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ABSTRACT

In this research we design connected cruise control algorithms based on vehicle-to-vehicle
communication in order to improve both traffic efficiency and the performance of indi-
vidual vehicles. We first model human car-following behavior using the optimal velocity
model with driver reaction time delay and analyze the relationship between human param-
eters and traffic flow behavior. Then based on the human car-following model we provide
a baseline design for connected automated vehicles. We propose an online estimation al-
gorithm that is able to identify both human feedback gains and reaction time delay in real
time using motion information received through wireless vehicle-to-vehicle (V2V) com-
munication. For connected automated vehicle design in a V2V-sparse environment, we
find that augmenting a human car-following model with acceleration feedback improves
the head-to-tail string stability of the connected vehicle system, and acceleration signals
from vehicles farther downstream should be used with larger delay time. For connected au-
tomated vehicle design in a V2V-rich environment, an optimal CCC controller is designed
using linear quadratic regulation while considering driver reaction time delay. We show
that when a CCC vehicle receives motion information from n vehicles ahead, the optimal
feedback gains decrease for signals from vehicles farther away, and the CCC controller
degrades gracefully when the communication links fail. This CCC controller is analyti-
cal, requires little computational load, and is able to provide certain levels of robustness
against heterogeneous human parameters in the connected vehicle system. We also con-
sider stochastic human parameters in the optimal CCC design when the mean dynamics of
the connected vehicle system is represented with distributed time delay. We find that the

optimal CCC controller maintains the same structure and performs well when tested with

Xiil



experimental data. In the last part of this research, we include stochastic disturbances from
the traffic flow and V2V communication in optimal CCC design, and introduce the proba-
bilistic model checking method so that the CCC vehicle can perform well in more realistic

traffic scenarios.

X1v



CHAPTER 1

Introduction

About one hundred years ago, the invention of the automobile and the construction of the
highway system fundamentally changed road transportation in America. Today, the con-
cept of connected automated vehicles (CAV) poses similar, if not more profound, impacts
on how we travel. Automated driving is not merely replacing human eyes with cameras and
lidar/radars. It liberates road transportation from unpredictable human mistakes and be-
haviors that cause many traffic problems; microscopically driving safety issues and macro-
scopically stop-and-go traffic jams. Moreover, with wireless vehicle-to-vehicle(V2V) and
vehicle-to-infrastructure (V2I) communication, an automated vehicle is able to obtain traf-
fic information beyond its line of sight, and navigate the traffic in a manner that benefits
both its passengers and the traffic flow.

In this research, I pose and provide initial answers to some questions related to:

(1) how human driving behaviors may lead to certain unwanted traffic phenomena,

(2) how an automated car should behave when sharing the road with human-driven cars,

(3) how an automated car in such a mixed-driving scenario can benefit from the traffic
information received through wireless connectivity.

This dissertation contains some initial answers from the perspective of longitudinal
motion control, and the main ideas can be summarized as follows:

(1) Many unwanted traffic phenomena are related to speed and distance fluctuations
propagating through the traffic flow as cars follow each other in each lane. We describe
human car-following behaviors using the optimal velocity model (OVM) and show that
most human-driven vehicles are unable to suppress speed fluctuations due to their large
reaction time delay. As such fluctuations increase, stop-and-go traffic jams may form, and
rear-end collisions may occur.

(2) To suppress speed fluctuations, a connected automated vehicle is equipped with
vehicle-to-vehicle (V2V) communication and receives motion information from several

cars ahead. Such motion information allows the vehicle to identify the preceding vehicles’



behavior and apply a connected cruise controller (CCC) that utilizes the information re-
ceived via V2V communication. This approach has significant potential for performance
improvement, allows an intuitive understanding of the controller design, and (for better
user acceptance) maintains a similar behavior as human-driven vehicles.

(3) When a large number of V2V signals are available, an optimal CCC design can be
used to tune the feedback gains systematically. We formulate this as a linear quadratic (LQ)
optimization problem, so that the optimal controller allows heterogeneous and stochastic
behaviors among preceding vehicles, while the computational load is kept low.

(4) More robust CCC controllers can be designed using probabilistic model checking,
where CCC controllers from the LQ setup may serve as baselines for this dynamic feedback
design.

This research is among the first steps to design connected automated vehicle systems
from the viewpoint of a more efficient transportation system. It exploits V2V communi-
cation which makes available traffic information beyond the line of sight to compensate
for the limited perception ability of on-board sensors. Such clairvoyance is not influenced
by camera/lidar/radar failures, and the resulting connected automated vehicle becomes a
smart agent in the traffic system “nudging” the traffic flow away from undesired behaviors.
More importantly, such benefits come from connectivity but not enforced cooperation, i.e.,
the connected automated vehicles may not share common control objectives. This differ-
s from many cooperative adaptive cruise control (CACC) research where a pre-organized
platoon is established. As the automated vehicle is able to exchange information with n-
earby vehicles in an ad-hoc manner and co-exist with human-driven vehicles, it can be
readily implemented in today’s human-dominated traffic network and provide a path to the

automation-dominated future.

1.1 Background

Research on automated driving dates back to the early 1990s. Facing the increasing demand
to reduce traffic congestion, the California PATH program started to research automated ve-
hicle and highway systems both experimentally and theoretically [8]. By 1997, there had
been several public demonstrations on automated longitudinal control in close-formation
platoons using radars and wireless LAN communication systems. Automatic lateral con-
trol was also experimentally tested using magnetic guidance and cameras. Even though
the PATH automated highway project was terminated and an automated highway system
did not materialize, the concepts formulated by PATH became the cornerstone for current

automated driving research.



Meanwhile, industry is gradually adding partially automated features to passenger cars,
such as adaptive cruise control (ACC) and lane-keeping systems. While ACC is often ad-
vertised as enhancing driver comfort, it can have significant benefits in terms of traffic flow
behavior via better longitudinal control of equipped vehicles. Since human drivers have
relatively large reaction times and limited perception abilities, they often perform poorly
as longitudinal controllers. ACC may improve longitudinal control due to faster and more
accurate sensing abilities and more sophisticated control strategies [9, 10]. However, ACC
cannot overcome the limitation that only motion information of the vehicle immediately
ahead can be obtained through range sensors.

Even as silicon valley and the automotive industry are trying to advance ACC and lane-
keeping systems to a higher-level of driving autonomy, their perception systems mostly rely
on on-board sensors like cameras, lidars, and radars. Thus the performance of these auto-
mated driving systems are severely limited by the available on-board sensors. For example,
Nissan automated vehicles reported dozens of disengagements when their perception sys-
tem failed to keep track of a vehicle entering/leaving its line of sight [11], and automated
vehicles from Delphi were forced to disengage when the cameras failed to identify lane
markings and traffic lights [12]. Even with a perfect on-board perception system, an au-
tomated vehicle is only able to obtain motion information of cars within its line of sight.
Thus, without other information sources, an automated car is still limited when it comes
to fuel economy, active safety, and passenger comfort. Also, due to the high cost in early
implementation, the penetration rate of automated cars may be quite low in the near fu-
ture. To produce observable benefits on traffic flow, automated cars have to obtain traffic
information which on-board-sensors cannot provide.

In recent years wireless communication technology has seen tremendous improve-
ments. In particular, the Federal Communications Commission allocated 75 MHz of band-
width in the 5.9GHz spectrum to applications in intelligent transportation systems [13].
Later, this wireless communication channel was named dedicated short range communica-
tions (DSRC) and has been furnished with a full set of protocols and standards from IEEE
and SAE [14], [15], [16]. DSRC enables 10-Hz ad-hoc communication between vehicles
and the infrastructure, and among vehicles. Experimental research studies have been con-
ducted where DSRC is used to monitor macroscopic traffic flow. As the cost of DSRC
devices continues to decrease, new cars will be mandated to have DSRC by 2020 in the
US. Thus, it is desired to incorporate information obtained via DSRC into motion control
of individual vehicles.

While many intelligent transportation research studies focus on vehicle-to-infrastructure

(V2I) communication based on DSRC [17], [18], this dissertation only focuses on vehicle-



to-vehicle (V2V) communication. In such a case, vehicles may be controlled while taking
into account traffic flow conditions over a longer spatial horizon. This idea first took form
in the PATH platooning project, where a fixed communication structure was assigned to a
group of ACC vehicles, so that a platoon could run with relatively small headway, while
velocity fluctuations were suppressed. Since then, a class of connectivity-based longitudi-
nal controllers have been proposed under the name of cooperative adaptive cruise control
(CACC) for various application scenarios [19-22], especially for designated-lane highway
driving [23-25]. Some researchers also relaxed the rigid requirements on the communica-
tion topology for CACC, so that it may deal with more realistic multi-vehicle formations
[26-28]. However, such cooperative systems often require a platoon of fully automated
cars, while driving automation in its early implementation often will have to deal with a
mixed traffic situation of human-driven and automated vehicles.

Therefore, in this dissertation, we propose a class of connected cruise control algorithm-
s that are based on human car-following behavior and allow ad-hoc V2V communication
with multiple vehicles. For each scenario under discussion, the controller is found to be
computationally efficient while allowing certain levels of heterogeneity and stochasticity in
the behavior of the preceding vehicles, and is able to maintain steady-state behavior sim-
ilar to the nearby human drivers. For a more robust and dynamic response to the traffic,
the framework is extended to design a connected cruise controller with dynamic feedback,
where the CCC controller maintains its connectivity topology while the computational load

varies.

1.2 Contributions

In Chapter 2, we describe human car-following behavior using the optimal velocity model
with reaction time delay and investigate which human parameters may induce undesired
traffic behaviors. Then by looking into the influence of delay time on the car-following
model, we establish a baseline design for connected cruise control.

In Appendix In Chapter 3, based on experimental data, we identify the time-varying
human parameters and reaction time using the sweeping least square method. This method
can be implemented online and has reasonable computational load.

In Chapter 4, we propose and develop an acceleration-based CCC design in a V2V-
sparse environment, where the CCC vehicle is able to suppress vehicle fluctuations propa-
gating downstream.

In Chapter 5, we propose and develop an optimal CCC design based on headway and

velocity in a V2V-rich environment. The optimal control problem is formulated as an LQ



problem, where the dynamics of preceding vehicles have nominal parameters and delay
time. The resultant CCC controller has an analytic form and thus requires little computa-
tional effort. It allows certain levels of inaccuracy and heterogeneity in the model parame-
ters of the preceding human-driven vehicles.

In Chapter 6, we consider stochastic variations in the parameters for the preceding
vehicles. The LQ CCC design is extended based on the mean dynamics, and the benefits
of the CCC controller remains.

In Chapter 7, we use probabilistic model checking to obtain an optimal CCC controller
with performance guarantee. While the feedback gains in the controller require more nu-
merical computation, the structure of the controller is maintained, and may facilitate further

investigation regarding the influence of the CCC vehicle on the traffic system.
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CHAPTER 2

Human-driven and automated car-following

behavior

We consider the early implementation of automated driving when a connected automated
vehicle needs to share the road with human-driven vehicles. While most vehicles on the
road are not automated, some of them are equipped with wireless V2V communication
devices such as DSRC, and the connected automated vehicle receives motion informa-
tion from the DSRC-equipped vehicles. As the automated vehicle travels with the largely
human-driven traffic flow, its behavior should bear a certain resemblance to a human-driven
vehicle. For example, the automated car should follow a human-driven car with a similar
distance as an average human driver would do. If it keeps a smaller distance, its passengers
may feel uncomfortable. Moreover, the human driver ahead may not prefer being tailgated
even if the automated car can brake faster. If the automated car keeps that distance larger
than average, other human-driven vehicles may decide to cut in, which creates disturbances
that may lead to safety hazards and negatively impact the traffic flow.

Since car-following behavior among all driving behaviors has the most recognized in-
fluence on traffic flow, we first model human car-following behavior, and then based on the

human model propose a car-following model that can be used for automated cars.

2.1 Human car-following mechanism

In this section we model the car-following behavior of human drivers in non-emergency
situations. For simplicity we only consider longitudinal motion control of vehicles in a
single lane; see Fig. 2.1(a). Many human car-following models exist in the literature, as
summarized in [29, 30]. These include continuous-time ones like the intelligent driver
model (IDM) [31], the optimal velocity model (OVM) [32], the GM model [33, 34], the

Pipes model [35], and the discrete-time ones like the Krauss model [36] and the Wiedemann
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Figure 2.1: (a): Cars following each other on a single lane. (b): The range policy (2.3,
2.4) used in the literature, where v, is the maximum velocity allowed for the vehicle, A
is the smallest headway before the vehicle intends to stop, and hg, is the largest headway
after which the vehicle intends to maintain v,,,. (c): The range policy (2.3, 2.5) used in
this paper. (d): The range policy (2.8) implicitly contained in the IDM.

model [37]. Over the past decades many variations of these models have been developed
in the efforts to reproduce a wide range of traffic phenomena by computer simulation [38,
39]. While models using a large number of parameters may be considered to be of higher
fidelity, difficulties in parameter estimation through data fitting can negatively affect their
accuracy [40,41].

Thus we consider a class of continuous-time car-following models with relatively few

parameters. These models (e.g., OVM, IDM, and GM model) can be written in the form

h; = Viy1 — U5,

. 2.1
by = F(hi, hi,vi)

to describe the car-following behavior of vehicle 7. Here the dot stands for differentiation
with respect to time ¢, h; denotes the headway, i.e., the bumper-to-bumper distance between
vehicle ¢ and its predecessor, and v; denotes the velocity of vehicle ; see Fig. 2.1(a).

Here we provide some details about the OVM and the IDM that are used very frequently
in the literature. In case of the OVM [42], the vehicle acceleration is determined by the

difference between the headway-dependent desired velocity and the actual velocity and by



the velocity difference between the vehicle and its predecessor, that is,
F(h,h,v) = a(V(h) —v) + Bh, 2.2)

where the gains o and 3 are used by the human drivers to correct velocity errors. The

desired velocity is determined by the headway using the continuous range policy

0 if h<hy,
V(h) =4 fo(h) if hy <h < hg, (2.3)

Umax it h > hgo )

i.e., the desired velocity is zero for small headways (h < hy) and equal to the maximum
speed Upmax for large headways (h > h,,). Between these, the desired velocity is given by
fv(h) which increases with the headway monotonically. There are many choices for the
specific function f,(h), but the qualitative dynamics remain similar if the above character-
istics are kept [4,42]. In [25] the function
h — hst
v(h) = Vpax——— 24

f ( ) ! hgo - hst ( )
was used, which has constant slope k£ = Umax/(hgo—hst), as shown in Fig. 2.1(b). However,
the range policy (2.3, 2.4) is non-smooth at i = hg and h = hg, and may generate a ’jerky

ride”. Thus, here we use

fo(h) = Un;x (1 — cos (W—hh __h;; >) (2.5)

as shown in Fig. 2.1(c). The range policy (2.3, 2.5) is smooth but has a changing slope.

We assume that human-driven vehicles try to maintain the equilibrium

hi(t) =h", v(t) =0v", (2.6)

given by F'(h*,0,v*) = 0, cf. (2.1), and the aggregate of such equilibria corresponds to the
uniform traffic flow. Using (2.2) we find the equilibrium speed-headway relation of OVM
given by its range policy function (2.3), i.e., v* = V(h*).

On the other hand, the IDM [31] can be written in the form

2.7)

v >4 B <hst +Tv — i'w/\/MY)7

F(h,h,v):a(1—< .

Umax



where a is the maximum desired acceleration, 7' is a time constant, and b is the comfortable
acceleration. While (2.7) does not contain a range policy function explicitly, the equilibri-

um speed-headway relation

hst + Tv*
\/1 - /Umax 4

depicted in Fig. 2.1(d), describes qualitatively the same driving behavior as in Fig. 2.1(b,c).

R =V = : (2.8)

Notice that for h* < hg, we have v* < 0 in the IDM, which can be eliminated by requiring
vehicle velocities to be non-negative.

As the parameters « and S in the OVM have clear physical meaning, we choose the
OVM (2.2) as the representation of human car-following model and a basis for automated
car-following design. We note that both the OVM (2.1, 2.2) and the IDM (2.1, 2.7) can be
linearized into the same form [42]. Thus, at the linear level, the choice of OVM over IDM
does not create structural changes to the automated vehicle design. Moreover, most results

in this dissertation can be generalized for differentiable F'(h, h, v).

2.2 Optimal velocity model with driver reaction time

One indispensable feature missing from the OVM (2.1, 2.2) is the human reaction time
delay, which may include the lag time in the powertrain. Previous analysis has shown that
the influence of time delay on traffic flow behavior cannot be ignored [43]. Thus, we add

driver reaction time to the OVM:

’ (2.9)
bi(t) = a(V(h(t = 7)) — vt = 7)) + B(visa(t — 7) —vi(t — 7)),

where 7 is the human reaction time delay.
By assuming the system in the vicinity of the equilibrium (2.6) and defining the head-

way and velocity perturbations
hi(t) = hy(t) — h*,  Bi(t) = v;(t) —v*, (2.10)

we linearize (2.9) to obtain the linear delay differential equation (DDE)

(1)

0i(t)

I
ISt

2.11)

i+1(t) — 0i(1)
(kKhi(t —7) = 0(t = 7)) + B(Diga(t = 7) — Tt — 7)) -
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Here k = V’/(h*) is the derivative of the range policy (2.3) at the equilibrium, and by abuse
of terminology we denote the time headway ¢, = 1/f/(h*) = 1/k for hgy < h* < hy,,.
Controllers with a small time headway produce more aggressive car-following behav-
iors, which makes it more difficult to maintain uniform traffic flow [44]. In the extreme
case of human car-following with zero time headway (constant headway distance for any

velocity), the uniform traffic flow cannot be maintained in a group of such vehicles.

2.2.1 Linear stability analysis in human car-following model

Here we discuss the influence of human driving behavior (2.9) on the stability of uniform
traffic flow, in particular the influence of driver reaction time 7. Based on highway traffic
data [42], we set nominal values V. = 30 [m/s], hgy = 5 [m], hg, = 35 [m] in the range
policy (2.3, 2.5). We evaluate the linear stability of (2.11) at the operating point v* = 15
[m/s], h* = 20 [m], where the range policy has the largest derivative xk = 7/2 [1/s] and
correspondingly the smallest time headway ¢, ~ 0.64 [s].

Since the uniform traffic flow corresponds to the trivial equilibrium (2.6) of the lin-
earized car-following model (2.11), we can discuss plant stability and string stability in
the vicinity of the equilibrium. A human-driven vehicle : is plant stable if the speed per-
turbation 0; converges to zero with “zero input” 9;,1(¢) = 0. Plant stability describes the
speed-regulation performance of individual vehicles regardless of the traffic. On the other
hand, string stability, as a special case of bounded-input-bounded-output stability, is related
to speed variations propagating along the vehicle chain. More specifically, string stability
requires that velocity fluctuations are attenuated as they propagate upstream [44]. There-
fore, to discuss the linear stability of uniform traffic flow with human-driven vehicles, we
only need to discuss the plant stability of each vehicle, and the string stability in pairs of
successive vehicles.

We consider the velocity perturbation v; of a human-driven vehicle as the output and
the velocity perturbation v, of its preceding vehicle as the input. Taking the Laplace
transform of the system (2.11) with zero initial conditions, we obtain the transfer function

Vi(s) _ F(s)

Ti(s) = o)~ G (2.12)

where V;(s) and V.1 (s) denote the Laplace transform of ;(t) and ;,1(t), respectively,

11
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Figure 2.2: (a - d): Stability region of human-driven vehicles in (3, «)-plane for different 7
values as indicated. The black curves are the plant stability boundaries. The dark gray areas
are string stable. The color represents the highest frequency of string stability changes.

and

F(s) = ps+ ak,
G(s) = s*e™ + (a+ B)s + ak. (2.13)

Plant stability is determined by the denominator G(s) of the transfer function (2.12)
and it is influenced only by the driver parameters «, 3, and 7. The human-driven vehicle
is linearly plant stable if and only if all solutions of the characteristic equation G(s) = 0
(also referred to as the poles) are located in the left half complex plane. By substituting
s = if2, {2 > 0 into the characteristic equation, we obtain the plant stability boundaries.
When {2 = 0, we have

a=0, (2.14)
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while for {2 > 0 we obtain the plant stability boundary in parametric form:

02
@=— cos(f27)
B = %(n sin(£27) — 2 cos(£27)) . (2.15)

Note that the plant stability boundary (2.14) describes the stability loss corresponding to
a real pole crossing the imaginary axis, while (2.15) describes a complex conjugate pair
of poles crossing the imaginary axis. When 7 = 0 [s], (2.14) remains the same while
(2.15) simplifies to 5 = —a, as shown by the thick black line in Fig. 2.2(a). One may use
the Routh-Hurwitz criteria to show that plant stability is achieved above the lines in the
top right corner. For different values of 7 > 0 the curves (2.14) and (2.15) are shown as
thick black curves in the (3, «)-plane in Fig. 2.2(b,c,d). One may apply Stépan’s formulae
[45] and show that stability is maintained inside the lobe-shaped domain. As the delay is
increased the plant stable domain shrinks, and the size of the domain tends to zero as the
delay approaches infinity. However, when the driver reaction time 7 = 0.3 [s], the human
car-following model with realistic gains «, § € (0, 2) is still plant stable, indicating that it
is relatively easy for human drivers to ensure plant stability.

Since we can write perturbation signals using Fourier components using the superposi-
tion rule in linear systems, string stability is equivalent to that sinusoidal signals are atten-
uated between the preceding and the human-driven vehicles for all excitation frequencies.
Therefore, at the linear level the necessary and sufficient condition for string stability is
given by

IT;(iw)]>-1<0, Vw>0, (2.16)

where T;(iw) is as defined by (2.12). This condition may be rewritten as w?P(w) > 0
where
P(w) = w? +2a8 + o® — 2(a + B)wsin(wT) — 2ak cos(wT) . (2.17)

The stability boundaries can be identified corresponding to the minima of P becoming

negative at w., > 0 that is defined by

P(we) =0,
op (2.18)
a_w<wcr) - 07

while satisfying %(wcr) > (. Solving this for o and 3 one may obtain the string stability

13



boundaries parameterized by w,, as

a=axVa2+0b,

Wer + QRT sin(we,T) (2.19)
= —«
SIN(WerT) 4 WerT €O8(Wer T) ’

where

Wer (KT — 1) + K Sin(we, T) €08(WerT)

(267 — 1) 8in(WerT) — WerT €OS(WerT)

W2 (sIn(Wer T) — Wer T €O8(Wer T))

(2.20)

(267 — 1) SIN(Wey T) — Wer T COS(Wer T)

For w., = 0, the equalities |I'(0)| = 1 and %(0) = 0 always hold. Thus, for string
stability we need %(0) < 0 which is equivalent to P(0) = a(a + 25 — 2k) > 0. That is,
one of the boundaries is equivalent to the plant stability boundary (2.14) while the other is
given by

a=2(k-p). (2.21)

Notice that this zero-frequency boundary does not depend on the driver reaction time 7.

In the special case of 7 = 0, only the sting stability boundaries (2.14) and (2.21) appear
as shown by the straight lines bounding the gray string stable domain in Fig. 2.2(a). The
coloring outside the string stable area corresponds to the solution of P(w) = w? + a(a +
2 — 2k) = 0 for the frequency w. The coloring indicates that string stability is lost for
low frequencies. For different values of 7 > 0 the stability boundaries (2.14, 2.19, 2.20,
2.21) enclose the grey-shaded string stability domain in the (3, «)-plane as depicted in
Fig. 2.2(b,c,d). The coloring outside the string stable area corresponds to the solution of
P(w) = 0 for the frequency w (cf. (2.17)). When there exist multiple solutions we use the
largest w value. The coloring indicates that when leaving the string stable area toward the
left, string stability is still lost at low frequencies. On the other hand, leaving the area to
the right, high-frequency string instability occurs.

One may observe that as the delay 7 increases the string stable domain shrinks and for
7 = 0.3 [s] it almost disappears. In fact, there exist a critical value of the delay such that
for 7 > 7., there exist no gain combinations that can ensure string stability. To calculate

the critical delay one may use the L’Hospital rule to show that for w., — 0 formulae (2.19,
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2.20) yield the points

v ooy [ 26m—1 2(k7)?—4kT+1
(a7, 87) = (7‘(/{7’—1)’ 27 (kT — 1) )’

@5 =(05).

which are located along the stability boundary around the yellow shading in Fig. 2.2(a).

(2.22)

These points move closer to each other when the delay increases and coincide when the

delay takes the value
1 ty
= —=—~0.325]s]. 2.23
2% 2 g (223)

As human reaction time is generally larger than 0.3 [s], the optimal velocity model with

7-CI‘

time delay determines that human drivers mostly are unable to remain string stable. How-

ever, this problem can be solved by utilizing driving automation.

2.3 Two possibilities in eliminating delay time

Given the faster and more accurate sensing abilities of automated driving systems, an auto-
mated vehicle is able to eliminate delay time from the car-following model (2.9) in several
different ways. In this section, we introduce each modification that may lead to a new car-
following model for an automated car, and by comparing their string stability performance
choose the most desirable one.

To start with, an automated vehicle may have the same car-following model as a human-
driven vehicle (2.9), but with smaller delay time 7. However, an automated vehicle may
use range sensors to measure the headway and relative velocity between the two cars in
time, but instantaneously measure its own velocity v; by on-board sensors. Assume the

delay time to obtain those signals is o, then the automated car-following model becomes

hz(t) = Uz'+1(t) - Ui(t> )

(2.24)
bi(t) = a(V(hi(t — o)) — vi(t)) + B(viga(t — 0) —vi(t — 9)).

This model still satisfies the equilibrium (2.6), but in the right hand side a mismatch in time
is created by comparing the delayed value of desired velocity with the instantaneous value
of the actual speed.

To further eliminate delays, one may consider obtaining the headway and the leading

car’s velocity via V2V communication while measuring its own velocity on board. In this
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case, the automated car-following model becomes

hi(t) = vipa(t) — vi(t)

’ (2.25)
0i(t) = a(V(hi(t — o)) — vi(t)) + B(visa(t — o) — vi(t))

where both feedback terms in the second equation compare delayed values to instantaneous
values. The model (2.25) also satisfies the equilibrium (2.6).

One may argue that when calculating the headway from vehicle positions, the GPS
position of the automated vehicle itself does not have to be delayed. However, in this case
the desired equilibrium (2.6) will vary depending on the delay time o of the preceding car’s
GPS signal. In particular, the equilibrium headway becomes V=1 (v*) + v*o that may lead
to safety hazards.

To investigate the advantages and disadvantages of the three models (2.9),(2.24) and
(2.25) in terms of their linear stability around the equilibrium (2.6), we carry out the same
string stability analysis as in Section 2.2.1, and plot stability charts for different values of

the communication delay o.

2.3.1 Linear stability analysis for one delay mismatch

Linearizing the model (2.24) about the equilibrium (2.6) yields

I
@1

ha(t) ) — (1),

. S (2.26)

Taking the Laplace transform with zero initial conditions we obtain the transfer function

r(s) = L) _ . Ps + ax . (2.27)
VL(S) eSU( + as) + s+ akx
The corresponding plant stability boundaries are given by (2.14) and
0? cos(Qo)
0= ——"""-"
Kk — Qsin(Qo)’ (2.28)

f = Qsin(Qo) — acos(Qo) ,

that are shown as thick black curves in the (3, a)-plane in Fig. 2.3. Applying Stépan’s
formulae [45] shows that the system is plant stable when parameters are chosen from the
region above the black curves. Again, increasing the delay leads to smaller plant stable

domains.
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Figure 2.3: (a - ¢): Stability region of human-driven vehicles in (3, a)-plane for different o
values as indicated. The black curves are the plant stability boundaries. The dark gray areas
are string stable. The color represents the highest frequency of string stability changes.

In this case the string stability condition can be rewritten as w(@(w) > 0 where
Q(w) = W + *w — 2(a®k + Bw?) sin(wo) + 2(af — akr)w cos(wa) . (2.29)

For w., > 0 the string stability boundaries can be obtained by replacing P with @) in (2.18)

which yields
3
Z ay,of =0,
e (2.30)
- Wi, + a?we — 20k (o Sin(wer o) + wer €08(Wer0))
B 2Wer (Wer SIN(Wer0) — @t €O8(Wer ) ) '
where

g = Wey €08(wer0) ( — SIN(Wer0) + Wer0 CO8(Wer 7))

)
a; = w? cos(wcra)( w20 SiN(We0) — 2K SIN(Wer0) OS(Wer0) + 2Wer COS(Wer ) — 2/<;wcr0) ,
Ay = Wer COS(Wer0) (wcr Sin(wee o) — 4k sin? (e o) + W20 cos(wcra)) ,

2

a3 = c08(wex0) (W20 SIn(wer o) + 25 SN (Wer ) €08(Wey ) — 2KwWe ) -
(2.31)

3;')5' (0) < 0is equivalent to 92(0) = a((1 — 2k0)a +25 —
2/@) > (), that yields the boundaries (2.14) and

For w.. =

_2(x=P)
a=T— (2.32)

That is, in this case, the gradient of the zero-frequency boundary is influenced by the delay
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Figure 2.4: (a - ¢): Stability region of human-driven vehicles in (3, a)-plane for different o
values as indicated. The black curves are the plant stability boundaries. The dark gray areas
are string stable. The color represents the highest frequency of string stability changes.

as shown by the boundary on the left of the gray string stable region in Fig. 2.2(a) and
Fig. 2.3. Here the coloring corresponds to the solution of Q(w) = 0 for the frequency w
(cf. 2.29). Again, on the left string stability is lost at low frequencies while on the right
high-frequency string instability occurs. The string stable domain is not closed from above

but it still shrinks as the delay increases and it disappears when the delay exceeds

Oox A @ = 0785, (2.33)

but this value cannot be calculated analytically.

When comparing Fig. 2.2 to Fig. 2.3 one may notice a trade-off. While the critical delay
is significantly larger in the latter case, it also requires larger gains to make the systems
string stable as the delay is increased. This may be difficult to achieve in practice due to

the saturation of the actuators.

2.3.2 Linear stability analysis for two delay mismatches

Finally, the linearization of (2.25) about the equilibrium (2.6) takes the form

;li t) = ~i t) — ~i t ;
() = o (8) = () 30
U;(t) = a(khi(t — o) = 5;(t)) + B(0i41(t — o) — 0:(t)) |
and the corresponding transfer function is given by
r(s) = L) Ps + ar (2.35)

Vi(s) T e (32 + (a+ ﬁ)s) +ak
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Then the plant stability boundaries are given by (2.14) and

Q2
kcos(Qo) (2.36)
f = Qtan(Qo) — a,

o =

that are displayed as thick black curves in Fig. 2.4. According to Stépan’s formulae [45]
the system is plant stable above the curves and increasing the delay still deteriorates plant
stability (though this effect is not so pronounced when comparing to the other two cases
discussed above).

Again the string stability condition can be written as wR(w) > 0 where
R(w) = w* + o*w + 20w — 2ak(a + B) sin(wo) — 2akw cos(wo) (2.37)

and substituting P with 1 in (2.18) results in the string stability boundaries

a=a++\/a2+b,

5= w3 + Pwe — 2045(04 SIN(Wer0) + Wer COS(wcro')) (2.38)
= 2@(/{ sin(wcra) — wcr) )
where
A _wgro- Sin(wcr(f) — R Sin((ﬂcrO’) COS(wcrU) + KWer O
a =
SIN(Wer0) — Wer 0 €COS(Wer T ) ’ 230
- w2, (3/@ SIN(Wer0) — KWwer 0 €O8(Wep o) — 2wcr) (2.39)

/<a( SIN(Wer0) — WerO cos(wcra))

However, we remark that these do not give stability boundaries in the physically realistic
parameter ranges.

For we, = 0, we obtain %(0) = a((1 — 2ko)a + 2(1 — ko)B — 2k) > 0, that yields
the boundaries (2.14) and

B 2(/4; - (1- /w)ﬁ)
o= om0 . (2.40)

That is, both the gradient and the position of the zero-frequency boundary is influenced
by the delay which can be observed when looking at the left boundary in Fig. 2.2(a) and
Fig. 2.3. As shown by the coloring, only low-frequency string instability occurs and the

gray string stable domain is open from above and from the right. By investigating when the
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Figure 2.5: The blue, red, and green areas correspond to the string stability region for car-
following model (2.9), (2.24), and (2.25), respectively. The driver reaction time is 7 = 0.3
[s] for (2.9) and 0 = 0.3 [s] for (2.24) and (2.25). In all three cases, the range policy
parameters are hg = 5 [m], hgo = 35 [m], Umax = 30 [m/s], and the range policy slope is
Kk =m/2[l/s].

gradient of (2.40) becomes zero one can calculate the critical delay

1
O = — = tp, (241)
K
above which the string stable domain disappears.
Again comparing Fig. 2.2, Fig. 2.3, and Fig. 2.4 one may notice that the critical delay
increases but larger gains are required to make the system string stable which may not be

possible due to the limitation of the actuators.

2.4 Car-following model for automated vehicles

Here we summarize the comparisons of the three car-following model candidates (2.9),
(2.24), and (2.25), and explain why we prefer to select the exact human car-following
model (2.9) in automated vehicle design.

To evaluate whether a car-following model can be used as a baseline in automated
vehicle design, a main criterion is how the string stable region changes with delay time.
By simply comparing the size of string stable areas (dark grey) in Fig. 2.2, Fig. 2.3, and
Fig. 2.4, one may conclude that string stable regions in Fig. 2.4 occupy the largest areas
and shrink slowest (cf. the critical delay (2.23), (2.33), (2.41)), and thus choose the car-
following model with two delay mismatches (2.25) as the baseline design for an automated
vehicle. However, the left string stability boundary (2.21) from the original car-following

model is not influenced by delay time 7, i.e., small (o, ) values maintain string stability
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Figure 2.6: The velocity, headway, and position of a string of 50 vehicles with car-following
model (2.3, 2.5, 2.9) under velocity disturbances in the traffic flow, where o = 0.5 [1/s],
B = 1.4[1/s], hgs = 5 [m], hgo = 35 [m], Umax = 30 [m/s], 7 = 0.3 [s]. Each colored curve
corresponds to a vehicle trajectory.
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as delay time increases. While the boundaries (2.32) and (2.40) from the modified models
shift to the right as the delay time o increases, which means that small («, ) values are
unable to maintain string stability. It is important to keep small («, /) values string stable,
for the engine/brake torque limits («, 3) to the lower left corner of the first quadrant. In
Fig. 2.5 the string stable region for (2.9), (2.24) and (2.25) are shaded blue, red, and green,
respectively. The delay time is 7 = 0.3 [s] for (2.9) and ¢ = 0.3 [s] for (2.24) and (2.25).
While (2.25) has the largest stable area (green), it requires 5 > 3 [1/s], which will easily
saturate the engine and brakes on average passenger cars. Similarly, even as the string stable
area (red) from (2.24) is larger than the stable area (blue) from (2.9), the string stability is
gained by increasing « and /3, which might not be achievable on cars. In this sense, (2.9)
is more suitable for implementation than (2.24) and (2.25).

To further demonstrate the benefits of the car-following model without delay mismatch
(2.9) over the ones with mismatches (2.24) and (2.25), we simulate 50 cars in a string using
each model and plot their velocity, headway, and position responses to speed fluctuations in
the traffic flow. Fig. 2.6 shows the 50-car simulation using (2.3, 2.5, 2.9) with human gains
a = 0.5 [1/s], B = 1.4 [1/s], which is marked by the black cross in Fig. 2.5. (2.9) is string
stable as shown in Fig. 2.5; cf. (2.21). Therefore, the headway and velocity fluctuations
decrease as they propagate along the vehicle chain; see Fig. 2.6(a,b), and we see the traffic
flow becoming smoother and no traffic jams are forming in Fig. 2.6(c).

Fig. 2.7 shows the 50-car simulation using (2.3, 2.5, 2.24) with the same human pa-
rameters as in Fig. 2.6. Note that in this case the car-following model is no longer string
stable; cf. (2.32). Thus, in Fig. 2.7(a,b) the velocity and headway fluctuations are ampli-
fied through vehicles, and in Fig. 2.6(c) some “wrinkles” are forming, indicating possible
stop-and-go traffic jams downstream.

Fig. 2.8 shows the 50-car simulation using (2.3, 2.5, 2.25) with the same human param-
eters as in Fig. 2.6. This car-following model is severely string unstable due to the delay
mismatches; cf. (2.40). Therefore the velocity and headway fluctuations in Fig. 2.8(a,b)
are significantly amplified along the vehicle chain, and the velocity of vehicles at the end of
this chain varies between vy, = 30 [m/s] and v,,;, = 0 [m/s], indicating the formation of
stop-and-go traffic jams. In Fig. 2.8(c) we can also see how the relatively mild disturbances
to the head vehicle’s motion lead to stop-and-go traffic jams, as the "wrinkles” grow deep-
er and propagate backwards along the traffic flow. This comparison of the macroscopic
car-following behaviors shows that the car-following model without delay mismatch (2.9)
should be favored over the ones with delay mismatch (2.24, 2.25) when designing automat-

ed vehicles.
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Figure 2.7: The velocity, headway, and position of a string of 50 vehicles with car-following
model (2.3, 2.5, 2.24) under velocity disturbances in the traffic flow. The simulation pa-
rameters and notations are the same as in Fig. 2.6.
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Figure 2.8: The velocity, headway, and position of a string of 50 vehicles with car-following
model (2.3, 2.5, 2.25) under velocity disturbances in the traffic flow. The simulation pa-
rameters and notations are the same as in Fig. 2.6.
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Thus, based on (2.9), the baseline car-following model for automated vehicle design is:

ha(t) = vipa(t) — vi(t)

(2.42)
0;(t) = a(V(hi(t —7)) — vt — 7‘)) + 6<Ui+1(t —7) — vt — 7')) ,

where 7 is the driver reaction time of the automated vehicle. In order to improve the string
stability of (2.42) for 7 > 0.3 [s], in the following chapters, we will design connected cruise

controllers based on V2V communication.
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CHAPTER 3

Parameter identification in human car-following

behavior

This chapter presents how to estimate parameters in the human car-following model (2.9)
in real time as a connected automated vehicle receives headway and velocity data from
preceding vehicles. The estimated parameters will then be used to design connected cruise
controller for the automated vehicle in the forthcoming chapters.

Most existing connected automated vehicle design assume that the controller has a pri-
ori knowledge on the dynamics of the communicating vehicles [46], [47], [48]. While
such an assumption may hold for CACC research where a platoon only contains automat-
ed vehicles [19], this assumption is invalid when the connected vehicle system contains
human-driven vehicles, or when vehicles are allowed to join and leave the system. On the
other hand, while the equilibrium (h*, v*) can be deduced from aggregated traffic data, no
existing research has investigated the distribution and variation of «, 3, x, T for individual
drivers. Thus, it is necessary to consider online identification of car-following dynamics for
preceding vehicles [49]. Although we assume that all non-CCC vehicles are human-driven
for simplicity, the identification algorithms is able to deal with automated vehicles, as the
latter is described by the same car-following model but with a smaller reaction time.

Since the driver reaction time has significant influence on the car-following dynamics
(cf. Fig. 2.2), it is necessary to obtain both the human feedback gains «, (3, range policy
slope « and the reaction time delay 7. Online parameter identification for problems without
time delay has been well developed over the years [50]. While there also exist some results
concerning parameter estimation in time delay systems [51], [52], estimating the delay time
and feedback gains simultaneously is still challenging, as the convergence conditions are
generally stringent [53], [54]. In Appendix B, an algorithm is proposed that requires a
similar excitation condition as in non-delayed estimation problems and is able to converge
simultaneously in both feedback gains and delay time with satisfactory speed. However,

that estimator results in a system with state-dependent delay, and only local convergence
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Figure 3.1: A string of n vehicles with a CCC vehicle at the tail receiving signals from
human-driven vehicles ahead via wireless V2V communication. The red arrows denote in-
formation flow. The velocity of vehicle  is denoted by v;. The bumper-to-bumper distance
between vehicle 7 and vehicle 7 + 1 is called the headway and denoted as h;. The length of
every vehicle is assumed to be [.

can be established. Thus, it may only be used to identify time-invariant parameters, and
thus it is only applicable when identifying the parameters of automated vehicles.

Therefore, a connected automated vehicle needs a new online estimation algorithm to
identify the car-following dynamics of human-driven vehicles from which it receives mo-
tion information. We propose a sweeping least squares method to simultaneously identify
the feedback gains «, 3, range policy slope x, and driver reaction time 7 in (2.11), based
on the headway and velocity data collected via GPS and DSRC.

3.1 The sweeping least squares method

We consider the configuration in Fig. 3.1 where a group of vehicles travel on a single lane.
We assume that vehicle 1 receives the motion information of two consecutive vehicles
ahead through DSRC communication. By using signals from vehicles ¢ and ¢ + 1, vehicle
1 is able to identify the dynamics of vehicle ¢ and thus uses motion information of vehicle
1 for its longitudinal control. In this way, vehicle 1 can include feedback terms on the
headway and velocity signals from multiple vehicles ahead, which we refer as connected
cruise control.

The car-following dynamics of human-driven vehicle ¢ can be described by (2.9) with

range policy function V;(h;) = k;h;, which is recalled here

hz(t) = Ui+1(t) - Uz'(t) )

(3.1
0i(t) = o (kihi(t — 75) — vi(t — 7)) + Bi(via (t — 73) — vt — 7))

by emphasizing the heterogeneity of drivers as the parameters «;, [3;, 7; and the range policy
function V;(h) differ for each 7. For simplicity we assume hg; = 0 [m] and i < Ay, SO
that this car-following model is truly linear. However, the least square method will remain

valid without this assumption.
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In order to identify the gains «;, 3;, the range policy slope x;, and the reaction time 7;,
we assume that the GPS and speed data from vehicles ¢ and 7 4+ 1 are available via DSRC.
We discretize the second equation in (3.1) using the explicit Euler method with time step
At:

At

= Oéi(liihi[k —m] — vk — m]) + ﬁi<vi+1[l€ —m] — vk — m]) .
(3.2)

where m = round(7;/At). Here At = 0.1 [s] as the communication frequency of DSRC
is 10 Hz.
We consider N data points over a timespan of N At and rewrite the unknown parameters
a;, B, k; in (3.2) as
a=—o; —B;, b=aqk;, c=0;. (3.3)

We consider the possible range of driver reaction time 7; € [Tinin, Tmax|, and sample it such

that 7, = mAt. Then for each m, the least square estimation yields

a(m)
b(m)| = (ATA)T'ATB(m), (34)
c(m)
where
A= : : P Bm) =4 : , (3.5)
and the corresponding fitting error is
a(m)
R(m)=A |b(m)| —B(m). (3.6)
c(m)

Therefore, we obtain the estimated human reaction time as 7; = mAt, where

m = arg min||R(m)||2. (3.7)
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Correspondingly the estimated human feedback gains are

B = c(m) , (3.8)

Given reasonable N, each least square calculation (3.4, 3.5) exhibits a small compu-
tational load. Thus, the estimation algorithm (3.4, 3.5, 3.6, 3.7) can be implemented in

real-time.

3.2 Data collection for algorithm validation

In order to identity the gains «;, [3;, the range policy slope x;, and the reaction time 7; in
the optimal velocity model (3.1), we designed an experiment where a string of four human-
driven vehicles run consecutively on a single-lane road; see Fig. 3.2. Each vehicle was
equipped with a Commsignia on-board unit that provides GPS data and V2V communi-
cation based on DSRC. We record the vehicles’ GPS coordinates (latitude ¢, longitude A,

elevation ) and speed v every 0.1 [s]. Then the Haversine formula [55]

o i+ T : o (P — @) . 2 Ai — A 3.9
dw—Q(R—i- 5 )arcsm\/sm (—2 )+COS¢ZCOS¢]SID< 5 ) (3.9)

is used to calculate the great-circle distance d;; between two GPS points (¢;, A;, ;) and
(¢j, Aj, ;). Here R = 6371000 [m] is the nominal radius of the earth.

Thus, the headway for vehicle 7 is
hi = digian) — L, (3.10)

where [ is the vehicle length. The headway and velocity profiles during one of the test
runs are shown in Fig. 3.3. In Fig. 3.3(b) we can see that the velocity v, of the head vehicle
(magenta curve) is almost constant before decreasing at ¢t ~ 125 [s], while the velocities of
following vehicles oscillate before 125 [s] and they also exhibit more severe deceleration
(vs 1s the black curve, vy is the red curve, v; is the blue curve). This shows that human
drivers amplify the velocity fluctuations propagating along the chain. Such amplifications
may not only lead to stop-and-go traffic jams, but can also result in rear-end crashes in

heavy traffic.
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Figure 3.2: The experimental setup: a string of 4 vehicles on a single-lane road where all
vehicles are equipped with GPS and DSRC devices. The test route is a 3-mile section of

Mast Road near Dexter, MI.
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Figure 3.3: Headway and velocity profiles of the 4-vehicle string during one test run, where
the black, red, and blue curves correspond to the headway and velocity of vehicles 3, 2, 1,
respectively. The magenta curve in (b) is the velocity of the head vehicle 4.
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Figure 3.4: (a): Headway of vehicle 3 during one test run. (b): Velocity of vehicles 2 (black
curve) and 3 (red curve) during one test run.

3.3 Variations of estimated driver parameters

The estimation algorithm (3.4, 3.5, 3.6, 3.7) produces the estimation ¢, Bl-, ki, T; for each
data segment with size N. For example, at time stamp ¢ty = koAt an estimation is obtained
using the motion information v; k], h;[k], and v; 1 [k] for k € {ko — N, ... ko — 1}. As the
car receives new motion information and the window shifts forward in time, the estimated
values of &;, f3;, &;, and 7; change. Thus, the estimated parameters will be time-varying.

As an example, we estimate the driver parameters as, (33, k3, T3 for vehicle 3 using
hs, vs, v4. The headway hg is shown in Fig. 3.4(a), and the velocities v3 and v, are shown
in Fig. 3.4(b). We consider data length N = 100 and human reaction time 0 < 7 <
4 [s], that is m € {0,...,40}. The corresponding estimation starts at ¢t = 15 [s], as
shown in Fig. 3.5. As the data window moves forward in time, the estimated delay time 7
varies between T,,x = 2 [s] and 7 = 0.2 [s], and remains around 1 [s]. The estimated
feedback gains & and (3 are also time-varying. While they are significantly smaller than
values previously assumed (o ~ 0.6 [1/s], 5 ~ 0.9 [1/s]) based on macroscopic data [1],
they remain positive for most of the time. Since the algorithm for k; involves division (cf.
(3.8)), we present &; after filtering the noise using a third-order Savitzky-Golay filter with
window size NAt/2 = 5 [s]; see Fig. 3.5(d).

In Fig. 3.5, the human reaction time, feedback gains, and range policy slope exhibits
stochastic variations. In the simplified case, a connected vehicle design can use their mean

values, but it is desired to examine their distribution over a larger data set.
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Figure 3.5: Estimated driver parameters of vehicle 3 starting from ¢ = 15 [s] in a test run.
The related headway and velocity information is shown in Fig. 3.4. (a): The time profile
of estimated delay time 73 with data window size N = 100, quantization step At = 0.1
[s], and the range of possible delay 7 € [0.2,2] [s]. (b,c): The time profile of estimated
feedback gains dvs, (3. (d): The time profile of estimated range policy slope 7. It is filtered
by a third-order Savitzky-Golay filter with window size 5 [s]. The dashed black lines are
the mean values.
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Figure 3.6: (a, b) Histogram of estimated driver reaction time for vehicles 2 and 3, respec-
tively.

3.4 Distributions of estimated driver parameters

As we did four test runs on Mast Road and accumulated over 10000 estimates for every
driver parameter in vehicles 2, 3, and 4, we are interested in the distribution of those pa-
rameters and the difference between the human drivers. In particular, we investigate the
distribution of driver parameters for vehicles 2 and 3.

In Fig. 3.6(a,b) we show the histogram of estimated driver reaction time 7, and 73,
respectively. Since it is infeasible to have driver reaction time smaller than 0.2 [s] in a
human-driven vehicle, and there are few cases when the estimated delay is larger than 2
[s], we only consider the window 7 € [0.2,2] [s]. It seems that a Gamma distribution is
a suitable description for the reaction time. The mean and variance of the driver reaction
time for car 2 is (1.16,0.19) [s], while for car 3 we have (0.88,0.12) [s].

It is noted that the driver for vehicle 2 has two years of driving experience while the
driver for vehicle 3 has been driving for more than ten years. While a much larger sample is
needed to establish the relation between driving proficiency and car-following parameters,
the comparison between Fig. 3.6(a) and Fig. 3.6(b) provides some intuition on the variation
between different drivers. Note that the experienced driver has smaller and more consistent
reaction time, which may lead to a more reliable response to the traffic environment. How-
ever, the values of mean reaction time are not significantly different for the two drivers,
which may be exploited in connected vehicle design.

In Fig. 3.7 we show the histograms of human feedback gains &;, f; and range policy
slope k; for vehicle 2 (panels (a,c,e)) and vehicle 3 (panels (b,d,f)). In each panel the his-
togram can be approximated by a Gaussian distribution with different mean and variance.
By comparing Fig. 3.7(a,c,e) and Fig. 3.7(b,d,f) we can see that, while there exist some d-

ifferences between the histograms, the human feedback gains &, f3; and range policy slope
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Figure 3.7: (a,c,e): Histogram of human feedback gains o, Bg and range policy slope <o
for vehicle 2. (b,d,f): Histogram of human feedback gains &3, 53 and range policy slope <3
for vehicle 3.
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k; vary in the same range for the two drivers. Thus, it is feasible to use a nominal &, 3, &

for both drivers in connected vehicle design.

3.5 Conclusion

In this chapter we designed an online algorithm for an automated vehicle to identify the
dynamics of preceding vehicles via DSRC. This algorithm is able to obtain estimated pa-
rameters in real time, and is able to cope with time-varying human parameters. Both char-
acteristics are crucial for application in connected vehicle system design.

From the four-car experiment we see that human parameters are time-varying, and ap-
pear to follow certain distributions. While the parameters vary between different drivers,
their mean values can be considered as similar. Thus nominal values can be assumed when

designing connected cruise control.
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CHAPTER 4

Design of connected cruise control in a

V2V-sparse environment

We consider connected automated vehicle design when there are only a few DSRC-equipped
vehicles in the traffic flow. In order to have better longitudinal control than with the tradi-
tional adaptive cruise controller, the connected cruise controller has to take full advantage
of the few motion signals it receives. In previous research [43,46,48,56] headway and ve-
locity information has been included in the connected cruise controller, but acceleration is
seldom used since it requires taking derivatives of (noisy) velocity signals generated by the
sensors. On the other hand, it has been shown that acceleration feedback can be effective in
other applications involving human reaction time, e.g., human balancing [57]. Also, human
drivers often use acceleration signals provided by the taillights, but they cannot determine
the exact deceleration value, and can only observe the taillight of the vehicle immediately
ahead. Using accurate acceleration information from multiple vehicles ahead may enable
the host vehicle to better respond to traffic conditions.

In this chapter, we consider an acceleration-based CCC design, where the CCC con-
troller receives acceleration information broadcasted by other vehicles and augments the
human control commands based on the local headway and velocity information. We pro-
pose a control design where both the acceleration feedback gain and delay time are tuned
as design parameters. We show that this design is robust against variations in human driver
gains and reaction time, and we derive the ranges of feasible acceleration gains and de-
lays that ensure overall string stability for the connected vehicle system. We note that this
acceleration-based CCC design still applies for a connected and fully automated vehicle,
where the local headway and velocity information will be monitored by sensors instead of
human drivers.

The layout of this chapter is the following. In Section 4.1, we introduce the CCC con-
troller with acceleration feedback. This model allows us to exploit the connectivity when

only a few vehicles are providing their motion information through V2V communication.
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Figure 4.1: A heterogeneous string of n + m + 1 vehicles with n + m non-CCC vehicles
and a CCC vehicle at the tail.

In Section 4.2, we linearize the system about the uniform flow equilibrium and analyze
the head-to-tail string stability for different communication structures. The linear stability
results are summarized using stability charts and the results are verified at the nonlinear

level using numerical simulations. We conclude our results in Section 4.7.

4.1 Connected car-following models with acceleration feed-
back

We consider a string of n + m + 1 vehicles traveling on a single lane as shown in Fig. 4.1.
The preceding n + m vehicles are not equipped with CCC and are assumed to be human-
driven. The tail vehicle (the last vehicle in the string) implements acceleration-based CCC
using acceleration signals received through V2V communication from n preceding vehi-

cles. The car-following dynamics of the CCC vehicle is modeled by

ill (t) = Ug(t) — 'Ul(t) s

() =a(V(ht—71)) —vi(t = 7)) + B(valt = 7) —vi(t — 7)) + Z’yk Op(t — o),
) 4.1)

where 7 represents the driver reaction time. The gains and the delays for the acceleration
signals are denoted by 7, and o, kK = 2,...,n + 1. Note that o} stands for the sum
of communication delay and the delay in the controller when CCC is used to actuate the
vehicle. Even though wireless V2V communication can be considered to be instantaneous,
communication delay of magnitude 0.1 — 0.4 [s] is reported due to the intermittencies and
packet drops [58], that shall be incorporated in the oy-s.

For simplicity, we consider that all human-driven vehicles are identical. Thus (4.1) and

(2.9) contain the same range policy V' (h), headway gain «, relative velocity gain /3, and
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driver reaction time 7. To evaluate the robustness of our acceleration-based CCC design
against uncertainties in driver parameters, we will investigate the dynamics for different
values of «, (3, and 7. On the other hand, the acceleration gains 7, and delays o will be
used as design parameters. Indeed, these delays have minimal values as explained above,
but we will show that they may be increased intentionally in order to obtain desired perfor-
mance.

The longitudinal stability of a connected vehicle system also includes plant stability and
string stability. The plant stability of the CCC vehicle is defined as for the human-driven
vehicles: suppose that the vehicles whose signals are used by the CCC vehicle are driven at
the same constant velocity, then the CCC vehicle is plant stable if its velocity approaches
this constant velocity. Consequently, a connected vehicle system is said to be plant stable,
if all vehicles approach the velocity of the head vehicle (the first vehicle in a string) when
it is driven at a constant velocity.

However, string stability in a connected vehicle system cannot be discussed in a sim-
ilar manner as in human-driven vehicle systems. A human-driven vehicle only reacts to
the motion of the vehicle immediately ahead and a human-driven vehicle system can be
decomposed into pairs of successive vehicles, while the control law of a CCC vehicle de-
pends on several preceding vehicles in the system and the pair-wise decomposition is no
longer valid. Moreover, many vehicles in the string can be purely human-driven, and their
string stability cannot be ensured. Thus, the string stability of a heterogeneous system con-
taining CCC and human-driven vehicles cannot be simplified to the string stability of pairs
of successive vehicles. Here, we define the head-to-tail string stability and compare the
velocity fluctuations of the head vehicle and the tail vehicle (that is assumed to be a CCC
vehicle without loss of generality). This way, all the influences on the tail vehicle’s motion
are considered and we are able to compare the string stability of connected vehicle systems
with different structures of connectivity that may include multiple CCC vehicles. Notice
that this definition allows some following vehicles to amplify the velocity fluctuations of
the leading vehicle, but fluctuations are attenuated when they reach the tail. In the remain-
ing chapters of this dissertation, by abuse of terminology, we will refer to the head-to-tail

string stability of a CCC vehicle as the string stability of a CCC vehicle.
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4.2 Head-to-tail string stability for connected vehicle con-

figurations

In this section, we focus on the dynamics of the connected vehicle system (2.9, 4.1) in the
vicinity of an equilibrium that is achieved when all vehicles travel with the same constant
velocity and maintain constant headways. While the equilibrium velocity v* is determined
by the head vehicle, the equilibrium headway A is obtained for each vehicle using the
range policy v* = V;(h}). Since the range policies are assumed to be identical, we consider
the uniform flow equilibrium (2.6) and the headway and velocity perturbations (2.10) for

1 =1,...,n+ m+ 1 and obtain the linearized dynamics of the CCC vehicle

hi(t) = Ua(t) — 01 (1),

. n+1
0i(t) = a(khy(t —7) = 0y(t = 7)) + Bhi(t —7)+ Y e Ot —ow),  (42)
k=2
while the linearized dynamics for human-driven vehicles ¢ = 2,...,n + m + 1 are given

by (2.11).

We consider the velocity perturbation v,,1,,,11 of the head vehicle as the input and the
velocity perturbation v, of the tail vehicle as the output. Taking the Laplace transform
of the system (4.2, 2.11) with zero initial conditions, and eliminating the velocities of the

other vehicles and the headways, we obtain the head-to-tail transfer function

o () () e

Here Vi(s) and V,,,,,,.1(s) denote the Laplace transform of @y (t) and @ n41(t), respec-

tively, and we have

F(s) = pBs+ ak,
Fi(s) = s elT=ok)s (4.4)
G(s) =se™ + (a+ B)s+ ak.

We remark that without V2V communication (7; = 0 = Fi(s) =0,k =2,...,n+ 1),
the second term in (4.3) disappears and the transfer function degrades to (F(s)/G(s))""",
representing a string of human-driven vehicles.

Plant stability is determined by the denominator G"*"(s) of the transfer function (4.3),
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that is, the acceleration feedback does not influence the plant stability inherited from the
human driving model, and the plant stability of the connected vehicle system is also given
by (2.15). In most cases, human car-following behavior is plant stable, and we can focus on
ensuring head-to-tail string stability. In the following sections, we will depict this boundary
using a circled curve when applicable.
At the linear level the necessary and sufficient condition for head-to-tail string stability
is given by
Pw)=I(iw)*-1<0, VYw>0, (4.5)

where I'(iw) is as defined by (4.3, 4.4). Since string stability is violated when the maximum

of P(w) is larger than 0, the stability boundary is given by the equations

P(w™) =0,
OP(w)
W 0, (4.6)

aZP(wcr)
2

< 0, where w® indicates the location of the maximum of P(w). Note
W
that P(w) also depends on the system parameters «, 3, T, Yk, 0k, kK = 2,...,n+1, but they

subject to
are not spelled out in (4.5, 4.6) for the sake of simplicity. To generate string stability bound-
aries in the (7, «)-plane, we fix the other parameters and solve (4.6) for (7 (w®™), a(w™)).
Since it is not possible to solve (4.6) analytically, we use the continuation package DDE-
BIFTOOL [59] to obtain numerical solutions while varying the critical frequency w®. In

fact, we search for the equilibria of the mock differential equation

P);k = P(Oé, ,yk;wcr) )
. OP(a, v w™)
6= —"1-—7

R , 4.7)

2P (v, yg; w™)

2
W
corrected by the Newton-Raphson method. Then the obtained solution is used as initial

that satisfy < 0. First, for a specific w®, an initial guess for o and ~yy is

guess for nearby values of w. This way the solution can be continued, and ~y(w®") and
a(w®) can be obtained numerically.
Substituting w® = 0 into equations (4.3), (4.4), and (4.6). We obtain P(0) = 0 and

oP(0
A = 0. Thus, for zero frequency we require

ow
82P(O) n+1
W:—(n+m)(a+25)+2/€(n+m—2%> <0, (4.8)
k=2
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which is a necessary condition for string stability.

4.3 Monitoring the vehicle immediately ahead

We first consider the case when the CCC vehicle only receives acceleration signals from
the vehicle immediately ahead, i.e., n = 1, m = 0 in (4.1, 2.11), cf. Fig.4.2(a). In this
case, (4.3, 4.4) result in

Vi(s) 7 s?el72% 4 Bs+ ak

I'(s) == = 4.9
() Va(s) s2es 4 (a+f)s+ak’ (4.9)
and the string stability condition (4.5) can be written as
P(w) = (3 = ' +2((a + B) sin(rw) - frasin((r - 72)w) )’
- a(a + 25 — 2k cos(Tw) + 2K, cos((T — 0'2)(.{)))(,{}2 <0. (4.10)

For w® > 0 the corresponding boundaries are given by (4.6), while for w® — 0 (4.8) gives
the conditions
a> =204+ 2k(1 — ), (4.11)

a>0. (4.12)

As the acceleration gain 7, varies, the range of string stable parameters change for the
gains «, (8 and the delays 7, 05. Here we fix the velocity gain 8 = 0.9 [1/s] and show
this change using stability charts in the (-,, a)-plane for different values of the delays T,
05 in Fig. 4.2. The string stability boundaries (4.6, 4.10), (4.11) and (4.12) are plotted as
black curves enclosing the gray string stable area. The dashed lines in Fig. 4.2(c, e, g) show
the sections of (4.11) that do not bound the string stable domains. Parameters outside the
gray area result in that the transfer function (4.9) has magnitude larger than 1 at certain
frequency ranges, which is represented by a color code: deep blue indicates low frequency
and dark red indicates high frequency. More precisely, we solve (4.10) for frequencies
¥,
(72, @)-plane according to the largest w}). In the vicinity of the string stability boundary,

> 0,7 = 1,2,... satisfying P(w}) = |I(iw})| —1 = 0 and color the points in the

the color corresponds to the frequency at which string stability is lost.

Fig. 4.2(b, d, f) depicts the stability charts for 7 = 0, i.e., when the driver reaction
time is omitted. In this case, for small values of 7,, the string stability condition is given
by (4.11), that is, string stability may be obtained by choosing sufficiently large o. When

72 = 0, we need @ > 2(k — 3). As 7, increases, the required o decreases and becomes
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Figure 4.2: (a): Connectivity structure for a single-look-ahead vehicle system when a CCC
vehicle monitors the car immediately ahead (i.e., n = 1, m = 0). The delays are indicated
along the links. (b — g): String stability diagrams in the (72, «)-plane for velocity gain § =
0.9 [1/s] and different driver reaction times 7 and acceleration delays o9 as indicated. The
gray areas are string stable. The color represents the highest frequency of string stability
changes. The dashed lines in panels (b, d, f) represent the section of (4.11) that does not
bound the string stable domain.
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zero at v = 1 — /K. This boundary is independent of acceleration delay o, as can be
seen when comparing Fig. 4.2(b, d, f). In the vicinity of this boundary, deep blue color
indicates that string stability is lost at low frequency w® — 0. On the other hand, large 7,
results in string instability for high frequencies, as indicated by the dark red domains at the
right side of Fig. 4.2(b, d, f). This boundary is at 72 = 1 when o, = 0 ( Fig. 4.2(b)), and it
moves to the left decreasing the string stable domain as the acceleration delay o5 increases
(Fig. 4.2(d, 1)).

As shown in Fig. 4.2(c, e, g), the string stable area shrinks significantly when choosing
realistic driver reaction time 7 = 0.4 [s]. In this case, the string stability can be maintained
when choosing v, ~ 0.5, but there is no string stable domain without acceleration feedback
(72 = 0). In fact, in the latter case the system is string unstable for all choices of human
parameters « and 3, since 7 exceeds a critical delay time as will be discussed below. As
the acceleration delay o, increases, the string stability domain shrinks and disappears at
oy ~ 0.55 [s]. The critical frequencies of string stability loss are still low on the left and
high on the right side, as can be seen from the coloring of the string unstable domains.

To illustrate the stability loss at different critical frequencies, we mark the points A-G
in Fig. 4.2(e) and plot the magnitude of the transfer function I'(iw) in Fig. 4.3 (cf. (4.9)).
Comparing cases A, B and C, one can observe a string stability loss at low frequency
(w™ — 0). In case A, the system is string unstable for low frequencies w < w’ =~ 1.22
[rad/s] (Fig. 4.3(a)), which corresponds to the blue color at IQA in Fig. 4.2(e). Point B is
located at the string stability boundary (Fig. 4.3(b)), that is, 0 (!91;(0)| = 0 (cf. (5.53, 4.8)),

=
while the system is string stable in case C as shown in Fig. 4.3(c). Comparing cases C,

D and E, a string stability loss at higher frequency can be observed. Point D is located at

W] _ ) (cf. (5.53, 5.54)) where
Ow

W = 2.34 [rad/s]. In case E, the system is string unstable in the frequency domain w} <

the string stability boundary, that is, I'(w®) = 1,

w < wy (Fig. 4.3(e)) and the orange color at point E in Fig. 4.2(e) corresponds to the higher
frequency wt =~ 3.61 [rad/s].

Notice that as w — oo, the magnitude of the transfer function approaches s, i.e.,
lim, o [T'(iw)] = 72 (cf. (4.9)), which is indicated by the dotted horizontal lines in
Fig. 4.3. Therefore, as v, — 17, string instabilities appear in higher frequency ranges.
This is demonstrated in Fig. 4.3(f) where the system is string unstable for w} < w < wd
and w} < w < w}. The dark red color at point F in Fig. 4.2(e) corresponds to the highest
frequency w) ~ 22.97 [rad/s]. Finally we remark that when v, > 1 the system becomes
unstable for almost all frequencies as demonstrated in Fig. 4.3(g), where the system is
unstable for w > w" ~ 1.18 [rad/s], which corresponds to the coloring at G in Fig. 4.2(e).

Now we evaluate the robustness of the design against uncertainties of the human gains
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Figure 4.3: Magnitude of the transfer function when a CCC vehicle monitors the car im-
mediately ahead (i.e., n = 1,m = 0) for the points marked (A-G) in Fig. 4.2(e). The
horizontal dashed line at 1 indicates the threshold for string stability. The horizontal dotted
line shows the magnitude of transfer function when the frequency approaches infinity.
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Figure 4.4: (a): Connectivity structure for a single-look-ahead vehicle system with de-
lays indicated along the links. (b and c): String stability diagrams in the (3, a)-plane and
(02, 72)-plane for 7 = 0.4 [s]. In panel (b), points P, Q and R locate the intersections of
(4.11), (4.12) and (5.54, 4.10), while S; is located at (o, ) = (0.6,0.9) and corresponds
to the parameters used in panel (c). In panel (c), point T locates the intersection between
(4.11) and (5.54, 4.10), while S, is located at (o3,72) = (0.2,0.5) and corresponds to the
parameters used in panel (b). (d and e): The corresponding critical frequencies along the
string stability boundaries. The same color coding is used as in Fig. 4.2.
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a and (. In the right panels of Fig. 4.2, it can be observed that the stable regions cover
the largest « interval for 5 ~ 0.5. Moreover, when every packet is delivered, DSRC
communication has the average communication delay oo = 0.15 [s], which goes up to 05 =
0.2 [s] when every second packet is lost [46, 60]. To evaluate the robustness, we use v, =
0.5 and o5 = 0.2 [s]. Stability charts in the (3, a)-plane are shown in Fig. 4.4(b) for 75 =
0.5, 09 = 0.2 [s], 7 = 0.4 [s]. The circled line is the plant stability boundary (2.15), below
which the parameters ensure plant stability. The gray string stable region (enveloped by the
curves (5.54, 4.10), (4.11) and (4.12)) covers a large portion of realistic driver parameters
« and [, showing the robustness of acceleration-based CCC design against variations in
driver gains.

Now we investigate the robustness against the increase of the driver reaction time 7.
The sections PR, PQ and QR of the string stability boundary in Fig. 4.4(b) are given by
(4.11), (4.12), and (4.6, 4.10), respectively. The corresponding critical frequencies w*" are
shown in Fig. 4.4(d). Notice that at the codimension-two points P, Q and R the critical
frequency is zero. When 7 is increased, the string stable domain decreases, and the points
P, Q and R move closer to each other. At the critical reaction time 7., they collide at a
codimension-three point, and for 7 > 7, there exists no combination of gains « and /3 that
can ensure string stability.

Using (4.6, 4.10), (4.11) and (4.12), we may obtain the location of P, Q, R as

(Bp,ap) = ((1 - 72)"%0) )

000) = (o o —70): o

(ﬁRaa/R) = (:_;7:_:?) )

where

ri=(1—7) (12 (1 = 26*(7 — 02)?) + 267 (kT — 2) + 1) ,
ro = (26(02 — 7) — 1)73 + 26(27 — 09) 72 — 26T + 1, (4.14)
ry = Yo7 — 02)(:%(7' —0y) + 1) +7(1 — k7).

For r, = 0, P, Q, and R coincide, which yields the critical driver reaction time

1 1 t
Ter = + 72 — — 02| = = + » (th B 0-2) : (415)
2k 1= \K
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Without acceleration feedback (v, = 0), 7o, = o = %h, which means that human drivers
can only maintain string stability when travelling at a time headway that is at least twice
as long as their reaction time. This result also corresponds to the conclusion in [48,61].
The second term is positive for the physically realistic parameters 0 < v < 1 and 0y < ¢}
and thus the critical delay 7, increases with 7. In particular, considering v, = 0.5 without
communication delay (o5 = 0 [s]), we have 7., = 1.5¢},, which is a three-fold increase.
Even if the communication delay is as large as the human reaction time, we have 7., = ty,
which is a two-fold increase. This demonstrates the benefits of acceleration-based driver
assistance systems.

When v, > 1, with 0y < %3, we can have 7., < 0 [s], as in Case G in Fig. 4.2(e).
Finally, when 7, — 17, 7, approaches infinity. The cost of such a dramatic increase
is the robustness of string stability: « and [ both approach zero, resulting in a follower
driving with its leader’s acceleration (delayed by o5). In this case, the headway and velocity
feedback terms are missing and thus the vehicle is unable to maintain a velocity-dependent
headway.

The available values of the design parameters oy and v, are shown in Fig. 4.4(c) for
human parameters (5, «) = (0.9,0.6) (point S; in panel (b)) while the corresponding crit-
ical frequencies w are shown in Fig. 4.4(e). Since the plant stability is not influenced by
acceleration feedback, the choice of human parameters ensures plant stability for all val-
ues of o9 and 7,. The string stability boundaries (4.6, 4.10) and (4.11) envelope the gray
string stable area, where the point Sy corresponds to the design parameters used in panel
(b). Notice that v, shall be chosen between 0.2 and 0.8 and o5 shall be smaller than 0.4
[s] to ensure string stability. According to the coloring, choosing smaller 7, leads to string
instability at low frequencies, while larger 7, or longer o5 results in higher-frequency string
instabilities.

Using v, =~ 0.5 ensures robustness against the variations of the acceleration delay os.
In fact, we will show that vy, ~ 0.5 is a good choice for all other connectivity structures
considered in the rest of this paper. Moreover, we will also demonstrate that this holds
for all v,. While there is no formal proof why this value shall be chosen, this seems to
be a compromise between using no acceleration feedback (v, = 0) and using excessive
acceleration feedback (75 > 1) which typically leads to high-frequency instabilities.

Note that one may also use a ring configuration to obtain the results shown above, which
gives analogous results and also provides insight into the pattern formation along the road
as explained in Appendix C.1.
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4.4 Monitoring two vehicles ahead

Since an advantage of connectivity is providing the host vehicle with non-local informa-
tion, we consider larger vehicle systems and exploit the use of acceleration feedback from
vehicles farther downstream. For simplicity, we start with the case where a CCC vehicle
follows two other non-CCC vehicles and receives acceleration signals from the vehicle im-

mediately ahead, as shown in Fig. 4.5(a). Therefore, using n = 1, m = 1 in (5.46) results

I'(s) = (%)2 (1 + %) . (4.16)

The resulting stability charts are shown in the (3, a)-plane and (o, 7y, )-plane in Fig. 4.5(b)

in the transfer function

and (c), respectively. The corresponding critical frequencies are plotted in Fig. 4.5(d) and
(e). The same notation is used as in Fig. 4.4, but the color code is omitted for simplicity.

When comparing Fig. 4.4(b) and Fig. 4.5(b), it can be observed that when a CCC ve-
hicle only monitors acceleration information of the vehicle immediately ahead, the longer
link is more sensitive to uncertainties in the human parameters « and 3. Moreover, compar-
ing Fig. 4.4 (c) and Fig. 4.5(c) shows that, while the stable domain is still around v, ~ 0.5,
the domain of feasible control parameters decreases for the larger system, including the
largest allowable acceleration delay. These results are not surprising: for the larger sys-
tem the CCC vehicle needs to eliminate the perturbations that have been amplified by the
human-driven vehicle 2, which is string unstable for 7 = 0.4 [s] (for any combination of «
and /) since T is larger than the critical time delay 7., ~ 0.32 [s], cf. (4.15) for v, = 0.

Notice that there are points along the stability boundaries that correspond to multiple
critical frequencies. Some of these codimension-two points corresponds to zero frequen-
cies, but there are points where one or both critical frequencies are non-zero. In the latter
case, when crossing the string stability boundary at these points (from stable to unstable),
stability is lost in two distinct frequency domains and we obtain Bode plots that are quali-
tatively similar to the one in Fig. 4.3(f).

If the CCC vehicle receives acceleration feedback from the head vehicle as shown in

Fig. 4.6(a), i.e., n = 2, m = 0 in (5.46), the transfer function becomes

(s) = (28)2 (1 + %) . 4.17)

Comparing the string stable areas in Fig. 4.5(b) and Fig. 4.6(b), one may observe that

using longer acceleration link provides better robustness against uncertainties in the human

parameters « and 3. The comparison of Fig. 4.5(c) and Fig. 4.6(c) reveals that the accel-
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Figure 4.5: (a): Connectivity structure with the delays indicated along the links. (b and
c): Stability diagrams in the (5, a)-plane and in the (o9, 72)-plane (the string stable do-
mains are shaded). The cross in panel (b) is located at (5,a) = (0.9,0.6) and corre-
sponds to the parameters chosen in panel (c). Similarly, the cross in panel (c) is located
at (og,72) = (0.2,0.5) and corresponds to the parameters chosen in panel (b). (d and e):
Critical frequencies along the string stability boundaries. For all panels, 7 = 0.4 [s] is used.
The notation is the same as in Fig. 4.4, except that the color code is omitted for simplicity.
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Figure 4.6: (a): Connectivity structure with the delays indicated along the links. (b and c):
Stability diagram in (3, «)- plane and the (o5, 72)-plane (the string stable domain is shaded).
The cross in panel (b) is located at (3, «) = (0.9,0.6) and corresponds to the parameters
chosen in panel (c). Similarly, the cross in panel (c) is located at (o3,72) = (0.6,0.5) and
corresponds to the parameters chosen in panel (b). (d and e): Critical frequencies along the
string stability boundaries. For all panels 7 = 0.4 [s] is used and the notation is the same

as in Fig. 4.5.
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eration feedback gains vy, £ = 2, 3, shall be kept around 0.5, independent of the source
of acceleration signals. Surprisingly, for the longer communication links, the delay in the
acceleration feedback loop must be larger than zero. This means that one must artificially
increase the delay in order to maintain string stability. Therefore, it is not necessary to use
higher communication rate, but instead the received packets shall be stored in buffers, so
that they can be used at suitable times. The frequency plots shown in Fig. 4.6(d,e) are sim-
ilar to Fig. 4.5(d,e), but there are multiple codimension-two points with non-zero critical

frequencies.

4.5 Using multiple communication links for a CCC vehi-

cle

Because the average broadcast range of DSRC is a few hundred meters, a CCC vehicle
may acquire acceleration information from a car that is approximately four vehicles ahead
when driving at highway speed. Thus, here we consider a string of five cars, place the CCC
vehicle at the tail, and assume that it receives acceleration signals from two other vehicles
downstream: the vehicle immediately ahead and another vehicle that is 2, 3, or 4 vehicles
ahead; see Fig. 4.7(a) for the different configurations labelled A, B, and C. Considering
these configurations in (4.3), we obtain the head-to-tail transfer functions

o= (&) (R e

C(FON' (L BG) | R G)
)= (G7) <”F<s>+ (F )’ ) @

C(FON (L Bls) | B (Gls)’
et = (g9 (”Fos)+ (7))’ > @2

Figure 4.7(b,c) show the stability diagrams for o = 0.6 [1/s], 8 = 0.9 [1/s], 7 = 0.4
[s]. Figure 4.7(b) depicts the stability charts in the (-, o )-plane for & = 3,4,5, when
vo = 0.5 and 02 = 0.2 [s]. The different configurations are distinguished by color. No-

tice again that while ~y; shall be kept around 0.5 for k£ = 3,4, 5, o}, shall increase with k
to ensure string stability. That is, the controller has to delay acceleration signals coming
from distant vehicles, and the longer the link is, the larger delays are needed. Similarly,
Fig. 4.7(c) shows the stability charts in the (o, 02)-plane when ~y;, = 0.5 for k = 2, 3,4, 5,

using the same labeling and color scheme. While the range of o5 is not significantly in-
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Figure 4.7: (a): Three connectivity configurations A, B and C for a five-car system with a
CCC vehicle at the tail using two acceleration links. The delays are marked along the links.
(b and c): String stability diagrams in the (o, 7%)-plane for o5 = 0.2 [s], 75 = 0.5, and in
the (o, 02)-plane for v, = v3 = 74 = 5 = 0.5. The three configurations are indicated by
labels and color. (d and e): The critical frequencies along the string stability boundaries.

Color code is used to help identify the domasins and the frequencies.
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Figure 4.8: Velocity and acceleration responses of the CCC vehicle to a sinusoidal velocity
perturbation of the head vehicle (black curves) for configurations A (red), B (green), and C
(blue) shown in Fig. 4.7(a). The human parameters «, (3, and 7 are the same as in Fig. 4.7
and the acceleration gains are kept v, = 0.5 for all k-s. Panels (a, b) are for acceleration
delays o, = 0.2 [s], k = 2, 3,4, 5, while panels (c, d) are for delays 0o = 0.2 [s], 03 = 0.4
[s], 04 = 1.2 [s], 05 = 2.0 [s] (cf. the crosses A, B and C in Fig. 4.7(b, c)). The initial
headways and velocities are set at the equilibrium where h* = 20 [m], v* = 15 [m/s] along
the time interval [—max{oy, 7}, 0] for all vehicles.

fluenced by the link length, longer links shall have larger delays to maintain string sta-
bility. Figure 4.7(d,e) give the critical frequencies along the string stability boundaries,
showing multiple codimension-two points with two distinct frequencies. Notice that the
codimension-two points in Fig. 4.7(d) have at least one critical frequency at zero, while all
codimension-two points in Fig. 4.7(e) have only non-zero critical frequencies.

To illustrate the necessity of increasing the delay, we perform simulations for the three
configurations A, B and C shown in Fig. 4.7(a) using the nonlinear model (4.1, 2.11). We
use the same «, § and 7 parameters as in Fig. 4.7. Figure 4.8 depicts the velocity and
acceleration responses of the CCC vehicle when all cars start with equilibrium headway

and velocity along the time interval [—max{oy, 7}, 0]. The head vehicle applies a periodic
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Figure 4.9: Velocity and acceleration responses of the CCC vehicle to a triangular velocity
perturbation of the head vehicle (black curves) for configurations A (red), B (green), and
C (blue) shown in Fig. 4.7(a). The parameters and initial conditions are the same as in
Fig. 4.8.
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perturbation with frequency w = 2 [rad/s] and amplitude |Av| = 1 [m/s] (black curves
in Fig. 4.8). This particular frequency is chosen based on the range of critical frequencies
in Fig. 4.7(d, e). In Fig. 4.8(a, b), the acceleration delays are kept the same for all links,
that is, o = 0.2 [s], 7 = 0.5, k = 2,3,4,5. Case A (red curve) is string stable, i.e.,
the amplitude of the steady-state velocity response is smaller than the amplitude of the
disturbance (black curve). However, cases B (green curve) and C (blue curve) are not
string stable as the velocity disturbance is amplified. Figure 4.8(c, d) show the velocity
and acceleration responses when the acceleration delays are increased with link length.
In particular, we choose 0o = 0.2 [s], 03 = 0.4 [s], 04 = 1.2 [s], 05 = 2.0 [s] and
v = 0.5, k = 2,3,4,5, corresponding to the crosses in Fig. 4.7(b, c). In this setting, all
three configurations are string stable, i.e., the velocity perturbations for the red, green and
blue curves are all smaller compared to the black curve. This is consistent with results of
the linear analysis presented above.

To further emphasize this principle, Fig. 4.9 shows the velocity and acceleration re-
sponses when the head vehicle has a triangular velocity perturbation between t € [0, 4] [s]
with perturbation size |Av| = 2 [m/s] (black curves in Fig. 4.9). Since the triangular signal
can be written as a sum of Fourier components, and is more common in real traffic than
pure sinusoidal signals, the attenuation of triangular perturbation may be considered as an
indication of string stability. In Fig. 4.9(a, b), we have o, = 0.2 [s], for k = 2, 3,4, 5, and
the perturbation is only attenuated in case A but amplified in cases B and C. On the other
hand, panels (c, d) are for o9 = 0.2 [s], 05 = 0.4 [s], 04 = 1.2 [s], 05 = 2.0 [s], and the
perturbation is attenuated in all cases. These simulation results demonstrate that near the

equilibrium, the nonlinear model reproduces the predictions of the linear analysis.

4.6 Multiple CCC vehicles: effects of link intersections

As seen in the last section, multiple links may be used to improve string stability when there
is only one CCC vehicle in the traffic flow. However, when more than one CCC vehicles
appear, complicated connectivity structures may arise. In this section, we demonstrate that
increasing the number of links may not always provide larger string stability domains.
Here we consider a five-car system and compare the head-to-tail string stability in con-
figurations E-H depicted in Fig. 4.10(a). In each case, we use links that allow CCC vehicles
to obtain acceleration information from a vehicle that is two vehicles ahead and choose the
parameters for this acceleration link to be v3 = 0.5, 03 = 0.6 [s], cf. the cross in Fig. 4.6(c).
Notice that the number of links increases when going from E to H. The corresponding

(B, a) stability charts are shown in Fig. 4.10(b-e). Since we still consider 7 = 0.4 [s] as in
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Figure 4.10: (a): Four connectivity configurations for a five-car system with multiple CCC
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e): String stability diagrams in the (3, «)-plane for the different configurations while using
7 =0.4[s], v3 = 0.5, 03 = 0.6 [s]. The same notation is used as in Fig. 4.5.



Fig. 4.7, without acceleration feedback the connected vehicle system is string unstable. In
case E, the CCC vehicle at the tail can make the system head-to-tail string stable, though
the stable domain is fairly small as shown in Fig. 4.10(a). Case F is a cascade configuration
with two CCC vehicles involved and the corresponding string stable domain is identical to
the one in Fig. 4.6 (a). In case G, there are two CCC vehicles, but the two links intersect
each other and the stability region shrinks significantly as shown in Fig. 4.10(d). This result
indicates that intersection of acceleration links may deteriorate string stability. Finally, to
investigate whether the stabilizing effect of acceleration links outweighs the destabilizing
effect of link intersections, we consider three CCC vehicles with three acceleration links in
case H. The corresponding stability plot in Fig. 4.10(e) shows that, surprisingly, the stable
domain becomes much smaller. These results suggest that CCC vehicles shall use the avail-
able acceleration signals in a selective manner, to avoid link intersections which deteriorate

string stability.

4.7 Conclusion

In this chapter, we present a connected vehicle design using acceleration signals of preced-
ing vehicles received via V2V communication. We show that this design can improve the
string stability of connected vehicle systems when most vehicles are human-driven and a
few of them are equipped with DSRC. The improvement on string stability is robust against
driver reaction time and communication delay. We observed that the critical driver reac-
tion time increases significantly when using appropriately designed acceleration feedback.
We also demonstrated that the gain of the acceleration feedback shall be kept around 0.5
for most circumstances discussed here. Having too low acceleration gains would lead to
low-frequency oscillations (that are typical for human-driven vehicles), while too high ac-
celeration gains lead to high-frequency string instabilities. As the acceleration signals come
from vehicles farther downstream, the corresponding delay time shall also be increased, in
order to maintain head-to-tail string stability. This indicates a necessity of designing the
delay time when using acceleration feedback, instead of treating the delays as system limi-
tations. Furthermore, we showed that string stability can be preserved when building larger
connected vehicle systems, under the condition that the connectivity topology does not
have intersecting links. In the next chapter, we will consider connected automated vehicle
design in a V2V-rich environment, where a large portion of vehicles in the traffic flow are
equipped with DSRC.
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CHAPTER 5

Optimal design of connected cruise control in a

V2V-rich environment

In this chapter, we consider the connected cruise control design in connected vehicle sys-
tems with high penetration of V2V devices. In this case, a CCC vehicle will receive motion
signals from nearly every vehicle ahead within the range of V2V communication, and it is
no longer feasible to directly tune the large number of corresponding feedback gains simul-
taneously. Instead, we design a multi-objective cost function including both velocity and
headway fluctuations and acceleration efforts, and then use optimal control to generate the
feedback law for the CCC controller.

Considering that algorithms such as rolling horizon optimal control [27] have relatively
high computational cost and are only feasible among a small group of vehicles with specific
communication structures, we would like to find optimization algorithms with low compu-
tational cost for general connectivity topologies. Therefore, we consider the linearized
human car-following model (2.11) and design the optimal controller using linear quadratic
regulation (LQR), where the time delay is considered so that the optimal design remains
compatible with human driving behavior and communication delay.

While the LQR problem is formulated over a high-dimensional network, we show that
the problem can be decomposed since the information flow is uni-directional in a connect-
ed vehicle system when vehicles only utilize motion information of vehicles ahead. Such
decomposition allows us to obtain an analytical solution to the optimization problem recur-
sively, and it allows graceful degradation of CCC performance when V2V communication
deteriorates. We also show that the weights in the cost function can be chosen such that the
velocity fluctuations of the CCC vehicle are attenuated compared with vehicles ahead (i.e.,
head-to-tail string stability can be achieved).

While the optimization is done at the linear level, we demonstrate that the controller
performs well at the nonlinear level, and is robust against parameter variations and hetero-

geneities appearing in multi-vehicle systems. These findings allow us to fully exploit the
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Figure 5.1: A string of n + 1 vehicles in a single-lane scenario. The CCC vehicle at the
tail receives signals from human-driven vehicles ahead via V2V communication. Dashed
arrows indicate the flow of information in this connected vehicle system.

connectivity without increasing the complexity of gain-tuning.

The layout of this chapter is as follows. In Section 5.1 we build up the models for CCC
design. In Section 5.2 we introduce the setup of the optimization problem and show that
the solution of an infinite-dimensional Riccati equation can be used to design the CCC con-
troller. The details for solving the optimization problem with time delay and the robustness
of the proposed controller are provided in Appendix C.1 for interested readers. In Section
5.3 we present the stability analysis and summarize the impact of design parameters and
robustness against variations in human parameters using stability charts. In Section 5.4 the
application of the CCC controller is demonstrated at the nonlinear level using numerical

simulations. Finally, we conclude the findings in Section 5.5.

5.1 Optimization problem setup

We now consider the single-lane configuration shown in Fig. 5.1 where the CCC vehicle
at the tail receives motion information from the n non-CCC vehicles ahead through V2V
communication (see dashed arrows from preceding vehicles to vehicle 1). Initially, we
assume that all preceding vehicles are identical human-driven vehicles, but the effects of
heterogeneous dynamics among preceding vehicles will be investigated in Appendix C.4.

We write the car-following dynamics of the CCC vehicle as

hl (t) = 'Ug(t) — U1 (t) s

(5.1)
01(t) = u(t),

where u(t) is the acceleration that will be designed using the motion information obtained
via V2V communication. Communication delay is not included explicitly in the optimiza-
tion, but will be added when analyzing the stability of CCC in Section 5.3.

We assume the CCC vehicle tries to maintain the same equilibrium as human-driven

vehicles ¢ = 2,...,n, cf. (2.6). Using definition (2.10) we linearize (5.1) about the equi-
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librium:
5.2)

With the car-following dynamics of human-driven and CCC vehicles set up, we discuss
how to use optimization to design w(t).

In Chapter 4 we have seen that for CCC based on acceleration feedback we need to
design both the feedback gains and delay time. Moreover, acceleration signals from ve-
hicles farther downstream should be used with larger time delay, which is related to the
wave speed in the traffic flow. While this finding bridges the microscopic and macroscopic
description of traffic flow nicely, the time delay it introduces into the CCC controller is
significant. For example, consider a CCC vehicle using the acceleration of vehicle 3 in
Fig. 5.1

hi(t) = va(t) —vi(t),
() = a(V(hi(t = 7)) —vi(t — 7)) + Bhi(t — 7) + v 03(t — 03) (5.3)

see (4.17) in Section 4.4. We can plug in the car-following model of vehicle 3 and write the
acceleration in terms of headway and velocity. Then the dynamics of the connected vehicle

system consisting of vehicles 1, 2, 3 becomes

—Ul(t),
01(t) = oz(V(hl(t —7)) —v(t— 7')) + Bug(t — 7) — vy (t — 7))
+ 3 (a(V(hg(t —T7—o03)) —v3(t — T — 03)) + B(vg(t — 7 —03) —v3(t — T — 03)))

o3(t) = a(V(hs(t — 7)) —vs(t = 7)) + Blua(t — 7) —v3(t — 7)) . (5.4)

According to Fig. 4.6 of Section 4.4, o3 > 0.5 [s] is required for linear string stability when
7 = 0.4 [s], and thus a new delay of 7 + o3 is introduced into (5.4) with this acceleration
feedback. While the large delay is proven to benefit the string stability of the connected
vehicle system on the linear level, considerable caution should be exercised to guarantee
stability and robustness on the nonlinear level as the delay time of a system doubles. No-

tice that the extra delay time o3 is introduced to “match the phase” of the perturbations
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propagating through the string of vehicles. When motion signals from vehicle 2 through
vehicle n + 1 are available, we may be able to use a well-balanced combination of these
signals without inserting large delay times. Since acceleration can be written in terms of
headway and velocity using car-following models, we only use the headway and velocity

of n preceding vehicles to design u(t) (cf. (5.2)) in this chapter for simplicity.

5.2 Linear quadratic regulation with time delay

In this section, we present a systematic method for connected cruise control design while u-
tilizing the linearized human car-following model (2.11). We formulate the CCC design as
a linear quadratic (LQ) optimization problem with delay. Since the CCC vehicle would like
to maintain constant velocity and headway without using large acceleration/deceleration,
we minimize a cost function containing its headway and velocity fluctuations and its ac-
celeration. The solution will give the gains for the CCC vehicle with respect to the current
and delayed headways and velocities of the vehicles ahead.

In Section 5.2.1 we present the general solution of the optimization problem, while in
Section 5.2.2 we show that the problem can be decomposed and solved analytically by
exploiting the unidirectional information flow in the system. If the reader is not interested
in these technical details, Sections 5.2.1 and 5.2.2 may be skipped. In Section 5.2.3 we
obtain the CCC controller with full-state feedback and demonstrate that the gains decay
exponentially as the number of vehicles between the source and the CCC vehicle increases.
We also show that adding more vehicles downstream does not influence the existing design
for the system. A brief discussion is provided in Appendix C.4 on the robustness of the

controller against heterogeneities arising in the vehicle string.

Let us define
h; — ¥, 0
=" e = | (5.5)
Vit1 — U; Un+1

Then we construct the vectors

0
T .
X=1|:1, o=1"1, (5.6)
0
Tn
o
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and rewrite (2.11, 5.2) as

X(t)=AX(t)+BX(t—7)+ Du(t) + ¢(t). (5.7)

The coefficient matrices are given by

0 B, D,
B, B, 0
A=I,®A,, B= e , D=1/, (5.8)
B, B, 0
B, 0

where ® denotes the Kronecker product and the blocks are defined by

10 K __046 {00 -1
Al - [0 0] ) Bl - [a B] ) BQ_ [a ﬂ] 3 Dl - [_1] . (59)

Note that B is upper block-triangular because vehicles only react to the motion of vehi-
cles ahead. This topological structure of connectivity will allow us to greatly simplify the
solution of the LQR problem.

We assume that the non-CCC vehicles are plant stable, i.e., they are able to maintain
the uniform flow (2.6) when the vehicles ahead travel with constant speed v*. Then the
connected vehicle system (5.7, 5.8) is stabilizable, that is, uncontrollable part of the system
is stable.

We define the multi-objective cost function based on the CCC vehicle’s acceleration

and deviations from the uniform flow as

te . _ te
ﬁA%X%ZA Qﬁ+quh—mf+qx@—@gﬁdﬁzé (u?+ XTTX)dt,
(5.10)

where v; > 0, 72 > 0 and
I = diag[y1, 72,0, ...,0] € R, (5.11)

In (5.10) the first term is related with the fuel economy of the CCC vehicle, and the latter
two terms account for the active safety and traffic efficiency. While more complicated
cost functions can be used to consider more accurate powertrain dynamics [27, 62], the

quadratic form of (5.10) will provide us with valuable insight about the upper-level control
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of connected vehicle systems.

5.2.1 General solution of the LQ problem

In this section we lay out the general solution to the LQ problem in a time-delayed system
with disturbance (5.7, 5.10). We will show that the disturbance has limited influence on the
structure of the optimal controller. Thus, we design the optimal controller under zero dis-
turbance. This setting allows us to exploit the uni-directional information flow to alleviate
the high computational cost for optimal connected vehicle design. Readers not interested
in the technical details may proceed to Section 5.2.3.

We define the augmented state Y () = [X T(¢) 1]T to place the disturbance term ¢(t)

in (5.7) into a time-variant coefficient matrix. This yields

Y(t) = At)Y(t) + BY (t — 7) + Du(t), (5.12)
where
~ A ot ~ B 0 - D
A(t) = o(t) , B= , D= . (5.13)
0 0 0 0 0
The cost function (5.10) can be rewritten accordingly
te _
Ji(u,Y) = / (u2 + YTPY) dt, (5.14)
0
. r
where I' = 0 .
0
The optimal control for (5.12, 5.14) is given by
~ 0
u(t) = —DT(P(t)Y(t) +/ Q(t,0)Y (t+0) d@) : (5.15)

see [63]. The matrices P(¢) and Q(¢,0) are obtained by solving the Riccati-type partial
differential equation (PDE)

~P(t)=ATP(t) + P(t)A — P(t)DDTP(¢) + Q(t,0) + QT (t,0) + T,
(0 — 0,)Q(t,0) = (AT —PDD")Q(t,0) + R(t,0,0), (5.16)
(O + 09 — D)R(t,€,0) = —QT(t,£)DDTQ(t, ),
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with boundary conditions

Q(tr,0) =0,  Q(t,-7)=P"B, (5.17)
R(t;,£,0) =0, R(t,—7,0)=BTQ(t,0),

where P () is symmetric and R (¢,£,0) = R(t,0,&). Given the structure of coefficient
matrices (5.13), the matrices P(t), Q(¢,0) and R(t, &, ) can be constructed as

Ql QQ Rl R2
3 = , R= , 5.18
“ [Qs QJ [R3 RJ 19

P, P,
P; Py

P:

where P, Q;, R; € R 2" Py Qy, Ry € R*™ ! Py, Q3,R3 € RY?", and Py, Q4, Ry
are scalars. since P(t) is symmetric we have P(t) = P () and Py(t) = PJS(¢).
Moreover, R(t,£,0) = RT(t,0,¢) yields Ri(t,£,0) = RI(t,0,€) and Ry(t,€,0) =
RJ (t,6,¢€).

Thus, the optimal controller (5.15) becomes

u(t) = —DT(Pl(t)X(t) + /O Q1(t,0) X (t+0)do + Pa(t) + ’ Q. (t,0) d@) .

—T

(5.19)

By substituting (5.18) into (5.16, 5.17) we find that state-feedback-control gain matrices
P, Q; in the optimal controller (5.19) are not influenced by the disturbance ¢(t); see (C.1,
C.3, C.5, C.7) in Appendix C.1. On the other hand, when including the disturbance in the
optimization, (5.19) cannot be implemented in real time since ¢(t) is not known a priori;
cf. A(t) in (5.13, 5.16, 5.18). Therefore we first ignore the disturbance ¢(t), but later in
Section 5.3 we ensure that this zero-disturbance design can reject disturbances satisfyingly.
Thus, we consider

P,(t) =0, Q.(t,0) =0, (5.20)

which allows us to design the CCC controller analytically without impairing the stability
of the multi-vehicle system.

Since Py(t), Q1(t,0), R1(t, &, 0) are given by (C.1), which is an initial value problem
in backward time, we consider the steady-state solution

Pl(t) = Pla Ql(tvg) = Ql(e)) Rl(tagae) = Rl(ga Q)a (521)
which is equivalent to setting time horizon ¢; — oo in the cost function (5.10); see [64].
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Substituting (5.20, 5.21) into (5.19) leads to the simplified controller

0
u(t) = DT (PlX(t) +/ Q. ()X (t +0) de) , (5.22)
where the matrices Py, Q;(6) are given by

A"P, + P;A —P,DD"P, + Q,(0) + Q[ (0) + ' =0,
9Qu(0) = (AT —P,DD")Q:(6) + R4(0,6), (5.23)
(O + 99)Ra(€,0) = —Q, (DD TQ, (),

with boundary conditions
Qi(-7)=PB,  Ri(-7,0)=B'Q(0), (5.24)

which can be attained by setting ¢ — oo in (C.1, C.2).

5.2.2 Decomposition of the solution

In this section, we exploit the uni-directional information flow and obtain the analytical
solution to the delayed LQ problem (5.7, 5.10) with zero disturbance (¢(¢) = 0) and infi-
nite time horizon (t; = 00), i.e., we solve the PDE (5.23, 5.24) analytically to obtain the
controller (5.22).

While a numerical scheme for (5.23, 5.24) is given in [64] to obtain Py, Q; () in (5.22),
no closed-form solution exists with general A, B, D matrices. However, here only the first
two rows of Py, Q;(0) are used by the controller (5.22), since D is zero except its first two
elements, cf. (5.8, 5.9). Thus we only need to obtain an analytical solution for the relevant
parts in Py, Q;(6), which is made possible by taking advantage of the upper-triangular
block structure of A and B.

We introduce the notation

Pll e Pln Qll(e) T an(e)
Pr=|t 0 i, Q@)= & i (5.25)

where P;;, Q;;(0) € R**?fori,j = 1,...,n, and rewrite (5.22) as
n 0
i=1 -7
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where x;(t) is given in (5.5). This shows that we only need to derive Py;, Qy;(0) for
1 = 1,...,n to construct the controller. Substituting (5.25) into (5.23, 5.24), we obtain
equations for each block P;;, Q;;(6), R;;(&,60), 4,5 = 1,...,n, which can be solved recur-
sively. Specifically, P; and Qq;(6) are given by

A1P11 -+ P11A1 + QH(O) + QE(O) + diag[vl, ’72] = O,
0pQ11(0) = AlQu(Q) +R41(0,6), (5.27)
(0 + 0p)R11(€,0) = —Q1T1(§)DDTQ11(9) ;

with boundary conditions
Qu(-7)=0, Ru(-70)=0, (5.28)

where
A =A'—P;,D,D. (5.29)

The solution of (5.27, 5.28) is given by

P, = [Pn p12] , Qu@) =0, Ryu6) =0, (5.30)
P12 P22
where
= 0 F VI 72 + 26
11 — )
K
P12 = /71 — Pi1 (5:31)

P2 = —2y/71 + \/71—1‘724‘2"%\/’%"‘2011,

which is the only solution satisfying the condition P;; > 0. Notice that the matrix Py,
only depends on the weights 74, v, and the CCC vehicle’s range policy « (cf. (2.3)).
Then, to obtain Py;, Q1;(0), Q;1(0) for i = 2, ..., n, we need to solve

AP, +PyA, + Q1;(0) + Q1 (0) =0,

06Q1i(0) = A1Q1i<9) + R1:(0,0)

96Qi1(0) = AL Qi (9) — PD D Qui(0) + RE(6,0),
(0 + 0p)Rui(€,0) = —Q;1 (DD Qui(0)

(5.32)
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with boundary conditions

(
il\—7) = 0 )
(=0, 53
Rii(0,—7) = Q;1 (0)B1 + Q;_1):(¢) Bz,
Rh'(—T, 6) =0
Now (5.32, 5.33) give the solution
while the equations for Qy;(#) simplify to
9Q1:(0) = A;Qui(0),
b Q1:(0) 1Qui(0) (5.35)
Qui(—7) = PyB1 +Py_1)Bs,
yielding the solution
Qu(8) = 6A1(9+T)(PliB1 +Pii-1B2), (5.36)
for ¢ = 2,...,n. Thus, the equation for P;; becomes
AP, +PLA, + eTAl(PuBl + Py-1yB2) =0, (5.37)
yielding the solution
vec(Py;) = M tvec(Pyy), (5.38)
fori = 2,...,n. Here vec(+) gives a column vector by stacking the columns of the matrix
on the top of each other, and M € R*** is given by
M=-(I0A +AT@T+Bf @ ™) (Bf @ 1), (5.39)

Consequently, Py; and Q;;(0) are obtained recursively using (5.30, 5.36, 5.38, 5.39).
The recursive rules (5.36, 5.38) indicate that the feedback gains for signals coming from
the j*® vehicle only depend on the dynamics of vehicles 2 to j and do not depend on the
dynamics of vehicles in front of the j*" vehicle. On the other hand, since A, only depends
on Py (cf. (5.29, 5.30, 5.31)), the exponential term eA1(0+7) ghared by every Qq;(0) is

independent from the dynamics of preceding vehicles but changes with the CCC vehicle’s
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Figure 5.2: The optimized feedback gains «;, 81;,7 = 1,...,n of the CCC vehicle in a
string of (n + 1) vehicles for n = 5 (red circles) and for n = 10 (blue crosses). The human
parameters are « = 0.6 [1/s], § = 0.9 [1/s], Kk = 7/2 [1/s], 7 = 0.4 [s]. The design
parameters are ; = 0.04 [1/s?], 72 = 0.30 [1/s?].
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Figure 5.3: The optimized distribution kernels f;(6), g;(0) for i = 2,... n of the CCC
vehicle for a (n + 1)-car system with the same parameter as in Fig. 5.2. The red dashed
curves correspond to n = 5, and the blue solid curves correspond to n = 10. The black
arrows show the direction of increasing vehicle index .

range policy « and the optimization weights 71, 7».

5.2.3 Constructing the CCC controller

In (5.26) we move D, (cf. (5.8)) into the integral and define

{an 5”]:[1 1] P, [fi(e) gi(e)}:h 1} Qu(6) . (5.40)
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Based on definitions (5.5, 5.40), the optimal controller (5.26) for the CCC vehicle is given

n

u(t) = Z (ali(/{ﬁ( ) = 0i(t)) + Bui (Vi (t) — 771(75)))

+ Z/ ) (Khi(t + 0) — B;(t + 0)) + gi(0) (Tia (t + 0) — Bt + 9))) de,

(5.41)
where the distribution kernels take the form
fi(0) = (aiO + a;n (0 + 7‘)) MOFT) 4 gy 20T (5.42)
9i(0) = (bio + bin (0 + 7)) MO 4 by 20T .
fori =1,...,n,0 € [—7,0], where A\, Ay are the eigenvalues of Al, and the expressions

for \1, Ao, a0, a;1, a2, and byg, b;1, b;o are given in Appendix C.2.
From (5.30, 5.31, 5.40) we obtain that

o= VAL Bu = —y/A 1+ + 2 (5.43)

i.e., the gains on CCC vehicle’s own headway and velocity do not depend on the dynamics
of human-driven vehicles. Since Q;1(0) = 0, (5.40) yields

fi(0) =0, ¢ (6)=0, (5.44)

1.e., the CCC vehicle does not have delayed feedback terms on its own headway and veloc-
ity. The rest of the gains ay;, $1; and the distribution kernels f;(0), g;(0) fori =2,... n
in (5.40) can be obtained using (5.36, 5.38, 5.39).

In Appendix C.3 we show that the eigenvalues of M (cf. (5.39)) are inside the unit
circle for realistic values of weights 7, 72, human gains «, 3, and driver reaction time 7.
Thus (5.38) is a contracting map. Since ay;, $1; are given in (5.40) as linear combinations
of the components of P;, they converge to zero as ¢ increases.

Fig. 5.2 shows the corresponding exponential decay of «y; and 51; in a (5 + 1) vehicle
chain (red circles) and a (10 + 1) vehicle chain (blue crosses) using the parameter values
v = 0.04[1/8?], 72 = 0.30[1/s], & = 0.6[1/s],8 = 0.9[1/s], x = 7/2[1/s] and T =
0.4 [s]. In this case, M has two zero eigenvalues and two non-zero eigenvalues 0.69+0.15:.
The exact match between the red circles and the blue crosses for vehicles 2 to 5 demonstrate

that the existing optimized gains do not change when adding feedback terms on vehicles
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farther away. This corresponds to the fact that the gains a1, 811 are not influenced by the
connectivity structure (cf. (5.30, 5.31, 5.40)), and that «y;, (1; are calculated recursively
using (5.38). For the parameters considered above, we have the gains oy ~ 0.20[1/s],
P11~ 0.78[1/s].

In Fig. 5.3 we plot the distribution kernels f;(6), g;(0) for i = 2, ..., n using the same
parameters as in Fig. 5.2. The dashed red curves correspond to n = 5 and the blue solid
curves correspond to n = 10. In both cases, the magnitude of f;(f) and g;(#) decreases
with ¢. Indeed, for vehicles i = 2,...,5, the distribution kernels f;(f) and g;() are the
same in both the (5 4 1)-car and the (10 + 1)-car systems.

Considering the similar feedback structure of the CCC controller (5.41) as in the con-
ventional driving model (2.2), and the decay of feedback gains and distribution kernels
shown in Fig. 5.2 and Fig. 5.3, we conclude that the proposed CCC controller will de-
grade gracefully under imperfect communication. More specifically, a CCC vehicle may
experience severe packet drops from vehicles ahead, depending on the involved V2V com-
munication devices, the physical distance between vehicles and the road environment [58].
When the communication channel with vehicle ¢ 4+ 1 significantly deteriorates, we may
set the feedback gains and distribution kernels corresponding to vehicle 7 4+ 1 and vehicles
farther ahead as zero, and only use motion signals up to vehicles 7. Since motion signals
from farther downstream vehicles are assigned with smaller gains, the switch to fewer sig-
nals will not induce a significant jump in control commands. Most importantly, since the
gains for signals coming from vehicles 1—: do not depend on those from vehicles 7 + 1 and
beyond, the reduced CCC controller still remains optimal.

We note that the proposed CCC controller generates 2n feedback gains and distribution
kernels with only 2 design parameters, while being robust against heterogeneity and con-
nectivity structure changes among preceding vehicles, as discussed in detail in Appendix
C4.

5.3 Stability analysis of optimized connected vehicle sys-

tems

In this section, we analyze the linear stability of uniform traffic flow using the optimized
controller for the CCC vehicle at the tail, to make sure that the arising connected vehicle
system is able to maintain uniform traffic flow. Here we take into account the communi-
cation delay due to intermittency and packet loss in wireless communication. We analyze

the plant stability and head-to-tail string stability and visualize the corresponding stability
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areas using stability charts.

The intermittency in V2V communication with digital controllers results in an average
communication delay of 0.15 [s]; see [43,60]. However, packet losses may lead to signif-
icant increase of the delay. While the delay changes stochastically [46], here we approx-
imate it with its average and study the dynamics while viewing the delay as a parameter.

Then the linear dynamics (2.11, 5.2) becomes
(

(5.45)
( ) A

fori = 2,...,n, where u(t) is given by (5.41) and ¢ denotes the communication delay.

The plant stability of a CCC vehicle is given as follows: suppose that the vehicles
whose signals are used by the CCC vehicle are driven at the same constant velocity, that
is, v;(t) = v*, i = 2,...,n + 1, then the velocity of the CCC vehicle approaches this
constant velocity, i.e., tliglo v1(t) = v*. The plant stability of non-CCC vehicles is defined
similarly: when the preceding vehicle is driven at constant velocity, the non-CCC vehicle
should converge to the same velocity. In this paper we only consider plant stable non-CCC
vehicles.

String stability characterizes the attenuation of velocity fluctuations as they propagate
upstream [44]. For non-CCC vehicles it is required that the vehicle attenuates the velocity
fluctuations arising from the preceding vehicle. For a CCC vehicle, one may compare its
velocity fluctuations with any preceding vehicle whose signals is used by the CCC vehicle.
The influence of a CCC vehicle on the traffic flow is evaluated the best by comparing
its velocity fluctuations to that of the furthest vehicle ahead whose signal is received by
the CCC vehicle (called the head vehicle). Thus, we define the head-to-tail string stability,
which requires velocity fluctuations to be suppressed from the head vehicle to the tail. Since
no control is placed upon the non-CCC vehicles, it is reasonable to allow amplification of
velocity fluctuations among non-CCC vehicles. Still, the CCC vehicles may ensure head-
to-tail string stability as demonstrated below.

While in the previous section the controller was designed for the zero disturbance case,
here we consider the velocity perturbation v,,,1 of the head vehicle as the input and the
velocity perturbation v, of the tail vehicle as the output in (5.45). Since perturbations of ve-
locity can be represented using Fourier components and superposition holds for linear sys-

tems, the head-to-tail string stability can be ensured by attenuating sinusoidal signals for all
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excitation frequencies. Thus, we consider the periodic excitation ¥y,.1(t) = v5,7 sin(wt)
with frequency w and amplitude v,,}}. Then the steady state response of (5.45) with con-
trol (5.41) is Uy & (t) = v sin(wt + v). In order to ensure head-to-tail string stability, we
need the amplitude ratio v7™" /v5 77 < 1 for all excitation frequencies w > 0, which can be
obtained through transfer functions.

In particular, taking the Laplace transform of (5.45) with zero initial conditions and
eliminating the velocities and headways of vehicles © = 2,...,n, we obtain the head-to-

tail transfer function

) > (Fials) = Gil9)) - (Ho(s)"™™ +Fn(5). (5.46)

i
Vi1 (s) s2e7¢ + G4 (s)

NE

(s) i

H(s) =

Here f/l(s) and Vn+1(s) denote the Laplace transform of ¢ (¢) and 9,41 (t), respectively,

and

_ Fy(s) Bs + ak

C Go(s)  s2+ (a+B)s+ak’

E(S) = ;KR + 511'8 + (aim’ + bils)hl (S) + ((Iiolﬁl + bigs)ho(s) + (aigﬁ + biQS)hQ(S) s
Gz(S) = E(S) + a1;S + S(Gioho(S) + ailhl (8) + a/iQhQ(S)) ,

H()(S)

(5.47)
where a;g, a;1, a;2, bio, b1, bz are given in Appendix C.2 for: = 1,...,n and
eT/\l — e TS
h i
" ( ) T TS eT/\l — TS (5 48)
s) = — , .
! S + /\1 (S + /\1)2
eT/\2 — e TS
h =
2(5) S+ Ay

Here H,(s) represents the transfer function between a non-CCC vehicle and its predecessor.
Indeed, the amplitude ratio for frequency w is given by v{™" /v, = |H (iw)]|, that is, the

head-to-tail string stability is ensured when | H (iw)| < 1 for all w > 0.

5.3.1 Plant stability

The plant stability for the linearized connected vehicle system (5.41, 5.45) requires that

all its characteristic roots have negative real parts, 1.e., the solutions of the characteristic
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equation

Gy '(s)(s%7° + Gi(s)) = 0. (5.49)

stay in the left half complex plane.

Since Go(s) = 0 (see Hy(s) in (5.47)) is the characteristic equation for linearized
human car-following model (2.11), it is necessary that the human-driven vehicles are plant
stable. This is a reasonable requirement as they should be able to maintain a desired speed
with no disturbance from the traffic. By setting s = iQ2, 2 > 0 in G(s) = 0 we obtain the
plant stability boundary for human-driven vehicles as

o 02 cos(192)
koo (5.50)
2
5 = Qsin(rq) — LT

K

And in the remainder of this paper we only consider human parameters «, 3 inside the
plant stability region enclosed by (5.50) and o = 0 (given by G(0) = 0); see the shading
in Fig. 5.7.

For the remaining part of (5.49), we plug (C.9) in (5.47, 5.48) and obtain

5% + (a1 + Pr1)s +ank =0, (5.51)

the characteristic equation for the CCC driving model. Due to the similarity between (5.51)
and Gy(s) = 0, the plant stability boundary is the same as (5.50) but with a4, instead of
«, (11 instead of 3, and o instead of 7. However, it is more desirable to present it in the
(71, 72)-plane. Thus, we plug (5.43) into (5.51), consider s = i{2, 0 > 0, and obtain the
plant stability boundary for the CCC vehicle as

04 cos?(00)
M= 2 ) (5 52)
O cos?(oQ ’
vy = O sin?(00) — # 902 cos(09)

Since the cost function (5.10) requires y; > 0,2 > 0, we only consider the first quadrant
of the (1, 72)-plane. In Fig. 5.4, the dashed curves represent plant stability boundaries, and
the plant stability area is shaded as light gray for different values of communication delay
as indicated. By comparing the two panels one may notice that as the communication delay
increases the plant stable are<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>