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ABSTRACT

In this research we design connected cruise control algorithms based on vehicle-to-vehicle

communication in order to improve both traffic efficiency and the performance of indi-

vidual vehicles. We first model human car-following behavior using the optimal velocity

model with driver reaction time delay and analyze the relationship between human param-

eters and traffic flow behavior. Then based on the human car-following model we provide

a baseline design for connected automated vehicles. We propose an online estimation al-

gorithm that is able to identify both human feedback gains and reaction time delay in real

time using motion information received through wireless vehicle-to-vehicle (V2V) com-

munication. For connected automated vehicle design in a V2V-sparse environment, we

find that augmenting a human car-following model with acceleration feedback improves

the head-to-tail string stability of the connected vehicle system, and acceleration signals

from vehicles farther downstream should be used with larger delay time. For connected au-

tomated vehicle design in a V2V-rich environment, an optimal CCC controller is designed

using linear quadratic regulation while considering driver reaction time delay. We show

that when a CCC vehicle receives motion information from n vehicles ahead, the optimal

feedback gains decrease for signals from vehicles farther away, and the CCC controller

degrades gracefully when the communication links fail. This CCC controller is analyti-

cal, requires little computational load, and is able to provide certain levels of robustness

against heterogeneous human parameters in the connected vehicle system. We also con-

sider stochastic human parameters in the optimal CCC design when the mean dynamics of

the connected vehicle system is represented with distributed time delay. We find that the

optimal CCC controller maintains the same structure and performs well when tested with

xiii



experimental data. In the last part of this research, we include stochastic disturbances from

the traffic flow and V2V communication in optimal CCC design, and introduce the proba-

bilistic model checking method so that the CCC vehicle can perform well in more realistic

traffic scenarios.
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CHAPTER 1

Introduction

About one hundred years ago, the invention of the automobile and the construction of the
highway system fundamentally changed road transportation in America. Today, the con-
cept of connected automated vehicles (CAV) poses similar, if not more profound, impacts
on how we travel. Automated driving is not merely replacing human eyes with cameras and
lidar/radars. It liberates road transportation from unpredictable human mistakes and be-
haviors that cause many traffic problems; microscopically driving safety issues and macro-
scopically stop-and-go traffic jams. Moreover, with wireless vehicle-to-vehicle(V2V) and
vehicle-to-infrastructure (V2I) communication, an automated vehicle is able to obtain traf-
fic information beyond its line of sight, and navigate the traffic in a manner that benefits
both its passengers and the traffic flow.

In this research, I pose and provide initial answers to some questions related to:
(1) how human driving behaviors may lead to certain unwanted traffic phenomena,
(2) how an automated car should behave when sharing the road with human-driven cars,
(3) how an automated car in such a mixed-driving scenario can benefit from the traffic

information received through wireless connectivity.
This dissertation contains some initial answers from the perspective of longitudinal

motion control, and the main ideas can be summarized as follows:
(1) Many unwanted traffic phenomena are related to speed and distance fluctuations

propagating through the traffic flow as cars follow each other in each lane. We describe
human car-following behaviors using the optimal velocity model (OVM) and show that
most human-driven vehicles are unable to suppress speed fluctuations due to their large
reaction time delay. As such fluctuations increase, stop-and-go traffic jams may form, and
rear-end collisions may occur.

(2) To suppress speed fluctuations, a connected automated vehicle is equipped with
vehicle-to-vehicle (V2V) communication and receives motion information from several
cars ahead. Such motion information allows the vehicle to identify the preceding vehicles’
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behavior and apply a connected cruise controller (CCC) that utilizes the information re-
ceived via V2V communication. This approach has significant potential for performance
improvement, allows an intuitive understanding of the controller design, and (for better
user acceptance) maintains a similar behavior as human-driven vehicles.

(3) When a large number of V2V signals are available, an optimal CCC design can be
used to tune the feedback gains systematically. We formulate this as a linear quadratic (LQ)
optimization problem, so that the optimal controller allows heterogeneous and stochastic
behaviors among preceding vehicles, while the computational load is kept low.

(4) More robust CCC controllers can be designed using probabilistic model checking,
where CCC controllers from the LQ setup may serve as baselines for this dynamic feedback
design.

This research is among the first steps to design connected automated vehicle systems
from the viewpoint of a more efficient transportation system. It exploits V2V communi-
cation which makes available traffic information beyond the line of sight to compensate
for the limited perception ability of on-board sensors. Such clairvoyance is not influenced
by camera/lidar/radar failures, and the resulting connected automated vehicle becomes a
smart agent in the traffic system ”nudging” the traffic flow away from undesired behaviors.
More importantly, such benefits come from connectivity but not enforced cooperation, i.e.,
the connected automated vehicles may not share common control objectives. This differ-
s from many cooperative adaptive cruise control (CACC) research where a pre-organized
platoon is established. As the automated vehicle is able to exchange information with n-
earby vehicles in an ad-hoc manner and co-exist with human-driven vehicles, it can be
readily implemented in today’s human-dominated traffic network and provide a path to the
automation-dominated future.

1.1 Background

Research on automated driving dates back to the early 1990s. Facing the increasing demand
to reduce traffic congestion, the California PATH program started to research automated ve-
hicle and highway systems both experimentally and theoretically [8]. By 1997, there had
been several public demonstrations on automated longitudinal control in close-formation
platoons using radars and wireless LAN communication systems. Automatic lateral con-
trol was also experimentally tested using magnetic guidance and cameras. Even though
the PATH automated highway project was terminated and an automated highway system
did not materialize, the concepts formulated by PATH became the cornerstone for current
automated driving research.
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Meanwhile, industry is gradually adding partially automated features to passenger cars,
such as adaptive cruise control (ACC) and lane-keeping systems. While ACC is often ad-
vertised as enhancing driver comfort, it can have significant benefits in terms of traffic flow
behavior via better longitudinal control of equipped vehicles. Since human drivers have
relatively large reaction times and limited perception abilities, they often perform poorly
as longitudinal controllers. ACC may improve longitudinal control due to faster and more
accurate sensing abilities and more sophisticated control strategies [9, 10]. However, ACC
cannot overcome the limitation that only motion information of the vehicle immediately
ahead can be obtained through range sensors.

Even as silicon valley and the automotive industry are trying to advance ACC and lane-
keeping systems to a higher-level of driving autonomy, their perception systems mostly rely
on on-board sensors like cameras, lidars, and radars. Thus the performance of these auto-
mated driving systems are severely limited by the available on-board sensors. For example,
Nissan automated vehicles reported dozens of disengagements when their perception sys-
tem failed to keep track of a vehicle entering/leaving its line of sight [11], and automated
vehicles from Delphi were forced to disengage when the cameras failed to identify lane
markings and traffic lights [12]. Even with a perfect on-board perception system, an au-
tomated vehicle is only able to obtain motion information of cars within its line of sight.
Thus, without other information sources, an automated car is still limited when it comes
to fuel economy, active safety, and passenger comfort. Also, due to the high cost in early
implementation, the penetration rate of automated cars may be quite low in the near fu-
ture. To produce observable benefits on traffic flow, automated cars have to obtain traffic
information which on-board-sensors cannot provide.

In recent years wireless communication technology has seen tremendous improve-
ments. In particular, the Federal Communications Commission allocated 75 MHz of band-
width in the 5.9GHz spectrum to applications in intelligent transportation systems [13].
Later, this wireless communication channel was named dedicated short range communica-
tions (DSRC) and has been furnished with a full set of protocols and standards from IEEE
and SAE [14], [15], [16]. DSRC enables 10-Hz ad-hoc communication between vehicles
and the infrastructure, and among vehicles. Experimental research studies have been con-
ducted where DSRC is used to monitor macroscopic traffic flow. As the cost of DSRC
devices continues to decrease, new cars will be mandated to have DSRC by 2020 in the
US. Thus, it is desired to incorporate information obtained via DSRC into motion control
of individual vehicles.

While many intelligent transportation research studies focus on vehicle-to-infrastructure
(V2I) communication based on DSRC [17], [18], this dissertation only focuses on vehicle-
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to-vehicle (V2V) communication. In such a case, vehicles may be controlled while taking
into account traffic flow conditions over a longer spatial horizon. This idea first took form
in the PATH platooning project, where a fixed communication structure was assigned to a
group of ACC vehicles, so that a platoon could run with relatively small headway, while
velocity fluctuations were suppressed. Since then, a class of connectivity-based longitudi-
nal controllers have been proposed under the name of cooperative adaptive cruise control
(CACC) for various application scenarios [19–22], especially for designated-lane highway
driving [23–25]. Some researchers also relaxed the rigid requirements on the communica-
tion topology for CACC, so that it may deal with more realistic multi-vehicle formations
[26–28]. However, such cooperative systems often require a platoon of fully automated
cars, while driving automation in its early implementation often will have to deal with a
mixed traffic situation of human-driven and automated vehicles.

Therefore, in this dissertation, we propose a class of connected cruise control algorithm-
s that are based on human car-following behavior and allow ad-hoc V2V communication
with multiple vehicles. For each scenario under discussion, the controller is found to be
computationally efficient while allowing certain levels of heterogeneity and stochasticity in
the behavior of the preceding vehicles, and is able to maintain steady-state behavior sim-
ilar to the nearby human drivers. For a more robust and dynamic response to the traffic,
the framework is extended to design a connected cruise controller with dynamic feedback,
where the CCC controller maintains its connectivity topology while the computational load
varies.

1.2 Contributions

In Chapter 2, we describe human car-following behavior using the optimal velocity model
with reaction time delay and investigate which human parameters may induce undesired
traffic behaviors. Then by looking into the influence of delay time on the car-following
model, we establish a baseline design for connected cruise control.

In Appendix In Chapter 3, based on experimental data, we identify the time-varying
human parameters and reaction time using the sweeping least square method. This method
can be implemented online and has reasonable computational load.

In Chapter 4, we propose and develop an acceleration-based CCC design in a V2V-
sparse environment, where the CCC vehicle is able to suppress vehicle fluctuations propa-
gating downstream.

In Chapter 5, we propose and develop an optimal CCC design based on headway and
velocity in a V2V-rich environment. The optimal control problem is formulated as an LQ
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problem, where the dynamics of preceding vehicles have nominal parameters and delay
time. The resultant CCC controller has an analytic form and thus requires little computa-
tional effort. It allows certain levels of inaccuracy and heterogeneity in the model parame-
ters of the preceding human-driven vehicles.

In Chapter 6, we consider stochastic variations in the parameters for the preceding
vehicles. The LQ CCC design is extended based on the mean dynamics, and the benefits
of the CCC controller remains.

In Chapter 7, we use probabilistic model checking to obtain an optimal CCC controller
with performance guarantee. While the feedback gains in the controller require more nu-
merical computation, the structure of the controller is maintained, and may facilitate further
investigation regarding the influence of the CCC vehicle on the traffic system.

1.3 Publications

Results in this dissertation can be found in the following publications:

Journal Publications

[10] J. I. Ge and G. Orosz. Optimal connected vehicle design considering stochastic hu-
man car-following behavior. IEEE Transactions on Intelligent Transportation Sys-
tems, 2017. (in preperation)

[9] J. I. Ge and G. Orosz. Optimal control of connected vehicle systems with communi-
cation delay and driver reaction time. IEEE Transactions on Intelligent Transporta-
tion Systems, 2016. (published online)

[8] J. I. Ge and G. Orosz. Dynamics of connected vehicle systems with delayed acceler-
ation feedback. Transportation Research Part C, 46:46-64, 2014.

Book Chapters

[7] J. I. Ge, G. Orosz, D. Hajdu, T. Insperger, and J. Moehlis. To delay or not to de-
lay stability of connected cruise control. Time Delay Systems - Theory, Numerics,
Applications and Experiments, Advances in Delays and Dynamics, T. Insperger, T.
Ersal, and G. Orosz, Eds., vol. 7, pp. 263-282. Springer, 2017.

Conference Proceedings
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[6] J. I. Ge and G. Orosz, Connected cruise control among human-driven vehicles: experiment-
based parameter estimation and optimization, Conference on Decision and control,
IEEE, 2017. (submitted)

[5] J. I. Ge and G. Orosz and R. M. Murray, Connected Cruise Control Design Using
Probabilistic Model Checking, Proceedings of the American Control Conference,
IEEE, 2017. (accepted)

[4] J. I. Ge and G. Orosz. Estimation of feedback gains and delays in connected vehicle
systems. Proceedings of the American Control Conference, pp. 6000-6005, IEEE,
2016.

[3] J. I. Ge and G. Orosz. Optimal control of connected vehicle systems with delay.
Proceedings of the 12th IFAC Workshop on Time Delay Systems, pp. 468-473, IFAC,
2015.

[2] J. I. Ge and G. Orosz. Optimal control of connected vehicle systems. Proceedings of
the 53rd Conference on Decision and Control, pp. 4107-4112, IEEE, 2014.

[1] J. I. Ge, S. S. Avedisov, and G. Orosz. Stability of connected vehicle platoons with
delayed acceleration feedback. Proceedings of the ASME Dynamic Systems and
Control Conference, Paper no. DSCC2013-4040, pp. V002T30A006, ASME, 2013.
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CHAPTER 2

Human-driven and automated car-following
behavior

We consider the early implementation of automated driving when a connected automated
vehicle needs to share the road with human-driven vehicles. While most vehicles on the
road are not automated, some of them are equipped with wireless V2V communication
devices such as DSRC, and the connected automated vehicle receives motion informa-
tion from the DSRC-equipped vehicles. As the automated vehicle travels with the largely
human-driven traffic flow, its behavior should bear a certain resemblance to a human-driven
vehicle. For example, the automated car should follow a human-driven car with a similar
distance as an average human driver would do. If it keeps a smaller distance, its passengers
may feel uncomfortable. Moreover, the human driver ahead may not prefer being tailgated
even if the automated car can brake faster. If the automated car keeps that distance larger
than average, other human-driven vehicles may decide to cut in, which creates disturbances
that may lead to safety hazards and negatively impact the traffic flow.

Since car-following behavior among all driving behaviors has the most recognized in-
fluence on traffic flow, we first model human car-following behavior, and then based on the
human model propose a car-following model that can be used for automated cars.

2.1 Human car-following mechanism

In this section we model the car-following behavior of human drivers in non-emergency
situations. For simplicity we only consider longitudinal motion control of vehicles in a
single lane; see Fig. 2.1(a). Many human car-following models exist in the literature, as
summarized in [29, 30]. These include continuous-time ones like the intelligent driver
model (IDM) [31], the optimal velocity model (OVM) [32], the GM model [33, 34], the
Pipes model [35], and the discrete-time ones like the Krauss model [36] and the Wiedemann
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Figure 2.1: (a): Cars following each other on a single lane. (b): The range policy (2.3,
2.4) used in the literature, where vmax is the maximum velocity allowed for the vehicle, hst

is the smallest headway before the vehicle intends to stop, and hgo is the largest headway
after which the vehicle intends to maintain vmax. (c): The range policy (2.3, 2.5) used in
this paper. (d): The range policy (2.8) implicitly contained in the IDM.

model [37]. Over the past decades many variations of these models have been developed
in the efforts to reproduce a wide range of traffic phenomena by computer simulation [38,
39]. While models using a large number of parameters may be considered to be of higher
fidelity, difficulties in parameter estimation through data fitting can negatively affect their
accuracy [40, 41].

Thus we consider a class of continuous-time car-following models with relatively few
parameters. These models (e.g., OVM, IDM, and GM model) can be written in the form

ḣi = vi+1 − vi ,
v̇i = F

(
hi, ḣi, vi

)
,

(2.1)

to describe the car-following behavior of vehicle i. Here the dot stands for differentiation
with respect to time t, hi denotes the headway, i.e., the bumper-to-bumper distance between
vehicle i and its predecessor, and vi denotes the velocity of vehicle i; see Fig. 2.1(a).

Here we provide some details about the OVM and the IDM that are used very frequently
in the literature. In case of the OVM [42], the vehicle acceleration is determined by the
difference between the headway-dependent desired velocity and the actual velocity and by
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the velocity difference between the vehicle and its predecessor, that is,

F (h, ḣ, v) = α
(
V (h)− v

)
+ βḣ , (2.2)

where the gains α and β are used by the human drivers to correct velocity errors. The
desired velocity is determined by the headway using the continuous range policy

V (h) =


0 if h ≤ hst ,

fv(h) if hst < h < hgo ,

vmax if h ≥ hgo ,

(2.3)

i.e., the desired velocity is zero for small headways (h ≤ hst) and equal to the maximum
speed vmax for large headways (h ≥ hgo). Between these, the desired velocity is given by
fv(h) which increases with the headway monotonically. There are many choices for the
specific function fv(h), but the qualitative dynamics remain similar if the above character-
istics are kept [4, 42]. In [25] the function

fv(h) = vmax
h− hst

hgo − hst

(2.4)

was used, which has constant slope κ = vmax/(hgo−hst), as shown in Fig. 2.1(b). However,
the range policy (2.3, 2.4) is non-smooth at h = hst and h = hgo and may generate a ”jerky
ride”. Thus, here we use

fv(h) =
vmax

2

(
1− cos

(
π
h− hst

hgo − hst

))
(2.5)

as shown in Fig. 2.1(c). The range policy (2.3, 2.5) is smooth but has a changing slope.
We assume that human-driven vehicles try to maintain the equilibrium

hi(t) ≡ h∗ , vi(t) ≡ v∗ , (2.6)

given by F (h∗, 0, v∗) = 0, cf. (2.1), and the aggregate of such equilibria corresponds to the
uniform traffic flow. Using (2.2) we find the equilibrium speed-headway relation of OVM
given by its range policy function (2.3), i.e., v∗ = V (h∗).

On the other hand, the IDM [31] can be written in the form

F (h, ḣ, v) = a

(
1−

( v

vmax

)4

−
(hst + Tv − ḣv/

√
4ab

h

)2
)
, (2.7)
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where a is the maximum desired acceleration, T is a time constant, and b is the comfortable
acceleration. While (2.7) does not contain a range policy function explicitly, the equilibri-
um speed-headway relation

h∗ = V −1(v∗) =
hst + Tv∗√

1− (v∗/vmax)4
, (2.8)

depicted in Fig. 2.1(d), describes qualitatively the same driving behavior as in Fig. 2.1(b,c).
Notice that for h∗ < hst, we have v∗ < 0 in the IDM, which can be eliminated by requiring
vehicle velocities to be non-negative.

As the parameters α and β in the OVM have clear physical meaning, we choose the
OVM (2.2) as the representation of human car-following model and a basis for automated
car-following design. We note that both the OVM (2.1, 2.2) and the IDM (2.1, 2.7) can be
linearized into the same form [42]. Thus, at the linear level, the choice of OVM over IDM
does not create structural changes to the automated vehicle design. Moreover, most results
in this dissertation can be generalized for differentiable F (h, ḣ, v).

2.2 Optimal velocity model with driver reaction time

One indispensable feature missing from the OVM (2.1, 2.2) is the human reaction time
delay, which may include the lag time in the powertrain. Previous analysis has shown that
the influence of time delay on traffic flow behavior cannot be ignored [43]. Thus, we add
driver reaction time to the OVM:

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = α

(
V (hi(t− τ))− vi(t− τ)

)
+ β

(
vi+1(t− τ)− vi(t− τ)

)
,

(2.9)

where τ is the human reaction time delay.
By assuming the system in the vicinity of the equilibrium (2.6) and defining the head-

way and velocity perturbations

h̃i(t) = hi(t)− h∗, ṽi(t) = vi(t)− v∗ , (2.10)

we linearize (2.9) to obtain the linear delay differential equation (DDE)

˙̃hi(t) = ṽi+1(t)− ṽi(t) ,
˙̃vi(t) = α

(
κ h̃i(t− τ)− ṽi(t− τ)

)
+ β

(
ṽi+1(t− τ)− ṽi(t− τ)

)
.

(2.11)
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Here κ = V ′(h∗) is the derivative of the range policy (2.3) at the equilibrium, and by abuse
of terminology we denote the time headway th = 1/f ′v(h∗) = 1/κ for hst ≤ h∗ ≤ hgo.

Controllers with a small time headway produce more aggressive car-following behav-
iors, which makes it more difficult to maintain uniform traffic flow [44]. In the extreme
case of human car-following with zero time headway (constant headway distance for any
velocity), the uniform traffic flow cannot be maintained in a group of such vehicles.

2.2.1 Linear stability analysis in human car-following model

Here we discuss the influence of human driving behavior (2.9) on the stability of uniform
traffic flow, in particular the influence of driver reaction time τ . Based on highway traffic
data [42], we set nominal values vmax = 30 [m/s], hst = 5 [m], hgo = 35 [m] in the range
policy (2.3, 2.5). We evaluate the linear stability of (2.11) at the operating point v∗ = 15

[m/s], h∗ = 20 [m], where the range policy has the largest derivative κ = π/2 [1/s] and
correspondingly the smallest time headway th ≈ 0.64 [s].

Since the uniform traffic flow corresponds to the trivial equilibrium (2.6) of the lin-
earized car-following model (2.11), we can discuss plant stability and string stability in
the vicinity of the equilibrium. A human-driven vehicle i is plant stable if the speed per-
turbation ṽi converges to zero with ”zero input” ṽi+1(t) ≡ 0. Plant stability describes the
speed-regulation performance of individual vehicles regardless of the traffic. On the other
hand, string stability, as a special case of bounded-input-bounded-output stability, is related
to speed variations propagating along the vehicle chain. More specifically, string stability
requires that velocity fluctuations are attenuated as they propagate upstream [44]. There-
fore, to discuss the linear stability of uniform traffic flow with human-driven vehicles, we
only need to discuss the plant stability of each vehicle, and the string stability in pairs of
successive vehicles.

We consider the velocity perturbation ṽi of a human-driven vehicle as the output and
the velocity perturbation ṽi+1 of its preceding vehicle as the input. Taking the Laplace
transform of the system (2.11) with zero initial conditions, we obtain the transfer function

Γi(s) =
Ṽi(s)

Ṽi+1(s)
=
F (s)

G(s)
, (2.12)

where Ṽi(s) and Ṽi+1(s) denote the Laplace transform of ṽi(t) and ṽi+1(t), respectively,
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Figure 2.2: (a - d): Stability region of human-driven vehicles in (β, α)-plane for different τ
values as indicated. The black curves are the plant stability boundaries. The dark gray areas
are string stable. The color represents the highest frequency of string stability changes.

and

F (s) = βs+ ακ ,

G(s) = s2 eτs + (α + β)s+ ακ . (2.13)

Plant stability is determined by the denominator G(s) of the transfer function (2.12)
and it is influenced only by the driver parameters α, β, and τ . The human-driven vehicle
is linearly plant stable if and only if all solutions of the characteristic equation G(s) = 0

(also referred to as the poles) are located in the left half complex plane. By substituting
s = iΩ, Ω ≥ 0 into the characteristic equation, we obtain the plant stability boundaries.
When Ω = 0, we have

α = 0 , (2.14)
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while for Ω > 0 we obtain the plant stability boundary in parametric form:

α =
Ω2

κ
cos(Ωτ) ,

β =
Ω

κ

(
κ sin(Ωτ)−Ω cos(Ωτ)

)
. (2.15)

Note that the plant stability boundary (2.14) describes the stability loss corresponding to
a real pole crossing the imaginary axis, while (2.15) describes a complex conjugate pair
of poles crossing the imaginary axis. When τ = 0 [s], (2.14) remains the same while
(2.15) simplifies to β = −α, as shown by the thick black line in Fig. 2.2(a). One may use
the Routh-Hurwitz criteria to show that plant stability is achieved above the lines in the
top right corner. For different values of τ > 0 the curves (2.14) and (2.15) are shown as
thick black curves in the (β, α)-plane in Fig. 2.2(b,c,d). One may apply Stépán’s formulae
[45] and show that stability is maintained inside the lobe-shaped domain. As the delay is
increased the plant stable domain shrinks, and the size of the domain tends to zero as the
delay approaches infinity. However, when the driver reaction time τ = 0.3 [s], the human
car-following model with realistic gains α, β ∈ (0, 2) is still plant stable, indicating that it
is relatively easy for human drivers to ensure plant stability.

Since we can write perturbation signals using Fourier components using the superposi-
tion rule in linear systems, string stability is equivalent to that sinusoidal signals are atten-
uated between the preceding and the human-driven vehicles for all excitation frequencies.
Therefore, at the linear level the necessary and sufficient condition for string stability is
given by

|Γi( iω)|2 − 1 < 0 , ∀ω > 0 , (2.16)

where Γi( iω) is as defined by (2.12). This condition may be rewritten as ω2P (ω) > 0

where
P (ω) = ω2 + 2αβ + α2 − 2(α + β)ω sin(ωτ)− 2ακ cos(ωτ) . (2.17)

The stability boundaries can be identified corresponding to the minima of P becoming
negative at ωcr > 0 that is defined by

P (ωcr) = 0 ,

∂P

∂ω
(ωcr) = 0 ,

(2.18)

while satisfying ∂2P
∂ω2 (ωcr) > 0. Solving this for α and β one may obtain the string stability
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boundaries parameterized by ωcr as

α = a±
√
a2 + b ,

β =
ωcr + ακτ sin(ωcrτ)

sin(ωcrτ) + ωcrτ cos(ωcrτ)
− α ,

(2.19)

where

a =
ωcr(κτ − 1) + κ sin(ωcrτ) cos(ωcrτ)

(2κτ − 1) sin(ωcrτ)− ωcrτ cos(ωcrτ)
,

b =
ω2

cr(sin(ωcrτ)− ωcrτ cos(ωcrτ))

(2κτ − 1) sin(ωcrτ)− ωcrτ cos(ωcrτ)
.

(2.20)

For ωcr = 0, the equalities |Γ(0)| = 1 and ∂|Γ|
∂ω

(0) = 0 always hold. Thus, for string
stability we need ∂2|Γ|

∂ω2 (0) < 0 which is equivalent to P (0) = α(α+ 2β− 2κ) > 0. That is,
one of the boundaries is equivalent to the plant stability boundary (2.14) while the other is
given by

α = 2(κ− β) . (2.21)

Notice that this zero-frequency boundary does not depend on the driver reaction time τ .
In the special case of τ = 0, only the sting stability boundaries (2.14) and (2.21) appear

as shown by the straight lines bounding the gray string stable domain in Fig. 2.2(a). The
coloring outside the string stable area corresponds to the solution of P (ω) = ω2 + α(α +

2β − 2κ) = 0 for the frequency ω. The coloring indicates that string stability is lost for
low frequencies. For different values of τ > 0 the stability boundaries (2.14, 2.19, 2.20,
2.21) enclose the grey-shaded string stability domain in the (β, α)-plane as depicted in
Fig. 2.2(b,c,d). The coloring outside the string stable area corresponds to the solution of
P (ω) = 0 for the frequency ω (cf. (2.17)). When there exist multiple solutions we use the
largest ω value. The coloring indicates that when leaving the string stable area toward the
left, string stability is still lost at low frequencies. On the other hand, leaving the area to
the right, high-frequency string instability occurs.

One may observe that as the delay τ increases the string stable domain shrinks and for
τ = 0.3 [s] it almost disappears. In fact, there exist a critical value of the delay such that
for τ > τcr there exist no gain combinations that can ensure string stability. To calculate
the critical delay one may use the L’Hospital rule to show that for ωcr → 0 formulae (2.19,

14



2.20) yield the points

(α+, β+) =

(
2κτ − 1

τ(κτ − 1)
,

2(κτ)2 − 4κτ + 1

2τ(κτ − 1)

)
,

(α−, β−) =

(
0,

1

2τ

)
.

(2.22)

which are located along the stability boundary around the yellow shading in Fig. 2.2(a).
These points move closer to each other when the delay increases and coincide when the
delay takes the value

τcr =
1

2κ
=
th
2
≈ 0.325 [s]. (2.23)

As human reaction time is generally larger than 0.3 [s], the optimal velocity model with
time delay determines that human drivers mostly are unable to remain string stable. How-
ever, this problem can be solved by utilizing driving automation.

2.3 Two possibilities in eliminating delay time

Given the faster and more accurate sensing abilities of automated driving systems, an auto-
mated vehicle is able to eliminate delay time from the car-following model (2.9) in several
different ways. In this section, we introduce each modification that may lead to a new car-
following model for an automated car, and by comparing their string stability performance
choose the most desirable one.

To start with, an automated vehicle may have the same car-following model as a human-
driven vehicle (2.9), but with smaller delay time τ . However, an automated vehicle may
use range sensors to measure the headway and relative velocity between the two cars in
time, but instantaneously measure its own velocity vi by on-board sensors. Assume the
delay time to obtain those signals is σ, then the automated car-following model becomes

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = α

(
V (hi(t− σ))− vi(t)

)
+ β

(
vi+1(t− σ)− vi(t− σ)

)
.

(2.24)

This model still satisfies the equilibrium (2.6), but in the right hand side a mismatch in time
is created by comparing the delayed value of desired velocity with the instantaneous value
of the actual speed.

To further eliminate delays, one may consider obtaining the headway and the leading
car’s velocity via V2V communication while measuring its own velocity on board. In this
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case, the automated car-following model becomes

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = α

(
V (hi(t− σ))− vi(t)

)
+ β

(
vi+1(t− σ)− vi(t)

)
,

(2.25)

where both feedback terms in the second equation compare delayed values to instantaneous
values. The model (2.25) also satisfies the equilibrium (2.6).

One may argue that when calculating the headway from vehicle positions, the GPS
position of the automated vehicle itself does not have to be delayed. However, in this case
the desired equilibrium (2.6) will vary depending on the delay time σ of the preceding car’s
GPS signal. In particular, the equilibrium headway becomes V −1(v∗) + v∗σ that may lead
to safety hazards.

To investigate the advantages and disadvantages of the three models (2.9),(2.24) and
(2.25) in terms of their linear stability around the equilibrium (2.6), we carry out the same
string stability analysis as in Section 2.2.1, and plot stability charts for different values of
the communication delay σ.

2.3.1 Linear stability analysis for one delay mismatch

Linearizing the model (2.24) about the equilibrium (2.6) yields

˙̃hi(t) = ṽi+1(t)− ṽi(t) ,
˙̃vi(t) = α

(
κh̃i(t− σ)− ṽi(t)

)
+ β

(
ṽi+1(t− σ)− ṽi(t− σ)

)
.

(2.26)

Taking the Laplace transform with zero initial conditions we obtain the transfer function

Γ(s) =
Ṽ (s)

ṼL(s)
=

βs+ ακ

esσ(s2 + αs) + βs+ ακ
. (2.27)

The corresponding plant stability boundaries are given by (2.14) and

α =
Ω2 cos(Ωσ)

κ− Ω sin(Ωσ)
,

β = Ω sin(Ωσ)− α cos(Ωσ) ,

(2.28)

that are shown as thick black curves in the (β, α)-plane in Fig. 2.3. Applying Stépán’s
formulae [45] shows that the system is plant stable when parameters are chosen from the
region above the black curves. Again, increasing the delay leads to smaller plant stable
domains.

16



β

α ω(a)

β
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α ω(c)

σ = 0.15 [s] σ = 0.2 [s] σ = 0.4 [s]

Figure 2.3: (a - c): Stability region of human-driven vehicles in (β, α)-plane for different σ
values as indicated. The black curves are the plant stability boundaries. The dark gray areas
are string stable. The color represents the highest frequency of string stability changes.

In this case the string stability condition can be rewritten as ωQ(ω) > 0 where

Q(ω) = ω3 + α2ω − 2(α2κ+ βω2) sin(ωσ) + 2(αβ − ακ)ω cos(ωσ) . (2.29)

For ωcr > 0 the string stability boundaries can be obtained by replacing P with Q in (2.18)
which yields

3∑
p=0

apα
p = 0 ,

β =
ω3

cr + α2ωcr − 2ακ
(
α sin(ωcrσ) + ωcr cos(ωcrσ)

)
2ωcr

(
ωcr sin(ωcrσ)− α cos(ωcrσ)

) ,

(2.30)

where

a0 = ω4
cr cos(ωcrσ)

(
− sin(ωcrσ) + ωcrσ cos(ωcrσ)

)
,

a1 = ω2
cr cos(ωcrσ)

(
ω2

crσ sin(ωcrσ)− 2κ sin(ωcrσ) cos(ωcrσ) + 2ωcr cos(ωcrσ)− 2κωcrσ
)
,

a2 = ωcr cos(ωcrσ)
(
ωcr sin(ωcrσ)− 4κ sin2(ωcrσ) + ω2

crσ cos(ωcrσ)
)
,

a3 = cos(ωcrσ)
(
ω2

crσ sin(ωcrσ) + 2κ sin(ωcrσ) cos(ωcrσ)− 2κωcrσ
)
.

(2.31)

For ωcr = 0, the inequality ∂2|Γ|
∂ω2 (0) < 0 is equivalent to ∂Q

∂ω
(0) = α

(
(1− 2κσ)α+ 2β−

2κ
)
> 0, that yields the boundaries (2.14) and

α =
2(κ− β)

1− 2κσ
. (2.32)

That is, in this case, the gradient of the zero-frequency boundary is influenced by the delay
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α ω(b)

β

α ω(c)

σ = 0.15 [s] σ = 0.2 [s] σ = 0.4 [s]

Figure 2.4: (a - c): Stability region of human-driven vehicles in (β, α)-plane for different σ
values as indicated. The black curves are the plant stability boundaries. The dark gray areas
are string stable. The color represents the highest frequency of string stability changes.

as shown by the boundary on the left of the gray string stable region in Fig. 2.2(a) and
Fig. 2.3. Here the coloring corresponds to the solution of Q(ω) = 0 for the frequency ω
(cf. 2.29). Again, on the left string stability is lost at low frequencies while on the right
high-frequency string instability occurs. The string stable domain is not closed from above
but it still shrinks as the delay increases and it disappears when the delay exceeds

σcr ≈
0.785

κ
= 0.785 th , (2.33)

but this value cannot be calculated analytically.
When comparing Fig. 2.2 to Fig. 2.3 one may notice a trade-off. While the critical delay

is significantly larger in the latter case, it also requires larger gains to make the systems
string stable as the delay is increased. This may be difficult to achieve in practice due to
the saturation of the actuators.

2.3.2 Linear stability analysis for two delay mismatches

Finally, the linearization of (2.25) about the equilibrium (2.6) takes the form

˙̃hi(t) = ṽi+1(t)− ṽi(t) ,
˙̃vi(t) = α

(
κh̃i(t− σ)− ṽi(t)

)
+ β

(
ṽi+1(t− σ)− ṽi(t)

)
,

(2.34)

and the corresponding transfer function is given by

Γ(s) =
Ṽ (s)

ṼL(s)
=

βs+ ακ

esσ
(
s2 + (α + β)s

)
+ ακ

. (2.35)
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Then the plant stability boundaries are given by (2.14) and

α =
Ω2

κ cos(Ωσ)
,

β = Ω tan(Ωσ)− α ,
(2.36)

that are displayed as thick black curves in Fig. 2.4. According to Stépán’s formulae [45]
the system is plant stable above the curves and increasing the delay still deteriorates plant
stability (though this effect is not so pronounced when comparing to the other two cases
discussed above).

Again the string stability condition can be written as ωR(ω) > 0 where

R(ω) = ω3 + α2ω + 2αβω − 2ακ(α + β) sin(ωσ)− 2ακω cos(ωσ) , (2.37)

and substituting P with R in (2.18) results in the string stability boundaries

α = â±
√
â2 + b̂ ,

β =
ω3

cr + α2ωcr − 2ακ
(
α sin(ωcrσ) + ωcr cos(ωcrσ)

)
2α
(
κ sin(ωcrσ)− ωcr

) ,
(2.38)

where

â =
−ω2

crσ sin(ωcrσ)− κ sin(ωcrσ) cos(ωcrσ) + κωcrσ

sin(ωcrσ)− ωcrσ cos(ωcrσ)
,

b̂ =
ω2

cr

(
3κ sin(ωcrσ)− κωcrσ cos(ωcrσ)− 2ωcr

)
κ
(

sin(ωcrσ)− ωcrσ cos(ωcrσ)
) .

(2.39)

However, we remark that these do not give stability boundaries in the physically realistic
parameter ranges.

For ωcr = 0, we obtain ∂R
∂ω

(0) = α
(
(1 − 2κσ)α + 2(1 − κσ)β − 2κ

)
> 0, that yields

the boundaries (2.14) and

α =
2
(
κ− (1− κσ)β

)
1− 2κσ

. (2.40)

That is, both the gradient and the position of the zero-frequency boundary is influenced
by the delay which can be observed when looking at the left boundary in Fig. 2.2(a) and
Fig. 2.3. As shown by the coloring, only low-frequency string instability occurs and the
gray string stable domain is open from above and from the right. By investigating when the
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β

α

Figure 2.5: The blue, red, and green areas correspond to the string stability region for car-
following model (2.9), (2.24), and (2.25), respectively. The driver reaction time is τ = 0.3
[s] for (2.9) and σ = 0.3 [s] for (2.24) and (2.25). In all three cases, the range policy
parameters are hst = 5 [m], hgo = 35 [m], vmax = 30 [m/s], and the range policy slope is
κ = π/2 [1/s].

gradient of (2.40) becomes zero one can calculate the critical delay

σcr =
1

κ
= th , (2.41)

above which the string stable domain disappears.
Again comparing Fig. 2.2, Fig. 2.3, and Fig. 2.4 one may notice that the critical delay

increases but larger gains are required to make the system string stable which may not be
possible due to the limitation of the actuators.

2.4 Car-following model for automated vehicles

Here we summarize the comparisons of the three car-following model candidates (2.9),
(2.24), and (2.25), and explain why we prefer to select the exact human car-following
model (2.9) in automated vehicle design.

To evaluate whether a car-following model can be used as a baseline in automated
vehicle design, a main criterion is how the string stable region changes with delay time.
By simply comparing the size of string stable areas (dark grey) in Fig. 2.2, Fig. 2.3, and
Fig. 2.4, one may conclude that string stable regions in Fig. 2.4 occupy the largest areas
and shrink slowest (cf. the critical delay (2.23), (2.33), (2.41)), and thus choose the car-
following model with two delay mismatches (2.25) as the baseline design for an automated
vehicle. However, the left string stability boundary (2.21) from the original car-following
model is not influenced by delay time τ , i.e., small (α, β) values maintain string stability
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Figure 2.6: The velocity, headway, and position of a string of 50 vehicles with car-following
model (2.3, 2.5, 2.9) under velocity disturbances in the traffic flow, where α = 0.5 [1/s],
β = 1.4 [1/s], hst = 5 [m], hgo = 35 [m], vmax = 30 [m/s], τ = 0.3 [s]. Each colored curve
corresponds to a vehicle trajectory.
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as delay time increases. While the boundaries (2.32) and (2.40) from the modified models
shift to the right as the delay time σ increases, which means that small (α, β) values are
unable to maintain string stability. It is important to keep small (α, β) values string stable,
for the engine/brake torque limits (α, β) to the lower left corner of the first quadrant. In
Fig. 2.5 the string stable region for (2.9), (2.24) and (2.25) are shaded blue, red, and green,
respectively. The delay time is τ = 0.3 [s] for (2.9) and σ = 0.3 [s] for (2.24) and (2.25).
While (2.25) has the largest stable area (green), it requires β > 3 [1/s], which will easily
saturate the engine and brakes on average passenger cars. Similarly, even as the string stable
area (red) from (2.24) is larger than the stable area (blue) from (2.9), the string stability is
gained by increasing α and β, which might not be achievable on cars. In this sense, (2.9)
is more suitable for implementation than (2.24) and (2.25).

To further demonstrate the benefits of the car-following model without delay mismatch
(2.9) over the ones with mismatches (2.24) and (2.25), we simulate 50 cars in a string using
each model and plot their velocity, headway, and position responses to speed fluctuations in
the traffic flow. Fig. 2.6 shows the 50-car simulation using (2.3, 2.5, 2.9) with human gains
α = 0.5 [1/s], β = 1.4 [1/s], which is marked by the black cross in Fig. 2.5. (2.9) is string
stable as shown in Fig. 2.5; cf. (2.21). Therefore, the headway and velocity fluctuations
decrease as they propagate along the vehicle chain; see Fig. 2.6(a,b), and we see the traffic
flow becoming smoother and no traffic jams are forming in Fig. 2.6(c).

Fig. 2.7 shows the 50-car simulation using (2.3, 2.5, 2.24) with the same human pa-
rameters as in Fig. 2.6. Note that in this case the car-following model is no longer string
stable; cf. (2.32). Thus, in Fig. 2.7(a,b) the velocity and headway fluctuations are ampli-
fied through vehicles, and in Fig. 2.6(c) some ”wrinkles” are forming, indicating possible
stop-and-go traffic jams downstream.

Fig. 2.8 shows the 50-car simulation using (2.3, 2.5, 2.25) with the same human param-
eters as in Fig. 2.6. This car-following model is severely string unstable due to the delay
mismatches; cf. (2.40). Therefore the velocity and headway fluctuations in Fig. 2.8(a,b)
are significantly amplified along the vehicle chain, and the velocity of vehicles at the end of
this chain varies between vmax = 30 [m/s] and vmin = 0 [m/s], indicating the formation of
stop-and-go traffic jams. In Fig. 2.8(c) we can also see how the relatively mild disturbances
to the head vehicle’s motion lead to stop-and-go traffic jams, as the ”wrinkles” grow deep-
er and propagate backwards along the traffic flow. This comparison of the macroscopic
car-following behaviors shows that the car-following model without delay mismatch (2.9)
should be favored over the ones with delay mismatch (2.24, 2.25) when designing automat-
ed vehicles.
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Figure 2.7: The velocity, headway, and position of a string of 50 vehicles with car-following
model (2.3, 2.5, 2.24) under velocity disturbances in the traffic flow. The simulation pa-
rameters and notations are the same as in Fig. 2.6.
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Figure 2.8: The velocity, headway, and position of a string of 50 vehicles with car-following
model (2.3, 2.5, 2.25) under velocity disturbances in the traffic flow. The simulation pa-
rameters and notations are the same as in Fig. 2.6.
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Thus, based on (2.9), the baseline car-following model for automated vehicle design is:

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = α

(
V (hi(t− τ))− vi(t− τ)

)
+ β

(
vi+1(t− τ)− vi(t− τ)

)
,

(2.42)

where τ is the driver reaction time of the automated vehicle. In order to improve the string
stability of (2.42) for τ > 0.3 [s], in the following chapters, we will design connected cruise
controllers based on V2V communication.
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CHAPTER 3

Parameter identification in human car-following
behavior

This chapter presents how to estimate parameters in the human car-following model (2.9)
in real time as a connected automated vehicle receives headway and velocity data from
preceding vehicles. The estimated parameters will then be used to design connected cruise
controller for the automated vehicle in the forthcoming chapters.

Most existing connected automated vehicle design assume that the controller has a pri-
ori knowledge on the dynamics of the communicating vehicles [46], [47], [48]. While
such an assumption may hold for CACC research where a platoon only contains automat-
ed vehicles [19], this assumption is invalid when the connected vehicle system contains
human-driven vehicles, or when vehicles are allowed to join and leave the system. On the
other hand, while the equilibrium (h∗, v∗) can be deduced from aggregated traffic data, no
existing research has investigated the distribution and variation of α, β, κ, τ for individual
drivers. Thus, it is necessary to consider online identification of car-following dynamics for
preceding vehicles [49]. Although we assume that all non-CCC vehicles are human-driven
for simplicity, the identification algorithms is able to deal with automated vehicles, as the
latter is described by the same car-following model but with a smaller reaction time.

Since the driver reaction time has significant influence on the car-following dynamics
(cf. Fig. 2.2), it is necessary to obtain both the human feedback gains α, β, range policy
slope κ and the reaction time delay τ . Online parameter identification for problems without
time delay has been well developed over the years [50]. While there also exist some results
concerning parameter estimation in time delay systems [51], [52], estimating the delay time
and feedback gains simultaneously is still challenging, as the convergence conditions are
generally stringent [53], [54]. In Appendix B, an algorithm is proposed that requires a
similar excitation condition as in non-delayed estimation problems and is able to converge
simultaneously in both feedback gains and delay time with satisfactory speed. However,
that estimator results in a system with state-dependent delay, and only local convergence

26
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ℓ ℓ ℓ ℓ ℓh1 hi

Figure 3.1: A string of n vehicles with a CCC vehicle at the tail receiving signals from
human-driven vehicles ahead via wireless V2V communication. The red arrows denote in-
formation flow. The velocity of vehicle i is denoted by vi. The bumper-to-bumper distance
between vehicle i and vehicle i+ 1 is called the headway and denoted as hi. The length of
every vehicle is assumed to be l.

can be established. Thus, it may only be used to identify time-invariant parameters, and
thus it is only applicable when identifying the parameters of automated vehicles.

Therefore, a connected automated vehicle needs a new online estimation algorithm to
identify the car-following dynamics of human-driven vehicles from which it receives mo-
tion information. We propose a sweeping least squares method to simultaneously identify
the feedback gains α, β, range policy slope κ, and driver reaction time τ in (2.11), based
on the headway and velocity data collected via GPS and DSRC.

3.1 The sweeping least squares method

We consider the configuration in Fig. 3.1 where a group of vehicles travel on a single lane.
We assume that vehicle 1 receives the motion information of two consecutive vehicles
ahead through DSRC communication. By using signals from vehicles i and i + 1, vehicle
1 is able to identify the dynamics of vehicle i and thus uses motion information of vehicle
i for its longitudinal control. In this way, vehicle 1 can include feedback terms on the
headway and velocity signals from multiple vehicles ahead, which we refer as connected
cruise control.

The car-following dynamics of human-driven vehicle i can be described by (2.9) with
range policy function Vi(hi) = κihi, which is recalled here

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = αi

(
κihi(t− τi)− vi(t− τi)

)
+ βi

(
vi+1(t− τi)− vi(t− τi)

)
,

(3.1)

by emphasizing the heterogeneity of drivers as the parameters αi, βi, τi and the range policy
function Vi(h) differ for each i. For simplicity we assume hst,i = 0 [m] and h < hgo,i, so
that this car-following model is truly linear. However, the least square method will remain
valid without this assumption.
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In order to identify the gains αi, βi, the range policy slope κi, and the reaction time τi,
we assume that the GPS and speed data from vehicles i and i + 1 are available via DSRC.
We discretize the second equation in (3.1) using the explicit Euler method with time step
∆t:

vi[k + 1]− vi[k]

∆t
= αi

(
κihi[k −m]− vi[k −m]

)
+ βi

(
vi+1[k −m]− vi[k −m]

)
.

(3.2)

where m = round(τi/∆t). Here ∆t = 0.1 [s] as the communication frequency of DSRC
is 10 Hz.

We considerN data points over a timespan ofN∆t and rewrite the unknown parameters
αi, βi, κi in (3.2) as

a = −αi − βi, b = αiκi, c = βi . (3.3)

We consider the possible range of driver reaction time τi ∈ [τmin, τmax], and sample it such
that τi = m∆t. Then for each m, the least square estimation yieldsa(m)

b(m)

c(m)

 = (ATA)−1ATB(m), (3.4)

where

A =


vi[1] hi[1] vi+1[1]

...
...

...
vi[N ] hi[N ] vi+1[N ]

 , B(m) =
1

∆t


vi[m+ 2]− vi[m+ 1]

...
vi[m+N + 1]− vi[m+N ]

 , (3.5)

and the corresponding fitting error is

R(m) = A

a(m)

b(m)

c(m)

−B(m) . (3.6)

Therefore, we obtain the estimated human reaction time as τ̃i = m̃∆t, where

m̃ = arg min||R(m)||2 . (3.7)
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Correspondingly the estimated human feedback gains are

α̃i = −a(m̃)− c(m̃) ,

β̃i = c(m̃) ,

κ̃i = b(m̃)/α̃i .

(3.8)

Given reasonable N , each least square calculation (3.4, 3.5) exhibits a small compu-
tational load. Thus, the estimation algorithm (3.4, 3.5, 3.6, 3.7) can be implemented in
real-time.

3.2 Data collection for algorithm validation

In order to identity the gains αi, βi, the range policy slope κi, and the reaction time τi in
the optimal velocity model (3.1), we designed an experiment where a string of four human-
driven vehicles run consecutively on a single-lane road; see Fig. 3.2. Each vehicle was
equipped with a Commsignia on-board unit that provides GPS data and V2V communi-
cation based on DSRC. We record the vehicles’ GPS coordinates (latitude φ, longitude λ,
elevation r) and speed v every 0.1 [s]. Then the Haversine formula [55]

dij = 2

(
R +

ri + rj
2

)
arcsin

√
sin2

(φi − φj
2

)
+ cosφi cosφj sin2

(λi − λj
2

)
(3.9)

is used to calculate the great-circle distance dij between two GPS points (φi, λi, ri) and
(φj, λj, rj). Here R = 6371000 [m] is the nominal radius of the earth.

Thus, the headway for vehicle i is

hi = di(i+1) − l , (3.10)

where l is the vehicle length. The headway and velocity profiles during one of the test
runs are shown in Fig. 3.3. In Fig. 3.3(b) we can see that the velocity v4 of the head vehicle
(magenta curve) is almost constant before decreasing at t ≈ 125 [s], while the velocities of
following vehicles oscillate before 125 [s] and they also exhibit more severe deceleration
(v3 is the black curve, v2 is the red curve, v1 is the blue curve). This shows that human
drivers amplify the velocity fluctuations propagating along the chain. Such amplifications
may not only lead to stop-and-go traffic jams, but can also result in rear-end crashes in
heavy traffic.
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Figure 3.2: The experimental setup: a string of 4 vehicles on a single-lane road where all
vehicles are equipped with GPS and DSRC devices. The test route is a 3-mile section of
Mast Road near Dexter, MI.
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Figure 3.3: Headway and velocity profiles of the 4-vehicle string during one test run, where
the black, red, and blue curves correspond to the headway and velocity of vehicles 3, 2, 1,
respectively. The magenta curve in (b) is the velocity of the head vehicle 4.
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Figure 3.4: (a): Headway of vehicle 3 during one test run. (b): Velocity of vehicles 2 (black
curve) and 3 (red curve) during one test run.

3.3 Variations of estimated driver parameters

The estimation algorithm (3.4, 3.5, 3.6, 3.7) produces the estimation α̃i, β̃i, κ̃i, τ̃i for each
data segment with size N . For example, at time stamp t0 = k0∆t an estimation is obtained
using the motion information vi[k], hi[k], and vi+1[k] for k ∈ {k0−N, . . . , k0− 1}. As the
car receives new motion information and the window shifts forward in time, the estimated
values of α̃i, β̃i, κ̃i, and τ̃i change. Thus, the estimated parameters will be time-varying.

As an example, we estimate the driver parameters α3, β3, κ3, τ3 for vehicle 3 using
h3, v3, v4. The headway h3 is shown in Fig. 3.4(a), and the velocities v3 and v4 are shown
in Fig. 3.4(b). We consider data length N = 100 and human reaction time 0 ≤ τ ≤
4 [s], that is m ∈ {0, . . . , 40}. The corresponding estimation starts at t = 15 [s], as
shown in Fig. 3.5. As the data window moves forward in time, the estimated delay time τ̃
varies between τmax = 2 [s] and τmin = 0.2 [s], and remains around 1 [s]. The estimated
feedback gains α̃ and β̃ are also time-varying. While they are significantly smaller than
values previously assumed (α ≈ 0.6 [1/s], β ≈ 0.9 [1/s]) based on macroscopic data [1],
they remain positive for most of the time. Since the algorithm for κ̃i involves division (cf.
(3.8)), we present κ̃i after filtering the noise using a third-order Savitzky-Golay filter with
window size N∆t/2 = 5 [s]; see Fig. 3.5(d).

In Fig. 3.5, the human reaction time, feedback gains, and range policy slope exhibits
stochastic variations. In the simplified case, a connected vehicle design can use their mean
values, but it is desired to examine their distribution over a larger data set.
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Figure 3.5: Estimated driver parameters of vehicle 3 starting from t = 15 [s] in a test run.
The related headway and velocity information is shown in Fig. 3.4. (a): The time profile
of estimated delay time τ̃3 with data window size N = 100, quantization step ∆t = 0.1
[s], and the range of possible delay τ ∈ [0.2, 2] [s]. (b,c): The time profile of estimated
feedback gains α̃3, β̃3. (d): The time profile of estimated range policy slope κ̃3. It is filtered
by a third-order Savitzky-Golay filter with window size 5 [s]. The dashed black lines are
the mean values.
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Figure 3.6: (a, b) Histogram of estimated driver reaction time for vehicles 2 and 3, respec-
tively.

3.4 Distributions of estimated driver parameters

As we did four test runs on Mast Road and accumulated over 10000 estimates for every
driver parameter in vehicles 2, 3, and 4, we are interested in the distribution of those pa-
rameters and the difference between the human drivers. In particular, we investigate the
distribution of driver parameters for vehicles 2 and 3.

In Fig. 3.6(a,b) we show the histogram of estimated driver reaction time τ̃2 and τ̃3,
respectively. Since it is infeasible to have driver reaction time smaller than 0.2 [s] in a
human-driven vehicle, and there are few cases when the estimated delay is larger than 2

[s], we only consider the window τ ∈ [0.2, 2] [s]. It seems that a Gamma distribution is
a suitable description for the reaction time. The mean and variance of the driver reaction
time for car 2 is (1.16, 0.19) [s], while for car 3 we have (0.88, 0.12) [s].

It is noted that the driver for vehicle 2 has two years of driving experience while the
driver for vehicle 3 has been driving for more than ten years. While a much larger sample is
needed to establish the relation between driving proficiency and car-following parameters,
the comparison between Fig. 3.6(a) and Fig. 3.6(b) provides some intuition on the variation
between different drivers. Note that the experienced driver has smaller and more consistent
reaction time, which may lead to a more reliable response to the traffic environment. How-
ever, the values of mean reaction time are not significantly different for the two drivers,
which may be exploited in connected vehicle design.

In Fig. 3.7 we show the histograms of human feedback gains α̃i, β̃i and range policy
slope κ̃i for vehicle 2 (panels (a,c,e)) and vehicle 3 (panels (b,d,f)). In each panel the his-
togram can be approximated by a Gaussian distribution with different mean and variance.
By comparing Fig. 3.7(a,c,e) and Fig. 3.7(b,d,f) we can see that, while there exist some d-
ifferences between the histograms, the human feedback gains α̃i, β̃i and range policy slope
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Figure 3.7: (a,c,e): Histogram of human feedback gains α̃2, β̃2 and range policy slope κ̃2

for vehicle 2. (b,d,f): Histogram of human feedback gains α̃3, β̃3 and range policy slope κ̃3

for vehicle 3.
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κ̃i vary in the same range for the two drivers. Thus, it is feasible to use a nominal α̃, β̃, κ̃
for both drivers in connected vehicle design.

3.5 Conclusion

In this chapter we designed an online algorithm for an automated vehicle to identify the
dynamics of preceding vehicles via DSRC. This algorithm is able to obtain estimated pa-
rameters in real time, and is able to cope with time-varying human parameters. Both char-
acteristics are crucial for application in connected vehicle system design.

From the four-car experiment we see that human parameters are time-varying, and ap-
pear to follow certain distributions. While the parameters vary between different drivers,
their mean values can be considered as similar. Thus nominal values can be assumed when
designing connected cruise control.
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CHAPTER 4

Design of connected cruise control in a
V2V-sparse environment

We consider connected automated vehicle design when there are only a few DSRC-equipped
vehicles in the traffic flow. In order to have better longitudinal control than with the tradi-
tional adaptive cruise controller, the connected cruise controller has to take full advantage
of the few motion signals it receives. In previous research [43, 46, 48, 56] headway and ve-
locity information has been included in the connected cruise controller, but acceleration is
seldom used since it requires taking derivatives of (noisy) velocity signals generated by the
sensors. On the other hand, it has been shown that acceleration feedback can be effective in
other applications involving human reaction time, e.g., human balancing [57]. Also, human
drivers often use acceleration signals provided by the taillights, but they cannot determine
the exact deceleration value, and can only observe the taillight of the vehicle immediately
ahead. Using accurate acceleration information from multiple vehicles ahead may enable
the host vehicle to better respond to traffic conditions.

In this chapter, we consider an acceleration-based CCC design, where the CCC con-
troller receives acceleration information broadcasted by other vehicles and augments the
human control commands based on the local headway and velocity information. We pro-
pose a control design where both the acceleration feedback gain and delay time are tuned
as design parameters. We show that this design is robust against variations in human driver
gains and reaction time, and we derive the ranges of feasible acceleration gains and de-
lays that ensure overall string stability for the connected vehicle system. We note that this
acceleration-based CCC design still applies for a connected and fully automated vehicle,
where the local headway and velocity information will be monitored by sensors instead of
human drivers.

The layout of this chapter is the following. In Section 4.1, we introduce the CCC con-
troller with acceleration feedback. This model allows us to exploit the connectivity when
only a few vehicles are providing their motion information through V2V communication.
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1 2 n + 1 n +m n+m+ 1... ...

v1 v2 vn+1 vn+m vn+m+1

Figure 4.1: A heterogeneous string of n + m + 1 vehicles with n + m non-CCC vehicles
and a CCC vehicle at the tail.

In Section 4.2, we linearize the system about the uniform flow equilibrium and analyze
the head-to-tail string stability for different communication structures. The linear stability
results are summarized using stability charts and the results are verified at the nonlinear
level using numerical simulations. We conclude our results in Section 4.7.

4.1 Connected car-following models with acceleration feed-
back

We consider a string of n+m+ 1 vehicles traveling on a single lane as shown in Fig. 4.1.
The preceding n + m vehicles are not equipped with CCC and are assumed to be human-
driven. The tail vehicle (the last vehicle in the string) implements acceleration-based CCC
using acceleration signals received through V2V communication from n preceding vehi-
cles. The car-following dynamics of the CCC vehicle is modeled by

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) = α
(
V (h1(t− τ))− v1(t− τ)

)
+ β

(
v2(t− τ)− v1(t− τ)

)
+

n+1∑
k=2

γk v̇k(t− σk) ,

(4.1)

where τ represents the driver reaction time. The gains and the delays for the acceleration
signals are denoted by γk and σk, k = 2, . . . , n + 1. Note that σk stands for the sum
of communication delay and the delay in the controller when CCC is used to actuate the
vehicle. Even though wireless V2V communication can be considered to be instantaneous,
communication delay of magnitude 0.1 – 0.4 [s] is reported due to the intermittencies and
packet drops [58], that shall be incorporated in the σk-s.

For simplicity, we consider that all human-driven vehicles are identical. Thus (4.1) and
(2.9) contain the same range policy V (h), headway gain α, relative velocity gain β, and
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driver reaction time τ . To evaluate the robustness of our acceleration-based CCC design
against uncertainties in driver parameters, we will investigate the dynamics for different
values of α, β, and τ . On the other hand, the acceleration gains γk and delays σk will be
used as design parameters. Indeed, these delays have minimal values as explained above,
but we will show that they may be increased intentionally in order to obtain desired perfor-
mance.

The longitudinal stability of a connected vehicle system also includes plant stability and
string stability. The plant stability of the CCC vehicle is defined as for the human-driven
vehicles: suppose that the vehicles whose signals are used by the CCC vehicle are driven at
the same constant velocity, then the CCC vehicle is plant stable if its velocity approaches
this constant velocity. Consequently, a connected vehicle system is said to be plant stable,
if all vehicles approach the velocity of the head vehicle (the first vehicle in a string) when
it is driven at a constant velocity.

However, string stability in a connected vehicle system cannot be discussed in a sim-
ilar manner as in human-driven vehicle systems. A human-driven vehicle only reacts to
the motion of the vehicle immediately ahead and a human-driven vehicle system can be
decomposed into pairs of successive vehicles, while the control law of a CCC vehicle de-
pends on several preceding vehicles in the system and the pair-wise decomposition is no
longer valid. Moreover, many vehicles in the string can be purely human-driven, and their
string stability cannot be ensured. Thus, the string stability of a heterogeneous system con-
taining CCC and human-driven vehicles cannot be simplified to the string stability of pairs
of successive vehicles. Here, we define the head-to-tail string stability and compare the
velocity fluctuations of the head vehicle and the tail vehicle (that is assumed to be a CCC
vehicle without loss of generality). This way, all the influences on the tail vehicle’s motion
are considered and we are able to compare the string stability of connected vehicle systems
with different structures of connectivity that may include multiple CCC vehicles. Notice
that this definition allows some following vehicles to amplify the velocity fluctuations of
the leading vehicle, but fluctuations are attenuated when they reach the tail. In the remain-
ing chapters of this dissertation, by abuse of terminology, we will refer to the head-to-tail
string stability of a CCC vehicle as the string stability of a CCC vehicle.
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4.2 Head-to-tail string stability for connected vehicle con-
figurations

In this section, we focus on the dynamics of the connected vehicle system (2.9, 4.1) in the
vicinity of an equilibrium that is achieved when all vehicles travel with the same constant
velocity and maintain constant headways. While the equilibrium velocity v∗ is determined
by the head vehicle, the equilibrium headway h∗i is obtained for each vehicle using the
range policy v∗ = Vi(h

∗
i ). Since the range policies are assumed to be identical, we consider

the uniform flow equilibrium (2.6) and the headway and velocity perturbations (2.10) for
i = 1, . . . , n+m+ 1 and obtain the linearized dynamics of the CCC vehicle

˙̃h1(t) = ṽ2(t)− ṽ1(t) ,

˙̃v1(t) = α
(
κh̃1(t− τ)− ṽ1(t− τ)

)
+ β ˙̃h1(t− τ) +

n+1∑
k=2

γk ˙̃vk(t− σk) , (4.2)

while the linearized dynamics for human-driven vehicles i = 2, . . . , n + m + 1 are given
by (2.11).

We consider the velocity perturbation ṽn+m+1 of the head vehicle as the input and the
velocity perturbation ṽ1 of the tail vehicle as the output. Taking the Laplace transform
of the system (4.2, 2.11) with zero initial conditions, and eliminating the velocities of the
other vehicles and the headways, we obtain the head-to-tail transfer function

Γ(s) =
Ṽ1(s)

Ṽn+m+1(s)
=

(
F (s)

G(s)

)n+m(
1 +

n+1∑
k=2

Fk(s) (G(s))k−2

(F (s))k−1

)
. (4.3)

Here Ṽ1(s) and Ṽn+m+1(s) denote the Laplace transform of ṽ1(t) and ṽn+m+1(t), respec-
tively, and we have

F (s) = βs+ ακ ,

Fk(s) = γks
2 e(τ−σk)s , (4.4)

G(s) = s2 eτs + (α + β)s+ ακ .

We remark that without V2V communication (γk = 0 ⇒ Fk(s) = 0, k = 2, . . . , n + 1),
the second term in (4.3) disappears and the transfer function degrades to (F (s)/G(s))n+m,
representing a string of human-driven vehicles.

Plant stability is determined by the denominator Gn+m(s) of the transfer function (4.3),
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that is, the acceleration feedback does not influence the plant stability inherited from the
human driving model, and the plant stability of the connected vehicle system is also given
by (2.15). In most cases, human car-following behavior is plant stable, and we can focus on
ensuring head-to-tail string stability. In the following sections, we will depict this boundary
using a circled curve when applicable.

At the linear level the necessary and sufficient condition for head-to-tail string stability
is given by

P (ω) = |Γ( iω)|2 − 1 < 0 , ∀ω > 0 , (4.5)

where Γ( iω) is as defined by (4.3, 4.4). Since string stability is violated when the maximum
of P (ω) is larger than 0, the stability boundary is given by the equations

P (ωcr) = 0 ,

∂P (ωcr)

∂ω
= 0 , (4.6)

subject to
∂2P (ωcr)

∂ω2
< 0, where ωcr indicates the location of the maximum of P (ω). Note

that P (ω) also depends on the system parameters α, β, τ, γk, σk, k = 2, . . . , n+1, but they
are not spelled out in (4.5, 4.6) for the sake of simplicity. To generate string stability bound-
aries in the (γk, α)-plane, we fix the other parameters and solve (4.6) for (γk(ω

cr), α(ωcr)).
Since it is not possible to solve (4.6) analytically, we use the continuation package DDE-
BIFTOOL [59] to obtain numerical solutions while varying the critical frequency ωcr. In
fact, we search for the equilibria of the mock differential equation

γ̇k = P (α, γk;ω
cr) ,

α̇ =
∂P (α, γk;ω

cr)

∂ω
, (4.7)

that satisfy
∂2P (α, γk;ω

cr)

∂ω2
< 0. First, for a specific ωcr, an initial guess for α and γk is

corrected by the Newton-Raphson method. Then the obtained solution is used as initial
guess for nearby values of ωcr. This way the solution can be continued, and γ(ωcr) and
α(ωcr) can be obtained numerically.

Substituting ωcr = 0 into equations (4.3), (4.4), and (4.6). We obtain P (0) = 0 and
∂P (0)

∂ω
= 0. Thus, for zero frequency we require

∂2P (0)

∂ω2
= −(n+m)(α + 2β) + 2κ

(
n+m−

n+1∑
k=2

γk

)
< 0 , (4.8)
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which is a necessary condition for string stability.

4.3 Monitoring the vehicle immediately ahead

We first consider the case when the CCC vehicle only receives acceleration signals from
the vehicle immediately ahead, i.e., n = 1, m = 0 in (4.1, 2.11), cf. Fig.4.2(a). In this
case, (4.3, 4.4) result in

Γ(s) =
Ṽ1(s)

Ṽ2(s)
=
γ2 s

2 e(τ−σ2)s + βs+ ακ

s2 eτs + (α + β)s+ ακ
, (4.9)

and the string stability condition (4.5) can be written as

P (ω) = (γ2
2 − 1)ω4 + 2

(
(α + β) sin(τω)− βγ2 sin((τ − σ2)ω)

)
ω3

− α
(
α + 2β − 2κ cos(τω) + 2κγ2 cos((τ − σ2)ω)

)
ω2 < 0 . (4.10)

For ωcr > 0 the corresponding boundaries are given by (4.6), while for ωcr → 0 (4.8) gives
the conditions

α > −2β + 2κ(1− γ2) , (4.11)

α > 0 . (4.12)

As the acceleration gain γ2 varies, the range of string stable parameters change for the
gains α, β and the delays τ , σ2. Here we fix the velocity gain β = 0.9 [1/s] and show
this change using stability charts in the (γ2, α)-plane for different values of the delays τ ,
σ2 in Fig. 4.2. The string stability boundaries (4.6, 4.10), (4.11) and (4.12) are plotted as
black curves enclosing the gray string stable area. The dashed lines in Fig. 4.2(c, e, g) show
the sections of (4.11) that do not bound the string stable domains. Parameters outside the
gray area result in that the transfer function (4.9) has magnitude larger than 1 at certain
frequency ranges, which is represented by a color code: deep blue indicates low frequency
and dark red indicates high frequency. More precisely, we solve (4.10) for frequencies
ωP
j > 0, j = 1, 2, . . . satisfying P (ωP

j ) = |Γ( iωP
j )| − 1 = 0 and color the points in the

(γ2, α)-plane according to the largest ωP
j . In the vicinity of the string stability boundary,

the color corresponds to the frequency at which string stability is lost.
Fig. 4.2(b, d, f) depicts the stability charts for τ = 0, i.e., when the driver reaction

time is omitted. In this case, for small values of γ2, the string stability condition is given
by (4.11), that is, string stability may be obtained by choosing sufficiently large α. When
γ2 = 0, we need α > 2(κ − β). As γ2 increases, the required α decreases and becomes
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Figure 4.2: (a): Connectivity structure for a single-look-ahead vehicle system when a CCC
vehicle monitors the car immediately ahead (i.e., n = 1,m = 0). The delays are indicated
along the links. (b – g): String stability diagrams in the (γ2, α)-plane for velocity gain β =
0.9 [1/s] and different driver reaction times τ and acceleration delays σ2 as indicated. The
gray areas are string stable. The color represents the highest frequency of string stability
changes. The dashed lines in panels (b, d, f) represent the section of (4.11) that does not
bound the string stable domain.
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zero at γ2 = 1 − β/κ. This boundary is independent of acceleration delay σ2 as can be
seen when comparing Fig. 4.2(b, d, f). In the vicinity of this boundary, deep blue color
indicates that string stability is lost at low frequency ωcr → 0. On the other hand, large γ2

results in string instability for high frequencies, as indicated by the dark red domains at the
right side of Fig. 4.2(b, d, f). This boundary is at γ2 = 1 when σ2 = 0 ( Fig. 4.2(b)), and it
moves to the left decreasing the string stable domain as the acceleration delay σ2 increases
(Fig. 4.2(d, f)).

As shown in Fig. 4.2(c, e, g), the string stable area shrinks significantly when choosing
realistic driver reaction time τ = 0.4 [s]. In this case, the string stability can be maintained
when choosing γ2 ≈ 0.5, but there is no string stable domain without acceleration feedback
(γ2 = 0). In fact, in the latter case the system is string unstable for all choices of human
parameters α and β, since τ exceeds a critical delay time as will be discussed below. As
the acceleration delay σ2 increases, the string stability domain shrinks and disappears at
σ2 ≈ 0.55 [s]. The critical frequencies of string stability loss are still low on the left and
high on the right side, as can be seen from the coloring of the string unstable domains.

To illustrate the stability loss at different critical frequencies, we mark the points A–G
in Fig. 4.2(e) and plot the magnitude of the transfer function Γ( iω) in Fig. 4.3 (cf. (4.9)).
Comparing cases A, B and C, one can observe a string stability loss at low frequency
(ωcr → 0). In case A, the system is string unstable for low frequencies ω < ωP ≈ 1.22

[rad/s] (Fig. 4.3(a)), which corresponds to the blue color at A in Fig. 4.2(e). Point B is

located at the string stability boundary (Fig. 4.3(b)), that is,
∂2|Γ(0)|
∂ω2

= 0 (cf. (5.53, 4.8)),
while the system is string stable in case C as shown in Fig. 4.3(c). Comparing cases C,
D and E, a string stability loss at higher frequency can be observed. Point D is located at

the string stability boundary, that is, Γ(ωcr) = 1,
∂|Γ(ωcr)|

∂ω
= 0 (cf. (5.53, 5.54)) where

ωcr ≈ 2.34 [rad/s]. In case E, the system is string unstable in the frequency domain ωP
1 <

ω < ωP
2 (Fig. 4.3(e)) and the orange color at point E in Fig. 4.2(e) corresponds to the higher

frequency ωP
2 ≈ 3.61 [rad/s].

Notice that as ω → ∞, the magnitude of the transfer function approaches γ2, i.e.,
limω→∞ |Γ( iω)| = γ2 (cf. (4.9)), which is indicated by the dotted horizontal lines in
Fig. 4.3. Therefore, as γ2 → 1−, string instabilities appear in higher frequency ranges.
This is demonstrated in Fig. 4.3(f) where the system is string unstable for ωP

1 < ω < ωP
2

and ωP
3 < ω < ωP

4 . The dark red color at point F in Fig. 4.2(e) corresponds to the highest
frequency ωP

4 ≈ 22.97 [rad/s]. Finally we remark that when γ2 > 1 the system becomes
unstable for almost all frequencies as demonstrated in Fig. 4.3(g), where the system is
unstable for ω > ωP ≈ 1.18 [rad/s], which corresponds to the coloring at G in Fig. 4.2(e).

Now we evaluate the robustness of the design against uncertainties of the human gains
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Figure 4.3: Magnitude of the transfer function when a CCC vehicle monitors the car im-
mediately ahead (i.e., n = 1,m = 0) for the points marked (A–G) in Fig. 4.2(e). The
horizontal dashed line at 1 indicates the threshold for string stability. The horizontal dotted
line shows the magnitude of transfer function when the frequency approaches infinity.
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Figure 4.4: (a): Connectivity structure for a single-look-ahead vehicle system with de-
lays indicated along the links. (b and c): String stability diagrams in the (β, α)-plane and
(σ2, γ2)-plane for τ = 0.4 [s]. In panel (b), points P, Q and R locate the intersections of
(4.11), (4.12) and (5.54, 4.10), while S1 is located at (α, β) = (0.6, 0.9) and corresponds
to the parameters used in panel (c). In panel (c), point T locates the intersection between
(4.11) and (5.54, 4.10), while S2 is located at (σ2, γ2) = (0.2, 0.5) and corresponds to the
parameters used in panel (b). (d and e): The corresponding critical frequencies along the
string stability boundaries. The same color coding is used as in Fig. 4.2.
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α and β. In the right panels of Fig. 4.2, it can be observed that the stable regions cover
the largest α interval for γ2 ≈ 0.5. Moreover, when every packet is delivered, DSRC
communication has the average communication delay σ2 = 0.15 [s], which goes up to σ2 =

0.2 [s] when every second packet is lost [46, 60]. To evaluate the robustness, we use γ2 =

0.5 and σ2 = 0.2 [s]. Stability charts in the (β, α)-plane are shown in Fig. 4.4(b) for γ2 =

0.5, σ2 = 0.2 [s], τ = 0.4 [s]. The circled line is the plant stability boundary (2.15), below
which the parameters ensure plant stability. The gray string stable region (enveloped by the
curves (5.54, 4.10), (4.11) and (4.12)) covers a large portion of realistic driver parameters
α and β, showing the robustness of acceleration-based CCC design against variations in
driver gains.

Now we investigate the robustness against the increase of the driver reaction time τ .
The sections PR, PQ and QR of the string stability boundary in Fig. 4.4(b) are given by
(4.11), (4.12), and (4.6, 4.10), respectively. The corresponding critical frequencies ωcr are
shown in Fig. 4.4(d). Notice that at the codimension-two points P, Q and R the critical
frequency is zero. When τ is increased, the string stable domain decreases, and the points
P, Q and R move closer to each other. At the critical reaction time τcr, they collide at a
codimension-three point, and for τ > τcr there exists no combination of gains α and β that
can ensure string stability.

Using (4.6, 4.10), (4.11) and (4.12), we may obtain the location of P, Q, R as

(βP, αP) =
(
(1− γ2)κ, 0

)
,

(βQ, αQ) =

(
γ2

2 − 1

2(γ2(τ − σ2)− τ)
, 0

)
, (4.13)

(βR, αR) =

(
r1

r3

,
r2

r3

)
,

where

r1 = (1− γ2)
(
γ2

(
1− 2κ2(τ − σ2)2

)
+ 2κτ(κτ − 2) + 1

)
,

r2 =
(
2κ(σ2 − τ)− 1

)
γ2

2 + 2κ(2τ − σ2)γ2 − 2κτ + 1 , (4.14)

r3 = γ2(τ − σ2)
(
κ(τ − σ2) + 1

)
+ τ(1− κτ) .

For r2 = 0, P, Q, and R coincide, which yields the critical driver reaction time

τcr =
1

2κ
+

γ2

1− γ2

(
1

κ
− σ2

)
=
th
2

+
γ2

1− γ2

(
th − σ2

)
. (4.15)
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Without acceleration feedback (γ2 = 0), τcr =
1

2κ
=
th
2

, which means that human drivers
can only maintain string stability when travelling at a time headway that is at least twice
as long as their reaction time. This result also corresponds to the conclusion in [48, 61].
The second term is positive for the physically realistic parameters 0 < γ2 < 1 and σ2 < th

and thus the critical delay τcr increases with γ2. In particular, considering γ2 = 0.5 without
communication delay (σ2 = 0 [s]), we have τcr = 1.5th, which is a three-fold increase.
Even if the communication delay is as large as the human reaction time, we have τcr = th,
which is a two-fold increase. This demonstrates the benefits of acceleration-based driver
assistance systems.

When γ2 > 1, with σ2 < th, we can have τcr < 0 [s], as in Case G in Fig. 4.2(e).
Finally, when γ2 → 1−, τcr approaches infinity. The cost of such a dramatic increase
is the robustness of string stability: α and β both approach zero, resulting in a follower
driving with its leader’s acceleration (delayed by σ2). In this case, the headway and velocity
feedback terms are missing and thus the vehicle is unable to maintain a velocity-dependent
headway.

The available values of the design parameters σ2 and γ2 are shown in Fig. 4.4(c) for
human parameters (β, α) = (0.9, 0.6) (point S1 in panel (b)) while the corresponding crit-
ical frequencies ωcr are shown in Fig. 4.4(e). Since the plant stability is not influenced by
acceleration feedback, the choice of human parameters ensures plant stability for all val-
ues of σ2 and γ2. The string stability boundaries (4.6, 4.10) and (4.11) envelope the gray
string stable area, where the point S2 corresponds to the design parameters used in panel
(b). Notice that γ2 shall be chosen between 0.2 and 0.8 and σ2 shall be smaller than 0.4

[s] to ensure string stability. According to the coloring, choosing smaller γ2 leads to string
instability at low frequencies, while larger γ2 or longer σ2 results in higher-frequency string
instabilities.

Using γ2 ≈ 0.5 ensures robustness against the variations of the acceleration delay σ2.
In fact, we will show that γ2 ≈ 0.5 is a good choice for all other connectivity structures
considered in the rest of this paper. Moreover, we will also demonstrate that this holds
for all γk. While there is no formal proof why this value shall be chosen, this seems to
be a compromise between using no acceleration feedback (γk = 0) and using excessive
acceleration feedback (γk > 1) which typically leads to high-frequency instabilities.

Note that one may also use a ring configuration to obtain the results shown above, which
gives analogous results and also provides insight into the pattern formation along the road
as explained in Appendix C.1.
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4.4 Monitoring two vehicles ahead

Since an advantage of connectivity is providing the host vehicle with non-local informa-
tion, we consider larger vehicle systems and exploit the use of acceleration feedback from
vehicles farther downstream. For simplicity, we start with the case where a CCC vehicle
follows two other non-CCC vehicles and receives acceleration signals from the vehicle im-
mediately ahead, as shown in Fig. 4.5(a). Therefore, using n = 1, m = 1 in (5.46) results
in the transfer function

Γ(s) =

(
F (s)

G(s)

)2(
1 +

F2(s)

F (s)

)
. (4.16)

The resulting stability charts are shown in the (β, α)-plane and (σ2, γ2)-plane in Fig. 4.5(b)
and (c), respectively. The corresponding critical frequencies are plotted in Fig. 4.5(d) and
(e). The same notation is used as in Fig. 4.4, but the color code is omitted for simplicity.

When comparing Fig. 4.4(b) and Fig. 4.5(b), it can be observed that when a CCC ve-
hicle only monitors acceleration information of the vehicle immediately ahead, the longer
link is more sensitive to uncertainties in the human parameters α and β. Moreover, compar-
ing Fig. 4.4 (c) and Fig. 4.5(c) shows that, while the stable domain is still around γ2 ≈ 0.5,
the domain of feasible control parameters decreases for the larger system, including the
largest allowable acceleration delay. These results are not surprising: for the larger sys-
tem the CCC vehicle needs to eliminate the perturbations that have been amplified by the
human-driven vehicle 2, which is string unstable for τ = 0.4 [s] (for any combination of α
and β) since τ is larger than the critical time delay τcr ≈ 0.32 [s], cf. (4.15) for γ2 = 0.

Notice that there are points along the stability boundaries that correspond to multiple
critical frequencies. Some of these codimension-two points corresponds to zero frequen-
cies, but there are points where one or both critical frequencies are non-zero. In the latter
case, when crossing the string stability boundary at these points (from stable to unstable),
stability is lost in two distinct frequency domains and we obtain Bode plots that are quali-
tatively similar to the one in Fig. 4.3(f).

If the CCC vehicle receives acceleration feedback from the head vehicle as shown in
Fig. 4.6(a), i.e., n = 2, m = 0 in (5.46), the transfer function becomes

Γ(s) =

(
F (s)

G(s)

)2(
1 +

F3(s)G(s)

(F (s))2

)
. (4.17)

Comparing the string stable areas in Fig. 4.5(b) and Fig. 4.6(b), one may observe that
using longer acceleration link provides better robustness against uncertainties in the human
parameters α and β. The comparison of Fig. 4.5(c) and Fig. 4.6(c) reveals that the accel-
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Figure 4.5: (a): Connectivity structure with the delays indicated along the links. (b and
c): Stability diagrams in the (β, α)-plane and in the (σ2, γ2)-plane (the string stable do-
mains are shaded). The cross in panel (b) is located at (β, α) = (0.9, 0.6) and corre-
sponds to the parameters chosen in panel (c). Similarly, the cross in panel (c) is located
at (σ2, γ2) = (0.2, 0.5) and corresponds to the parameters chosen in panel (b). (d and e):
Critical frequencies along the string stability boundaries. For all panels, τ = 0.4 [s] is used.
The notation is the same as in Fig. 4.4, except that the color code is omitted for simplicity.
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Figure 4.6: (a): Connectivity structure with the delays indicated along the links. (b and c):
Stability diagram in (β, α)- plane and the (σ2, γ2)-plane (the string stable domain is shaded).
The cross in panel (b) is located at (β, α) = (0.9, 0.6) and corresponds to the parameters
chosen in panel (c). Similarly, the cross in panel (c) is located at (σ2, γ2) = (0.6, 0.5) and
corresponds to the parameters chosen in panel (b). (d and e): Critical frequencies along the
string stability boundaries. For all panels τ = 0.4 [s] is used and the notation is the same
as in Fig. 4.5.
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eration feedback gains γk, k = 2, 3, shall be kept around 0.5, independent of the source
of acceleration signals. Surprisingly, for the longer communication links, the delay in the
acceleration feedback loop must be larger than zero. This means that one must artificially
increase the delay in order to maintain string stability. Therefore, it is not necessary to use
higher communication rate, but instead the received packets shall be stored in buffers, so
that they can be used at suitable times. The frequency plots shown in Fig. 4.6(d,e) are sim-
ilar to Fig. 4.5(d,e), but there are multiple codimension-two points with non-zero critical
frequencies.

4.5 Using multiple communication links for a CCC vehi-
cle

Because the average broadcast range of DSRC is a few hundred meters, a CCC vehicle
may acquire acceleration information from a car that is approximately four vehicles ahead
when driving at highway speed. Thus, here we consider a string of five cars, place the CCC
vehicle at the tail, and assume that it receives acceleration signals from two other vehicles
downstream: the vehicle immediately ahead and another vehicle that is 2, 3, or 4 vehicles
ahead; see Fig. 4.7(a) for the different configurations labelled A, B, and C. Considering
these configurations in (4.3), we obtain the head-to-tail transfer functions

ΓA(s) =

(
F (s)

G(s)

)4(
1 +

F2(s)

F (s)
+
F3(s)G(s)

(F (s))2

)
, (4.18)

ΓB(s) =

(
F (s)

G(s)

)4
(

1 +
F2(s)

F (s)
+
F4(s) (G(s))2

(F (s))3

)
, (4.19)

ΓC(s) =

(
F (s)

G(s)

)4
(

1 +
F2(s)

F (s)
+
F5(s) (G(s))3

(F (s))4

)
. (4.20)

Figure 4.7(b,c) show the stability diagrams for α = 0.6 [1/s], β = 0.9 [1/s], τ = 0.4

[s]. Figure 4.7(b) depicts the stability charts in the (γk, σk)-plane for k = 3, 4, 5, when
γ2 = 0.5 and σ2 = 0.2 [s]. The different configurations are distinguished by color. No-
tice again that while γk shall be kept around 0.5 for k = 3, 4, 5, σk shall increase with k
to ensure string stability. That is, the controller has to delay acceleration signals coming
from distant vehicles, and the longer the link is, the larger delays are needed. Similarly,
Fig. 4.7(c) shows the stability charts in the (σk, σ2)-plane when γk = 0.5 for k = 2, 3, 4, 5,
using the same labeling and color scheme. While the range of σ2 is not significantly in-
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Figure 4.7: (a): Three connectivity configurations A, B and C for a five-car system with a
CCC vehicle at the tail using two acceleration links. The delays are marked along the links.
(b and c): String stability diagrams in the (σk, γk)-plane for σ2 = 0.2 [s], γ2 = 0.5, and in
the (σk, σ2)-plane for γ2 = γ3 = γ4 = γ5 = 0.5. The three configurations are indicated by
labels and color. (d and e): The critical frequencies along the string stability boundaries.
Color code is used to help identify the domains and the frequencies.
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Figure 4.8: Velocity and acceleration responses of the CCC vehicle to a sinusoidal velocity
perturbation of the head vehicle (black curves) for configurations A (red), B (green), and C
(blue) shown in Fig. 4.7(a). The human parameters α, β, and τ are the same as in Fig. 4.7
and the acceleration gains are kept γk = 0.5 for all k-s. Panels (a, b) are for acceleration
delays σk = 0.2 [s], k = 2, 3, 4, 5, while panels (c, d) are for delays σ2 = 0.2 [s], σ3 = 0.4
[s], σ4 = 1.2 [s], σ5 = 2.0 [s] (cf. the crosses A, B and C in Fig. 4.7(b, c)). The initial
headways and velocities are set at the equilibrium where h∗ = 20 [m], v∗ = 15 [m/s] along
the time interval [−max{σk, τ}, 0] for all vehicles.

fluenced by the link length, longer links shall have larger delays to maintain string sta-
bility. Figure 4.7(d,e) give the critical frequencies along the string stability boundaries,
showing multiple codimension-two points with two distinct frequencies. Notice that the
codimension-two points in Fig. 4.7(d) have at least one critical frequency at zero, while all
codimension-two points in Fig. 4.7(e) have only non-zero critical frequencies.

To illustrate the necessity of increasing the delay, we perform simulations for the three
configurations A, B and C shown in Fig. 4.7(a) using the nonlinear model (4.1, 2.11). We
use the same α, β and τ parameters as in Fig. 4.7. Figure 4.8 depicts the velocity and
acceleration responses of the CCC vehicle when all cars start with equilibrium headway
and velocity along the time interval [−max{σk, τ}, 0]. The head vehicle applies a periodic
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Figure 4.9: Velocity and acceleration responses of the CCC vehicle to a triangular velocity
perturbation of the head vehicle (black curves) for configurations A (red), B (green), and
C (blue) shown in Fig. 4.7(a). The parameters and initial conditions are the same as in
Fig. 4.8.
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perturbation with frequency ω = 2 [rad/s] and amplitude |∆v| = 1 [m/s] (black curves
in Fig. 4.8). This particular frequency is chosen based on the range of critical frequencies
in Fig. 4.7(d, e). In Fig. 4.8(a, b), the acceleration delays are kept the same for all links,
that is, σk = 0.2 [s], γk = 0.5, k = 2, 3, 4, 5. Case A (red curve) is string stable, i.e.,
the amplitude of the steady-state velocity response is smaller than the amplitude of the
disturbance (black curve). However, cases B (green curve) and C (blue curve) are not
string stable as the velocity disturbance is amplified. Figure 4.8(c, d) show the velocity
and acceleration responses when the acceleration delays are increased with link length.
In particular, we choose σ2 = 0.2 [s], σ3 = 0.4 [s], σ4 = 1.2 [s], σ5 = 2.0 [s] and
γk = 0.5, k = 2, 3, 4, 5, corresponding to the crosses in Fig. 4.7(b, c). In this setting, all
three configurations are string stable, i.e., the velocity perturbations for the red, green and
blue curves are all smaller compared to the black curve. This is consistent with results of
the linear analysis presented above.

To further emphasize this principle, Fig. 4.9 shows the velocity and acceleration re-
sponses when the head vehicle has a triangular velocity perturbation between t ∈ [0, 4] [s]
with perturbation size |∆v| = 2 [m/s] (black curves in Fig. 4.9). Since the triangular signal
can be written as a sum of Fourier components, and is more common in real traffic than
pure sinusoidal signals, the attenuation of triangular perturbation may be considered as an
indication of string stability. In Fig. 4.9(a, b), we have σk = 0.2 [s], for k = 2, 3, 4, 5, and
the perturbation is only attenuated in case A but amplified in cases B and C. On the other
hand, panels (c, d) are for σ2 = 0.2 [s], σ3 = 0.4 [s], σ4 = 1.2 [s], σ5 = 2.0 [s], and the
perturbation is attenuated in all cases. These simulation results demonstrate that near the
equilibrium, the nonlinear model reproduces the predictions of the linear analysis.

4.6 Multiple CCC vehicles: effects of link intersections

As seen in the last section, multiple links may be used to improve string stability when there
is only one CCC vehicle in the traffic flow. However, when more than one CCC vehicles
appear, complicated connectivity structures may arise. In this section, we demonstrate that
increasing the number of links may not always provide larger string stability domains.

Here we consider a five-car system and compare the head-to-tail string stability in con-
figurations E–H depicted in Fig. 4.10(a). In each case, we use links that allow CCC vehicles
to obtain acceleration information from a vehicle that is two vehicles ahead and choose the
parameters for this acceleration link to be γ3 = 0.5, σ3 = 0.6 [s], cf. the cross in Fig. 4.6(c).
Notice that the number of links increases when going from E to H. The corresponding
(β, α) stability charts are shown in Fig. 4.10(b-e). Since we still consider τ = 0.4 [s] as in
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Figure 4.10: (a): Four connectivity configurations for a five-car system with multiple CCC
vehicles and multiple acceleration links. The delays are shown along the links. (b, c, d,
e): String stability diagrams in the (β, α)-plane for the different configurations while using
τ = 0.4 [s], γ3 = 0.5, σ3 = 0.6 [s]. The same notation is used as in Fig. 4.5.
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Fig. 4.7, without acceleration feedback the connected vehicle system is string unstable. In
case E, the CCC vehicle at the tail can make the system head-to-tail string stable, though
the stable domain is fairly small as shown in Fig. 4.10(a). Case F is a cascade configuration
with two CCC vehicles involved and the corresponding string stable domain is identical to
the one in Fig. 4.6 (a). In case G, there are two CCC vehicles, but the two links intersect
each other and the stability region shrinks significantly as shown in Fig. 4.10(d). This result
indicates that intersection of acceleration links may deteriorate string stability. Finally, to
investigate whether the stabilizing effect of acceleration links outweighs the destabilizing
effect of link intersections, we consider three CCC vehicles with three acceleration links in
case H. The corresponding stability plot in Fig. 4.10(e) shows that, surprisingly, the stable
domain becomes much smaller. These results suggest that CCC vehicles shall use the avail-
able acceleration signals in a selective manner, to avoid link intersections which deteriorate
string stability.

4.7 Conclusion

In this chapter, we present a connected vehicle design using acceleration signals of preced-
ing vehicles received via V2V communication. We show that this design can improve the
string stability of connected vehicle systems when most vehicles are human-driven and a
few of them are equipped with DSRC. The improvement on string stability is robust against
driver reaction time and communication delay. We observed that the critical driver reac-
tion time increases significantly when using appropriately designed acceleration feedback.
We also demonstrated that the gain of the acceleration feedback shall be kept around 0.5

for most circumstances discussed here. Having too low acceleration gains would lead to
low-frequency oscillations (that are typical for human-driven vehicles), while too high ac-
celeration gains lead to high-frequency string instabilities. As the acceleration signals come
from vehicles farther downstream, the corresponding delay time shall also be increased, in
order to maintain head-to-tail string stability. This indicates a necessity of designing the
delay time when using acceleration feedback, instead of treating the delays as system limi-
tations. Furthermore, we showed that string stability can be preserved when building larger
connected vehicle systems, under the condition that the connectivity topology does not
have intersecting links. In the next chapter, we will consider connected automated vehicle
design in a V2V-rich environment, where a large portion of vehicles in the traffic flow are
equipped with DSRC.
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CHAPTER 5

Optimal design of connected cruise control in a
V2V-rich environment

In this chapter, we consider the connected cruise control design in connected vehicle sys-
tems with high penetration of V2V devices. In this case, a CCC vehicle will receive motion
signals from nearly every vehicle ahead within the range of V2V communication, and it is
no longer feasible to directly tune the large number of corresponding feedback gains simul-
taneously. Instead, we design a multi-objective cost function including both velocity and
headway fluctuations and acceleration efforts, and then use optimal control to generate the
feedback law for the CCC controller.

Considering that algorithms such as rolling horizon optimal control [27] have relatively
high computational cost and are only feasible among a small group of vehicles with specific
communication structures, we would like to find optimization algorithms with low compu-
tational cost for general connectivity topologies. Therefore, we consider the linearized
human car-following model (2.11) and design the optimal controller using linear quadratic
regulation (LQR), where the time delay is considered so that the optimal design remains
compatible with human driving behavior and communication delay.

While the LQR problem is formulated over a high-dimensional network, we show that
the problem can be decomposed since the information flow is uni-directional in a connect-
ed vehicle system when vehicles only utilize motion information of vehicles ahead. Such
decomposition allows us to obtain an analytical solution to the optimization problem recur-
sively, and it allows graceful degradation of CCC performance when V2V communication
deteriorates. We also show that the weights in the cost function can be chosen such that the
velocity fluctuations of the CCC vehicle are attenuated compared with vehicles ahead (i.e.,
head-to-tail string stability can be achieved).

While the optimization is done at the linear level, we demonstrate that the controller
performs well at the nonlinear level, and is robust against parameter variations and hetero-
geneities appearing in multi-vehicle systems. These findings allow us to fully exploit the
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Figure 5.1: A string of n + 1 vehicles in a single-lane scenario. The CCC vehicle at the
tail receives signals from human-driven vehicles ahead via V2V communication. Dashed
arrows indicate the flow of information in this connected vehicle system.

connectivity without increasing the complexity of gain-tuning.
The layout of this chapter is as follows. In Section 5.1 we build up the models for CCC

design. In Section 5.2 we introduce the setup of the optimization problem and show that
the solution of an infinite-dimensional Riccati equation can be used to design the CCC con-
troller. The details for solving the optimization problem with time delay and the robustness
of the proposed controller are provided in Appendix C.1 for interested readers. In Section
5.3 we present the stability analysis and summarize the impact of design parameters and
robustness against variations in human parameters using stability charts. In Section 5.4 the
application of the CCC controller is demonstrated at the nonlinear level using numerical
simulations. Finally, we conclude the findings in Section 5.5.

5.1 Optimization problem setup

We now consider the single-lane configuration shown in Fig. 5.1 where the CCC vehicle
at the tail receives motion information from the n non-CCC vehicles ahead through V2V
communication (see dashed arrows from preceding vehicles to vehicle 1). Initially, we
assume that all preceding vehicles are identical human-driven vehicles, but the effects of
heterogeneous dynamics among preceding vehicles will be investigated in Appendix C.4.

We write the car-following dynamics of the CCC vehicle as

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) = u(t) ,
(5.1)

where u(t) is the acceleration that will be designed using the motion information obtained
via V2V communication. Communication delay is not included explicitly in the optimiza-
tion, but will be added when analyzing the stability of CCC in Section 5.3.

We assume the CCC vehicle tries to maintain the same equilibrium as human-driven
vehicles i = 2, . . . , n, cf. (2.6). Using definition (2.10) we linearize (5.1) about the equi-
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librium:

˙̃h1(t) = ṽ2(t)− ṽ1(t) ,

˙̃v1(t) = u(t) .
(5.2)

With the car-following dynamics of human-driven and CCC vehicles set up, we discuss
how to use optimization to design u(t).

In Chapter 4 we have seen that for CCC based on acceleration feedback we need to
design both the feedback gains and delay time. Moreover, acceleration signals from ve-
hicles farther downstream should be used with larger time delay, which is related to the
wave speed in the traffic flow. While this finding bridges the microscopic and macroscopic
description of traffic flow nicely, the time delay it introduces into the CCC controller is
significant. For example, consider a CCC vehicle using the acceleration of vehicle 3 in
Fig. 5.1

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) = α
(
V (h1(t− τ))− v1(t− τ)

)
+ β ḣ1(t− τ) + γ3 v̇3(t− σ3) , (5.3)

see (4.17) in Section 4.4. We can plug in the car-following model of vehicle 3 and write the
acceleration in terms of headway and velocity. Then the dynamics of the connected vehicle
system consisting of vehicles 1, 2, 3 becomes

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) = α
(
V (h1(t− τ))− v1(t− τ)

)
+ β(v2(t− τ)− v1(t− τ))

+ γ3 (α
(
V (h3(t− τ − σ3))− v3(t− τ − σ3)

)
+ β(v4(t− τ − σ3)− v3(t− τ − σ3))) ,

ḣ2(t) = v3(t)− v2(t) ,

v̇2(t) = α
(
V (h2(t− τ))− v2(t− τ)

)
+ β(v3(t− τ)− v2(t− τ)) ,

ḣ3(t) = v4(t)− v3(t) ,

v̇3(t) = α
(
V (h3(t− τ))− v3(t− τ)

)
+ β(v4(t− τ)− v3(t− τ)) . (5.4)

According to Fig. 4.6 of Section 4.4, σ3 > 0.5 [s] is required for linear string stability when
τ = 0.4 [s], and thus a new delay of τ + σ3 is introduced into (5.4) with this acceleration
feedback. While the large delay is proven to benefit the string stability of the connected
vehicle system on the linear level, considerable caution should be exercised to guarantee
stability and robustness on the nonlinear level as the delay time of a system doubles. No-
tice that the extra delay time σ3 is introduced to ”match the phase” of the perturbations
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propagating through the string of vehicles. When motion signals from vehicle 2 through
vehicle n + 1 are available, we may be able to use a well-balanced combination of these
signals without inserting large delay times. Since acceleration can be written in terms of
headway and velocity using car-following models, we only use the headway and velocity
of n preceding vehicles to design u(t) (cf. (5.2)) in this chapter for simplicity.

5.2 Linear quadratic regulation with time delay

In this section, we present a systematic method for connected cruise control design while u-
tilizing the linearized human car-following model (2.11). We formulate the CCC design as
a linear quadratic (LQ) optimization problem with delay. Since the CCC vehicle would like
to maintain constant velocity and headway without using large acceleration/deceleration,
we minimize a cost function containing its headway and velocity fluctuations and its ac-
celeration. The solution will give the gains for the CCC vehicle with respect to the current
and delayed headways and velocities of the vehicles ahead.

In Section 5.2.1 we present the general solution of the optimization problem, while in
Section 5.2.2 we show that the problem can be decomposed and solved analytically by
exploiting the unidirectional information flow in the system. If the reader is not interested
in these technical details, Sections 5.2.1 and 5.2.2 may be skipped. In Section 5.2.3 we
obtain the CCC controller with full-state feedback and demonstrate that the gains decay
exponentially as the number of vehicles between the source and the CCC vehicle increases.
We also show that adding more vehicles downstream does not influence the existing design
for the system. A brief discussion is provided in Appendix C.4 on the robustness of the
controller against heterogeneities arising in the vehicle string.

Let us define

xi =

[
κh̃i − ṽi
ṽi+1 − ṽi

]
, φn =

[
0

˙̃vn+1

]
. (5.5)

Then we construct the vectors

X =


x1

...
xn

 , φ =


0
...
0

φn

 , (5.6)
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and rewrite (2.11, 5.2) as

Ẋ(t) = AX(t) + BX(t− τ) + Du(t) + φ(t) . (5.7)

The coefficient matrices are given by

A = In ⊗A1, B =



0 B2

B1 B2

. . . . . .

B1 B2

B1


, D =



D1

0
...
0

0


, (5.8)

where ⊗ denotes the Kronecker product and the blocks are defined by

A1 =

[
0 κ

0 0

]
, B1 = −

[
α β

α β

]
, B2 =

[
0 0

α β

]
, D1 =

[
−1

−1

]
. (5.9)

Note that B is upper block-triangular because vehicles only react to the motion of vehi-
cles ahead. This topological structure of connectivity will allow us to greatly simplify the
solution of the LQR problem.

We assume that the non-CCC vehicles are plant stable, i.e., they are able to maintain
the uniform flow (2.6) when the vehicles ahead travel with constant speed v∗. Then the
connected vehicle system (5.7, 5.8) is stabilizable, that is, uncontrollable part of the system
is stable.

We define the multi-objective cost function based on the CCC vehicle’s acceleration
and deviations from the uniform flow as

Jtf (u,X) =

∫ tf

0

(
˙̃v2
1 + γ1

(
κh̃1 − ṽ1

)2
+ γ2

(
ṽ2 − ṽ1

)2
)

dt =

∫ tf

0

(
u2 +X TΓX

)
dt ,

(5.10)

where γ1 > 0, γ2 > 0 and

Γ = diag[γ1, γ2, 0, . . . , 0] ∈ R2n×2n. (5.11)

In (5.10) the first term is related with the fuel economy of the CCC vehicle, and the latter
two terms account for the active safety and traffic efficiency. While more complicated
cost functions can be used to consider more accurate powertrain dynamics [27, 62], the
quadratic form of (5.10) will provide us with valuable insight about the upper-level control
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of connected vehicle systems.

5.2.1 General solution of the LQ problem

In this section we lay out the general solution to the LQ problem in a time-delayed system
with disturbance (5.7, 5.10). We will show that the disturbance has limited influence on the
structure of the optimal controller. Thus, we design the optimal controller under zero dis-
turbance. This setting allows us to exploit the uni-directional information flow to alleviate
the high computational cost for optimal connected vehicle design. Readers not interested
in the technical details may proceed to Section 5.2.3.

We define the augmented state Y (t) = [X T(t) 1] T to place the disturbance term φ(t)

in (5.7) into a time-variant coefficient matrix. This yields

Ẏ (t) = Ã(t)Y (t) + B̃Y (t− τ) + D̃u(t) , (5.12)

where

Ã(t) =

[
A φ(t)

0 0

]
, B̃ =

[
B 0

0 0

]
, D̃ =

[
D

0

]
. (5.13)

The cost function (5.10) can be rewritten accordingly

Jtf (u, Y ) =

∫ tf

0

(
u2 + Y TΓ̃Y

)
dt , (5.14)

where Γ̃ =

[
Γ 0

0 0

]
.

The optimal control for (5.12, 5.14) is given by

u(t) = −D̃T

(
P(t)Y (t) +

∫ 0

−τ
Q(t, θ)Y (t+ θ) dθ

)
, (5.15)

see [63]. The matrices P(t) and Q(t, θ) are obtained by solving the Riccati-type partial
differential equation (PDE)

− Ṗ(t) = ÃTP(t) + P(t)Ã−P(t)D̃D̃TP(t) + Q(t, 0) + QT(t, 0) + Γ̃ ,

(∂θ − ∂t)Q(t, θ) =
(
ÃT −PD̃D̃T

)
Q(t, θ) + R(t, 0, θ) ,

(∂ξ + ∂θ − ∂t)R(t, ξ, θ) = −QT(t, ξ)D̃D̃TQ(t, θ) ,

(5.16)
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with boundary conditions

P(tf) = 0 ,

Q(tf , θ) = 0 , Q(t,−τ) = PTB̃ ,

R(tf , ξ, θ) = 0 , R(t,−τ, θ) = B̃TQ(t, θ) ,

(5.17)

where P(t) is symmetric and RT(t, ξ, θ) = R(t, θ, ξ). Given the structure of coefficient
matrices (5.13), the matrices P(t), Q(t, θ) and R(t, ξ, θ) can be constructed as

P =

[
P1 P2

P3 P4

]
, Q =

[
Q1 Q2

Q3 Q4

]
, R =

[
R1 R2

R3 R4

]
, (5.18)

where P1,Q1,R1 ∈ R2n×2n, P2,Q2,R2 ∈ R2n×1, P3,Q3,R3 ∈ R1×2n, and P4,Q4,R4

are scalars. since P(t) is symmetric we have P1(t) = PT
1 (t) and P2(t) = PT

3 (t).
Moreover, R(t, ξ, θ) = RT(t, θ, ξ) yields R1(t, ξ, θ) = RT

1 (t, θ, ξ) and R2(t, ξ, θ) =

RT
3 (t, θ, ξ).

Thus, the optimal controller (5.15) becomes

u(t) = −DT

(
P1(t)X(t) +

∫ 0

−τ
Q1(t, θ)X(t+ θ) dθ + P2(t) +

∫ 0

−τ
Q2(t, θ) dθ

)
.

(5.19)

By substituting (5.18) into (5.16, 5.17) we find that state-feedback-control gain matrices
P1,Q1 in the optimal controller (5.19) are not influenced by the disturbance φ(t); see (C.1,
C.3, C.5, C.7) in Appendix C.1. On the other hand, when including the disturbance in the
optimization, (5.19) cannot be implemented in real time since φ(t) is not known a priori;
cf. Ã(t) in (5.13, 5.16, 5.18). Therefore we first ignore the disturbance φ(t), but later in
Section 5.3 we ensure that this zero-disturbance design can reject disturbances satisfyingly.
Thus, we consider

P2(t) ≡ 0 , Q2(t, θ) ≡ 0 , (5.20)

which allows us to design the CCC controller analytically without impairing the stability
of the multi-vehicle system.

Since P1(t),Q1(t, θ),R1(t, ξ, θ) are given by (C.1), which is an initial value problem
in backward time, we consider the steady-state solution

P1(t) ≡ P1, Q1(t, θ) ≡ Q1(θ), R1(t, ξ, θ) ≡ R1(ξ, θ), (5.21)

which is equivalent to setting time horizon tf →∞ in the cost function (5.10); see [64].
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Substituting (5.20, 5.21) into (5.19) leads to the simplified controller

u(t) = −DT

(
P1X(t) +

∫ 0

−τ
Q1(θ)X(t+ θ) dθ

)
, (5.22)

where the matrices P1, Q1(θ) are given by

ATP1 + P1A−P1DDTP1 + Q1(0) + QT
1 (0) + Γ = 0 ,

∂θQ1(θ) =
(
AT −P1DDT

)
Q1(θ) + R1(0, θ) ,

(∂ξ + ∂θ)R1(ξ, θ) = −QT
1 (ξ)DDTQ1(θ) ,

(5.23)

with boundary conditions

Q1(−τ) = P1B , R1(−τ, θ) = BTQ1(θ) , (5.24)

which can be attained by setting tf →∞ in (C.1, C.2).

5.2.2 Decomposition of the solution

In this section, we exploit the uni-directional information flow and obtain the analytical
solution to the delayed LQ problem (5.7, 5.10) with zero disturbance (φ(t) ≡ 0) and infi-
nite time horizon (tf = ∞), i.e., we solve the PDE (5.23, 5.24) analytically to obtain the
controller (5.22).

While a numerical scheme for (5.23, 5.24) is given in [64] to obtain P1, Q1(θ) in (5.22),
no closed-form solution exists with general A,B,D matrices. However, here only the first
two rows of P1,Q1(θ) are used by the controller (5.22), since D is zero except its first two
elements, cf. (5.8, 5.9). Thus we only need to obtain an analytical solution for the relevant
parts in P1, Q1(θ), which is made possible by taking advantage of the upper-triangular
block structure of A and B.

We introduce the notation

P1 =


P11 · · · P1n

... . . . ...
Pn1 · · · Pnn

 , Q1(θ) =


Q11(θ) · · · Q1n(θ)

... . . . ...
Qn1(θ) · · · Qnn(θ)

 , (5.25)

where Pij,Qij(θ) ∈ R2×2 for i, j = 1, . . . , n, and rewrite (5.22) as

u(t) = −DT
1

n∑
i=1

(
P1ixi(t) +

∫ 0

−τ
Q1i(θ)xi(t+ θ) dθ

)
, (5.26)
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where xi(t) is given in (5.5). This shows that we only need to derive P1i,Q1i(θ) for
i = 1, . . . , n to construct the controller. Substituting (5.25) into (5.23, 5.24), we obtain
equations for each block Pij,Qij(θ),Rij(ξ, θ), i, j = 1, . . . , n, which can be solved recur-
sively. Specifically, P11 and Q11(θ) are given by

Â1P11 + P11A1 + Q11(0) + QT
11(0) + diag[γ1, γ2] = 0 ,

∂θQ11(θ) = Â1Q11(θ) + R11(0, θ) ,

(∂ξ + ∂θ)R11(ξ, θ) = −QT
11(ξ)DDTQ11(θ) ,

(5.27)

with boundary conditions

Q11(−τ) = 0 , R11(−τ, θ) = 0 , (5.28)

where
Â1 = AT

1 −P11D1D
T
1 . (5.29)

The solution of (5.27, 5.28) is given by

P11 =

[
p11 p12

p12 p22

]
, Q11(θ) ≡ 0, R11(ξ, θ) ≡ 0 , (5.30)

where

p11 =
−γ1 +

√
γ1

√
γ1 + γ2 + 2κ

√
γ1

κ
,

p12 =
√
γ1 − p11 ,

p22 = −2
√
γ1 +

√
γ1 + γ2 + 2κ

√
γ1 + p11 ,

(5.31)

which is the only solution satisfying the condition P11 > 0. Notice that the matrix P11

only depends on the weights γ1, γ2 and the CCC vehicle’s range policy κ (cf. (2.3)).
Then, to obtain P1i,Q1i(θ),Qi1(θ) for i = 2, . . . , n, we need to solve

Â1P1i + P1iA1 + Q1i(0) + QT
i1(0) = 0 ,

∂θQ1i(θ) = Â1Q1i(θ) + R1i(0, θ) ,

∂θQi1(θ) = AT
1 Qi1(θ)−PT

1iD1D
T
1 Q11(θ) + RT

1i(θ, 0) ,

(∂ξ + ∂θ)R1i(ξ, θ) = −QT
11(ξ)D1D

T
1 Q1i(θ) ,

(5.32)
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with boundary conditions

Q1i(−τ) = P1iB1 + P1(i−1)B2 ,

Qi1(−τ) = 0 ,

R1i(θ,−τ) = QT
i1(θ)B1 + QT

(i−1)1(θ)B2 ,

R1i(−τ, θ) = 0 .

(5.33)

Now (5.32, 5.33) give the solution

Qi1(θ) ≡ 0, R1i(ξ, θ) ≡ 0 , (5.34)

while the equations for Q1i(θ) simplify to

∂θQ1i(θ) = Â1Q1i(θ),

Q1i(−τ) = P1iB1 + P1(i−1)B2 ,
(5.35)

yielding the solution

Q1i(θ) = eÂ1(θ+τ)(P1iB1 + P1(i−1)B2) , (5.36)

for i = 2, . . . , n. Thus, the equation for P1i becomes

Â1P1i + P1iA1 + eτÂ1(P1iB1 + P1(i−1)B2) = 0 , (5.37)

yielding the solution
vec(P1i) = Mi−1vec(P11) , (5.38)

for i = 2, . . . , n. Here vec(·) gives a column vector by stacking the columns of the matrix
on the top of each other, and M ∈ R4×4 is given by

M = −
(
I⊗ Â1 + AT

1 ⊗ I + BT
1 ⊗ eτÂ1

)−1(
BT

2 ⊗ eτÂ1
)
. (5.39)

Consequently, P1i and Q1i(θ) are obtained recursively using (5.30, 5.36, 5.38, 5.39).
The recursive rules (5.36, 5.38) indicate that the feedback gains for signals coming from
the jth vehicle only depend on the dynamics of vehicles 2 to j and do not depend on the
dynamics of vehicles in front of the jth vehicle. On the other hand, since Â1 only depends
on P11 (cf. (5.29, 5.30, 5.31)), the exponential term eÂ1(θ+τ) shared by every Q1i(θ) is
independent from the dynamics of preceding vehicles but changes with the CCC vehicle’s
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Figure 5.2: The optimized feedback gains α1i, β1i, i = 1, . . . , n of the CCC vehicle in a
string of (n+ 1) vehicles for n = 5 (red circles) and for n = 10 (blue crosses). The human
parameters are α = 0.6 [1/s], β = 0.9 [1/s], κ = π/2 [1/s], τ = 0.4 [s]. The design
parameters are γ1 = 0.04 [1/s2], γ2 = 0.30 [1/s2].

Figure 5.3: The optimized distribution kernels fi(θ), gi(θ) for i = 2, . . . , n of the CCC
vehicle for a (n + 1)-car system with the same parameter as in Fig. 5.2. The red dashed
curves correspond to n = 5, and the blue solid curves correspond to n = 10. The black
arrows show the direction of increasing vehicle index i.

range policy κ and the optimization weights γ1, γ2.

5.2.3 Constructing the CCC controller

In (5.26) we move D1 (cf. (5.8)) into the integral and define[
α1i β1i

]
=
[
1 1

]
P1i,

[
fi(θ) gi(θ)

]
=
[
1 1

]
Q1i(θ) . (5.40)
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Based on definitions (5.5, 5.40), the optimal controller (5.26) for the CCC vehicle is given
by

u(t) =
n∑
i=1

(
α1i

(
κh̃i(t)− ṽi(t)

)
+ β1i

(
ṽi+1(t)− ṽi(t)

))
+

n∑
i=1

∫ 0

−τ

(
fi(θ)

(
κh̃i(t+ θ)− ṽi(t+ θ)

)
+ gi(θ)

(
ṽi+1(t+ θ)− ṽi(t+ θ)

))
dθ ,

(5.41)

where the distribution kernels take the form

fi(θ) =
(
ai0 + ai1(θ + τ)

)
eλ1(θ+τ) + ai2 eλ2(θ+τ) ,

gi(θ) =
(
bi0 + bi1(θ + τ)

)
eλ1(θ+τ) + bi2 eλ2(θ+τ) ,

(5.42)

for i = 1, . . . , n, θ ∈ [−τ, 0], where λ1, λ2 are the eigenvalues of Â1, and the expressions
for λ1, λ2, ai0, ai1, ai2, and bi0, bi1, bi2 are given in Appendix C.2.

From (5.30, 5.31, 5.40) we obtain that

α11 =
√
γ1, β11 = −√γ1 +

√
γ1 + γ2 + 2κ

√
γ1 , (5.43)

i.e., the gains on CCC vehicle’s own headway and velocity do not depend on the dynamics
of human-driven vehicles. Since Q11(θ) ≡ 0, (5.40) yields

f1(θ) ≡ 0, g1(θ) ≡ 0 , (5.44)

i.e., the CCC vehicle does not have delayed feedback terms on its own headway and veloc-
ity. The rest of the gains α1i, β1i and the distribution kernels fi(θ), gi(θ) for i = 2, . . . , n

in (5.40) can be obtained using (5.36, 5.38, 5.39).
In Appendix C.3 we show that the eigenvalues of M (cf. (5.39)) are inside the unit

circle for realistic values of weights γ1, γ2, human gains α, β, and driver reaction time τ .
Thus (5.38) is a contracting map. Since α1i, β1i are given in (5.40) as linear combinations
of the components of P1i, they converge to zero as i increases.

Fig. 5.2 shows the corresponding exponential decay of α1i and β1i in a (5 + 1) vehicle
chain (red circles) and a (10 + 1) vehicle chain (blue crosses) using the parameter values
γ1 = 0.04 [1/s2], γ2 = 0.30 [1/s], α = 0.6 [1/s], β = 0.9 [1/s], κ = π/2 [1/s] and τ =

0.4 [s]. In this case, M has two zero eigenvalues and two non-zero eigenvalues 0.69±0.15i.
The exact match between the red circles and the blue crosses for vehicles 2 to 5 demonstrate
that the existing optimized gains do not change when adding feedback terms on vehicles
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farther away. This corresponds to the fact that the gains α11, β11 are not influenced by the
connectivity structure (cf. (5.30, 5.31, 5.40)), and that α1i, β1i are calculated recursively
using (5.38). For the parameters considered above, we have the gains α11 ≈ 0.20 [1/s],
β11 ≈ 0.78 [1/s].

In Fig. 5.3 we plot the distribution kernels fi(θ), gi(θ) for i = 2, . . . , n using the same
parameters as in Fig. 5.2. The dashed red curves correspond to n = 5 and the blue solid
curves correspond to n = 10. In both cases, the magnitude of fi(θ) and gi(θ) decreases
with i. Indeed, for vehicles i = 2, . . . , 5, the distribution kernels fi(θ) and gi(θ) are the
same in both the (5 + 1)-car and the (10 + 1)-car systems.

Considering the similar feedback structure of the CCC controller (5.41) as in the con-
ventional driving model (2.2), and the decay of feedback gains and distribution kernels
shown in Fig. 5.2 and Fig. 5.3, we conclude that the proposed CCC controller will de-
grade gracefully under imperfect communication. More specifically, a CCC vehicle may
experience severe packet drops from vehicles ahead, depending on the involved V2V com-
munication devices, the physical distance between vehicles and the road environment [58].
When the communication channel with vehicle i + 1 significantly deteriorates, we may
set the feedback gains and distribution kernels corresponding to vehicle i+ 1 and vehicles
farther ahead as zero, and only use motion signals up to vehicles i. Since motion signals
from farther downstream vehicles are assigned with smaller gains, the switch to fewer sig-
nals will not induce a significant jump in control commands. Most importantly, since the
gains for signals coming from vehicles 1–i do not depend on those from vehicles i+ 1 and
beyond, the reduced CCC controller still remains optimal.

We note that the proposed CCC controller generates 2n feedback gains and distribution
kernels with only 2 design parameters, while being robust against heterogeneity and con-
nectivity structure changes among preceding vehicles, as discussed in detail in Appendix
C.4.

5.3 Stability analysis of optimized connected vehicle sys-
tems

In this section, we analyze the linear stability of uniform traffic flow using the optimized
controller for the CCC vehicle at the tail, to make sure that the arising connected vehicle
system is able to maintain uniform traffic flow. Here we take into account the communi-
cation delay due to intermittency and packet loss in wireless communication. We analyze
the plant stability and head-to-tail string stability and visualize the corresponding stability
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areas using stability charts.
The intermittency in V2V communication with digital controllers results in an average

communication delay of 0.15 [s]; see [43, 60]. However, packet losses may lead to signif-
icant increase of the delay. While the delay changes stochastically [46], here we approx-
imate it with its average and study the dynamics while viewing the delay as a parameter.
Then the linear dynamics (2.11, 5.2) becomes

˙̃h1(t) = ṽ2(t)− ṽ1(t) ,

˙̃v1(t) = u(t− σ) ,

˙̃hi(t) = ṽi+1(t)− ṽi(t) ,
˙̃vi(t) = α

(
κh̃i(t− τ)− ṽi(t− τ)

)
+ β

(
ṽi+1(t− τ)− ṽi(t− τ)

)
,

(5.45)

for i = 2, . . . , n, where u(t) is given by (5.41) and σ denotes the communication delay.
The plant stability of a CCC vehicle is given as follows: suppose that the vehicles

whose signals are used by the CCC vehicle are driven at the same constant velocity, that
is, vi(t) ≡ v∗, i = 2, . . . , n + 1, then the velocity of the CCC vehicle approaches this
constant velocity, i.e., lim

t→∞
v1(t) = v∗. The plant stability of non-CCC vehicles is defined

similarly: when the preceding vehicle is driven at constant velocity, the non-CCC vehicle
should converge to the same velocity. In this paper we only consider plant stable non-CCC
vehicles.

String stability characterizes the attenuation of velocity fluctuations as they propagate
upstream [44]. For non-CCC vehicles it is required that the vehicle attenuates the velocity
fluctuations arising from the preceding vehicle. For a CCC vehicle, one may compare its
velocity fluctuations with any preceding vehicle whose signals is used by the CCC vehicle.
The influence of a CCC vehicle on the traffic flow is evaluated the best by comparing
its velocity fluctuations to that of the furthest vehicle ahead whose signal is received by
the CCC vehicle (called the head vehicle). Thus, we define the head-to-tail string stability,
which requires velocity fluctuations to be suppressed from the head vehicle to the tail. Since
no control is placed upon the non-CCC vehicles, it is reasonable to allow amplification of
velocity fluctuations among non-CCC vehicles. Still, the CCC vehicles may ensure head-
to-tail string stability as demonstrated below.

While in the previous section the controller was designed for the zero disturbance case,
here we consider the velocity perturbation ṽn+1 of the head vehicle as the input and the
velocity perturbation ṽ1 of the tail vehicle as the output in (5.45). Since perturbations of ve-
locity can be represented using Fourier components and superposition holds for linear sys-
tems, the head-to-tail string stability can be ensured by attenuating sinusoidal signals for all

71



excitation frequencies. Thus, we consider the periodic excitation ṽn+1(t) = vamp
n+1 sin(ωt)

with frequency ω and amplitude vamp
n+1 . Then the steady state response of (5.45) with con-

trol (5.41) is ṽ1,ss(t) = vamp
1 sin(ωt+ ψ). In order to ensure head-to-tail string stability, we

need the amplitude ratio vamp
1 /vamp

n+1 < 1 for all excitation frequencies ω > 0, which can be
obtained through transfer functions.

In particular, taking the Laplace transform of (5.45) with zero initial conditions and
eliminating the velocities and headways of vehicles i = 2, . . . , n, we obtain the head-to-
tail transfer function

H(s) =
Ṽ1(s)

Ṽn+1(s)
=

n∑
i=2

(
Fi−1(s)−Gi(s)

)
·
(
H0(s)

)n−i+1
+ Fn(s)

s2eσs +G1(s)
.

(5.46)

Here Ṽ1(s) and Ṽn+1(s) denote the Laplace transform of ṽ1(t) and ṽn+1(t), respectively,
and

H0(s) =
F0(s)

G0(s)
=

βs+ ακ

s2eτs + (α + β)s+ ακ
,

Fi(s) = α1iκ+ β1is+ (ai1κ+ bi1s)h1(s) + (ai0κ+ bi0s)h0(s) + (ai2κ+ bi2s)h2(s) ,

Gi(s) = Fi(s) + α1is+ s
(
ai0h0(s) + ai1h1(s) + ai2h2(s)

)
,

(5.47)

where ai0, ai1, ai2, bi0, bi1, bi2 are given in Appendix C.2 for i = 1, . . . , n and

h0(s) =
eτλ1 − e−τs

s+ λ1

,

h1(s) =
τe−τs

s+ λ1

− eτλ1 − e−τs

(s+ λ1)2
,

h2(s) =
eτλ2 − e−τs

s+ λ2

.

(5.48)

HereH0(s) represents the transfer function between a non-CCC vehicle and its predecessor.
Indeed, the amplitude ratio for frequency ω is given by vamp

1 /vamp
n+1 = |H( iω)|, that is, the

head-to-tail string stability is ensured when |H( iω)| < 1 for all ω > 0.

5.3.1 Plant stability

The plant stability for the linearized connected vehicle system (5.41, 5.45) requires that
all its characteristic roots have negative real parts, i.e., the solutions of the characteristic
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equation
Gn−1

0 (s)
(
s2eσs +G1(s)

)
= 0 . (5.49)

stay in the left half complex plane.
Since G0(s) = 0 (see H0(s) in (5.47)) is the characteristic equation for linearized

human car-following model (2.11), it is necessary that the human-driven vehicles are plant
stable. This is a reasonable requirement as they should be able to maintain a desired speed
with no disturbance from the traffic. By setting s = iΩ, Ω ≥ 0 in G0(s) = 0 we obtain the
plant stability boundary for human-driven vehicles as

α =
Ω2 cos(τΩ)

κ
,

β = Ω sin(τΩ)− Ω2 cos(τΩ)

κ
.

(5.50)

And in the remainder of this paper we only consider human parameters α, β inside the
plant stability region enclosed by (5.50) and α = 0 (given by G(0) = 0); see the shading
in Fig. 5.7.

For the remaining part of (5.49), we plug (C.9) in (5.47, 5.48) and obtain

s2eσs + (α11 + β11)s+ α11κ = 0 , (5.51)

the characteristic equation for the CCC driving model. Due to the similarity between (5.51)
and G0(s) = 0, the plant stability boundary is the same as (5.50) but with α11 instead of
α, β11 instead of β, and σ instead of τ . However, it is more desirable to present it in the
(γ1, γ2)-plane. Thus, we plug (5.43) into (5.51), consider s = iΩ, Ω ≥ 0, and obtain the
plant stability boundary for the CCC vehicle as

γ1 =
Ω4 cos2(σΩ)

κ2
,

γ2 = Ω2 sin2(σΩ)− Ω4 cos2(σΩ)

κ2
− 2Ω2 cos(σΩ) .

(5.52)

Since the cost function (5.10) requires γ1 > 0, γ2 > 0, we only consider the first quadrant
of the (γ1, γ2)-plane. In Fig. 5.4, the dashed curves represent plant stability boundaries, and
the plant stability area is shaded as light gray for different values of communication delay
as indicated. By comparing the two panels one may notice that as the communication delay
increases the plant stable area shrinks, though it still covers a relatively large portion of the
(γ1, γ2)-plane. Since the communication delay σ is seldom larger than human reaction time
τ , panel (b) shows a quite conservative case.
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γ1 γ1

(a) (b)γ2 γ2

σ = 0.4 [s] σ = 0.6 [s]

Figure 5.4: Plant stability charts in the (γ1, γ2)-plane with communication delay σ as indi-
cated. The plant stability boundaries are denoted by dashed black curves. The plant stable
domains are shaded light gray.

5.3.2 Head-to-tail string stability

At the linear level the necessary and sufficient condition of head-to-tail string stability is
given by

L(ω) = |H( iω)|2 − 1 < 0 , ∀ω > 0 , (5.53)

where H( iω) is defined by (5.46, 5.47, 5.48). String stability is violated when the maxi-
mum of L(ω) is larger than 0, and thus, the string stability boundary is given by the equa-
tions

L(ωcr) = 0 ,
∂L(ωcr)

∂ω
= 0 , (5.54)

subject to
∂2L(ωcr)

∂ω2
≤ 0, where ωcr indicates the location of the maximum of L(ω). When

ωcr = 0, we always have L(0) = 0,
∂L(0)

∂ω
= 0, and the boundary is given by

∂2L(0)

∂ω2
= 0 . (5.55)

As demonstrated in the previous section, feedback gains for vehicles i, i > 6 are negli-
gibly small. Therefore we consider a connected vehicle system with n = 5. To obtain
string stability charts, we solve (5.54) numerically and plot the string stability boundaries
in the (γ1, γ2)-plane and in the (β, α)-plane for different values of communication delay
and human reaction time.

The charts in Fig. 5.5 allow us to choose the design parameters γ1, γ2 so that head-to-
tail string stability is ensured, as indicated by the dark gray region bounded by solid colored
curves. The human gains are chosen as α = 0.6 [1/s], β = 0.9 [1/s], κ = π/2 [1/s] and
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Figure 5.5: Stability charts of a (5 + 1)-car system in the (γ1, γ2)-plane for human param-
eters α = 0.6 [1/s], β = 0.9 [1/s] and κ = π/2 [1/s]. The colored solid curves are the
string stable boundaries. The coloring corresponds to the critical frequency at which string
stability loss happens, as indicated by the colorbar on the right. Shading indicates plant
stability while the string stable regions are shaded dark gray.

stability charts are shown for different values of human reaction time τ and communication
delay σ. In the light gray region, only plant stability is satisfied. For the σ values considered
here, all γ1, γ2 values in the windows shown ensure plant stability.

By comparing the size of the string stable region on the panels, we conclude that in-
creasing the human reaction time and the communication delay both reduce string stability
area, however, human reaction time affects the string stability more prominently. Notice
that in order to achieve head-to-tail string stability, the weights γ1, γ2 have to be large e-
nough. However, when either of these weights is exceedingly large, head-to-tail string
stability will also be lost. The fact that both γ1, γ2 shall be below 1 to ensure string stabil-
ity implies that penalties on velocity differences should be smaller than the penalty on the
control effort (acceleration).

We remark that the human reaction time considered in Fig. 5.5 are larger than the critical
reaction time τcr ≈ 0.325 [s] and thus no string stability exists for any α, β combinations
without V2V connectivity [48], but the system can be made head-to-tail string stable by
using the connectivity in an appropriate way.

The coloring along the string stability boundaries shows the critical frequency where
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Figure 5.6: Magnitude of transfer function as a function of the excitation frequency. Panels
(a–c) correspond to points marked A–C in Fig. 5.5(a).

string stability loss happens, as indicated by the colorbar on the right. Red corresponds
to higher frequency and blue corresponds to lower frequency. Leaving the string stable
region through the dark blue curves, zero-frequency stability loss happens, while leaving
it through the colored curve at the top, the stability loss happens at non-zero frequency,
indicating the consequence of improper connectivity design.

To demonstrate string instabilities at different frequencies, we mark three points A,
B, and C in Fig. 5.5(b) and plot the corresponding Bode plots in Fig. 5.6. Case A is
string stable, with amplitude of transfer function smaller than 1 for all positive frequencies,
cf. (5.53). The corresponding feedback gains and distribution kernels are given in Figs. 5.2
and 5.3. Case B has string instability in higher frequency range, due to the non-zero-
frequency string stability loss at the boundary between points A and B. Such phenomenon
has also been observed when using acceleration feedback in Chapter 4. Case C is string
unstable due to low-frequency instability, corresponding to the zero-frequency stability loss
when crossing the boundary between points A and C.

The charts in Fig. 5.7 allows us to test the robustness of the CCC design for given
design parameters with respect to different human parameters of the non-CCC vehicles.
The same notations are used as in Figs. 5.4 and 5.5. The light gray areas bounded by black
dashed curves given by (5.50) show the plant stable areas that shrink as human reaction
time τ increases. The dark gray regions bounded by colored solid curves are string stable
regions, with the color indicating the frequency at which the stability loss happens. The
coloring along the string stability boundaries show that both zero-frequency and non-zero-
frequency string stability loss exists for all cases. Note that although there may be string
stability regions outside the plant stability region, the lack of plant stability prevents the
connected vehicle system from maintaining uniform traffic flow, so those regions are not
shown in Fig. 5.7.
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Figure 5.7: Stability charts of a (5+1)-car system in the (β, α)-plane for design parameters
γ1 = 0.01 [1/s2] , γ2 = 0.10 [1/s2]. The notation is the same as in Figs. 5.4 and 5.5.

Comparing the different panels in Fig. 5.7, we find that increasing the human reaction
time significantly decreases the string stable area, while the communication delay only
slightly deteriorates string stability. In each panel, the string stable region requires β > 0.5

[1/s] but allows α to be infinitesimally small. This shows that the optimization-based CCC
controller can stabilize the system even when there is little feedback on headway error.

5.4 Nonlinear simulations

While the CCC controller is obtained with little computational cost using a linearized model
for non-CCC vehicles, the algorithm should be able to accommodate nonlinearities arising
in the dynamics of non-CCC vehicles, especially the nonlinearity in the range policy (2.3).
Here we show that this nonlinearity can be added to the CCC design (5.41, 5.45) by using

77



Figure 5.8: Velocity, headway, and acceleration responses of a (5 + 1)-car vehicle string
with human parameters α = 0.6[1/s], β = 0.9 [1/s], κ = π/2 [1/s], τ = 0.4 [s] and
communication delay σ = 0.4 [s]. The black solid curves represent the case with no
connectivity when the tail vehicle is also human-driven. The green solid curves correspond
to the string stable design of the CCC vehicle (γ1 = 0.04 [1/s2], γ2 = 0.30 [1/s2], see point
A in Fig. 5.5(b)). The red solid curves correspond to the string unstable design of the CCC
vehicle (γ1 = 0.04 [1/s2], γ2 = 0.60 [1/s2], see point B in Fig. 5.5(b)). The thin grey curves
are for non-CCC vehicles, and the black dashed curve is the velocity perturbation of the
head vehicle.

the optimized feedback gains and distribution kernels. In particular, we can construct

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) =
n∑
i=1

α1i

(
V (hi(t− σ))− vi(t− σ)

)
+

n∑
i=1

β1i

(
vi+1(t− σ)− vi(t− σ)

)
+

n∑
i=1

∫ 0

−τ
fi(θ)

(
V (hi(t+ θ − σ))− vi(t+ θ − σ)

)
dθ

+
n∑
i=1

∫ 0

−τ
gi(θ)

(
vi+1(t+ θ − σ)− vi(t+ θ − σ)

)
dθ ,

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = α

(
V (hi(t− τ))− vi(t− τ)

)
+ β

(
vi+1(t− τ)− vi(t− τ)

)
,

(5.56)

for i = 2, . . . , n, cf. (2.9), where the range policy function V (h) is given by (2.3, 2.5).
Linearizing (5.56) about the uniform flow equilibrium (2.6) indeed yields (5.41, 5.45).

To evaluate the performance at the nonlinear level, we consider a (5 + 1)-car system
with human delay time τ = 0.4 [s], communication delay σ = 0.4 [s] and simulate the
propagation of headway and velocity perturbations along the connected vehicle system
(5.56). The simulation is performed with Adam-Bashforth fourth-order method.

Fig. 5.8 compares the simulation results for the parameters corresponding to points A
and B in Fig. 5.5(b) with the case where the CCC vehicle loses connectivity and has the
same controller as the human-driven vehicles. The velocity profile of the head vehicle is
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Figure 5.9: Velocity, headway, and acceleration responses of a (5 + 1)-car vehicle string in
a real-traffic scenario. Notations and parameters are the same as in Fig. 5.8.

vn+1(t) = v∗ + vamp
n+1 sin(ωt) with amplitude vamp

n+1 = 5 [m/s], frequency ω = 1 [rad/s] and
v∗ = 15 [m/s].

Without connectivity, attenuation of velocity perturbation is not possible as the human
reaction time τ > τcr. This is demonstrated by the black solid curve in Fig. 5.8(a). For
the string unstable optimal design (point B in Fig. 5.5(b)), the velocity perturbation is
attenuated as shown by the red solid curve in Fig. 5.8(a). However, the magnitude is still
larger than that of the head vehicle (black dashed curve). On the other hand, for the string
stable design corresponding to point A in Fig. 5.5(b), the CCC vehicle’s velocity fluctuation
(green solid curve) has smaller amplitude than the velocity input (black dashed curve), as
depicted in Fig. 5.8(a). These results demonstrate that the linearized design can be used to
predict the nonlinear behavior.

In Fig. 5.8(b), the headway fluctuations of the CCC vehicle (red and green solid curves)
have smaller amplitude compared to the case without connectivity (black solid curve). This
shows that although the CCC design is based on string stability in terms of velocity, the
connectivity can also suppress headway errors. Notice that the headway fluctuation of
the CCC vehicle in the string unstable case B (red solid curve) is slightly smaller than in
the string stable case A (green solid curve), indicating a trade-off between attenuation of
velocity and headway disturbances.

In Fig. 5.8(c) the accelerations of the CCC vehicle (red and green solid curves) are sig-
nificantly smaller compared with the case with no connectivity (black solid curve), where
the acceleration gets excessively large. As the road surface and the vehicle powertrain are
often not able to provide such large acceleration/deceleration, the vehicle in general may
not be able to remain safe.

To test the proposed CCC controller in a more realistic traffic setting, we consider
a velocity profile of the leading vehicle that contains deviation from the uniform flow
with constant acceleration and change of equilibrium points; see the black dashed curve
in Fig. 5.9(a). Here we use the same parameters as in Fig. 5.8. Indeed, the velocity pertur-
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bation of the CCC vehicle is larger when a string unstable design is adopted (compare the
red and green solid curves). However, even with string unstable design, the performance
of CCC vehicles is still significantly better than if there was no connectivity (compare the
red and the black solid curves). Especially that the acceleration response of the tail ve-
hicle without connectivity (black solid curve) may exceed the limit of friction the road
could provide, as it has to engage emergency maneuver for active safety. By exploiting
the information of multiple vehicles ahead, CCC can be used to avoid such safety-critical
situation.

5.5 Conclusion

In this chapter, we proposed a connected cruise control design in a V2V-rich environment
based on linear quadratic regulation. We analyzed the performance of the arising connect-
ed vehicle system where both automated and human-driven vehicles were allowed. By
decomposing the optimization problem we showed that CCC can be designed sequentially
as we incorporate signals from more and more vehicles ahead. Moreover, we showed that
the gains decrease with the number of cars between the CCC vehicle and the signaling ve-
hicle even when heterogeneity of human drivers is taken into account. This implies that a
connected vehicle system using the proposed controller can gracefully degrade into smaller
systems while maintaining certain optimality. Our analytical method significantly reduces
the complexity of CCC design and is scalable for large connected vehicle systems.

We evaluated the head-to-tail string stability and summarized the results using stability
charts. We showed that the optimized CCC is able to stabilize otherwise string unstable
systems when the weights on the headway and velocity errors are chosen appropriately.
This design was also shown to be robust against variations of human parameters and was
extended to the nonlinear level. In the next chapter, we will extend the optimal CCC design
to consider the stochasticity of human parameters in the non-CCC vehicles.
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CHAPTER 6

Optimal design of connected cruise control
considering stochastic human behavior

In this chapter we design a connected cruise controller that takes into consideration s-
tochastic variations in human parameters. In Chapters 4 and 5 nominal values of human
parameters α, β, κ, τ are used to demonstrate different design methods for a connected
automated vehicle in V2V-sparse and V2V-rich environments, respectively. On the other
hand, results from Chapter 3 show that human parameters vary in time stochastically (see
Fig. 3.5) and follow certain distributions (see Fig. 3.6 and Fig. 3.7). Since the gains in
a CCC controller in V2V-sparse environment are tuned directly as design parameters, the
mean of human parameters can be set as the nominal values, and the variance can be taken
into consideration via robustness analysis. However, the optimal CCC design in V2V-rich
environment under stochastic human parameters may take different feedback gains and k-
ernels, and robustness analysis may be more challenging. In this chapter, we design an
optimal CCC controller while taking into account the distributions of human parameters,
and test its performance based on the four-car experiment presented in Chapter 3.

6.1 Optimal control based on mean dynamics

Fig. 3.6 and Fig. 3.7 have shown that the feedback gains αi, βi, the inverse time headway
κi and reaction time τi for human drivers vary stochastically. We consider the human car-
following model with linear range policy function (3.1) and take the expected value

E
[
ḣi(t)

]
= E[vi+1(t)]− E[vi(t)] ,

E
[
v̇i(t)

]
= E

[
αi(t)

(
κi(t)hi

(
t− τi(t)

)
− vi

(
t− τi(t)

))]
+ E

[
βi(t)

(
vi+1

(
t− τi(t)

)
− vi

(
t− τi(t)

))]
.

(6.1)
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Denote the mean state variables and parameters

h̄i(t) = E[hi(t)], v̄i(t) = E[vi(t)],

ᾱi = E[αi(t)], β̄i = E[βi(t)], κ̄i = E[κi(t)],
(6.2)

and assume the gains αi, βi, the inverse time headway κi and reaction time τi are indepen-
dent and identically distributed (IID). Then we have

˙̄hi(t) = v̄i+1(t)− v̄i(t) ,
˙̄vi(t) = ᾱi

(
κ̄iE
[
hi
(
t− τi(t)

)]
− E

[
vi
(
t− τi(t)

)])
+ β̄i

(
E
[
vi+1

(
t− τi(t)

)]
− E

[
vi
(
t− τi(t)

)])
.

(6.3)

Denote the realization of vehicle speed vi ∈ [0, vmax] and reaction time τi ∈ [0, τmax] as
ṽi and τ̃i, where τmax is the maximum reaction time. Then due to the IID property of the
reaction time

E
[
vi
(
t− τi(t)

)]
=

∫ τmax

0

∫ vmax

0

ṽi P[vi
(
t− τ̃i

)
= ṽi, τi(t) = τ̃i] dṽi dτ̃i

=

∫ τmax

0

(∫ vmax

0

ṽi P[vi
(
t− τ̃i

)
= ṽi] dṽi

)
P[τi(t) = τ̃i] dτ̃i

=

∫ τmax

0

v̄i
(
t− τ̃i

)
P[τi(t) = τ̃i] dτi ,

(6.4)

where P[τi(t) = τ̃i] is the probability of reaction time τi(t), and P[vi
(
t− τ̃i

)
= ṽi, τi(t) =

τ̃i] is the joint probability of reaction time τi(t) and speed vi
(
t− τ̃i

)
.

In this way we have the mean dynamics as

˙̄hi(t) = v̄i+1(t)− v̄i(t) ,

˙̄vi(t) = ᾱi

∫ 0

−τmax

wi(θ)
(
κ̄ih̄i(t+ θ)− v̄i(t+ θ)

)
dθ

+ β̄i

∫ 0

−τmax

wi(θ)
(
v̄i+1(t+ θ)− v̄i(t+ θ)

)
dθ .

(6.5)

where the distribution wi(θ) is the probability density function of the reaction time for
θ ∈ [−τmax, 0]. That is, when taking the expected value of (3.1) we obtain an expected
value of the gains and the range policy slope while the delay distribution appears explicitly.
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Similarly, the mean car-following dynamics of the CCC vehicle is given by

˙̄h1(t) = v̄2(t)− v̄1(t) ,

˙̄v1(t) = u(t) ,
(6.6)

where u(t) is the optimal CCC controller to be designed.
Similar to (5.5, 5.6), we define

xi =

[
κ̄ih̄i − v̄i
v̄i+1 − v̄i

]
, φn =

[
0

˙̄vn+1

]
, (6.7)

where i = 1, . . . , N . Then we construct the vectors

X =


x1

...
xn

 , φ =


0
...
0

φn

 , (6.8)

and rewrite the mean dynamics of the connected vehicle system (6.5, 6.6) as a system with
distributed delay

Ẋ(t) = AX(t) +

∫ 0

−τmax

G(θ)X(t+ θ) dθ + Du(t) + φ(t) . (6.9)

The coefficient matrices are given by

A =


A1

. . .

An

 , D =


D1

0
...
0

 , G(θ) =


0 G12(θ)

G22(θ) G23(θ)
. . . . . .

Gnn(θ)

 ,
(6.10)

where the blocks are defined by

Ai =

[
0 κ̄i

0 0

]
, Gii(θ) = −

[
ᾱi β̄i

ᾱi β̄i

]
wi(θ),

D1 =

[
−1

−1

]
, G(i−1)i(θ) =

[
0 0

ᾱi β̄i

]
wi(θ) .

(6.11)
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Note that the coefficient matrices Gij(θ) for the distributed delay has the same upper-
triangular structure as the matrices (5.8) in the point delay, which indicates that the method
used to solve the LQ problem with point delay in Chapter 5 may be applied here as well.

We recall the multi-objective cost function (5.10)

Jtf (u,X) =

∫ tf

0

(
u2 + γ1

(
κ̄1h̄1 − v̄1

)2
+ γ2

(
v̄2 − v̄1

)2
)

dt

=

∫ tf

0

(
u2 +X TΓX

)
dt ,

(6.12)

where γ1 > 0, γ2 > 0 and

Γ = diag[γ1, γ2, 0, . . . , 0] ∈ R2n×2n. (6.13)

The optimal controller under this distributed time delay maintains the same form (5.19) as
under the point delay [63], that is,

u(t) = −DT

(
P1(t)X(t) +

∫ 0

−τmax

Q1(t, θ)X(t+ θ) dθ + P2(t) +

∫ 0

−τmax

Q2(t, θ) dθ

)
,

(6.14)

and similarly the state-feedback-control gain matrices P1(t),Q1(t, θ) are not influenced
by the disturbance φ(t). We consider φ(t) = 0 and set time horizon tf → ∞ in the cost
function (5.10). Then we also have the steady-state solution

P1(t) ≡ P1, Q1(t, θ) ≡ Q1(θ), R1(t, ξ, θ) ≡ R1(ξ, θ) ,

P2(t) ≡ 0, Q2(t, θ) ≡ 0 .
(6.15)

Substituting (6.15) into (6.14) also leads to the simplified controller as in (5.22)

u(t) = −DT

(
P1X(t) +

∫ 0

−τmax

Q1(θ)X(t+ θ) dθ

)
, (6.16)

where the matrices P1, Q1(θ) are given by

ATP1 + P1A−P1DDTP1 + Q1(0) + QT
1 (0) + Γ = 0 ,

∂θQ1(θ) =
(
AT −P1DDT

)
Q1(θ) + P1G(θ) + R1(0, θ) ,

(∂ξ + ∂θ)R1(ξ, θ) = GT(ξ)Q1(θ) + QT
1 (ξ)G(θ)−QT

1 (ξ)DDTQ1(θ) ,

(6.17)
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with boundary conditions

Q1(−τmax) = 0 , R1(−τmax, θ) = 0 . (6.18)

Note that the Riccati equation (5.23) for the connected vehicle system with point delay (5.7)
and the Riccati equation (6.17) for the connected vehicle system with distributed delay (6.9)
share the same structure, while the later has extra terms corresponding to the probability
density function of the delay time. Here we have trivial boundary condition (6.18) because
the mean dynamics (6.9) does not have point delay any more.

We apply the notation (5.25)

P1 =


P11 · · · P1n

... . . . ...
Pn1 · · · Pnn

 , Q1(θ) =


Q11(θ) · · · Q1n(θ)

... . . . ...
Qn1(θ) · · · Qnn(θ)

 , (6.19)

where Pij,Qij(θ) ∈ R2×2 for i, j = 1, . . . , n, and the optimal controller takes the form
(5.26)

u(t) = −DT
1

n∑
i=1

(
P1ixi(t) +

∫ 0

−τmax

Q1i(θ)xi(t+ θ) dθ

)
, (6.20)

where xi(t) is defined in (6.7). Again, we only need to derive P1i,Q1i(θ) for i = 1, . . . , n

to construct the controller. Substituting (5.25) into (6.17, 6.18), we obtain equations for
each block Pij,Qij(θ),Rij(ξ, θ), i, j = 1, . . . , n, which can be solved recursively.

Since P11, Q11(θ) and R11(ξ, θ) are not influenced by car-following dynamics of pre-
ceding vehicles, they remain the same as in the point delay case, cf. (5.30, 5.31). However,
to obtain P1i,Q1i(θ),Qi1(θ) for i = 2, . . . , n, we need to solve

Â1P1i + P1iAi + Q1i(0) + QT
i1(0) = 0 ,

∂θQ1i(θ) = Â1Q1i(θ) + P1(i−1)G(i−1)i(θ) + P1iGii(θ) + R1i(0, θ) ,

∂θQi1(θ) = AT
1 Qi1(θ)−PT

1iD1D
T
1 Q11(θ) + RT

1i(θ, 0) ,

(∂ξ + ∂θ)R1i(ξ, θ) = QT
(i−1)1(θ)G(i−1)i + QT

i1(θ)Gii −QT
11(ξ)D1D

T
1 Q1i(θ) ,

(6.21)

where Â1 = AT
1 −P11D1D

T
1 , cf. (5.29), and the boundary conditions are

Q1i(−τmax) = 0 , Qi1(−τmax) = 0 ,

R1i(θ,−τmax) = 0 , R1i(−τmax, θ) = 0 .
(6.22)
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Now (6.21, 6.22) give the solution

Qi1(θ) ≡ 0, R1i(ξ, θ) ≡ 0 , (6.23)

while the equations for Q1i(θ) simplify to

∂θQ1i(θ) = Â1Q1i(θ) + P1(i−1)G(i−1)i(θ) + P1iGii(θ),

Q1i(−τmax) = 0 ,
(6.24)

yielding the solution

Q1i(θ) =

∫ θ

−τmax

eÂ1(θ−ρ)
(
P1(i−1)G(i−1)i(ρ) + P1iGii(ρ)

)
dρ , (6.25)

for i = 2, . . . , n, cf. (5.36). Thus, the equation for P1i becomes∫ 0

−τmax

e−ρÂ1(P1(i−1)G(i−1)i(ρ) + P1iGii(ρ)) dρ+ Â1P1i + P1iAi = 0 , (6.26)

cf. (5.37), yielding the solution

vec(P1i) =
i∏

j=2

Mjvec(P11) , (6.27)

for i = 2, . . . , n, cf. (5.38). Here vec(·) gives a column vector by stacking the columns of
the matrix on the top of each other, and Mi ∈ R4×4 is given by

Mi =−
(

I⊗ Â1 + AT
i ⊗ I +

∫ 0

−τmax

GT
ii (ρ)⊗ e−ρÂ1 dρ

)−1(∫ 0

−τmax

GT
(i−1)i ⊗ e−ρÂ1 dρ

)
,

(6.28)

cf. (5.39).

6.2 Constructing the CCC controller

Recalling (6.10, 6.11), we denote

Bii = −
[
ᾱi β̄i

ᾱi β̄i

]
, B(i−1)i =

[
0 0

ᾱi β̄i

]
, (6.29)
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and recall (C.10)
e−ρÂ1 = Ke−ρĴ1K−1 , (6.30)

where Ĵ1 is the Jordan form of Â1 (see (C.11) for the eigenvalues).
Thus, here we have∫ 0

−τmax

GT
ii (ρ)⊗ e−ρÂ1 dρ = BT

ii ⊗
(

K

∫ 0

−τmax

wi(ρ)

[
e−ρλ1 0

0 e−ρλ2

]
dρK−1

)
(6.31)

Denote

Li(θ) =

[
li1(θ) 0

0 li2(θ)

]
, li1(θ) =

∫ θ

−τmax

wi(ρ)e−ρλ1 dρ , li2(θ) =

∫ θ

−τmax

wi(ρ)e−ρλ2 dρ ,

(6.32)

then (6.28) becomes

Mi =−
(
I⊗ Â1 + AT

i ⊗ I + BT
ii ⊗

(
KLi(0) K−1

))−1(
BT

(i−1)i ⊗
(
KLi(0) K−1

))
.

(6.33)

and (6.25) becomes

Q1i(θ) = KeθĴ1Li(θ)K
−1
(
P1(i−1)B(i−1)i + P1iBii

)
. (6.34)

Based on definitions (5.40, 6.7), the optimal controller (6.20) for the CCC vehicle is
given by

u(t) =
n∑
i=1

(
α1i

(
κ̄ih̄i(t)− v̄i(t)

)
+ β1i

(
v̄i+1(t)− v̄i(t)

))
+

n∑
i=1

∫ 0

−τmax

fi(θ)
(
κ̄ih̄i(t+ θ)− v̄i(t+ θ)

)
dθ

+
n∑
i=1

∫ 0

−τmax

gi(θ)
(
v̄i+1(t+ θ)− v̄i(t+ θ)

)
dθ ,

(6.35)

where the distribution kernels take the form

fi(θ) =
(
ai0 + ai1θ

)
eλ1θli1(θ) + ai2 eλ2θli2(θ) ,

gi(θ) =
(
bi0 + bi1θ

)
eλ1θli1(θ) + bi2 eλ2θli2(θ) ,

(6.36)
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for i = 1, . . . , n, θ ∈ [−τmax, 0], where λ1, λ2 are the eigenvalues of Â1. The expressions
for λ1, λ2, ai0, ai1, ai2, and bi0, bi1, bi2 are given in Appendix B.

As the feedback kernels (6.32, 6.36) depend on the distribution wi(ρ) of the driver
reaction time, and the histograms of estimated driver reaction time shown in Fig. 3.6 re-
sembles a Gaussian distribution or a Gamma distribution, here we calculate and compare
the feedback kernels when assuming Gaussian and Gamma distributions.

6.2.1 Gaussian Distribution

Consider scaled Gaussian distribution

wi(τi) =
1

Wi

√
2πσ2

i

e
−

(τi − τ̄i)2

2σ2
i , (6.37)

where τi ∈ [0, τmax], the mean of the reaction time is τ̄i, σi is the variance of the reaction
time and the scaling factor

Wi =

∫ τmax

0

e−(τi−τ̄i)2/(2σ2
i )√

2πσ2
i

dρ =
1

2
erf
( τ̄i√

2σi

)
− 1

2
erf
( τ̄i − τmax√

2σi

)
, (6.38)

Thus, consider ρ = −τi, then the function in (6.32) becomes

lij(θ) =
eλj τ̄i+σ

2
i λ

2
j/2

2Wi

(
erf
(θ + τ̄i + λjσ

2
i√

2σi

)
− erf

(−τmax + τ̄i + λjσ
2
i√

2σi

))
, (6.39)

where j = 1, 2.

6.2.2 Gamma distribution

Consider scaled Gamma distribution for τi ∈ [0, τmax]

wi(τi) =
τai−1
i e−τi/bi∫ τmax

0
sai−1 e−s/bi ds

(6.40)

where ai is the shape parameter and bi is the scale parameter. Consider ρ = −τi, then the
function in (6.32) becomes

lij(θ) =
Γ(ai, τmax/bi − λjτmax)− Γ(ai,−θ/bi + λjθ)

(1− λjbi)aiΓ(ai, τmax/bi)
. (6.41)

where Γ(a, b) =
∫ b

0
ta−1 e−t dt is the lower incomplete gamma function.
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Figure 6.1: (a) Histogram of estimated driver reaction time τ̃3, cf. Fig. 3.6(b). (b) Proba-
bility density function of τ̃3. The blue curve is Gaussian distribution (6.37), while the red
curve is for Gamma distribution (6.40).

Plugging the function (6.39) or (6.41) into (6.35, 6.36), we obtain the optimal CCC
controller with consideration of stochastic human parameters.

6.3 Case study based on experimental data

In this section we apply the proposed CCC controller (6.35, 6.36) in the four-car experiment
presented in Chapter 3. Since the last vehicle in the string has large velocity and headway
fluctuations (cf. Fig. 3.3), we replace the human driver in the last car with the optimal
controller (6.35, 6.36), and compare its performance with the human driver. While the
controller gains and kernels (6.27, 6.34) allow heterogeneous human parameters ᾱi, β̄i,
κ̄i and delay distribution wi(ρ), for simplicity, here we assume the parameters and delay
distribution for vehicle 2 are the same as vehicle 3, i.e., ᾱ3 = 0.2 [1/s], β̄3 = 0.4 [1/s],
κ̄3 = 0.6 [1/s]; cf. Fig. 3.7(b,d,f).

To obtain the delay distribution w3(ρ), ρ ∈ [−τmax, 0], we recall the histogram of
estimated driver reaction time τ̃3 from Fig. 3.6(b). We consider the maximum delay time
τmax = 1.5 [s] and fit the histogram with a Gaussian distribution and a Gamma distribution,
as shown in Fig. 6.1. The mean and standard deviation for the Gaussian distribution are
τ̄3 = 0.86 [s] and σ3 = 0.30 [s]. The shape and scale parameters for the Gamma distribution
are a3 = 6.79 and b3 = 0.13. The probability density function for both the Gaussian and
Gamma distributions are plotted in Fig. 6.1(b). While the probability density function of the
Gamma distribution (red curve) has smaller values as τ̃3 approaches zero, both distributions
are fairly close to the histogram.
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Figure 6.2: Optimal feedback gains α1i, β1i and kernels fi(θ), gi(θ) in the CCC controller
when considering discrete delay time, Gaussian distribution and Gamma distribution. The
blue dots and curves correspond to using the mean delay time τ̄3 = 0.86 [s]. The red
crosses and curves are for stochastic delay time under Gaussian distribution (6.37) with
τ̄3 = 0.86 [s] and σ3 = 0.30 [s]. The black circle and curves are for stochastic delay time
under Gamma distribution (6.40) with a3 = 6.79 and b3 = 0.13. The design parameters are
γ1 = 0.01, γ2 = 0.04.
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Figure 6.3: The headway, velocity, and acceleration profiles of a (3 + 1)-car vehicle string.
The color scheme is the same as in Fig. 3.3. The green curves correspond to the response
of the tail vehicle when it is driven by the CCC controller (6.35).
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The optimal feedback gains and kernels are given by (5.38, 5.42) under nominal driver
reaction delay τ and (6.27, 6.36) under distributed driver reaction delay. To demonstrate the
influence of the distributed delay on the CCC controller, we first use the mean value of the
estimated delay time τ̄3 = 0.86 [s] as the nominal delay time to obtain a set of optimal gains
and kernels, then consider the Gaussian and Gamma distribution in the controller design.
The cost function (5.10) has design parameters γ1 = 0.01, γ2 = 0.04. In Fig. 6.2, the
feedback gains α1i, β1i and kernels fi(θ), gi(θ) are plotted in blue, red, and black for point
delay, Gaussian-distributed delay, and Gamma-distributed delay, respectively. Fig. 6.2(a,b)
show that the feedback gains match well between three cases, i.e., if the mean value of
driver reaction time remains the same, the feedback gains are not influenced by the variance
of the delay time. However, Fig. 6.2(c,d) show that the kernels differ significantly under
point delay (blue) and distributed delay (red, black). While kernels fi(θ), gi(θ) under the
distributed delay cover the full range of possible delay values, kernels under the point
delay only extend to the mean delay value. However, for a particular i, the area under a
red, blue, or black kernel does not differ significantly, i.e., the 1-norm of fi(θ) or gi(θ) are
similar for point delay or distributed delay. In particular, there seems to be little difference
between kernels under Gamma distribution or Gaussian distribution. Therefore, we use
kernels under Gaussian distribution (red curves) to evaluate the performance of the CCC
controller.

In Fig. 6.3(a) the black, red, and blue curves are the headway h3, h2, h1 observed in
the experiment, while the green curve is the headway h1 of the tail vehicle controlled by
CCC. We find the CCC vehicle (green curve) has much smaller fluctuations in headway
than any human-driven vehicle. While the real tail vehicle almost collided with vehicle
3 in the experiment (at t ≈ 210 [s], h1(t) ≈ 0 [m]), such a safety hazard is avoided
when the tail vehicle is driven by the CCC. In Fig. 6.3(b) the magenta curve is the velocity
v1 of the head vehicle, while the other curves have the same color scheme as in panel
(a). Again, the tail vehicle will have smaller fluctuations in velocity compared with other
vehicles when it is driven by a CCC controller. In Fig. 6.3(c) we compare the acceleration
v̇1 of the tail vehicle (blue curve) and the acceleration u of the CCC vehicle (green curve).
Notice that the CCC vehicle reduces harsh braking and acceleration maneuvers. In general
the CCC controller demonstrates significant performance improvements compared with
human-driven vehicles.
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6.4 Conclusion

In this chapter we designed a connected cruise controller that considers human car-following
with stochastic gains, range policy slope and reaction time delay. Under the assumption of
IID, the mean dynamics of the car-following model is represented with distributed time
delay. Compared with the CCC design under the point delay in Chapter 5, the feedback
gains do not have recognizable changes, while the feedback kernels exhibit significant dif-
ferences. The optimal CCC controller is tested using headway and velocity data collected
in a 4-car experiment described in Chapter 3, and it is shown to reject traffic disturbances
much better than a human driver.
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CHAPTER 7

Optimal design of connected cruise control
considering stochastic traffic disturbance and

imperfect communication

In this chapter we include stochastic traffic disturbances and packet losses in V2V commu-
nication. In particular, we write the connected vehicle system as a Markov decision process
with stochastic disturbances, and synthesize connected cruise controllers using probabilis-
tic model checking [65], [66]. The synthesized CCC controller is collision-free and sup-
presses headway and velocity fluctuations based on ad-hoc V2V connectivity. While the
CCC controllers proposed in Chapters 4, 5 and 6 are physically intuitive, computationally
efficient, and robust to a certain degree, they cannot provide the CCC vehicle performance
guarantees like the collision-free feature. Also, those controllers only contain static feed-
back terms, which might limit their response to disturbances in the traffic flow and V2V
communication. Thus, probabilistic model checking is introduced as a new design method
so that the controller can perform well in more realistic traffic scenarios.

The layout of this chapter is as follows. In Section 7.1 we introduce the car-following
model used for human-driven vehicles and a class of connected cruise controllers with sim-
ilar structure. In Section 7.2 we formulate the optimal connected cruise control design
problem in terms of probabilistic model checking, and demonstrate how stochastic velocity
disturbances can be included in this framework. In Section 7.3 we synthesize connected
cruise controllers in a simple scenario and test their performance using numerical simula-
tions. Finally, we conclude our findings in Section 7.4.

7.1 Modeling connected vehicle systems

In this section we model connected vehicle systems in discrete time under stochastic dis-
turbances. We first describe the human car-following behavior using the optimal velocity
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model (2.9), and then set up a class of connected cruise controllers which are structurally
similar to the optimal velocity model. The predefined structure specifies certain dynam-
ic properties the synthesized controller should exhibit, and thus reduces the emphasis on
specifications formulated by linear temporal logic [67]. This setup may also give us more
insights to the dynamics of the connected vehicle system and may scale well for connected
vehicle systems consisting of a large number of vehicles.

7.1.1 Human car-following model

Recall the optimal velocity model for the human-driven vehicle i

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = αi

(
Vi(hi(t))− vi(t)

)
+ βi

(
vi+1(t)− vi(t)

)
,

(7.1)

where the driver reaction time is neglected for simplicity and the range policy function is
given by (2.3, 2.4)

Vi(h) =


0 if h ≤ hst ,

κi(h− hst) if hst < h < hgo ,

vmax if h ≥ hgo .

(7.2)

Here we use vmax = 30 [m/s], hst = 5 [m], κi = 1 [1/s] that corresponds to the time head-
way th = 1/κi = 1 [s] in the region where hst < h∗ < hgo, 0 < v∗ < vmax. In particular,
we consider the system in the vicinity of the equilibrium (h∗, v∗) = (20 [m], 15 [m/s]).

7.1.2 Structured connected cruise controller

We recall the configuration shown in Fig. 5.1 where the vehicle at the tail is equipped
with connected cruise control and it receives motion information from the n vehicles ahead
through vehicle-to-vehicle communication (see dashed arrows terminating at vehicle 1).
For simplicity, we assume that preceding vehicles are human-driven and can be described
by (7.1).

Based on the dynamics of human-driven vehicles (7.1), we construct the connected
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cruise controller in the form

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) = α11

(
V1(h1(t))− v1(t)

)
+ β11

(
w2(t)− v1(t)

)
+

n∑
j=2

β1j

(
wj+1(t)− wj(t)

)
,

(7.3)

where α11 and β1j , j = 1, · · · , n are the feedback gains to be designed, and wj(t), j =

2, . . . , n+1, are the velocity signals received by the connected cruise controller. We assume
the headway h1 and velocity v1 of vehicle 1 are measured on-board, and thus are available
to the controller. The received velocity signal wj(t) is equivalent to the actual velocity vj(t)
without packet loss, but may differ when packet drops occur. Still, even for wj 6= vj the
equilibrium of the vehicle equipped with connected cruise control is given by (2.6).

In Chapter 5 we have shown that for a fixed group of preceding vehicles without packet
loss, the optimal connected cruise control design gives β1j that are constant in time but
decrease with j. We can exploit this result later when synthesizing the optimal gains α11

and β1j , j = 1, . . . , n.

7.1.3 Implementing connected cruise control

Here we consider the human car-following model (2.2) and the connected cruise control
(7.3) in the linear region and write them in discrete time to take into consideration the
effect of sampling and zero-order hold in digital controllers. For simplicity we assume that
the clocks used by the vehicles are synchronized.

We assume the dynamics of human-driven vehicles fluctuate around an equilibrium s-
tate (2.6), then we want the dynamics of the vehicle equipped with connected cruise control
(7.1, 7.2) to be in the vicinity of that state as well. Because v∗ = 0 describes the jammed
state and v∗ = vmax corresponds to free flow, we focus on the equilibrium states where the
desired velocity increases with the headway linearly (i.e., hst < h < hgo, 0 < v < vmax,
see the middle part in Fig. 3.1(b)).

We define the headway perturbations h̃i(t) = hi(t) − h∗ and velocity perturbations
ṽi(t) = vi(t)− v∗ and linearize (7.1) about the equilibrium (2.6):

˙̃hi(t) = ṽi+1(t)− ṽi(t) ,
˙̃vi(t) = αi

(
κ1h̃i(t)− ṽi(t)

)
+ βi

(
ṽi+1(t)− ṽi(t)

)
.

(7.4)
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Similarly we linearize the connected cruise controller (7.3)

˙̃v1(t) = α11

(
κ1h̃1(t)− ṽ1(t)

)
+ β11

(
w̃2(t)− ṽ1(t)

)
+

n∑
j=2

β1j

(
w̃j+1(t)− w̃j(t)

)
, (7.5)

where w̃j(t) = wj(t)− v∗.
When using vehicle-to-vehicle communication the human-driven vehicles transmit their

kinematic data intermittently in every ∆t. To represent this sampling we first discretize
(B.1) with time step ∆t:

h̃i[k + 1] = h̃i[k] + ∆t (ṽi+1[k]− ṽi[k]) ,

ṽi[k + 1] = ṽi[k] + ∆t αi

(
κ1h̃i[k]− ṽi[k]

)
+ ∆t βi

(
ṽi+1[k]− ṽi[k]

)
,

(7.6)

which approximates the sampled dynamics of human-driven vehicle i. Here we introduced
the notation h̃i[k] = h̃i(k∆t), ṽi[k] = ṽi(k∆t).

We then discretize (7.5) with the same time step in order to describe the dynamics of
the vehicle equipped with digital connected cruise control. We assume the digital controller
uses zero-order hold by utilizing h̃i[k] and ṽi[k] in the time interval [k∆t, (k + 1)∆t), but
for simplicity we ignore the O(∆t2) terms. In this case, the discretized dynamics of the
connected cruise controller is given by

h̃1[k + 1] = h̃1[k] + ∆t (ṽ2[k]− ṽ1[k]) ,

ṽ1[k + 1] = ṽ1[k] + ∆t α11

(
κ1h̃1[k]− ṽ1[k]

)
+ ∆t β11

(
w̃2[k]− ṽ1[k]

)
+

n∑
j=2

∆t β1j

(
w̃j+1[k]− w̃j[k]

)
,

(7.7)

Based on (7.6, 7.7), we formulate the controller synthesis problem in the next section.

7.2 Controller synthesis using probabilistic model check-
ing

In this section we present the framework that uses probabilistic model checking to synthe-
size connected cruise controllers considering stochastic events. We express the dynamics of
the connected vehicle system (7.6, 7.7) as a Markov decision process and formulate the op-
timization objective accordingly. In particular, we consider stochastic velocity disturbance
from the leading vehicle and also model the packet losses.
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7.2.1 Markov chain for human-driven vehicles

Here we rewrite the sampled dynamics (7.6) of a human-driven vehicle as a Markov chain.
We first quantize a bounded region of the state space into a finite number of cells. We
consider bounded headway and velocity disturbances[

h̃min

ṽmin

]
≤
[
h̃

ṽ

]
≤
[
h̃max

ṽmax

]
, ṽmin ≤ w̃i ≤ ṽmax , (7.8)

for i = 2, . . . , n. With quantization sizes

∆h =
h̃max − h̃min

Nh

, ∆v =
ṽmax − ṽmin

Nv

, (7.9)

we define the quantized states and disturbances

xi = floor
(
h̃i/∆h

)
, yi = floor(w̃i/∆v) , zi = floor

(
ṽi/∆v

)
, (7.10)

for i = 2, . . . , n, with xi evaluated among Nh cells, and yi and zi in the Nv cells.
When considering a connected vehicle system of n+1 vehicles with stochastic velocity

disturbance from the leading vehicle, we assume that ṽn+1 is bounded and the probability
transition matrix Cn+1 of the stochastic signal ṽn+1[k] is known, that is,

Pvn+1 [k + 1] = Cn+1 Pvn+1 [k] , (7.11)

where Pvn+1 [k] is the probability distribution of the quantized state zn+1 = floor(ṽn+1/∆v)

at time step k.
Then, based on the discretized car-following model (7.6) and (7.11), we are able to

write the dynamics of human-driven vehicles (7.6) as a Markov chain

Phuman[k + 1] = Chuman Phuman[k] , (7.12)

where Phuman[k] denotes the probability distribution of the quantized state
[
x2 z2 . . . xn zn zn+1

]T

at time step k, cf. (7.10).
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7.2.2 Markov decision process for connected cruise control

We consider a finite set of feedback gains for the discretized linear connected cruise con-
troller (7.7)

α11 = Ka∆α , β1i = Kbi∆β , (7.13)

where Ka, Kbi ∈ {0, . . . ,m}, m ∈ N+, and i = 1, . . . , n. Now we are able to write the
dynamics of the vehicle equipped with connected cruise controller as a Markov decision
process

P1[k + 1] = CCCC(z2, y2, . . . , yn+1;Ka, Kb1, . . . , Kbn) P1[k] , (7.14)

where P1[k] is the probability distribution of the state
[
x1 z1

]T

, while the probability
transition matrix CCCC depends on the actual velocity disturbance z2, the received velocity
signals yi for i = 2, . . . , n+ 1, and undetermined feedback gains Ka, Kbi for i = 2, . . . , n,
at time step k.

Now we specify the relation between the received signal wi and the actual velocity vi in
order to complete the description of the connected vehicle system. When there is no packet
drop, the received signal corresponds to the actual motion of vehicle i

wi[k] = vi[k] ⇒ yi[k] = zi[k] , (7.15)

for i = 2, . . . , n, cf. (7.10). However, according to the vehicle-to-vehicle communication
protocol, when a packet is dropped, it will not be resent at the next transmission, and the
connected cruise controller uses the information received in the previous time step. Thus,
we have

wi[k] = vi[k − 1] ⇒ yi[k] = zi[k − 1] . (7.16)

In [58] it was found that the probability of more than one consecutive packet drops is
relatively low. Thus, we only consider non-consecutive packet drops.

Therefore the dynamics of the connected vehicle system can be described by the Markov
decision process (7.12, 7.14, 7.15) when there is no packet drop at time step k, while (7.12,
7.14, 7.16) is used when there is packet drop at time step k. The stochastic dynamics of
packet drops can be integrated into the setup, but we only consider the scenario where every
second packet is lost.

In order to synthesize the controller we set up the following stochastic optimization
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problem:

min
N∑
k=1

E
[
γ1x

2
1[k] + γ2z

2
1 [k] + u2

1[k]
]
,[

x1[N ]

z1[N ]

]
∈ Ωend ,

[
x1[k]

z1[k]

]
∈ Ωsafe ,

(7.17)

for k = 1, . . . , N , where E denotes the expected value, γ1 and γ2 are the weighting factors
for the headway and velocity fluctuations, respectively, while u1 is the acceleration of vehi-
cle 1 defined in (7.3, 7.7, 7.10). We also require the dynamics of the vehicle equipped with
connected cruise control to stay within the safe region Ωsafe in the quantized state space and
to reach the desired region Ωend at the end of the optimization. Note that the time horizon
N is not given but depends on when the trajectory hits Ωend.

The optimization problem (7.12, 7.14, 7.15, 7.16, 7.17) can be solved using the stochas-
tic model checking software PRISM [66]. The synthesized controller will be given as a map
between the strategy Ka, Kbi and the headway and velocity fluctuations:

α11 = Ka(x1, z1, z2, y2, . . . , yn+1)∆α ,

β1i = Kbi(x1, z1, z2, y2, . . . , yn+1)∆β ,
(7.18)

for i = 1, . . . , n, cf. (7.13). Though such maps may not be deterministic for general
stochastic optimization problems, for this particular problem we have a deterministic cor-
respondence between the quantized states (x1, z1, z2, y2, . . . , yn+1) and the optimized feed-
back gains at each time step.

Note that due to the optimization setup, no feedback gains are specified for (x1, z1) ∈
Ωend. One simple strategy in such cases is to set the feedback gains zero inside the end
region, which we implement in this paper.

7.3 Simulation

In this section, we demonstrate the simplest results of probabilistic model checking by
designing connected cruise control for a two-vehicle system (i.e., n = 1 in (7.3)). Here we
only have two feedback gains:

α11 = Ka(x1, z1, z2, y2)∆α , β11 = Kb1(x1, z1, z2, y2)∆β . (7.19)
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Figure 7.1: Histogram of 10000 velocity profiles v2(t) evaluated at t = 50 [s], where v2(t)
is generated by (7.11, 7.23, 7.24).

We first synthesize the connected cruise controller using (7.14, 7.15, 7.16, 7.17) in discrete
time and quantized space, and then simulate the continuous-time controller (7.3) with zero-
order-hold assumption on the disturbance and feedback gains.

We consider the time step ∆t = 0.4 [s] and the quantization size ∆h = 3 [m], ∆v =

3 [m/s], and we set the fluctuation bounds h̃max = 12 [m], h̃min = −12 [m], ṽmax =

12 [m/s] and ṽmin = −12 [m/s]. Thus, the number of headway and velocity cells are
Nh = 8 and Nv = 8, respectively. For fluctuations with tighter bounds, the time step and
quantization size can be proportionally reduced. We set the total number and increments
for the quantized feedback gains asm = 5, ∆α = 0.3 [1/s], ∆β = 0.4 [1/s]. The weighting
factors are chosen to be γ1 = 1 and γ2 = 1.

We define the safety region and the end condition as

Ωsafe =

{[
x1

z1

] ∣∣∣ [1

1

]
≤
[
x1

z1

]
≤
[

8

8

]}
,

Ωend =

{[
x1

z1

] ∣∣∣ [4

4

]
≤
[
x1

z1

]
≤
[

5

5

]}
.

(7.20)

We consider bounded fluctuation of velocity v2

v∗ − 2∆v ≤ v2 ≤ v∗ + 2∆v , (7.21)
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Figure 7.2: (a,b): Headway and velocity responses for a (1 + 1)-vehicle string as functions
of time. The blue solid curves show the headway h1(t) and the velocity v1(t) for the
vehicle equipped with connected cruise control. The green dots show the velocity v2(t)
of the leading vehicle, which is the same as the received velocity signal w2(t). (c,d): The
feedback gains α11 and β11 used by the controller.
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that yields
3 ≤ z2 ≤ 6 , (7.22)

and assume the probability transition matrix

C2 =


0.7840 0.3200 0 0

0.2160 0.3800 0.3080 0

0 0.3000 0.3840 0.2160

0 0 0.3080 0.7840

 , (7.23)

cf. (7.11). This probability transition matrix has an eigenvalue at 1 and the corresponding

eigenvector K =
[
0.3058 0.2064 0.2011 0.2867

]T

gives the steady-state probability
distribution of z2. As an illustration, we generate 10000 discrete-time velocity profiles ṽ2[k]

based on (7.11, 7.23), and correspondingly define the continuous-time velocity profiles

v2(t) = v∗ + ṽ2[k] , t ∈ [k∆t, (k + 1)∆t) . (7.24)

We sample each v2(t) at time t = 50 [s], and plot the histogram in Fig. 7.1. One can
observe that the histogram corresponds to the steady-state distribution K.

7.3.1 Controller synthesis with no packet loss

Here we synthesize the optimal connected cruise controller for the two-vehicle system
(7.14, 7.15, 7.17) with no packet loss and test the nonlinear controller (7.3) with synthesized
gains (7.18) in continuous time using zero-order hold.

We first demonstrate the performance of the connected cruise controller under a random
velocity disturbance generated by (7.11, 7.23, 7.24). The headway and velocity responses
and feedback gains of the vehicle equipped with connected cruise control are plotted in
Fig. 7.2 as functions of time. We can see from Fig. 7.2(a) that the synthesized controller is
able to follow the preceding vehicle’s motion well, while maintaining reasonable headway
as shown in Fig. 7.2(b). This simulation demonstrates that the connected cruise controller
performs well under stochastic disturbances.

In order to evaluate the performance of the controller in the statistical sense, we repeat
the simulation (7.3, 7.11, 7.23, 7.24) for 10000 different inputs, collect the value of head-
way, velocity, and feedback gains at t = 50 [s] in each run, and plot the corresponding
histograms in Fig. 7.3. By comparing Fig. 7.1 and Fig. 7.3(a) we find that the probability
of z1 ∈ {4, 5} is larger than z2 ∈ {4, 5}, which show that the controller performs well in
disturbance rejection. On the other hand, Fig. 7.3(b) shows that the headway fluctuation x1
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Figure 7.3: (a,b): Histograms of velocity and headway at t = 50 [s] in simulations of a
(1 + 1)-vehicle string with stochastic velocity disturbance (7.3, 7.11, 7.23, 7.24). (c,d):
The histogram of feedback gains α11 and β11 used by the connected cruise controller at
t = 50 [s].

104



Figure 7.4: (a,b): Velocity and headway responses for a (1 + 1)-vehicle string under si-
nusoidal disturbance. (c,d): The feedback gains α11 and β11 used by the connected cruise
controller. The notations are the same as in Fig. 7.2.
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is well contained within the safe region, cf. (7.20).
To further evaluate the disturbance-rejection performance of the synthesized controller,

we consider a sinusoidal velocity profile

v2(t) = v∗ + vamp cos(ωt) , (7.25)

where vamp = 5 [m/s] and ω = 1 [1/s]. The simulation results are shown in Fig. 7.4.
In Fig. 7.4(a) we see that the velocity fluctuation of the vehicle equipped with connected
cruise control (blue curve) has smaller amplitude than the preceding vehicle (green curve),
and the headway fluctuations are also kept within safety region. Due to the periodicity of
v2(t), the feedback gains α11 and β11 also exhibit certain periodic nature. We note that
while static gains are also able to suppress the velocity fluctuations [5], dynamic gains may
provide us more flexibility under stochastic influences from the traffic.

Finally, we test the synthesized controller using a triangular velocity signal that is more
commonly seen in traffic flow, and plot the results in Fig. 7.5. In this case, the leading
vehicle starts with a velocity below the equilibrium v∗, and then accelerates to v∗ with
constant acceleration, and after two dips its velocity settles down to v∗; see the green curve
in Fig. 7.5(a). The controlled vehicle responds to the velocity fluctuations well, especially
that v1 (blue curve) has smaller local minima than v2 (green curve), indicating successful
attenuation of velocity perturbations. Moreover, the headway fluctuations are also kept
within the safety region, see Fig. 7.5(b). Note that in Fig. 7.5(c,d) the feedback gains α11

and β11 settle down to their respective non-zero minimal value as the states of the controlled
vehicle converge to the equilibrium.

7.3.2 Controller synthesis with packet loss

Here we still consider a two-vehicle system but assume the connected cruise controller fails
to receive every second packet of the velocity signal sent by vehicle 2. We synthesize an
optimal controller for (7.14, 7.15, 7.16, 7.17) similarly as in the previous subsection.

In Fig. 7.6 we test the synthesized controller using the same velocity signal v2 as in
Fig. 7.2(a), but in Fig. 7.6(a) the velocity profile w2 received by vehicle 1 is plotted as green
dots. We note that the dynamic gains in the no-packet-loss and packet-loss cases are clearly
distinctive from each other, cf. Fig. 7.2(c,d) and Fig. 7.6(c,d). This demonstrates that the
synthesized controller is able to adapt to the changes due to packet losses. Moreover,
the generated car-following dynamics is robust against the packet losses, as shown by the
similarities of the blue curves in Fig. 7.2(a,b) and Fig. 7.6(a,b). In both cases, the controlled
vehicle is able to follow the preceding vehicle while maintaining the desired time headway.
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Figure 7.5: (a,b): Velocity and headway responses for a (1 + 1)-vehicle string under trian-
gular velocity disturbance. (c,d): The feedback gains α11 and β11 used by the connected
cruise controller. The notations are the same as in Fig. 7.2.
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Figure 7.6: (a,b): Velocity and headway responses for a (1 + 1)-vehicle string under packet
loss. The blue solid curves show the headway h1 and the velocity v1 for the CCC vehicle.
The green dots show the observed velocity w2 of the leading vehicle 2. (c,d): The feedback
gains α11 and β11 used by the connected cruise controller.

108



0 6 12 18 24 30
0

500

1000

1500

2000

2500

3000

3500

5 11 17 23 29 35
0

500

1000

1500

2000

2500

3000

3500

0 0.3 0.6 0.9 1.2
0

1000

2000

3000

4000

5000

6000

0 0.4 0.8 1.2 1.6
0

1000

2000

3000

4000

5000

6000

v1 [ms ] h1[m]

α11[
1
s ] β11 [ 1s ]

Figure 7.7: (a,b): Histograms of velocity and headway at t = 50 [s] in simulations of a (1+
1)-vehicle string with stochastic velocity disturbance and packet losses. (c,d): Histogram
of feedback gains α11 and β11 used by the connected cruise controller at t = 50 [s].
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Similarly, to demonstrate the controller performance statistically, we perform 10000

runs and plot the histograms for the headway, velocity, and feedback gains at time t = 50

[s] in Fig. 7.7. We see that with packet losses, the connected cruise controller still maintains
similar distributions for the velocity and headway fluctuations as in Fig. 7.3. However, we
note that there are considerable differences in the distribution of feedback gain β11 between
Fig. 7.3(d) and Fig. 7.7(d). This demonstrates the necessity of considering packet losses in
the system.

7.4 Conclusion

In this chapter we demonstrated the design of connected cruise control using probabilis-
tic model checking. Our method was based on stochastic optimal control and was able
to accommodate stochastic events from the traffic flow and also react to packet drops in
vehicle-to-vehicle communication. We showed through simulations that the synthesized
controller is robust against imperfect communication and may be used in connected vehi-
cle systems with a larger number of vehicles.
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CHAPTER 8

Conclusion

In this research we designed connected cruise control in a mixed traffic system consisting
of automated and human-driven vehicles. We proposed a class of connected cruise con-
trollers based on a human car-following model, so that while the CCC vehicle exhibits
similar behaviors as the surrounding human-driven vehicles, it actively mitigates undesired
velocity fluctuations propagating through the traffic flow.

We found that while driver reaction time delay limits the string stability of a human-
driven vehicle, eliminating delay from the car-following model using onboard sensors does
not necessarily generate desired string stability for connected cruise control. Therefore,
we designed CCC controllers by augmenting the human car-following model with head-
way/velocity/acceleration feedback terms from multiple vehicles ahead. We first proposed
an online estimation algorithm to identify in real time both the human gains and driver re-
action time of the vehicles ahead. We observed stochastic variations in both human gains
and reaction time. Then we proposed a CCC algorithm using acceleration feedback when
there are few DSRC-equipped vehicles nearby. We found that the connected vehicle system
may benefit from larger delay time as the acceleration signals come from vehicles farther
downstream. For V2V-rich environments, we proposed an optimal CCC design using lin-
ear quadratic regulation while considering driver reaction time delay. This setup exploits
the uni-directional information flow in traffic systems, and enables us to decompose the
large-dimensional optimization problem and obtain an analytical solution with small com-
putational load. We found that, when a CCC vehicle receives motion information from n

vehicles ahead, the optimal feedback gains decrease for signals from vehicles farther away,
and the CCC controller degrades gracefully when the communication links fail.

In order to provide more robustness against human parameters in the connected vehicle
system, we considered stochastic human parameters in the optimal CCC design using the
mean dynamics. We found that the optimal CCC controller maintains the same structure
and performs well when tested with experimental data. In the last part of this research, we
included stochastic disturbances from the traffic flow and V2V communication in optimal
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CCC design, and introduced the probabilistic model checking method so that in the future
research the CCC vehicle can perform well in more realistic traffic scenarios.

112



APPENDIX A

String stability in ring configuration

Here we show that the necessary and sufficient conditions of string stability for a connect-
ed vehicle system are equivalent to the stability conditions of the system constructed by
placing N vehicles on a ring and considering N → ∞. That is, the string stability of a
group of CCC and non-CCC vehicles (cf. Fig. 4.1) can be analyzed by repeating the con-
figuration along a circular track. This setting introduces periodic boundary conditions and
results in an autonomous system. Previous research has shown the equivalence of the ring
and string configurations for predecessor-follower models based on headway and veloci-
ty feedback [68]. Here we give a brief demonstration of their equivalency for connected
vehicle systems with delayed acceleration feedback. First, we analyze the simple scenario
discussed in Section 4.3 where only the acceleration of the vehicle immediately ahead is
used and then extend this analysis to the vehicle systems discussed in Sections 4.4 and 4.6.

Let us definexi =
[
ṽi h̃i

]T

and rewrite the linear model (4.2) into the state-space form

ẋ1(t) = Ax2(t) + Bx1(t) + Cx2(t− τ) + Dx1(t− τ) + E ẋ2(t− σ2) , (A.1)

where the coefficient matrices are

A =

[
0 0

1 0

]
, B =

[
0 0

−1 0

]
, C =

[
β 0

0 0

]
, D =

[
−α− β ακ

0 0

]
, E =

[
γ2 0

0 0

]
.

(A.2)
Placing N vehicles on a ring and defining the state X = col[x1 · · · xN ] result in the
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neutral delay differential equation (NDDE)

Ẋ =


B A

. . . . . .

B A

A B

X +


D C

. . . . . .

D C

C D

X(t− τ) +


0 E

. . . . . .

0 E

E 0

 Ẋ(t− σ2) .

(A.3)

Block-diagonalizing (A.3), we can decompose it into N modal equations, which can be
analyzed separately [3, 56]. The dynamics of the kth mode is given by

żk(t) = (B + Λk A) zk(t) + (D + Λk C) zk(t− τ) + Λk E żk(t− σ2) , (A.4)

where zk ∈ R2 is the modal coordinate for the kth mode representing the amplitude of the
corresponding traveling wave [42], while

Λk = e2 iθk , θk =
kπ

N
, (A.5)

k = 0, . . . , N − 1 are the corresponding modal eigenvalues.
Using the trial solution zk = Zk est, Zk ∈ C2, s ∈ C, we obtain the characteristic

equation for the kth mode as

s2
(
1− γ2 e2 iθk−sσ2

)
+ s
(
α + β

(
1− e2 iθk

))
e−sτ + ακ

(
1− e2 iθk

)
e−sτ = 0 . (A.6)

The necessary and sufficient condition of stability is that all modes are stable, that is, all
eigenvalues s are in the left-half complex plane for all k [69]. The stability boundaries are
located at the parameter values where eigenvalues cross the imaginary axis, i.e., s = iω,
ω ≥ 0.

Substituting this into (A.6) and separating the real and imaginary parts, we obtain

R(ω)− γ2 ω
2 cos(2θk − σ2ω) = 0 ,

T (ω)− γ2 ω
2 sin(2θk − σ2ω) = 0 , (A.7)

where

R(ω) = ω2 − αω sin(τω)− 2 sin(θk)
(
βω cos(θk − τω) + ακ sin(θk − τω)

)
,

T (ω) = −αω cos(τω)− 2 sin(θk)
(
βω sin(θk − τω)− ακ cos(θk − τω)

)
. (A.8)
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Figure A.1: (a): Stability chart in the (γ2, α)-plane for the ring configuration using N =
33 vehicles and the same parameters as in Fig. 4.2(e). (b and c): Stability charts in the
(β, α) and (σ2, γ2) planes for the ring configuration using N = 33 vehicles and the same
parameters as in Fig. 4.4(a, b). Each colored curve represents a stability boundary for a
mode (a traveling wave along the ring) and the color describes the frequency of arising
oscillations at the boundaries. The black lines are the string stability boundaries obtained
when analyzing string configuration.

Solving (A.7, A.8) for α and γ2, we obtain the stability boundaries in the parametric
form

α =
ω2 sin(2θk − σ2ω)− 2βω sin(θk) sin

(
θk + (τ − σ2)ω

)
2κ sin(θk) cos

(
θk + (τ − σ2)ω

)
− ω cos

(
2θk + (τ − σ2)ω

) ,
γ2 =

R(ω)

ω2 cos(2θk − σ2ω)
, (A.9)

for k = 0, . . . , N − 1. Similarly one may solve (A.7, A.8) for α and β and obtain

α =
ω2 sin(2θk − σ2ω)− 2βω sin(θk) sin

(
θk + (τ − σ2)ω

)
2κ sin(θk) cos

(
θk + (τ − σ2)ω

)
− ω cos

(
2θk + (τ − σ2)ω

) ,
β =

ω cos
(
2θk + (τ − σ2)ω

)
− 2κ sin(θk) cos

(
θk + (τ − σ2)ω

)
2 sin(θk)

(
2κ sin(θk)− ω cos(θk)

)
/(γ2ω)

+
ω
(
2κ sin(θk) cos(θk − τω)− ω cos(τω)

)
2 sin(θk)

(
2κ sin(θk)− ω cos(θk)

) , (A.10)

for k = 0, . . . , N − 1. Finally, solving (A.7, A.8) for σ2 and γ2, we obtain

σ2 =
1

ω

(
2θk − arctan

(
T (ω)

R(ω)

))
,

γ2 =
R(ω)

ω2 cos(2θk − σ2ω)
, (A.11)
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for k = 0, . . . , N − 1. The corresponding stability diagrams are shown in the (γ2, α),
(β, α), (σ2, γ2) planes in Fig. A.1(a, b, c), respectively. In all three panels, the gray areas
are stable and each colored curve is a stability boundary for a mode number k. Black curves
indicate the string stability boundaries obtained for the string configuration (cf. Figs. 4.2(e)
and 4.4(b,c)). Clearly, the stability areas for the ring configuration match with those for
the string configuration, except for a small corner in the low frequency part. Because there
are only a finite number of vehicles on the ring (N = 33 is used here), the continuum of
frequencies in the string unstable domain are ”sampled” by a finite number of modes. This
is demonstrated using similar coloring in Fig. A.1 as in Figs. 4.2(e) and 4.4(b,c). When
the number of vehicles in the ring is increased, the discrepancy between string and the ring
diminishes.

Figure A.2 shows the eigenvalue distribution for the points marked A–G in Fig. A.1(a)
using the semi-discretization method [69]. They correspond to the Bode plots in Fig. 4.3.
Since (A.3) is a neutral delayed differential equation (NDDE), there are infinitely many
eigenvalues. We only plot the eigenvalues close to the imaginary axis, which dominate the
dynamics. Case C is asymptotically stable, because all the eigenvalues are on the left-half
complex plane. Cases B and D are marginally stable, with a pair of eigenvalues crossing
the imaginary axis. The crossing frequencies are very close to the critical frequencies ωcr

in Fig. 4.3(b) and (d). In case A, eigenvalues with small imaginary values are on the right-
half complex plane, indicating instabilities for low frequencies, while in case E, eigenvalues
with larger imaginary parts crossed the imaginary axis, resulting in instabilities with higher
frequencies. In case F, both low frequency and high frequency instabilities occur and in case
G, there are infinitely many eigenvalues on the right-half complex plane. We remark that
the appearance of such ’hyperbolic-like’ spectrum in a dissipative system may reconcile the
conflict that arose for the continuum traffic models, regarding whether the model should be
fundamentally hyperbolic [70] or parabolic [71].

Stability analysis for more general connectivity structures can be done by placing the
connected vehicle systems on a ring road repetitively. Here we show that the intersection
of acceleration links for the ring configuration generates similar results as for the string
configuration. Fig. A.3 compares the stability in the (β, α)-plane between two 32-vehicle
rings. Panel (a) depicts the stability chart when 16 CCC vehicles are evenly distributed
in the ring of 32 vehicles and acceleration links do not intersect, see configuration F in
Fig. 4.10(a). Panel (b) shows the stability chart when 32 vehicles are all equipped with
CCC, and the connectivity is similar to configuration H in Fig. 4.10(a). Even though the
number of acceleration links in panel (a) is half the number in panel (b), the stable area is
significantly larger. The stable domain in Fig. A.3(a) matches the string stability boundary
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Figure A.2: (a-g): Eigenvalue distributions for the ring configuration for the points A–G in
Fig. A.1(c) . (h-n): The zoom-ins for panels (a-g). The color of eigenvalues changes from
blue through purple to green as the mode number k = 0, . . . , 32 increases.
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Figure A.3: Stability diagrams in the (β, α)-plane for the ring configuration using
N = 32 vehicles. (a): Every second vehicle is equipped with acceleration-based CCC,
cf. Fig. 4.6(a) and configuration F in Fig. 4.10(a). The black lines are the string stability
boundaries obtained when analyzing the string configuration. (b): Every vehicle is CCC
and all acceleration links intersect, cf. Fig. 4.6(a) and configuration H in Fig. 4.10(a).

obtained for the string configuration in Fig. 4.6(c), except a corner in the low-frequency
area; see black curves for comparison. Such difference diminishes when increasing the
number of vehicles on the ring. Also, the stability chart in Fig. A.3(b) resembles the chart
in Fig. 4.10(e). Again, by increasing the number of vehicles in the string as well as on the
ring, better match can be obtained.
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APPENDIX B

Parameter estimation in linear time-delayed
systems

In Chapter 3 we have shown how to estimate in real time parameters in human car-following
models using a sweeping least squares method. The data-based method is robust against
human parameter variations and can be readily applied in connected automated vehicles.
However, for applications where the gains and delay time are fixed, or vary at a slower
time scale, Lyapunov-based methods may require smaller computational load and provide
more intuition. Thus, we demonstrate three algorithms for simultaneous identification of
the feedback gains and delay in linear time-invariant systems. The first method is first pro-
posed by [53] and used in many following studies. Its idea is to convert the problem of
estimating delay time into estimating feedback gains on a finite set of discrete delay time
candidates. To overcome the large computational need and poor convergence performance
seen in the first method, we propose the second algorithm which explicitly estimates the
delay time parallel to the feedback gains. The idea for this algorithm comes from [54],
where the authors estimate multiple discrete delay time with known feedback gains. The
third algorithm is proposed to further improve the convergence rate by introducing addi-
tional nonlinearities. Then, numerical simulations are used to compare the performance of
the three methods.

B.1 Parametric model for identification

Consider the configuration in Fig. 3.1 where the tail vehicle receives motion signals from
vehicles i and i + 1. We describe the dynamics of the human-driven vehicle i with car-
following model (3.1) and assume the dynamics of the vehicle to be in the vicinity of the
uniform flow (2.6). Here we denote the headway perturbations δhi(t) = hi(t) − h∗ and
velocity perturbations δvi(t) = vi(t) − v∗, and rewrite the linearized car-following model
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in term of delay differential equations

δḣi(t) = δvi+1(t)− δvi(t) ,
δv̇i(t) = −(α + β)δvi(t− τ) + ακδhi(t− τ) + β δvi+1(t− τ) ,

(B.1)

where i = 2, . . . , N − 1. To simplify the notation in this chapter, we dropped the vehicle
index i in parameters α , β , κ , τ .

Let us introduce the notation

x(t) = δvi(t), u1(t) = δhi(t), u2(t) = δvi+1(t) . (B.2)

Based on the dynamics (B.1) of vehicle i, we write out the parametric model

ẋ(t) = ax(t− τ) + bu1(t− τ) + cu2(t− τ) , (B.3)

where the delay time τ and the feedback gains

a = −α− β, b = ακ, c = β (B.4)

are unknown a priori and to be determined through parameter identification. In the next
three sections, we present three parameter estimation methods that may be used to identify
the feedback gains and delay time simultaneously in the linearized car-following model
(B.1). We compare the algorithms in terms of convergence rate and estimation accuracy,
and present a systematic way to improve both performance measures.

B.2 Direct Lyapunov method of approximated delay

This method was originally proposed in [53]. It bypasses the estimation of delay time by in-
troducing multiple fictitious delays whose corresponding gains are zero, i.e., the parametric
model (B.3) is rewritten as

ẋ(t) =
n∑
i=1

(
aix(t− τi) + biu1(t− τi) + ciu2(t− τi)

)
, (B.5)

where 0 ≤ τ1 < τ2 < · · · < τn, and there exists j ∈ {1, . . . , n} such that the real delay
τ = τj . Thus,

aj = −α− β, bj = ακ, cj = β , (B.6)
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and
ai = bi = ci = 0 , (B.7)

for i 6= j. Then by identifying the zero gains we are able to ”weed out” the ”fake” de-
lays and obtain the real delay time and corresponding feedback gains. Based on [53], the
estimation algorithm for (B.5) is given by

˙̃x(t) =
n∑
i=1

(
ãix(t− τi) + b̃iu1(t− τi) + c̃iu2(t− τi)

)
+ rx̂(t) ,

˙̃ai(t) = γ0ix̂(t)x(t− τi) ,
˙̃bi(t) = γ1ix̂(t)u1(t− τi) ,
˙̃ci(t) = γ2ix̂(t)u2(t− τi) ,

(B.8)

where tildes are used to denote estimated state and parameters, the state error is x̂ = x− x̃,
and the estimation gains are r > 0, γki > 0, k = 0, 1, 2, i = 1, . . . , n.

Define the vectors

Z =


x̂

Â

B̂

Ĉ

 , Â =


â1

...
ân

 , B̂ =


b̂1

...
b̂n

 , Ĉ =


ĉ1

...
ĉn

 , (B.9)

that contain the estimation errors âi = ãi − ai, b̂i = b̃i − bi, ĉi = c̃i − ci, i = 1, . . . , n.
Using (B.5, B.8), we can write the estimation model as a linear time-varying system:

Ż =


−r X T

τ (t) U T
1τ (t) U T

2τ (t)

Γ0Xτ (t) 0 0 0

Γ1U1τ (t) 0 0 0

Γ2U2τ (t) 0 0 0

Z , (B.10)

where

Γk = diag
[
γk1 · · · γkn

]
, k = 0, 1, 2 ,

Xτ (t) =
[
x(t− τ1) · · · x(t− τn)

]T

,

U1τ (t) =
[
u1(t− τ1) · · · u1(t− τn)

]T

,

U2τ (t) =
[
u2(t− τ1) · · · u2(t− τn)

]T

.

(B.11)
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We would like the fixed point Z(t) ≡ 0 of (B.10) to be (at least) Lyapunov stable. Thus,
we define the Lyapunov function candidate

V =
1

2
Z T


1

Γ0

Γ1

Γ2


−1

Z =
1

2
x̂2 +

n∑
i=1

1

2

( 1

γ0i

â2
i +

1

γ1i

b̂2
i +

1

γ2i

ĉ2
i

)
, (B.12)

and using (B.10), the Lie derivative becomes

V̇ = −rx̂2 . (B.13)

Since (B.12) is positive definite and (B.13) is negative semi-definite, Z(t) ≡ 0 is stable
in the sense of Lyapunov, and the system (B.10) converges to the manifold of x̂(t) ≡ 0

asymptotically.
On the other hand, the convergence of the estimated parameters (limt→∞ Â(t) = 0,

limt→∞ B̂(t) = 0, limt→∞ Ĉ(t) = 0) results from the convergence of x̂ given sufficiently
rich signals x(t), u1(t), u2(t), i.e., the persistent excitation condition. Here this condition
requires piecewise continuous signals with a sufficient number of discontinuities at non-
commensurable points [53], and in each continuous subinterval it also requires a sufficient
number of Fourier components. Such ”jumps” may be common in electronic signals, but
they are seldom observed in mechanical systems such as the velocity of a car. Thus, it may
not be easy to implement this method to estimate the parameters of a car-following model.

We also note that to obtain a more accurate estimation on the actual delay time τ , finer
meshes of fictitious delay τi are required, which increases the dimension of the adaptive
law (B.8). This would not only require more computational power, but also significantly
slow down the convergence rate. If the identification becomes slower than the variation of
driver behavior this method would eventually fail.

B.3 Method of state-dependent delay

To obtain a more accurate estimation of the delay time without relying on a high-dimensional
parametric model, we consider an adaptive law where both the delay time and the feedback
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gains in (B.3) are identified simultaneously. In particular, we propose

˙̃x(t) = ãx(t− τ̃) + b̃u1(t− τ̃) + c̃u2(t− τ̃) + rx̂ ,

˙̃a(t) = γ1x̂x(t− τ̃) ,

˙̃b(t) = γ2x̂u1(t− τ̃) ,

˙̃c(t) = γ3x̂u2(t− τ̃) ,

˙̃τ(t) = −γ4x̂ζ̃ ,

(B.14)

where we use tildes to denote estimated state and parameters, the state error is defined as
x̂ = x− x̃, and

ζ̃(t) = ãẋ(t− τ̃) + b̃u̇1(t− τ̃) + c̃u̇2(t− τ̃) . (B.15)

Due to the adaptive law of τ̃ , (B.14) is a nonlinear system with state-dependent delay. To
discuss the convergence of the algorithm, we denote the parameter errors by

â = ã− a, b̂ = b̃− b, ĉ = c̃− c, τ̂ = τ̃ − τ , (B.16)

and formulate the dynamics of x̂ using (B.3, B.14)

˙̂x(t) = −rx̂(t) + ax(t− τ)− ãx(t− τ̃) + bu1(t− τ)− b̃u1(t− τ̃) + cu2(t− τ)− c̃u2(t− τ̃)

= −rx̂(t)− âx(t− τ)− b̂u1(t− τ)− ĉu2(t− τ)

+ ã(x(t− τ)− x(t− τ̃)) + b̃(u1(t− τ)− u1(t− τ̃)) + c̃(u2(t− τ)− u2(t− τ̃)) .

(B.17)

Assuming constant feedback gains in the parametric model (B.3) we obtain

˙̂a = ˙̃a ,
˙̂
b = ˙̃b , ˙̂c = ˙̃c , ˙̂τ = ˙̃τ . (B.18)

While the convergence of approximated delay method (B.8) can be proven with nega-
tive semi-definiteness of the Lie derivative of a quadratic Lyapunov function (B.13), here
we could not establish the negative semi-definiteness directly using similar quadratic Lya-
punov functions, due to the estimated delay τ̃ . Thus we resort to the indirect Lyapunov
method by first isolating the nonlinearity due to the time-varying delay τ̃ and establishing
convergence for the linearized dynamics.

We assume x(t), u1(t) and u2(t) are bounded and have bounded derivatives up to the
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third order, and perform Taylor expansion to extract τ̂ from terms with time-varying delay

x(t− τ)− x(t− τ̃) = τ̂ ẋ(t− τ)− 1

2
τ̂ 2ẍ(t− τ) +O(3) ,

u1(t− τ)− u1(t− τ̃) = τ̂ u̇1(t− τ)− 1

2
τ̂ 2ü1(t− τ) +O(3) ,

u2(t− τ)− u2(t− τ̃) = τ̂ u̇2(t− τ)− 1

2
τ̂ 2ü2(t− τ) +O(3) ,

(B.19)

where O(n) denotes n-th order terms in the state error x̂ and the parameter errors â, b̂, ĉ, τ̂ .
Assuming constant gains and delay time in the parametric model (B.3), we have

ẍ(t) = aẋ(t− τ) + bu̇1(t− τ) + cu̇2(t− τ) , (B.20)

and (B.17) is rewritten as

˙̂x(t) = −rx̂(t)− x(t− τ)â− u1(t− τ)b̂− u2(t− τ)ĉ+ ẍ(t)τ̂ + g0(â, b̂, ĉ, τ̂) , (B.21)

where the higher-order terms are given by

g0 = ẋ(t− τ)âτ̂ + u̇1(t− τ)b̂τ̂ + u̇2(t− τ)ĉτ̂ −
...
x(t)

2
τ̂ 2 +O(3). (B.22)

Similarly, we rewrite (B.14, B.18) as

˙̂a(t) = γ1x(t− τ)x̂(t) + g1(x̂, τ̂) ,

˙̂
b(t) = γ2u1(t− τ)x̂(t) + g2(x̂, τ̂) ,

˙̂c(t) = γ3u2(t− τ)x̂(t) + g3(x̂, τ̂) ,

˙̂τ(t) = −γ4ẍ(t)x̂(t) + g4(x̂, â, b̂, ĉ, τ̂) ,

(B.23)

where the higher-order terms are

g1 = −γ1ẋ(t− τ)x̂(t)τ̂(t) +O(3) ,

g2 = −γ2u̇1(t− τ)x̂(t)τ̂(t) +O(3) ,

g3 = −γ3u̇2(t− τ)x̂(t)τ̂(t) +O(3) ,

g4 = −γ4

(
ẋ(t− τ)â(t) + u̇1(t− τ)b̂(t) + u̇2(t− τ)ĉ(t)− ...

x(t)τ̂(t)
)
x̂(t) +O(3).

(B.24)

We define the state variable Y =
[
x̂ â b̂ ĉ τ̂

]T

and then write (B.21, B.23) into
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state space form

Ẏ = M(t)Y + N(Y, t) , (B.25)

where the coefficient matrix is given by

M(t) =

[
−r −v(t)

Γv T(t) 0

]
,

Γ = diag
[
γ1 γ2 γ3 γ4

]
,

v(t) =
[
x(t− τ) u1(t− τ) u2(t− τ) −ẍ(t)

]
,

(B.26)

and the higher-order terms are collected in

N(Y, t) =
[
g0 g1 g2 g3 g4

]T

. (B.27)

When the fixed point Y (t) ≡ 0 of (B.25) is uniformly asymptotically stable, both the state
error x̂ and the parameter errors â, b̂, ĉ, τ̂ are guaranteed to decay to zero. It has been found
that given r > 0, the uniform asymptotic stability of Ẏ = M(t)Y is equivalent to the
persistent excitation condition of the signal v(t) [72]. That is, there exist positive constants
T0, δ0, and ε0 such that for all t1 ≥ 0 and a unit vector w with the same dimension as v(t),
there is a t2 ∈ [t1, t1 + T0] such that

∣∣∣ ∫ t2+δ0

t2

v(θ)wT dθ
∣∣∣ ≥ ε0 . (B.28)

This establishes the local convergence of this algorithm.
However, the size of the basin of attraction depends on the nonlinear term N(Y, t).

While we assume the input signals x(t), u1(t), u2(t) are bounded, the bounds in general
depend on the magnitude of different frequency components in u2(t). These bounds, to-
gether with the choice of adaptation gains γ1, γ2, γ3, γ4, determine the basin of attraction.
We believe that the size of the basin of attraction can be estimated through bifurcation
analysis. Here, we simply point out that the algorithm is observed to perform well even
for initial guesses with relatively large parameter errors, when considering properly chosen
adaptation gains and sufficiently rich signals based on experiences from parameter estima-
tion in non-delayed systems.

Meanwhile, having an adaptive law for the delay time instead of a grid approximation
has been found to be important to ensure the performance of the parameter estimation.
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Figure B.1: (a): The non-continuous sign function (B.30). (b): The non-smooth piecewise
linear function (B.31) with the width of boundary layer w1 = 2ε. (c): The infinitely smooth
hyperbolic tangent function (B.32) with the width of boundary layer w2 = εln(2 +

√
3).

We set ε = 0.4 in (b,c).

Consequently, this method is more practical for applications like connected vehicle sys-
tems. It may be used to identify parameters in the car-following dynamics of an automated
vehicle.

B.4 Modified method of state-dependent delay

It is noted in sliding mode control that the switching between different control laws in
different regions of the state space may increase the convergence rate [73]. Motivated by
the estimator proposed in [54], we consider introducing the sign function into our adaptive
law and rewrite it as

˙̃x(t) = ãx(t− τ̃) + b̃u1(t− τ̃) + c̃u2(t− τ̃) + rx̂ ,

˙̃a(t) = γ1f(x̂)x(t− τ̃) ,

˙̃b(t) = γ2f(x̂)u1(t− τ̃) ,

˙̃c(t) = γ3f(x̂)u2(t− τ̃) ,

˙̃τ(t) = −γ4f(x̂)ζ̃ ,

(B.29)

where ζ̃ is given by (B.15) and we may use the switching function

f(x̂) = sign(x̂) =


−1 if x̂ < 0 ,

0 if x̂ = 0 ,

1 if x̂ > 0 ,

(B.30)
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that is plotted in Fig. B.1(a).
However, the sign function cannot be perfectly implemented numerically, which typ-

ically leads to high-frequency oscillation (called chattering) in the vicinity of the sliding
surface. To eliminate chattering, we define a boundary layer |x̂| ≤ ε, ε > 0 and define the
switching function as

f(x̂) = p(x̂) =


1 if x̂ > ε ,

x̂/ε if − ε ≤ x̂ ≤ ε ,

−1 if x̂ < −ε ,
(B.31)

as shown in Fig. B.1(b). Here ε is used to adjust the gradient of the switching function, and
consequently the width w1 = 2ε of the boundary layer. Note that inside the boundary layer,
(B.31) is linear and the estimator (B.29, B.31) is equivalent to (B.14).

In order to avoid non-smoothness when entering the boundary layer, we may use a
hyperbolic tangent function

f(x̂) = tanh
(
x̂/ε
)
, (B.32)

as shown in Fig. B.1(c). Again, ε determines the gradient, and by calculating the third-
order inflection points (∂3

x̂tanh
(
x̂/ε
)

= 0) we obtain the width of the boundary layer as
w2 = εln(2 +

√
3). Indeed, as ε decreases, the width of both boundary layers in (B.31) and

(B.32) tend to zero, and (B.31) and (B.32) converge to (B.30).
We note that when implementing algorithms that contain the dynamics of τ̃ , a lower

bound and an upper bound on the estimation τ̃ are needed. We set τ̃ ∈ [0, τmax], where
τmax is the maximum delay time known a priori.

B.5 Simulations

In this section, we implement the method of approximated delay (B.8), and two methods
of state-dependent delay (B.14, B.29) to estimate the delay time and feedback gains in the
parametric car-following model (B.3), and compare their performances.

We use vmax = 30 [m/s], hst = 5 [m], hgo = 35 [m] that corresponds to realistic
traffic data [42] in the range policy (2.3), which results in the constant slope κ = 1 [1/s].
Moreover, we set the equilibrium at (h∗, v∗) = (20 [m], 15 [m/s]) and use the gains α = 0.6

[1/s], β = 0.9 [1/s] and reaction time τ = 0.5 [s]. Then the real parameter values in the
parametric model (B.3) are a = −1.5 [1/s], b = 0.6 [1/s], c = 0.9 [1/s]; see (B.4).
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Figure B.2: (a,b,c): Estimated feedback gains using (B.8). The blue curves are gain-
s corresponding to τ1 = 0 [s], and the red curves corresponds to τ2 = 0.5 [s]. The
dashed lines mark the real value of a, b, and c, respectively. (d): The input signal
u2(t) = δvi+1(t) used by the estimator (B.5) is discontinuous at t ≈ 2.7, 52.1, 101.5 [s].
In each continuous subinterval u2(t) =

∑6
j=1 sin(ωjt + ρj) with frequency components

ωj ∈ {0.2, 0.6, 1.5, 3.8, 5.3, 7} [rad/s].
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Figure B.3: Estimated feedback gains and delay time using the estimator (B.14). The
dashed lines mark the real parameter values. The signals are generated using (B.1, B.2)
with u2(t) = δvi+1(t) = 2

3

(
cos(t) + cos(2.1t) + cos(7t)

)
. The estimator gains are γ1 =

1.5, γ2 = 1.5, γ3 = 6.0, γ4 = 1.0.
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Figure B.4: Estimated feedback gains and delay time using the estimator (B.29, B.32).
The notations and input signals are the same as in Fig. B.3. The estimator gains are γ1 =
1.5, γ2 = 1.5, γ3 = 4.0, γ4 = 0.35, and we set ε = 0.4.
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For the first method (B.8), we assume one fictitious delay time τ1 = 0 [s] aside from the
real delay time τ2 = 0.5 [s]. The signals x(t), u1(t), u2(t) are generated by the linearized
car-following model (B.1, B.2) with non-smooth velocity perturbation u2(t) with frequency
components ωj ∈ {0.2, 0.6, 1.5, 3.8, 5.3, 7} [rad/s]. The trajectory of estimated parameters
are shown in Fig. B.2(a,b,c). Note that while the parameters converge within 150 [s], the
velocity profile of vehicle i + 1 contains 6 frequency components and 3 discontinuities to
meet the persistent excitation condition (see the caption of Fig. B.2). Such non-smooth
velocity profile is not commonly observed in cars on road, as vehicles can be viewed as
low-pass filters. Thus, the convergence rate of this estimator may be significantly slower
in real-world implementation. Also, the number of estimated parameters (3n) increases
with the number of fictitious delays (n), leading to observed deterioration of convergence
rate in simulations. Meanwhile, as the mesh for delay time becomes finer, the time interval
between mesh points shortens. As a result, the numerical algorithm will have increasing
difficulty in correctly identifying gains corresponding to each mesh point. Thus, it is diffi-
cult to preserve the convergence rate in Fig. B.2 when we do not start with the exact guess
of τ2 = 0.5 [s].

Fig. B.3 and Fig. B.4 show the performance of the estimators (B.14) and (B.29, B.32),
respectively. Signals x(t), u1(t), u2(t) are generated by the linearized car-following mod-
el (B.1, B.2) with a sinusoidal velocity perturbation u2(t) = δvi+1(t) = 2

3

(
cos(t) +

cos(2.1t) + cos(7t)
)
. In both figures, the feedback gains and delay converge to the re-

al values within reasonable amount of time, producing more accurate estimations than in
Fig. B.2. However, the convergence rate is faster in Fig. B.4, which illustrates the potential
benefits of the modified estimator (B.29, B.32).

B.6 Conclusion

Int his chapter we presented three estimators for parameter estimation in linear time-invariant
systems, and applied them to a car-following model with driver reaction time. The method
of multiple delays is a direct extension of parameter estimation in systems without delay.
However, it required non-continuous signals for persistent excitation and the convergence
rate deteriorated rapidly as the number of fictitious delays were increased. The method of
state-dependent delay is able to provide accurate estimation of delay time and feedback
gains without sacrificing the convergence rate. We further modified this method in order to
improve the convergence rate.
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APPENDIX C

Solving time-delayed LQ problem in connected
vehicle design

C.1 The solution of LQR problem with delay

Here we present a detailed solution to the LQR problem with time delay. Since (5.12, 5.13)
is constructed to include disturbance φ(t) in the LQR format, and the optimal controller
(5.19) is given using partitioned matrices (5.18), we write (5.16, 5.17) into four groups,
where P1(t), Q1(t, θ), R1(t, ξ, θ) are independent from the disturbance and can be solved
using only the coefficient matrices A,B,D and the weighting factor Γ. That is, for the first
group we obtain the PDE

− Ṗ1(t) = ATP1(t) + P1(t)A−P1(t)DDTP1(t) + Q1(t, 0) + QT
1 (t, 0) + Γ ,

(∂θ − ∂t)Q1(t, θ) =
(
AT −P1(t)DDT

)
Q1(t, θ) + R1(t, 0, θ),

(∂ξ + ∂θ − ∂t)R1(t, ξ, θ) = −QT
1 (t, ξ)DDTQ1(t, θ) ,

(C.1)

with boundary conditions

P1(tf) = 0 ,

Q1(tf , θ) = 0 , Q1(t,−τ) = P1(t)B ,

R1(tf , ξ, θ) = 0 , R1(t,−τ, θ) = BTQ1(t, θ) .

(C.2)

Using P1(t) and Q1(t, θ) obtained from (C.1, C.2), we can calculate Q2(t, θ) and R2(t, ξ, θ)

by solving

(∂θ − ∂t)Q2(t, θ) =
(
AT −P1(t)DDT

)
Q2(t, θ) + R2(t, 0, θ),

(∂t − ∂ξ − ∂θ)R2(t, ξ, θ) = QT
1 (t, ξ)DDTQ2(t, θ) ,

(C.3)
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with boundary conditions

Q2(tf , θ) = 0 , Q2(t,−τ) = 0 ,

R2(tf , ξ, θ) = 0 , R2(t,−τ, θ) = BTQ2(t, θ) .
(C.4)

Note that the disturbance φ(t) does not appear in (C.3) either. As a matter of fact, (C.3,
C.4) result in Q2(t, θ) ≡ 0 and R2(t, ξ, θ) ≡ 0.

The dynamics of P2(t) and Q3(t, θ) are driven by the disturbance φ(t):

− Ṗ2(t) =
(
AT −P1(t)DDT

)
P2(t) + P1(t)φ(t) + Q2(t, 0) + QT

3 (t, 0) ,

(∂θ − ∂t)Q3(t, θ) =
(
φT(t)−PT

2 (t)DDT
)
Q1(t, θ) + RT

2 (t, θ, 0),
(C.5)

with boundary conditions

P2(tf) = 0 ,

Q3(tf , θ) = 0 , Q3(t,−τ) = PT
2 (t)B .

(C.6)

Although P4(t), Q4(t, θ), R4(t, ξ, θ) do not appear in the optimal control (5.19), they
appear in the minimal cost function, and are given by the PDE

− Ṗ4(t) = φT(t)P2(t) + P3(t)φ(t)−P3(t)DDTP2(t) + Q4(t, 0) + QT
4 (t, 0) ,

(∂θ − ∂t)Q4(t, θ) =
(
φT(t)−P3(t)DDT

)
Q2(t, θ) + R4(t, 0, θ),

(∂ξ + ∂θ − ∂t)R4(t, ξ, θ) = −QT
2 (t, ξ)DDTQ2(t, θ) ,

(C.7)

with boundary conditions

P4(tf) = 0 ,

Q4(tf , θ) = 0 , Q4(t,−τ) = 0 ,

R4(tf , ξ, θ) = 0 , R4(t,−τ, θ) = 0 .

(C.8)

C.2 The distribution kernels

Here we provide the constants that appear in the expression of fi(θ), gi(θ), i = 1, . . . , n in
(5.42) using (5.36, 5.40, 5.44). For i = 1 (5.44) corresponds to

a10 = a11 = a12 = 0, b10 = b11 = b12 = 0 . (C.9)

132



For i = 2, . . . , n we write in (5.36) that

eÂ1(θ+τ) = KeĴ1(θ+τ)K−1 , (C.10)

where the Jordan form Ĵ1 contains the eigenvalues of Â1:

λ1,2 =
1

2

(
−
√
γ1 + γ2 + 2κ

√
γ1 ±

√
γ1 + γ2 − 2κ

√
γ1

)
, (C.11)

and the real part of λ1, λ2 are smaller than zero (which is ensured by the closed-loop plant
stability of LQ design). In most cases Â1 is diagonalizable, that is, Ĵ1 = diag([λ1, λ2]). In
the special case γ2 = 2κ

√
γ1 − γ1, we have λ1 = λ2 and Â1 may not be diagonalizable,

yielding the nontrivial Jordan form Ĵ1 =

[
λ1 1

0 λ1

]
.

Denote K =

[
k11 k12

k21 k22

]
, K−1 =

[
i11 i12

i21 i22

]
, then from (5.36, 5.40) we obtain

[
fi(θ) gi(θ)

]
=
[
fc(θ) gc(θ)

] (
P1iB1 + P1(i−1)B2

)
, (C.12)

where

fc(θ) =
(
tca + tcc(θ + τ)

)
eλ1(θ+τ) + tcbeλ2(θ+τ) ,

gc(θ) =
(
sca + scc(θ + τ)

)
eλ1(θ+τ) + scbeλ2(θ+τ) , (C.13)

such that we have

tca = (k11 + k21)i11 , tcb = (k12 + k22)i21 ,

sca = (k11 + k21)i12 , scb = (k12 + k22)i22 ,

tcc =

0 , if Â1 is diagonalizable ,

(k11 + k21)i21 , if Â1 is not diagonalizable ,

scc =

0 , if Â1 is diagonalizable ,

(k11 + k21)i22 , if Â1 is not diagonalizable .

(C.14)
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Substituting (5.9, C.13) into (C.12), we obtain (5.42) with the coefficients

ai0 = α(tcali1 + scali2) , bi0 = β(tcali1 + scali2) ,

ai1 = α(tccli1 + sccli2) , bi1 = β(tccli1 + sccli2) ,

ai2 = α(tcbli1 + scbli2) , bi2 = β(tcbli1 + scbli2) ,

(C.15)

where

li1 = −P1i[1, 1]−P1i[1, 2] + P1(i−1)[1, 2] ,

li2 = −P1i[2, 1]−P1i[2, 2] + P1(i−1)[2, 2] ,
(C.16)

for i = 2, . . . , n, and C[i, j] stands for the element of C at the ith row and jth column.

C.3 The contracting map

To show that the feedback gains and distribution functions decay exponentially with the car
number, all eigenvalues of M must be smaller than 1 in magnitude, cf. (5.38, 5.39).

We assume diagonalizable Â1 and plug (C.10) into (5.39) to obtain

M = (I⊗K)M̃(I⊗K−1) , (C.17)

where

M̃ = −
[
Ĵ1 − α eτ Ĵ1 −α eτ Ĵ1

κI− β eτ Ĵ1 Ĵ1 − β eτ Ĵ1

]−1 [
0 α eτ Ĵ1

0 β eτ Ĵ1

]
. (C.18)

Indeed, the eigenvalues of M are the same as the eigenvalues of M̃. It is evident that M̃

has two zero eigenvalues, while the other two non-zero eigenvalues are

µ1,2 = − ακ− βλ1,2

λ2
1,2 e−τλ1,2 − (α + β)λ1,2 + ακ

, (C.19)

where λ1,2 are given in (C.11). That is, the recursive map (5.38, 5.39) is contracting if

|µ1| < 1, |µ2| < 1 . (C.20)

Consider plant stable human-driven vehicles where κ and α, β are positive. We found that
(C.20) holds in the string stable region in the parameter space. Note that (C.19) bears an
interesting resemblance to H0(s) in (5.47), and still holds when Â1 is not diagonalizable.
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C.4 Robustness of CCC against other CCC vehicles

Here we consider the scenario where vehicles 2−n in Fig. 5.1 are no longer homogeneous,
that is, some of them may have different human parameters or even become CCC vehicles.
To demonstrate the general influence of heterogeneity among preceding vehicles on the
CCC design, we assume the dynamics of vehicle i is

ḣi(t) = vi+1(t)− vi(t) ,

v̇i(t) =
n∑
j=i

(
αij
(
Vj(hj(t− τ))− vj(t− τ)

)
+ βij ḣj(t− τ)

)
, (C.21)

for i = 2, . . . , n, where αij, βij are vehicle i’s feedback gains on motion signals from
vehicle j, cf. (2.2, 5.56).

Thus, the dynamics of the connected vehicle system is still described by (5.7), with a
new coefficient matrix

B =



0 B12 B13 · · · B1n

B22 B23 · · · B2n

. . . ...
B(n−1)(n−1) B(n−1)n

Bnn


, (C.22)

where

B1i =

[
0 0

α2i β2i

]
, Bii = −

[
αii βii

αii βii

]
, i = 2, · · · , n,

Bij =

[
−αij −βij

α(i+1)j − αij β(i+1)j − βij

]
, j = i+ 1, · · · , n , (C.23)

cf. (5.8, 5.9).
Since the matrix B is still upper-triangular, the optimal control design (5.23, 5.24, 5.26)

can be decomposed as before. Now instead of (5.36, 5.38, 5.39), we have

Q1i(θ) =
i∑

k=1

eÂ1(θ+τ)P1kBki , (C.24)
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Figure C.1: The optimized headway and velocity gains α1i, β1i, i = 1, . . . , n of the CCC
vehicle in a (10 + 1)-car system for homogeneous (blue crosses) and heterogeneous (green
diamonds) human gains as indicated. The other parameters are the same as in Fig. 5.2.

and

vec(P1i) =
i−1∑
k=1

Mikvec(P1k), (C.25)

for i = 2, . . . , n, where

Mik = −(I⊗ Â1 + AT
1 ⊗ I + BT

ii ⊗ eτÂ1)−1(BT
ki ⊗ eτÂ1). (C.26)

This means that the maps between vec(P1i), i = 2, . . . , n, and vec(P11) are determined by
Bki, k = 2, . . . , i − 1, i.e., by the connectivity structure between vehicle 1 and vehicle i.
Thus, the connectivity structure among vehicles farther downstream still does not influence
feedback gains on existing feedback terms of the CCC controller.

We first demonstrate only the influence of heterogeneous human parameters. In this
case, the coefficient matrix B still has the same structure is in (5.8), i.e., Bij 6= 0 only for
j = i + 1. Thus, there is only one term Mi(i−1) left in the right-hand side of (C.25), and it
still defines a recursively contracting map given plant stable human parameters in (C.26).

As an example, we take a (10 + 1)-car connected system, keep the design parameters
γ1 = 0.04 [1/s2], γ2 = 0.30 [1/s2] and human reaction time τ = 0.4 [s] as in Fig. 5.2, but
increase/decrease the human gains for vehicles 2, 3, 4, 5 as indicated in Fig. C.1. The blue
crosses correspond to the homogeneous system (cf. Fig. 5.2), while the green diamonds
correspond to the heterogeneous system. The gains α11, β11 are the same for both cases,
because they do not depend on parameters of preceding vehicles. Although α1i, β1i , i =
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Figure C.2: The optimized headway and velocity gains α1i, β1i, i = 2, . . . , n of the CCC
vehicle in a (10 + 1)-car connected vehicle system. The blue crosses denote gains obtained
with homogeneous human-driven vehicles, while the green squares denote the case when
vehicle 3 uses additional feedback from vehicle 5, with gains α35 = 0.9 [1/s] and β35 =
0.9 [1/s]. The other parameters are the same as in Fig. 5.2.

2, . . . , n differ between the homogeneous and heterogeneous cases, the difference is only
noticeable for i = 2, 3, even though α44, β44, α55, β55 differ significantly. This is because
the contracting map (C.25, C.26) forces the gains to decrease for signals coming from
farther downstream, and then heterogeneity of vehicles further away has less significant
impact on the CCC vehicle.

We then consider the robustness of the CCC design against extra connectivity links
among preceding vehicles. In Fig. C.2, the blue crosses still show the gains in a (10 + 1)-
car system with homogeneous human-driven vehicles (cf. Fig. 5.2), while the green squares
depict the case when vehicle 3 is also using motion information of vehicle 5, with feedback
gains α35 = 0.6 [1/s] and β35 = 0.9 [1/s]. Notice that the gains α1i, β1i of the CCC
controller do not change for i = 1, . . . , 4. While α15 and β15 change considerably, as i
increases further the changes in α1i, β1i decay exponentially.

These case studies demonstrate that our proposed algorithm is robust against hetero-
geneity among preceding vehicles.
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