 -0.14 0.90 

LuRa 0.04 0.96  -0.54 0.41 -0.83 0.46 -0.47 0.63  0.09 0.82 1.47 0.16 0.69 0.48 

LuDsTqA 0.49 0.94  1.55 0.00 2.17 0.07 2.91 0.02  -0.60 0.05 -2.15 0.10 -2.68 0.02 
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LuDsScA 0.18 0.39  -0.47 0.45 -1.56 0.19 -0.81 0.36  0.70 0.14 1.79 0.06 0.77 0.38 

LuScRaA 0.31 0.00  -1.41 0.02 -1.90 0.09 -0.86 0.36  -0.95 0.02 -0.72 0.45 0.50 0.60 

LuCpRaA 0.72 0.95  -0.57 0.09 -0.29 0.83 -0.90 0.43  -1.41 0.00 -3.95 0.00 -2.48 0.04 

LuCpC 0.26 0.57  1.20 0.04 2.35 0.06 0.89 0.34  -0.25 0.52 -1.13 0.29 -1.03 0.28 

TqHm 0.02 0.88  0.18 0.73 1.09 0.39 0.89 0.43  -0.15 0.63 -0.69 0.57 -0.74 0.51 

TqLu 0.01 0.97  0.01 0.98 0.33 0.79 0.49 0.67  0.12 0.60 0.46 0.72 -0.01 0.99 

TqPi 0.23 0.36  -1.08 0.08 -2.28 0.10 -1.33 0.23  0.37 0.39 0.80 0.48 0.50 0.64 

TqSt 0.02 1.00  -0.16 0.59 -1.08 0.43 -1.41 0.30  0.03 0.84 -0.25 0.85 0.54 0.69 

TqHmPiA 0.51 0.70  1.90 0.00 3.58 0.01 2.11 0.06  0.49 0.10 0.14 0.94 -1.06 0.36 

Tq1LuA 0.82 0.00  1.32 0.00 2.14 0.10 2.12 0.08  -1.30 0.00 -3.17 0.01 -3.01 0.01 

LuTqDsA 0.37 0.47  -1.21 0.03 -2.13 0.07 -1.75 0.13  0.63 0.12 1.54 0.19 1.48 0.20 

MCJAR 0.40 0.73   2.10 0.00 2.79 0.01 1.61 0.17   0.48 0.23 0.35 0.74 -0.40 0.74 

d Vertical manus vs palmigrade-capable  

    VM 

  R2 λ  b p ORa pa ORb pb 

CpPx 0.07 0.86  0.49 0.16 1.54 0.22 0.62 0.57 

CpDn 0.01 0.99  0.19 0.65 1.13 0.26 0.21 0.81 

Cp2 0.03 0.99  0.27 0.36 1.03 0.39 0.31 0.80 

Cp4 0.06 1.00  -0.33 0.23 -1.15 0.45 -0.85 0.56 

Cp23A 0.18 0.93  -0.84 0.02 -2.32 0.04 -1.05 0.40 

CpPxA 0.02 0.98  0.19 0.53 1.70 0.20 0.34 0.78 

CpScA 0.01 1.00  -0.13 0.58 0.19 0.86 -0.22 0.88 

Cp3SD 0.01 0.71  0.26 0.56 0.70 0.53 0.09 0.94 

CpHmC 0.10 1.00  0.45 0.11 2.55 0.07 1.33 0.37 

CpHP 0.02 0.88  -0.26 0.52 -0.33 0.80 -0.29 0.80 

HmPx 0.12 0.98  -0.65 0.07 -2.29 0.10 -0.93 0.47 

Hm5 0.06 0.99  0.32 0.23 0.72 0.60 0.16 0.89 

Hm45A 0.11 0.62  -0.77 0.09 -2.00 0.04 -0.44 0.66 

HmPxA 0.08 0.96  0.51 0.15 1.36 0.28 0.78 0.56 

CpHmPxA 0.06 1.00  0.33 0.20 2.06 0.14 0.75 0.58 

CMC34A 0.03 0.90  -0.33 0.41 -1.08 0.33 -0.32 0.78 

LuDs 0.00 0.95  -0.11 0.73 0.24 0.84 0.07 0.95 

LuTq 0.23 0.71  0.97 0.01 2.58 0.04 0.76 0.43 

LuSc 0.03 0.98  -0.20 0.42 -0.83 0.60 -0.57 0.67 

LuRa 0.02 0.99  0.23 0.49 1.59 0.19 0.70 0.52 
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LuDsTqA 0.17 0.99  -0.66 0.03 -3.05 0.01 -1.57 0.27 

LuDsScA 0.13 0.87  0.64 0.06 2.30 0.05 0.56 0.56 

LuScRaA 0.01 0.91  0.18 0.61 0.14 0.91 0.24 0.81 

LuCpRaA 0.51 0.98  -1.23 0.00 -2.44 0.07 -1.95 0.15 

LuCpC 0.11 0.77  -0.63 0.09 -2.12 0.07 -0.53 0.63 

TqHm 0.04 0.93  -0.27 0.30 -1.24 0.33 -0.29 0.82 

TqLu 0.02 0.97  0.20 0.43 0.68 0.65 0.54 0.66 

TqPi 0.03 0.90  0.28 0.42 1.65 0.23 0.38 0.75 

TqSt 0.02 1.00  0.09 0.52 0.29 0.81 -0.05 0.98 

TqHmPiA 0.00 0.90  0.02 0.95 -1.30 0.28 0.00 0.98 

Tq1LuA 0.65 0.00  -1.65 0.00 -3.60 0.00 -1.93 0.14 

LuTqDsA 0.17 0.90  0.71 0.03 2.49 0.07 1.27 0.33 

MCJAR 0.01 0.95   -0.14 0.67 -1.22 0.39 -0.31 0.84 

Without hylobatids 

    VM 

 R2 λ  b p ORa pa ORb pb 

CpPx 0.06 0.50  0.52 0.24 1.14 0.31 0.37 0.73 

CpDn 0.03 0.98  0.31 0.40 1.45 0.19 0.29 0.75 

Cp2 0.03 0.99  0.25 0.40 0.89 0.50 0.32 0.82 

Cp4 0.06 1.00  -0.24 0.25 -0.92 0.55 -0.60 0.68 

Cp23A 0.18 0.93  -0.91 0.04 -2.15 0.04 -0.93 0.47 

CpPxA 0.00 0.92  0.15 0.75 1.26 0.23 0.08 0.94 

CpScA 0.06 1.00  -0.33 0.24 -0.48 0.76 -0.47 0.70 

Cp3SD 0.01 0.96  -0.22 0.60 0.43 0.70 0.01 1.00 

CpHmC 0.10 0.97  0.56 0.12 2.69 0.04 0.99 0.45 

CpHP 0.01 0.88  -0.15 0.69 -0.13 0.93 -0.10 0.94 

HmPx 0.17 0.93  -0.69 0.05 -2.26 0.10 -0.74 0.55 

Hm5 0.03 0.98  0.25 0.42 0.29 0.82 0.00 0.99 

Hm45A 0.16 0.73  -0.88 0.05 -2.18 0.04 -0.48 0.63 

HmPxA 0.03 0.59  0.41 0.40 0.94 0.41 0.42 0.72 

CpHmPxA 0.05 0.98  0.42 0.30 1.74 0.08 0.33 0.79 

CMC34A 0.05 0.89  -0.40 0.28 -1.14 0.34 -0.42 0.72 

LuDs 0.00 0.95  -0.09 0.77 0.40 0.76 0.02 0.98 

LuTq 0.25 0.21  1.04 0.01 2.52 0.04 0.62 0.52 

LuSc 0.01 0.97  -0.10 0.66 -0.59 0.72 -0.31 0.83 
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LuRa 0.01 0.96  0.17 0.64 1.37 0.26 0.47 0.67 

LuDsTqA 0.22 0.97  -0.80 0.02 -2.85 0.01 -1.27 0.33 

LuDsScA 0.15 0.46  0.81 0.06 2.00 0.07 0.31 0.73 

LuScRaA 0.00 0.77  -0.06 0.90 -0.26 0.83 0.06 0.93 

LuCpRaA 0.68 0.96  -1.32 0.00 -3.49 0.02 -2.28 0.11 

LuCpC 0.10 0.70  -0.61 0.14 -1.87 0.09 -0.40 0.71 

TqHm 0.02 0.89  -0.19 0.53 -0.97 0.45 -0.20 0.87 

TqLu 0.01 0.97  0.12 0.58 0.54 0.73 0.36 0.78 

TqPi 0.27 0.00  1.03 0.01 1.33 0.27 0.12 0.92 

TqSt 0.01 1.00  0.05 0.73 -0.11 0.95 -0.24 0.91 

TqHmPiA 0.00 0.89  0.07 0.84 -1.09 0.38 0.08 0.95 

Tq1LuA 0.64 0.00  -1.58 0.00 -3.58 0.00 -1.69 0.18 

LuTqDsA 0.21 0.63  0.94 0.03 2.34 0.05 0.95 0.42 

MCJAR 0.00 0.91   0.10 0.83 -0.53 0.61 -0.07 0.99 
a Based on Bayesian phylogenetic generalized linear mixed model 
(PGLMM) regression of taxon means with size (log-transformed sum carpal 
volume) as a covariate. OR, odds ratio (log scale)    
b Based on PGLMM analysis of individual observations   
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Table 2.9. Relationships between shape variables and additional locomotor proportions based on PGLS regression 

a QuadA b Susp 

 R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.27 0.00 0.50 0.01 0.79 0.00  0.24 1.00 -0.35 0.02 -0.36 0.03 
CpDn 0.09 0.88 0.26 0.18 0.27 0.16  0.00 1.00 0.02 0.90 0.01 0.92 

Cp2 0.02 0.79 0.15 0.55 0.24 0.40  0.01 1.00 -0.07 0.72 -0.11 0.59 

Cp4 0.02 0.80 -0.16 0.52 -0.15 0.66  0.06 1.00 0.22 0.27 0.24 0.34 

Cp23A 0.17 0.45 -0.40 0.06 -0.44 0.04  0.18 1.00 0.29 0.05 0.29 0.06 

CpPxA 0.33 0.00 0.56 0.00 0.70 0.00  0.91 0.00 -0.95 0.00 -0.96 0.00 
CpScA 0.19 0.60 0.49 0.04 0.49 0.06  0.37 1.00 -0.65 0.00 -0.67 0.00 
Cp3SD 0.34 0.85 0.57 0.00 0.61 0.01  0.05 1.00 -0.16 0.30 -0.15 0.37 

CpHmC 0.29 0.00 0.55 0.01 0.77 0.00  0.45 1.00 -0.57 0.00 -0.59 0.00 
CpHP 0.00 0.83 0.05 0.78 0.07 0.74  0.03 1.00 0.09 0.47 0.09 0.48 

HmPx 0.13 0.75 -0.33 0.11 -0.38 0.11  0.17 1.00 0.27 0.05 0.27 0.07 

Hm5 0.67 0.00 0.82 0.00 0.83 0.00  0.26 1.00 -0.47 0.02 -0.47 0.02 
Hm45A 0.01 0.82 -0.08 0.64 -0.10 0.59  0.02 1.00 0.07 0.51 0.08 0.47 

HmPxA 0.31 0.00 0.53 0.01 0.72 0.00  0.23 1.00 -0.32 0.02 -0.32 0.03 
CpHmPxA 0.41 0.00 0.64 0.00 0.76 0.00  0.74 0.96 -0.84 0.00 -0.88 0.00 
CMC34A 0.03 0.82 0.16 0.47 0.14 0.57  0.02 1.00 -0.08 0.56 -0.07 0.65 

LuDs 0.00 0.82 0.00 0.99 -0.01 0.95  0.03 1.00 -0.14 0.41 -0.13 0.44 

LuTq 0.26 0.61 0.47 0.02 0.52 0.01  0.19 1.00 -0.25 0.04 -0.24 0.05 

LuSc 0.00 0.82 -0.08 0.76 -0.02 0.95  0.09 1.00 0.28 0.18 0.27 0.23 

LuRa 0.12 0.75 0.35 0.12 0.40 0.12  0.27 1.00 -0.41 0.01 -0.44 0.02 
LuDsTqA 0.18 0.54 -0.40 0.05 -0.46 0.03  0.43 1.00 0.51 0.00 0.51 0.00 
LuDsScA 0.24 0.55 0.48 0.02 0.53 0.01  0.22 1.00 -0.31 0.03 -0.31 0.04 
LuScRaA 0.10 0.62 0.31 0.15 0.31 0.17  0.14 1.00 -0.25 0.09 -0.25 0.12 

LuCpRaA 0.01 0.76 0.10 0.69 0.24 0.43  0.01 1.00 -0.07 0.70 -0.19 0.41 

LuCpC 0.30 0.44 -0.55 0.01 -0.54 0.01  0.12 1.00 0.19 0.12 0.19 0.13 

TqHm 0.70 0.00 -0.83 0.00 -0.93 0.00  0.16 1.00 0.35 0.06 0.35 0.07 

TqLu 0.00 0.82 0.05 0.87 -0.03 0.94  0.03 1.00 -0.20 0.43 -0.17 0.51 

TqPi 0.09 0.64 0.29 0.16 0.31 0.17  0.25 1.00 -0.32 0.02 -0.31 0.02 
TqSt 0.27 0.00 0.78 0.01 1.12 0.00  0.15 1.00 -0.64 0.08 -0.75 0.04 
TqHmPiA 0.14 0.64 -0.40 0.08 -0.52 0.04  0.17 1.00 0.26 0.06 0.32 0.03 
Tq1LuA 0.16 0.74 -0.35 0.06 -0.37 0.07  0.27 1.00 0.31 0.01 0.32 0.02 
LuTqDsA 0.34 0.00 0.56 0.00 0.77 0.00  0.30 0.00 -0.36 0.01 -0.92 0.00 

MCJAR 0.33 0.00 -0.56 0.01 -0.70 0.00  0.49 1.00 0.61 0.00 0.61 0.00 
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Without hylobatids 

 R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.02 0.53 0.16 0.53 0.36 0.11  0.03 1.00 -0.12 0.46 -0.13 0.43 

CpDn 0.43 0.60 0.65 0.00 0.60 0.00  0.10 1.00 -0.23 0.20 -0.23 0.20 

Cp2 0.24 0.00 0.49 0.03 0.22 0.51  0.01 1.00 -0.11 0.69 -0.03 0.93 

Cp4 0.23 0.00 0.47 0.04 0.13 0.73  0.04 1.00 -0.32 0.43 -0.21 0.65 

Cp23A 0.01 0.51 -0.07 0.77 -0.08 0.73  0.03 1.00 0.12 0.45 0.13 0.42 

CpPxA 0.06 0.47 0.23 0.32 0.22 0.30  0.73 0.00 -0.86 0.00 -0.83 0.00 
CpScA 0.01 0.48 0.14 0.62 -0.09 0.78  0.15 1.00 -0.48 0.11 -0.45 0.17 

Cp3SD 0.19 0.77 0.49 0.06 0.48 0.04  0.00 1.00 0.03 0.88 0.00 1.00 

CpHmC 0.07 0.59 0.30 0.27 0.38 0.09  0.18 1.00 -0.40 0.07 -0.43 0.06 

CpHP 0.30 0.00 0.55 0.02 0.41 0.07  0.00 1.00 -0.04 0.82 -0.05 0.79 

HmPx 0.01 0.62 -0.13 0.65 -0.43 0.16  0.04 1.00 0.16 0.44 0.23 0.30 

Hm5 0.44 0.00 0.66 0.00 0.57 0.04  0.06 1.00 -0.26 0.30 -0.27 0.28 

Hm45A 0.05 0.50 -0.21 0.37 -0.22 0.32  0.49 0.00 0.70 0.00 0.66 0.00 
HmPxA 0.07 0.53 0.22 0.29 0.25 0.24  0.03 1.00 -0.10 0.47 -0.09 0.49 

CpHmPxA 0.12 0.46 0.33 0.15 0.31 0.15  0.51 0.98 -0.65 0.00 -0.65 0.00 
CMC34A 0.00 0.57 -0.01 0.98 0.05 0.85  0.00 1.00 0.05 0.79 0.09 0.65 

LuDs 0.00 0.56 0.00 1.00 0.02 0.95  0.19 1.00 -0.47 0.06 -0.49 0.05 

LuTq 0.09 0.61 0.29 0.21 0.34 0.11  0.08 1.00 -0.16 0.23 -0.16 0.25 

LuSc 0.35 0.00 0.59 0.01 0.49 0.15  0.02 1.00 -0.18 0.58 -0.15 0.65 

LuRa 0.00 0.55 -0.02 0.93 0.18 0.56  0.06 1.00 -0.25 0.33 -0.36 0.17 

LuDsTqA 0.03 0.53 -0.16 0.50 -0.23 0.29  0.46 0.99 0.63 0.00 0.83 0.00 
LuDsScA 0.03 0.58 0.17 0.47 0.20 0.36  0.03 1.00 -0.10 0.48 -0.09 0.55 

LuScRaA 0.00 0.54 0.03 0.89 0.04 0.86  0.03 1.00 -0.12 0.48 -0.14 0.39 

LuCpRaA 0.01 0.47 0.10 0.72 -0.34 0.47  0.01 1.00 0.11 0.68 0.61 0.11 

LuCpC 0.24 0.19 -0.51 0.03 -0.40 0.08  0.08 1.00 0.19 0.23 0.17 0.29 

TqHm 0.53 0.00 -0.73 0.00 -0.83 0.01  0.05 1.00 0.22 0.36 0.20 0.40 

TqLu 0.25 0.00 -0.50 0.03 -0.20 0.63  0.01 1.00 0.15 0.71 0.04 0.92 

TqPi 0.03 0.57 -0.17 0.45 -0.14 0.55  0.07 1.00 -0.14 0.27 -0.12 0.36 

TqSt 0.39 0.00 0.62 0.00 0.93 0.08  0.05 1.00 -0.44 0.37 -0.31 0.59 

TqHmPiA 0.32 0.00 -0.57 0.01 -0.43 0.22  0.51 0.86 0.78 0.00 1.17 0.00 
Tq1LuA 0.09 0.56 -0.28 0.21 -0.29 0.17  0.13 1.00 0.26 0.14 0.34 0.06 

LuTqDsA 0.09 0.50 0.30 0.20 0.38 0.06  0.13 1.00 -0.22 0.13 -0.68 0.00 
MCJAR 0.05 0.47 -0.22 0.34 -0.13 0.59  0.25 1.00 0.37 0.03 0.35 0.04 
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c Climb d LeapA 

 R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.12 0.00 -0.34 0.12 -0.19 0.38  0.01 1.00 -0.09 0.65 0.01 0.96 

CpDn 0.00 0.00 -0.06 0.80 -0.14 0.48  0.12 1.00 -0.25 0.11 -0.27 0.06 

Cp2 0.03 0.00 0.17 0.44 -0.30 0.27  0.02 1.00 0.15 0.54 0.02 0.93 

Cp4 0.17 0.98 0.41 0.06 -0.74 0.06  0.13 1.00 0.40 0.10 0.22 0.43 

Cp23A 0.03 0.00 0.20 0.42 0.11 0.58  0.00 1.00 0.00 0.99 -0.07 0.71 

CpPxA 0.07 0.00 -0.28 0.23 -0.22 0.26  0.00 1.00 0.00 1.00 0.07 0.74 

CpScA 0.01 0.00 -0.14 0.61 -0.16 0.45  0.18 1.00 0.56 0.05 0.52 0.05 

Cp3SD 0.16 0.00 -0.39 0.07 -0.19 0.41  0.14 1.00 -0.31 0.09 -0.23 0.21 

CpHmC 0.12 0.00 -0.34 0.12 -0.19 0.38  0.00 1.00 -0.02 0.93 0.12 0.61 

CpHP 0.05 0.00 0.22 0.34 0.03 0.88  0.06 1.00 -0.16 0.28 -0.16 0.25 

HmPx 0.19 0.00 0.44 0.04 0.20 0.44  0.01 1.00 -0.08 0.67 -0.19 0.29 

Hm5 0.01 0.00 0.08 0.73 -0.11 0.62  0.00 1.00 -0.08 0.76 0.02 0.94 

Hm45A 0.18 0.00 0.43 0.05 0.55 0.00  0.17 1.00 -0.24 0.05 -0.21 0.08 

HmPxA 0.05 0.00 -0.24 0.31 -0.15 0.47  0.00 1.00 0.00 0.99 0.07 0.71 

CpHmPxA 0.07 0.00 -0.29 0.23 -0.21 0.30  0.00 1.00 0.00 1.00 0.13 0.62 

CMC34A 0.01 0.00 -0.11 0.62 0.25 0.30  0.08 1.00 -0.20 0.22 -0.13 0.41 

LuDs 0.10 0.00 -0.32 0.15 -0.07 0.77  0.09 1.00 -0.28 0.17 -0.25 0.20 

LuTq 0.22 0.00 -0.47 0.03 -0.35 0.09  0.01 1.00 0.06 0.72 0.09 0.55 

LuSc 0.04 0.00 0.19 0.40 -0.49 0.12  0.06 1.00 0.28 0.27 0.15 0.57 

LuRa 0.15 0.00 -0.39 0.07 -0.12 0.65  0.01 1.00 -0.09 0.68 0.07 0.76 

LuDsTqA 0.18 0.00 0.43 0.05 0.32 0.12  0.04 1.00 0.20 0.36 0.11 0.61 

LuDsScA 0.08 0.00 -0.29 0.20 -0.19 0.37  0.00 1.00 -0.04 0.84 -0.01 0.97 

LuScRaA 0.04 0.00 -0.22 0.40 -0.18 0.37  0.00 1.00 0.05 0.77 0.18 0.33 

LuCpRaA 0.42 0.74 0.93 0.00 0.84 0.01  0.10 1.00 0.32 0.16 0.12 0.66 

LuCpC 0.07 0.00 0.29 0.24 0.34 0.08  0.00 1.00 -0.04 0.80 -0.04 0.77 

TqHm 0.09 0.00 0.45 0.17 0.36 0.11  0.01 1.00 -0.12 0.61 -0.13 0.57 

TqLu 0.11 0.00 -0.33 0.14 0.30 0.42  0.03 1.00 -0.22 0.47 -0.06 0.85 

TqPi 0.07 0.00 -0.26 0.24 -0.11 0.62  0.00 1.00 0.03 0.88 0.04 0.82 

TqSt 0.05 0.00 0.23 0.30 -0.27 0.36  0.04 1.00 0.41 0.36 0.19 0.67 

TqHmPiA 0.01 0.00 0.10 0.71 0.40 0.11  0.04 1.00 -0.16 0.36 -0.06 0.72 

Tq1LuA 0.49 0.00 0.70 0.00 0.60 0.00  0.05 1.00 0.17 0.30 0.08 0.65 

LuTqDsA 0.12 0.00 -0.35 0.11 -0.24 0.23  0.00 1.00 -0.06 0.76 0.02 0.93 

MCJAR 0.03 0.00 0.18 0.46 0.11 0.57  0.00 1.00 -0.07 0.78 -0.16 0.48 
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Without hylobatids            

 R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.24 0.00 -0.49 0.03 -0.35 0.13  0.00 1.00 0.00 0.99 0.01 0.92 

CpDn 0.04 0.37 -0.21 0.41 -0.35 0.11  0.18 1.00 -0.27 0.07 -0.27 0.06 

Cp2 0.03 0.00 0.19 0.44 -0.47 0.15  0.07 1.00 0.24 0.28 0.13 0.58 

Cp4 0.23 0.00 0.48 0.04 -0.40 0.46  0.02 1.00 0.18 0.60 -0.08 0.83 

Cp23A 0.02 0.43 0.14 0.57 0.18 0.44  0.00 1.00 0.02 0.87 0.01 0.95 

CpPxA 0.13 0.00 -0.36 0.14 -0.44 0.03  0.01 1.00 0.06 0.68 0.05 0.76 

CpScA 0.02 0.00 0.15 0.54 -0.49 0.12  0.37 1.00 0.65 0.01 0.58 0.02 
Cp3SD 0.17 0.00 -0.41 0.08 -0.21 0.42  0.15 1.00 -0.28 0.10 -0.24 0.15 

CpHmC 0.19 0.00 -0.44 0.06 -0.29 0.20  0.00 1.00 -0.04 0.83 -0.01 0.96 

CpHP 0.02 0.00 0.15 0.55 -0.17 0.42  0.01 1.00 -0.06 0.70 -0.05 0.74 

HmPx 0.21 0.00 0.46 0.05 0.18 0.52  0.01 1.00 0.07 0.68 0.00 1.00 

Hm5 0.05 0.00 0.21 0.38 -0.29 0.33  0.01 1.00 -0.07 0.75 -0.05 0.79 

Hm45A 0.17 0.21 0.41 0.08 0.53 0.01  0.11 1.00 -0.18 0.17 -0.17 0.19 

HmPxA 0.08 0.34 -0.27 0.24 -0.32 0.13  0.01 1.00 0.04 0.72 0.04 0.74 

CpHmPxA 0.16 0.16 -0.41 0.09 -0.51 0.01  0.03 1.00 0.12 0.49 0.10 0.57 

CMC34A 0.01 0.25 0.13 0.64 -0.25 0.35  0.07 1.00 0.19 0.26 0.14 0.41 

LuDs 0.18 0.00 -0.42 0.07 -0.17 0.54  0.02 1.00 -0.12 0.60 -0.09 0.68 

LuTq 0.30 0.00 -0.54 0.02 -0.45 0.04  0.01 1.00 0.04 0.73 0.04 0.74 

LuSc 0.03 0.00 0.19 0.45 -0.57 0.16  0.03 1.00 0.20 0.48 0.15 0.58 

LuRa 0.16 0.00 -0.40 0.09 -0.16 0.63  0.10 1.00 -0.28 0.20 -0.19 0.40 

LuDsTqA 0.38 0.00 0.62 0.00 0.54 0.01  0.02 1.00 -0.10 0.60 -0.10 0.59 

LuDsScA 0.14 0.00 -0.37 0.12 -0.31 0.14  0.00 1.00 0.01 0.93 -0.01 0.91 

LuScRaA 0.06 0.52 -0.25 0.33 -0.38 0.10  0.06 1.00 0.14 0.31 0.18 0.17 

LuCpRaA 0.74 0.99 1.36 0.00 1.54 0.00  0.10 1.00 0.28 0.20 0.06 0.85 

LuCpC 0.12 0.38 0.39 0.14 0.60 0.00  0.06 1.00 -0.14 0.30 -0.11 0.41 

TqHm 0.07 0.69 0.39 0.26 0.89 0.00  0.00 1.00 -0.02 0.93 0.01 0.95 

TqLu 0.09 0.00 -0.31 0.20 0.67 0.18  0.15 1.00 -0.57 0.10 -0.44 0.21 

TqPi 0.13 0.00 -0.36 0.13 -0.21 0.36  0.04 1.00 0.09 0.42 0.05 0.64 

TqSt 0.09 0.00 0.31 0.20 -1.50 0.01  0.09 1.00 0.52 0.21 0.27 0.57 

TqHmPiA 0.00 0.39 0.08 0.79 0.82 0.01  0.12 1.00 -0.23 0.15 -0.15 0.40 

Tq1LuA 0.51 0.52 0.72 0.00 0.65 0.00  0.04 1.00 0.12 0.44 0.05 0.77 

LuTqDsA 0.26 0.00 -0.51 0.02 -0.45 0.03  0.02 1.00 0.06 0.62 0.06 0.59 

MCJAR 0.04 0.31 0.20 0.42 0.44 0.05  0.01 1.00 -0.06 0.71 -0.02 0.89 
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e Leap 

 R2 λ b p ba pa 

CpPx 0.03 1.00 -0.15 0.48 -0.02 0.92 

CpDn 0.15 1.00 -0.29 0.08 -0.32 0.03 
Cp2 0.00 1.00 0.01 0.97 -0.17 0.47 

Cp4 0.10 1.00 0.38 0.15 0.08 0.78 

Cp23A 0.00 1.00 0.02 0.94 -0.08 0.68 

CpPxA 0.00 1.00 0.08 0.75 0.17 0.42 

CpScA 0.17 1.00 0.57 0.06 0.51 0.06 

Cp3SD 0.13 1.00 -0.33 0.09 -0.22 0.24 

CpHmC 0.01 1.00 -0.11 0.65 0.06 0.81 

CpHP 0.06 1.00 -0.17 0.28 -0.17 0.23 

HmPx 0.00 1.00 0.04 0.84 -0.09 0.60 

Hm5 0.02 1.00 -0.18 0.50 -0.06 0.82 

Hm45A 0.08 1.00 -0.17 0.21 -0.13 0.30 

HmPxA 0.01 1.00 -0.07 0.71 0.01 0.94 

CpHmPxA 0.00 1.00 0.00 0.99 0.17 0.51 

CMC34A 0.04 1.00 -0.15 0.40 0.05 0.77 

LuDs 0.02 1.00 -0.16 0.49 -0.13 0.52 

LuTq 0.00 1.00 -0.03 0.84 0.01 0.96 

LuSc 0.05 1.00 0.28 0.31 0.09 0.72 

LuRa 0.04 1.00 -0.21 0.36 -0.02 0.94 

LuDsTqA 0.04 1.00 0.20 0.39 0.08 0.72 

LuDsScA 0.01 1.00 -0.10 0.62 -0.06 0.74 

LuScRaA 0.00 1.00 0.01 0.97 0.16 0.38 

LuCpRaA 0.19 1.00 0.48 0.04 0.24 0.36 

LuCpC 0.00 1.00 0.05 0.78 0.08 0.55 

TqHm 0.01 1.00 -0.12 0.63 -0.13 0.56 

TqLu 0.04 1.00 -0.27 0.40 -0.06 0.84 

TqPi 0.00 1.00 -0.02 0.90 -0.01 0.95 

TqSt 0.02 1.00 0.32 0.51 0.01 0.98 

TqHmPiA 0.01 1.00 -0.08 0.66 0.06 0.74 

Tq1LuA 0.08 1.00 0.23 0.19 0.08 0.66 

LuTqDsA 0.02 1.00 -0.12 0.54 -0.02 0.89 

MCJAR 0.01 1.00 -0.11 0.67 -0.23 0.32 
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Without hylobatids         

 R2 λ b p ba pa 

CpPx 0.01 1.00 -0.05 0.75 -0.03 0.85 

CpDn 0.23 1.00 -0.34 0.04 -0.34 0.02 
Cp2 0.01 1.00 0.10 0.70 -0.10 0.69 

Cp4 0.01 1.00 0.14 0.71 -0.26 0.50 

Cp23A 0.00 1.00 0.03 0.87 0.01 0.97 

CpPxA 0.04 1.00 0.14 0.40 0.11 0.45 

CpScA 0.34 1.00 0.69 0.01 0.55 0.04 
Cp3SD 0.14 1.00 -0.30 0.12 -0.23 0.18 

CpHmC 0.03 1.00 -0.14 0.52 -0.10 0.63 

CpHP 0.01 1.00 -0.08 0.62 -0.06 0.66 

HmPx 0.07 1.00 0.21 0.28 0.12 0.53 

Hm5 0.03 1.00 -0.16 0.48 -0.14 0.50 

Hm45A 0.03 1.00 -0.10 0.49 -0.08 0.56 

HmPxA 0.00 1.00 -0.01 0.93 -0.02 0.88 

CpHmPxA 0.03 1.00 0.14 0.47 0.11 0.55 

CMC34A 0.03 1.00 0.13 0.49 0.05 0.79 

LuDs 0.00 1.00 0.03 0.92 0.07 0.77 

LuTq 0.00 1.00 -0.03 0.84 -0.03 0.78 

LuSc 0.02 1.00 0.19 0.55 0.12 0.67 

LuRa 0.18 1.00 -0.42 0.07 -0.30 0.19 

LuDsTqA 0.01 1.00 -0.09 0.66 -0.09 0.63 

LuDsScA 0.00 1.00 -0.03 0.81 -0.07 0.57 

LuScRaA 0.03 1.00 0.10 0.52 0.16 0.26 

LuCpRaA 0.22 1.00 0.48 0.04 0.26 0.44 

LuCpC 0.00 1.00 -0.04 0.78 0.01 0.97 

TqHm 0.00 1.00 -0.03 0.88 0.01 0.96 

TqLu 0.15 1.00 -0.63 0.10 -0.42 0.26 

TqPi 0.01 1.00 0.05 0.67 0.00 0.98 

TqSt 0.05 1.00 0.43 0.35 -0.03 0.96 

TqHmPiA 0.04 1.00 -0.15 0.42 0.01 0.94 

Tq1LuA 0.06 1.00 0.17 0.31 0.07 0.68 

LuTqDsA 0.00 1.00 0.01 0.94 0.01 0.92 

MCJAR 0.04 1.00 -0.14 0.39 -0.09 0.54 
a based on PGLS model with size as a covariate 
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Table 2.10. Additional positional classification results 

a                                                 Cross-validation trials 

 DFA  glmnet  

  DG KW PG S   DG KW PG S Total 

DG 2729 0 171 0  2837 0 63 0 2900 

KW 0 8100 0 0  3 8097 0 0 8100 

PG 265 0 15032 3  107 0 15182 11 15300 

S 0 0 37 7263   0 0 46 7254 7300 

b                                   Additional per-class accuracy metrics  

Bala 0.953 1.000 0.986 0.999  0.980 1.000 0.993 0.998  

Senb 0.911 1.000 0.986 1.000  0.963 1.000 0.993 0.998  

Specc 0.994 1.000 0.985 0.999  0.998 1.000 0.994 0.998  

PPVd 0.941 1.000 0.982 0.995  0.978 1.000 0.992 0.994  

NPVe 0.991 1.000 0.989 1.000   0.996 1.000 0.994 1.000  

c 
Mean prediction posterior 

probabilities 
 

Mean probabilities by a priori 
class 

 

DFA 0.916 1.000 0.972 0.984  0.880 1.000 0.965 0.984  

glmnet 0.838 0.982 0.953 0.961   0.832 0.982 0.951 0.959  

d                                         glmnet tuned parameters 

alpha                                 0.4813559 

lambda                                 0.0032373 
a Balanced accuracy – average of sensitivity and specificity 
b Sensitivity – correct predictions relative to the number of a priori cases of that class 
in the sample. Also known as recall or true positive rate.  
c Specificity – rate at which observations not assigned to a class actually do not 
belong to that class, also known as the true negative rate. 
d Positive prediction value – probability that an observation predicted to belong to a 
class actually belongs to that class.   
e Negative prediction value – probability than an observation not predicted to belong 
to a class actually does not belong to that class 
 
 
Table 2.11. Prediction results for additional locomotor proportions 

a                                                         Predictive models 

 PGLS  GLM 

  R2 λ p   Terms Coef SE T p SEE%a 

QuadA 0.831 0.000 0.000  (Intercept) -0.58 0.04 -14.9 0.000 13.1 

     Cp3SD 0.08 0.04 2.0 0.047  

     CpDn 0.04 0.04 1.0 0.301  

     Hm5 0.38 0.04 8.8 0.000  

     TqHm -0.60 0.05 -12.4 0.000  

Susp 0.989 0.000 0.000  (Intercept) -3.30 0.10 -34.7 0.000 8.5 

     CpPxA -0.68 0.11 -6.4 0.000  

     Hm45A 0.16 0.05 3.1 0.002  

     LuTqDsA -0.53 0.08 -6.9 0.000  
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     MCJAR 0.05 0.06 0.8 0.437  

     Tq1LuA 0.74 0.06 11.6 0.000  

     TqHmPiA 0.42 0.05 7.8 0.000  

Climb 0.872 0.000 0.000  (Intercept) -1.34 0.03 -39.5 0.000 8.8 

     Hm45A 0.19 0.03 5.8 0.000  

     LuCpRaA 0.60 0.04 15.6 0.000  

     LuTq -0.19 0.03 -5.5 0.000  

          TqHm 0.19 0.04 5.1 0.000   

b                             Predicted locomotor proportions of training taxab 

 QuadA  Susp  Climb 

  Obs Pred Δ   Obs Pred Δ   Obs Pred Δ 

P. t. schweinfurthii 0.31 0.23 0.08  0.01 0.01 0.00  0.06 0.12 0.06 

P. t. verus 0.21 0.22 0.01  0.01 0.01 0.00  0.11 0.11 0.00 

P. paniscus 0.35 0.18 0.17  0.01 0.02 0.01  0.09 0.10 0.01 

G. gorilla 0.19 0.26 0.07  0.01 0.01 0.00  0.06 0.12 0.06 

G. beringei 0.53 0.35 0.18  0.01 0.01 0.00  0.04 0.09 0.05 

P. pygmaeus 0.12 0.18 0.06  0.43 0.39 0.04  0.37 0.30 0.07 

P. abelii 0.18 0.23 0.05  0.38 0.37 0.01  0.35 0.28 0.07 

Hoolock 0.00 0.13 0.13  0.55 0.59 0.04  0.20 0.17 0.03 

H. lar 0.00 0.13 0.13  0.59 0.54 0.05  0.19 0.21 0.02 

Symphalangus 0.00 0.09 0.09  0.59 0.44 0.15  0.32 0.20 0.12 

Papio 0.68 0.59 0.09  0.00 0.02 0.02  0.01 0.14 0.13 

Lophocebus 0.42 0.49 0.07  0.00 0.02 0.02  0.36 0.26 0.10 

Macaca 0.68 0.54 0.14  0.00 0.03 0.03  0.26 0.26 0.00 

Erythrocebus 0.60 0.61 0.01  0.00 0.01 0.01  0.05 0.14 0.09 

Cercopithecus 0.54 0.60 0.06  0.00 0.02 0.02  0.35 0.26 0.09 

Colobus 0.41 0.54 0.13  0.01 0.02 0.01  0.20 0.18 0.02 

Procolobus 0.35 0.40 0.05  0.01 0.02 0.01  0.29 0.28 0.01 

Trachypithecus 0.60 0.55 0.05  0.00 0.02 0.02  0.13 0.21 0.08 

Presbytis 0.28 0.47 0.19  0.02 0.02 0.00  0.19 0.17 0.02 

Alouatta 0.61 0.44 0.17  0.02 0.03 0.01  0.33 0.33 0.00 

Ateles 0.42 0.44 0.02  0.25 0.16 0.09  0.25 0.24 0.01 

Cebus 0.37 0.48 0.11   0.00 0.03 0.03   0.40 0.33 0.07 

c Proportions predicted for other taxa 

  QuadA Susp Climb 

P. t. troglodytes 0.21 0.01 0.13 

P. t. ellioti 0.21 0.02 0.11 

H. muelleri 0.12 0.44 0.23 

Mandrillus 0.54 0.01 0.10 

Cercocebus 0.52 0.03 0.23 

Nasalis 0.51 0.01 0.14 
a Percent standard error of the estimate based on repeated individual predictions generated during cross 
validation            
b Predictions calculated after 100 repetitions of 10-fold cross validation of quasibinomial logistic 
regression. Obs, observed proportion. Pred, predicted proportion. Δ, residual.  
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Table 2.12. RV correlations between shape and locomotor proportion matrices 

a RV p RVa pa RVb pb RVc pc 

Total proportions 0.67 0.00 0.71 0.00 0.56 0.00 0.68 0.00 

with Arb 0.62 0.00 0.63 0.00 0.56 0.00 0.64 0.00 

Arboreal proportions 0.76 0.00 0.74 0.00 0.69 0.00 0.70 0.00 

with Arb 0.77 0.00 0.73 0.00 0.75 0.00 0.73 0.00 

without LeapA 0.80 0.00 0.76 0.00 0.73 0.00 0.70 0.00 

Quad, SuspA, ClimbA 0.79 0.00 0.77 0.00 0.70 0.00 0.70 0.00 

b With phylogenetic independent contrasts of tip data 

Total proportions 0.40 0.01 0.46 0.03 0.29 0.21 0.53 0.01 

with Arb 0.36 0.03 0.41 0.06 0.28 0.21 0.52 0.02 

Arboreal proportions 0.41 0.01 0.52 0.01 0.35 0.12 0.52 0.02 

with Arb 0.43 0.01 0.52 0.02 0.38 0.11 0.58 0.01 

without LeapA 0.43 0.01 0.53 0.01 0.36 0.11 0.55 0.02 

Quad, SuspA, ClimbA 0.49 0.00 0.54 0.01 0.36 0.11 0.54 0.01 
a African apes excluded 
b Hylobatids excluded 
c African apes and hylobatids excluded 
 

Table 2.13. PLS results 

a                                     Locomotor PLS vectors 

  PLS 1 PLS 2 PLS 3 PLS 4 PLS 5 

QuadA 0.58 0.23 -0.52 -0.09 0.58 

SuspA -0.72 -0.10 -0.21 0.21 0.61 

ClimbA 0.17 -0.63 0.44 -0.47 0.41 

LeapA 0.12 0.51 0.70 0.33 0.36 

Arb -0.31 0.53 0.03 -0.79 0.01 

b                                        Shape PLS vectors 

CpPx 0.22 -0.09 -0.12 0.01 -0.18 

CpDn -0.03 -0.04 -0.50 0.15 0.40 

Cp2 0.10 0.25 0.01 0.10 -0.04 

Cp4 -0.06 0.22 -0.09 -0.04 0.15 

Cp23A -0.21 0.04 0.07 0.15 -0.13 

CpPxA 0.25 -0.01 0.15 -0.08 0.02 

CpScA 0.19 0.15 0.15 -0.15 0.16 

Cp3SD 0.13 -0.16 -0.43 0.08 -0.12 

CpHmC 0.22 -0.10 -0.05 0.07 -0.12 

CpHP -0.07 0.13 -0.36 0.17 -0.08 

HmPx -0.14 0.20 0.09 -0.17 0.17 

Hm5 0.21 0.16 -0.23 -0.08 -0.19 

Hm45A -0.09 -0.09 -0.33 -0.56 0.00 

HmPxA 0.22 0.03 -0.09 -0.03 0.07 

CpHmPxA 0.25 0.01 0.06 -0.06 0.04 

CMC34A -0.03 -0.23 -0.13 -0.28 0.29 

LuDs -0.03 -0.25 0.18 -0.11 0.33 
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LuTq 0.22 -0.09 -0.01 0.18 -0.07 

LuSc -0.05 0.32 0.01 0.25 0.03 

LuRa 0.15 -0.26 -0.07 0.01 -0.17 

LuDsTqA -0.23 0.12 -0.11 0.01 -0.14 

LuDsScA 0.22 -0.07 -0.04 0.03 -0.07 

LuScRaA 0.19 0.14 0.17 -0.01 -0.12 

LuCpRaA 0.09 0.27 -0.07 -0.39 -0.19 

LuCpC -0.21 -0.11 -0.03 -0.19 -0.16 

TqHm -0.21 -0.21 0.18 -0.05 -0.12 

TqLu -0.01 -0.31 -0.01 0.00 -0.22 

TqPi 0.20 -0.13 0.15 -0.18 -0.09 

TqSt 0.14 0.28 -0.12 -0.09 0.08 

TqHmPiA -0.18 -0.16 -0.06 0.06 -0.21 

Tq1LuA -0.19 0.22 -0.01 -0.23 -0.39 

LuTqDsA 0.24 -0.04 -0.04 0.08 -0.12 

MCJAR -0.24 -0.02 -0.06 0.18 -0.11 

c Euclidean distancesa 

P. t. schweinfurthii 0.55 

P. t. verus 0.66 

P. paniscus 2.64 

G. gorilla 2.93 

G. beringei 1.93 

P. pygmaeus 3.93 

P. abelii 2.93 

Hoolock 0.03 

H. lar 0.85 

Symphalangus 1.72 

Papio 1.64 

Lophocebus 2.38 

Macaca 0.38 

Erythrocebus 2.55 

Cercopithecus 2.49 

Colobus 2.94 

Procolobus 2.35 

Trachypithecus 0.76 

Presbytis 3.32 

Alouatta 2.19 

Ateles 2.99 

Cebus 2.35 

Sample mean 2.02 

Sample median 2.35 
a Standardized taxon means between PLS shape- and behavior-space 
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Table 2.14. Estimated phylogenetic signal of analyzed variables 

a λ p K p 

CpPx 0.89 0.00 0.42 0.00 

CpDn 0.99 0.00 0.58 0.00 

Cp2 0.99 0.00 1.13 0.00 

Cp4 1.01 0.00 1.93 0.00 

Cp23A 0.97 0.00 0.66 0.00 

CpPxA 0.98 0.00 0.91 0.00 

CpScA 1.00 0.00 2.08 0.00 

Cp3SD 0.81 0.02 0.52 0.00 

CpHmC 1.01 0.00 1.32 0.00 

CpHP 0.89 0.00 0.50 0.00 

HmPx 0.99 0.00 0.77 0.00 

Hm5 0.99 0.00 1.41 0.00 

Hm45A 0.54 0.16 0.31 0.02 

HmPxA 1.00 0.00 0.70 0.00 

CpHmPxA 1.00 0.00 1.44 0.00 

CMC34A 0.86 0.00 0.44 0.00 

LuDs 0.94 0.00 0.72 0.00 

LuTq 0.82 0.00 0.45 0.00 

LuSc 0.99 0.00 1.43 0.00 

LuRa 0.99 0.00 0.89 0.00 

LuDsTqA 0.99 0.00 1.00 0.00 

LuDsScA 0.90 0.00 0.46 0.01 

LuScRaA 0.91 0.00 0.58 0.00 

LuCpRaA 0.99 0.00 0.98 0.00 

LuCpC 0.81 0.00 0.34 0.01 

TqHm 0.93 0.00 1.10 0.00 

TqLu 0.98 0.00 1.69 0.00 

TqPi 0.93 0.00 0.68 0.00 

TqSt 1.01 0.00 5.96 0.00 

TqHmPiA 0.90 0.00 0.72 0.00 

Tq1LuA 0.91 0.00 0.34 0.01 

LuTqDsA 0.93 0.00 0.52 0.00 

MCJAR 0.96 0.00 0.78 0.00 

b Locomotor variables 

QuadA 0.81 0.00 0.56 0.00 

SuspA 1.00 0.00 1.55 0.00 

ClimbA 0.80 0.00 0.51 0.02 

LeapA 1.00 0.00 1.00 0.00 

Quad 1.00 0.00 0.81 0.00 

Susp 1.00 0.00 1.50 0.00 

Climb 0.29 0.70 0.48 0.01 

Leap 1.00 0.00 0.88 0.00 

Arb 1.00 0.01 0.69 0.01 



 

149 
 

Table 2.15. PIC Spearman correlation tests for allometric scaling 

a Males  Females  Means 

  rho p   rho p   rho p 

CpPx 0.07 0.74  0.14 0.49  0.13 0.51 

CpDn 0.05 0.79  0.07 0.73  0.22 0.28 

Cp2 -0.10 0.61  -0.11 0.57  -0.10 0.62 

Cp4 -0.26 0.19  -0.27 0.18  -0.29 0.14 

Cp23A 0.00 0.99  -0.01 0.94  -0.04 0.84 

CpPxA 0.20 0.31  -0.07 0.72  0.10 0.61 

CpScA -0.21 0.30  -0.15 0.44  -0.26 0.19 

Cp3SD 0.01 0.97  0.17 0.39  0.11 0.58 

CpHmC 0.20 0.31  -0.07 0.73  0.12 0.57 

CpHP 0.20 0.31  -0.17 0.39  0.00 1.00 

HmPx -0.39 0.04  -0.30 0.12  -0.34 0.08 

Hm5 0.28 0.16  0.13 0.51  0.11 0.59 

Hm45A -0.18 0.37  0.19 0.33  -0.09 0.64 

HmPxA 0.27 0.18  0.10 0.61  0.16 0.43 

CpHmPxA 0.24 0.23  0.02 0.93  0.10 0.63 

CMC34A 0.11 0.60  0.25 0.20  0.22 0.27 

LuDs 0.01 0.95  -0.02 0.93  0.17 0.41 

LuTq 0.06 0.76  0.13 0.51  0.18 0.37 

LuSc -0.11 0.60  -0.03 0.88  -0.06 0.76 

LuRa 0.04 0.86  0.01 0.98  0.00 1.00 

LuDsTqA -0.21 0.29  -0.29 0.14  -0.26 0.19 

LuDsScA -0.01 0.98  -0.07 0.75  -0.01 0.95 

LuScRaA 0.00 0.99  0.39 0.04  0.23 0.24 

LuCpRaA -0.49 0.01  -0.74 0.00  -0.62 0.00 

LuCpC -0.19 0.35  -0.02 0.93  -0.19 0.35 

TqHm -0.10 0.63  -0.16 0.43  -0.09 0.64 

TqLu 0.10 0.63  0.11 0.57  0.06 0.77 

TqPi 0.05 0.81  -0.27 0.18  -0.33 0.09 

TqSt -0.15 0.45  -0.15 0.46  -0.05 0.81 

TqHmPiA 0.14 0.50  0.34 0.09  0.49 0.01 

Tq1LuA -0.22 0.27  -0.26 0.18  -0.26 0.20 

LuTqDsA 0.43 0.03  0.19 0.33  0.33 0.09 

MCJAR -0.09 0.66   0.10 0.63   0.11 0.57 

b Locomotor variables             

QuadA 0.04 0.87  -0.08 0.72  0.06 0.78 

SuspA 0.13 0.57  0.07 0.77  0.11 0.65 

ClimbA 0.26 0.25  0.20 0.38  0.14 0.56 

LeapA -0.56 0.01  -0.40 0.07  -0.47 0.03 

Quad 0.41 0.07  0.29 0.21  0.39 0.08 

Susp 0.12 0.60  0.10 0.65  0.16 0.47 

Climb -0.38 0.09  -0.54 0.01  -0.57 0.01 

Leap -0.55 0.01  -0.36 0.11  -0.46 0.03 

Arb -0.70 0.00   -0.58 0.01   -0.70 0.00 
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Table 2.16. Condition of selected articulations in sampled specimens. Tot, total. Cont, continuous. D, dorsal only. P, palmar only. D&P, separate 
dorsal and palmar facets. Na, absent. Plm acc, palmar accessory facet. 

 a Capitate - Mc4 b Capitate - hamate c Hamate - capitate 

 
Tot Cont D P D&P Na  Cont D&P 

Dist 
D&P 

Plm 
acc 

 Tot Cont D&P 
Dist 

D&P 
Plm 
acc 

Pan 44 0 0 0 0 44  44 0 0 2  44 44 0 0 0 

Gorilla 38 0 16 0 0 22  38 0 0 0  37 38 0 0 0 

Pongo 34 0 19 0 1 14  26 8 0 0  35 30 5 0 0 

Hylobatids 29 12 0 2 15 0  3 26 12 1  29 2 27 12 1 

Papio 14 5 1 1 7 0  14 0 0 0  14 14 0 0 0 

Lophocebus 6 1 0 1 4 0  6 0 0 0  6 6 0 0 0 

Mandrillus 9 0 0 4 5 0  9 0 0 0  8 8 0 0 0 

Cercocebus 2 0 0 0 2 0  2 0 0 0  2 2 0 0 0 

Macaca 18 1 0 0 17 0  18 0 0 1  18 18 0 0 0 

Erythrocebus 7 7 0 0 0 0  7 0 0 0  7 7 0 0 0 

Cercopithecus 11 1 0 1 9 0  11 0 0 0  11 11 0 0 0 

Colobus 9 0 0 1 8 0  9 0 0 0  9 9 0 0 0 

Procolobus 13 0 2 1 10 0  13 0 0 0  13 12 1 0 0 

Nasalis 17 1 0 0 16 0  13 4 3 11  17 14 3 1 3 

Trachypithecus 17 1 0 0 16 0  17 0 0 0  17 17 0 0 1 

Presbytis 2 0 0 0 2 0  2 0 0 0  2 2 0 0 0 

Alouatta 32 23 0 0 9 0  32 0 0 0  32 32 0 0 0 

Ateles 13 13 0 0 0 0  1 12 1 0  14 8 6 0 0 

Cebus 28 28 0 0 0 0   28 0 0 0   28 28 0 0 0 
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Table 2.17. Individual positional classifications and average posterior probabilities after 100 repetitions of 10-fold cross-validation 
   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred   DG KW PG S Pred 

AMNH 51202 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 51205 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.02 0.97 0.01 0.00 KW 

AMNH 51278 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 51376 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 51377 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 51379 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 51381 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.01 0.00 KW 

AMNH 51393 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.01 0.99 0.00 0.00 KW 

AMNH 201588 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

NMNH 236971 P. t. schweinfurthii KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 54330 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.02 0.97 0.01 0.00 KW 

AMNH 90189 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 90190 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.01 0.86 0.14 0.00 KW 

AMNH 90191 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 90292 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.01 0.00 KW 

AMNH 167342 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 167343 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 167344 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 167346 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 201469 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.00 0.00 KW 

UMMZ 39507 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 15312 P. t. troglodytes KW 0.00 1.00 0.00 0.00 KW  0.00 0.98 0.01 0.01 KW 

AMNH 89351 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 89353 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 89354 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 89355 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 89406 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 174860 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 174861 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 
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   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred   DG KW PG S Pred 

NMNH 256973 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 0.73 0.26 0.01 KW 

NMNH 477333 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

NMNH 481803 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 0.98 0.02 0.00 KW 

NMNH 481804 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

UMMZ 76276 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

UMMZ 76277 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 20041 P. t. ellioti KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 23163 P. t. ellioti KW 0.00 1.00 0.00 0.00 KW  0.00 0.98 0.02 0.00 KW 

MCZ 23167 P. t. ellioti KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 26849 P. t. ellioti KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

UMMZ 167199 P. t. ellioti KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 86857 P. paniscus KW 0.00 1.00 0.00 0.00 KW  0.00 0.98 0.00 0.02 KW 

MCZ 38018 P. paniscus KW 0.00 1.00 0.00 0.00 KW  0.06 0.94 0.00 0.00 KW 

MCZ 38019 P. paniscus KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.01 0.00 KW 

MCZ 38020 P. paniscus KW 0.00 1.00 0.00 0.00 KW  0.28 0.72 0.00 0.00 KW 

AMNH 54355 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.97 0.03 0.00 KW 

AMNH 54356 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.00 0.01 KW 

AMNH 69398 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.02 0.96 0.01 0.00 KW 

AMNH 81651 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 81652 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 90289 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 167335 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 167337 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.97 0.01 0.02 KW 

AMNH 167338 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.01 0.00 KW 

AMNH 167339 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.01 0.00 KW 

AMNH 167340 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.98 0.01 0.01 KW 

AMNH 201471 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.97 0.01 0.02 KW 

AMNH 214103 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 17684 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 20038 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.97 0.03 0.00 KW 
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   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred   DG KW PG S Pred 

MCZ 20039 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.00 0.00 KW 

MCZ 20043 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 23160 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 23162 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.97 0.02 0.01 KW 

MCZ 26850 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.01 0.96 0.01 0.02 KW 

MCZ 29047 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.98 0.01 0.00 KW 

MCZ 29049 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.01 0.00 KW 

MCZ 37264 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 38326 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

MCZ 57482 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.95 0.05 0.01 KW 

UMMZ 17886 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.01 0.99 0.00 0.00 KW 

AMNH 54089 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 54090 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

AMNH 54091 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.01 0.00 KW 

AMNH 115609 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

NMNH 395636 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

NMNH 396934 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.01 0.00 KW 

NMNH 396935 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 0.98 0.01 0.00 KW 

NMNH 396937 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW 

NMNH 397351 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 0.99 0.00 0.00 KW 

MCZ 23182 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.01 0.98 0.01 0.00 KW 

MCZ 38017 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 0.98 0.01 0.00 KW 

AMNH 28252 P. pygmaeus S 0.00 0.00 0.09 0.91 S  0.06 0.01 0.25 0.68 S 

AMNH 28253 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.01 0.03 0.96 S 

NMNH 145301 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.02 0.98 S 

NMNH 145302 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.03 0.02 0.94 S 

NMNH 145304 P. pygmaeus S 0.00 0.00 0.01 0.99 S  0.00 0.04 0.09 0.87 S 

NMNH 145305 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.09 0.91 S 

NMNH 145308 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.02 0.16 0.82 S 

NMNH 145309 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 
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   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred   DG KW PG S Pred 

NMNH 145310 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.01 0.00 0.99 S 

MCZ 37362 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.03 0.96 S 

MCZ 37363 P. pygmaeus S 0.00 0.00 0.01 0.99 S  0.00 0.01 0.04 0.95 S 

MCZ 37364 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 37365 P. pygmaeus S 0.00 0.00 0.15 0.85 S  0.00 0.00 0.30 0.70 S 

NMNH 142170 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 153805 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.01 0.01 0.98 S 

NMNH 153823 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 61586 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.01 0.99 S 

AMNH 202511 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.03 0.97 S 

AMNH 239847 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.06 0.94 S 

CMNH HTB1030 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.02 0.97 S 

CMNH HTB1055 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

CMNH HTB1168 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.05 0.00 0.95 S 

CMNH HTB1444 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 143590 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 143593 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.07 0.93 S 

NMNH 143594 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.01 0.00 0.99 S 

NMNH 143596 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 143597 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 143598 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 143600 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 143601 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 143602 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

NMNH 270807 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 80068 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 83418 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 83420 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 0.99 S 

AMNH 83423 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 83425 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 
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   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred   DG KW PG S Pred 

AMNH 112676 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 112720 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 37378 H. muelleri S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 37380 H. muelleri S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 37381 H. muelleri S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 37383 H. muelleri S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41417 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41524 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41525 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41526 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41527 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41529 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41530 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41531 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41532 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41534 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41536 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 43063 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 41565 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

UMMZ 160908 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

UMMZ 160909 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 106581 Symphalangus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 106583 Symphalangus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

MCZ 27867 Symphalangus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

AMNH 51380 Papio DG 1.00 0.00 0.00 0.00 DG  1.00 0.00 0.00 0.00 DG 

AMNH 52668 Papio DG 0.74 0.00 0.26 0.00 DG  0.89 0.03 0.07 0.00 DG 

AMNH 52676 Papio DG 0.99 0.00 0.01 0.00 DG  0.95 0.00 0.05 0.00 DG 

AMNH 82097 Papio DG 0.36 0.00 0.64 0.00 PG  0.71 0.02 0.27 0.00 DG 

AMNH 187369 Papio DG 0.69 0.00 0.31 0.00 DG  0.53 0.00 0.47 0.00 DG 

MCZ 15378 Papio DG 0.98 0.00 0.02 0.00 DG  0.88 0.00 0.12 0.00 DG 
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Specimen Taxon Class DG KW PG S Pred   DG KW PG S Pred 

NMNH 236976 Papio DG 0.95 0.00 0.05 0.00 DG  0.92 0.00 0.08 0.00 DG 

NMNH 239743 Papio DG 0.76 0.00 0.24 0.00 DG  0.81 0.01 0.18 0.00 DG 

NMNH 384223 Papio DG 0.98 0.00 0.02 0.00 DG  0.93 0.00 0.07 0.00 DG 

NMNH 384227 Papio DG 0.71 0.00 0.29 0.00 DG  0.79 0.00 0.21 0.00 DG 

NMNH 384228 Papio DG 0.93 0.00 0.07 0.00 DG  0.63 0.03 0.33 0.01 DG 

NMNH 384229 Papio DG 0.77 0.00 0.23 0.00 DG  0.67 0.00 0.33 0.00 DG 

NMNH 384234 Papio DG 0.81 0.00 0.19 0.00 DG  0.75 0.00 0.25 0.00 DG 

NMNH 384235 Papio DG 0.45 0.00 0.55 0.00 PG  0.58 0.01 0.41 0.00 DG 

AMNH 52596 Lophocebus PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.99 0.00 PG 

AMNH 52609 Lophocebus PG 0.01 0.00 0.99 0.00 PG  0.02 0.00 0.98 0.00 PG 

AMNH 52627 Lophocebus PG 0.02 0.00 0.98 0.00 PG  0.07 0.00 0.93 0.00 PG 

MCZ 37928 Lophocebus PG 0.01 0.00 0.99 0.00 PG  0.07 0.00 0.93 0.00 PG 

AMNH 167678 Lophocebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

NMNH 578579 Lophocebus PG 0.01 0.00 0.99 0.00 PG  0.05 0.00 0.95 0.00 PG 

AMNH 89361 Mandrillus DG 0.96 0.00 0.04 0.00 DG  0.72 0.01 0.27 0.00 DG 

AMNH 89362 Mandrillus DG 0.75 0.00 0.25 0.00 DG  0.81 0.01 0.18 0.00 DG 

AMNH 89364 Mandrillus DG 1.00 0.00 0.00 0.00 DG  1.00 0.00 0.00 0.00 DG 

AMNH 89367 Mandrillus DG 1.00 0.00 0.00 0.00 DG  1.00 0.00 0.00 0.00 DG 

AMNH 170364 Mandrillus DG 0.83 0.00 0.17 0.00 DG  0.54 0.01 0.45 0.00 DG 

AMNH 170366 Mandrillus DG 1.00 0.00 0.00 0.00 DG  1.00 0.00 0.00 0.00 DG 

MCZ 34137 Mandrillus DG 1.00 0.00 0.00 0.00 DG  0.97 0.00 0.03 0.00 DG 

MCZ 34177 Mandrillus DG 1.00 0.00 0.00 0.00 DG  0.99 0.00 0.00 0.00 DG 

AMNH 52634 Cercocebus PG 0.29 0.00 0.71 0.00 PG  0.14 0.00 0.86 0.00 PG 

AMNH 81250 Cercocebus PG 0.08 0.00 0.92 0.00 PG  0.27 0.00 0.72 0.01 PG 

AMNH 103654 Macaca PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.98 0.00 PG 

AMNH 103659 Macaca PG 0.02 0.00 0.98 0.00 PG  0.01 0.00 0.97 0.01 PG 

AMNH 175460 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35626 Macaca PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.98 0.00 PG 

MCZ 35629 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35652 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.94 0.06 PG 



 

157 
 

   DFA  glmnet 
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MCZ 35658 Macaca PG 0.18 0.00 0.82 0.00 PG  0.30 0.01 0.69 0.00 PG 

MCZ 35677 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35681 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35693 Macaca PG 0.01 0.00 0.99 0.00 PG  0.01 0.00 0.99 0.00 PG 

MCZ 35694 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35700 Macaca PG 0.02 0.00 0.98 0.00 PG  0.02 0.00 0.98 0.00 PG 

MCZ 35701 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35729 Macaca PG 0.01 0.00 0.99 0.00 PG  0.02 0.00 0.97 0.00 PG 

MCZ 35736 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

UMMZ 130418 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

UMMZ 161308 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

UMMZ 56349 Macaca PG 0.00 0.00 1.00 0.00 PG  0.00 0.08 0.77 0.15 PG 

AMNH 34709 Erythrocebus DG 0.98 0.00 0.02 0.00 DG  0.81 0.00 0.19 0.00 DG 

AMNH 34712 Erythrocebus DG 0.99 0.00 0.01 0.00 DG  0.91 0.00 0.09 0.00 DG 

AMNH 34713 Erythrocebus DG 1.00 0.00 0.00 0.00 DG  0.98 0.00 0.02 0.00 DG 

AMNH 34714 Erythrocebus DG 0.96 0.00 0.04 0.00 DG  0.59 0.00 0.41 0.00 DG 

NMNH 257013 Erythrocebus DG 1.00 0.00 0.00 0.00 DG  0.93 0.00 0.07 0.00 DG 

NMNH 399317 Erythrocebus DG 0.95 0.00 0.05 0.00 DG  0.88 0.01 0.12 0.00 DG 

NMNH 538311 Erythrocebus DG 1.00 0.00 0.00 0.00 DG  0.99 0.00 0.01 0.00 DG 

AMNH 52368 Cercopithecus PG 0.87 0.00 0.13 0.00 DG  0.43 0.00 0.57 0.00 PG 

AMNH 52398 Cercopithecus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52401 Cercopithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52410 Cercopithecus PG 0.09 0.00 0.91 0.00 PG  0.28 0.00 0.72 0.00 PG 

AMNH 82411 Cercopithecus PG 0.00 0.00 1.00 0.00 PG  0.02 0.00 0.98 0.00 PG 

AMNH 82412 Cercopithecus PG 0.02 0.00 0.98 0.00 PG  0.01 0.00 0.99 0.00 PG 

AMNH 82415 Cercopithecus PG 0.30 0.00 0.70 0.00 PG  0.37 0.01 0.61 0.01 PG 

MCZ 37930 Cercopithecus PG 0.10 0.00 0.90 0.00 PG  0.18 0.00 0.82 0.00 PG 

MCZ 37934 Cercopithecus PG 0.47 0.00 0.53 0.00 PG  0.03 0.00 0.97 0.00 PG 

UMMZ 39508 Cercopithecus PG 0.99 0.00 0.01 0.00 DG  0.79 0.00 0.21 0.00 DG 

AMNH 27711 Colobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 
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AMNH 99468 Colobus PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.98 0.01 PG 

NMNH 452621 Colobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52223 Colobus PG 0.01 0.00 0.99 0.00 PG  0.16 0.02 0.78 0.04 PG 

AMNH 52229 Colobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52240 Colobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.01 0.98 0.01 PG 

AMNH 52241 Colobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52248 Colobus PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.99 0.00 PG 

AMNH 187392 Colobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52278 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52287 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.96 0.04 PG 

AMNH 52298 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52303 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 52334 Procolobus PG 0.08 0.00 0.92 0.00 PG  0.01 0.01 0.96 0.02 PG 

AMNH 54279 Procolobus PG 0.01 0.00 0.99 0.00 PG  0.02 0.04 0.93 0.01 PG 

AMNH 86709 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

MCZ 37931 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.01 0.90 0.10 PG 

MCZ 37932 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

MCZ 37933 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

MCZ 37935 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 37936 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

AMNH 28255 Nasalis PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.98 0.01 PG 

AMNH 103668 Nasalis PG 0.01 0.00 0.99 0.00 PG  0.01 0.01 0.98 0.00 PG 

AMNH 103669 Nasalis PG 0.01 0.00 0.99 0.00 PG  0.09 0.01 0.87 0.03 PG 

AMNH 103670 Nasalis PG 0.20 0.00 0.80 0.00 PG  0.09 0.06 0.85 0.01 PG 

AMNH 103671 Nasalis PG 0.03 0.00 0.97 0.00 PG  0.01 0.00 0.98 0.00 PG 

AMNH 106272 Nasalis PG 0.07 0.00 0.93 0.00 PG  0.05 0.01 0.94 0.00 PG 

AMNH 106273 Nasalis PG 0.20 0.00 0.80 0.00 PG  0.26 0.04 0.70 0.01 PG 

AMNH 106274 Nasalis PG 0.02 0.00 0.97 0.00 PG  0.03 0.02 0.82 0.13 PG 

AMNH 106275 Nasalis PG 0.42 0.00 0.58 0.00 PG  0.19 0.04 0.72 0.05 PG 

MCZ 7099 Nasalis PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 
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MCZ 37325 Nasalis PG 0.01 0.00 0.99 0.00 PG  0.01 0.00 0.98 0.00 PG 

MCZ 37329 Nasalis PG 0.13 0.00 0.87 0.00 PG  0.02 0.00 0.98 0.00 PG 

MCZ 37342 Nasalis PG 0.05 0.00 0.95 0.00 PG  0.00 0.01 0.98 0.00 PG 

MCZ 41554 Nasalis PG 0.05 0.00 0.95 0.00 PG  0.03 0.01 0.96 0.00 PG 

MCZ 41555 Nasalis PG 0.02 0.00 0.98 0.00 PG  0.04 0.03 0.92 0.00 PG 

MCZ 41556 Nasalis PG 0.01 0.00 0.99 0.00 PG  0.00 0.01 0.98 0.00 PG 

MCZ 41560 Nasalis PG 0.01 0.00 0.99 0.00 PG  0.02 0.01 0.97 0.00 PG 

AMNH 101504 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

AMNH 102461 Trachypithecus PG 0.00 0.00 0.98 0.02 PG  0.01 0.07 0.69 0.23 PG 

AMNH 106598 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.98 0.02 PG 

MCZ 35636 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35640 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.98 0.02 PG 

MCZ 35675 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35682 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 35685 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

MCZ 37387 Trachypithecus PG 0.01 0.00 0.99 0.00 PG  0.03 0.00 0.96 0.00 PG 

MCZ 37391 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 37394 Trachypithecus PG 0.02 0.00 0.98 0.00 PG  0.04 0.00 0.95 0.00 PG 

MCZ 37396 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.02 0.03 0.95 0.00 PG 

MCZ 37399 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.99 0.00 PG 

MCZ 37665 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 37671 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 112976 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.99 0.00 PG 

AMNH 112977 Trachypithecus PG 0.01 0.00 0.99 0.00 PG  0.01 0.00 0.99 0.00 PG 

AMNH 106599 Presbytis PG 0.01 0.00 0.99 0.00 PG  0.01 0.01 0.97 0.01 PG 

AMNH 106606 Presbytis PG 0.05 0.00 0.95 0.00 PG  0.03 0.00 0.97 0.00 PG 

AMNH 211527 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 211528 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 211531 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 211532 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.01 0.98 0.00 PG 
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AMNH 211535 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 211542 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 211543 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 211544 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 23333 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 23342 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 187999 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 188006 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.96 0.04 PG 

AMNH 30193 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 42313 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.01 0.99 0.00 PG 

AMNH 42316 Alouatta PG 0.00 0.01 0.99 0.00 PG  0.00 0.07 0.91 0.02 PG 

AMNH 132790 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.01 0.93 0.06 PG 

MCZ 30436 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

MCZ 30437 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.95 0.05 PG 

MCZ 31694 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 31695 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

MCZ 32160 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

MCZ 28735 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.01 0.98 0.01 PG 

UMMZ 116300 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

UMMZ 116301 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

UMMZ 77301 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.01 0.04 0.93 0.03 PG 

UMMZ 124689 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

UMMZ 124690 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

UMMZ 146506 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

UMMZ 63503 Alouatta PG 0.00 0.00 0.99 0.01 PG  0.00 0.00 0.97 0.02 PG 

UMMZ 63504 Alouatta PG 0.01 0.00 0.99 0.00 PG  0.10 0.00 0.89 0.00 PG 

UMMZ 63511 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.01 0.98 0.00 PG 

UMMZ 63512 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

AMNH 28418 Ateles S 0.00 0.00 0.35 0.65 S  0.00 0.00 0.51 0.49 PG 

AMNH 28420 Ateles S 0.00 0.00 0.04 0.96 S  0.00 0.00 0.21 0.79 S 
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MCZ 47269 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.06 0.94 S 

UMMZ 116302 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 0.99 S 

NMNH 276631 Ateles S 0.00 0.00 0.26 0.74 S  0.00 0.03 0.12 0.86 S 

NMNH 276657 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.03 0.01 0.96 S 

UMMZ 63165 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.07 0.92 S 

UMMZ 63166 Ateles S 0.00 0.00 0.12 0.88 S  0.00 0.00 0.19 0.81 S 

UMMZ 63171 Ateles S 0.00 0.00 0.10 0.90 S  0.00 0.00 0.21 0.79 S 

NMNH 244863 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.01 0.99 S 

NMNH 396348 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S 

UMMZ 126129 Cebus PG 0.00 0.00 0.65 0.35 PG  0.00 0.01 0.54 0.45 PG 

UMMZ 126130 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

AMNH 133606 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

AMNH 133607 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.98 0.02 PG 

AMNH 133608 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.98 0.02 PG 

AMNH 133622 Cebus PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.95 0.03 PG 

AMNH 133624 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 133626 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 133628 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.92 0.08 PG 

AMNH 133629 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

AMNH 133631 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.95 0.05 PG 

AMNH 133633 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.95 0.04 PG 

AMNH 133635 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

AMNH 133637 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

AMNH 133638 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

AMNH 133640 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.02 0.96 0.02 PG 

AMNH 133654 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 133656 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 133660 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

AMNH 133662 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 

AMNH 133666 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG 
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AMNH 133667 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG 

AMNH 133668 Cebus PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.99 0.00 PG 

AMNH 133674 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.97 0.03 PG 

AMNH 133677 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.98 0.02 PG 

AMNH 133815 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.01 PG 

AMNH 133851 Cebus PG 0.00 0.00 1.00 0.00 PG  0.01 0.00 0.99 0.00 PG 

AMNH 133862 Cebus PG 0.00 0.00 1.00 0.00 PG   0.00 0.00 1.00 0.00 PG 
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Chapter 3 

Tinderet capitate morphology, and locomotor diversity among early Miocene 

catarrhines 

 

Abstract 

A great deal of taxonomic diversity has been recognized among early Miocene 

catarrhines, but characterization of locomotor diversity within this group has lagged 

behind. With rare exception, catarrhines of the early Miocene are thought to deviate little 

from the positional repertoire best represented by Ekembo heseloni, consisting largely 

of above-branch quadrupedalism. Our understanding of early Miocene catarrhine 

behavior is hindered by the rarity of instances in which multiple species are represented 

by the same postcranial element, particularly from the same geographical and temporal 

setting. This chapter provides morphological descriptions and computational analysis of 

seven capitates belonging to non-cercopithecoid catarrhines from three sites within the 

Tinderet Miocene sequence of Western Kenya. 3D morphometrics from a broad sample 

of extant anthropoids are used to construct models to predict the positional behavior of 

each specimen, and the functional diversity of the sampled catarrhines present in this 

early Miocene setting is quantified and compared to that of extant groups. These 

results, along with body mass estimates, are used to constrain the taxonomic identity of 

each specimen.  
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The functional diversity of the Tinderet sample is found to be comparable to that 

of broad extant groups. Four specimens are classified as arboreal quadrupeds, two of 

which have estimated locomotor proportions distinct from those of E. heseloni. Two 

other specimens demonstrate significant reliance on below-branch behaviors, and 

suggest the presence of a currently unrecognized small-bodied suspensor at Songhor. 

The final specimen, KNM-SO 1002, is uniquely great ape-like among capitates known 

from the early Miocene, and possesses features often associated with knuckle-walking. 

Along with previous observations of isolated postcrania, this specimen suggests the 

presence of a behaviorally-derived mid-sized ape at Songhor, the identity of which may 

be Rangwapithecus gordoni. This study documents the presence of a wide range of 

behavioral repertoires in an early Miocene setting, and points to a broader trend of 

functional diversity among early Miocene catarrhines beyond what is generally 

recognized. 

 

Introduction 

The early Miocene (ca. 23-16 Ma) of Africa is home to a great variety of 

catarrhine species. However, postcranial evidence has seemed to suggest that the 

functional diversity of this group lagged far behind its taxonomic diversity, with the 

majority of specimens interpreted to facilitate a similarly limited range of behaviors 

(Ward, 2015). This functional repertoire, best characterized in Ekembo heseloni due to 

its extensive postcranial hypodigm (Napier and Davis, 1959; Walker and Pickford, 1983; 

Walker et al., 1993; Walker, 1997), is thought to have been dominated by above-branch 

palmigrade quadrupedalism, likely supplemented by occasional slow climbing or careful 

clambering (e.g., McHenry and Corruccini, 1983; Cartmill and Milton, 1977; Rose, 1983, 
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1993, 1996; Beard et al., 1986, 1993; Kelley, 1997; Ward, 1998; Daver and 

Nakatsukasa, 2015), and possibly some leaping (Ruff, 2002; Ryan et al., 2012). This 

positional habit has become the null hypothesis in the study of early and middle 

Miocene catarrhine functional morphology, with postcranial specimens only rarely 

thought to deviate sufficiently from those of E. heseloni to indicate significant behavioral 

divergence.  

A handful of taxa depart from this pattern. Specimens of Dendropithecus 

macinnesi from Rusinga are thought to have supplemented the paradigmatic behavioral 

repertoire with increased reliance on climbing (Rose et al., 1992; Rose, 1994) and 

perhaps some below-branch suspension (Napier and Davis, 1959; Preuschoft, 1973; 

Simons and Fleagle, 1973; Fleagle, 1983; Rose, 1983, 1993). Simiolus enjiessi 

specimens from Kalodirr have been reconstructed similarly (Rose et al., 1992). Among 

putative apes, every species of the early Miocene has been reconstructed as 

behaviorally similar to E. heseloni aside from Morotopithecus bishopi, a very early and 

potentially isolated instance of adaptation for orthograde climbing (Sanders and 

Bodenbender, 1994; Gebo et al., 1997; MacLatchy et al., 2000; MacLatchy, 2004).  

Behavioral variation finally emerges in the middle Miocene, with specimens of 

Equatorius africanus hinting at the appearance of incipient terrestriality (McCrossin et 

al., 1998; Ward et al., 1999; Sherwood et al., 2002) and Nacholapithecus kerioi evincing 

enhanced climbing abilities (Rose et al., 1996; Ishida et al., 2004). However, behavioral 

patterns clearly distinct from those of E. heseloni are either not generally recognized or 

not yet well-characterized in the hominoid lineage until the late-middle Miocene of 

Eurasia (e.g., Rose, 1984; Moya-Sola et al., 2004).  
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Among the factors inhibiting our understanding of early catarrhine positional 

behavior is the relative dearth of instances in which the same postcranial element has 

been recovered from multiple early Miocene species. In addition to encumbering the 

functional analysis of individual taxa, this hinders characterization of functional diversity 

among these animals. Seven capitates belonging to non-cercopithecoid catarrhines 

were recovered between 1931 and 1996 from Songhor, Chamtwara, and Mteitei Valley, 

potentially penecontemporaneous sites within the Tinderet Miocene sequence of 

Western Kenya (see Fig. 3.1). Several of these specimens are mentioned in the work of 

previous researchers (e.g., Harrison, 1982; Rose, 1984), but none has been formally 

described. Here I present morphological descriptions and computational analysis of this 

rare collection of overlapping postcranial specimens.  

 

Table 3.1. Fossil catarrhines known from Songhor, Chamtwara, and Mteitei Valley, with published body 
mass estimates 

Taxon Localities Body massa References 

Proconsul africanus  SO, CA, MV Similar to E. heselonib Harrison, 2010 

Proconsul major  SO, CA, MV 63.4 - 86.7kgc Rafferty et al., 1995 

Rangwapithecus gordoni  SO Similar to E. heseloni Andrews, 1978; Langdon, 1984 

Dendropithecus macinnesi  SO, CA 6 - 8kg 
Bilsborough and Rae, 2015; 
Harrison, 2013 

Kalepithecus songhorensis  SO, CA, MV 5 - 6kg Harrison, 2013 

Limnopithecus evansi  SO, MV 5kg Harrison, 2010 

Limnopithecus legetet  CA 5kg Harrison, 2010 

Micropithecus clarki  CA 3 - 4.5kg 
Fleagle and Simons, 1978; 
Harrison, 2013 

a Body mass estimates of all species at Tinderet other than P. major are based on qualitative 
comparisons.    
b E. heseloni estimates are based on postcranial articular sizes or shaft dimensions, with adult size 
extrapolated based on the size of different extant anthropoids at similar developmental stages. They 
range between approximately 8 and 19kg (Rafferty et al., 1995, Ruff 2003).    
c Estimated for 3 specimens from Songhor and Napak based on linear regression with tibial and humeral 
shaft dimensions, and talar and tibial articular size 
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Fig. 3.1. Fossil sites preserving the specimens analyzed in this study.  

 

The fossil assemblages of these three sites reflect the taxonomic diversity of 

early catarrhines, with eight species currently recognized as having been present in this 

temporally and geographically constrained setting (Table 3.1). Taxonomic attribution of 

these specimens is confounded by the lack of capitates recovered in association with 

craniodental material attributed to any of the catarrhine species known from these sites; 

I therefore constrain the possible identity of each specimen through body mass 

estimation, qualitative and quantitative affinity to extant anthropoid taxa, and, when 
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possible, by comparing the functional affinities of each specimen to results of previous 

functional analyses of postcrania attributed to species known from these sites. 

I reconstruct the likely behavioral repertoires of each fossil specimen through 

analysis of morphometric traits found to be associated with positional behaviors and 

frequencies thereof in a broad sample of extant anthropoids. The functional diversity of 

this sample is also quantitatively characterized and compared to that of extant 

anthropoid groups. I discuss how the diversity present in this limited setting might aid 

our understanding of catarrhine evolution. 

 

 

Discovery and context 

Five of the seven Tinderet capitates were recovered at Songhor (35° 13' E, 00° 

02' S), a site discovered in 1932 by L.S.B Leakey and Donald MacInnes (MacInnes, 

1943). This locality’s fossiliferous sediments, accumulated by sub-aerial deposition, 

consist of a sequence of tuffs divided into 4 main units, from oldest to youngest – the 

Calcified Tuff Member, the Red Bed Member, the Grey Tuff Member, and the Tuff and 

Agglomerate Member (Pickford and Andrews, 1981). A sample from a biotite collected 

at the base of the calcified Tuff Member, the oldest of the four, yielded a K/Ar age 

estimate of between 19.2 and 20.5 Ma (Bishop et al., 1969); adjustment for new 

radiometric constants produce a marginally earlier range of 19.7-21 Ma (Cote et al., 

2016). Efforts to re-date this and many other East African Miocene sites are currently 

underway (McNulty et al., 2014). KNM-SO 1000, KNM-SO 1001, and KNM-SO 1002 

were recovered during the Leakey and MacInnes survey beginning in 1966. KNM-SO 

31245 and KNM-SO 31246 were recovered in 1996 after renewed excavation and 
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sieving of Red Bed Member sediments by Nengo and colleagues (Nengo and Rae, 

1992) in collecting area 5 (Pickford and Andrews, 1981). 

 

 

Fig. 3.2. Tinderet fossil sample in standard anatomical views. All specimens roughly to scale. KNM-SO 
1000, a left capitate, was mirrored for ease of comparison. Missing photographic views are represented 
by 3D models.  
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 The remaining two capitates were discovered at nearby Chamtwara (35° 15' 

57.6" E, 0° 07' 32.6" S) and Mteitei Valley (35° 18' 30.75" E, 0° 00' 40.6" N), apparently 

by Leakey and MacInnes’ 1930s expedition based on their field numbers. These three 

Tinderet sites have distinct fossil assemblages (see Table 3.1): Proconsul africanus, 

Proconsul major, and Kalepithecus songhorensis are common to all, but 

Dendropithecus macinnesi has been identified only at Songhor and Chamtwara of the 

Tinderet sites (Harrison, 2010 and references therein). Limnopithecus legetet and 

Micropithecus clarki are common at Chamtwara but not known at Songhor or Mteitei 

Valley, which instead yield Limnopithecus evansi (Harrison, 1981, 1988). 

Rangwapithecus gordoni may have been a temporally and geographically restricted 

taxon (Cote et al., 2014), perhaps associated with a specialization for folivory (Kay and 

Ungar, 1997; but see Shearer et al., 2015). It is known almost exclusively from Songhor, 

save for a mandible (Cote et al., 2014) and partial cranium (McNulty et al., 2015a) from 

Lower Kapurtay, an adjacent site discovered in 1996 by Nengo and Malit (Gebo et al., 

2009), although a lower third molar from Moroto II, Uganda has also been provisionally 

attributed to this genus (Jansma and MacLatchy, 2015). 
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Table 3.2. Sampled extant (a) and fossil (b) capitates. See Chapter 2 for details on positional behavior variables and references 

a Extant taxon    Total proportions  Arboreal-only proportions  

n ♂ ♀ Quad Susp Climb Leap Arb  QuadA SuspA ClimbA LeapA Class 

Pan troglodytes schweinfurthii 10 7 3 0.93 0.01 0.06 0 0.10  0.31 0.08 0.59 0.02 KW 

Pan troglodytes troglodytes 12 6 6           KW 

Pan troglodytes verus 13 7 6 0.86 0.01 0.11 0 0.16  0.21 0.06 0.68 0.01 KW 

Pan troglodytes ellioti 5 2 3           KW 

Pan paniscus 4 2 2 0.87 0.01 0.09 0 0.17  0.35 0.09 0.51 0.04 KW 

Gorilla gorilla 26 15 11 0.92 0.01 0.06 0 0.10  0.19 0.13 0.62 0.02 KW 

Gorilla beringei 12 9 3 0.96 0.01 0.04 0 0.09  0.53 0.06 0.40 0.01 KW 

Pongo pygmaeus 19 9 10 0.12 0.43 0.37 0.01 0.95  0.12 0.43 0.37 0.01 S 

Pongo abelii 15 5 10 0.18 0.38 0.35 0.01 0.95  0.18 0.38 0.35 0.01 S 

Hoolock hoolock 7 3 4 0 0.55 0.20 0.22 0.99  0 0.55 0.20 0.22 S 

Hylobates muelleri 4 2 2           S 

Hylobates lar 15 9 6 0 0.59 0.19 0.16 0.99  0 0.59 0.19 0.16 S 

Symphalangus syndactylus 3 1 2 0 0.59 0.32 0.02 0.99  0 0.59 0.32 0.02 S 

Papio anubis 14 8 6 0.99 0 0.01 0.01 0.05  0.68 0 0.21 0.10 DG 

Lophocebus albigena 6 5 1 0.42 0 0.36 0.21 0.95  0.42 0 0.36 0.21 PG 

Mandrillus sphinx 9 7 2           DG 

Cercocebus agilis 2 2 0           PG 

Macaca fascicularis 18 11 7 0.68 0 0.26 0.06 0.97  0.68 0 0.26 0.06 PG 

Erythrocebus patas 7 5 2 0.94 0 0.05 0.01 0.08  0.60 0 0.30 0.10 DG 

Cercopithecus mitis 11 7 4 0.54 0 0.35 0.11 0.95  0.54 0 0.35 0.11 PG 

Colobus guereza 9 6 3 0.41 0.01 0.20 0.38 0.96  0.41 0.01 0.20 0.38 PG 

Procolobus rufomitratus 13 7 6 0.35 0.01 0.29 0.35 0.95  0.35 0.01 0.29 0.35 PG 

Nasalis larvatus 17 9 8           PG 

Trachypithecus sp. 17 7 10 0.60 0 0.13 0.28 0.99  0.60 0 0.13 0.28 PG 

Presbytis melalophos 2 1 1 0.28 0.02 0.19 0.50 0.99  0.28 0.02 0.19 0.50 PG 

Alouatta sp. 32 13 19 0.61 0.02 0.33 0.05 0.95  0.61 0.02 0.33 0.05 PG 

Ateles geoffroyi 13 2 11 0.42 0.25 0.25 0.07 0.99  0.42 0.25 0.25 0.07 S 

Cebus apella 28 20 8 0.37 0 0.40 0.21 0.95  0.37 0 0.40 0.21 PG 

Total n 343 187 156                       
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b Fossil specimens 

Undescribed KNM-MV 4 

 KNM-CA 409 

 KNM-SO 1000 

 KNM-SO 1001 

 KNM-SO 31245 

 KNM-SO 31246 

 KNM-SO 1002 

Ekembo heseloni KNM KPS III C26 

 KNM KPS III C28 

 KNM KPS VIII C27 

  KNM-RU 2036M 

 

 

Materials and methods 

Sample and Data Collection 

Extant comparanda comprise 343 specimens from 28 taxa, selected to sample 

the locomotor diversity within a range of anthropoid clades (Table 3.2a, Fig. 3.9c). 

Extant taxa were assigned locomotor proportions and categories of positional behavior 

based on published observations (see Chapter 2 references and details). The Tinderet 

sample is compared to four E. heseloni capitates from Rusinga (Table 3.2b).  

The sampling procedure is detailed in Chapter 2. Specimens were μCT or laser 

scanned to produce 3D models from which surface areas, angles, and other shape 

metrics were extracted (Table 3.3). Metrics subject to isometry were indexed to render 

them scale-free (Jungers et al., 1995). CpPx, which characterizes the size of the 

capitate’s proximoradial surface, is the sum of two other shape variables, CpSc and 

CpLu, and was excluded from multivariate analyses of “all” shape metrics. 
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Table 3.3. Description of capitate shape variables 

Metric Description 

CpPxa Capitate proximoradial surface area 

CpSc 
Surface area of scaphoid/centrale facet of capitate relative to capitate 
surface area 

CpLu Surface area of lunate facet of capitate relative to capitate surface area 

CpDn Capitate dorsal nonarticular surface area 

Cp3 Surface area of Mc3 facet of capitate relative to capitate surface area 

CpHm Surface area of hamate facet(s) of capitate relative to total surface area 

Cp2 Capitate Mc2 surface area 

Cp4 Capitate Mc4 surface area 

Cp23A Orientation of Mc2 facet of capitate relative to Mc3 facet 

Cp3HmA Angle between Mc3 and hamate facets of capitate 

CpPxA 
Orientation of proximoradial surface of the capitate relative to hamate 
facet 

CpScA 
Orientation of scaphoid/centrale facet of capitate relative to dorsal 
nonarticular surface 

Cp3SD Capitate Mc3 facet complexity 

CpHmC Capitate hamate surface concavity 

CpHP Dorsopalmar position of the capitate head 
a Sum of CpSc and CpLu. CpPx and its constituents were not included together in 
multivariate analyses 

 

 

Taphonomic damage to fossil specimens was virtually repaired, guided by 

preserved anatomy and with reference to that of contemporaneous specimens (Fig. 

3.3). Morphometric values dependent on missing anatomy (7 total values from 4 

specimens) were imputed via a bootstrap-aggregated decision tree algorithm trained 

with the combined set of extant and fossil shape data, which fits a model for each 

variable as a function of all the others. Qualitative observations were made on the 

original fossils at the National Museums of Kenya, Nairobi. 
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Fig. 3.3. Representative example (KNM-SO 31245) of virtual reconstruction of missing fossil morphology. 

 

 

Body mass estimation and preparatory analyses 

Fossil body mass estimates were calculated based on the known relationship 

between capitate volume and body mass (see Chapter 2). To encompass the possible 

phylogenetic, locomotor, and size ranges of the fossil specimens, all sex-specific body 

mass data were included in building the model except male Gorilla, which was excluded 

as an outlier due to its extreme size relative to the fossil specimens and its very low 

relative capitate volume. Smith (1984, 1985) has recommended limiting the range of 

training set body masses to those similar to the experimental set; the other extant apes 

were nevertheless included to account for possible scaling variation between anthropoid 

groups. 
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“Classical calibration” was used to produce maximum likelihood estimates based 

on regression of morphometric data against body mass (Konigsberg et al., 1998; Uhl et 

al., 2013). All data were log-transformed to correct for heteroscedasticity and improve 

model fit, as is common in scaling analyses (e.g., Rafferty et al., 1995). It has been 

suggested that log-log allometric regressions can be misleading (e.g., Packard, 2013, 

2015), but I follow others (e.g., Lemaitre et al., 2015) in judging the superior 

interpretability and transferability of this approach to outweigh any slight increase in 

accuracy that may be afforded by suggested alternatives. Systematic underestimation 

resulting from detransformation of logged predictions into standard linear space was 

ameliorated by applying the quasi-maximum likelihood estimator correction factor 

(Sprugel, 1983). Different correction factors tend to converge when representing less 

than about 10% of the detransformed values (Smith, 1993); that used here equaled 

roughly 1%, so variation associated with different correction factors would necessarily 

be trivial. Because sex-specific means were used to predict individual body masses, 

confidence intervals are not meaningful (Smith, 1985). Prediction error was therefore 

characterized with percent mean prediction error (%MPE) and percent standard error of 

the estimate (%SEE) after 100 repetitions of 10-fold cross validation (CV). 

 

Functional analyses 

Covariance between shape variables and locomotor proportions in the extant 

sample was tested using phylogenetic generalized least squares (PGLS) regression. An 

additional PGLS model was fitted for each shape variable with size as a covariate to 

account for the influence of allometry. PGLS was also used to test the covariance of 
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each shape variable between positional classes. Because PGLS does not allow 

dependent factors, these relationships were assessed while accounting for the influence 

of allometry using Bayesian phylogenetic generalized linear mixed models (PGLMM; 

Hadfield, 2010; Hadfield and Nakagawa, 2010; Carter and Worthington, 2016, Gelman, 

2006; see also Chapter 2). Separate PGLMM regressions were fitted to both taxon 

means and individual observations of each shape variable, with size as a covariate. All 

PGLS and PGLMM analyses were repeated with hylobatids excluded to allow the 

influence of this group’s high-leverage data to be considered when evaluating functional 

relationships. 

Two positional classifiers were built. Discriminant function analysis (DFA) was 

chosen for interpretability and ease of visualization. This was supplemented by glmnet, 

a regularized multinomial logistic regression machine learning algorithm (Friedman et 

al., 2010), chosen for its complementary properties. Relative to DFA, glmnet is less 

prone to overfitting and bias due to collinearity, less stringent in its assumptions 

regarding heteroscedasticity, and can detect non-linear relationships (Kovarovic et al., 

2011; Mitteroecker and Bookstein, 2011). Shape variables were selected for inclusion in 

these models with consideration of all four PGLMM analyses (taxon means and 

individual observations, with and without hylobatids). Selected predictors each 

distinguish the individual observations of either suspensory, knuckle-walking, or 

digitigrade anthropoids from those of the palmigrade reference class at p ≤ 0.1 with 

hylobatids excluded, while covarying with similar or greater significance in at least one 

of the other three analyses. The classification accuracy of both models was calculated 

after 100 repetitions of 10-fold CV. 
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Models to estimate the locomotor proportions of the fossil specimens were built 

in a multi-step process. First, shape variables found not to significantly covary with the 

locomotor variable under consideration in either PGLS regression (i.e., with or without 

hylobatids) were eliminated from consideration. Subsets of the remaining variables were 

then ranked by ascending second-order Akaike Information Criterion (AICc; Burnham 

and Anderson, 2002). The three or four top-ranked subsets resulting from this process, 

which generally had similar AICc values, were used to predict the locomotor proportions 

of the extant sample, with accuracy calculated after 100 10-fold CV repetitions of 

quasibinomial logistic regression. The most accurate of these models, as judged by 

%SEE, was chosen to estimate the frequency of that locomotor behavior in the fossil 

specimens.  

For several of the locomotor proportions, individual shape variables did not 

sufficiently covary with behavior for this process to produce effective predictive models. 

In these cases, models were built with all shape variables as predictors. Although these 

models were effective in predicting extant locomotor proportions, they do not account 

for phylogeny or allometry, and base predictions on functionally uninformative 

morphological features. Their predictions therefore reflect the overall resemblance of 

each specimen relative to the extant sample, and a larger proportion of their accuracy in 

predicting extant proportions is likely attributable to overfitting. Predictions assigned by 

these models are nevertheless provided to aid in evaluating the possible locomotor 

repertoires of the Tinderet sample, but are given less consideration. 

Functional affinities of the Tinderet specimens were further explored using two-

block partial least squares (PLS) regression (Rohlf and Corti, 2000). The first block 
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consists of the extant shape variables, while the second block comprises the arboreal-

only locomotor proportions and proportion of arboreality (Arb; see Table 3.2), chosen as 

the combination with the strongest relationship to wrist morphology (see Chapter 2). 

The fossil specimens, along with extant taxa for which locomotor observations are 

unavailable, were projected into PLS shape-space by multiplying their scaled shape 

variable matrix by one containing the singular vectors of the PLS shape block. The 

functional diversity of the Tinderet sample was characterized by calculating the 

Euclidean area of the convex hull enveloping the constituent data points of the Tinderet 

sample in PLS shape-space, relative to those calculated for extant groups. 

 

Taxonomic and phylogenetic analyses 

The fossil specimens were also assigned to one of the three anthropoid 

superfamilies using classifiers built with DFA and glmnet as described above. Shape 

variable covariance between these groups was assessed using multinomial logistic 

regression with size as a covariate. Variables were validated for inclusion in the 

taxonomic classifiers if found to significantly distinguish both hominoid and ceboid 

observations from those of cercopithecoids. 

The phylogenetic affinities of the fossil specimens were further explored via 

hierarchical clustering analysis. Significantly allometric variables have been found to 

adversely affect phylogenetic reconstruction (Worthington, 2012), so efforts were made 

to avoid their inclusion. Allometric scaling was assessed in a phylogenetic context. Sex-

specific means of each shape variable and the size surrogate were first transformed into 

phylogenetic independent contrasts (PICs; Felsenstein, 1985). Spearman correlations 
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were then calculated between the PICs of size and each shape variable. The 

phylogenetic signal of each shape variable was also estimated using both Pagel’s 

lambda (Pagel, 1999) and Blomberg’s K (Blomberg et al., 2003).  

Relative dissimilarity among the extant taxa and fossil specimens was estimated 

by calculating a matrix of Euclidean distances based on the shape variables found to 

have significant phylogenetic signal and insignificant allometric scaling. Hierarchical 

clustering was then carried out using BioNJ. This and other neighbor-joining algorithms 

(Saitou and Nei, 1987; Studier and Kappler, 1988) improve on standard agglomerative 

methods by seeking to join the pair of tips that minimizes the branch lengths of the 

entire tree at each stage of clustering. BioNJ adds an additional approximation of 

distance variance and covariance, accounting somewhat for non-independence due to 

shared evolutionary history (Gascuel, 1997). Trees were outgroup-rooted using Cebus, 

providing a basis for approximating trait polarity and yielding trees that depict estimated 

phylogenetic, rather than only phenetic, relationships. Separate clustering analyses 

were carried out for each fossil specimen; relationships between fossil and extant 

specimens are represented by multiple dendrograms to best represent the phylogenetic 

placement of the fossils in individual analyses. 

All variables were scaled to prevent bias due to unit heterogeneity and for 

convenience in comparing coefficients. Fossil shape variables were scaled according to 

the mean and standard deviation of the extant sample to ensure comparability. 

Phylogenetic information was taken from Arnold and colleagues (2010; Fig. 3.9c). All 

analyses were done in R (R Core Team, 2016). See Chapter 2 for computational 

details. 



 

180 
 

 

Results 

Morphological descriptions 

KNM-MV 4 This right capitate is the smallest of the fossil sample (See Fig. 3.2), similar 

in size to the average of sampled blue monkeys. It is well preserved and complete save 

for abrasion of the lateral approximately two-thirds of the dorsodistal margin. The 

capitate head is narrow both dorsopalmarly and mediolaterally, condyloid, and pronated 

substantially relative to the body, the latter resulting in the proximal region of the hamate 

facet facing somewhat dorsally. Distally, ligament notches are absent laterally and 

medially, allowing the Mc2 and Mc4 facets to run uninterrupted along the dorsopalmar 

entirety of these margins, a condition unique among the fossil sample with the possible 

exception of KNM-SO 31246 (see below). The palmar portion of the Mc4 facet widens 

and tilts medially, increasing in degree as it approaches its palmar extent. The Mc2 and 

Mc4 facets are separated by a wide and topographically mild articulation for the Mc3. In 

these features this specimen is most reminiscent of Cebus of the extant sample. 

In other features, KNM-MV 4 more closely resembles its sampled Miocene 

contemporaries. It lacks the lateral expansion of the distal portion of the body that 

characterizes the platyrrhines in the sample, and the distal portion of the hamate facet is 

oriented palmarly relative to the proximal portion. The topography of the Mc3 articular 

surface follows the basic pattern of the other fossils of the sample: the distal-most 

extent of the dorsal Mc3 margin occurs a short distance from its lateral extent, and the 

dorsal portion of the surface lateral to this point withdraws proximally before abutting the 

Mc2 facet. The remainder of the Mc3 surface is gently concave dorsopalmarly, and the 
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proximal half slopes distally toward the raised margin it shares with the palmar portion 

of the Mc2 facet, just distal to a rugose, palmarly projecting ridge for attachment of 

palmar intercarpal ligaments. However, this topography is generally less pronounced, 

resulting in a surface deviating only slightly from planar. 

 

 
Fig. 3.4. Comparison of dorsodistal lip morphology in fossil specimens. 

 

KNM-CA 409 The Chamtwara specimen is a nearly complete, right capitate, most 

similar in size to sampled patas monkeys and colobins. The centrale facet suffers from 

minor weathering, and small portions are abraded along the bone’s dorsodistal margin 

and along the distal extent of its proximal surface both palmarly and dorsally.  
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This specimen resembles those from Rusinga in much of its morphology. The 

midline of the Mc2 facet is constricted proximally, likely due to encroachment by the 

capitotrapezoid interosseous ligament. The dorsal extent of this articular surface is 

expanded distally where it abuts the dorsodistal margin of the bone, and its wide palmar 

portion projects distally where it meets the reciprocally angled Mc3 facet to form a 

raised ridge along their shared palmar border. The palmar portion of the Mc3 facet is 

mildly concave both proximodistally and mediolaterally, while the dorsolateral portion is 

moderately withdrawn proximally. A lateral projection along the dorsal margin of the 

distal hamate facet is also evident in KNM-CA 409, which serves to orient the distal 

portion of the hamate facet somewhat palmarly. This palmar orientation is common in 

extant apes, but the angulation that clearly delineates this portion from the medially-

oriented remainder of the hamate facet has previously been identified exclusively in E. 

heseloni, in which this portion rides along the dorsum of the hamate (Beard et al., 

1986). This angulation is not quite as pronounced in KNM-CA 409 (Fig. 3.4), but it is 

nevertheless clearly distinguished from the remainder of the hamate facet.  

More proximally, the morphology of this specimen departs somewhat from that of 

the Rusinga specimens. While its most proximal point occurs palmarly relative to the 

other Tinderet specimens, it is positioned dorsally relative to each of the Rusinga 

specimens. This point is also lateral to the midline, and the most proximal surface is 

moderately angular in palmar or dorsal view rather than smoothly curved, resulting in a 

clear delineation between the lunate and centrale facets. The capitate head is not visibly 

pronated relative to the body, and resembles a quarter sphere in proximal view, as the 

lunate facet faces dorsally rather than dorsolaterally as in most others of the fossil 
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sample (Fig. 3.2, proximal view). The palmar extent of the centrale facet roughly 

matches that of the contralateral hamate facet, whereas in each of the Rusinga 

specimens the centrale articulation extends palmarly to a significant degree, even 

accounting for the head’s pronated position. The lunate facet terminates more 

proximally on the dorsum of the bone relative to all others of the fossil sample. These 

features indicate significant differences in midcarpal mobility, with KNM-CA 409 perhaps 

having facilitated a relatively limited range of extension and supination.  

 

KNM- SO 1000 This left capitate is slightly larger than KNM-MV 4, of a size with 

sampled lutungs or smaller spider monkeys. It is extremely gracile, with an apparent 

fineness ratio (i.e., proximodistal length relative to mediolateral or dorsopalmar width) 

exceeding that of most hylobatids. The hamate surface is weathered, very long, and 

dorsopalmarly narrow, with only mild concavity. The head is narrow both dorsopalmarly 

and especially mediolaterally, and is not pronated relative to the body of the capitate, 

orienting its hamate facet directly medially. The proximal facet remains parallel with the 

dorsal nonarticular region for some distance near its medial margin with the hamate 

facet before angling sharply toward its palmar margin, rather than curving toward it 

immediately. The centrale facet is therefore more radially oriented, and is also palmarly 

expanded relative to the hamate facet, which, given cooperative soft tissue, would allow 

the centrale to translate farther palmarly, enhancing the range of mid-carpal supination 

(Jenkins, 1981). The centrale facet remains convex at its distal extent, terminating in the 

neck region proximal to where the body angles laterally in the region of the trapezoid 
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articulation. This condition occurs often in Pongo and Gorilla, but only rarely in 

hylobatids and Pan (see Fig. 3.10b). 

Distally, the Mc3 surface is mediolaterally narrow, and winnows progressively 

before coming to a palmolateral point. The entire facet is uniformly concave along its 

medial border; laterally, it shares the withdrawn dorsal portion and distally projecting 

palmar portion with its contemporaries, although the latter feature may be most 

pronounced in this specimen. The latter condition displaces the palmar Mc2 articulation 

more distally, resembling an inchoate form of the hook-like process common in Pongo 

specimens (Rose, 1984). A distal notch is present laterally, resulting in a discontinuous 

Mc2 facet and adding to the great ape resemblance of the anterior Mc2 morphology. A 

distal notch is not in evidence medially, but the slight projection of the distal portion of 

the hamate facet may have allowed a carpometacarpal ligament to pass, a possibility 

supported by the specimen’s discontinuous Mc4 facet. The body flares laterally to a 

small degree in the region of the dorsal Mc2 and trapezoid facets, perhaps increasing 

its embrasure with the trapezoid to some degree. The hamate facet is also 

discontinuous, with the most distal portion separated from the remainder by a small 

area of increased rugosity. This allies it somewhat with the brachiators of the extant 

sample (see Fig. 3.5), although the small size of the intervening region is more 

comparable with that variably present in Pongo and Nasalis, and particularly the former, 

as it lacks the latter’s especially deep excavation of the medial surface and distomedial 

margin for attachment and passage of capitohamate and carpometacarpal ligaments. 
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Fig. 3.5. Visualization of the hamate articulation (CpHm) in specimens displaying discontinuity. See Table 
3.17b for variation among sampled taxa. 

 

KNM-SO 1001 This right capitate is similar in size to KNM-SO 1000 as measured by 

volume and surface area, but is shorter and stouter, more similar in its dimensions to 

the Rusinga specimens and KNM-CA 409. It is well preserved except for small deletions 

along the distal margins palmarly and dorsomedially, and a larger one dorsolaterally. 

Despite its small size, this specimen resembles those from Rusinga in many ways. A 

distal notch is present medially and absent laterally, and it has large, continuous facets 

for both the Mc2 and hamate, both in accord with most of the fossil sample but unlike 
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KNM-SO 1000. The Mc3 surface is also more similar to others of the fossil sample than 

to KNM-SO 1000. Its mediolateral width remains relatively uniform from dorsal to 

palmar, and its medial and palmar borders are angled less acutely to each other than in 

the other Songhor specimen of similar size. Mc3 topography is less pronounced, with 

relatively continuous dorsopalmar concavity akin to that of the Rusinga specimens, 

lacking any hook-like projection palmarly. The facet’s distal extent occurs along the Mc2 

margin, but does not result in notable distal displacement of the palmar Mc2 articulation. 

Like KNM-SO 1000 and KNM-CA 409, the capitate head of KNM-SO 1001 lacks 

pronation, and its distinct lunate facet maintains a directly dorsal orientation across its 

mediolateral width before forming an angular border with the centrale facet. Unlike 

others of the fossil sample, the lunate and centrale facets are nearly orthogonal to each 

other, with the latter having a markedly lateral orientation. The hamate facet of this 

specimen is also the least concave of the fossil sample, falling just outside the upper 

range of Ateles. 

 

KNM-SO 31245 This right capitate is larger than those described above, just larger than 

the KPS III individual of E. heseloni and most similar in size to female proboscis 

monkeys of the sample. It suffers from abrasion along the lunate-centrale and lunate-

hamate facet margins palmarly, and along the dorsodistal margin of the hamate facet. 

More severe damage is present distally, where the dorsal margin of the Mc3 facet has 

been eroded, progressing in severity toward the lateral extent where the deletion 

includes the dorsal portion of the Mc2 surface. Despite this damage, the dorsopalmar 

continuity of the Mc2 surface is evident, with the facet maintaining uniform width at the 



 

187 
 

midline, as opposed to the proximal impingement adjacent to the lateral ligament 

concavity seen in the other fossil specimens.  

This specimen is relatively stout, with the head, neck, and body all mediolaterally 

expanded slightly. The distal facet is relatively uniform in width, neither narrowing 

palmarly nor coming to a point palmolaterally, although the prominent ligament 

attachment site just proximal to the Mc3 facet projects palmarly beyond the MC3 

articular surface, as commonly occurs in apes and in each of the fossil specimens save 

two of the Rusinga specimens. The distal portion of the hamate facet may have a slight 

palmar orientation, but the abrasion of the margin renders the morphology unclear. The 

head is pronated, and the centrale facet seems to be somewhat palmarly expanded, 

though the erosion in this area hinders comparison. 

 

KNM-SO 31246 Also from the right side, KNM-SO 31246 resembles KNM-SO 31245 in 

many ways while being more pronounced in many of their distinctive shared features. It 

is also larger, most similar in size to a large proboscis monkey or a small mandrill. While 

weathering is minor, the specimen suffers from severe erosion along the palmar margin 

of the lunate facet, growing in severity medially in the region formerly abutting the 

hamate facet. Damage is most extensive distally, where the Mc3 facet is properly 

represented in only a small palmomedial region. The unaffected area demonstrates the 

absence of a distal notch medially, contrary to the condition of KNM-SO 31245. The 

Mc2 facet has also been almost entirely deleted, although an attachment site for a 

lateral ligament is preserved. The distal position of this excavation suggests that 
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encroachment on the Mc2 articulation would have been significant, but the presence of 

a distolateral notch cannot be determined. 

Overall mediolateral expansion is more pronounced than in KNM-SO 31245, and 

the hamate facet’s proximodistal concavity is high relative to most of the fossil sample. It 

also has a weakly expressed dorsal ridge, akin to those sometimes present in great 

apes. A dorsal portion of the centrale facet is distally expanded, its distal extent 

positioned palmar to this slightly raised and angular portion of the body (Fig. 3.10). The 

distal portion of the hamate facet of KNM-SO 31246 also has a distinct palmar 

orientation, comparable to the condition of extant apes and lacking the unique 

morphology of E. heseloni. Head pronation is also exaggerated relative to KNM-SO 

31245, approaching the degree found in KNM-MV 4 (see Fig. 3.2, proximal view). Its 

centrale facet appears to have been palmarly expanded in life, but the palmar-most 

extent of this articulation is now absent. In overall morphology, this specimen bears 

some resemblance to the less morphologically elaborated Gorilla specimens of the 

sample. 

 

KNM-SO 1002 This right capitate is the largest of the fossil sample, similar in size to the 

smallest of the Papio sample. It suffers from erosion like that of KNM-SO 31246, albeit 

not as severe, with most of the Mc3 facet and a central portion of the Mc2 facet having 

been preserved. Palmar portions of the lunate and centrale facets also suffer from 

erosion, which extends distally and medially to transect the hamate facet, terminating 

near the dorsodistal border of the lunate surface.  
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The head of this specimen, large, globular, and greatly expanded laterally, while 

being somewhat pronated. The body is expanded both medially and laterally, and the 

neck is highly waisted. A dorsal portion of the centrale facet is distally expanded, 

positioning its distal extent palmar to the laterally-expanded body (Fig. 3.10). The 

erosion of the dorsal margin separating the body and head prevents examination of 

morphology in this region, but the surface just proximal to this area is well preserved 

and markedly concave, with the lunate surface angling dorsally where it may have 

contributed to a raised ridge. While a raised ridge in this area is fairly common, the 

preserved anatomy suggests it may have been quite robust in this specimen, perhaps 

resembling that of Nacholapithecus (Ogihara et al., 2016). The distal portion of the 

hamate facet maintains a palmar orientation, and is the most concave of the fossil 

sample, largely owing to the medial expansion of the body. Just palmar to this facet lies 

a deep excavation for the capitohamate ligament, the most pronounced of the fossil 

sample. KNM-SO 1002 also shares with many extant apes a distinct indentation for 

displacement of the palmar horn of the lunate, perhaps related functionally to load 

bearing in flexion.  

The preserved portion of the Mc2 surface is sufficient to demonstrate its 

dorsopalmar continuity, as well as a mildly distal orientation, a feature most pronounced 

in Asian apes among non-hominin anthropoids. Its continuous Mc2 facet aligns KNM-

SO 1002 with its contemporaries other than KNM-SO 1000, but distinguishes it from the 

typical condition of extant apes (Table 3.17a). A distal notch is absent medially, 

although like KNM-SO 1000, the medial projection of the distal hamate surface leaves a 

possible passage for a carpometacarpal ligament. The preserved portion of the distal 
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facet displays topography like that of contemporaneous catarrhines, lacking the 

complex Mc3 articulation most pronounced in African apes, Pongo, and Ateles of the 

extant sample. The morphology of the head is intermediate between Pan and 

cercopithecines; it appears to lack the palmar extension of the lunate and centrale 

facets generally seen in Pan, but its proximal outline is roughly a quarter sphere, as is 

commonly true of Pan. 

 

 

Body size estimation 

Body mass estimates for each of the fossil capitates are shown in Table 3.4a, 

with regression coefficients and associated uncertainty values in Table 3.4b. E. heseloni 

body size is estimated at 11.5kg (weighted mean to account for C26 and C28 both 

belonging to the KPS III individual), comparable to the 10.9kg estimate of Rafferty and 

colleagues (1995; Table 3.1).  

Most of the Tinderet specimens can be differentiated into two size groups. KNM 

MV 4, KNM-SO 1000, and KNM-SO 1001 belong to the smaller group, with body mass 

estimates between 5 and 6 kg. These estimates are incongruent with the Proconsul 

species and Rangwapithecus, but are potentially compatible with all other catarrhine 

species known from these sites. Estimates for KNM-SO 31245, KNM-SO 31246, and 

KNM-SO 1002 fall between 12 and 16 kg, compatible with P. africanus and R. gordoni. 

KNM- CA 409 falls between the two groups at 9.2 kg; this is within the range estimated 

for E. heseloni, and therefore is also compatible with the two mid-sized Tinderet 

species. However, because the estimated ranges of the relevant fossil taxa are based 
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on qualitative comparisons of limited material, the size of this specimen could potentially 

comport with D. macinnesi as well. 

 

Table 3.4. Fossil body mass estimates. qmle CF, quasi-maximum likelihood estimator correction factor; 
RSE, residual standard error; %SEE, percent standard error of estimate; %MPE, percent mean prediction 
error. See text for details. 

a   Specimen  BM (kg) 

Undescribed KNM-MV 4  5.3 
   KNM-CA 409  9.2 
   KNM-SO 1000  6.0 
   KNM-SO 1001  5.9 
   KNM-SO 31245  12.4 
   KNM-SO 31246  15.4 
   KNM-SO 1002  15.9 

E. heseloni  KPS III(L) C26  12.1 
   KPS III(R) C28  12.1 
   KPS VIII C27  11.6 
   KNM-RU 2036M  10.7 

   Mean  11.5 

b          Regression coefficients and uncertainty values 

R2 
Inter-
cept 

Slope p 
qmle 
CF 

RSE 
% 

SEE 
% 

MPE 

0.977 -2.30 0.786 0.000 1.01 0.147 16.15 12.36 

 

 

Functional analyses 

Positional classification  

Nine shape variables were found to distinguish between extant positional classes 

by the criteria described above (see Table 3.5; Table 3.9), and were included in the 

positional classifiers. The first two discriminant functions are visualized in Fig. 3.6. Most 

suspensors are distinguished from pronograde monkeys along the first axis, while the 

African apes overlap with both groups. Knuckle-walkers are largely distinguished from 
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members of the other positional classes along the second discriminant axis. Digitigrade 

anthropoids are poorly distinguished by the first two axes.  

The third axis, accounting for 6.3% of the variation, separates digitigrade 

individuals from non-cercopithecines monkeys, but does little to distinguish between the 

cercopithecine postural modes. Difficulty in separating digitigrade and palmigrade 

cercopithecines is the most prominent source of misclassification error for both models. 

Overall, however, the cross-validated accuracy of each exceeds 90% when accounting 

for differential class prevalence in the sample (Table 3.5a; see Table 3.10 for additional 

positional classifier details and Table 3.18 for predictions and posterior probabilities for 

extant individuals). 

The positional classifications of the fossil sample are entirely congruent between 

the two models (Table 3.5c). KNM-SO 1000 and KNM-SO 1001 are classified as 

suspensory, KNM-SO 1002 is classified as a knuckle-walker, and the remainder as 

palmigrade. The posterior probabilities assigned to these predictions by both models 

are generally high. The lowest-confidence predictions of the glmnet model were those 

for KNM-SO 31245 and KNM SO 1002, which were assigned a probability of 0.83. All 

others were 0.92 or higher. Posterior probabilities of DFA classification were 0.8 or 

greater for the Tinderet specimens, with most again exceeding 0.9. Nevertheless, the 

discriminant scores of the fossil specimens classified as suspensory or knuckle-walking 

position them near the decision boundaries separating these classes from the 

palmigrade sample (Fig. 3.6). This reflects the subtle, perhaps incipient nature of the 

positional adaptations of these specimens. 
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Fig. 3.6. Plot of scores for first two discriminant functions based on 9 shape variables best separating extant positional classes. Data points are 
colored according to a priori class and shaped according to predicted class (diamond = palmigrade; triangle = knuckle-walking; circle = 
suspensory; square = digitigrade). Gray lines represent decision boundaries. See Table 3.5 for discriminant functions, classification accuracy, and 
posterior probabilities.
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Table 3.5. Positional classification results 

a Extant classification accuracya 

Model  Total DG KW PG S Balb  
DFA  0.881 0.633 0.957 0.895 0.870 0.901  

glmnet  0.906 0.621 0.976 0.914 0.927 0.919  
b Discriminant functions  glmnet variable importancec 

  DF1 DF2 DF3   DG KW PG S 

CpSc 0.40 -0.40 -0.35  0.43 1.87 0.21 2.09 

CpDn 0.41 -0.19 -0.44  1.44 0.00 0.53 2.01 

Cp3 -0.02 -0.31 0.20  1.35 1.78 0.00 0.00 

Cp2 0.72 0.58 -0.13  2.50 2.38 0.87 0.99 

Cp4 0.76 0.46 0.33  1.67 7.47 2.44 0.00 

CpPxA 0.69 -0.93 0.52  0.00 3.24 0.66 4.51 

CpScA 0.49 0.36 0.37  0.60 0.40 1.21 1.41 

CpHmC 0.76 -0.15 -0.53  2.39 0.58 0.00 3.88 

CpHP 0.29 0.49 -0.07   1.77 1.67 1.44 1.54 

c Fossil classification results           

DFA     DG KW PG S Max Class 

KNM-MV 4 0.04 0.01 0.94 0.00 0.94 PG 

KNM-CA 409 0.14 0.04 0.80 0.03 0.80 PG 

KNM-SO 1000 0.00 0.08 0.03 0.89 0.89 S 

KNM-SO 1001 0.00 0.04 0.01 0.95 0.95 S 

KNM-SO 31245 0.01 0.01 0.93 0.06 0.93 PG 

KNM-SO 31246 0.02 0.00 0.96 0.02 0.96 PG 

KNM-SO 1002 0.00 0.89 0.11 0.00 0.89 KW 

KPS III(L) C26 0.35 0.00 0.65 0.00 0.65 PG 

KPS III(R) C28 0.24 0.00 0.76 0.00 0.76 PG 

KPS VIII C27 0.06 0.00 0.94 0.00 0.94 PG 

KNM-RU 2036M 0.15 0.00 0.67 0.19 0.67 PG 

glmnet DG KW PG S Max Class 

KNM-MV 4 0.00 0.00 1.00 0.00 1.00 PG 

KNM-CA 409 0.01 0.00 0.99 0.00 0.99 PG 

KNM-SO 1000 0.00 0.00 0.01 0.99 0.99 S 

KNM-SO 1001 0.00 0.00 0.00 1.00 1.00 S 

KNM-SO 31245 0.00 0.00 0.83 0.17 0.83 PG 

KNM-SO 31246 0.00 0.00 0.96 0.04 0.96 PG 

KNM-SO 1002 0.00 0.83 0.17 0.00 0.83 KW 

KPS III(L) C26 0.06 0.00 0.94 0.00 0.94 PG 

KPS III(R) C28 0.03 0.00 0.97 0.00 0.97 PG 

KPS VIII C27 0.01 0.00 0.99 0.00 0.99 PG 

KNM-RU 2036M 0.05 0.00 0.92 0.03 0.92 PG 
a glmnet parameters were tuned with 20 repetitions of 10-fold CV; both DFA and glmnet model accuracy 
was calculated after 100 repetitions of 10-fold CV. 
b Balanced accuracy is an average of a model's sensitivity and specificity (true positive rate and true 
negative rate). 
c Absolute value of tuned model coefficients. 
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Locomotor proportion estimation  

The described procedure produced effective predictive models for only Susp, 

SuspA, QuadA, and, to a lesser extent, Quad. The other locomotor proportions had 

lesser correspondence to capitate morphology – in lieu of inaccurate models built using 

the ame procedure, models to predict ClimbA, Climb, and Arb reported here were built 

using all shape variables as predictors (see Table 3.12). Due to the essential lack of 

correspondence between capitate morphology and leaping behavior, neither process 

was successful in producing effective models to predict LeapA or Leap.  

Fossil estimates of non-leaping locomotor proportions are presented in Table 3.6. 

They are largely consistent with the classification results, but the different locomotor 

estimates for each specimen do not necessarily tell a consistent story. KNM-SO 1000 

and KNM-SO 1001 are assigned the highest values of SuspA, with the latter estimated 

to be the fossil individual most reliant on suspension during arboreal locomotion, with a 

frequency exceeding that of extant Ateles. This is surprising, given the greater 

qualitative resemblance of KNM-SO 1000 to extant suspensors. This is reflected in the 

Susp estimates, of which the latter specimen is assigned the highest value. KNM-SO 

1001 is also estimated as more suspensory than most of its Miocene contemporaries, 

but its prediction matches that of KNM-RU 2036, and is only slightly greater than 

several of the specimens reconstructed as palmigrade. This is inconsistent with the high 

SuspA estimate of this specimen, barring a major terrestrial component, which would 

also be inconsistent with the high degree of arboreality estimated for this specimen. 

QuadA is estimated to be very low in KNM SO 1001, but only slightly reduced in KNM-

SO 1000 relative to most others of the Miocene sample. This trend is reversed in Quad, 
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with KNM-SO 1000 assigned the lowest value of the fossil sample and KNM-SO 1001 

representing the sample median. 

 

Table 3.6. Estimated locomotor proportions, based on GLM models from variable subsets selected using 
PGLS. See Table 3.12 for model details 

Specimen QuadA Quad SuspA Susp ClimbAa Climba Arba 

KNM-MV 4 0.35 0.57 0.07 0.03 0.42 0.28 0.77 

KNM-CA 409 0.61 0.54 0.06 0.08 0.34 0.19 0.47 

KNM-SO 1000 0.37 0.24 0.19 0.19 0.42 0.32 0.86 

KNM-SO 1001 0.16 0.50 0.32 0.10 0.36 0.19 0.89 

KNM-SO 31245 0.40 0.31 0.12 0.07 0.31 0.26 0.93 

KNM-SO 31246 0.41 0.32 0.09 0.06 0.29 0.29 0.95 

KNM-SO 1002 0.42 0.76 0.04 0.01 0.37 0.16 0.74 

KPS III(L) C26 0.51 0.51 0.10 0.08 0.25 0.27 0.88 

KPS III(R) C28 0.46 0.51 0.09 0.09 0.29 0.27 0.81 

KPS VIII C27 0.48 0.52 0.08 0.05 0.32 0.29 0.83 

KNM-RU 2036M 0.52 0.27 0.11 0.10 0.28 0.27 0.79 

E. heseloni 
mean 

0.49 0.45 0.09 0.08 0.29 0.27 0.83 

a Models based on selected functionally significant traits performed poorly in 
estimating these proportions; estimates in these cases were calculated using all 
shape variables, and therefore reflect overall extant affinities and may be less 
reliable. 

 

KNM-SO 1002 is predicted as the least suspensory of the fossil sample, with 

estimates corresponding to the baseline values assigned to non-suspensors of the 

extant sample (Table 3.12). Its Quad estimate is the highest of the fossil sample, and 

exceeds the estimated (but not observed) values of most extant taxa as well, including 

most of the African apes. Its QuadA estimate, meanwhile, is similar to those assigned to 

many other extant and fossil specimens, which would be consistent with a substantial 

terrestrial component. This is not supported by the only slightly reduced Arb estimate 

assigned to this specimen, although as described above, output of the Arb model is 

likely to be less reliable. 
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Locomotor estimates for the fossil specimens classifed as palmigrade are fairly 

consistent with each other. The Rusinga specimens are all predicted very similarly save 

for a low Quad estimate for KNM-RU 2036, while KNM SO 31245 and KNM-SO 31246 

are very similar to each other and, to a somewhat lesser degree, to the Rusinga 

specimens. KNM-SO 409 has a slightly elevated QuadA estimate and a substantially 

lower Arb estimate, while KNM-MV 4 has slightly lower estimates for QuadA and Susp. 

These specimens are otherwise estimated to have locomotion similar to that of the 

Rusinga specimens. 

 

Analysis of locomotor diversity  

The PLS shape scores of all extant centroids and fossil specimens are visualized 

in Fig. 3.7a. The E. heseloni specimens group together in the center of the monkey 

group, flanked by the ceboids and colobins. KNM-SO 31245 and KNM-SO 31246 are 

nearby, positioned near Procolobus between the Rusinga specimens and papionins. 

KNM-SO 1000 and KNM-SO 1002 plot among the great apes. KNM-CA 409, KNM-MV 

4, and KNM-SO 1001 are positioned between the great ape and monkey groups, with 

the latter separated somewhat from the other specimens in the general direction of the 

hylobatids. The Euclidean area of the Tinderet sample’s convex hull approaches that of 

the combined monkey centroids, although the great ape sample occludes the greatest 

portion of shape-space (Table 3.13c). 
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Fig. 3.7. PLS shape-space with convex hulls characterizing the functional diversity of the Tinderet sample 
relative to extant great apes and monkeys, with (a) and without (b) inclusion of hylobatids. The Euclidean 
area of the Tinderet sample approaches or exceeds that of broad extant groups.
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Much of the separation between groups occurs along the second PLS axis, but 

the structure of the shape space is dominated by the extreme shape and locomotor 

variables of the hylobatids. Most morphological covariation occurs along the first axis, 

with high suspension and low quadrupedalism on the left, high quadrupedalism and low 

suspension on the right, and relatively little morphological covariation with climbing or 

leaping. 

With hylobatids excluded, morphological covariation with suspension still wields 

the strongest influence, excluding hylobatids, but parity with other behaviors is greatly 

increased (Table 3.13a). This results in recognition of far greater functional diversity 

among the monkeys; the Euclidean area of the convex hull formed by the Old and New 

World monkey centroids in the new PLS shape-space (Fig. 3.7b) approaches that of the 

Tinderet and great ape samples combined (Table 3.13c). Diversity among the Tinderet 

sample in this analysis exceeds that of the great ape centroids, with their convex hulls 

comprising 15.6% and 13.0% of the shape-space, respectively. The groups are largely 

distinguished by the first axis, with increasing values reflecting morphology associated 

with more quadrupedalism and less climbing and suspension. Within the broad 

groupings, most of the variation occurs along the second axis, which is most strongly 

influenced by morphological covariates of suspension and arboreality. Morphology 

associated with greater proportions of SuspA and Arb is positioned lower on this axis, 

while more terrestrial taxa and those more reliant on quadrupedalism and climbing 

during arboreal locomotion are positioned toward the top. 

As in the first PLS analysis, E. heseloni specimens form a cluster in the center of 

the monkey group, and KNM-SO 31245 and KNM-SO 31246 are again positioned 
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nearest to the Rusinga specimens of the Tinderet sample. KNM-SO 1000 is positioned 

among the great apes as before, while KNM-SO 1002 plots nearest the Pan centroids 

just outside the great ape hull. KNM-CA 409 and KNM-MV 4 plot nearest the 

cercopithecines this time, while KNM -SO 1001 is again separated from the other fossils 

in accord with its morphological resemblance to extant suspensors. 

 

 

Taxonomic and phylogenetic analyses 

Superfamily classification  

Nine shape variables met the criteria for inclusion in the taxonomic classifiers. In 

the taxonomic DFA (Fig. 3.8), hominoids are distinguished from ceboids and, to a lesser 

extent, from cercopithecoids by the first discriminant function. This axis is dominated by 

the orientation of the scaphoid/central facet (CpScA) and the relative size of the Mc4 

facet (Cp4; Table 3.7b), which tend to be low among hominoids and high among 

ceboids (Table 3.14a). The second discriminant function separates most 

cercopithecoids and ceboids, while also contributing to the hominoid-cercopithecoid 

distinction. Values along this axis increase most strongly in association with a larger and 

more distally oriented Mc2 surface (Cp2, Cp23A), and a larger and more proximally 

oriented proximodradial surface (CpPx, CpPxA). 
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Fig. 3.8. Plot of scores for first two discriminant functions based on 9 shape variables best separating broad taxonomic groups. Data points are 
colored according to a priori class and shaped according to predicted class (triangle = Hominoidea; circle = Cercopithecoidea; square = 
Ceboidea). Gray lines represent decision boundaries. See Table 3.7 and Table 3.15 for classification accuracy, discriminant functions, posterior 
probabilities, and other model details.
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In the glmnet model, platyrrhines are most strongly distinguished from other 

anthropoids by their large Mc4 facets and dorsally-oriented centrale facets, and 

cercopithecoids by their large proximoradial facets and hamate facet concavity. 

Hominoids are meanwhile best distinguished by small Mc2 and Mc4 facets and radially-

oriented scaphoid/centrale facets (Table 3.7b). 

Both models were effective in classifying the extant specimens, with the 

balanced accuracy of both exceeding 95% (Table 3.7a; see Table 3.15 for additional 

details). Fossil predictions are congruent between classifiers with the exception of KNM-

MV 4, which the DFA classifies as a ceboid and glmnet classifies as a cercopithecoid 

with similar confidence (Table 3.7c). KNM-SO 1000, KNM-SO 1001, and KNM-SO 1002 

are classified as hominoids, with the Rusinga sample and the remaining Tinderet 

specimens classified among the cercopithecoids. Posterior probabilities of the glmnet 

predictions are again high, while the DFA model lacks confidence about KNM-SO 1000, 

KNM-SO 1001, and KNM-CA 409, as well as one of the Rusinga specimens. This 

uncertainty is reflected in the DFA plot (Fig. 3.8), in which the fossil specimens again 

tend to plot very near the decision boundaries. 
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Table 3.7. Taxonomic classification results. Hom, Hominoidea; Cerc, Cercopithecoidea; Plat, Platyrrhini. 
See Table 3.5 and text for details 

a Extant classification accuracy   

Model   Total Cerc Hom Plat Bal 

DFA  0.943 0.907 0.971 0.947 0.955 

glmnet  0.947 0.930 0.961 0.945 0.960 

b 
Discriminant 

functions 
  

glmnet variable 
importance 

  DF1 DF2   Cerc Hom Plat 

CpPx 0.08 0.62  1.05 0.00 1.34 

Cp2 0.55 0.96  0.00 3.24 0.04 

Cp4 0.99 -0.01  0.00 3.17 3.31 

Cp23A -0.41 0.49  0.00 0.16 1.45 

CpPxA -0.09 0.43  0.26 0.00 1.63 

CpScA 1.22 -0.37  0.00 3.00 5.10 

Cp3SD -0.19 0.32  0.00 0.02 1.56 

CpHmC 0.08 0.14  0.81 0.39 0.00 

CpHP 0.31 0.37   0.03 1.69 0.00 

c Fossil classification results       

DFA Cerc Hom Plat Max Class 

KNM-MV 4 0.11 0.00 0.89 0.89 Plat 

KNM-CA 409 0.52 0.17 0.32 0.52 Cerc 

KNM-SO 1000 0.01 0.60 0.39 0.60 Hom 

KNM-SO 1001 0.37 0.63 0.00 0.63 Hom 

KNM-SO 31245 0.83 0.01 0.16 0.83 Cerc 

KNM-SO 31246 0.93 0.01 0.07 0.93 Cerc 

KNM-SO 1002 0.14 0.86 0.00 0.86 Hom 

KPS III(L) C26 0.99 0.00 0.01 0.99 Cerc 

KPS III(R) C28 0.89 0.00 0.11 0.89 Cerc 

KPS VIII C27 0.58 0.00 0.42 0.58 Cerc 

KNM-RU 2036M 0.92 0.01 0.08 0.92 Cerc 

glmnet Cerc Hom Plat Max Class 

KNM-MV 4 0.90 0.02 0.08 0.90 Cerc 

KNM-CA 409 0.80 0.19 0.00 0.80 Cerc 

KNM-SO 1000 0.04 0.96 0.01 0.96 Hom 

KNM-SO 1001 0.16 0.84 0.00 0.84 Hom 

KNM-SO 31245 0.94 0.01 0.05 0.94 Cerc 

KNM-SO 31246 0.98 0.00 0.01 0.98 Cerc 

KNM-SO 1002 0.14 0.86 0.00 0.86 Hom 

KPS III(L) C26 1.00 0.00 0.00 1.00 Cerc 

KPS III(R) C28 0.99 0.00 0.01 0.99 Cerc 

KPS VIII C27 0.97 0.00 0.03 0.97 Cerc 

KNM-RU 2036M 0.99 0.00 0.01 0.99 Cerc 
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Hierarchical clustering  

All shape variables were found to have significant phylogenetic signal as 

quantified by both Pagel’s lambda and Blomberg’s K (Table 3.14b), and no significant 

allometric correlations were found in PICs of the tip data from either sex (Table 3.16). 

All variables were therefore included in the hierarchical clustering analysis. The BioNJ 

algorithm effectively represents the underlying distance matrix, with an extant 

cophenetic correlation coefficient of 0.953. Relationships between the extant taxa and 

fossil specimens are represented in two separate dendrograms, Fig. 3.9a and b. 

The capitate metrics again effectively distinguish among the major anthropoid 

superfamilies, but relationships within these groups often vary from those based on 

molecular data (Fig. 3.9c). E. heseloni, KNM-CA 409, and KNM-MV 4 are positioned as 

basal catarrhines, while KNM-SO 31245 and KNM-SO 31246 plot together as sister to a 

group comprising the hominoids, cercopithecines, and two of the three presbytins. 

KNM-SO 1000 and KNM-SO 1001 are grouped within an Asian ape clade, with the 

former more similar to hylobatids and the latter more similar to the Pongo species. 

KNM-SO 1002 is positioned as a basal member of the African ape clade. 
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Fig. 3.9. Phenetic and phylogenetic relationships among extant and fossil specimens. (a and b) BioNJ dendrograms, (c) molecular phylogeny 
utilized in phylogenetic comparative analyses. Branch tips colored according to major anthropoid taxonomic divisions. 
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Discussion 

Positional reconstructions 

 While both KNM-SO 31245 and KNM-SO 31246 have some qualitative 

resemblance to extant terrestrial taxa, the quantitative results are not consistent with 

terrestrialism as more than a minor behavioral component. They are estimated to have 

the highest proportion of arboreality of the fossil sample, are classified as palmigrade by 

both positional classifiers, group nearest to highly arboreal monkeys in PLS shape-

space, and were found in all analyses to have great affinity with the sampled specimens 

of E. heseloni, for which significant terrestrial locomotion has not been suggested. The 

metrics of this study are limited in their ability to identify a terrestrial signal, however. 

While this may reflect the conservative nature of capitate morphology (Corruccini et al., 

1975; Blue, 2002), some potentially relevant features, such as capitate neck waisting or 

the presence of a raised ridge along the dorsal margin of the proximal surface, were not 

quantitatively characterized here. The lack of quantitative likeness to extant terrestrial 

primates nevertheless suggests behavioral habits comparable to those of E. heseloni. 

 KNM-MV 4 is also reconstructed as an arboreal palmigrade quadruped, but with 

perhaps slightly less reliance on quadrupedalism than E. heseloni, and perhaps some 

greater frequency of climbing as well. Cebus is perhaps this specimen’s best functional 

analog of the extant sample (compare Table 3.6 and Table 3.12b). The shape metrics of 

KNM-MV 4 all fall within the range of variation of the Cebus sample, with three 

exceptions: The Mc4 articulation is especially large in Cebus, and although KNM-MV 4 

has the largest Mc4 articulation of the fossil sample, it exceeds only one outlier 

specimen of Cebus in size. Cebus has the most acute Cp23A of the extant sample, but 
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it is even more acute in KNM-MV 4, falling just outside the range of all sampled 

specimens. The final exception is found in the size of the hamate facet, among the least 

functionally-informative of the analyzed metrics, which is relatively small in the Mteitei 

Valley specimen. 

KNM-CA 409 is estimated to be the most reliant of the fossil sample on 

quadrupedalism during arboreal locomotion, and is most similar in most estimates to 

observations of Alouatta. KNM-CA 409 is also estimated as the least arboreal of the 

fossil sample, and the only specimen for which the arboreality estimate departs 

significantly from E. heseloni, but estimates of arboreality may be less reliable due to its 

relative lack of correspondence in individual shape variables, as detailed above. KNM-

CA 409 is also the only specimen of the Tinderet sample assigned more than a trivial 

probability of digitigrady by either of the positional classifiers, and does have several 

features aligning it with terrestrial monkeys to some extent, including its large dorsal 

nonarticular region, lack of head pronation or palmar centrale facet expansion, acute 

Mc2-Mc3 facet angle, and relatively small Mc3 surface with somewhat elevated 

topography. It is nevertheless designated with high confidence as an arboreal 

quadruped by both positional classifiers. 

The behavioral regimes of KNM-SO 1000 and KNM-SO 1001 seem likely to have 

included a significant degree of below-branch suspension. Both are classified with high 

confidence as suspensory by the positional classifiers. Locomotor proportion estimates 

for KNM-SO 1000 are most similar to those observed in Ateles, but with somewhat less 

predicted suspension and more climbing. Estimates of QuadA, SuspA, and ClimbA 

assigned to KNM-SO 1001 align it more closely with Pongo, although this is 
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contradicted by a relatively low Susp prediction. Both specimens are relatively narrow 

(CpPxA), with low hamate facet concavity (CpHmC), and small, radially-oriented 

centrale facets (CpSc, CpScA), each of which is associated with suspensory behavior in 

extant anthropoids (Table 3.9 and Table 3.11; see also Chapter 2 and Kivell, 2016 and 

references therein). KNM-SO 1000 also has a relatively small and discontinuous Mc2 

articulation. This discontinuity, unique among the fossil sample, has been linked to 

hypertrophy of the lateral carpometacarpal ligament, leading to a hypothesized 

association with suspension (Lovejoy et al., 2009). This trait was variably present within 

each of the sampled anthropoid subfamilies, however, with no apparent functional 

correspondence (Table 3.17a). Qualitative observations have been use to argue that 

the size of the canal transmitting this ligament is the more diagnostic feature (Selby et 

al., 2016), a conclusion not examined here.  

The discontinuous hamate facet of KNM-SO 1000 (Fig. 3.5) is less common in 

extant anthropoids. It is typical only in the brachiators of the extant sample (Ateles and 

the hylobatids), otherwise occurring only in a minority of sampled Pongo and Nasalis 

specimens (Table 3.17b). This feature may be associated with hypertrophy of the 

capitohamate interosseous ligament, which would assist in stabilizing this joint against 

sudden load transmission gradients experienced during brachiation or other acrobatic 

arboreal behaviors.  

  The locomotor behavior of KNM-SO 1002 is likely distinct from the others of the 

fossil sample, but characterization of its repertoire is difficult. It is classified with high 

confidence as a knuckle-walker by both positional classifiers, and is assigned the lowest 

values of SuspA and Susp among the fossil sample, as well as the highest estimate of 
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Quad. It is also assigned a low Climb estimate and a relatively high ClimbA value, which 

are also reminiscent of the African ape pattern. However, these two predictions, along 

with its moderate Arb estimate, are based on suboptimal models required by the relative 

lack of functional signal in individual shape variables and may therefore be unreliable. 

The large, globular head, highly-waisted neck, medially and laterally expanded body, 

moderately-expressed dorsal ridge, and concave hamate facet of KNM-SO 1002 

contribute to a profile in dorsal or palmar view that is uniquely great ape-like among 

early or middle Miocene capitates. This is especially surprising given the early date.  

Many of these features have been interpreted as contributing to enhanced 

midcarpal stability to better transmit loads generated during knuckle-walking (e.g., 

Corruccini, 1978; Richmond et al., 2001; Begun, 2004). This interpretation of these 

features has come into question, however, due to the relative rarity of these and other 

reputed knuckle-walking traits in Gorilla, their inconsistent presence in Pan, and their 

variable presence in non-knuckle-walking taxa (e.g., Shea and Inouye, 1993; McCrossin 

and Benefit, 1997; Richmond, 2006; Kivell and Schmitt, 2009; Orr, 2010). An 

understanding of how knuckle-walking is reflected in the wrist remains elusive, as its 

extant practitioners comprise a single group of closely-related species whose 

morphology is also adapted to facilitate vertical climbing and suspension.  
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Fig. 3.10. Variation in scaphoid/centrale facet dorsal margin morphology. Right capitates in dorsal view, with arrows pointing to the facet’s 
dorsodistal extent (black arrows = distal extent visible in dorsal view; light arrows = distal extent occurs palmar to a laterally-projecting portion of 
the body). Inset: elaborated condition described in the text. (a) KNM-MV 4, (b) KNM-SO 1000, (c) KNM-SO 1002, (d) KNM-SO 31246, (e) Pongo, 
(f) Gorilla, (g) Pan, (h) Hoolock.
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The condition of KNM-SO 1002 and KNM-SO 31246, wherein the distal extent of 

the centrale facet is positioned palmarly to a laterally-projecting portion of the body’s 

dorsal margin (Fig. 3.10c, d), would seems to aid stability during wrist extension, 

justifying its putative knuckle-walking utility. However, this condition appears in Pongo 

and Gorilla with similar frequency. In most specimens of Pan but only occasionally in 

Gorilla and rarely in Pongo, an elaborated condition appears in which the entire dorsum 

of the body projects laterally, reorienting a large portion of the scaphoid facet palmarly 

(see Fig. 3.10 inset). This projection’s proximal extent tends to be sharply-angled, and is 

often confluent with a raised ridge separating the head and body. The greater frequency 

in Pan of these features may be explained, as other reputed knuckle-walking traits have 

been, by a more extended wrist posture during stance phase (Inouye, 1992, 1994; 

Inouye and Shea, 2004; Kivell and Schmitt, 2009; but see Finestone et al., 2015, 2016).  

However, hylobatids also frequently possess morphology matching the most 

elaborated African ape examples of this trait (Fig. 3.10h), which, despite their behavioral 

disparities, this may indicate some unrecognized kinematic affinity with Pan, perhaps 

relating not to habitual loading in extension but rather a shared need to limit over-

pronation of the midcarpal joint (or over-supination of the forearm below a fixed grasp), 

with this need being either reduced or otherwise accommodated in others of the extant 

and fossil sample. Given the above (see also Kivell, 2016 and references therein), these 

features do not seem to be related exclusively to knuckle-walking. Deciphering the 

functional signal in KNM-SO 1002’s morphology will therefore likely require a detailed 

understanding of differential carpal kinematics among the great apes. Vertical climbing 

may explain many of these features, but this conclusion would require an explanation of 
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the lesser prevalence of these features in Gorilla despite the utility thereof presumably 

increasing with body size (Kivell and Schmitt, 2009). 

If the reputed knuckle-walking features of this specimen are interpreted to evince 

its performance of this behavior, homoplasy is a far more parsimonious explanation 

than is a knuckle-walking ancestry for all apes. The former scenario could still contribute 

to the debate over the locomotor evolution of hominines by providing evidence for the 

homoplastic evolvability of the behavior (see Begun and Kivell, 2011). However, a non-

knuckle-walking explanation for the qualitative and quantitative African ape affinities of 

this specimen is favored here. 

 

Taxonomic allocation 

Results of this study constrain the possible taxonomic identities of the Tinderet 

specimens; because no capitates have been found in association with craniodental 

remains for any of the species known from Tinderet, however, definitive identification of 

the taxon to which each belongs is not possible. 

KNM-MV 4 is in some ways the most primitive specimen of the sample. It has a 

qualitative resemblance to some platyrrhine specimens, and is classified among them in 

the taxonomic DFA. The hierarchical clustering analysis also suggests a basal position 

relative to most others of the Tinderet sample. If possible taxonomic identities are 

limited to those previously identified at the same locality, L. legetet is ruled out. Size is 

less useful in this case; this specimen is probably too large for M. clarki and too small 

for D. macinnesi, but the likelihood of an uncharacterized degree of body size 

dimorphism in these taxa prevents ruling them out on this basis. The lack of morphology 
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indicating increased reliance on climbing or suspension does reduce the plausibility of 

the latter, but postcrania are unknown for M. clarki. L. evansi and K. songhorensis are 

the best size matches based on current evidence; unfortunately, the phylogenetic 

relationships of these two species remain unresolved and their functional affinities 

remain unknown, preventing the identity of KNM-MV 4 from being further constrained. 

The identities of KNM-SO 1000 and KNM-SO 1001 are limited by size and 

locality to the same four species, although known M. clarki specimens indicate a body 

size range unlikely to encompass specimens of this size. None of the available 

allocations comports well with the hominoid classification of these specimens, although 

the DFA model was nearly split in both cases, assigning KNM-SO 1000 a 0.39 

platyrrhine probability and KNM-SO 1001 a 0.37 cercopithecoid probability (Table 3.7c). 

Results of the functional analyses are consistent with interpretations of postcrania 

assigned to D. macinnesi, perhaps increasing the likelihood of this allocation, but the 

positional behavior of the other options is entirely unknown. Furthermore, although a 

strong suspensory signal is identified in both specimens, they are quantitatively and 

qualitatively dissimilar from each other. The morphology of KNM-SO 1000 is clearly 

distinct from the rest of the fossil sample, but KNM-SO 1001 has much in common with 

the Rusinga specimens and KNM-CA 409. Setting aside its small size, KNM-SO 1001 is 

distinguished from the latter specimens largely by its low hamate facet concavity 

(CpHmC) and the radial orientation of its centrale facet (CpScA). While either KNM-SO 

1000 or 1001 may belong to D. macinnesi, there is little basis for deciding which of the 

two has the better case for inclusion in this taxon, and their disparate morphology 

makes a conspecific relationship between them seem unlikely. However, there is not 
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another species of appropriate size known at Songhor interpreted to have a derived 

behavioral pattern, so a taxonomic distinction between these specimens would imply a 

suspensory habit for L. evansi, K. songhorensis, or some other undiscovered small-

bodied catarrhine at Songhor. Whether this is more parsimonious than a conspecific 

relationship between KNM-SO 1000 and KNM-SO 1001 cannot be determined with 

current evidence. In the interim, both are referred to cf. D. macinnesi. 

KNM-SO 31245 and KNM-SO 31246 have the most quantitative affinity to E. 

heseloni of the Tinderet sample – they plot near or among the Rusinga specimens in 

positional and taxonomic DFA and PLS shape-space, and are estimated to have 

equivalent behavioral habits. However, they are qualitatively distinct from KNM-CA 409 

and the Rusinga specimens, often in ways reminiscent of African apes or other 

terrestrial catarrhines. Meanwhile, KNM-CA 409 has greater qualitative resemblance to 

E. heseloni, including the presence of the dorsodistal lip formerly exclusive to this taxon, 

and group more closely with the Rusinga specimens in the hierarchical clustering 

analysis. KNM-CA 409 is slightly smaller than the Rusinga specimens, but this mirrors 

the relationship between the dental size of the two species (Harrison, 2010). A special 

similitude between E. heseloni and KNM-CA 409 is not evinced by the predictive 

models, however; their placement in DFA and PLS shape-space is not particularly 

close, and, as discussed above, their predicted locomotor repertoires have significant 

differences. 

The implications of resemblance to the Rusinga specimens are not entirely clear. 

Until recently this could reasonably have been interpreted to support the allocation of 

these specimens to Proconsul africanus, but this may no longer be the case since the 
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reallocation of their long-time Kisingiri congeners to Ekembo (McNulty et al., 2015b), 

leaving the Tinderet species with a very limited postcranial hypodigm. Available 

postcrania attributed to P. africanus, as well those attributed to P. major, are 

anatomically and functionally similar to overlapping specimens of E. heseloni (e.g., 

Rose et al., 1992), but as discussed above, this is true of most early Miocene 

catarrhines. There is only one other taxon of appropriate size available – R. gordoni, the 

more prevalent of the mid-sized catarrhines at Songhor based on allocation of dental 

remains (Cote et al., 2014). Mid-sized unassociated postcrania at Songhor and the 

nearby lower Kapurtay have previously been tentatively referred to this taxon on the 

basis of size. This material includes a proximal femur interpreted to be adapted for 

increased climbing or suspension (Harrison, 1982), two medial cuneiforms also thought 

to be derived relative to P. africanus (Nengo and Rae, 1992), and four specimens of the 

elbow joint, described as equivalent in function to E. heseloni (Gebo et al., 2009).  

KNM-SO 1002 is larger than the Rusinga capitates, meeting the historical 

criterion for inclusion in this taxon, but R. gordoni does not seem to significantly depart 

from P. africanus or E. heseloni in craniodental size, obviating the utility of this criterion. 

I nevertheless provisionally allocate this specimen to R. gordoni here, and propose that 

the presence of derived, ape-like features relative to P. africanus, as seen in KNM-SO 

1002 as well as the unassociated femur and tarsals discussed above, may be a better 

criterion for distinguishing between these taxa than is body size.  

The attribution of KNM-SO 1002 to a behaviorally derived R. gordoni raises 

another dilemma, however. Unless a third mid-sized catarrhine was present at Songhor, 

KNM-SO 31245, KNM-SO 31246, and KNM-CA 409 are all necessarily attributed to P. 
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africanus. The similarity of the two Songhor specimens supports their conspecificity, but 

inclusion of the latter specimen yields a species with a high degree of morphological 

diversity, compared to the consistency noted for the overlapping hand and wrist 

elements of E. heseloni (Beard et al., 1993), confirmed here for the capitate specimens. 

The allocation of these three specimens to P. africanus is therefore tentative. 

 

Locomotor diversity in the early Miocene and implications for hominoid evolution 

 This sample of seven overlapping elements provides a rare opportunity to 

evaluate the functional diversity among catarrhines of a geographically and temporally 

constrained setting that pre-dates the increased functional diversity of the hominoid 

radiation in Eurasia (Casanovas-Vilar et al., 2011). The specimens analyzed here 

evince the well-known taxonomic diversity of the Tinderet Miocene sequence, but it is 

out-paced in this sample by functional diversity, with multiple broadly construed 

positional behaviors present, and two additional cases of functionally distinct specimens 

being provisionally allocated to the same species. And, as characterized in the PLS 

analysis, the functionally-associated morphological diversity present in seven Tinderet 

capitates approaches or exceeds that of different broad extant groups represented by a 

larger number of extant centroids. 

The morphology of KNM-SO 1002 lends further support to the presence of a mid-

sized catarrhine at Songhor with a behavioral repertoire more similar in some ways to 

extant apes than to E. heseloni. Although unlikely due to the seemingly less derived 

anatomy of later African Miocene catarrhines, I cannot rule out homology in explaining 

the great ape features of KNM-SO 1002. The cladistic event separating hylobatids from 
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great apes is estimated to have coincided with the time period represented at these 

Tinderet localities (mean: 20.19 Ma, median: 19.43 Ma; see Hedges et al., 2015), and 

although the mosaicism of later hominoid evolution has changed the calculus regarding 

the parsimony of extant ape homology (e.g., Begun, 1993; Almecija et al., 2009; 

Casanovas-Vilar et al., 2011; Morgan et al., 2015; Ward, 2015), functional morphology 

shared among extant members of these lineages is very unlikely to have evolved 

entirely in parallel (e.g., Schmitt, 2003; Nowak and Reichard, 2016). The 

nyanzapithecines, of which R. gordoni is perhaps the basal member (Rossie and 

MacLatchy, 2006; Hill et al., 2013), are sometimes thought to have a close relationship 

with crown hominoids relative to their Miocene contemporaries (e.g., Stevens et al., 

2013), but there is not consensus on this point (Begun, 2015 and references therein). 

Whether ape-like traits preserved at Songhor (and Moroto) offer a glimpse of the 

ancestral crown hominoid morphotype, or only of early examples of the evolutionary 

experimentation characterizing later hominoid evolution, is difficult to address with 

current evidence. While the depositional and diagenetic environment of Miocene 

Tinderet sediments seems to have been unconducive to the preservation of associated 

catarrhine crania and postcrania, continued work at these and other early Miocene sites 

leading to additional sets of overlapping postcranial elements like that presented here 

will be important in further characterizing functional diversity among early catarrhines.  

The specimens analyzed here represent a geographically- and temporally-limited 

setting within the early Miocene. The morphological diversity of this sample 

(summarized in Table 3.8) therefore offers a snapshot of differing lifestyles among a 

community of penecontemporaneous catarrhines. These results indicate the likelihood 
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of a broader phenomenon of behavioral diversity among the early members of this 

clade. Although confident conclusions cannot be made based on a single skeletal 

element, this collection of overlapping postcranial specimens raises the possibility of 

early hominoids and their contemporaries having diversified to fill multiple ecological 

niches quite early in their evolutionary career, well before the previously-inferred 

locomotor diversification of the later Miocene of Eurasia. 
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Table 3.8. Summary of findings 

  

Taxonomic 
classification  

Positional 
classification  Estimated locomotor proportions  

Specimen 
BM 
(kg) 

DFA prob glmnet prob   DFA prob glmnet prob   QuadA Quad SuspA Susp ClimbA Climb Arb Plausible identitya 

KNM-MV 4 5.3 Plat 0.89 Cerc 0.90  PG 0.94 PG 1.00  0.35 0.57 0.07 0.03 0.42 0.28 0.77 
L. evansi, K. 
songhorensis 

KNM-CA 409 9.2 Cerc 0.52 Cerc 0.80  PG 0.80 PG 0.99  0.61 0.54 0.06 0.08 0.34 0.19 0.47 cf. P. africanus 

KNM-SO 1000 6.0 Hom 0.60 Hom 0.96  S 0.89 S 0.99  0.37 0.24 0.19 0.19 0.42 0.32 0.86 
cf. D. macinnesi, 
L. evansi, K. 
songhorensis 

KNM-SO 1001 5.9 Hom 0.63 Hom 0.84  S 0.95 S 1.00  0.16 0.50 0.32 0.10 0.36 0.19 0.89 

cf. D. macinnesi,  

L. evansi, K. 
songhorensis 

KNM-SO 31245 12.4 Cerc 0.83 Cerc 0.94  PG 0.93 PG 0.83  0.40 0.31 0.12 0.07 0.31 0.26 0.93 
cf. P. africanus, 
R. gordoni 

KNM-SO 31246 15.4 Cerc 0.93 Cerc 0.98  PG 0.96 PG 0.96  0.41 0.32 0.09 0.06 0.29 0.29 0.95 
cf. P. africanus, 
R. gordoni 

KNM-SO 1002 15.9 Hom 0.86 Hom 0.86  KW 0.89 KW 0.83  0.42 0.76 0.04 0.01 0.37 0.16 0.74 
R. gordoni, P. 
africanus 

E. heseloni 
means 

11.5 Cerc 0.85 Cerc 0.99  PG 0.75 PG 0.95  0.49 0.45 0.09 0.08 0.29 0.27 0.83  

a Preferred allocations are in bold.
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Conclusions 

 Results of this study document a degree of functional diversity beyond what is 

generally recognized among early Miocene catarrhines. This sample of seven 

overlapping postcranial specimens from a geographically- and temporally-limited setting 

is found to vary in functionally-related morphology to a degree approaching or 

exceeding that of broad extant anthropoid groups characterized by a larger number of 

taxon centroids. The taxonomic diversity of this time period is also reflected in the 

Tinderet sample, with as many as six species represented. The identity of each 

specimen cannot be determined with confidence, however; when accounting for body 

size, known species to which these specimens can be attributed are insufficient in 

number. 

KNM-SO 31245, KNM-SO 31246, KNM-CA 409, and KNM-MV 4 are classified as 

arboreal quadrupeds, with the latter two predicted to have locomotor proportions distinct 

from those of E. heseloni. KNM-SO 1000 and KNM-SO 1001 are inferred to have been 

significantly reliant on below-branch behaviors, but morphological distinctions between 

these two specimens suggest they are not conspecific. KNM-SO 1002 is uniquely great 

ape-like among capitates known from the early Miocene. It possesses several features 

often associated with knuckle-walking, interpreted here as reinforcing our lack of 

understanding of how knuckle-walking is reflected in wrist morphology, rather than as 

evidence for the evolution of knuckle-walking in the early Miocene. This specimen adds 

to a growing body of evidence indicating the presence of a functionally-derived, mid-

sized catarrhine at Songhor, and documents another example of great ape-like 

locomotor adaptation occurring very early in hominoid evolution.
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Supplementary material 

Table 3.9. Covariance of shape variables with positional classes relative to the palmigrade (PG) reference class. Reported results are from 
univariate phylogenetic generalized least squares (PGLS) regression of taxon means except where noted. 

    DG  KW  S 

  R2 λ  b p ORa pa ORb pb  b p ORa pa ORb pb  b p ORa pa ORb pb 

CpPx 0.18 0.82  0.12 0.77 1.44 0.25 1.17 0.21  0.63 0.39 -0.25 0.82 -0.24 0.80  -0.64 0.27 -2.45 0.04 -1.15 0.22 

CpSc 0.20 0.71  0.06 0.88 1.82 0.17 0.90 0.27  -0.38 0.57 -0.24 0.83 0.87 0.31  -1.16 0.04 -3.43 0.01 -1.56 0.06 

CpLu 0.06 0.96  0.16 0.72 0.61 0.65 0.45 0.63  1.10 0.28 -0.42 0.70 -0.73 0.44  0.20 0.79 -0.52 0.62 0.27 0.77 

CpDn 0.03 0.99  0.32 0.50 1.62 0.14 0.89 0.25  -0.42 0.72 0.13 0.90 0.08 0.91  -0.37 0.67 -0.23 0.86 -0.56 0.47 

Cp3 0.22 0.77  -0.53 0.26 -1.31 0.24 -1.13 0.24  1.21 0.13 0.86 0.47 1.26 0.21  -0.24 0.70 -0.89 0.37 -0.33 0.73 

CpHm 0.05 0.62  -0.15 0.78 -0.36 0.76 -0.19 0.83  -0.70 0.36 -0.40 0.75 0.17 0.83  -0.04 0.95 0.09 0.93 0.08 0.89 

Cp2 0.30 0.98  0.46 0.11 2.13 0.10 2.24 0.02  -1.66 0.02 -1.94 0.16 -1.25 0.21  -1.13 0.03 -3.16 0.02 -1.48 0.13 

Cp4 0.16 1.00  -0.17 0.55 -0.23 0.88 -0.01 0.99  -1.43 0.06 -2.48 0.10 -2.55 0.03  -0.38 0.49 1.31 0.28 0.87 0.40 

Cp23A 0.26 0.88  -0.83 0.06 -1.83 0.13 -1.07 0.23  -0.50 0.54 -1.09 0.39 -1.31 0.17  0.71 0.26 1.48 0.19 0.72 0.41 

Cp3HmA 0.08 0.71  0.64 0.25 1.34 0.21 1.13 0.24  0.57 0.51 0.23 0.86 -0.11 0.90  -0.04 0.95 -0.71 0.51 0.11 0.89 

CpPxA 0.67 0.81  -0.23 0.33 -0.74 0.55 0.22 0.83  0.28 0.51 1.39 0.34 1.15 0.27  -1.69 0.00 -4.39 0.00 -3.01 0.00 

CpScA 0.25 1.00  -0.37 0.13 -1.25 0.24 -0.72 0.46  0.14 0.82 0.49 0.71 1.49 0.15  -0.82 0.08 -2.60 0.02 -1.39 0.16 

Cp3SD 0.06 0.78  -0.14 0.79 0.76 0.49 0.56 0.56  0.89 0.34 0.40 0.76 -0.18 0.82  0.02 0.98 -0.65 0.53 -0.50 0.59 

CpHmC 0.39 1.00  0.23 0.37 2.03 0.15 2.32 0.06  0.18 0.78 0.75 0.65 -0.39 0.73  -1.36 0.01 -3.50 0.00 -2.61 0.02 

CpHP 0.50 0.00  0.73 0.15 1.38 0.22 0.96 0.29  -1.42 0.00 -2.27 0.08 -1.43 0.12  0.01 0.99 0.18 0.85 -0.20 0.82 

Without hylobatids                               

CpPx 0.05 0.47  0.40 0.51 1.55 0.16 0.90 0.32  0.38 0.61 0.11 0.96 -0.12 0.90  -0.23 0.75 -1.01 0.35 -0.82 0.36 

CpSc 0.17 0.73  0.05 0.91 1.85 0.16 0.63 0.44  -0.34 0.64 -0.23 0.85 0.82 0.32  -1.22 0.07 -2.96 0.01 -1.57 0.05 

CpLu 0.16 0.77  0.15 0.75 0.07 0.94 0.13 0.89  1.01 0.21 0.16 0.91 -0.36 0.69  1.29 0.07 2.02 0.12 0.84 0.36 

CpDn 0.10 0.97  0.37 0.38 2.33 0.05 1.27 0.11  -0.24 0.81 0.12 0.91 -0.51 0.53  -0.83 0.29 -2.25 0.08 -1.37 0.09 

Cp3 0.20 0.60  -0.68 0.19 -1.82 0.11 -2.25 0.03  1.13 0.12 1.45 0.18 2.27 0.03  0.23 0.72 0.65 0.54 0.89 0.38 

CpHm 0.03 0.68  -0.13 0.80 -0.52 0.64 -0.46 0.60  -0.60 0.45 -0.46 0.71 0.27 0.77  -0.13 0.86 0.52 0.63 0.31 0.75 

Cp2 0.30 0.99  0.44 0.14 2.21 0.08 1.96 0.06  -1.57 0.04 -1.95 0.15 -1.29 0.23  -1.10 0.06 -2.50 0.06 -1.45 0.16 

Cp4 0.29 1.00  -0.17 0.40 0.08 0.93 0.41 0.70  -1.35 0.02 -2.89 0.06 -2.71 0.02  -0.84 0.05 0.00 1.00 0.39 0.71 

Cp23A 0.21 0.90  -1.02 0.05 -1.83 0.07 -0.70 0.43  -0.51 0.62 -1.28 0.24 -1.26 0.16  0.44 0.60 0.28 0.80 0.41 0.63 

Cp3HmA 0.16 0.00  1.05 0.12 1.35 0.14 0.76 0.39  0.36 0.46 0.62 0.53 0.16 0.86  0.86 0.20 1.02 0.27 0.63 0.47 
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CpPxA 0.74 0.00  -0.65 0.08 -1.01 0.33 -0.05 0.95  0.30 0.27 1.15 0.37 0.79 0.41  -2.39 0.00 -3.32 0.00 -2.38 0.02 

CpScA 0.19 1.00  -0.50 0.10 -1.86 0.09 -1.44 0.13  0.00 1.00 0.56 0.62 1.69 0.10  -0.64 0.28 -1.01 0.36 -0.51 0.59 

Cp3SD 0.07 0.97  -0.38 0.43 0.78 0.44 0.51 0.60  0.95 0.41 0.48 0.70 -0.15 0.87  0.55 0.54 -0.31 0.79 -0.36 0.72 

CpHmC 0.36 0.94  0.40 0.25 2.30 0.07 1.82 0.09  0.04 0.96 1.06 0.42 -0.18 0.87  -1.57 0.02 -2.36 0.03 -1.90 0.08 

CpHP 0.60 0.00  0.75 0.10 1.65 0.14 1.17 0.19  -1.46 0.00 -2.79 0.03 -2.00 0.03  -0.68 0.14 -1.08 0.33 -0.83 0.35 
a Based on Bayesian phylogenetic generalized linear mixed model (PGLMM) regression of taxon means with size (log-transformed sum carpal 
volume) as a covariate. OR, odds ratio (log scale)      
b Based on PGLMM analysis of all observations rather than taxon means 
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Table 3.10. Additional extant positional classification results 

a                                              Cross-validation trials 

 DFA  glmnet  

  DG KW PG S  DG KW PG S Total 

DG 1900 0 1100 0  1868 0 1132 0 3000 

KW 0 7846 354 0  0 7989 46 165 8200 

PG 1205 417 13868 10  825 203 14150 322 15500 

S 0 500 487 6613  0 189 352 7059 7600 

b                                 Additional per-class accuracy metrics 
 DFA  glmnet  

Bala 0.788 0.941 0.894 0.981  0.829 0.973 0.915 0.958  
Senb 0.612 0.895 0.877 0.998  0.694 0.953 0.902 0.935  
Specc 0.965 0.986 0.912 0.964  0.964 0.992 0.927 0.980  
PPVd 0.633 0.957 0.895 0.870  0.623 0.974 0.913 0.929  
NPVe 0.962 0.965 0.897 1.000  0.974 0.985 0.919 0.982  

c 
Mean prediction posterior 

probabilities  

Mean probabilities by a priori 
class  

DFA 0.756 0.946 0.908 0.969  0.610 0.939 0.865 0.861  
glmnet 0.801 0.959 0.931 0.958  0.589 0.949 0.884 0.915  
d                                            glmnet tuned parameters  
alpha 0.9632653  
lambda 0.0005459  
a Balanced accuracy – average of sensitivity and specificity 
b Sensitivity – correct predictions relative to the number of a priori cases of that 
class in the sample. Also known as recall or true positive rate. 
c Specificity – rate at which observations not assigned to a class actually do not 
belong to that class, also known as the true negative rate. 
d Positive prediction value – probability that an observation predicted to belong to 
a class actually belongs to that class. 
e Negative prediction value – probability than an observation not predicted to 
belong to a class actually does not belong to that class 
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Table 3.11. Relationships between shape variables and selected locomotor proportions based on PGLS regression 

a QuadA b Quad c SuspA 

  R2 λ b p ba pa  R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.26 0.56 0.49 0.02 0.78 0.00  0.53 0.00 0.72 0.00 0.67 0.00  0.14 1.00 -0.26 0.08 -0.27 0.10 

CpSc 0.11 0.58 0.33 0.14 0.32 0.17  0.04 1.00 0.19 0.39 0.71 0.00  0.07 1.00 -0.19 0.24 -0.20 0.23 

CpLu 0.10 0.79 0.30 0.16 0.46 0.10  0.02 1.00 0.14 0.48 -0.06 0.74  0.05 1.00 -0.14 0.34 -0.14 0.38 

CpDn 0.10 0.88 0.27 0.15 0.28 0.14  0.06 1.00 0.20 0.26 0.21 0.16  0.00 1.00 -0.02 0.89 -0.02 0.88 

Cp3 0.05 0.72 0.20 0.34 0.19 0.38  0.03 1.00 0.13 0.48 0.05 0.76  0.06 1.00 -0.14 0.29 -0.13 0.32 

CpHm 0.11 0.86 -0.30 0.13 -0.30 0.16  0.01 1.00 -0.08 0.64 -0.02 0.91  0.08 1.00 0.14 0.21 0.14 0.23 

Cp2 0.02 0.79 0.17 0.52 0.25 0.39  0.00 1.00 0.03 0.90 0.23 0.35  0.02 1.00 -0.13 0.51 -0.16 0.44 

Cp4 0.02 0.80 -0.17 0.51 -0.19 0.59  0.05 1.00 -0.29 0.30 0.13 0.68  0.05 1.00 0.20 0.32 0.24 0.35 

Cp23A 0.17 0.53 -0.40 0.05 -0.46 0.03  0.19 0.87 -0.46 0.04 -0.20 0.32  0.21 1.00 0.31 0.03 0.31 0.04 

Cp3HmA 0.03 0.77 0.14 0.44 0.13 0.51  0.00 1.00 -0.01 0.96 -0.05 0.69  0.04 1.00 -0.09 0.40 -0.08 0.43 

CpPxA 0.34 0.48 0.56 0.00 0.71 0.00  0.42 0.59 0.70 0.00 0.55 0.01  0.84 0.58 -0.86 0.00 -0.96 0.00 

CpScA 0.19 0.57 0.49 0.04 0.49 0.05  0.02 1.00 0.21 0.53 0.29 0.32  0.33 1.00 -0.60 0.01 -0.62 0.01 

Cp3SD 0.31 0.85 0.55 0.01 0.59 0.01  0.19 1.00 0.43 0.04 0.31 0.11  0.06 1.00 -0.18 0.25 -0.17 0.29 

CpHmC 0.29 0.65 0.54 0.01 0.77 0.00  0.39 0.72 0.69 0.00 0.36 0.13  0.43 1.00 -0.54 0.00 -0.63 0.00 

CpHP 0.00 0.82 0.06 0.76 0.08 0.71  0.00 1.00 0.04 0.80 0.05 0.72  0.01 1.00 0.06 0.64 0.06 0.65 

Without hylobatids 

CpPx 0.02 0.53 0.16 0.53 0.35 0.12  0.23 0.00 0.48 0.04 0.02 0.93  0.00 1.00 0.00 0.98 -0.02 0.90 

CpSc 0.43 0.60 0.65 0.00 0.33 0.18  0.02 1.00 0.16 0.54 0.63 0.01  0.52 0.00 -0.72 0.00 -0.63 0.01 

CpLu 0.06 0.72 -0.28 0.30 0.12 0.76  0.00 1.00 -0.06 0.80 -0.20 0.37  0.03 1.00 0.13 0.49 0.08 0.69 

CpDn 0.23 0.00 0.47 0.04 0.60 0.00  0.27 1.00 0.48 0.02 0.48 0.01  0.15 1.00 -0.28 0.10 -0.29 0.09 

Cp3 0.01 0.51 -0.07 0.77 -0.10 0.64  0.00 1.00 0.01 0.96 -0.03 0.88  0.00 1.00 0.00 0.99 -0.02 0.90 

CpHm 0.05 0.52 -0.18 0.37 -0.28 0.31  0.00 1.00 -0.06 0.78 -0.02 0.90  0.08 1.00 0.19 0.24 0.21 0.19 

Cp2 0.06 0.47 0.23 0.32 0.22 0.50  0.00 1.00 0.03 0.93 0.28 0.40  0.04 1.00 -0.21 0.43 -0.13 0.66 

Cp4 0.01 0.48 0.14 0.62 0.07 0.86  0.00 1.00 -0.11 0.84 0.50 0.37  0.06 1.00 -0.39 0.33 -0.23 0.62 

Cp23A 0.16 0.00 -0.40 0.09 -0.07 0.75  0.00 1.00 -0.05 0.82 -0.03 0.89  0.06 1.00 0.16 0.33 0.16 0.30 

Cp3HmA 0.19 0.77 0.49 0.06 -0.14 0.51  0.03 1.00 -0.10 0.45 -0.09 0.46  0.01 1.00 0.03 0.74 0.04 0.71 

CpPxA 0.07 0.59 0.30 0.27 0.23 0.28  0.17 0.62 0.41 0.08 0.42 0.06  0.62 0.65 -0.70 0.00 -0.75 0.00 

CpScA 0.30 0.00 0.55 0.02 -0.10 0.73  0.02 1.00 -0.22 0.57 0.06 0.87  0.10 1.00 -0.40 0.18 -0.33 0.32 

Cp3SD 0.01 0.62 -0.13 0.65 0.48 0.04  0.11 1.00 0.36 0.16 0.29 0.23  0.00 1.00 0.01 0.98 -0.03 0.88 
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CpHmC 0.16 0.38 -0.37 0.09 0.38 0.08  0.20 0.71 0.55 0.05 0.28 0.31  0.15 1.00 -0.37 0.10 -0.48 0.04 

CpHP 0.44 0.00 0.66 0.00 0.40 0.07  0.05 1.00 0.19 0.36 0.19 0.33  0.02 1.00 -0.09 0.57 -0.10 0.57 

d Susp e ClimbA f Climb 

  R2 λ b p ba pa  R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.23 1.00 -0.34 0.02 -0.34 0.03  0.13 0.71 0.36 0.10 0.23 0.31  0.11 0.00 -0.33 0.14 -0.18 0.40 

CpSc 0.17 1.00 -0.30 0.06 -0.32 0.05  0.05 0.80 0.24 0.30 0.30 0.14  0.04 0.34 -0.23 0.36 -0.40 0.06 

CpLu 0.05 1.00 -0.14 0.32 -0.13 0.42  0.05 0.73 0.21 0.33 -0.04 0.88  0.07 0.00 -0.26 0.24 0.21 0.49 

CpDn 0.00 1.00 0.01 0.91 0.01 0.93  0.01 0.81 -0.10 0.61 -0.02 0.92  0.00 0.30 -0.06 0.78 -0.14 0.49 

Cp3 0.08 1.00 -0.16 0.21 -0.15 0.26  0.16 0.79 0.37 0.07 0.29 0.09  0.04 0.32 -0.20 0.40 -0.05 0.81 

CpHm 0.02 1.00 0.08 0.49 0.07 0.55  0.00 0.79 -0.05 0.81 0.16 0.48  0.07 0.00 0.26 0.23 -0.07 0.78 

Cp2 0.01 1.00 -0.09 0.66 -0.13 0.53  0.02 0.78 -0.15 0.56 -0.08 0.74  0.02 0.00 0.16 0.48 -0.32 0.24 

Cp4 0.07 1.00 0.23 0.25 0.25 0.33  0.18 0.70 -0.48 0.05 -0.35 0.30  0.17 0.00 0.41 0.06 -0.79 0.05 

Cp23A 0.19 1.00 0.30 0.04 0.29 0.06  0.19 0.78 -0.45 0.04 -0.34 0.04  0.04 0.42 0.21 0.39 0.13 0.53 

Cp3HmA 0.03 1.00 -0.09 0.41 -0.08 0.46  0.04 0.75 0.16 0.39 0.10 0.59  0.01 0.00 -0.10 0.65 0.04 0.84 

CpPxA 0.91 0.00 -0.95 0.00 -0.96 0.00  0.24 0.81 0.54 0.02 0.43 0.04  0.07 0.18 -0.28 0.23 -0.23 0.25 

CpScA 0.37 1.00 -0.65 0.00 -0.67 0.00  0.01 0.80 0.14 0.63 0.16 0.40  0.01 0.42 -0.15 0.61 -0.17 0.42 

Cp3SD 0.05 1.00 -0.15 0.32 -0.14 0.40  0.00 0.79 0.03 0.89 -0.02 0.92  0.16 0.00 -0.40 0.06 -0.21 0.37 

CpHmC 0.46 1.00 -0.57 0.00 -0.59 0.00  0.16 0.69 0.41 0.07 0.29 0.19  0.11 0.00 -0.34 0.12 -0.19 0.38 

CpHP 0.03 1.00 0.09 0.46 0.09 0.47  0.07 0.72 -0.24 0.23 -0.29 0.12  0.05 0.00 0.21 0.34 0.03 0.91 

Without hylobatids 

CpPx 0.03 1.00 -0.11 0.47 -0.12 0.43  0.01 0.75 0.10 0.64 0.06 0.80  0.21 0.00 -0.46 0.05 -0.32 0.16 

CpSc 0.17 1.00 -0.36 0.07 -0.34 0.11  0.04 0.79 0.19 0.40 0.26 0.26  0.03 0.34 -0.18 0.49 -0.52 0.03 

CpLu 0.03 1.00 0.13 0.48 0.10 0.63  0.01 0.79 -0.11 0.66 -0.52 0.12  0.09 0.00 -0.30 0.22 0.39 0.33 

CpDn 0.09 1.00 -0.22 0.21 -0.22 0.21  0.00 0.78 -0.04 0.84 0.06 0.78  0.04 0.37 -0.21 0.39 -0.34 0.11 

Cp3 0.00 1.00 -0.04 0.81 -0.05 0.75  0.10 0.81 0.26 0.18 0.23 0.27  0.02 0.33 -0.16 0.53 -0.05 0.84 

CpHm 0.01 1.00 0.07 0.65 0.09 0.60  0.00 0.77 0.04 0.86 0.08 0.75  0.08 0.00 0.29 0.23 -0.10 0.65 

Cp2 0.02 1.00 -0.14 0.60 -0.08 0.79  0.05 0.70 -0.25 0.34 -0.29 0.32  0.03 0.00 0.17 0.48 -0.47 0.15 

Cp4 0.03 1.00 -0.30 0.46 -0.18 0.71  0.04 0.71 -0.26 0.42 -0.05 0.90  0.23 0.00 0.48 0.04 -0.45 0.43 

Cp23A 0.04 1.00 0.13 0.41 0.14 0.39  0.14 0.80 -0.31 0.12 -0.38 0.05  0.03 0.44 0.16 0.51 0.19 0.40 

Cp3HmA 0.01 1.00 0.04 0.69 0.04 0.67  0.00 0.77 -0.05 0.78 -0.05 0.79  0.01 0.00 -0.08 0.73 0.06 0.63 

CpPxA 0.73 0.00 -0.85 0.00 -0.83 0.00  0.16 0.83 0.33 0.09 0.33 0.09  0.13 0.00 -0.36 0.13 -0.43 0.04 

CpScA 0.15 1.00 -0.48 0.11 -0.46 0.17  0.02 0.72 -0.16 0.57 -0.06 0.83  0.02 0.00 0.15 0.54 -0.48 0.13 
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Cp3SD 0.00 1.00 0.06 0.78 0.03 0.88  0.04 0.83 -0.20 0.39 -0.19 0.43  0.18 0.00 -0.42 0.07 -0.23 0.35 

CpHmC 0.19 1.00 -0.41 0.07 -0.44 0.05  0.06 0.71 0.25 0.31 0.21 0.38  0.18 0.00 -0.42 0.07 -0.28 0.22 

CpHP 0.00 1.00 -0.03 0.85 -0.03 0.85  0.09 0.72 -0.27 0.20 -0.33 0.11  0.02 0.00 0.14 0.56 -0.20 0.34 

g LeapA h Leap i Arb 

  R2 λ b p ba pa  R2 λ b p ba pa  R2 λ b p ba pa 

CpPx 0.01 1.00 -0.09 0.65 0.01 0.95  0.02 1.00 -0.14 0.49 -0.01 0.95  0.20 0.52 -0.48 0.04 -0.30 0.09 

CpSc 0.06 1.00 0.22 0.27 0.17 0.38  0.03 1.00 0.16 0.46 0.09 0.64  0.01 1.00 -0.12 0.65 -0.48 0.00 

CpLu 0.08 1.00 -0.23 0.19 -0.12 0.53  0.08 1.00 -0.24 0.19 -0.08 0.66  0.01 1.00 -0.09 0.68 0.22 0.24 

CpDn 0.12 1.00 -0.24 0.11 -0.25 0.08  0.14 1.00 -0.28 0.08 -0.30 0.04  0.04 1.00 -0.18 0.35 -0.21 0.17 

Cp3 0.01 1.00 -0.06 0.72 0.00 0.98  0.00 1.00 0.02 0.90 0.10 0.53  0.00 1.00 -0.03 0.88 0.09 0.58 

CpHm 0.09 1.00 0.19 0.18 0.15 0.26  0.05 1.00 0.15 0.32 0.10 0.46  0.00 1.00 -0.01 0.97 -0.10 0.50 

Cp2 0.02 1.00 0.15 0.53 0.03 0.89  0.00 1.00 0.01 0.96 -0.16 0.49  0.01 1.00 -0.13 0.68 -0.42 0.08 

Cp4 0.13 1.00 0.40 0.10 0.22 0.46  0.10 1.00 0.38 0.15 0.06 0.83  0.29 0.00 0.54 0.01 -0.48 0.10 

Cp23A 0.00 1.00 0.00 0.99 -0.07 0.71  0.00 1.00 0.02 0.92 -0.07 0.70  0.21 0.74 0.50 0.03 0.39 0.01 

Cp3HmA 0.00 1.00 0.00 0.99 0.03 0.80  0.00 1.00 -0.03 0.84 0.01 0.93  0.00 1.00 0.01 0.96 0.07 0.57 

CpPxA 0.00 1.00 0.00 0.99 0.07 0.75  0.00 1.00 0.07 0.76 0.17 0.43  0.12 0.69 -0.39 0.12 -0.32 0.05 

CpScA 0.18 1.00 0.56 0.05 0.51 0.06  0.17 1.00 0.57 0.06 0.51 0.06  0.00 1.00 0.07 0.85 -0.04 0.90 

Cp3SD 0.15 1.00 -0.33 0.08 -0.25 0.17  0.15 1.00 -0.36 0.07 -0.25 0.18  0.17 0.57 -0.43 0.05 -0.12 0.56 

CpHmC 0.00 1.00 -0.02 0.94 0.12 0.59  0.01 1.00 -0.11 0.66 0.07 0.77  0.28 0.56 -0.58 0.01 -0.37 0.03 

CpHP 0.06 1.00 -0.16 0.27 -0.17 0.22  0.06 1.00 -0.17 0.28 -0.18 0.20  0.01 1.00 -0.07 0.70 -0.09 0.55 

Without hylobatids 

CpPx 0.00 1.00 0.00 0.99 0.02 0.89  0.01 1.00 -0.04 0.76 -0.02 0.90  0.15 0.37 -0.39 0.11 -0.27 0.18 

CpSc 0.05 1.00 0.17 0.35 0.11 0.53  0.02 1.00 0.12 0.56 0.03 0.88  0.01 1.00 -0.08 0.75 -0.50 0.01 

CpLu 0.04 1.00 -0.13 0.42 -0.06 0.70  0.04 1.00 -0.14 0.41 -0.05 0.79  0.00 1.00 0.01 0.96 0.21 0.26 

CpDn 0.17 1.00 -0.26 0.08 -0.26 0.06  0.22 1.00 -0.32 0.04 -0.32 0.02  0.12 1.00 -0.32 0.14 -0.42 0.01 

Cp3 0.00 1.00 -0.03 0.80 -0.01 0.92  0.01 1.00 0.05 0.73 0.08 0.54  0.00 1.00 0.04 0.85 0.09 0.55 

CpHm 0.08 1.00 0.17 0.24 0.15 0.28  0.04 1.00 0.13 0.41 0.10 0.49  0.00 1.00 -0.03 0.89 -0.08 0.62 

Cp2 0.07 1.00 0.24 0.28 0.14 0.56  0.01 1.00 0.10 0.70 -0.09 0.71  0.01 1.00 -0.13 0.71 -0.51 0.05 

Cp4 0.02 1.00 0.18 0.61 -0.13 0.74  0.01 1.00 0.15 0.71 -0.33 0.41  0.25 0.00 0.50 0.03 -0.72 0.11 

Cp23A 0.00 1.00 0.02 0.87 0.01 0.93  0.00 1.00 0.03 0.85 0.01 0.93  0.15 0.74 0.36 0.11 0.44 0.01 

Cp3HmA 0.01 1.00 0.03 0.71 0.03 0.75  0.00 1.00 0.01 0.91 0.00 0.97  0.01 1.00 0.05 0.70 0.04 0.72 

CpPxA 0.01 1.00 0.06 0.68 0.04 0.76  0.04 1.00 0.14 0.40 0.11 0.45  0.00 1.00 0.01 0.97 -0.32 0.07 
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CpScA 0.36 1.00 0.65 0.01 0.59 0.02  0.34 1.00 0.69 0.01 0.55 0.04  0.05 1.00 0.35 0.37 -0.07 0.84 

Cp3SD 0.16 1.00 -0.30 0.09 -0.26 0.13  0.16 1.00 -0.32 0.09 -0.27 0.13  0.11 0.51 -0.35 0.16 -0.13 0.54 

CpHmC 0.00 1.00 -0.04 0.84 -0.01 0.97  0.02 1.00 -0.14 0.53 -0.09 0.65  0.26 0.45 -0.57 0.02 -0.38 0.05 

CpHP 0.01 1.00 -0.06 0.69 -0.06 0.68  0.02 1.00 -0.08 0.62 -0.08 0.58  0.03 1.00 -0.15 0.47 -0.15 0.36 
a Based on PGLS model with size as a covariate 



 

236 
 

Table 3.12. Prediction results for selected locomotor proportions 

a Predictive models 

 PGLS  GLM 

  R2 λ p   Terms Coef SE T p SEE%a 

QuadA 0.901 0.000 0.000  (Intercept) -0.55 0.04 -12.8 0.000 15.4 
     Cp23A -0.09 0.05 -1.9 0.061  

     Cp3SD 0.27 0.05 6.0 0.000  

     CpDn 0.26 0.05 5.6 0.000  

     CpHP 0.22 0.05 4.9 0.000  

     CpScA 0.70 0.05 13.0 0.000  

Quad 0.638 0.421 0.000  (Intercept) 0.15 0.06 2.3 0.020 20.5 
     CpDn 0.36 0.07 5.3 0.000  

     CpPx 0.70 0.07 9.7 0.000  

     CpPxA 0.79 0.08 10.3 0.000  

SuspA 0.969 0.000 0.000  (Intercept) -2.55 0.07 -34.6 0.000 8.5 
     CpDn -0.36 0.06 -6.3 0.000  

     CpHmC -0.23 0.07 -3.24 0.001  

     CpPxA -0.62 0.09 -6.8 0.000  

     CpSc -0.48 0.06 -7.6 0.000  

     CpScA -0.54 0.08 -6.8 0.000  

Susp 0.945 0.000 0.000  (Intercept) -3.10 0.12 -26.2 0.000 9.6 
     CpPxA -1.34 0.08 -17.8 0.000  

     CpSc -0.79 0.09 -9.0 0.000  

ClimbA 0.951 1.000 0.009  (all)     10.0 

Climb 0.895 0.000 0.069  (all)     11.0 

Arb 0.892 0.000 0.075   (all)         25.2 

b Predicted locomotor proportions of training taxab 

 QuadA  Quad  SuspA  Susp 

  Obs Pred Δ   Obs Pred Δ   Obs Pred Δ   Obs Pred Δ 

P. t. schweinfurthii 0.31 0.30 0.01  0.93 0.61 0.32  0.08 0.06 0.02  0.01 0.03 0.02 

P. t. verus 0.21 0.26 0.05  0.86 0.69 0.17  0.06 0.06 0.00  0.01 0.02 0.01 

P. paniscus 0.35 0.28 0.07  0.87 0.70 0.17  0.09 0.06 0.03  0.01 0.03 0.02 

G. gorilla 0.19 0.33 0.14  0.92 0.76 0.16  0.13 0.06 0.07  0.01 0.03 0.02 

G. beringei 0.53 0.41 0.12  0.96 0.73 0.23  0.06 0.07 0.01  0.01 0.05 0.04 

P. pygmaeus 0.12 0.20 0.08  0.12 0.33 0.21  0.43 0.34 0.09  0.43 0.25 0.18 

P. abelii 0.18 0.23 0.05  0.18 0.33 0.15  0.38 0.37 0.01  0.38 0.36 0.02 

Hoolock 0.00 0.17 0.17  0.00 0.10 0.10  0.55 0.44 0.11  0.55 0.51 0.04 

H. lar 0.00 0.15 0.15  0.00 0.07 0.07  0.59 0.61 0.02  0.59 0.58 0.01 

Symphalangus 0.00 0.19 0.19  0.00 0.12 0.12  0.59 0.56 0.03  0.59 0.59 0.00 

Papio 0.68 0.45 0.23  0.99 0.77 0.22  0.00 0.03 0.03  0.00 0.02 0.02 

Lophocebus 0.42 0.51 0.09  0.42 0.79 0.37  0.00 0.02 0.02  0.00 0.01 0.01 

Macaca 0.68 0.41 0.27  0.68 0.74 0.06  0.00 0.04 0.04  0.00 0.02 0.02 

Erythrocebus 0.60 0.57 0.03  0.94 0.68 0.26  0.00 0.04 0.04  0.00 0.04 0.04 

Cercopithecus 0.54 0.49 0.05  0.54 0.73 0.19  0.00 0.04 0.04  0.00 0.02 0.02 
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Colobus 0.41 0.48 0.07  0.41 0.71 0.30  0.01 0.02 0.01  0.01 0.01 0.00 

Procolobus 0.35 0.37 0.02  0.35 0.62 0.27  0.01 0.05 0.04  0.01 0.03 0.02 

Trachypithecus 0.60 0.51 0.09  0.60 0.65 0.05  0.00 0.06 0.06  0.00 0.03 0.03 

Presbytis 0.28 0.39 0.11  0.28 0.49 0.21  0.02 0.05 0.03  0.02 0.03 0.01 

Alouatta 0.61 0.52 0.09  0.61 0.49 0.12  0.02 0.04 0.02  0.02 0.03 0.01 

Ateles 0.42 0.46 0.04  0.42 0.28 0.14  0.25 0.13 0.12  0.25 0.17 0.08 

Cebus 0.37 0.45 0.08   0.37 0.44 0.07   0.00 0.06 0.06   0.00 0.05 0.05 

c Predictions of locomotor proportions less reflected in capitate morphology  

 ClimbA  Climb  Arb 

  Obs Pred Δ   Obs Pred Δ   Obs Pred Δ 

P. t. schweinfurthii 0.59 0.47 0.12  0.06 0.13 0.07  0.10 0.41 0.31 

P. t. verus 0.68 0.52 0.16  0.11 0.15 0.04  0.16 0.35 0.19 

P. paniscus 0.51 0.45 0.06  0.09 0.18 0.09  0.17 0.36 0.19 

G. gorilla 0.62 0.54 0.08  0.06 0.13 0.07  0.10 0.19 0.09 

G. beringei 0.40 0.48 0.08  0.04 0.14 0.10  0.09 0.21 0.12 

P. pygmaeus 0.37 0.40 0.03  0.37 0.21 0.16  0.95 0.75 0.20 

P. abelii 0.35 0.32 0.03  0.35 0.24 0.11  0.95 0.87 0.08 

Hoolock 0.20 0.27 0.07  0.20 0.29 0.09  0.99 0.99 0.00 

H. lar 0.19 0.21 0.02  0.19 0.29 0.10  0.99 1.00 0.01 

Symphalangus 0.32 0.18 0.14  0.32 0.23 0.09  0.99 1.00 0.01 

Papio 0.21 0.30 0.09  0.01 0.18 0.17  0.05 0.54 0.49 

Lophocebus 0.36 0.33 0.03  0.36 0.18 0.18  0.95 0.48 0.47 

Macaca 0.26 0.31 0.05  0.26 0.17 0.09  0.97 0.65 0.32 

Erythrocebus 0.30 0.27 0.03  0.05 0.27 0.22  0.08 0.64 0.56 

Cercopithecus 0.35 0.30 0.05  0.35 0.21 0.14  0.95 0.62 0.33 

Colobus 0.20 0.35 0.15  0.20 0.21 0.01  0.96 0.84 0.12 

Procolobus 0.29 0.33 0.04  0.29 0.27 0.02  0.95 0.87 0.08 

Trachypithecus 0.13 0.29 0.16  0.13 0.20 0.07  0.99 0.87 0.12 

Presbytis 0.19 0.29 0.10  0.19 0.28 0.09  0.99 0.95 0.04 

Alouatta 0.33 0.30 0.03  0.33 0.31 0.02  0.95 0.96 0.01 

Ateles 0.25 0.31 0.06  0.25 0.34 0.09  0.99 0.99 0.00 

Cebus 0.40 0.34 0.06   0.40 0.30 0.10   0.95 0.95 0.00 

d Predicted locomotor proportions for other taxa 

  QuadA Quad SuspA Susp ClimbA Climb Arb 

P. t. troglodytes 0.30 0.62 0.06 0.02 0.47 0.14 0.42 

P. t. ellioti 0.29 0.63 0.07 0.03 0.49 0.14 0.43 

H. muelleri 0.19 0.08 0.55 0.44 0.25 0.24 1.00 

Mandrillus 0.39 0.75 0.04 0.03 0.33 0.20 0.44 

Cercocebus 0.58 0.77 0.03 0.02 0.22 0.16 0.70 

Nasalis 0.41 0.65 0.05 0.02 0.21 0.22 0.95 
a Percent standard error of the estimate based on repeated individual predictions 
generated during cross validation 
b Predictions calculated after 100 repetitions of 10-fold cross validation of quasibinomial 
logistic regression. Obs, observed proportions. Pred, predicted proportions. Δ, residual. 
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Table 3.13. PLS results 

a Locomotor PLS vectors  Without hylobatids 

 PLS1 PLS2 PLS3 PLS4 PLS5  PLS1 PLS2 PLS3 PLS4 PLS5 

QuadA 0.54 0.28 -0.50 0.26 0.56  0.47 0.38 -0.55 0.15 -0.56 

SuspA -0.71 -0.22 -0.24 -0.09 0.62  -0.54 -0.51 -0.39 -0.23 -0.49 

ClimbA 0.29 -0.56 0.60 0.28 0.40  -0.43 0.31 0.46 0.53 -0.47 

LeapA 0.03 0.58 0.51 -0.51 0.37  0.45 -0.28 0.58 -0.39 -0.48 

Arb -0.36 0.47 0.26 0.76 -0.02  0.31 -0.64 -0.04 0.70 0.04 

b Shape PLS vectors          

CpSc 0.31 0.27 -0.08 -0.29 0.31  0.34 0.27 0.13 -0.05 -0.05 

CpLu 0.21 -0.32 -0.11 0.15 -0.53  -0.37 0.05 -0.07 -0.25 -0.01 

CpDn -0.04 -0.11 -0.60 0.09 0.57  0.10 0.51 -0.48 0.26 -0.20 

Cp3 0.26 -0.10 0.14 0.61 0.21  -0.12 0.07 0.17 0.48 -0.48 

CpHm -0.04 0.31 0.05 0.19 0.12  0.22 -0.17 0.00 0.07 -0.32 

Cp2 0.14 0.52 -0.16 -0.23 -0.27  0.44 -0.07 -0.03 -0.38 -0.05 

Cp4 -0.15 0.40 -0.18 0.39 -0.13  0.36 -0.13 -0.24 0.34 0.35 

Cp23A -0.37 0.00 0.07 -0.27 -0.06  -0.06 -0.30 -0.07 -0.25 -0.03 

Cp3HmA 0.27 -0.05 0.04 0.13 -0.21  -0.14 -0.09 0.09 -0.32 -0.36 

CpPxA 0.44 0.09 0.13 -0.12 0.06  0.24 0.40 0.52 -0.04 0.12 

CpScA 0.30 0.38 0.09 0.21 -0.01  0.39 -0.14 0.18 -0.07 -0.47 

Cp3SD 0.25 -0.27 -0.49 0.03 -0.11  -0.18 0.32 -0.31 -0.18 -0.32 

CpHmC 0.41 -0.10 -0.09 -0.35 0.00  -0.04 0.47 0.17 -0.30 0.18 

CpHP -0.14 0.21 -0.52 0.06 -0.30  0.29 0.02 -0.47 -0.29 -0.02 

c Convex hull Euclidean areaa 

 Monkeys Great apes Tinderet  Monkeys Great apes Tinderet 

 6.89 8.93 6.11  27.23 12.96 15.58 
a As proportion of scaled PLS shape-space  
 
 
 
Table 3.14. (a) Covariance of shape variables with Hominoidea and Platyrrhini relative to 
Cercopithecoidea. Reported results are from univariate ordinary least squares (OLS) regression of 
individual observations except where noted. (b) Phylogenetic signal estimated with Pagel's lambda and 
Blomberg's K. 

a   Hominoidea  Platyrrhini b Phylogenetic signal 

 R2  b p ORa pa  b p ORa pa  λ p K p 

CpPx 0.19  -0.70 0.00 -3.47 0.00  -1.00 0.00 -1.53 0.00  0.88 0.00 0.42 0.01 

CpSc 0.23  -1.26 0.00 -1.76 0.00  -0.59 0.00 -0.51 0.01  0.86 0.00 0.36 0.00 

CpLu 0.11  0.36 0.00 -1.65 0.00  -0.59 0.00 -1.09 0.00  0.97 0.00 0.65 0.00 

CpDn 0.05  -0.43 0.00 -0.27 0.10  -0.59 0.00 -0.66 0.00  0.99 0.00 0.57 0.00 

Cp3 0.24  0.44 0.00 0.01 0.96  1.24 0.00 1.69 0.00  0.91 0.00 0.52 0.00 

CpHm 0.21  -0.29 0.01 0.34 0.12  1.09 0.00 1.51 0.00  0.71 0.00 0.48 0.00 

Cp2 0.47  -1.57 0.00 -3.13 0.00  -0.69 0.00 -0.88 0.00  0.99 0.00 1.12 0.00 

Cp4 0.35  -0.43 0.00 1.79 0.00  1.13 0.00 1.81 0.00  1.01 0.00 1.96 0.00 

Cp23A 0.15  0.41 0.00 1.26 0.00  -0.80 0.00 -1.06 0.00  0.97 0.00 0.65 0.00 
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Cp3HmA 0.09  -0.67 0.00 -2.40 0.00  -0.47 0.00 -0.05 0.81  0.76 0.02 0.34 0.02 

CpPxA 0.14  -0.79 0.00 -3.31 0.00  -0.51 0.00 -0.55 0.01  0.98 0.00 0.91 0.00 

CpScA 0.39  -1.00 0.00 -2.98 0.00  0.94 0.00 2.47 0.00  1.00 0.00 2.09 0.00 

Cp3SD 0.18  0.06 0.60 -0.96 0.00  -1.08 0.00 -2.00 0.00  0.82 0.02 0.52 0.00 

CpHmC 0.30  -0.67 0.00 -6.53 0.00  -1.37 0.00 -3.23 0.00  1.01 0.00 1.32 0.00 

CpHP 0.17  -0.89 0.00 -0.45 0.02  -0.88 0.00 -0.72 0.00  0.88 0.00 0.50 0.00 
a Based on multinomial logistic regression with size (log-transformed sum carpal volume) as a 
covariate. OR, odds ratio (log scale) 
 
 
 
Table 3.15. Additional extant taxonomic classification results. See Table 3.5 and Table 3.7 for 
abbreviations and definitions. 

a                                       Cross-validation trials 

 DFA  glmnet  

 Cerc Hom Plat  Cerc Hom Plat Total 

Cerc 11336 632 532  11630 656 214 12500 

Hom 417 14083 0  444 13940 116 14500 

Plat 300 85 6915  309 92 6899 7300 

b                      Additional per-class accuracy metrics 

Bal 0.944 0.965 0.957  0.950 0.960 0.971  

Sen 0.941 0.952 0.929  0.940 0.949 0.957  

Spec 0.948 0.979 0.986  0.961 0.972 0.985  

PPV 0.907 0.971 0.947  0.931 0.962 0.945  

NPV 0.967 0.964 0.980  0.966 0.962 0.988  

c 
Mean prediction 

posterior probabilities 
 Mean probabilities by 

a priori class 
 

DFA 0.932 0.966 0.968  0.869 0.953 0.935  

glmnet 0.906 0.938 0.925  0.949 0.960 0.954  

d                                glmnet tuned parameters  

alpha  0.9921053    

lambda 0.0010833    

 
 
 
Table 3.16. Spearman correlations between phylogenetic independent contrasts of shape variables and 
size surrogate 

 Males  Females  Pooled 

  rho p   rho p   rho p 

CpPx 0.10 0.83  0.11 0.88  0.10 0.70 

CpSc -0.27 0.57  -0.08 0.88  -0.18 0.48 

CpLu 0.45 0.24  0.16 0.88  0.33 0.13 

CpDn 0.20 0.57  0.08 0.88  0.13 0.70 

Cp3 -0.32 0.57  -0.04 0.90  -0.19 0.48 

CpHm -0.22 0.57  -0.44 0.28  -0.32 0.13 

Cp2 -0.07 0.85  -0.12 0.88  -0.08 0.77 
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Cp4 -0.31 0.57  -0.24 0.88  -0.30 0.14 

Cp23A 0.11 0.83  -0.07 0.88  0.00 0.98 

Cp3HmA 0.04 0.85  0.18 0.88  0.12 0.70 

CpPxA 0.19 0.57  -0.07 0.88  0.06 0.84 

CpScA -0.24 0.57  -0.25 0.88  -0.24 0.29 

Cp3SD -0.05 0.85  -0.02 0.90  -0.05 0.84 

CpHmC 0.18 0.57  -0.04 0.90  0.10 0.70 

CpHP 0.20 0.57   -0.15 0.88   0.02 0.93 

 
 
 
Table 3.17. Condition of selected articulations in extant sample 

 a Mc2 b Hamate 

 Tot Cont 
P 

only 
D&P  Prox 

& dist 
Dist 
D&P 

Plm 
acc 

Pan 44 1 3 40  0 0 2 

Gorilla 38 0 25 13  0 0 0 

Pongo 34 0 1 33  8 0 0 

Hylobatids 29 0 0 29  26 12 1 

Papio 14 10 0 4  0 0 0 

Lophocebus 6 6 0 0  0 0 0 

Mandrillus 9 7 0 2  0 0 0 

Cercocebus 2 1 0 1  0 0 0 

Macaca 18 18 0 0  0 0 1 

Erythrocebus 7 7 0 0  0 0 0 

Cercopithecus 11 8 0 3  0 0 0 

Colobus 9 1 0 8  0 0 0 

Procolobus 13 10 0 3  0 0 0 

Nasalis 17 13 0 4  4 3 11 

Trachypithecus 17 14 0 3  0 0 0 

Presbytis 2 2 0 0  0 0 0 

Alouatta 32 28 0 4  0 0 0 

Ateles 13 12 0 1  12 1 0 

Cebus 28 17 0 11  0 0 0 
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Table 3.18. List of specimens with average posterior probabilities calculated after 100 cross-validation repeats. Misclassified individuals are 
highlighted. 

 a Positional classification b Taxonomic classification 
   DFA  glmnet   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred  DG KW PG S Pred  Class Cerc Hom Plat Pred  Cerc Hom Plat Pred 

AMNH 51202 P. t. schwein. KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 51205 P. t. schwein. KW 0.03 0.19 0.78 0.00 PG  0.01 0.69 0.30 0.00 KW  Hom 0.10 0.90 0.00 Hom  0.29 0.71 0.00 Hom 

AMNH 51278 P. t. schwein. KW 0.00 0.99 0.00 0.01 KW  0.00 0.97 0.00 0.02 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 51376 P. t. schwein. KW 0.00 0.99 0.01 0.01 KW  0.00 1.00 0.00 0.00 KW  Hom 0.10 0.90 0.00 Hom  0.05 0.95 0.00 Hom 

AMNH 51377 P. t. schwein. KW 0.00 0.99 0.01 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 51379 P. t. schwein. KW 0.00 0.97 0.03 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.03 0.97 0.00 Hom  0.02 0.98 0.00 Hom 

AMNH 51381 P. t. schwein. KW 0.00 0.98 0.00 0.02 KW  0.00 0.79 0.00 0.21 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 51393 P. t. schwein. KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 201588 P. t. schwein. KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 236971 P. t. schwein. KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 54330 P. t. trog. KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 90189 P. t. trog. KW 0.00 0.98 0.02 0.00 KW  0.00 0.74 0.25 0.01 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 90190 P. t. trog. KW 0.04 0.47 0.49 0.00 PG  0.00 0.96 0.03 0.00 KW  Hom 0.17 0.83 0.00 Hom  0.16 0.84 0.00 Hom 

AMNH 90191 P. t. trog. KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 90292 P. t. trog. KW 0.00 0.95 0.04 0.00 KW  0.00 0.98 0.02 0.00 KW  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 167342 P. t. trog. KW 0.00 0.97 0.03 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.04 0.96 0.00 Hom  0.03 0.97 0.00 Hom 

AMNH 167343 P. t. trog. KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 167344 P. t. trog. KW 0.06 0.14 0.80 0.00 PG  0.05 0.57 0.38 0.00 KW  Hom 0.69 0.31 0.00 Cerc  0.86 0.14 0.00 Cerc 

AMNH 167346 P. t. trog. KW 0.00 0.99 0.00 0.01 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 201469 P. t. trog. KW 0.00 0.83 0.16 0.01 KW  0.00 0.90 0.07 0.03 KW  Hom 0.18 0.82 0.00 Hom  0.11 0.89 0.00 Hom 

UMMZ 39507 P. t. trog. KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 15312 P. t. trog. KW 0.00 0.98 0.02 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 89351 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 89353 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 89354 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 89355 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 89406 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 174860 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.02 0.98 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 174861 P. t. verus KW 0.01 0.37 0.62 0.00 PG  0.00 1.00 0.00 0.00 KW  Hom 0.86 0.14 0.00 Cerc  0.88 0.12 0.00 Cerc 

NMNH 256973 P. t. verus KW 0.00 0.90 0.10 0.00 KW  0.00 0.99 0.01 0.00 KW  Hom 0.39 0.61 0.00 Hom  0.18 0.82 0.00 Hom 

NMNH 477333 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 481803 P. t. verus KW 0.00 0.95 0.05 0.00 KW  0.00 0.99 0.01 0.00 KW  Hom 0.01 0.99 0.00 Hom  0.02 0.98 0.00 Hom 

NMNH 481804 P. t. verus KW 0.00 0.99 0.01 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.02 0.98 0.00 Hom  0.02 0.98 0.00 Hom 
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UMMZ 76276 P. t. verus KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

UMMZ 76277 P. t. verus KW 0.00 0.93 0.00 0.07 KW  0.00 0.56 0.00 0.44 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 20041 P. t. ellioti KW 0.00 0.91 0.08 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.07 0.93 0.00 Hom  0.14 0.86 0.00 Hom 

MCZ 23163 P. t. ellioti KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 23167 P. t. ellioti KW 0.00 1.00 0.00 0.00 KW  0.00 0.97 0.00 0.03 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 26849 P. t. ellioti KW 0.00 0.88 0.06 0.05 KW  0.00 0.48 0.25 0.27 KW  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

UMMZ 167199 P. t. ellioti KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 86857 P. paniscus KW 0.01 0.84 0.09 0.06 KW  0.00 0.93 0.00 0.06 KW  Hom 0.40 0.60 0.00 Hom  0.39 0.61 0.00 Hom 

MCZ 38018 P. paniscus KW 0.00 0.94 0.06 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.05 0.95 0.00 Hom  0.03 0.97 0.00 Hom 

MCZ 38019 P. paniscus KW 0.00 0.98 0.02 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.02 0.98 0.00 Hom  0.02 0.98 0.00 Hom 

MCZ 38020 P. paniscus KW 0.00 0.99 0.01 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 54355 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.02 0.98 0.00 Hom  0.02 0.98 0.00 Hom 

AMNH 54356 G. gorilla KW 0.00 0.94 0.01 0.05 KW  0.00 0.22 0.05 0.73 S  Hom 0.04 0.95 0.01 Hom  0.08 0.92 0.00 Hom 

AMNH 69398 G. gorilla KW 0.01 0.62 0.37 0.00 KW  0.00 0.99 0.01 0.00 KW  Hom 0.80 0.20 0.00 Cerc  0.96 0.04 0.00 Cerc 

AMNH 81651 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 81652 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 90289 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 167335 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 167337 G. gorilla KW 0.00 0.95 0.00 0.05 KW  0.00 0.68 0.02 0.30 KW  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 167338 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 167339 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 167340 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.01 0.99 0.00 Hom  0.02 0.98 0.00 Hom 

AMNH 201471 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 214103 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 17684 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 20038 G. gorilla KW 0.00 0.93 0.07 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.33 0.67 0.00 Hom  0.25 0.75 0.00 Hom 

MCZ 20039 G. gorilla KW 0.00 0.99 0.01 0.00 KW  0.00 0.96 0.04 0.00 KW  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

MCZ 20043 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 23160 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 23162 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.07 0.93 0.00 Hom  0.02 0.98 0.00 Hom 

MCZ 26850 G. gorilla KW 0.00 0.97 0.00 0.03 KW  0.00 0.95 0.01 0.03 KW  Hom 0.02 0.98 0.00 Hom  0.02 0.98 0.00 Hom 

MCZ 29047 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 29049 G. gorilla KW 0.00 0.99 0.01 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.16 0.84 0.00 Hom  0.18 0.82 0.00 Hom 

MCZ 37264 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 
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MCZ 38326 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 57482 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 0.87 0.00 0.13 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

UMMZ 17886 G. gorilla KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 54089 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 54090 G. beringei KW 0.00 0.84 0.16 0.00 KW  0.00 0.91 0.09 0.00 KW  Hom 0.05 0.95 0.00 Hom  0.17 0.83 0.00 Hom 

AMNH 54091 G. beringei KW 0.02 0.83 0.15 0.00 KW  0.01 0.85 0.14 0.00 KW  Hom 0.09 0.91 0.00 Hom  0.19 0.81 0.00 Hom 

AMNH 115609 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 395636 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

NMNH 396934 G. beringei KW 0.00 0.94 0.04 0.02 KW  0.00 0.98 0.02 0.00 KW  Hom 0.05 0.95 0.00 Hom  0.05 0.95 0.00 Hom 

NMNH 396935 G. beringei KW 0.00 0.97 0.01 0.03 KW  0.00 0.95 0.03 0.03 KW  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

NMNH 396937 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 397351 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 545041 G. beringei KW 0.00 0.99 0.01 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

MCZ 23182 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 38017 G. beringei KW 0.00 1.00 0.00 0.00 KW  0.00 1.00 0.00 0.00 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 28252 P. pygmaeus S 0.00 0.96 0.03 0.01 KW  0.00 0.48 0.14 0.39 KW  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 28253 P. pygmaeus S 0.00 0.97 0.01 0.02 KW  0.00 0.38 0.01 0.61 S  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

NMNH 145301 P. pygmaeus S 0.00 0.90 0.00 0.10 KW  0.00 0.26 0.00 0.74 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 145302 P. pygmaeus S 0.00 0.63 0.00 0.37 KW  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 145304 P. pygmaeus S 0.00 0.08 0.00 0.92 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 145305 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 145308 P. pygmaeus S 0.00 0.92 0.00 0.08 KW  0.00 0.95 0.00 0.05 KW  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 145309 P. pygmaeus S 0.00 0.15 0.00 0.85 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 145310 P. pygmaeus S 0.00 0.01 0.00 0.99 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 37362 P. pygmaeus S 0.00 0.22 0.20 0.58 S  0.00 0.00 0.27 0.73 S  Hom 0.01 0.99 0.00 Hom  0.02 0.98 0.00 Hom 

MCZ 37363 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 37364 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 37365 P. pygmaeus S 0.01 0.01 0.59 0.39 PG  0.01 0.00 0.27 0.71 S  Hom 0.91 0.09 0.00 Cerc  0.99 0.01 0.00 Cerc 

NMNH 142170 P. pygmaeus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

NMNH 153805 P. pygmaeus S 0.00 0.23 0.00 0.77 S  0.00 0.04 0.01 0.94 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 153823 P. pygmaeus S 0.00 0.01 0.00 0.99 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 61586 P. pygmaeus S 0.00 0.06 0.00 0.94 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 202511 P. pygmaeus S 0.00 0.04 0.00 0.96 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 239847 P. pygmaeus S 0.00 0.01 0.00 0.99 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 
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MCZ 50960 P. abelii S 0.00 0.04 0.00 0.96 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

CMNH HTB1030 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

CMNH HTB1055 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

CMNH HTB1168 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

CMNH HTB1444 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 143590 P. abelii S 0.00 0.01 0.00 0.99 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 143593 P. abelii S 0.00 0.23 0.08 0.68 S  0.03 0.04 0.73 0.20 PG  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

NMNH 143594 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 143596 P. abelii S 0.00 0.01 0.00 0.99 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 143597 P. abelii S 0.00 0.02 0.00 0.98 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 143598 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 143600 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 143601 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.30 0.70 0.00 Hom  0.44 0.56 0.00 Hom 

NMNH 143602 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

NMNH 270807 P. abelii S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.04 0.96 0.00 Hom  0.09 0.91 0.00 Hom 

AMNH 80068 Hoolock S 0.01 0.00 0.03 0.96 S  0.03 0.00 0.48 0.49 S  Hom 0.00 1.00 0.00 Hom  0.02 0.97 0.00 Hom 

AMNH 83418 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 83420 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 83423 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 83425 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.01 0.99 0.00 Hom  0.09 0.90 0.02 Hom 

AMNH 112676 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

AMNH 112720 Hoolock S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 37378 H. muelleri S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 37380 H. muelleri S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 37381 H. muelleri S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.05 0.95 0.00 Hom  0.05 0.95 0.00 Hom 

MCZ 37383 H. muelleri S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 41417 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.01 0.97 0.02 Hom 

MCZ 41524 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 41525 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.01 0.94 0.05 Hom  0.01 0.21 0.78 Plat 

MCZ 41526 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 41527 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.01 0.98 0.01 Hom  0.03 0.84 0.13 Hom 

MCZ 41529 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 41530 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 0.99 0.01 Hom  0.00 0.90 0.10 Hom 

MCZ 41531 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 
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MCZ 41532 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 0.99 0.00 Hom 

MCZ 41534 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.17 0.80 0.03 Hom  0.28 0.47 0.25 Hom 

MCZ 41536 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 43063 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.03 0.97 0.00 Hom  0.04 0.96 0.00 Hom 

MCZ 41565 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.05 0.89 0.06 Hom  0.09 0.78 0.13 Hom 

UMMZ 160908 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

UMMZ 160909 H. lar S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 106581 Symphalangus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.01 0.99 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 106583 Symphalangus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.00 1.00 0.00 Hom 

MCZ 27867 Symphalangus S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Hom 0.00 1.00 0.00 Hom  0.01 0.99 0.00 Hom 

AMNH 51380 Papio DG 0.98 0.00 0.02 0.00 DG  0.97 0.00 0.03 0.00 DG  Cerc 0.15 0.85 0.00 Hom  0.20 0.80 0.00 Hom 

AMNH 52668 Papio DG 0.56 0.00 0.44 0.00 DG  0.19 0.00 0.81 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 52676 Papio DG 0.93 0.00 0.07 0.00 DG  0.96 0.00 0.04 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 82097 Papio DG 0.33 0.00 0.67 0.00 PG  0.22 0.00 0.78 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 187369 Papio DG 0.50 0.00 0.50 0.00 PG  0.07 0.00 0.93 0.00 PG  Cerc 0.99 0.00 0.01 Cerc  1.00 0.00 0.00 Cerc 

MCZ 15378 Papio DG 0.33 0.00 0.67 0.00 PG  0.59 0.00 0.41 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

NMNH 236976 Papio DG 0.53 0.00 0.47 0.00 DG  0.69 0.00 0.31 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

NMNH 239743 Papio DG 0.25 0.00 0.75 0.00 PG  0.29 0.00 0.71 0.00 PG  Cerc 0.97 0.03 0.00 Cerc  0.98 0.02 0.00 Cerc 

NMNH 384223 Papio DG 0.95 0.00 0.05 0.00 DG  0.99 0.00 0.01 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

NMNH 384227 Papio DG 0.82 0.00 0.18 0.00 DG  0.75 0.00 0.25 0.00 DG  Cerc 0.98 0.02 0.00 Cerc  0.99 0.01 0.00 Cerc 

NMNH 384228 Papio DG 0.61 0.00 0.39 0.00 DG  0.71 0.00 0.29 0.00 DG  Cerc 0.97 0.03 0.00 Cerc  0.98 0.02 0.00 Cerc 

NMNH 384229 Papio DG 0.71 0.00 0.29 0.00 DG  0.43 0.00 0.57 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

NMNH 384234 Papio DG 0.11 0.01 0.88 0.00 PG  0.07 0.01 0.91 0.00 PG  Cerc 0.99 0.01 0.00 Cerc  0.99 0.01 0.00 Cerc 

NMNH 384235 Papio DG 0.25 0.00 0.75 0.00 PG  0.10 0.00 0.90 0.00 PG  Cerc 0.98 0.00 0.02 Cerc  1.00 0.00 0.00 Cerc 

AMNH 52596 Lophocebus PG 0.43 0.00 0.57 0.00 PG  0.20 0.00 0.80 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 52609 Lophocebus PG 0.24 0.02 0.74 0.00 PG  0.25 0.00 0.75 0.00 PG  Cerc 0.55 0.45 0.00 Cerc  0.72 0.28 0.00 Cerc 

AMNH 52627 Lophocebus PG 0.29 0.00 0.71 0.00 PG  0.11 0.00 0.89 0.00 PG  Cerc 0.79 0.00 0.21 Cerc  1.00 0.00 0.00 Cerc 

MCZ 37928 Lophocebus PG 0.75 0.00 0.25 0.00 DG  0.66 0.01 0.32 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 167678 Lophocebus PG 0.10 0.00 0.90 0.00 PG  0.06 0.00 0.94 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

NMNH 578579 Lophocebus PG 0.19 0.00 0.81 0.00 PG  0.06 0.00 0.94 0.00 PG  Cerc 0.95 0.00 0.05 Cerc  1.00 0.00 0.00 Cerc 

AMNH 89361 Mandrillus DG 0.21 0.00 0.75 0.04 PG  0.24 0.00 0.73 0.03 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 89362 Mandrillus DG 0.87 0.00 0.13 0.00 DG  0.90 0.00 0.10 0.00 DG  Cerc 0.93 0.07 0.00 Cerc  0.92 0.08 0.00 Cerc 

AMNH 89364 Mandrillus DG 0.97 0.00 0.03 0.00 DG  0.96 0.00 0.04 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 89367 Mandrillus DG 0.98 0.00 0.02 0.00 DG  1.00 0.00 0.00 0.00 DG  Cerc 0.98 0.02 0.00 Cerc  0.99 0.01 0.00 Cerc 
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 a Positional classification b Taxonomic classification 
   DFA  glmnet   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred  DG KW PG S Pred  Class Cerc Hom Plat Pred  Cerc Hom Plat Pred 

AMNH 170364 Mandrillus DG 0.71 0.00 0.29 0.00 DG  0.77 0.00 0.23 0.00 DG  Cerc 0.89 0.11 0.00 Cerc  0.93 0.07 0.00 Cerc 

AMNH 170366 Mandrillus DG 0.98 0.00 0.02 0.00 DG  0.99 0.00 0.01 0.00 DG  Cerc 0.66 0.34 0.00 Cerc  0.76 0.24 0.00 Cerc 

MCZ 34090 Mandrillus DG 0.86 0.00 0.14 0.00 DG  0.91 0.00 0.09 0.00 DG  Cerc 0.15 0.85 0.00 Hom  0.17 0.83 0.00 Hom 

MCZ 34137 Mandrillus DG 0.31 0.04 0.65 0.00 PG  0.16 0.01 0.84 0.00 PG  Cerc 0.94 0.06 0.00 Cerc  0.89 0.11 0.00 Cerc 

MCZ 34177 Mandrillus DG 0.79 0.00 0.21 0.00 DG  0.65 0.01 0.34 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 52634 Cercocebus PG 0.98 0.00 0.02 0.00 DG  0.98 0.00 0.02 0.00 DG  Cerc 0.99 0.01 0.00 Cerc  0.99 0.01 0.00 Cerc 

AMNH 81250 Cercocebus PG 0.65 0.00 0.35 0.00 DG  0.47 0.00 0.53 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 103654 Macaca PG 0.06 0.66 0.29 0.00 KW  0.01 0.26 0.73 0.00 PG  Cerc 0.31 0.69 0.00 Hom  0.22 0.78 0.00 Hom 

AMNH 103659 Macaca PG 0.13 0.00 0.86 0.00 PG  0.09 0.00 0.91 0.00 PG  Cerc 0.99 0.01 0.00 Cerc  0.99 0.01 0.00 Cerc 

AMNH 175460 Macaca PG 0.01 0.00 0.99 0.00 PG  0.01 0.00 0.99 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 35626 Macaca PG 0.08 0.02 0.90 0.00 PG  0.02 0.00 0.98 0.00 PG  Cerc 0.92 0.08 0.00 Cerc  0.96 0.04 0.00 Cerc 

MCZ 35629 Macaca PG 0.13 0.00 0.87 0.00 PG  0.05 0.00 0.95 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 35652 Macaca PG 0.36 0.42 0.22 0.00 KW  0.01 0.97 0.02 0.00 KW  Cerc 0.59 0.41 0.00 Cerc  0.53 0.47 0.00 Cerc 

MCZ 35658 Macaca PG 0.22 0.02 0.76 0.00 PG  0.06 0.00 0.94 0.00 PG  Cerc 0.97 0.03 0.00 Cerc  0.98 0.02 0.00 Cerc 

MCZ 35677 Macaca PG 0.54 0.01 0.45 0.00 DG  0.14 0.01 0.85 0.00 PG  Cerc 0.93 0.07 0.00 Cerc  0.94 0.06 0.00 Cerc 

MCZ 35681 Macaca PG 0.15 0.01 0.83 0.00 PG  0.12 0.00 0.86 0.02 PG  Cerc 0.96 0.04 0.00 Cerc  0.97 0.03 0.00 Cerc 

MCZ 35693 Macaca PG 0.17 0.00 0.83 0.00 PG  0.04 0.00 0.96 0.00 PG  Cerc 0.99 0.00 0.01 Cerc  1.00 0.00 0.00 Cerc 

MCZ 35694 Macaca PG 0.80 0.03 0.17 0.00 DG  0.60 0.00 0.39 0.00 DG  Cerc 0.14 0.86 0.00 Hom  0.18 0.82 0.00 Hom 

MCZ 35700 Macaca PG 0.50 0.00 0.50 0.00 PG  0.20 0.00 0.80 0.00 PG  Cerc 0.97 0.03 0.00 Cerc  0.99 0.01 0.00 Cerc 

MCZ 35701 Macaca PG 0.00 0.11 0.89 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.85 0.15 0.00 Cerc  0.89 0.11 0.00 Cerc 

MCZ 35729 Macaca PG 0.13 0.00 0.87 0.00 PG  0.04 0.00 0.96 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 35736 Macaca PG 0.22 0.00 0.78 0.00 PG  0.12 0.00 0.88 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

UMMZ 130418 Macaca PG 0.02 0.06 0.92 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.79 0.21 0.00 Cerc  0.88 0.12 0.00 Cerc 

UMMZ 161308 Macaca PG 0.52 0.00 0.48 0.00 DG  0.24 0.00 0.76 0.00 PG  Cerc 0.98 0.02 0.00 Cerc  0.99 0.01 0.00 Cerc 

UMMZ 56349 Macaca PG 0.01 0.02 0.76 0.21 PG  0.01 0.00 0.20 0.79 S  Cerc 0.99 0.01 0.00 Cerc  0.99 0.01 0.00 Cerc 

AMNH 34709 Erythrocebus DG 0.47 0.00 0.53 0.00 PG  0.59 0.00 0.41 0.00 DG  Cerc 0.99 0.00 0.01 Cerc  1.00 0.00 0.00 Cerc 

AMNH 34712 Erythrocebus DG 0.28 0.00 0.72 0.00 PG  0.53 0.00 0.47 0.00 DG  Cerc 0.99 0.00 0.01 Cerc  1.00 0.00 0.00 Cerc 

AMNH 34713 Erythrocebus DG 0.80 0.00 0.20 0.00 DG  0.82 0.00 0.18 0.00 DG  Cerc 0.98 0.00 0.02 Cerc  1.00 0.00 0.00 Cerc 

AMNH 34714 Erythrocebus DG 0.63 0.00 0.37 0.00 DG  0.32 0.00 0.68 0.00 PG  Cerc 0.93 0.00 0.07 Cerc  0.99 0.00 0.01 Cerc 

NMNH 257013 Erythrocebus DG 0.68 0.00 0.32 0.00 DG  0.78 0.00 0.22 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

NMNH 399317 Erythrocebus DG 0.40 0.00 0.60 0.00 PG  0.17 0.00 0.83 0.00 PG  Cerc 0.99 0.00 0.01 Cerc  1.00 0.00 0.00 Cerc 

NMNH 538311 Erythrocebus DG 0.52 0.00 0.48 0.00 DG  0.87 0.00 0.13 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 52368 Cercopithecus PG 0.87 0.00 0.13 0.00 DG  0.75 0.00 0.25 0.00 DG  Cerc 0.99 0.00 0.01 Cerc  1.00 0.00 0.00 Cerc 

AMNH 52398 Cercopithecus PG 0.78 0.00 0.22 0.00 DG  0.80 0.00 0.20 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 
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 a Positional classification b Taxonomic classification 
   DFA  glmnet   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred  DG KW PG S Pred  Class Cerc Hom Plat Pred  Cerc Hom Plat Pred 

AMNH 52401 Cercopithecus PG 0.31 0.00 0.69 0.00 PG  0.20 0.00 0.80 0.00 PG  Cerc 0.99 0.00 0.01 Cerc  1.00 0.00 0.00 Cerc 

AMNH 52410 Cercopithecus PG 0.51 0.00 0.49 0.00 DG  0.29 0.00 0.71 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 82411 Cercopithecus PG 0.14 0.00 0.86 0.00 PG  0.07 0.00 0.93 0.00 PG  Cerc 0.98 0.00 0.02 Cerc  1.00 0.00 0.00 Cerc 

AMNH 82412 Cercopithecus PG 0.44 0.00 0.56 0.00 PG  0.29 0.00 0.71 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 82415 Cercopithecus PG 0.20 0.00 0.80 0.00 PG  0.66 0.00 0.34 0.00 DG  Cerc 0.99 0.01 0.00 Cerc  0.99 0.01 0.00 Cerc 

MCZ 37930 Cercopithecus PG 0.71 0.00 0.29 0.00 DG  0.39 0.00 0.61 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 37934 Cercopithecus PG 0.15 0.00 0.85 0.00 PG  0.12 0.00 0.88 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 38079 Cercopithecus PG 0.84 0.00 0.16 0.00 DG  0.91 0.00 0.09 0.00 DG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

UMMZ 39508 Cercopithecus PG 0.65 0.00 0.35 0.00 DG  0.72 0.00 0.28 0.00 DG  Cerc 0.97 0.03 0.00 Cerc  0.98 0.02 0.00 Cerc 

AMNH 27711 Colobus PG 0.00 0.02 0.98 0.00 PG  0.00 0.02 0.98 0.00 PG  Cerc 0.97 0.00 0.03 Cerc  1.00 0.00 0.00 Cerc 

AMNH 99468 Colobus PG 0.01 0.26 0.59 0.14 PG  0.00 0.02 0.61 0.36 PG  Cerc 0.16 0.09 0.75 Plat  0.50 0.37 0.13 Cerc 

NMNH 452621 Colobus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.14 0.00 0.86 Plat  0.65 0.00 0.35 Cerc 

AMNH 52223 Colobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.79 0.00 0.21 Cerc  0.61 0.00 0.39 Cerc 

AMNH 52229 Colobus PG 0.00 0.01 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.61 0.00 0.39 Cerc  0.95 0.00 0.05 Cerc 

AMNH 52240 Colobus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.45 0.00 0.55 Plat  0.87 0.00 0.13 Cerc 

AMNH 52241 Colobus PG 0.00 0.01 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.76 0.00 0.24 Cerc  0.97 0.00 0.03 Cerc 

AMNH 52248 Colobus PG 0.02 0.00 0.98 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.13 0.00 0.87 Plat  0.47 0.00 0.53 Plat 

AMNH 187392 Colobus PG 0.00 0.02 0.98 0.00 PG  0.00 0.01 0.99 0.00 PG  Cerc 0.13 0.00 0.87 Plat  0.70 0.00 0.30 Cerc 

AMNH 52278 Procolobus PG 0.02 0.00 0.98 0.00 PG  0.01 0.00 0.99 0.00 PG  Cerc 0.97 0.00 0.03 Cerc  0.97 0.00 0.03 Cerc 

AMNH 52287 Procolobus PG 0.02 0.02 0.95 0.00 PG  0.04 0.00 0.96 0.01 PG  Cerc 0.80 0.16 0.04 Cerc  0.94 0.06 0.00 Cerc 

AMNH 52298 Procolobus PG 0.08 0.00 0.92 0.00 PG  0.16 0.00 0.84 0.00 PG  Cerc 0.77 0.00 0.23 Cerc  0.93 0.00 0.07 Cerc 

AMNH 52303 Procolobus PG 0.02 0.00 0.98 0.00 PG  0.03 0.00 0.97 0.00 PG  Cerc 0.99 0.00 0.01 Cerc  1.00 0.00 0.00 Cerc 

AMNH 52334 Procolobus PG 0.01 0.11 0.54 0.34 PG  0.01 0.00 0.76 0.23 PG  Cerc 0.24 0.76 0.00 Hom  0.32 0.68 0.00 Hom 

MCZ 37943 Procolobus PG 0.00 0.81 0.19 0.00 KW  0.00 0.35 0.65 0.00 PG  Cerc 0.03 0.96 0.00 Hom  0.02 0.98 0.00 Hom 

AMNH 54279 Procolobus PG 0.01 0.02 0.97 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.82 0.07 0.11 Cerc  0.95 0.03 0.02 Cerc 

AMNH 86709 Procolobus PG 0.01 0.00 0.99 0.00 PG  0.01 0.10 0.89 0.00 PG  Cerc 0.99 0.00 0.01 Cerc  0.99 0.00 0.01 Cerc 

MCZ 37931 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.53 0.00 0.47 Cerc  0.15 0.00 0.85 Plat 

MCZ 37932 Procolobus PG 0.13 0.00 0.86 0.00 PG  0.20 0.00 0.80 0.00 PG  Cerc 0.98 0.01 0.01 Cerc  0.99 0.01 0.00 Cerc 

MCZ 37933 Procolobus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 0.99 0.00 PG  Cerc 0.98 0.00 0.02 Cerc  0.99 0.00 0.01 Cerc 

MCZ 37935 Procolobus PG 0.01 0.00 0.99 0.00 PG  0.01 0.00 0.99 0.00 PG  Cerc 0.88 0.00 0.12 Cerc  0.93 0.00 0.07 Cerc 

MCZ 37936 Procolobus PG 0.05 0.00 0.95 0.00 PG  0.11 0.00 0.89 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 28255 Nasalis PG 0.01 0.00 0.99 0.00 PG  0.01 0.00 0.99 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 103668 Nasalis PG 0.04 0.00 0.96 0.00 PG  0.02 0.00 0.98 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 103669 Nasalis PG 0.16 0.00 0.84 0.00 PG  0.34 0.00 0.66 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 
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 a Positional classification b Taxonomic classification 
   DFA  glmnet   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred  DG KW PG S Pred  Class Cerc Hom Plat Pred  Cerc Hom Plat Pred 

AMNH 103670 Nasalis PG 0.01 0.00 0.99 0.00 PG  0.01 0.00 0.99 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  0.99 0.00 0.01 Cerc 

AMNH 103671 Nasalis PG 0.04 0.00 0.96 0.00 PG  0.02 0.00 0.98 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 106272 Nasalis PG 0.04 0.00 0.96 0.00 PG  0.15 0.00 0.85 0.00 PG  Cerc 0.99 0.01 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 106273 Nasalis PG 0.08 0.00 0.92 0.00 PG  0.14 0.00 0.86 0.00 PG  Cerc 0.99 0.01 0.00 Cerc  0.99 0.01 0.00 Cerc 

AMNH 106274 Nasalis PG 0.01 0.00 0.99 0.00 PG  0.06 0.00 0.94 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 106275 Nasalis PG 0.02 0.00 0.98 0.00 PG  0.02 0.00 0.98 0.00 PG  Cerc 0.98 0.02 0.00 Cerc  0.99 0.01 0.00 Cerc 

MCZ 7099 Nasalis PG 0.02 0.00 0.97 0.00 PG  0.01 0.00 0.99 0.00 PG  Cerc 0.99 0.01 0.00 Cerc  0.99 0.01 0.00 Cerc 

MCZ 37325 Nasalis PG 0.04 0.00 0.96 0.00 PG  0.12 0.00 0.88 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 37329 Nasalis PG 0.03 0.00 0.96 0.00 PG  0.04 0.00 0.96 0.00 PG  Cerc 0.99 0.01 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 37342 Nasalis PG 0.03 0.00 0.97 0.00 PG  0.04 0.00 0.96 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 41554 Nasalis PG 0.03 0.00 0.97 0.00 PG  0.09 0.00 0.91 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 41555 Nasalis PG 0.00 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 41556 Nasalis PG 0.03 0.00 0.97 0.00 PG  0.06 0.00 0.94 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 41560 Nasalis PG 0.02 0.00 0.98 0.00 PG  0.04 0.00 0.96 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

AMNH 101504 Trachypithecus PG 0.01 0.01 0.87 0.11 PG  0.01 0.00 0.97 0.02 PG  Cerc 0.57 0.43 0.00 Cerc  0.71 0.29 0.00 Cerc 

AMNH 102461 Trachypithecus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.61 0.01 0.38 Cerc  0.83 0.00 0.17 Cerc 

AMNH 106598 Trachypithecus PG 0.00 0.03 0.80 0.18 PG  0.00 0.00 0.34 0.66 S  Cerc 0.99 0.01 0.00 Cerc  0.99 0.01 0.00 Cerc 

MCZ 35636 Trachypithecus PG 0.01 0.00 0.98 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.60 0.00 0.40 Cerc  0.50 0.00 0.50 Plat 

MCZ 35640 Trachypithecus PG 0.00 0.02 0.72 0.26 PG  0.00 0.00 0.43 0.57 S  Cerc 0.63 0.02 0.35 Cerc  0.91 0.02 0.07 Cerc 

MCZ 35675 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.96 0.00 0.04 Cerc  0.98 0.00 0.02 Cerc 

MCZ 35682 Trachypithecus PG 0.06 0.00 0.94 0.00 PG  0.04 0.00 0.96 0.00 PG  Cerc 1.00 0.00 0.00 Cerc  1.00 0.00 0.00 Cerc 

MCZ 35685 Trachypithecus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.97 0.01 0.02 Cerc  0.98 0.01 0.01 Cerc 

MCZ 37387 Trachypithecus PG 0.01 0.07 0.92 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.86 0.14 0.00 Cerc  0.88 0.12 0.00 Cerc 

MCZ 37391 Trachypithecus PG 0.01 0.06 0.93 0.00 PG  0.00 0.01 0.99 0.00 PG  Cerc 0.99 0.01 0.00 Cerc  0.98 0.02 0.00 Cerc 

MCZ 37394 Trachypithecus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.86 0.00 0.14 Cerc  0.98 0.00 0.02 Cerc 

MCZ 37396 Trachypithecus PG 0.00 0.03 0.96 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.91 0.04 0.04 Cerc  0.95 0.03 0.02 Cerc 

MCZ 37399 Trachypithecus PG 0.00 0.02 0.98 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.99 0.01 0.01 Cerc  0.99 0.01 0.00 Cerc 

MCZ 37665 Trachypithecus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Cerc 0.97 0.00 0.03 Cerc  0.98 0.00 0.02 Cerc 

MCZ 37671 Trachypithecus PG 0.02 0.02 0.96 0.00 PG  0.01 0.00 0.99 0.00 PG  Cerc 0.95 0.05 0.00 Cerc  0.95 0.05 0.00 Cerc 

AMNH 112976 Trachypithecus PG 0.01 0.04 0.95 0.00 PG  0.01 0.00 0.99 0.00 PG  Cerc 0.91 0.09 0.00 Cerc  0.93 0.07 0.00 Cerc 

AMNH 112977 Trachypithecus PG 0.00 0.02 0.97 0.00 PG  0.00 0.00 0.97 0.03 PG  Cerc 0.89 0.11 0.00 Cerc  0.93 0.07 0.00 Cerc 

AMNH 106599 Presbytis PG 0.00 0.00 0.99 0.00 PG  0.00 0.01 0.99 0.00 PG  Cerc 0.98 0.00 0.02 Cerc  1.00 0.00 0.00 Cerc 

AMNH 106606 Presbytis PG 0.03 0.00 0.97 0.00 PG  0.04 0.00 0.96 0.00 PG  Cerc 0.99 0.00 0.01 Cerc  0.97 0.00 0.03 Cerc 

AMNH 211527 Alouatta PG 0.02 0.00 0.98 0.00 PG  0.01 0.00 0.99 0.00 PG  Plat 0.97 0.00 0.03 Cerc  0.45 0.00 0.55 Plat 
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   DFA  glmnet   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred  DG KW PG S Pred  Class Cerc Hom Plat Pred  Cerc Hom Plat Pred 

AMNH 211528 Alouatta PG 0.13 0.00 0.87 0.00 PG  0.04 0.00 0.96 0.00 PG  Plat 0.89 0.00 0.11 Cerc  0.39 0.00 0.61 Plat 

AMNH 211531 Alouatta PG 0.06 0.00 0.94 0.00 PG  0.11 0.00 0.89 0.00 PG  Plat 0.99 0.00 0.01 Cerc  0.92 0.00 0.08 Cerc 

AMNH 211532 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 211535 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.05 0.00 0.95 Plat  0.00 0.00 1.00 Plat 

AMNH 211542 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.01 0.00 0.99 Plat  0.00 0.00 1.00 Plat 

AMNH 211543 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.10 0.00 0.90 Plat  0.01 0.00 0.99 Plat 

AMNH 211544 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 23333 Alouatta PG 0.03 0.00 0.97 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.01 0.00 0.99 Plat  0.00 0.00 1.00 Plat 

AMNH 23342 Alouatta PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 187999 Alouatta PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 188006 Alouatta PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 30193 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.01 0.00 0.99 Plat  0.00 0.00 1.00 Plat 

AMNH 42313 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 42316 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 132790 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

MCZ 30436 Alouatta PG 0.00 0.04 0.96 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.01 0.00 0.99 Plat  0.09 0.00 0.91 Plat 

MCZ 30437 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

MCZ 31694 Alouatta PG 0.00 0.03 0.97 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.28 0.01 0.71 Plat  0.33 0.00 0.67 Plat 

MCZ 31695 Alouatta PG 0.00 0.48 0.47 0.06 KW  0.00 0.03 0.89 0.07 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 0.99 Plat 

MCZ 32160 Alouatta PG 0.00 0.69 0.31 0.00 KW  0.00 0.62 0.38 0.00 KW  Plat 0.00 0.01 0.99 Plat  0.04 0.03 0.94 Plat 

MCZ 28735 Alouatta PG 0.00 0.00 0.99 0.01 PG  0.00 0.00 0.88 0.12 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

UMMZ 116300 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.01 0.00 0.99 Plat  0.00 0.00 1.00 Plat 

UMMZ 116301 Alouatta PG 0.00 0.01 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.09 0.00 0.91 Plat  0.08 0.00 0.92 Plat 

UMMZ 77301 Alouatta PG 0.02 0.00 0.98 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.01 0.00 0.99 Plat 

UMMZ 124689 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

UMMZ 124690 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

UMMZ 146506 Alouatta PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

UMMZ 63503 Alouatta PG 0.04 0.00 0.96 0.00 PG  0.01 0.00 0.99 0.00 PG  Plat 0.01 0.00 0.99 Plat  0.00 0.00 1.00 Plat 

UMMZ 63504 Alouatta PG 0.02 0.00 0.97 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.01 0.00 0.99 Plat 

UMMZ 63511 Alouatta PG 0.00 0.00 0.99 0.00 PG  0.00 0.00 0.97 0.03 PG  Plat 0.04 0.00 0.96 Plat  0.07 0.00 0.93 Plat 

UMMZ 63512 Alouatta PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.01 0.00 0.99 Plat  0.00 0.00 1.00 Plat 

AMNH 28418 Ateles S 0.00 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 28420 Ateles S 0.00 0.00 0.72 0.28 PG  0.00 0.00 0.05 0.95 S  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

MCZ 34320 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 
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   DFA  glmnet   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred  DG KW PG S Pred  Class Cerc Hom Plat Pred  Cerc Hom Plat Pred 

MCZ 34322 Ateles S 0.00 0.01 0.23 0.76 S  0.00 0.00 0.04 0.96 S  Plat 0.01 0.00 0.99 Plat  0.01 0.00 0.99 Plat 

MCZ 47269 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Plat 0.10 0.53 0.37 Hom  0.09 0.61 0.30 Hom 

UMMZ 116302 Ateles S 0.00 0.00 0.01 0.99 S  0.00 0.00 0.00 1.00 S  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

NMNH 276631 Ateles S 0.01 0.00 0.99 0.00 PG  0.00 0.00 0.98 0.02 PG  Plat 0.02 0.00 0.98 Plat  0.01 0.00 0.99 Plat 

NMNH 276657 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Plat 0.00 0.05 0.95 Plat  0.00 0.00 1.00 Plat 

UMMZ 63165 Ateles S 0.00 0.15 0.63 0.21 PG  0.00 0.00 0.20 0.80 S  Plat 0.08 0.02 0.89 Plat  0.48 0.08 0.44 Cerc 

UMMZ 63166 Ateles S 0.00 0.06 0.21 0.73 S  0.00 0.00 0.03 0.97 S  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

UMMZ 63171 Ateles S 0.00 0.00 0.00 1.00 S  0.00 0.00 0.00 1.00 S  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

NMNH 244863 Ateles S 0.00 0.00 0.06 0.94 S  0.00 0.00 0.00 1.00 S  Plat 0.01 0.00 0.99 Plat  0.07 0.00 0.93 Plat 

NMNH 396348 Ateles S 0.00 0.01 0.00 0.99 S  0.00 0.00 0.00 1.00 S  Plat 0.00 0.06 0.94 Plat  0.00 0.19 0.80 Plat 

UMMZ 126129 Cebus PG 0.00 0.00 0.96 0.04 PG  0.00 0.00 0.74 0.26 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

UMMZ 126130 Cebus PG 0.00 0.00 0.92 0.08 PG  0.00 0.00 0.63 0.37 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133606 Cebus PG 0.02 0.00 0.98 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133607 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133608 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133622 Cebus PG 0.00 0.03 0.97 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.07 0.00 0.93 Plat 

AMNH 133624 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133626 Cebus PG 0.00 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.14 0.00 0.86 Plat  0.82 0.01 0.17 Cerc 

AMNH 133628 Cebus PG 0.02 0.00 0.98 0.00 PG  0.00 0.00 0.95 0.05 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133629 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.02 0.00 0.98 Plat  0.03 0.00 0.97 Plat 

AMNH 133631 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133633 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133635 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133637 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133638 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.01 0.00 0.99 Plat  0.01 0.00 0.99 Plat 

AMNH 133640 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133654 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133656 Cebus PG 0.00 0.01 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.01 0.00 0.99 Plat 

AMNH 133660 Cebus PG 0.00 0.08 0.92 0.00 PG  0.00 0.00 0.95 0.05 PG  Plat 0.01 0.00 0.98 Plat  0.16 0.02 0.82 Plat 

AMNH 133662 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133666 Cebus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.02 0.00 0.98 Plat  0.01 0.00 0.99 Plat 

AMNH 133667 Cebus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.06 0.00 0.94 Plat  0.16 0.00 0.84 Plat 

AMNH 133668 Cebus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133674 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 
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   DFA  glmnet   DFA  glmnet 

Specimen Taxon Class DG KW PG S Pred  DG KW PG S Pred  Class Cerc Hom Plat Pred  Cerc Hom Plat Pred 

AMNH 133677 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133815 Cebus PG 0.01 0.00 0.99 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133851 Cebus PG 0.00 0.00 1.00 0.00 PG  0.00 0.00 1.00 0.00 PG  Plat 0.00 0.00 1.00 Plat  0.00 0.00 1.00 Plat 

AMNH 133862 Cebus PG 0.00 0.01 0.97 0.02 PG  0.00 0.00 0.98 0.02 PG  Plat 0.01 0.00 0.99 Plat  0.16 0.01 0.83 Plat 
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Chapter 4 

Evolutionary history of the hominoid ulnar carpus and its implications for 

hominin locomotor ancestry 

 

Abstract 

The ancestral locomotor repertoire from which hominin bipedalism emerged 

remains a subject of frequent debate, with multiple competing hypotheses maintaining 

support among active researchers. This study contributes to this ongoing debate by 

reconstructing the morphological and locomotor evolution of hominoids based on 

patterns of morphometric variation in a broad sample of extant and fossil anthropoid 

carpals, including extant and extinct hominins. In addition to reconstructing adaptive 

transitions associated with locomotor behavior, I estimate the prevalence of different 

locomotor behaviors at the origin of nested clades within Hominoidea, including the one 

we share with Pan.  

While there is inconsistency of morphological covariation with function and 

phylogeny among carpal elements, results are consistent in supporting frequent 

parallelism during hominoid locomotor evolution. This support is strongest as it applies 

to suspensory behaviors, with the last common ancestors of both apes and great apes 

predicted to have been far more generalized than any of the clades’ extant 

representatives. The last common ancestor of humans and chimpanzees is also 

estimated to have lacked adaptations in association with knuckle-walking, providing 
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further support for the hominin clade having descended from a relatively generalized 

ancestral morphotype that is not well modeled by any of the surviving hominoid 

lineages. 

 

Introduction 

There has long been uncertainty regarding the ancestral behavioral repertoire 

from which hominin bipedalism originated, as direct fossil evidence continues to be 

elusive for the time period when human ancestors are hypothesized to have diverged 

phylogenetically from other hominoids (>7 Ma; Langergraber et al., 2012; Steiper and 

Seiffert, 2012). The knuckle walking hypothesis of hominin locomotor ancestry first rose 

to prominence as evidence supporting a close relationship between humans and apes 

began to accumulate (Washburn, 1967). A knuckle-walking phase in the ancestry of 

humans won broader acceptance after molecular confirmation of a Pan-Homo clade 

(e.g., Ruvolo et al., 1991; Ruvolo, 1997), owing to the perceived parsimony of humans 

having descended from an African ape-like ancestor. 

Evidence from the wrist has featured prominently in arguments supporting the 

knuckle-walking hypothesis (e.g., Richmond and Strait, 2000; Richmond et al., 2001; 

Begun, 1992, 2004, Orr, 2005; Richmond, 2006; Kivell and Begun, 2007; Williams, 

2010). Likewise, many of the challenges to this hypothesis have focused on anatomical, 

developmental, or postural heterogeneity in the wrists of African ape genera, from which 

the parallel evolution of this behavior in African ape genera has been inferred (Tuttle, 

1967; Inouye, 1992, 1994; Shea and Inouye, 1993; Dainton and Macho, 1999; Inouye 

and Shea, 2004; Kivell and Schmitt, 2009; Lovejoy et al., 2009a; Patel et al., 2009; 
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Matarazzo, 2008, 2013; but see Steiper and Young, 2006; Langergraber et al., 2012; 

Scally et al., 2012).  

Alternative hypotheses related to the ancestral locomotor repertoire have varied. 

An orthograde climber and suspensor entirely lacking in terrestrial behavior but 

otherwise resembling one or both extant African ape genera has been suggested (e.g., 

Keith, 1902, 1923; Gregory, 1927; Napier, 1964; Tuttle, 1969, 1974, 1981; Hunt, 1996). 

Other researchers have envisioned a more generalized heritage including neither 

knuckle-walking nor suspension, but rather either arboreal bipedalism (e.g., Wolpoff, 

1997; Thorpe and Crompton, 2006; Stanford, 2006; Thorpe et al., 2015), perhaps in 

combination with “compressive orthogrady” (Crompton et al., 2010) or other incipient 

orthograde behaviors (Harrison, 1991; Ward, 2015), or above-branch pronograde 

quadrupedalism with occasional bouts of careful climbing and bridging (Lovejoy et al., 

2009a). A slightly modified version of the knuckle-walking hypothesis has also been 

proposed, in which a portion of the adaptation associated with knuckle-walking, or even 

the transition from a more generalized terrestrial posture, may have occurred in parallel 

(e.g., Sarmiento, 1988; Gebo, 1992, 1996), the similar genetic and phenotypic variation 

among the basal members of each branch having led to similarly constrained adaptive 

responses under similar selective pressures (Roth, 1984; Begun, 2007). 

The likelihood of frequent parallelism during hominoid locomotor evolution has 

been largely supported as the Miocene ape fossil record has grown. Most notably, there 

are no suspensory adaptations preserved in any of the various catarrhine taxa of 

sufficient antiquity to be considered ancestral to crown hominoids (e.g., Straus, 1949; 

Begun, 1993; Rose, 1997; Larson, 1998; Ward, 2015), supporting the homoplastic 
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acquisition of this behavior in hylobatids and pongines, as has occurred one or more 

times in each of the other anthropoid superfamilies, namely atelines (e.g., Youlatos, 

1996; Jones, 2008) and douc langers (e.g., Byron et al., 2004; Wright et al., 2008; 

Granatosky, 2015). The presence of orthograde climbing or clambering behaviors in the 

basal hominoid repertoire remains possible, however, as associated adaptations of 

sufficient antiquity have been inferred for Morotopithecus (Gebo et al., 1997; MacLatchy 

et al., 2000), and may have been present in Rangwapithecus as well (see Chapter 3). 

The relative ubiquity of more generalized taxa in the early and middle Miocene may 

indicate a lack of homology between these early locomotor adaptations and those of 

crown hominoids, however, preserving the possibility of the hominoid LCA having 

locomoted in a manner more closely resembling palmigrade monkeys than extant 

hominoids (Lovejoy et al., 2009a).  

Suspensory adaptations have been identified in the middle-Miocene hominids 

Hispanopithecus (Almecija et al., 2007; Alba et al., 2010, 2012; Pina et al., 2012; 

Susanna et al., 2014) and Rudapithecus (Kivell and Begun, 2009; Begun, 2015), 

supplementing those generally accepted to be present in the late Miocene Oreopithecus 

(e.g., Jungers, 1987; Harrison and Rook, 1997; Wunderlich et al., 1999; Russo and 

Shapiro, 2013; but see Kohler and Moya-Sola, 1997; Moya-Sola et al., 1999, 2005; 

Rook et al., 1999). Other middle Miocene hominids like Sivapithecus and 

Pierolapithecus are generally interpreted to lack suspensory adaptations, however 

(Rose, 1997; Moya-Sola et al., 2004; Almecija et al., 2009; Hammond et al., 2013; Pina 

et al., 2014; but see Deane and Begun, 2008, 2010), and the differing mosaics of 

primitive and derived features of the suspensory Miocene apes, along with their inferred 
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maintenance of substantial above-branch quadrupedalism (Alba et al., 2012; Tallman et 

al., 2013), again suggest that the relationship between their suspensory adaptations 

and those of extant great apes is not homologous in nature (e.g., Rose, 1986; Madar et 

al., 2002; Moya-Sola et al., 2004; Almecija et al., 2009; Alba et al., 2010). Miocene apes 

also lack adaptations for knuckle-walking (Harcourt-Smith, 2015), with the possible 

exception of Sivapithecus (Begun and Kivell, 2011), although postcrania from earlier 

representatives of the Pan and Gorilla lineages are unknown. 

 Examination of the presence of morphology associated with non-bipedal modes 

of locomotion in fossil hominins has also contributed to this debate, as phylogenetic lag 

is hypothesized to result in ancestral locomotor adaptations being retained in the 

hominin lineage, perhaps even to the present (Richmond and Strait, 2000; Richmond et 

al., 2001). A knuckle-walking signal in the wrists of hominins would potentially be 

particularly informative. While an autapomorphically increased reliance on arboreal 

behaviors in a branch of the hominin clade is plausible, it would seem less likely for an 

already terrestrially competent biped to have secondarily acquired a knuckle-walking 

habit. The detection of knuckle-walking adaptations in hominins would therefore indicate 

the likely contribution of this behavior to the ancestral locomotor repertoire. Morphology 

associated with climbing or suspensory behaviors could yet inform the ancestral 

repertoire, but only if shown to be consistently or increasingly present in hominins of 

increasing antiquity. 

However, there is little agreement on which features constitute adaptations for 

relevant behaviors, which has prevented consensus on the locomotor affinities of 

individual hominin species or the presence of temporal trends potentially informing the 
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ancestral repertoire. For example, the shoulder and forearm of Australopithecus sediba 

(but not the hand and wrist; see Kivell et al., 2011) have been interpreted as adapted for 

suspension and climbing (Churchill et al., 2013; Rein et al., 2017), and similar 

inferences have been made for A. africanus (McHenry and Berger, 1998; Green et al., 

2007) and H. habilis (Johanson et al., 1987). The predicted use of derived arboreal 

behaviors in these species exceeds those inferred for earlier species like A. afarensis or 

Ar. ramidus (Lovejoy et al., 2009a, b), so while potentially evincing the evolvability of 

these behaviors, are not necessarily germane to reconstructions of positional behavior 

in the Pan-Homo LCA. In contrast, Young and colleagues (2015) argue that human 

scapulae evolved on a relatively direct path from an ancestral condition resembling Pan 

without notable variance among hominins in accord with locomotor function (but see 

Almecija, 2016). Meanwhile, Selby and Lovejoy (2017) judge all known hominin 

scapulae to be similarly nonsuspensory, and instead prefer a narrative in which humans 

retained the morphology of their generalized ancestors, with apes subsequently 

acquiring similarly derived morphology in parallel.  

This study addresses these uncertainties through a series of morphometric and 

evolutionary analyses on continuous 3D shape variables derived from a broad sample 

of extant and fossil anthropoid carpals, including extant and extinct hominins. In addition 

to reconstructing the evolutionary history of each element’s morphology, this study uses 

the subsets of shape traits identified in Chapter 2 as most diagnostic of suspension, 

knuckle-walking, and other positional behaviors to test alternative hypotheses related to 

the homology and homoplasy of hominoid locomotor behaviors. It also presents a 

reevaluation of functional affinities in the wrists of several hominin species, and 
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discusses their implications for our understanding of the positional repertoire from which 

hominin bipedalism emerged. 

 

Table 4.1. Description of shape variables 

Metric Description 

CpPx Capitate proximoradial surface area 

CpTd Capitate trapezoid surface area 

CpDn Capitate dorsal nonarticular surface area 

Cp3 Capitate Mc3 surface area 

CpHm Capitate hamate surface area 

Cp2 Capitate Mc2 surface area 

Cp4 Capitate Mc4 surface area 

Cp23A Interior angle between the Mc2 and Mc3 facets of the capitate 

Cp3HmA Interior angle between Mc3 and hamate facets of the capitate 

CpPxA Interior angle between the proximoradial surface and the hamate facet of the capitate 

CpScA 
Interior angle between the scaphoid/centrale facet and the dorsal nonarticular surface of the 
capitate 

Cp3SD Capitate Mc3 facet complexity 

CpHmC Capitate hamate surface concavity 

CpHP Dorsopalmar position of the capitate head 

HmPx Hamate proximomedial surface area 

HmCp Hamate capitate surface area 

Hm4 Hamate Mc4 surface area 

Hm5 Hamate Mc5 surface area 

Hm45A Interior angle between the Mc5 and Mc4 facets of the hamate 

Hm5CpA interior angle between Mc5 and capitate facets of hamate 

Hm4CpA interior angle between Mc4 and capitate facets of hamate 

HmPxA Interior angle between the proximomedial surface and capitate facet of the hamate 

LuDs Lunate distal surface area 

LuTq Lunate triquetrum surface area 

LuSc Lunate scaphoid/centrale surface area 

LuRa Lunate radius surface area 

LuDsTqA Interior angle between the distal surface and triquetral facet of the lunate 

LuDsScA Interior angle between the distal surface and scaphoid/centrale facet of the lunate 

LuScRaA Interior angle of scaphoid/centrale and radius facets of the lunate 

LuTqRaA Interior angle of triquetrum and radius facets of the lunate 

LuCpRaA Orientation of the radius facet of lunate relative to the first inertial axis of the capitate facet 

LuCpC Lunate capitate surface dorsopalmar concavity 

TqHm Triquetrum hamate facet area 

TqLu Triquetrum lunate facet area 

TqPi Triquetrum pisiform facet area 

TqHmPiA Orientation of pisiform facet of triquetrum relative to hamate facet 

TqHmLuA Interior angle of hamate and lunate facets of the triquetrum 

TqLuPiA Interior angle of lunate and pisiform facets of the triquetrum 

Tq1LuA Orientation of the long axis (first inertial axis) of the triquetrum relative to lunate facet 
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Materials and methods 

Sampling procedure 

 Scale-free morphometrics (Table 4.1) were extracted from 3D models created 

from µCT or laser scans of carpal elements from 377 extant and 32 fossil individuals, 

including 15 hominins (Table 4.2, Table 4.3) using the procedure detailed in Chapter 2. 

Scans of original specimens were used for H. naledi, A. sediba, A. africanus, and the 

upper Pleistocene specimens, including H. floresiensis. Scan data of A. afarensis and 

the non-hominin fossil sample were derived from high-quality casts. Damage to fossil 

specimens was virtually reconstructed based on extrapolation from preserved anatomy 

and comparison to other specimens. In a few cases of severe damage, morphometrics 

were imputed using a bootstrap-aggregated decision tree algorithm trained on the 

complete extant and fossil data set of that element. The majority of the human sample is 

from the Libben collection at Kent State University (Lovejoy et al., 1977; Meindl, et al., 

2008), with additional specimens from the Cleveland Museum of Natural History and the 

American Museum of Natural History. See Table 2.17 and Table 3.18 for the 

provenience of other extant specimens. 



 

260 
 

Table 4.2. Extant sample 

Taxon n ♂ ♀ 

Homo sapiens 32 16 16 

Pan troglodytes schweinfurthii 10 7 3 

Pan troglodytes troglodytes 12 6 6 

Pan troglodytes verus 13 7 6 

Pan troglodytes ellioti 5 2 3 

Pan paniscus 4 2 2 

Gorilla gorilla 26 15 11 

Gorilla beringei 12 9 3 

Pongo pygmaeus 20 9 11 

Pongo abelii 15 5 10 

Hoolock hoolock 7 3 4 

Hylobates muelleri 4 2 2 

Hylobates lar 15 9 6 

Symphalangus syndactylus 3 1 2 

Papio anubis 14 8 6 

Lophocebus albigena 6 5 1 

Mandrillus sphinx 9 7 2 

Cercocebus agilis 2 2 0 

Macaca fascicularis 18 11 7 

Erythrocebus patas 7 5 2 

Cercopithecus mitis 11 7 4 

Colobus guereza 9 6 3 

Procolobus rufomitratus 13 7 6 

Nasalis larvatus 17 9 8 

Trachypithecus sp. 17 7 10 

Presbytis melalophos 2 1 1 

Alouatta sp. 32 13 19 

Ateles geoffroyi 14 2 12 

Cebus apella 28 20 8 

Total n 377 203 174 
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Table 4.3. Hominin and non-hominin fossil samples 

Taxon Specimen Elements 

Early Homo sapiens Tianyuan H 
 Qafzeh 9 C, H 

Homo sapiens neanderthalensis Kebara 2 C, H 
 Shanidar 4 C, H 
 Tabun 1 C 
 Regourdou 1 H 

Homo naledi UW 101 C, H, L, T (R) 
  L (L) 

Homo floresiensis LB1-45 C 
 LB20, LB21+22a C, H 

Australopithecus sediba MH2 UW 88 C, H, L, T (R) 
  C, H (L) 

Australopithecus africanus TM1526 C 

Australopithecus afarensis AL 288-1w C 
 AL 333 C, H 
 KNM-WT 22944 C, H, L 

  AL 444-3 L 

Oreopithecus bambolii BH 36 H 

Sivapithecus parvada NG 940 H 

Sivapithecus indicus GSP 17119 C 

Equatorius africanus KNM-TH 28860N H 

Afropithecus turkanensis KNM-WK 18365 C 

Rangwapithecus gordoni KNM-SO 1002b C 

Ekembo heseloni KPS III C, H, L, T 
 KPS VIII C27 C 
 KNM-RU 2036 C, H, L, T 

Ekembo nyanzae KNM-RU 15100 L, T 

cf. Proconsul africanus KNM-CA 409b C 
 KNM-SO 31245b C 
 KNM-SO 31246b C 

cf. Dendropithecus macinnesi KNM-SO 1000b C 
 KNM-SO 1001b C 

Limnopithecus/Kalepithecus KNM-MV 4b C 

Pliopithecus vindobonensis YPM30452 C 
a Digital composite of hamate antimeres; see Orr et al., 2013 
b Taxonomic allocations from Chapter 3 
 

 

Shape analysis 

Because the fossil sample of each carpal element varies, combined analysis of 

the four elements was supplemented with independent analysis of each. To aid in 

characterizing both the absolute variation of sampled morphology as well as that 
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relative to expectation given known or estimated relationships among sampled taxa, 

extant and fossil samples were subjected to both standard principal components 

analysis (PCA), phylogenetic PCA (pPCA; Revell, 2009, 2012). The degree of 

phylogenetic autocorrelation in each sample was estimated during model fitting; 

variance in accord with Brownian motion results in a λ (Pagel, 1999) estimate of 1, 

whereas a pPCA with an estimated λ of 0 is equivalent to a standard PCA.  

Locomotor affinities in the human and fossil samples were further explored using 

discriminant function analysis (DFA), with input consisting of shape variables found to 

best distinguish among non-human anthropoid positional classes (see Chapter 2 for 

selection criteria and discussion of the extant sample’s a priori positional classes). 

Models were trained using prior probabilities proportional to class size (Sanchez, 1974); 

humans and fossil specimens were projected into DFA morphospace without influencing 

its structure using flat priors. Classification accuracy was calculated after 100 repetitions 

of 10-fold cross validation, again with flat priors. Combined PCA, pPCA, and DFA 

analyses were performed using a subset of shape variables derived from all four 

analyzed elements. This subset comprises 14 morphometrics determined in Chapter 2 

to be adapted in extant hominoids for either suspension, knuckle-walking, or both. 

Analyses incorporating phylogenetic information utilize a molecular phylogeny 

from version 3 of the 10k Trees Project (Arnold et al., 2010). Fossil taxa were added to 

the tree in accord with consensus phylogenetic placement and accepted date estimates 

(Bishop et al., 1969; Bar-Yosef, 1998, Ward et al., 1999; Shang et al., 2007; Harrison, 

2010; Peppe et al., 2011; Casanovas-Vilar et al., 2011; Ward et al., 2012; Begun, 2015; 

Harrison and Rein, 2016; Sutikna et al., 2016; Cote et al., 2016). Homo naledi was 
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estimated at 1 Ma with a divergence date of 2 Ma based on recent inference 

(Thackeray, 2015; Dembo et al., 2016; Schroeder et al., 2017; [The 236-335 ka date for 

H. naledi (Dirks et al., 2017), revealed during final revisions of this document, is not 

expected to substantially change any of the reported results]). 

 

Modeling morphological and locomotor evolution 

The adaptive landscape during anthropoid evolution was modeled using a multi-

regime Ornstein-Uhlenbeck (OU) procedure (Hansen, 1997) implemented in the R 

package ouch (Butler and King, 2004; King and Butler, 2009), via wrapper functions in 

the R package surface (Ingram and Mahler, 2013). OU methods are descended from 

those using Brownian motion (Einstein, 1905), in which change (d) in a continuous trait 

(X) over time (t) is modeled as change according to random noise (B) of a given 

intensity (σ) over time, to wit: 

dX(t) = σdB(t) 

OU methods retain these parameters while additionally estimating the 

contribution of stabilizing selection, thereby modeling change in a continuous trait over 

time as random change of a given intensity modulated by the estimated rate (α) at 

which selection has moved it toward, or maintained its position near, an estimated 

adaptive optimum (θ):  

dX(t) = σdB(t) + α(θ - X(t))dt 

A multi-regime OU model has increased utility in testing evolutionary hypotheses 

by allowing multiple optima to be identified within a phylogeny, as would be expected in 

cases of different clades having faced different selective regimes. The surface 
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implementation of this method allows shifts in the rate and direction of adaptive 

evolution to be identified based on statistical goodness of fit (AICc; Akaike, 1974; 

Burham and Anderson, 2002), as opposed to choosing the best fit model from among 

those suggested by the researcher a priori. This is done in a two-step process. The 

“forward pass” sequentially identifies the shift of adaptive regime within the phylogeny 

that best improves the AICc score until no more can be found. The “backward pass” 

then iteratively determines the ΔAICc resulting from the pairwise collapse of regimes 

identified in the forward pass, collapsing the convergent regimes best improving model 

fit until no more can be found.  

Multi-regime OU models were built with phylogenetic PCA scores to account for 

phylogenetic autocorrelation in assessing the similarity of adaptive regimes among 

clades. At least two pPCs were used as surface inputs in each case; scores from the 

third pPC were included when warranted by the log-likelihood ratio threshold 

recommended by Bookstein (2014). 

 

Ancestral state estimation 

The morphospace formed by the first two principal components was transformed 

into phylomorphospace by projecting the phylogeny into it (Rohlf, 2002). The position of 

each ancestral state (i.e., the internal nodes of the tree) was estimated using a 

maximum likelihood (ML) approach (Felsenstein, 1985, 1988; Schluter et al., 1997). 

Standard PCA was used to visualize the absolute morphological diversity across the 

sample of each element; phylomorphospace plots based on pPCs are available as 

supplementary material at the end of the chapter. 
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To further explore the locomotor ancestry of the hominin clade, an additional, 

less inclusive DFA was performed using the shape variables of each element best 

distinguishing knuckle-walking from suspension. Phylogenetic trait maps were created 

from these results to estimate and visualize the process by which these behaviors 

evolved. This was done by mapping discriminant scores along the axis best separating 

knuckle-walking and suspension (the second axis for the hamate, the first in all other 

cases) onto the tips of the phylogeny, estimating ancestral states using the same ML 

procedure used for phylomorphospace plots, and then estimating the rate of evolution 

along each branch via interpolation (equation 3 of Felsenstein, 1985; Revell, 2013). In 

accord with the finding in Chapter 2 that positional behavior is poorly reflected in 

anthropoid hamate morphology, a less inclusive subset of hamate morphometrics 

diagnostic of knuckle-walking and suspension could not be identified. Its phylogenetic 

trait map therefore uses the second discriminant function of its original DFA described in 

the Shape analysis subsection. 

Three additional phylogenetic trait maps were created using morphometric 

subsets derived from all four analyzed elements. The first uses the shape variables best 

distinguishing suspension from other positional classes, and the second using those 

best distinguishing knuckle-walking from other positional classes. Finally, to aid in 

testing the hypothesis that a more generalized form of terrestrial behavior may be 

homologous in African apes even if knuckle-walking is not, a third combined trait map 

was created using the shape variables best distinguishing terrestrial and arboreal 

anthropoids without regard to hand posture. 

 

Results 
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Capitate 

Early and modern human capitates stand apart from those of other extant 

anthropoids in overall morphology (Fig. 4.1; see also Table 4.4a). Recent hominin taxa 

fall between the hylobatids and a relatively undifferentiated group of other anthropoids 

along the first axis, while the second axis distinguishes humans and most fossil 

hominins from other anthropoids. H. naledi in particular is distinguished from all other 

taxa to a degree approaching that of the human sample. There is little separation 

between Pan and cercopithecoids, and the Pan-Homo LCA is reconstructed as being 

most similar to Mandrillus, and nearest A. africanus of the fossil sample. The great ape 

LCA meanwhile is not estimated to have substantially evolved since the hominoid LCA, 

with both positioned near Pongo pygmaeus, Nasalis, Afropithecus, and S. indicus. The 

anthropoid LCA (labeled “root” in phylomorphospace) is nearest E. heseloni, and the 

Alouatta centroid of the extant sample. 
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Fig. 4.1. Phylomorphospace representing the evolutionary history of anthropoid capitate morphology. The 
phylogeny is projected onto the first two principal components of all extant and fossil capitate shape 
variables, with ancestral states estimated via maximum likelihood. Pan-Homo and great ape LCAs are 
highlighted. See Table 4.4a for eigenvalues. 

 

The multi-regime OU model (Fig. 4.2) estimates the hylobatid and hominid 

lineages to have adaptive diverged shortly after their phylogenetic split. Both clades are 

estimated to have transitioned away from the ancestral regime shared by the non-

hominoids and stem hominoids of the sample other than R. gordoni (KNM-SO 1002; 

see Chapter 3), in which there was an adaptive transition after branching from the other 

early Miocene hominoids of the sample. Pan and Pongo are estimated to have 

maintained the ancestral hominid regime, while Gorilla shifted from the hominid regime 

after their divergence from the Pan-Homo lineage. The hominins are estimated to have 

followed suit in shifting away from the ancestral hominid regime after branching from 
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Pan, with another transition leading to H. floresiensis and Neandertals, and a third and 

final adaptive shift in the hominin clade occurring as recent H. sapiens converged 

toward (without approaching) the adaptive optimum of hylobatids (their similar recent 

trajectory is more apparent in pPCA phylomorphospace; see Fig. 4.28).  

 

 

Fig. 4.2. Estimated adaptive regimes during anthropoid capitate evolution. Adaptive optima and 
evolutionary trajectories are based on the first three phylogenetic principal components of all capitate 
shape variables, accounting for 59.5% of the variation among sampled extant and fossil taxa (see Fig. 
4.28 and Table 4.5a). Branches are colored according to adaptive regime; the shared regime of 
hylobatids and recent hominins reflects convergent similarity of adaptive optima. 
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Table 4.4. PCA eigenvalues of individual elements 

a         Capitate  b         Hamate  c          Lunate  d       Triquetrum 
 PC1 PC2   PC1 PC2   PC1 PC2   PC1 PC2 

CpPx -0.35 0.19  HmPx 0.39 0.04  LuDs -0.33 -0.28  TqHm -0.39 -0.14 

CpTd 0.16 0.39  HmCp -0.35 -0.30  LuTq -0.28 0.38  TqLu -0.53 0.13 

CpDn 0.16 0.40  Hm4 -0.32 0.12  LuSc 0.41 0.05  TqPi -0.09 0.62 

Cp3 -0.26 -0.26  Hm5 -0.24 0.50  LuRa -0.43 0.12  TqHmPiA -0.43 -0.37 

CpHm 0.09 -0.38  Hm45A 0.12 -0.64  LuDsTqA 0.40 -0.26  TqHmLuA -0.34 0.14 

Cp2 -0.10 -0.04  Hm5CpA 0.46 0.03  LuDsScA -0.38 0.25  TqLuPiA 0.50 0.00 

Cp4 0.23 -0.39  Hm4CpA 0.40 0.44  LuScRaA 0.19 0.37  Tq1LuA 0.06 -0.65 

Cp23A 0.27 0.34  HmPxA -0.43 0.18  LuTqRaA -0.23 -0.42     

Cp3HmA -0.34 0.20      LuCpRaA 0.24 0.29     

CpPxA -0.38 0.14      LuCpC -0.01 -0.50     

CpScA -0.31 -0.22             

Cp3SD -0.20 -0.17             

CpHmC -0.41 0.16             

CpHP 0.21 -0.05                         

 

 

In DFA morphospace (Fig. 4.3), most humans and fossil specimens show the 

greatest functional resemblance to pronograde monkeys. The human sample is 

classified among them with high confidence, with similar mean posterior probabilities for 

palmigrady and digitigrady (see Table 4.12a). Non-hominin fossils assigned to other 

classes include Rangwapithecus, classified as a knuckle-walker, and the two specimens 

allocated to cf. Dendropithecus in the previous chapter, which are estimated along with 

S. indicus (contra Begun and Kivell, 2011) as suspensors.  

It is notable that of the four taxa estimated to be most similar to the hominid LCA 

in overall morphology (Fig. 4.1), S. indicus and Pongo pygmaeus are suspensors, while 

Afropithecus and Nasalis are palmigrade quadrupeds. This potentially demonstrates the 

process by which functional adaptation is often thought to occur, as selected features 

are subtly modified in response to selection while maintaining a broadly similar 

morphological pattern born of shared ancestry (Lovejoy et al. 1999, Hamrick 1999).  
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Hominin capitates not grouping with extant pronograde monkeys include those of 

H. floresiensis, which plot in the area of overlap between the Pan and Pongo samples in 

line with previous analyses of this hominin’s primitive carpal morphology (Tocheri et al., 

2007; Orr et al., 2013). They are classified as knuckle-walkers along with two of the 

three Neandertals (Shanidar 4 and Tabun 1) as well as AL 288-1. The specimen 

attributed to A. africanus plots near the 80% CI of the Pongo sample somewhat further 

removed from the African apes, but although it is assigned the highest suspensory 

probability of the hominins it is also classified among the knuckle-walkers. 

 

 

Fig. 4.3. Discriminant function analysis of seven functionally diagnostic shape variables of the capitate. 
See Chapter 2 for selection criteria, Table 4.6a for variables and scaling, Table 4.9 for accuracy metrics, 
and Table 4.12a for predictions and posterior probabilities of humans and fossil specimens. Small and 
medium points represent extant and fossil observations, respectively. Large points represent group 
means; shaded ellipses are 80% confidence intervals. 
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The capitate’s phylogenetic trait map (Fig. 4.4, Table 4.7a) effectively 

distinguishes suspensors from other anthropoids, and estimates the LCAs of humans 

with Pan, Gorilla, and Pongo to have all lacked a degree of suspensory adaptation 

approaching those of extant suspensors. This model does not effectively distinguish 

knuckle-walkers from pronograde monkeys, however, and therefore lacks utility in 

estimating the evolution of terrestriality. 

 

 

Fig. 4.4. Estimated anthropoid locomotor evolution based on three capitate shape variables identified in 
Chapter 2 as best distinguishing knuckle-walking and suspension. Bluer hues represent increasing 
suspensory specialization. Ancestral states estimated via maximum likelihood. See Table 4.7a for 
variables and scaling. 
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Table 4.5. Phylogenetic PCA eigenvalues of individual elements 

a         Capitate  b         Hamate  c          Lunate  d       Triquetrum 
 PC1 PC2   PC1 PC2   PC1 PC2   PC1 PC2 

CpPx -0.09 0.31  HmPx 0.44 0.13  LuDs -0.18 -0.28  TqHm -0.33 -0.07 

CpTd 0.38 0.18  HmCp -0.28 0.41  LuTq 0.22 0.56  TqLu -0.03 -0.14 

CpDn 0.33 0.24  Hm4 -0.33 0.28  LuSc -0.02 -0.23  TqPi -0.57 -0.23 

Cp3 -0.44 -0.18  Hm5 -0.19 0.06  LuRa -0.33 0.43  TqHmPiA 0.34 0.00 

CpHm 0.07 -0.55  Hm45A 0.36 0.76  LuDsTqA 0.22 -0.18  TqHmLuA 0.41 -0.58 

Cp2 0.11 0.17  Hm5CpA 0.46 0.05  LuDsScA -0.52 0.35  TqLuPiA -0.46 0.22 

Cp4 0.12 -0.25  Hm4CpA 0.29 -0.40  LuScRaA 0.59 0.04  Tq1LuA 0.25 0.74 

Cp23A 0.36 0.01  HmPxA -0.40 0.06  LuTqRaA -0.34 -0.33     

Cp3HmA -0.19 0.39      LuCpRaA -0.16 -0.09     

CpPxA -0.21 0.31      LuCpC -0.10 -0.32     

CpScA -0.17 0.09             

Cp3SD -0.39 -0.24             

CpHmC -0.20 0.20             

CpHP 0.28 -0.20                         

 

 

Hamate 

 In contrast to the 8-regime model fit to the capitate data, the best-fit OU model for 

the hamate (Fig. 4.6) finds only three. The ancestral regime is estimated to have been 

maintained across nearly the entire anthropoid clade, with most variation occurring 

within clades rather than between them (Fig. 4.5, Fig. 4.29). The exceptions to this are 

found among the hylobatids, as well as Oreopithecus, which is estimated to have 

converged with them toward a highly distinct optimum. 

 



 

273 
 

 

Fig. 4.5. Phylomorphospace representing the evolutionary history of anthropoid hamate morphology. The 
phylogeny is projected onto the first two principal components of all extant and fossil hamate shape 
variables, with ancestral states estimated via maximum likelihood. Pan-Homo and great ape LCAs are 
highlighted. See Table 4.4b for eigenvalues 

 

Pliopithecus also seems to have converged with hylobatids, albeit to a somewhat 

lesser degree and from a more proximate ancestral node than Oreopithecus. Bonobos, 

meanwhile, diverge sharply from the relatively homogenous chimpanzee subspecies. 

Positioned in the intervening space are humans, most of the hominins, and the 

reconstructed Pan-Homo LCA. The only adaptive shift identified by the OU model in the 

sampled hamate variation outside the specialized suspensors s a recent shift among 

upper Pleistocene hominins, which, as is evident in phylomorphospace, are estimated 

to have come to secondarily resemble extant chimpanzees and orangutans, the latter 

also estimated to have converged with chimpanzees after branching from an ancestor 
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more like Equatorius and extant pronograde monkeys. This ancestral estimate is 

influenced by S. parvada, which, contrary to the capitate of S. indicus, is found to be 

substantially derived relative to the hominid LCA, with a trajectory opposite that of its 

presumed pongine relatives. 

 

 

Fig. 4.6. Estimated adaptive regimes during anthropoid hamate evolution, based on the first two pPCs of 
all hamate shape variables, representing 66.6% of sampled variation (see Fig. 4.29 and Table 4.5b). 
Branches are colored according to adaptive regime; most anthropoids are estimated to have retained 
their ancestral adaptive regime. 
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As noted in Chapter 2, locomotor function is only poorly reflected in the hamate. 

In DFA morphospace (Fig. 4.7), most humans and fossil specimens group nearest to 

Gorilla, although a few fossil hominins are adjacent only to the outliers of extant hominid 

groups in the knuckle-walking region of morphospace. Consistent with the other hamate 

shape analyses, the Oreopithecus and Pliopithecus specimens are classified as 

suspensory (Table 4.12b). All other fossil specimens are assigned to the knuckle-

walking class with varying levels of confidence.  

 

 

Fig. 4.7. Discriminant function analysis of five functionally diagnostic shape variables of the hamate. See 
Chapter 2 for selection criteria, Table 4.6b for variables and scaling, Table 4.9 for accuracy metrics, and 
Table 4.12b for predictions and posterior probabilities of humans and fossil specimens. Small and 
medium points represent extant and fossil observations, respectively. Large points represent group 
means; shaded ellipses are 80% confidence intervals. 
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While the relative lack of functionally-related hamate covariance outside of the 

specialized suspensors renders other functional observations of dubious value, there is 

again a notable discrepancy between the overall morphology of Sivapithecus and its 

DFA classification. In this case, S. parvada is estimated to most resemble pronograde 

monkeys in overall morphology, which belies its classification as a knuckle-walker. This 

is the expected result for a taxon that has undergone homoplastic adaptation for 

knuckle-walking within a primitive, monkey-like morphological template, which, unlike 

the capitate results, would be consistent with the hypothesized knuckle-walking habit of 

this genus (Begun and Kivell, 2011). However, also unlike the S. indicus capitate, which 

was estimated to closely resemble the hominid LCA, the larger and better-preserved S. 

parvada hamate is estimated to have sharply diverged from both the hominid LCA and 

the extant great ape lineages in overall morphology (Fig. 4.5, Fig. 4.29) at the same as 

it would have been adapting to knuckle-walking. Given the broad conservation of 

hamate morphology and the random nature of much of its variation across most of the 

sample, along with the contradictory functional signal of the Sivapithecus capitate, this 

knuckle-walking affinity in S. parvada may not merit further consideration absent 

additional corroboration 

Unlike the other analyzed carpal elements, knuckle-walkers and suspensors are 

best distinguished from each other by the second discriminant function, accounting for 

only 22% of the variation, and then only poorly. When mapped onto the phylogeny (Fig. 

4.8, Table 4.6b [DF2]), there is again very little differentiation outside of the hylobatids 

and convergent fossil specimens. The Pan-Homo and hominine LCAs fall outside the 

range of extant suspensors but within the ranges of all other positional categories, while 
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the estimated hominid LCA falls within the range of every extant group other than 

hylobatids. 

 

 

Fig. 4.8. Estimated locomotor evolution based on five hamate shape variables related to locomotor 
behavior. Bluer hues represent increasing suspensory specialization. Ancestral states estimated via 
maximum likelihood. See Table 4.6b (DF2) for variables and scaling.  
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Lunate 

The overall morphology of the lunate covaries most closely with phylogeny of the 

elements analyzed here (Fig. 4.9). Humans and other hominins plot nearest other 

hominines, while Ekembo specimens, as seen in the capitate but unlike the hamate, 

most closely resemble sampled platyrrhines. As with the capitate and hamate, H. naledi 

is found to be more similar to A. afarensis than to the H. sapiens mean (contra Kivell et 

al., 2015).  

 

 

Fig. 4.9. Phylomorphospace representing the evolutionary history of anthropoid lunate morphology. The 
phylogeny is projected onto the first two principal components of all extant and fossil lunate shape 
variables, with ancestral states estimated via maximum likelihood. Pan-Homo and great ape LCAs are 
highlighted. See Table 4.4c for eigenvalues. 
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A functional signal is also evident in lunate morphology, as hylobatids, Pongo, 

and Ateles follow similar trajectories in phylomorphospace after divergence, although 

the magnitude of change in the latter two groups is not sufficient for the OU model (Fig. 

4.10) to identify convergence of adaptive optima. The OU model instead estimates 

Pongo and Gorilla to have maintained the primitive regime of colobines and ceboids, 

and transitions toward other adaptive optima to have occurred in hylobatids, Ekembo, 

cercopithecines, and the Pan-Homo clade.  

 

 

Fig. 4.10. Estimated adaptive regimes during anthropoid lunate evolution, based on the first two pPCs of 
all lunate shape variables, representing 51.4% of sampled variation (see Fig. 4.30 and Table 4.5c). 
Branches are colored according to adaptive regime; Pongo and Gorilla are estimated to have retained the 
ancestral adaptive regime along with ceboids and colobines. 
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In DFA morphospace (Fig. 4.11), the Ekembo specimens group among extant 

suspensors, while most extant humans and fossil hominins again plot among the 

African apes. A. sediba plots just outside the 80% CI of Gorilla, but its position in 

morphospace is very near the decision boundaries between knuckle-walking, 

suspension, and digitigrady, and, due to its score along the third discriminant function 

accounting for 5.9% of the variation, it is classified among the digitigrade monkeys 

(Table 4.12c).  

 

 

Fig. 4.11. Discriminant function analysis of six functionally diagnostic shape variables of the lunate. See 
Chapter 2 for selection criteria, Table 4.6c for variables and scaling, Table 4.9 for accuracy metrics, and 
Table 4.12c for predictions and posterior probabilities of humans and fossil specimens. Small and 
medium points represent extant and fossil observations, respectively. Large points represent group 
means; shaded ellipses are 80% confidence intervals. 
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The phylogenetic trait map (Fig. 4.12, Table 4.7b) estimates the most terrestrial 

Pan-Homo and Gorilla-Homo LCAs of the four elements, and the most suspensory 

hominid LCA, as measured by their ordinal positions between the minimum (greater 

knuckle-walking affinity) and maximum (greater suspensory affinity) discriminant values. 

The hominid LCA is nevertheless estimated to have been somewhat more functionally 

similar to extant palmigrade monkeys than most suspensors, while also falling within the 

Ateles range. Knuckle-walkers and pronograde monkeys are again not well separated 

along this axis, but the six lowest mean values all belong to terrestrial taxa, represented 

by the five Pan taxa and Mandrillus. The Pan-Homo LCA estimate falls between the 

Pan and Gorilla means, consistent with a terrestrial lifestyle. This estimate reflects the 

greater similarity between Pan and hominins (other than A. sediba) than to Gorilla, as 

the hominine LCA is estimated to be less terrestrial, with a value exceeded only by 

Papio among extant terrestrial taxon means and higher than those of several 

palmigrade monkeys. As suggested by Fig. 4.10, the terrestrial estimate of the Pan-

Homo LCA is therefore at least partially due to phylogenetic structure. 
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Fig. 4.12. Estimated locomotor evolution based on three lunate shape variables identified in Chapter 2 as 
best distinguishing knuckle-walking and suspension. Bluer hues represent increasing suspensory 
specialization. Ancestral states estimated via maximum likelihood. See Table 4.7b for details. 

 

Triquetrum 

 The expanded range of morphological variability among hominoids relative to 

other anthropoids is especially evident in triquetrum morphology. The range of diversity 

among cercopithecoids is particularly limited, as evinced by its being circumscribed by 

that of the far less speciose ceboid sample in phylomorphospace (Fig. 4.13) In turn, the 

centroids of all sampled monkey taxa vary within a narrower range along the first PC 

than that separating the two Pongo species.  
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Table 4.6. Shape variable scaling of DFA biplots for each element 

a            Capitate  b             Hamate 

 DF1 DF2   DF1 DF2 

CpDn -0.43 -0.06  Hm5 1.15 -0.06 

Cp3 0.01 -0.31  Hm45A 0.48 -0.30 

Cp2 -0.71 0.68  Hm5CpA -0.05 1.36 

CpPxA -0.58 -0.86  Hm4CpA 1.40 -0.33 

CpScA -0.75 0.40  HmPxA 0.76 -0.24 

CpHmC -0.59 -0.31     
CpHP -0.33 0.56     
c              Lunate  d            Triquetrum 
 DF1 DF2   DF1 DF2 

LuDs -0.27 0.32  TqHm -0.17 -0.99 

LuTq 0.05 0.23  TqPi -0.76 0.06 

LuSc 0.76 0.27  TqHmPiA -0.06 -0.94 

LuDsTqA 0.35 -1.22  TqHmLuA -0.05 -0.29 

LuCpRaA 1.33 0.49  TqLuPiA 0.20 -0.03 

LuCpC -0.17 -0.48   Tq1LuA 1.51 0.04 

 

 

In overall morphology, modern human triquetra are found to most closely 

resemble the estimated condition of the Pan-Homo LCA among sampled taxa. Early 

hominins are meanwhile estimated to have evolved convergently with Asian apes. 

Humans’ LCAs with Pan, Gorilla, and Pongo are estimated to be very similar, each 

morphologically intermediate relative to humans and E. heseloni, which, despite 

maintaining a styloid articulation, has diverged sharply from extant monkeys. H. naledi 

is again found to more closely resemble at least one species of Australopithecus (A. 

sediba in this case) than H. sapiens. 
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Fig. 4.13. Phylomorphospace representing the evolutionary history of anthropoid triquetrum morphology. 
The phylogeny is projected onto the first two principal components of all extant and fossil triquetrum 
shape variables, with ancestral states estimated via maximum likelihood. Pan-Homo and great ape LCAs 
are highlighted. See Table 4.4d for eigenvalues. 

 

The multi-regime OU model estimates hominins and Asian apes to share a 

homologous adaptive regime, from which the African ape genera independently 

transitioned (Fig. 4.14). Ekembo is also estimated to have transitioned from the 

ancestral anthropoid regime. As is evidence in pPCA phylomorphospace (Fig. 4.31) the 

Ekembo triquetra depart drastically from expectation given their phylogenetic position. 

 



 

285 
 

 

Fig. 4.14. Estimated adaptive regimes during anthropoid triquetrum evolution. Based on two pPCs 
representing 56.9% of sampled variation (see Fig. 4.31 and Table 4.5d). Branches are colored according 
to adaptive regime. 

 

Some of the discrepancy between phylogenetic position and triquetrum 

morphology in Ekembo is influenced by its relatively basal position combined with its 

dissimilarity from the extant monkey sample. The greater influence results from the 

interaction between the morphology of the ape and great ape LCAs, which are 

estimated to have been generalized, and the morphology of Ekembo, which is found to 

be highly derived. This is not entirely evident in either phylomorphospace plot, but 

becomes more so in DFA morphospace (Fig. 4.15), in which all three Ekembo 

specimens are classified as knuckle-walking with posterior probabilities of 1 (Table 

4.12d).  
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Fig. 4.15. Discriminant function analysis of six functionally diagnostic shape variables of the triquetrum. 
See Chapter 2 for selection criteria, Table 4.6d for variables and scaling, Table 4.9 for accuracy metrics, 
and Table 4.12d for predictions and posterior probabilities of humans and fossil specimens. Small and 
medium points represent extant and fossil observations, respectively. Large points represent group 
means; shaded ellipses are 80% confidence intervals. 

 

The triquetra of both H. naledi and A. sediba are classified as suspensory with 

high confidence, and the mean suspensory posterior probability of the human sample 

also exceeds 50%. This is reflected by their position in DFA morphospace, separated 

from other extant hominines but overlapping only somewhat with extant Asian apes.  

The phylogenetic trait map (Fig. 4.16), which distinguishes both knuckle-walkers 

and suspensors from pronograde monkeys, estimates the Pan-Homo, hominine, and 

hominid LCAs to have resembled extant pronograde monkeys in locomotor behavior. 

The former two estimates also fall just within the range of Ateles, but all three are well 
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separated from knuckle-walkers. These results are most consistent with knuckle-

walking adaptations in African ape genera having evolved in parallel. 

 

 

Fig. 4.16. Estimated locomotor evolution based on three triquetrum shape variables identified in Chapter 
2 as best distinguishing knuckle-walking and suspension. Bluer hues represent increasing suspensory 
specialization, and redder hues increasing adaptation for knuckle-walking. Ancestral states estimated via 
maximum likelihood. See Table 4.7c for details.  

 

Table 4.7. Shape variable scaling of discriminant functions used for each element’s phylogenetic trait 
maps. See Table 4.6b DF2 for hamate values. 

a Capitate  b Lunate    c Triquetrum 

CpHmC -0.61  LuTq -0.14  Tq1LuA 1.43 

CpPxA -0.99  LuDsTqA 1.40  TqPi -0.81 

CpScA -0.43   LuCpC 0.30   TqHmPiA 0.05 
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Fig. 4.17. Comparison of selected fossil hominin individuals with a modern human and a chimpanzee. Analyzed elements are shown in palmar 
(top) and dorsal (bottom) view. 

 



 

289 
 

Discussion 

Diversity of variance patterns among carpal elements 

Patterns of variation within Hominoidea are inconsistent among the analyzed 

carpal elements, with each seeming to have traversed a different evolutionary track in 

arriving at its condition in extant lineages. Pan and Pongo are estimated to have shared 

adaptive optima during capitate evolution, and, along with Gorilla, during hamate 

evolution as well. The adaptive optima of the lunate, meanwhile, are estimated to have 

been more similar in Pongo and Gorilla, which shared a plesiomorphic adaptive regime 

with ceboids and colobines, whereas the Pan-Homo clade transitioned toward a 

synapomorphic optimum. The triquetra of the hominin clade are estimated to have 

evolved according to the symplesiomorphic regime maintained by the Asian ape 

lineages, with Gorilla and Pan independently transitioning away from it and each other 

toward substantially divergent adaptive optima. 

Patterns of variation among the most functionally diagnostic metrics also differ 

between carpal elements. The triquetra of humans share affinities with extant 

suspensors in each of the variables most diagnostic of this behavior: The long axis is 

oriented relatively orthogonally to its lunate facet (Fig. 4.18a), the lunate facet is 

relatively small (Fig. 4.18c), and the pisiform facet is both somewhat smaller (Fig. 4.18b) 

due to being limited to the distal aspect of the bone, and angled more palmarly relative 

to the bone’s hamate facet (Fig. 4.18d; see Chapter 2 for biomechanical interpretation 

of these features). This resemblance to extant suspensors seems to be greatest in 

earlier hominins, judging by the high suspensory posterior probabilities of the fossil 

specimens analyzed here (Fig. 4.15; Table 4.12d) as well as observations by Kivell 
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(2011) of SKX 3498, an early Pleistocene hominin triquetrum of unknown taxonomic 

identity.  

 

 

Fig. 4.18. Comparisons between extant taxa and fossil hominins of triquetrum variables discussed in the 
text. Boxes represent 25th and 75th percentiles, centerlines the medians, and whiskers the non-outlier 
ranges. The modern human range is highlighted. 

 

Ekembo, meanwhile, more closely resembles African apes in these metrics, 

which is estimated to have resulted from a substantial and rapid morphological 

divergence from the hominoid LCA. This presents an enticing problem, as the 

mechanism by which this could have occurred in Ekembo, the positional repertoire of 

which is akin to the null hypothesis in the study of early catarrhine function (see Chapter 

3), is opaque. This problem could potentially be explained by additional, unsampled 

instances of morphological convergence among either Asian apes, hominins, or both, 

which would serve to reverse the apparent polarity between the more terrestrial 

morphology of African apes and Ekembo and the more suspensory morphology of 

Asian apes and hominins. The triquetrum belonging to the IPS-21350 partial skeleton of 

Pierolapithecus (Moya-Sola et al., 2004) will add clarification when it is made available 
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for research; the limited photos and description currently available provide little 

guidance. 

This functional signal is largely reversed in the lunate, as Ekembo demonstrates 

functional affinity with extant suspensors, while humans and fossil hominins tend to 

most closely resemble Pan (Fig. 4.11, Table 4.12c). This is particularly evident in the 

angle between the lunate’s distal surface and its articulation with the triquetrum (Fig. 

4.19c), the metric best distinguishing between the lunates of extant knuckle-walkers and 

suspensors. This angle is especially acute in humans and Pan, as well as H. naledi and 

A. afarensis; it is somewhat less acute in A. sediba, but falls near the maximum range of 

the extant hominine sample, below the most acute value of sampled Asian apes. The 

size of the triquetrum facet in sampled extant and extinct hominins (Fig. 4.19b) also 

resembles that of African apes, significantly larger than the suspensory taxa but not 

distinct from various cercopithecoids. The lunate’s distal surface (Fig. 4.19a), which is 

significantly larger in knuckle-walkers than other positional classes, tends to be further 

enlarged in humans, a condition shared by H. naledi, in which this facet is similar in size 

to the human median. The sampled australopiths are not consistent in this, however; A. 

sediba and A. afarensis have values near the median of sampled Pongo and hylobatids, 

respectively, although values of the latter hominin taxon remain within the range of most 

hominine taxa. 

While variance in lunate morphology has the strongest phylogenetic structure of 

the analyzed carpals (discussed below), features of the lunate are well represented 

among those found to be most effective in extant positional classification (see Table 4.8, 

Table 4.10), and the lunate DFA model exceeds those of the other elements in total and 
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balanced classification accuracy (Table 4.9). As has been expounded elsewhere (e.g., 

Polly et al., 2013), these influences are not dichotomous, given the high phylogenetic 

signal of locomotor function and the likelihood that much of the phylogenetic 

autocorrelation of morphological traits is attributable to similarly strong phylogenetic 

autocorrelation of behavioral ones. Interpreting multivariate lunate model results is 

therefore difficult. 

 

 

Fig. 4.19. Comparisons between extant taxa and fossil hominins of lunate variables discussed in the text. 
Boxes represent 25th and 75th percentiles, centerlines the medians, and whiskers the non-outlier ranges. 
The modern human range is highlighted. 

 

Variation in functionally diagnostic features of the capitate is at odds with those of 

the lunate and triquetrum. Humans and most hominins share stronger functional affinity 

with pronograde monkeys than African apes (Fig. 4.3, Table 4.12a), and while human 

capitates are among the most derived of the sampled taxa in overall morphology, 

functionally-related aspects of the ancestral morphotype seem to have been either 

retained or secondarily reacquired in the hominin lineage. While Lovejoy and colleagues 

(2009a, b) favor the former hypothesis, palmigrade-like features could have evolved in 
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hominins to facilitate the greater palmar compliance beneficial for enhanced 

manipulative capabilities. 

Capitate features aligning the hominin clade with pronograde monkeys over apes 

include the size of the Mc2 articulation (Fig. 4.20a), which, while smaller in humans than 

in most monkeys, tends to be larger than in other hominoids. This is true of most fossil 

hominins as well, particularly in H. naledi and the AL 333 individual of A. afarensis. The 

Mc3 facet (Fig. 4.20b) of humans and most hominins is more similar in size to those of 

Asian apes and various cercopithecoids, whereas it is generally larger in African ape 

specimens. Hamate facet concavity (Fig. 4.20d) is usually somewhat reduced in 

humans relative to African apes, most resembling the condition in colobines, and a 

relatively palmar position of the capitate head (Fig. 4.20e) distinguishes humans from 

African apes, in which it tends to be positioned more dorsally. 

 

 

Fig. 4.20. Comparisons between extant taxa and fossil hominins of capitate variables discussed in the 
text. Boxes represent 25th and 75th percentiles, centerlines the medians, and whiskers the non-outlier 
ranges. The modern human range is highlighted. 

 

Meanwhile, hamate articular geometry is very conservative, with relatively little 

variance attributable to positional behavior. The hamate is also marginally less covariant 
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with phylogeny than the other elements (discussed below), leaving much of its variation 

unattributable to either of these influences. This is reflected in the large majority of 

lineages estimated to share a symplesiomorphic adaptive regime (Fig. 4.6). 

Analyses of these four carpal elements produce results potentially supporting 

three competing hypotheses regarding hominin locomotor ancestry. These discordant 

patterns of variation reinforce the necessity of caution in analyzing isolated fossil 

specimens; in assessing the locomotor affinities of a fossil hominin known only from an 

isolated carpal, results of a comparative functional analysis will be highly dependent on 

which carpal of the extinct individual was found – a hominin capitate will tend to suggest 

pronogrady (Fig. 4.3), a lunate knuckle-walking (Fig. 4.9), and a triquetrum suspension 

(Fig. 4.13, Fig. 4.15); a hamate will also likely suggest knuckle-walking while being 

relatively uninformative (Fig. 4.7).  

 

Table 4.8. Results of functional analyses incorporating shape variables derived from all analyzed 
elements 

a     PCA eigenvalues  b    pPCA eigenvalues   c        DFA scaling 

 PC1 PC2   PC1 PC2    DF1 DF2 

CpPxA -0.37 -0.10  CpPxA -0.24 -0.34   CpPxA -0.29 0.44 

CpScA -0.29 0.18  CpScA -0.27 0.15   CpScA -0.08 0.13 

CpHmC -0.36 -0.04  CpHmC -0.33 -0.05   CpHmC -0.60 0.10 

CpHP 0.11 0.31  CpHP 0.06 0.47   CpHP 0.19 0.29 

Hm5 -0.29 0.30  Hm5 -0.19 0.11   Hm5 0.10 0.47 

LuDs 0.01 -0.43  LuDs -0.01 -0.57   LuDs -0.40 -0.07 

LuSc 0.13 0.42  LuSc 0.14 0.22   LuSc -0.01 0.57 

LuTq -0.34 -0.09  LuTq -0.43 0.18   LuTq -0.21 0.09 

LuCpRaA -0.10 0.39  LuCpRaA 0.05 -0.11   LuCpRaA 0.37 0.97 

LuDsTqA 0.35 0.20  LuDsTqA 0.27 0.32   LuDsTqA 0.61 -0.21 

LuCpC 0.29 -0.23  LuCpC 0.26 -0.22   LuCpC 0.01 -0.18 

Tq1LuA 0.20 0.10  Tq1LuA 0.34 -0.07   Tq1LuA 1.09 0.01 

TqPi -0.34 -0.17  TqPi -0.46 -0.05   TqPi -0.30 -0.28 

TqHmPiA 0.21 -0.32  TqHmPiA 0.21 -0.24   TqHmPiA 0.36 -0.65 

 

 



 

295 
 

Hominin locomotor ancestry 

Despite these discrepant results, a composite narrative begins to emerge from 

similarities among locomotor estimates assigned to ancestral nodes within Hominoidea, 

as well as results of the combined functional analyses. The phylogenetic trait maps built 

from each element are consistent in estimating the Pan-Homo LCA to have lacked 

morphological adaptations comparable to those of extant suspensors (Fig. 4.4, Fig. 4.8, 

Fig. 4.12, Fig. 4.16; Table 4.6b, Table 4.7). They also generally find this ancestor to 

have been functionally indistinguishable from pronograde monkeys, although the lunate 

trait map estimate for the Pan-Homo LCA, but not the hominine LCA, is somewhat more 

consistent with knuckle-walking, and the capitate and hamate trait maps do not 

distinguish between pronogrady and knuckle-walking. 

 

Table 4.9. Extant classification accuracy of DFA models calculated after 100 repetitions of 10-fold cross 
validation. Tot, total accuracy. DG, digitigrady. KW, knuckle-walking. PG, palmigrady. S, suspension. Bal, 
balanced accuracy, which accounts for inequality of class sizes (see Chapter 2). See Table 4.6, Table 
4.8c, and Table 4.11b for model details. 

  Tot DG KW PG S Bal 

Capitate 0.839 0.918 0.929 0.771 0.848 0.872 

Hamate 0.669 0.620 0.817 0.579 0.712 0.763 

Lunate 0.875 0.959 0.948 0.797 0.925 0.892 

Triquetrum 0.834 0.840 0.903 0.820 0.787 0.876 

Combined 
function 

0.952 0.995 0.987 0.917 0.968 0.947 

CHL 
function 

0.931 0.964 0.974 0.910 0.916 0.932 

 

 

In analyses incorporating the shape variables from all analyzed elements best 

distinguishing knuckle-walking and suspension (Table 4.8), the hominid LCA is 

estimated to have been generalized, intermediate between Pongo and pronograde 

monkeys in combined functional phylomorphospace (Fig. 4.21, Table 4.8a). The human 
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LCAs with both Gorilla and Pan are meanwhile estimated to have approached Gorilla in 

locomotor function while still being positioned between them and other non-African ape 

anthropoids.  

 

 

Fig. 4.21. Phylomorphospace representing anthropoid locomotor evolution based on 14 diagnostic shape 
variables from the four analyzed carpals. The phylogeny is projected onto the first two principal 
components of extant and fossil shape variables, with ancestral states estimated via maximum likelihood. 
Pan-Homo and great ape LCAs are highlighted. See Table 4.8a for eigenvalues.  

 

However, despite comprising the shape variables most related to locomotor 

function, the multivariate phylogenetic signal of the combined functional subset (Kmult = 

0.73; Adams, 2014) is greater than that of the complete variable sets of any individual 

element (discussed below). This enhances the potential utility of the pPCA 

phylomorphospace (Fig. 4.22, Table 4.8b) relative to that built on a standard PCA. 
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While the Pan-Homo and Gorilla-Homo LCAs are similarly adjacent to extant Gorilla in 

pPCA phylomorphospace, changes in the surrounding structure find African apes and 

pronograde monkeys in greater proximity, with the Pan-Homo and hominine LCAs 

positioned roughly equidistant from several palmigrade monkeys on the one hand, and 

the human and chimpanzee centroids on the other.  

 

 

Fig. 4.22. Phylomorphospace representing anthropoid locomotor evolution based on phylogenetic PCA of 
14 diagnostic shape variables from the four analyzed carpals. The phylogeny is projected onto the first 
two phylogenetic principal components of extant and fossil shape variables, with ancestral states 
estimated via maximum likelihood. Pan-Homo and great ape LCAs are highlighted. See Table 4.8b for 
eigenvalues 
 

In contrast to the knuckle-walkers, the combined pPCA shows extant suspensors 

to be similarly divergent from other anthropoids with or without accounting for 

phylogeny. The pPCA does group African ape more closely together, however, and 
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further separates them from the Homo species, perhaps reflecting the features shared 

among the former in association with knuckle-walking. H. sapiens, meanwhile, owing to 

the functionally disparate A. sediba, is estimated to have descended from an ancestor 

even less similar to extant African apes after their split with Australopithecus.  

 

 

Fig. 4.23. Estimated adaptive regimes during anthropoid locomotor evolution, based on the first three 
pPCs of 14 diagnostic shape variables, representing 62.2% of sampled variation (see Fig. 4.22 and Table 
4.8b). Branches are colored according to adaptive regime; Australopithecus sediba is estimated to have 
shared an adaptive regime with Pongo and Ateles. 
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The combined multi-regime OU model (Fig. 4.23) estimates A. sediba, Pongo, 

and Ateles to have converged on similarly suspensory adaptive optima, with the 

hylobatid clade having transitioned toward an even more specialized optimum. Pan and 

Gorilla are estimated to share the ancestral hominine adaptive regime, with hominins 

having shifted away from it after branching from Pan. This scenario is consistent with 

the hominine LCA having been a knuckle-walker, but its estimated intermediate 

morphology (Fig. 4.22) is also consistent with non-knuckle-walking terrestriality, or with 

adaptation for some other shared function such as vertical climbing. 

The combined phylogenetic trait maps provide some clarity. The suspensory trait 

map (Fig. 4.24a, Table 4.10a) comports with the analyses of each element’s overall 

morphology in finding a lack of suspensory adaptation at the origin of any of the major 

anthropoid clades, with hylobatids, Pongo, and Ateles having adapted to their 

suspensory habits independently. The knuckle-walking trait map (Fig. 4.24b, Table 

4.10b) also estimates the morphology associated with knuckle-walking in the African 

ape genera to have evolved at least largely in parallel. The Pan-Homo and Gorilla-

Homo LCA estimates most resemble the mean values of H. sapiens, E. heseloni, and 

Mandrillus, between the African ape and palmigrade monkey samples. Although these 

estimates both fall outside the range of extant African apes, the proximity of the Pan-

Homo LCA to Mandrillus may be consistent with the hypothesis that even if knuckle-

walking is not homologous in the African ape genera, a more generalized form of 

terrestriality may be (e.g., Sarmiento, 1988; Gebo, 1992, 1996).  
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Fig. 4.24. Estimated locomotor evolution based on shape variables from all four analyzed elements identified in Chapter 2 as best distinguishing 
suspension (a), knuckle-walking (b), and terrestrial behavior (c) from other anthropoid positional groups. Bluer hues represent increasing 
suspensory specialization, and redder hues increasing adaptation for knuckle-walking or terrestrialitiy. Ancestral states estimated via maximum 
likelihood. See Table 4.10 for details.  
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Table 4.10. Shape variable scaling of discriminant functions used for phylogenetic trait maps in Fig. 4.24 

a Combined Susp  b Combined KW  c Combined Terr 

CpPxA -0.41  CpHP 0.26  Cp23A 0.39 

CpHmC -0.51  LuDs -0.29  CpHmC -0.56 

LuTq -0.15  LuDsTqA 0.82  LuTq -0.16 

LuDsTqA 0.77  LuCpRaA 0.64  LuDsTqA 0.88 

LuCpC 0.01  TqPi -0.52  LuCpRaA 0.63 

TqHm -0.08  Tq1LuA 1.07  Tq1LuA 1.09 

TqPi -0.21       

Tq1LuA 1.09       

TqHmPiA 0.54             

 

The third combined trait map (Fig. 4.24c, Table 4.10c) tests this hypothesis by 

estimating the evolution of terrestrialism without regard to hand posture. Tip data are 

distributed similarly to the knuckle-walking trait map, save for most digitigrade 

cercopithecines joining knuckle-walkers toward the red end of the continuum, and H. 

sapiens and H. naledi being positioned among arboreal monkeys, well separated from 

African apes. The Pan-Homo and Gorilla-Homo LCAs are both estimated as less 

terrestrial than any sampled individual of Pan, Gorilla, Mandrillus, or Erythrocebus. As 

discussed in Chapter 2, however, Papio frequently lacks the terrestrial features linking 

the other terrestrial cercopithecines. Here, the Papio mean is intermediate between the 

other digitigrade taxa and arboreal monkeys, with individual observations overlapping 

with both. The Gorilla-Homo LCA is estimated very near the Papio mean, while the Pan-

Homo LCA is estimated to be marginally less terrestrial. These analyses estimate the 

Pan-Homo LCA to have lacked knuckle-walking adaptations comparable to those of 

extant African apes. 

As previously noted, it has been speculated that adaptations associated with the 

ancestral hominin locomotor repertoire may have been retained in the lineage, perhaps 

persisting to the present. While this may yet be true of some features, for instance 
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scaphoid-centrale fusion (e.g., Kivell and Begun 2007), the functional signal disparities 

among hominin carpal elements demonstrated here could have arisen in part due to a 

relative lack of such pleisiomorphic retention. If the Pan-Homo LCA lived more than 7 

million years ago (Langergraber et al., 2012; Steiper and Seiffert, 2012), none of the 

taxa included in this analysis can be properly characterized as early hominins, and the 

evolution of wrist morphology may have proceeded quickly in the first few million years 

after the split with Pan upon alleviation of constraints associated with locomotor 

responsibilities. Increasing reliance on manipulative behaviors, which was arguably 

already substantial even in the earliest of the hominins sampled here (e.g., McPherron 

et al., 2010), would serve to magnify this effect, rendering most hominin specimens 

uninformative at best and potentially misleading for the purpose of inferring ancestral 

locomotion. 

 

Locomotor behavior of fossil hominins 

Results of this study find A. sediba to have stronger functional affinity with extant 

suspensors and pronograde monkeys than with African apes, with its relative affinity to 

each group varying between analyses. Its position in combined DFA morphospace (Fig. 

4.25, Table 4.8c), is consistent with these results, with A. sediba grouping just within the 

80% CI of Ateles, better separated from other hominines than from pronograde 

monkeys or Asian apes.  
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Fig. 4.25. Discriminant function analysis of 14 diagnostic shape variables across the four analyzed 
elements. See Chapter 2 for selection criteria, Table 4.8c for discriminant functions, Table 4.9 for 
accuracy metrics, and Table 4.12e for predictions and posterior probabilities of humans and fossil 
specimens. Small and medium points represent extant and fossil observations, respectively. Large points 
represent group means; shaded ellipses are 80% confidence intervals. 

 

As shown in the previous section, the functional distinction of A. sediba from 

extant hominines is estimated to have resulted largely from convergence rather than a 

lack of negative selection on adaptations associated with the ancestral locomotor 

repertoire. This is consistent with previous functionally significant distinctions observed 

in A. sediba relative to other hominins. However, the suspensory habit inferred from 

more proximal morphology of the arm (Churchill et al., 2013; Rein et al., 2017) is only 

equivocally supported; in capitate morphology, the most effective of the four analyzed 

elements in diagnosing suspensory behavior (see Chapter 2), no suspensory signal is 

found in either antimere of the MH2 individual (Table 4.12a). In contrast, the capitate of 
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A. africanus, while classified as a knuckle-walker, is assigned a non-trivial suspensory 

posterior probability. This finding, while potentially consistent with previous observations 

of a suspensory signal in A. africanus (McHenry and Berger, 1998; Green et al., 2007), 

does not support a unique degree of suspensory adaptation in A. sediba relative to its 

congeners.  

Due to the problems discussed above associated with incongruent variance 

patterns among carpal elements, the right-hand set of four carpals from the MH2 

individual of A. sediba is directly comparable only to H. naledi and extant humans of 

sampled hominins. Much of the suspensory signal of A. sediba is found in the 

triquetrum, however, the morphology of which, as detailed above, is similar in all 

sampled hominins to that of extant suspensors. The triquetrum of H. naledi, for 

example, possesses a suspensory signal approaching that of A. sediba in strength (see 

Table 4.12d), despite its other elements having suspensory probabilities of 0 (Table 

4.12a-c). 

To evaluate the functional distinctiveness of A. sediba relative to other hominins 

based on non-triquetrum morphology, the pPCA phylomorphospace and DFA 

morphospace were recreated with triquetrum-derived variables removed. This has the 

further benefit of allowing comparison between A. sediba and the articulated capitate, 

hamate, and lunate of the KNM-WT-22944 individual attributed to A. afarensis. In 

phylomorphospace (Fig. 4.26, Table 4.11a), A. sediba is again best separated from 

African apes of the sampled hominins, positioned very similarly to that derived from all 

four elements (Fig. 4.22, Table 4.8b). In this case, however, it is joined amongst the 
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palmigrade monkeys by A. afarensis, potentially contradicting the hypothesized 

functional distinction of A. sediba relative to other hominins. 

 

 

Fig. 4.26. Phylomorphospace representing anthropoid locomotor evolution based on phylogenetic PCA of 
11 diagnostic shape variables from the capitate, hamate, and lunate. The phylogeny is projected onto the 
first two phylogenetic principal components of extant and fossil shape variables, with ancestral states 
estimated via maximum likelihood. Pan-Homo and great ape LCAs are highlighted. See Table 4.11a for 
eigenvalues. 

 

The DFA analysis using the same shape variables (Fig. 4.27, Table 4.11b) 

clarifies this somewhat. The MH2 individual is again separated from other hominines, in 

this case positioned intermediately among the extant positional groups, with the 

greatest affinity to digitigrade cercopithecines (Table 4.12f). Meanwhile, the position of 

KNM-WT-22944 is shared by both humans and gorillas, and both A. afarensis and H. 

naledi are classified among the knuckle-walkers. As described above, withholding 



 

306 
 

triquetrum data from the analysis will tend to reduce the suspensory affinities, and 

increase the knuckle-walking affinities, of hominins. Nevertheless, the relative positions 

of the hominin taxa do seem consistent with some degree of functional divergence in A. 

sediba relative to other hominins.  

 

 

Fig. 4.27. Discriminant function analysis of 11 diagnostic shape variables from the capitate, hamate, and 
lunate. See Chapter 2 for selection criteria, Table 4.11b for discriminant functions, Table 4.9 for accuracy 
metrics, and Table 4.12f for predictions and posterior probabilities of humans and fossil specimens. Small 
and medium points represent extant and fossil observations, respectively. Large points represent group 
means; shaded ellipses are 80% confidence intervals. 

 

While not representing a separate data point, the capitate and hamate available 

from the left wrist of MH2 are consistent with this assessment; the latter element is 

classified as a knuckle-walker in the hamate DFA with a posterior probability identical to 

its antimere (Table 4.12b), while the left capitate shares a digitigrade classification with 
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its antimere, its superior preservation notwithstanding (Table 4.12a). Other A. afarensis 

specimens are also consistent with the inferred functional distinction; only the AL 288-1 

capitate substantially differs from KNM-WT 22944 in estimated function, and its knuckle-

walking classification relative to the pronograde affinities of the other A. afarensis 

capitates and those of A. sediba would only widen the apparent functional gap between 

them. Whether this could be related to an arboreal habit in A. sediba remains unclear. 

 

Table 4.11. Results of functional analyses combining diagnostic shape variables from the capitate, 
hamate, and lunate 

a      pPCA eigenvalues  b           DFA scaling 

 PC1 PC2   DF1 DF2 

CpPxA -0.40 -0.19  CpPxA 0.18 -0.69 

CpScA -0.25 0.31  CpScA 0.19 -0.22 

CpHmC -0.41 0.09  CpHmC -0.29 -0.40 

CpHP 0.23 0.48  CpHP 0.43 0.07 

Hm5 -0.23 0.10  Hm5 0.46 -0.28 

LuDs -0.16 -0.57  LuDs -0.22 -0.40 

LuSc 0.22 0.16  LuSc 0.63 -0.26 

LuTq -0.45 0.34  LuTq 0.03 -0.12 

LuCpRaA -0.03 -0.11  LuCpRaA 1.16 0.03 

LuDsTqA 0.40 0.15  LuDsTqA 0.16 0.78 

LuCpC 0.26 -0.34   LuCpC -0.18 0.11 

 

 

An aside on Mc3-capitate joint obliquity 

Although not associated with positional behavior across the sample, the angle 

between the Mc3 and hamate facets of the capitate may help to inform hominin 

locomotor ancestry. Lovejoy and colleagues (2009a) provide two alternate metrics for 

quantifying obliquity in the Mc3-capitate joint (figures S23-S25 in Lovejoy et al., 2009a; 

see also Selby et al., 2016). They argue that the obliquity of this joint in African apes is 

associated with a “partial screw mechanism” (not to be confused with the “screw-clamp 

mechanism” of MacConaill, 1941) in the central joint complex (comprising the capitate, 
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hamate, and second and third metacarpal bases) to facilitate knuckle-walking, whereas 

its obliquity was independently acquired in humans, in which the embryonic transfer of a 

chondral anlage results in a region of ossification normally contributing to the capitate in 

adult humans instead forming the Mc3 styloid process. Humans would otherwise have a 

more neutrally- or oppositely-angled Mc3-capitate joint (depending on the measurement 

used) as seen in Pongo, Papio, and Ardipithecus ramidus. This trait as characterized 

here is not necessarily comparable, as the Mc3 is not analyzed. However, it is 

noteworthy that their metrics compare the axis of the Mc3 to that of either the proximal 

portion of the hamate facet or the dorsal margin of the Mc3 facet, rather than to either 

facet’s average orientation. The former metric may therefore be problematic due to the 

enhanced proximodistal concavity of the hamate facet (Fig. 4.20d) in African apes 

compared to other hominoids, while the utility of characterizing the orientation of their 

Mc3 facet via a line along its dorsal margin would seem to be undermined by the 

authors’ emphasis on the partial screw mechanism created by its opposite dorsal and 

palmar orientations (Selby et al., 2016).  

Nevertheless, when accounting for the topographical variance of these facets, 

the interior angle between them (Cp3HmA) is indeed less than 90° in nearly all sampled 

humans, most gorillas, and in a small majority of Pan specimens, with the Pongo mean 

being marginally closer to neutral (Fig. 4.20c). These results are in rough accord with 

the characterization of Lovejoy and colleagues (2009a), although the mean values of 

several other taxa deviate more strongly from neutral than do those of the African apes, 

with this angle being most acute among the hylobatids.  
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A pattern of variation in this trait does seem to be evident among the sampled 

hominins. Dorsolateral beveling of the distal capitate in association with Mc3 styloid 

process acquisition is only evident in sampled Neandertals and early and modern H. 

sapiens. The right capitate of the MH2 individual also has the appearance of this 

derived condition, but this seems to be due to diagenetic factors, as this region of the 

bone is abraded, and the Mc3 with which it articulates lacks a styloid process. The 

better-preserved left capitate of this individual also clearly lacks this trait. In likely 

association with this condition, the orientation of the Mc3 facet relative to the hamate 

facet ranges between 89° and 104° in the earlier hominin specimens, values 

comparable to those measured for A. ramidus (Lovejoy et al., 2009a; Selby et al., 

2016), while the upper Pleistocene specimens vary between 75° and 87°, within the 

modern human range. The more acute angle of H. floresiensis despite its lack of 

morphology associated with an Mc3 styloid process is the exception to this trend, yet 

another way in which this taxon more closely resembles African apes than humans. The 

obtuse angle found in earlier hominin capitates potentially provides further support for 

the hominine LCA lacking the “screw mechanism” of African apes, joining most other 

results presented here in suggesting a relatively generalized arboreal locomotor 

ancestry. 

 

 

Caveats 

Similarly incongruent evolutionary scenarios derived from the analysis of different 

carpal elements led Kivell and colleagues (2013) to conclude that the bones of the 
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carpus each have a degree of independence in following distinct evolutionary pathways 

(but see Griffin and Yapuncich, 2015). This would seem to comport with many other 

recent studies in supporting the characterization of hominoid postcranial evolution as a 

mosaic process, with features like those of extant taxa emerging independently in 

separate fossil lineages (Rae, 1999; Almecija et al., 2009; Kivell et al., 2011; Alba et al., 

2012; Schmid et al., 2013; Tallman et al., 2013; Morgan et al., 2015), their shared 

presence in extant taxa presumably having resulted from either later interbreeding 

among these lineages, or else due to many of these traits having been acquired yet 

again within ancestral lineages. However, while some degree of mosaicism is to be 

expected owing to the known vagaries of adaptive and non-adaptive evolution (e.g., 

Abrams, 2001), and there is a large body of evidence rejecting the parsimonious 

evolution of hominoid locomotor behaviors that might be suggested by a survey of the 

clade’s surviving lineages, a combination of confounds likely contributes to enhancing 

the appearance of this phenomenon, particularly as it relates to the appearance of 

adjacent, functionally integrated bones evolving independently of each other.  

The multivariate phylogenetic signal (Kmult) of the capitate, hamate, lunate, and 

triquetrum among sampled extant taxa are 0.59, 0.57, 0.69, and 0.59, respectively. 

When the fossil samples are considered, however, these values drop to 0.15, 0.26, 

0.41, and 0.37, respectively. The attenuation of each element’s phylogenetic signal 

(0.44, 0.31, 0.28, and 0.22, respectively), roughly corresponds with the number of each 

element comprising this study’s fossil sample (25, 18, 8, and 5, respectively) and the 

number of operational taxonomic units to which they belong (14, 11, 5, and 4, 

respectively). This result is congruent with the consistent role fossil discoveries have 
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played in disrupting conclusions derived from variance patterns among extant taxa, and 

suggests that inconsistencies between ancestral reconstructions based on different 

elements are partially explained by the differential influence of respective fossil 

samples. However, results of this study’s triquetrum analyses hint at the possibility of 

even greater levels of morphological convergence, as discussed above. This suggests 

that at least among hominoids, the low phylogenetic signal calculated in the combined 

capitate and hamate samples may partially reflect the high degree of mosaicism inferred 

in fossil hominoids, which in turn may related to the increased evolvability of the 

hominoid forelimb (Rolian et al., 2010; Rolian, 2016), perhaps in concert with, in the 

case of middle and late Miocene Eurasian hominoids, increased diversity of available 

ecological niches after migration out of Africa (e.g., Begun, 2013). 

However, because most phylogenetic comparative methods handle an individual 

fossil observation the same as a taxon centroid calculated from a large sample, much of 

the influence of a larger fossil sample on phylogenetic signal is a statistical 

phenomenon rather than a biological one, as it is impossible to know where the 

condition of each shape variable extracted from a fossil specimen would be positioned 

relative to the range of variation within the species it represents in the analysis. This 

problem may be further exacerbated among hominoids by what seems to be a real 

biological phenomenon, supported in this and the previous two chapters – 

morphological variability of the hominoid carpus drastically exceeds that of non-

hominoid anthropoids, not only between taxa but within them as well. Any given 

hominoid fossil specimen should therefore be expected to less accurately represent the 

central tendencies of its species’ morphology. Relatedly, the reader is cautioned 
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regarding the low sample sizes available for certain taxa of this study’s extant hominoid 

sample, particularly the bonobos, in which this problem is likely culpable for much of the 

morphological gulf between the Pan species seen in several analyses. 

Despite these limitations, as more fossil specimens are discovered (or made 

available for research), their phylogenetic affinities better characterized, and the range 

of morphological diversity at earlier stages of hominoid evolution more fully understood, 

techniques such as those used here are equipped to estimate which fossil taxa are 

more likely to represent the morphotypes ancestral to the various nested clades, 

particularly as they are improved upon to better account for intra-taxon variation and the 

number of individual observations contributing to the data associated with each tip of 

the phylogeny. 

 

 

Conclusions 

Results of this study provide further support for the frequency of parallelism in 

hominoid evolution, with specialized suspensory adaptation estimated to have been 

limited in the LCAs of the major hominoid clades. The LCAs of crown apes and great 

apes are instead reconstructed as more generalized arborealists; the prevalence of 

orthograde climbing in these ancestral apes is not specifically addressed, however, due 

to the complex and inconsistent correspondence of this behavior with carpal 

morphology. Therefore, while results are consistent with the positional repertoires of 

crown hominoids and hominids having resembled those of extant palmigrade monkeys 

or similarly reconstructed stem hominoids, as has been suggested (Lovejoy et al., 

2009a, b), it does not provide strong support for this hypothesis, as results are also 
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generally consistent with the supplementation of above-branch quadrupedalism with 

forelimb-dominated or antipronograde vertical climbing and clambering, as variously 

inferred for Nacholapithecus (Rose et al., 1996; Nakatsukasa et al., 1998; Ishida et al., 

1999, 2004; Dean and Begun, 2008; Nakatsukasa and Kunimatsu, 2009), 

Pierolapithecus (Almecija et al., 2009; Alba et al., 2010, but see Dean and Begun, 2008, 

2010) and Morotopithecus (Sanders and Bodenbender, 1994; Gebo et al., 1997; 

MacLatchy et al., 2000; MacLatchy, 2004), and which may characterize 

Rangwapithecus as well (see Chapter 3). 

The hominine and Pan-Homo LCAs are also estimated here to have been fairly 

generalized. Results of most analyses are consistent with a degree of terrestrialism, but 

only the lunate demonstrates patterns of variance most consistent with knuckle-walking 

having contributed to the ancestral repertoire, and the high phylogenetic structure of 

lunate variation among great apes attenuates its reliability in interpreting hominin 

functional affinities. Results of analyses of the other carpal elements and combinations 

thereof are most consistent with hominins having descended from a more generalized 

morphotype adapted for neither suspension nor terrestrial locomotion to a substantial 

degree. This study therefore joins other observations (e.g., Dainton and Macho, 1999; 

Thorpe and Crompton, 2006; Kivell and Schmitt, 2009; Lovejoy et al., 2009b; Sayers et 

al., 2012; Almecija et al., 2015; White et al., 2015) in questioning the utility of any extant 

ape species in modeling the morphology or locomotor repertoire of the Pan-Homo LCA, 

and finds parallelism, rather than homology, to better explain many of the behavioral 

similarities between extant African ape genera. 
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A. sediba is found to have diverged functionally from other hominins to some 

extent. While potentially comporting with previous detection of a suspensory signal in its 

more proximal brachial anatomy (Churchill et al., 2013; Rein et al., 2017), results of this 

study are equivocal regarding the behavioral implications of this morphology.  

Finally, the inconsistent functional signals among hominin carpal elements when 

compared to those of extant non-human anthropoids may be explained by a lack of 

phylogenetic lag in hominin carpal morphology, rendering known hominin specimens 

relatively uninformative in reconstructing the ancestral behavioral repertoire. 
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Supplementary material 

 
 
Fig. 4.28. Phylomorphospace representing the evolutionary history of anthropoid capitate morphology, based on phylogenetic PCA. The 
phylogeny is projected onto the first two phylogenetic principal components of all extant and fossil capitate shape variables, with ancestral states 
estimated via maximum likelihood. Pan-Homo and great ape LCAs are highlighted. See Table 4.5a for eigenvalues 
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Fig. 4.29. Phylomorphospace representing the evolutionary history of anthropoid hamate morphology, based on phylogenetic PCA. The phylogeny 
is projected onto the first two phylogenetic principal components of all extant and fossil hamate shape variables, with ancestral states estimated 
via maximum likelihood. Pan-Homo and great ape LCAs are highlighted. See Table 4.5b for eigenvalues 
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Fig. 4.30. Phylomorphospace representing the evolutionary history of anthropoid lunate morphology, based on phylogenetic PCA. The phylogeny 
is projected onto the first two phylogenetic principal components of all extant and fossil lunate shape variables, with ancestral states estimated via 
maximum likelihood. Pan-Homo and great ape LCAs are highlighted. See Table 4.5c for eigenvalues 
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Fig. 4.31. Phylomorphospace representing the evolutionary history of anthropoid triquetrum morphology, based on phylogenetic PCA. The 
phylogeny is projected onto the first two phylogenetic principal components of all extant and fossil lunate shape variables, with ancestral states 
estimated via maximum likelihood. Pan-Homo and great ape LCAs are highlighted. See Table 4.5d for eigenvalues 
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Table 4.12. DFA positional classification and posterior probabilities of fossil and human samples. See 
also Table 4.6, Table 4.8c, and Table 4.11b for model details. 

a Capitate DG KW PG S Max Class 

KNM-MV 4 0.06 0.25 0.68 0.01 0.68 PG 

KNM-CA 409 0.36 0.01 0.63 0.00 0.63 PG 

KNM-SO 31245 0.02 0.01 0.97 0.00 0.97 PG 

KNM-SO 31246 0.07 0.00 0.92 0.00 0.92 PG 

KNM-SO 1000 0.01 0.44 0.09 0.46 0.46 S 

KNM-SO 1001 0.00 0.09 0.12 0.79 0.79 S 

KNM-SO 1002 0.01 0.67 0.33 0.00 0.67 KW 

KPS III C26 0.58 0.00 0.42 0.00 0.58 DG 

KPS VIII C27 0.20 0.00 0.80 0.00 0.80 PG 

KNM-RU 2036M 0.37 0.00 0.61 0.02 0.61 PG 

GSP 17119 0.02 0.05 0.30 0.63 0.63 S 

KNM-WK 18365 0.25 0.00 0.75 0.00 0.75 PG 

Qafzeh 9 0.77 0.03 0.19 0.02 0.77 DG 

Kebara 2 0.67 0.02 0.31 0.00 0.67 DG 

Shanidar 4 0.00 1.00 0.00 0.00 1.00 KW 

Tabun 1 0.04 0.89 0.06 0.00 0.89 KW 

LB1-45 0.00 0.88 0.04 0.08 0.88 KW 

LB20 0.00 0.88 0.01 0.11 0.88 KW 

UW 101-1730 0.38 0.37 0.25 0.00 0.38 DG 

MH2 UW 88-105 0.38 0.26 0.35 0.01 0.38 DG 

MH2 UW 88-156 0.39 0.02 0.59 0.00 0.59 PG 

TM1526 0.04 0.56 0.18 0.22 0.56 KW 

AL 288-1w 0.14 0.78 0.08 0.00 0.78 KW 

AL 333-40 0.87 0.00 0.12 0.00 0.87 DG 

KNM-WT 22944H 0.10 0.00 0.90 0.00 0.90 PG 

Human mean 0.39 0.14 0.46 0.01 0.46 PG 

b Hamate DG KW PG S Max Class 

KPS III C12 0.02 0.77 0.07 0.14 0.77 KW 

KNM-RU 2036L 0.00 0.56 0.02 0.42 0.56 KW 

NG 940 0.07 0.82 0.07 0.03 0.82 KW 

YPM30452 0.05 0.04 0.31 0.60 0.60 S 

BH 36 0.07 0.01 0.26 0.65 0.65 S 

KNM-TH 28860N 0.13 0.46 0.27 0.14 0.46 KW 

Tianyuan 0.00 0.99 0.00 0.01 0.99 KW 

Qafzeh 9 0.03 0.64 0.17 0.16 0.64 KW 

Kebara 2 0.00 0.92 0.00 0.07 0.92 KW 

Shanidar 4 0.01 0.89 0.05 0.05 0.89 KW 

Regourdou 1 0.00 0.99 0.00 0.01 0.99 KW 

LB21+22 0.00 0.99 0.00 0.01 0.99 KW 

UW 101-1729 0.00 1.00 0.00 0.00 1.00 KW 

MH2 UW 88-106 0.00 0.99 0.00 0.00 0.99 KW 

MH2 UW 88-95 0.00 0.99 0.00 0.00 0.99 KW 

AL 333-50 0.00 0.88 0.02 0.09 0.88 KW 

KNM-WT 22944I 0.00 1.00 0.00 0.00 1.00 KW 

Human mean 0.04 0.79 0.09 0.09 0.79 KW 
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c Lunate DG KW PG S Max Class 

KPS III C22 0.21 0.04 0.00 0.74 0.74 S 

KNM-RU 2036P 0.34 0.00 0.00 0.65 0.65 S 

KNM-RU 15100B 0.00 0.00 0.00 0.99 0.99 S 

UW 101-1732 0.00 1.00 0.00 0.00 1.00 KW 

UW 101-418B 0.00 1.00 0.00 0.00 1.00 KW 

MH2 UW 88-159 0.58 0.32 0.01 0.10 0.58 DG 

KNM-WT 22944J 0.15 0.85 0.01 0.00 0.85 KW 

AL 444-3 0.00 1.00 0.00 0.00 1.00 KW 

Human mean 0.02 0.97 0.00 0.01 0.97 KW 

d Triquetrum DG KW PG S Max Class 

KPS III C38 0.00 1.00 0.00 0.00 1.00 KW 

KNM-RU 2036DI 0.00 1.00 0.00 0.00 1.00 KW 

KNM-RU 15100C 0.00 1.00 0.00 0.00 1.00 KW 

UW 101-1727 0.00 0.00 0.06 0.94 0.94 S 

MH2 UW 88-163 0.00 0.00 0.01 0.99 0.99 S 

Human mean 0.06 0.25 0.16 0.53 0.53 S 

e Combined function DG KW PG S Max Class 

KPS III 0.97 0.02 0.00 0.00 0.97 DG 

KNM-RU 2036 0.46 0.54 0.00 0.00 0.54 KW 

UW 101 0.00 0.96 0.03 0.01 0.96 KW 

MH2 UW 88 0.03 0.00 0.12 0.85 0.85 S 

Human mean 0.01 0.78 0.09 0.12 0.78 KW 

f CHL function DG KW PG S Max Class 

KPS III 0.73 0.00 0.01 0.26 0.73 DG 

KNM-RU 2036 0.75 0.00 0.01 0.24 0.75 DG 

UW 101 0.00 1.00 0.00 0.00 1.00 KW 

MH2 UW 88 0.68 0.18 0.07 0.07 0.68 DG 

KNM-WT 22944 0.01 0.98 0.01 0.00 0.98 KW 

Human mean 0.01 0.92 0.07 0.00 0.92 KW 
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Chapter 5 

Conclusions 

 

Summary of findings 

Results of Chapter 2 demonstrate that aspects of carpal morphology strongly and 

consistently covary with positional behavior across the anthropoid clade, and several 

potential cases of convergent adaptation are identified in association with each of 

several behavioral modes. Many of the potential adaptations identified in association 

with suspension, which is found to be the behavioral mode most strongly reflected in 

wrist morphology, function to increase mobility at the midcarpal and antebrachiocarpal 

joints while stabilizing them against a broader range of force vectors. The capitohamate 

joint of suspensors is also found to be reinforced against the non-stereotypical force 

vectors thought to characterize suspensory loading regimes. Additional suspensory 

features enhance flexor carpi ulnaris leverage and aid in the transmission of forces 

generated thereby. 

Digitigrady was less distinguishable than suspension from palmigrady, but 

several plausible adaptations were nevertheless identified. These traits aid stability of 

the midcarpal joint during loading at maximum extension, contribute to a distal mortise 

stabilizing the ulnar carpometacarpal joints, and facilitate load transmission across the 

ulnocarpal joint. The central column of the wrist is also found to be narrower in 

digitigrade taxa, perhaps related to the dominance of parasagittal movements in their 
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behavioral repertoires. Several features associated with knuckle-walking are also 

identified, most related to enhancing the transmission of axial compressive loading. 

Multivariate shape is also found to strongly covary with positional behavior, 

allowing extant anthropoids to be classified according to positional behavior with high 

accuracy, and for the relative contributions of different locomotor modes to their 

behavioral repertoires to be accurately estimated. 

Arboreal-only locomotor repertoires are found to have greater correspondence to 

wrist morphology than more complete characterizations of positional behavior, 

suggesting an outsized importance of arboreal behaviors on survivorship relative to the 

frequency of arboreal locomotion among terrestrial anthropoids. Climbing is found to be 

reflected differently in the wrists of apes and monkeys, consistent with the 

biomechanical dissimilarity of the behaviors between the groups, while leaping is found 

to have very little influence on wrist morphology. Variation of both locomotion and 

morphology are found to be far greater among hominoids than among other 

anthropoids.  

Chapter 3 documents a relatively high degree of morphological variance in 

association with locomotion among the analyzed sample of Tinderet early Miocene 

catarrhine capitates, indicative of a degree of functional diversity beyond what is 

generally recognized among early Miocene catarrhines. The sample is found to be 

taxonomically diverse as well, with as many as six species represented, although the 

taxonomic identity of most specimens cannot be determined with confidence due to the 

lack of postcrania associated with many of the species known from these sites.  
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Two of the seven specimens are inferred to have been significantly reliant on 

suspensory behaviors. The largest specimen of the Tinderet sample, KNM-SO 1002, is 

found to be uniquely great ape-like among capitates known from the early Miocene, 

adding to a growing body of evidence indicating the presence of a functionally-derived, 

mid-sized catarrhine at Songhor. The identity of this derived ape may be 

Rangwapithecus gordoni, to which this specimen is allocated, along with the suggestion 

that the presence of derived postcranial features is a better criterion for distinguishing 

this species from Proconsul africanus than is body size. 

Results presented in Chapter 4 provide further support for the frequency of 

parallelism in hominoid evolution, with specialized suspensory adaptation estimated to 

have been limited in the LCAs of the major hominoid clades. The LCAs of crown apes 

and great apes are instead reconstructed as above-branch quadrupeds, perhaps 

supplemented by vertical climbing and clambering. The hominine and Pan-Homo LCAs 

are also estimated to have been relatively generalized, adapted for neither suspension 

nor terrestrial locomotion to a substantial degree (but see below). These results suggest 

that extant apes are of dubious utility in modeling the morphology or locomotor 

repertoire of the Pan-Homo LCA. A. sediba is estimated to have diverged functionally 

from other hominins to some extent, but results are equivocal regarding the behavioral 

implications of this distinction. Finally, results of this study suggest that phylogenetic lag 

resulting in retention of morphology associated with the ancestral hominin positional 

repertoire in the analyzed hominin specimens is minimal. 
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Caveats and future directions 

As with the construction of any scientific model, compromises must be made, 

and subjective choices potentially affecting analytical results are myriad. Among those 

choices was which morphometrics to extract from each bone. In Chapter 2 I utilize a 

subset of those hypothesized to be related to function, but additional morphometrics 

were also extracted, as shown in the subsequent chapters. Additional traits also could 

have been measured. For example, I did not characterize the robusticity or orientation 

of the hamulus, concavity of the distal portion of the hamate’s triquetrum facet, or 

waisting of the capitate neck. These would have required bespoke quantification 

methods, as several other metrics did, but ultimately it was a matter of weighing the 

advantages of adding further to the already extremely time-consuming methods 

employed, and a line was drawn. Despite the partially arbitrary nature of choosing these 

variables, in Chapter 4 I nevertheless draw distinctions between the morphology of an 

element’s most diagnostic features versus its “overall shape”, with the latter referring to 

the complete set of variables I happened to extract from it. This is not uncommon, but 

demonstrates the point. 

In Chapter 2, I describe the interactions among body size, phylogeny, and 

locomotor behavior. To summarize, because these factors are not independent, but 

rather are in some cases highly correlated, accounting for phylogeny and body size has 

the effect in some cases of eliminating much of the very information being sought. It is 

hoped that any residual signal will be more robust as a result, less likely an illusory 

artifact of these common confounds, but other confounding factors remain to risk false 

positives, while the risk of false negatives has meanwhile increased. Also discussed in 
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Chapter 2 is the sometimes overly parsimonious outlook of phylogenetic regression 

methods. Applied to extant taxa, both the PGLS and PGLMM methods will, for example, 

tend to see similarity between Pongo and hylobatids as homologous, even when there 

is ample evidence that much of it is homoplastic.  

An additional caveat applies to the results of Chapters 3 and 4. While care was 

taken to limit the shape variables used to diagnose different locomotor behaviors to not 

only those most useful in distinguishing extant positional classes while accounting for 

the effects of phylogenetic and allometric autocorrelation, but also to those with 

plausible biomechanical roles in their facilitation, it has not been experimentally 

confirmed whether the condition of these shape variables in relevant taxa arose in 

adaptation to the locomotor behaviors with which they are here associated. As also 

discussed in Chapter 2, it is furthermore theoretically likely both that relatively subtle 

variations in the performance of a given positional behavior can modify its loading 

regime sufficiently to induce a divergence of adaptive optima between lineages, and 

that the independent emergence of a locomotor mode in separate lineages may, 

whether due to discrepancies of ancestral anatomy, developmental or genetic 

predisposition, unrelated aspects of the selective milieu, or other factors, yield wholly 

dissimilar morphological adaptations. The likelihood of the latter eventuality may be 

further increased in anatomical complexes such as the wrist in which wholly dissimilar 

architectures could produce similarly sufficient responses to selection associated with 

the behavior. And indeed, a selective pressure being overcome in separate lineages via 

modification of alternative bones participating in the same functional complex could 

manifest as incongruence of evolutionary pathway between carpal elements. The 
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phylogenetic toolkit as presently constituted has limited utility in identifying such cases, 

or in properly considering them for the purpose of estimating ancestral function.  

While experimental methods of modeling skeletal biomechanics have progressed 

(see Orr, 2016; Vereecke and Wunderlich, 2016), the biomechanics of neither 

anthropoid locomotor behaviors nor anthropoid wrists are sufficiently understood to 

allow controlled experiments to test the effects of subtle variations in carpal morphology. 

The features identified as plausible locomotor adaptations in Chapter 2 may therefore 

be more usefully tested in the near term by sampling from a wider range of taxa. 

Colobine suspensors like Pygathrix may be especially helpful in providing an additional 

opportunity to investigate morphological evolution in association with autapomorphic 

acquisition of suspensory behavior. Early steps toward an expedition to study this genus 

have been taken.  

Even if the variables identified as diagnostic of extant positional behavior are all 

supported by such future studies, it is possible that hominin carpals evolved quickly in 

the early stages of the lineage as constraints associated with locomotion were lifted and 

new pressures associated with manipulative abilities intensified. Such a scenario would 

tend to obscure any ancestral functional signal, making resemblance between the 

unique morphology Pleistocene or later hominins and extant positional groups to be of 

dubious functional import.  

Various other caveats are discussed in Chapter 4, relating to the effect of fossil 

samples of different size or composition on a data set’s phylogenetic signal, the 

estimated “polarity” of continuous traits, and decreased congruence among analyzed 

elements in the pathways by which they are estimated to have evolved. Additional work 
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is planned to evaluate this confound, as well as the robusticity of reported results, by 

equalizing fossil samples among the analyzed elements, removing fossils thought to be 

less relevant to the human lineage, or removing extant taxa that may be less 

representative of normal variation patterns (e.g., hylobatids), and comparing results. As 

ever, additional fossil specimens would also be very helpful in improving the reliability of 

these results. Estimation of an ancestral state is particularly benefited from being 

closely bracketed by known morphology; among known specimens currently 

unavailable for study, Ardipithecus and Pierolapithecus should be especially informative 

in estimating the likely morphology of the Pan-Homo and hominine LCAs. 

Finally, as noted at the outset, the a priori positional classes assigned to the 

sampled extant taxa are crude characterizations, with significant overlap among them. 

This is particularly true in the context of Chapter 4; despite its relative infrequency 

among adult individuals, all knuckle-walkers are also capable suspensors. Various 

efforts were made in the preparation of Chapter 2 to detect similarities between the 

knuckle-walking and suspensory classes that might be attributable to shared 

suspensory adaptations. These attempts were unsuccessful. Such adaptations likely 

exist, but phylogenetic regression is not meant to be able to distinguish adaptive from 

non-adaptive evolution within a single clade, and the inclusion of Ateles was not 

sufficient to overcome the overwhelming phylogenetic signal. The traits used in Chapter 

4 to detect suspension may therefore be inappropriate in addressing the evolution of 

this behavior in the hominine clade. If, on the other hand, the traits found to be 

morphologically convergent in Asian apes and Ateles adequately represent consistent 

ways in which suspension tends to be reflected in carpal morphology, the lack of these 
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features in extant African apes may relate to adaptive compromises associated with 

knuckle-walking. If so, the estimated lack of substantial adaptation to either behavior in 

the Pan-Homo and hominine LCAs may reasonably suggest a more generalized 

locomotor ancestry for hominins. Nevertheless, the estimated lack of suspension in 

these ancestors should perhaps have a smaller effect on the reader’s Bayesian priors 

than the similarly generalized estimates of more ancestral nodes. 

In addition to the projects mentioned above, I plan to apply the data set collected 

for this project and resulting insights in addressing various other questions related to the 

evolution of catarrhine locomotion. For example, I have plans to analyze various other 

undescribed fossil carpals, including the large sample known from Maboko, to evaluate 

the evolution of terrestriality in cercopithecoids, and to revisit the kinematic and 

morphological distinctions between the African ape genera. 
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