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ABSTRACT 

The growing deficit in suitable tissues for patients awaiting organ transplants 

demonstrates the clinical need for engineered tissues as alternative graft sources. In skeletal 

muscle, volumetric muscle loss is any injury exceeding the normal muscle repair mechanism and 

resulting in permanent functional impairment. Because available treatments seeking to fill the 

damaged site with healthy graft tissue are limited by a lack of suitable graft sources, tissue 

engineering of skeletal muscle has been identified as a promising alternative. To date, however, 

engineered muscles across the field have generated a fraction of the specific force present in 

native muscle, and this limitation may present a barrier to clinical applicability. This study 

addressed this force disparity by promoting in vitro muscle development through the following 

specific aims: 1) Improving myogenic purity of isolated muscle stem cells with microfluidic inertial 

separation, 2) Increasing myogenic differentiation in developing cells and engineered muscles 

with dexamethasone steroid supplementation, and 3) Evaluating engineered tissue structure and 

function in a non-invasive, label-free manner using multiphoton microscopy. All three 

experiments demonstrated significant improvements in engineered skeletal muscle force 

production as compared to previous fabrication methods. Especially as tissue-engineered 

skeletal muscle moves towards translation as a strategy for repairing volumetric muscle loss, 

consistently improving in vitro force production of engineered skeletal muscle using methods 

established in this dissertation is essential for advancing both our tissue engineering model and 

the tissue engineering and regenerative medicine field as a whole.    
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CHAPTER I 

Introduction 

Skeletal Muscle Physiology 

Skeletal muscle is a soft tissue composing approximately 40% of the total mass of the 

human body1. Skeletal muscle creates voluntary motion of the human body, acting in response 

to electrical signals from the nervous system to generate force that is transmitted through 

tendons to the skeleton. Generation of contractile force is the primary function of skeletal 

muscle2, and this functional behavior is closely related to its complex structure.  

On the cellular level, muscle fibers or myofibers are the motors responsible for force 

generation. During development, myofibers are formed by fusion of mononucleated myoblasts 

into multinucleated myotubes (See Figure 1)2. Cylindrical in shape, myofibers can extend the full 

length of a given muscle. Each myofiber is composed of myofibrils arranged in parallel along its 

length. Division of myofibrils into a repeating pattern of sarcomeres gives skeletal muscle a 

striated appearance under high magnification and ultimately enables contractile behavior of the 

entire skeletal muscle system. Sarcomeres contain overlapping bands of the proteins, actin and 

myosin, that slide over each other during a contraction to generate force2. Overall force 

production by a given muscle fiber depends on the number of sarcomeres acting in parallel, a 

number that is directly related to the overall muscle cross-sectional area due to the uniform 

sarcomeric architecture. Figure 1 shows how sarcomeres in series form muscle fibers and how 
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muscle fibers are bundled into fascicles. In turn, several fascicles are bundled together to form 

an entire muscle, surrounded by an outer sheath termed the epimysium. Thus, it is clear how the 

structure of skeletal muscle is organized to maximize function, with each contractile unit, or 

sarcomere, repeated in a modular manner in progressively larger tissue subcomponents from 

myofibrils to myofibers to fascicles to whole muscles. 

       

 
Figure 1. Hierarchical structural organization of 

skeletal muscle. Sarcomeres, formed by 

overlapping bands of myosin and actin, act as 

molecular motors to generate contractile force. 

These basic structural units are repeated in 

successively larger subcomponents, from myofibrils 

to muscle fibers to fiber bundles to the whole 

muscle. Adapted from Widmaier et al.2 
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On a tissue level, skeletal muscle is organized to provide access for the required stimuli 

and nutrients and the necessary matrix to transmit generated force. To support myofiber 

contraction, connective tissue, blood vessels, and nerves are thus present in the complex skeletal 

muscle architecture1,2. Nerve cells, specifically motor neurons, provide nervous control of muscle 

cells. As a highly metabolic tissue, skeletal muscle also requires vascularization via blood vessels 

and capillaries. As a result, each myofiber has a source of blood and nervous control in the 

endomysium, a layer of surrounding connective tissue. One of the key functions of connective 

tissue in skeletal muscle, especially the endomysium, is maintaining the complex architecture 

needed to provide both metabolites and nerve stimuli to each myofiber.  

As one would expect based on the highly-organized structure of skeletal muscle, 

disruption due to trauma or disease severely affects the ability to produce force. The human body 

naturally repairs basic skeletal muscle injuries such as strains or tears, but traumatic damage 

often requires medical intervention3. The most prevalent such injury is volumetric muscle loss 

(VML), trauma overwhelming the normal muscle repair mechanism and resulting in permanent 

functional impairment and physical deformity4. Currently, clinical VML treatments have 

limitations including donor site morbidity and graft tissue scarcity3. Therefore, tissue engineers 

seek to fabricate skeletal muscle as an alternative graft tissue. Skeletal muscle tissue engineering 

approaches typically utilize muscle satellite cells to mature into a functional muscle construct. 

One of the primary challenges for tissue engineers, however, is obtaining the appropriate cellular 

component necessary for engineering skeletal muscle. The following section presents several 

techniques for addressing this issue, paying particular attention to: 1) cell isolation methods, 2) 

purification of isolated cells, and 3) optimization of in vitro culture conditions. 
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Skeletal Muscle Stem Cells 

The text and figures in this sub-chapter were originally published with the following 

citation: Syverud BC, Lee JD, VanDusen KW, and Larkin LM. “Isolation and purification of satellite 

cells for skeletal muscle tissue engineering.” J Regen Med 3(2): 117 (2014)5.  Excerpts from this 

article have been included with permission from the publisher, SciTechnol. 

Due to its tissue-specific regenerative potential, the satellite cell has been identified as 

the ideal progenitor cell for skeletal muscle tissue engineering6,7. In the early 1960’s Mauro 

originally described the resident skeletal muscle stem cell, the satellite cell, by its cellular location 

beneath the basal lamina of a skeletal muscle fiber8.  Since then, a great deal of research has 

attempted to elucidate the specific roles satellite cells play in skeletal muscle, particularly in 

muscle maturation, adaptation, and repair.  During post-skeletal development, the satellite cell 

normally remains quiescent; however, satellite cell activity can be induced in response to muscle 

injury.  In fact, recent studies demonstrate that satellite cells are indeed necessary for skeletal 

muscle to undergo regeneration9-12.  These studies and others that evaluate satellite cell function 

utilize an important marker of satellite cells: paired box protein-7 or Pax7, encoded by the PAX-

7 gene. Pax7 itself is a transcription factor that plays an integral role in myogenesis and regulation 

of muscle precursor cell proliferation. It is considered the requisite marker for satellite cell 

identification, and Pax7 genetic manipulation is utilized to assess specific myogenic function.  

Pax7 satellite cells, however, are not the only cell type that displays myogenic potential6,13,14.  For 

example, mesoangioblasts, pericytes, Pax3, SK-34, CD45+/Sca1+, muscle side population, and 

PW1+/Pax7 interstitial cells have all been implicated in contributing to the myogenic cell pool.  
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However, formation of functional skeletal muscle in vivo utilizing most of these progenitors 

appears to require some level of Pax7 expression15-17. Ultimately, the complexity of the myogenic 

pool allows for diversity in tissue engineering strategies. Isolating Pax7-positive satellite cells for 

tissue engineering applications, however, is complicated by the heterogeneity and diversity of 

cells in this larger myogenic population.  

Skeletal muscle tissue engineers choose to focus on isolating Pax7 satellite cells because 

of the proven regenerative potential of this specific population. While the variety of cell types 

detailed above display some degree of myogenic potential, the satellite cell has been identified 

as the primary source of regeneration in damaged skeletal muscle6,18. Quiescent satellite cells are 

activated in response to injury and progress toward a committed myogenic lineage, with a sub-

population returning to quiescence to maintain the progenitor pool. Those satellite cells induced 

to a myogenic lineage are often referred to as myogenic precursor cells or myoblasts, 

characterized by their expression of the transcription factors myogenic differentiation 1 (MyoD) 

and myogenic regulatory factor 5 (Myf5)19. Following myoblast proliferation and differentiation, 

the myoblasts fuse with damaged fibers and promote regeneration.  

In addition to extensive research into the satellite cell itself, a great deal of emphasis has 

focused on the microenvironment or “stem cell niche” which has been shown to be highly specific 

to and influential for satellite cell behavior and myogenic function20,21.  The niche constituents 

include the satellite cell itself along with the surrounding extracellular matrix, vascular and neural 

networks, surrounding cells, and various diffusible molecules. This dynamic environment 

presents a unique challenge for engineered tissues in vitro because of the constant 

communication between the satellite cell and its niche in vivo. The growth factors and signaling 
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pathways dictating cellular regeneration are in constant flux, increasing the complexity of 

emulating myogenesis in vitro.  Therefore, understanding the intrinsic and extrinsic signaling 

factors that influence the niche has been a priority for developing therapeutics in regenerative 

medicine22, and similarly, strategies for muscle tissue engineering must aim to replicate the ideal 

conditions for skeletal muscle tissue repair. 

Since the first skeletal muscle tissue engineering experiments by Vandenburgh and 

colleagues in 198823, the field has rapidly advanced to include a variety of techniques to enhance 

myogenesis and tissue regeneration. Although technologies include either scaffold materials 

ranging from acellularized tissues24,25 to collagen and fibrin hydrogels26,27 or a scaffold-free 

approach28,29, the vast majority of these techniques utilize satellite cells as the cell source for 

muscle engineering. The complex satellite cell biology shows that isolating and culturing satellite 

cells presents a unique challenge. In particular, engineered skeletal muscle tissue requires a large 

quantity of isolated satellite cells with high purity. Engineered tissues to date have produced 

minimal force in comparison to healthy muscle, and the suspected cause of this disparity is 

decreased muscle fiber content and maturity28,30,31. As such, it is essential to maximize the 

myogenesis in engineered skeletal muscle tissue by isolating a pure satellite cell population. This 

process should result in both increased fiber content and improved functionality. Unfortunately, 

current methods for isolating satellite cells cannot yield both the population size and myogenic 

purity required by tissue engineers. It is instead necessary to combine these isolation techniques 

with additional purification methods, followed by controlled proliferation and induction 

conditions, and these approaches are described in detail in this sub-chapter.  
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Single Fiber Explant Culture 

First described in 1986 by Bischoff and colleagues, techniques to explant and isolate 

individual muscle fibers have since been modified to isolate rat satellite cells32. In the original 

work, digestion of a dissected muscle and tendon in crude collagenase type I allowed liberation 

of individual myofibers. This procedure was found to be most successful after the fractionation 

of the collagenase, which enhanced the ability to remove the basal lamina from fibers and 

exposed the satellite cells. Because the separated fibers did not adhere to a standard polystyrene 

tissue culture substrate, a coating of either collagen or clotted chicken plasma was applied.  This 

discovery opened an entire field of study on the use of similar substrates to promote adhesion 

of the satellite cells during the tissue engineering of skeletal muscle. Separation of individual 

fibers in this manner induced cellular signals of muscle injury, prompting satellite cell 

proliferation up to 4 days in vitro.  Satellite cells remained attached to their respective fibers, 

however, so further study was needed to isolate the satellite cells from their basal lamina niche. 

A modification of the Bischoff system by Rosenblatt and colleagues yields a pure 

population of both rat and mouse satellite cells from single fiber explants33. Following enzymatic 

digestion and separation, each fiber is plated individually with the aid of a dissecting microscope. 

A schematic of this protocol is shown in Figure 2. Central to this approach, satellite cells dissociate 

from their fibers and adhere to the tissue culture plate. Matrigel, an extract of basement 

membrane proteins derived from Engelbreth-Holm-Swarm mouse sarcoma cells, was used as a 

substrate coating in this case because it allowed both satellite cell attachment and subsequent 

removal of the fiber. As a result, when the fibers are removed from the plate after 3-4 days in 

vitro, a highly myogenic adherent cell population remains for further expansion and study. Using 
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this method, up to 300 satellite cells can be obtained per fiber, with potential for approximately 

300-fold expansion to 100,000 myogenic cells33. 

 

Since its introduction and subsequent modification, the single fiber method for isolating 

satellite cells has remained relatively unchanged. A much more detailed procedure was published 

in 2010 by Conboy and colleagues, but the basic steps are consistent with previously published 

papers34. This approach is generally accepted to yield the purest satellite cell populations, 

approximately 95% or higher33 but has serious limitations in that dissecting individual muscle 

fibers is a highly precise and time-consuming task. Furthermore, although only individual fibers 

are needed for the final explant culture step, this protocol dictates removal of the entire muscle 

to avoid fiber damage. Because of its ability to yield satellite cells in vitro with high purity, single 

fiber isolations serve as powerful tool for the study of satellite cell biology, but the relatively low 

overall cell yield from such a large muscle volume make this technique sub-optimal for tissue 

engineering applications. 

 

 
Figure 2. Single fiber explant culture for isolation of satellite cells. This technically challenging and labor-

intensive isolation method yields a highly pure, but relatively small satellite cell population. The desired muscle is 

dissected and enzymatically dissociated until individual myofibers can be removed under a microscope. These 

fibers are then cultured for several days, allowing for egress of satellite cells onto the culture substrate. When the 

myofiber is removed, the isolated satellite cell population remains. 
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Enzymatic Dissociation 

To increase overall yield, many researchers use an enzymatic digestion of whole muscles 

to isolate satellite cells (Figure 3)35,36. This technique was also pioneered in the rat by Bischoff 

and colleagues37, with significant modifications by Rando and Blau in the mouse36. Using this 

approach, muscle tissue is dissected and dissociated into a single cell suspension. Initially, all 

visible tendon and connective tissue is removed from the harvested muscle to maximize final 

myogenic purity. It is common for researchers to use a combination of enzymes to specifically 

digest the various skeletal muscle extracellular matrix components and “release” cells of interest. 

However, a rigorous enzymatic digestion process will also liberate a population of fibroblasts, 

leading to a diluted satellite cell suspension. Current methods have identified various 

combinations of trypsin, pronase, dispase, and several collagenases as optimal mixtures37-39, and 

a study by Tebbets and colleagues highlights this variety in proteolytic enzymes used across the 

field40. Several studies have compared the relative efficacy of these enzymes41-43. It is believed 

that a mixture of collagenase and dispase minimally affects cell surface antigens, allowing for 

easier future enrichment of isolated cells41. On the other hand, pronase may inhibit survival and 

proliferation of non-myogenic cells and yield a purer isolated satellite cell population42. 

Ultimately, direct comparison suggests that these enzymes are all suitable for liberation of 

satellite cells, assuming one uses the correct duration of enzymatic digestion43.  Following 

digestion, debris is removed from the suspension by filtration, and isolated cells are seeded for 

proliferation and differentiation.  

Selection of the proper substrate adhesion protein is important at this stage in promoting 

satellite cell attachment. Collagen, polylysine, fibronectin, Matrigel, and laminin are commonly 
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used as adhesion proteins31,38. Several studies have compared the efficacy of different adhesion 

proteins in preferentially promoting satellite cell adhesion, proliferation, and differentiation44-49 

(Table 1). As these compiled results show, no specific adhesion protein has been identified as 

ideal for culturing satellite cells, but it is clear that the adhesion proteins described in Table 1 

(fibronectin, Matrigel, gelatin, and laminin) promote increased attachment and proliferation 

relative to uncoated polystyrene tissue culture plastic or alternative proteins (polylysine and 

collagen types 3 or 4)38,44.  

 

Following isolation, characterizing the purity of the final cell population is essential when 

engineering skeletal muscle. While flow cytometry, described in detail below, certainly presents 

a high-throughput technique for identifying the various cells in a heterogeneous population, the 

use of cytochemistry for identifying myogenic and non-myogenic cells is a more traditional 

approach. Using markers of satellite cell activation, it is possible to stain isolated cells for 

canonical proteins that identify not only their myogenicity but also their state in the regenerative 

process. It is known that quiescent and activated satellite cells express Pax720,50. Following 

 
Figure 3. Enzymatic dissociation for isolation of satellite cells. This isolation method can yield a large satellite 

cell population suitable for tissue engineering purposes, but requires additional purification to remove non-myogenic 

cells. A muscle biopsy is mechanically and enzymatically digested to yield a single cell suspension. The resulting 

heterogeneous population contains a mixture of satellite cells, fibroblasts, hematopoietic cells, and several other 

types. As a result, it is often necessary to enrich the myogenic satellite cell population through the purification 

methods described in this sub-chapter. 
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activation, identified by Myf5 upregulation and MyoD expression, the satellite cell becomes a 

myogenic progenitor or myoblast. By examining cultured satellite cells for Pax7, Myf5 and MyoD, 

it has been determined that removal of satellite cells from their niche during isolation 

immediately leads to their activation, and that a minimal quiescent population remains in vitro38. 

MyoD staining can therefore be used to identify proliferating satellite cells as soon as 24 hours 

post-isolation38.  

 

As regeneration continues, fusion of myoblasts and terminal differentiation occurs, 

accompanied by expression of myogenin, desmin, and c-met. Desmin, in particular, has often 

been utilized as an indicator of proliferating myogenic cells at time points ranging from 30 hours 

to several days post-isolation36,38.  After myotube formation, typically occurring around 7 days 

post-isolation but varying with seeding density and onset of differentiation, neonatal or 

Publication Adhesion Proteins 

Optimal 

Attachment 

Optimal 

Proliferation 

Optimal 

Differentiation 

Wilschut et al. 201049 
Matrigel, Gelatin, Collagen-1, 

Fibronectin, Laminin 

Fibronectin, 

Laminin 
Matrigel, Laminin Matrigel, Laminin 

Boonen et al. 200948 
Matrigel, Collagen-4, Laminin, 

Poly-D-lysine 
- Matrigel 

Laminin, Poly-D-

Lysine 

Maley et al. 199546 
Gelatin, Collagen-4, 

Fibronectin, Laminin 
- - Matrigel 

Doumit et al.199244 Gelatin, Collagen-3, Fibronectin - Gelatin Gelatin 

Dodson et al. 199047 

Gelatin, Collagen-1, Collagen-

4, Fibronectin, Laminin, Poly-L-

lysine, Poly-D-lysine 

Fibronectin Gelatin Gelatin 

Table 1. Comparison of adhesion proteins for isolated satellite cells. Overall, fibronectin, Matrigel, gelatin, and 

laminin seem ideal for culturing satellite cells, and these four adhesion proteins are most commonly used. From a 

tissue engineering perspective, Matrigel has limited clinical relevance because it is derived from a cancer cell line. 
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embryonic myosin heavy chain isoforms can be used to identify nascent muscle. By following 

these previously established markers to identify myogenic cells within the overall isolated 

population, it is possible to evaluate the overall success and purity of the isolation process. 

Using such characterization methods, it has been determined that the final cell 

suspension isolated via the enzymatic dissociation method is significantly less myogenically pure 

than the single fiber isolation method. The isolates are contaminated by a small population of 

hematopoietic and neural cells, and connective tissue fibroblasts form the majority of the non-

myogenic population. This fibroblast fraction plays an essential role in myogenesis through a 

reciprocal interaction with the proliferating satellite cells, but in large numbers can inhibit 

regeneration11,51. On the other hand, fibroblasts proliferate more rapidly than satellite cells7,38, 

and this non-myogenic population can potentially overwhelm proliferating myogenic cells if too 

numerous initially. As a result, knowing the starting cell populations and monitoring the 

interaction between isolated satellite cells and fibroblasts is essential to understanding growth 

of muscle tissue during skeletal muscle tissue engineering. For reference, yields of approximately 

10,000 satellite cells per 100mg of digested muscle have been reported, with potential 

proliferation to 10 million cells35. Due to the ease at which significant volumes of muscle can be 

harvested, the potential for obtaining relevant numbers of satellite cells for tissue engineering is 

much larger with this method than through the single fiber isolation method.  As a result, tissue 

engineers utilize this enzymatic dissociation method preferentially for high cell volume 

requirements. However, because of the lower myogenic purity, supplemental purification steps 

are often necessary to increase regenerative potential of the isolated satellite cells, and such 

purification methods are discussed in the following section. 
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 Pre-Plating 

One of the most common methods for rapidly purifying satellite cells from a muscle 

homogenate is a selective pre-plating method published by Richler and Yaffe52. Following 

enzymatic dissociation, this serial pre-plating technique has been used to enrich the isolated 

myogenic cell population. Instead of seeding isolated cells directly onto a substrate coated with 

adhesion protein, the cell suspension is distributed onto uncoated tissue culture plastic for a 

period ranging from 15 minutes to 24 hours36,40. Fibroblasts and epithelial cells present in the 

muscle homogenate rapidly adhere to the tissue culture plastic, and the satellite cells remaining 

in suspension can be collected in the non-adherent cell population35,52. Using multiple iterations 

of pre-plating to enrich the non-adherent cells, a purified myogenic cell population can be 

obtained prior to the final seeding.  Previous work has demonstrated increased purification with 

each subsequent step finding a 94% myogenic purity following six pre-plate steps over the course 

of 6 days53.  

The technical simplicity of using pre-plating as a purification step following enzymatic 

dissociation is certainly an advantage. However, during the pre-plating process, some myogenic 

cells inevitably attach either to the tissue culture plastic or to the adherent fibroblasts and are 

lost. Careful control of the pre-plate time is thus necessary to balance retention and purification. 

The major drawback of this technique is its time-consuming nature. Satellite cells and myoblasts 

have a limited potential for proliferation, because isolation typically leads to their activation, 

terminal differentiation, and loss of the potential for self-renewal38. As a result, maximizing the 

in vitro proliferative capacity of these myogenic cells is essential. Any time spent purifying 

through pre-plating, however, decreases this limited capacity for proliferation. Additionally, pre-
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plating is limited by the potential for myogenic and non-myogenic cell populations to vary 

significantly in the final cell suspension. Although the purity of isolated cells has certainly been 

increased, the degree of improvement is inconsistent, and final purity remains unknown without 

additional analysis of cellular content. For tissue engineers, knowing the final myogenic purity is 

essential for consistent tissue fabrication. Fluorescence activated cell sorting (FACS) and 

magnetic activated cell sorting (MACS) have been used to evaluate the success of the pre-plating 

process, leading researchers to consider whether they can be used to skip pre-plating and 

immediately sort instead54,55. 

FACS - Fluorescence Activated Cell Sorting 

Among the sorting techniques that may be applied to the isolation of satellite cells, FACS 

shows promise due to its efficiency in sorting large populations of cells. This technique has been 

used extensively as both a diagnostic and research tool to obtain information rapidly about 

heterogeneous cell populations including cell number, relative cell size, and cell viability. FACS 

operates through laser-based identification of fluorophore-conjugated cell markers and applied 

electrical charges to physically separate individual cells. The use of FACS in satellite cell 

purification, however, is complicated by the absence of a definitive surface marker. Early work 

on myoblast isolations by the Blau laboratory demonstrated that semi-pure primary mouse 

myoblasts could be isolated using FACS and antibodies to α7 Integrin alone24. Recent work has 

focused on improving the purity of isolated satellite cells by using a combination of markers to 

identify and isolate satellite cells from other muscle-derived cells, as described in Table 242. 

Recently, Pasut et al. demonstrated successful FACS isolation of satellite cells using a 

combination of positive markers α7 Integrin and CD34 with negative markers CD45, CD31, CD11b, 
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and Sca-156. Likewise, Sherwood et al. demonstrated similar FACS isolation of myogenic cells 

using positive markers CXCR4 and β1-integrin and negative markers CD45, Sca-1, and Mac-1, and 

cell purity was confirmed by growing the sorted cells into myotubes in cell culture57. Because of 

the heterogeneity of the satellite cell population, with certain sub-populations displaying unique 

surface marker profiles, various additional marker combinations specific to satellite cells have 

been identified58,59.  

 

Consistent with the work described above, Bosnakovski et al. identified CD34 as a positive 

marker and CD45 as a negative marker for satellite cells sorted from a Pax7-ZsGreen+ mouse60. 

Bosnakovski’s work also found that only half of the sorted satellite cells expressed CXCR4, in 

Publication Sorted Population 

Positive 

Markers 

Negative 

Markers 

Heterogeneous 

Markers 

Pasut et al. 201256 Satellite Cells α7-Integrin, CD34 
CD45, CD31, 

CD11b, Sca-1 
- 

Bosnakovski et al. 200860 
Pax7-ZsGreen Satellite 

Cells 
CD29, CD34 

CD45, CD105, 

PDGFRα, c-Kit 
CXCR4 

Montarras et al. 2005146 Pax3GFP/+ Satellite Cells CD34 CD45, Sca-1 - 

Sherwood et al. 200457 Myogenic Progenitors 
β1-Integrin, 

CXCR4 

CD45, Sca-1, Mac-

1 
- 

Asakura et al. 200259 Satellite Cells CD34 CD45, Sca-1 - 

 

Muscle Side Population 

Cells 
- - CD45, Sca-1 

Jankowski et al. 200161 
Proliferating Muscle-

Derived Stem Cells 
- CD45, c-Kit CD34, Sca-1 

Table 2. Prospective surface markers for isolation of satellite cells. Due to the heterogeneity of the myogenic 

pool, FACS targeting different cell populations has identified various surface marker combinations. The most 

consistent trend is the use of CD34 as a positive marker, with CD45 and Sca-1 as negative markers. In several 

cases, these and other markers were identified on a unique subset of the isolated population, and they are labelled 

as heterogeneous markers as a result. 
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partial disagreement with Sherwood’s work. This finding again suggests the presence of unique 

sub-populations within the larger satellite cell pool, potentially complicating the sorting process. 

A similar heterogeneity within the satellite cell pool also occurs with injury to the muscle prior to 

isolation, evident when sorting yields Sca-1 positive, rather than negative, satellite cells. Similar 

variation in satellite cell surface markers has been demonstrated when examining CD34 and Sca-

1 expression in myogenic cells in vitro61. In particular, distinct sub-populations, both positive and 

negative for CD34 and Sca-1, were found within the heterogeneous myogenic cell population 

over a period of 6 days in vitro. When examined together, these studies illustrate the difficulties 

in purifying satellite cells presented by the heterogeneous surface marker profiles across the 

overall isolated population. Ultimately, FACS has proven successful in purifying myogenic cells 

from a heterogeneous cell population isolated in a mouse model, illustrated in Figure 4. Such 

plots also demonstrate the considerable technical expertise required to differentiate the sub-

populations typically overlapping each other. Although researchers have utilized a wide variety 

of surface markers, the common trend across these strategies is the use of CD34 as a positive 

marker and CD45 and Sca-1 as negative markers. However, as tissue engineers seek to use larger 

animal models, study of these heterogeneous surface markers present in the myogenic pool will 

be required for each new species. Again, while satellite cell sorting with FACS has proven 

effective, potential damage to cells or alteration of their proliferation during the sorting process 

remain significant drawbacks to the use of FACS in muscle tissue engineering. The electrical 

charge applied to separate cells requires a substantial voltage, and though the satellite cells 

typically survive this perturbation, it is thought that gene expression may be altered62.  
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Specific studies to examine the effects of FACS on satellite cell viability and subsequent 

proliferation in vitro have not been conducted, so it remains to be seen if sorted cells are still 

suitable for tissue engineering purposes. The use of FACS in isolating human embryonic stem 

cells, however, led to decreased viability63, and destabilization of the membrane was observed 

in sorted spermatozoa64.  Unless such damaging effects can be avoided in the case of satellite 

cells, skeletal muscle tissue engineers may choose not to use FACS to purify isolated cells and 

instead use it only for characterization. 

 

 
Figure 4. Example methodology for FACS purification of satellite cells. Dot plots representing the 

sequential gating strategy used to identify satellite cells from a heterogonous muscle sample based on: (a) Side 

Scatter (SSC) and Forward Scatter (FSC), (b) Doublets discrimination, (c) PE- gating to remove CD45 and 

CD11b blood lineage cells, Sca-1 mesenchymal progenitors, and CD31 endothelial cells, (d) Hoechst staining 

for live (Hoechst+) and dead (Hoechst−) cells, (e) Integrin α7+ and Sca-1- (Lin−) gating, and finally (f) Integrin 

α7+ and CD34+ gating to sort the population defined as satellite cells. As the plots above illustrate, unique 

populations are rarely completely distinct, and substantial technical expertise is necessary to design such gating 

strategies properly. Adapted from Pasut et al.56 
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MACS - Magnetic-Activated Cell Sorting 

Magnetic-activated cell sorting (MACS) offers an alternative method for satellite cell 

sorting. Commonly utilized in immunology, neuroscience, and cancer research, MACS operates 

by incubating cells with antibodies for specific markers of interest conjugated to magnetic 

microbeads. Because it similarly relies on sorting by antigen expression, MACS suffers from the 

same primary limitation as FACS—the lack of a definitive surface marker prevents direct sorting 

of satellite cells, and some combination of markers must instead be used. Research by the Blau 

laboratory demonstrated that semi-pure mouse myoblast populations may be isolated using 

MACS technology to select for α7 Integrin+ cells, with similar purification levels as found with 

FACS55. Although MACS has been used in some cases to purify CD56 positive satellite cells65, 

direct comparison of pre-plating and MACS indicated much greater purification using the pre-

plating technique54. From these studies, it is clear that multiple markers are likely needed to 

isolate a highly pure population.  

An additional complication associated with MACS sorting is the magnetic labelling. While 

the antibody-marker conjugation used in FACS is certainly a modification of the target cells, with 

antibody binding potentially activating or blocking signaling pathways associated with the target 

surface receptor62, the attachment of magnetic microbeads is a far more significant alteration66. 

From a tissue engineering standpoint, concerns arise regarding implantation of cells that may 

retain attached or internalized microbeads. As a result, MACS may be limited for application in 

tissue engineering to negative sorting, the removal of cell types other than that of interest, 

resulting in a semi-pure cell population. This technique has been demonstrated by using MACS 

to remove CD45+ cells from a cell isolate67. Until methods for magnetically sorting satellite cells 
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has been improved and concerns about magnetic microbead retention have been resolved, 

MACS may not provide a realistic cell sorting approach for tissue engineering.  

Summary 

Considerable effort has been dedicated to isolating and purifying satellite cells. Because 

of these advances, several powerful tools are available to tissue engineers. Single fiber explant 

culture isolations yield small populations with high purity, whereas enzymatic dissociation 

isolates a mixture of myogenic and non-myogenic cells with a need for additional purification. 

Pre-plating is the most common method for purification and has proven effective, but it 

ultimately lacks a quantitative measure of the final myogenic cell population. FACS and MACS 

have also been considered, with FACS potentially providing the ability to both sort and 

characterize isolated cells. Further understanding of satellite cell surface markers may make FACS 

an increasingly viable alternative; however, the need for labelling and the potential for alteration 

during the sorting process ultimately limit FACS and MACS. 

As researchers seek to translate engineered skeletal muscle technologies from small 

animal models to larger animals and eventually humans, more efficient and reliable isolation 

methods will become essential. Techniques for increasing myogenic cell proliferation and 

inducing differentiation in vitro by controlling culture conditions and seeking to recapitulate the 

satellite cell niche are being developed to utilize isolated satellite cells maximally, but the scaling 

up process could exceed these capabilities.  It is expected that rapid development will continue 

in the areas covered in this sub-chapter since they will help translate tissue engineering of 

skeletal muscle into a viable clinical treatment. 
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Growth Factors and Skeletal Muscle Tissue Engineering 

The text and figures in this sub-chapter were originally published with the following 

citation: Syverud BC, VanDusen KW, and Larkin LM. “Growth factors for skeletal muscle tissue 

engineering.” Cells Tissues Organs 202: 169 (2016)68. Excerpts from this article have been 

included with permission from the publisher, S Karger AG.  

Proposed applications for tissue-engineered skeletal muscle include implantation as a 

graft material for repair of traumatic damage30,69, recapitulation in vitro of native development 

and regeneration for detailed physiological study or pharmaceutical testing27, and use as 

biomechanical actuators70,71. In all cases, mimicking the complex structure and function of 

skeletal muscle in vivo is an essential consideration. To date, however, engineered tissues have 

been characterized by a neonatal phenotype in terms of vascularity, force production, and 

structural maturity26,29. Without major advances, especially in vascularization, use of engineered 

muscle as a graft material will be severely limited. Implantation of engineered skeletal muscle 

into an in vivo regenerative environment, however, has promoted development towards the 

adult phenotype24,72, and several recent studies have attempted to utilize key chemical and 

mechanical stimuli to improve the maturity of these engineered muscles in vitro 65,73. This review 

focuses on important in vitro biochemical stimuli, summarizing the current state of the art in 

growth factors utilized for skeletal muscle tissue engineering.  

 Skeletal Muscle Development During Embryogenesis 

Before attempting to describe the ideal in vitro biochemical environment for engineered 

skeletal muscle, it is necessary to understand the in vivo environment tissue engineers seek to 

emulate. During embryogenesis, morphogen gradients control patterning of the developing 
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tissues. Following germ layer formation in the pre-patterned embryo, localized variations in gene 

expression and signaling gradients prompt condensations of the paraxial mesoderm into somites 

(Figure 5)74. Genes in the Notch and Wnt pathways prompt somitogenesis in concert with 

spatiotemporal gradients of fibroblast growth factor (FGF) and Wnt proteins. The most dorsal 

section of the somite becomes the dermomyotome, from which the majority of skeletal muscles 

are derived. Myogenesis is initiated as the Pax3+ progenitor cell pool present in the somite 

delaminates and progressively establishes the primary myotome75. Members of the Wnt family 

of proteins again play a central role in this process. Through binding to Frizzled receptors, Wnt 

signaling activates the β-catenin/TCF complex and induces somite patterning and expression of 

the myogenic transcription factors Pax3 and Myf574. A small subset of the progenitor cell pool 

migrates into the myotome, proliferates, and then terminally differentiates into myoblasts.  In 

turn, the terminally differentiated myoblasts fuse with each other to form the first 

multinucleated myotubes and primary myofibers76. This stage of myogenesis is primarily 

regulated by the canonical myogenic regulatory factors: Myf5, MyoD, and myogenin. Sonic 

hedgehog (Shh), released from the notochord and floor plate of the neural tube, promotes Myf5 

expression and commitment to the myogenic lineage74,76. With the establishment of innervation, 

the remaining cells from the progenitor pool differentiate into myoblasts and fuse to form 

secondary myofibers. In addition, a subset of skeletal muscle progenitor cells start to co-express 

Pax3 and Pax7, becoming post-natal progenitor cells often referred to as satellite cells8,77. These 

satellite cells are not activated during embryonic myogenesis and remain as a reserve pool for 

post-natal muscle growth and regeneration. Bone morphogenic proteins (BMPs), a sub-class of 
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the transforming growth factor-beta (TGFβ) superfamily, serve to preserve this progenitor pool 

by inhibiting Myf5 and MyoD expression while upregulating Pax3.  

 

In summary, myogenesis during embryonic development is primarily regulated by Myf5, 

MyoD, and myogenin76, but several molecular signals and growth factors interact with these 

myogenic regulatory factors. Wnt and FGF gradients direct initial somitogenesis. Subsequently, 

Shh and Wnt signaling lead to specification and expression of Myf5. Additionally, TGFβ is known 

to act through serine-threonine kinase receptors, activating SMAD proteins inhibiting Myf5 and 

MyoD induction. As a result, the onset of skeletal muscle formation is delayed and the myogenic 

progenitor pool is preserved. Finally, FGF acts as an antagonist to TGFβ in regulating the 

equilibrium between renewal and differentiation of progenitor pool. Specifically, FGF 

upregulates Myf5 and MyoD, promotes activation of progenitors in the myogenic lineage78, and 

begins the transition to post-natal skeletal muscle development.  

 

 
Figure 5. Initial skeletal muscle formation during embryogenesis. (A) Development of the somite and 

subsequent establishment of the myotome. (B) Regulation of progenitor cell renewal and differentiation by myogenic 

regulator factors and external signaling. Adapted from Buckingham and Mayeuf 201276. 
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Post-natal Skeletal Muscle Development 

Post-natal skeletal maturation and lengthening of skeletal muscle relies on the 

contribution of nuclei and contractile proteins by satellite cells to keep pace with the growing 

skeleton and to mature in structure. This process is characterized by addition of new sarcomeres 

along the length of each fiber, establishment of myotendinous junctions, and the transition in 

myosin heavy chain (MHC) expression from embryonic to adult fast and slow isoforms75,79. 

Satellite cells provide the nuclei required to regulate this continued growth. Until activated, 

satellite cells remain quiescent under the basal lamina of skeletal muscle fibers and are 

characterized by the expression of Pax78. The surrounding stem cell microenvironment or niche, 

composed of extracellular matrix, vascular and neural networks, neighboring cells, and growth 

factors, is highly influential on myogenic function (Figure 6)20,80. In response to a complex series 

of signals, satellite cells are activated and progress toward a committed myogenic lineage, with 

a sub-population returning to quiescence to maintain the progenitor pool. As in embryonic 

development, Notch signaling and Wnt proteins act as essential regulators of post-natal 

maturation of the satellite cell. In particular, Wnt3a signaling promotes satellite cell activation 

and differentiation, whereas Wnt7a induces self-renewal and maintenance of the satellite cell 

pool74. Mammalian (or mechanistic) target of rapamycin (mTOR) also plays a key role in 

mediating post-natal satellite cell activation, proliferation, and differentiation. Although more 

commonly associated with skeletal muscle hypertrophy and homeostasis, mTOR has recently 

been shown to regulate satellite cell activity and myogenesis by upregulating expression of Pax7, 

Myf5, MyoD, and myogenin81.   
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Additionally, several growth factors stimulate quiescent satellite cells. Hepatocyte growth 

factor (HGF) is present in inactive form in the extracellular matrix adjacent to satellite cells79. 

When released due to injury or length damage, HGF is thought to bind c-met receptors present 

on quiescent satellite cells, leading to their activation. Similarly, members of the FGF family are 

present in the satellite cell niche and bind to quiescent satellite cell receptors following FGF 

release76,79. After activation via growth factors such as HGF or FGF, those satellite cells induced 

to a myogenic lineage are often referred to as myogenic precursor cells or myoblasts, 

characterized by their expression of canonical myogenic transcription factors MyoD and Myf5. 

Following their proliferation and differentiation, the myoblasts fuse with maturing muscle fibers 

and promote protein synthesis and muscle growth. Connective tissue fibroblasts in the 

extracellular matrix have been shown to interact with satellite cells throughout this stage, with 

reciprocal signaling between the two cell types prompting increased proliferation of both82. 

 
Figure 6. Growth factor signaling in skeletal muscle regeneration. The microenvironment surrounding the 

satellite cell (SC) niche regulates repair of skeletal muscle damage. Resident immune cells, extracellular matrix 
(ECM), and capillary and neural networks compose this niche. This schematic describes a simplified process 
by which essential growth factors (FGF, TGFβ, IGF, and PDGF) are supplied to stimulate and regulate SCs.  
 



25 
 

Furthermore, expression of the transcription factor Tcf4 by connective tissue fibroblasts 

intrinsically regulates the maturation of MHC isoforms through β-catenin activation51,76. In 

conclusion, post-natal skeletal muscle development depends on activation and myogenic 

differentiation of satellite cells. Although the satellite cell pool is considered heterogeneous, 

several common signaling pathways play essential roles in this myogenic lineage, with HGF and 

FGF as the primary growth factors involved.  

Skeletal Muscle Homeostasis 

Once skeletal maturation is complete, skeletal muscle homeostasis is maintained through 

hypertrophy and atrophy. Hypertrophy and regeneration are primarily regulated by a signaling 

pathway initiated by insulin-like growth factor 1 (IGF1)78. Whether expressed by muscle cells in 

response to injury and exercise, secreted by macrophages and endothelial cells with 

inflammation, or supplied by the circulatory system in the blood, IGF levels increase rapidly in 

preparation for protein synthesis83. Following IGF1 binding, an intracellular cascade mediates its 

effects (Figure 7)84,85. Among these intracellular signals, Akt, or protein kinase B (PKB), plays an 

essential role86. To promote protein synthesis and hypertrophy, Akt indirectly activates mTOR 

while simultaneously inhibiting glycogen synthase kinase 3b (GSK3b). At the same time, Akt 

prevents protein degradation and muscle atrophy by blocking the FoxO family of transcription 

factors87. Myostatin, a member of the TGFβ family predominantly expressed in skeletal muscle, 

conversely functions as a potent cytokine for the inhibition of muscle growth and induction of 

muscle atrophy. Following activation and release from the extracellular matrix, myostatin 

activates Smad2/3 and TAK1/P38 MAPK signaling cascades, leading to upregulation of Atrogin-1 

and muscle RING-finger protein-1 (MuRF-1) and subsequent proteolysis88. Both IGF1 and 
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myostatin, along with their downstream effectors, have been targeted for therapeutic use in 

vivo83,87, and it is expected that similar benefits will translate to engineered skeletal muscle.  

         

External to the IGF/Akt/mTOR signaling pathway, several growth factors have been 

examined due to their effects on myogenic progenitor cells implicated in skeletal muscle growth 

and development. As in embryonic development, TGFβ inhibits progression of muscle precursor 

cells87,89. In contrast, HGF, FGF, and platelet derived growth factor (PDGF) have all been 

associated with muscle repair and hypertrophy90,91. As in post-natal development, HGF is 

 
Figure 7. Central pathways to regulation of skeletal muscle hypertrophy and 

atrophy. The hypertrophic effects of IGF-1 have been widely documented.  Binding 

of IGF-1 to its receptor leads to release of Akt to the cytosol and activation of mTOR 

and protein synthesis. Myostatin (MSTN) and TGF-β control skeletal muscle 

atrophy. When activated, these cytokines trigger a signaling cascade leading to 

upregulation of Atrogin-1 and MuRF-1 and protein degradation. Adapted from 

Gumucio and Mendias 201388. 
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released from the extracellular matrix with injury to prompt satellite cell activation and 

proliferation via p38 MAPK and PI3K83. FGF serves a similar purpose, mainly stimulating 

proliferation of satellite cells. After release from activated platelets and macrophages, PDGF 

again promotes myogenic proliferation, in addition to angiogenesis. Interestingly, these three 

growth factors (HGF, FGF, and PDGF) all have an inhibitory effect on myogenic differentiation83,91. 

Overall, it is evident how various growth factors are intricately involved in these native pathways 

controlling the development, growth, and regeneration of skeletal muscle. Their interplay with 

the canonical myogenic regulatory factors is evident in the activation and proliferation of 

myogenic progenitors, terminal differentiation to myoblasts, and up- or down-regulation of 

protein synthesis and degradation.  

Growth factors for skeletal muscle tissue engineering 

Because of the difficulties associated with isolating and purifying satellite cells, it is 

essential to maximize the myogenic potential of these cells in vitro. In addition, isolated satellite 

cells can only be expanded to a limited extent, because myogenic potential rapidly decreases 

after isolation33,92. This behavior can at least partially be explained by the fact that fibroblasts 

and other non-myogenic cells in the isolated population double every 18 hours, much more 

rapidly than the approximately 24 hours for satellite cells7,38. Several studies have demonstrated 

the ability to expand isolated muscle progenitor cells in vitro for up to 50 population 

doublings36,93. However, examination of myogenic potential over this expansion period 

demonstrated a steady decline in Pax7, MyoD, and desmin expression, beginning at over 90% 

and decreasing to approximately 55% by the third passage94. Furthermore, 

immunocytochemistry for 5-bromo-2’-deoxyuridine-5’-monophosphate (BrdU) showed 60% 
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positive staining at the time of isolation but steadily decreasing values with each subsequent 

passage, indicating declining activation and proliferation of isolated satellite cells with increased 

time in vitro. With this understanding of in vitro satellite cell behavior, it is essential to maximize 

proliferation of isolated satellite cells before myogenic potential drops or faster proliferating 

populations begin to take over the culture. Thus, comprehensive study has determined optimal 

conditions for promoting proliferation and inducing differentiation of satellite cells.  

 Tissue engineers have used this understanding of growth factors and their role in 

myogenesis to direct techniques for the fabrication of skeletal muscle. To date, tissue engineering 

technologies utilize either scaffold materials ranging from decellularized tissues95,96 to collagen 

and fibrin hydrogels26,27,97 or opt for a scaffold-free approach28,29,72 to promote the development 

of an extracellular matrix (ECM) for subsequent muscle tissue. The success of these techniques 

ultimately depends on the in vitro cultivation of isolated primary muscle precursor cells for the 

development of mature muscle cells within the ECM. The typical techniques for culture of these 

myogenic cells involves an initial proliferation phase, to allow cell numbers to expand to a 

sufficiently large population, followed by differentiation and fusion into myotubes and 

maturation to myofibers98. Detailed study of growth factors known to play a role in each of these 

phases of myogenesis is thus essential to further the understanding of muscle growth in vitro. It 

is generally accepted that media rich in serum promotes initial proliferation of skeletal muscle 

stem cells to myoblasts while delaying the onset of differentiation, potentially due to large 

number of hormones and growth factors of varying concentration and potency found in the 

serum38. Dramatic changes in function and speed of contraction were recently observed between 

engineered muscles cultured in serum from the United States and from the European Union99. 
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Similarly, environmental factors in the culture media, such as glucose and antibiotic 

concentration, have been shown to alter engineered muscle phenotype and function100. In this 

study, ideal conditions for maximizing force production in tissue-engineered skeletal muscle 

involved high glucose (25mM) and an absence of streptomycin. A drastic reduction in media 

serum content following the proliferation phase triggers differentiation of the myoblast to the 

myotube, possibly due to the absence of key mitogenic components. Due to the lot-to-lot 

variations in growth factors present in the commercially available serum and the consequent 

variability in satellite cell induction and proliferation, an optimum serum formulation and the 

identity of these mitogenic components has yet to be fully defined44. To date, several growth 

factors have been implicated as potential serum components with important myogenic effects.  

As would be expected based on their in vivo influence on skeletal muscle hypertrophy 

described above, FGF, PDGF, and HGF promote activation and proliferation of myogenic 

progenitor cells and delay terminal differentiation91,101,102. The stimulatory effect of FGF on 

satellite cell proliferation has been shown to produce a two-fold increase in DNA content, relative 

to untreated cultures103. This enhanced proliferation translated to formation of larger myotubes 

and increased expression of myogenin and MHC. When added during the differentiation phase 

of the culture, however, these significant effects were not observed46,103. Similarly, the addition 

of PDGF led to a two-fold increase in DNA synthesis and improved satellite cell proliferation, but 

did not yield a significant increase in desmin expression and myotube formation46,104. In the case 

of HGF, the time between isolation of satellite cells and the onset of the cell cycle decreased from 

approximately 42-60 hours to less than 24 hours102. These results demonstrate conservation of 

the signaling pathways involved in native myogenesis in an in vitro setting, with HGF activating 
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quiescent satellite cells to begin progressing down the myogenic lineage. By combining HGF with 

either FGF or PDGF, tissue engineers may be able to maximize the replicative potential of satellite 

cells by achieving activation earlier and then increasing subsequent proliferation. Furthermore, 

HGF and FGF tend to delay terminal differentiation, allowing for extension of the window for 

satellite cell proliferation. Additionally, IGF plays a key role in all phases of satellite cell 

myogenesis, from activation and proliferation to induction of the onset of myogenic 

differentiation105,106. In one study, IGF was supplied in the fibrin gel used as a 3D scaffold to 

support the fabricated muscle tissue107. The beneficial effects of IGF addition were seen in the 

form of MyoD upregulation during initial proliferation, followed by a 50% increase in force 

production in the final engineered tissue. The functional improvement with IGF addition 

illustrates its importance in engineering skeletal muscle. In contrast, TGFβ typically has a negative 

influence on both myogenic phases in vitro, slightly suppressing proliferation and severely 

inhibiting differentiation46,91,105. TGFβ, however, can enhance contractility of engineered muscle 

by promoting collagen type I synthesis in the extracellular matrix, supporting myofiber 

development and force transmission108. As a result of these findings, it is common to supplement 

media supplied during the initial proliferation phase with HGF and FGF, prior to switching to a 

media supplemented with IGF or insulin for the induction of differentiation27,29. By adding these 

specific growth factors to influence satellite cell proliferation and differentiation, tissue engineers 

have successfully created skeletal muscle constructs in vitro featuring neonatal functional and 

structural characteristics29,72. 
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Summary 

Skeletal muscle tissue engineers seek to fabricate tissue constructs to regenerate 

damaged muscle. Volumetric muscle loss is one of the primary clinical targets for engineered 

muscle due to the severity of the associated injury and the limitations to current treatments. As 

a result, recent research seeks to engineer tissue constructs that mimic native skeletal muscle 

structure and function to serve as an alternative graft source. Using the natural processes for 

skeletal muscle development and repair as models, the necessary cells and biochemical cues 

required to recapitulate myogenesis in vitro have been identified and applied for tissue 

engineering applications. Specifically, the importance of satellite cells in myogenesis makes them 

the ideal cell source for skeletal muscle tissue engineering, and common methods for obtaining 

a suitable population are described above. Following isolation of these myogenic cells, methods 

for maximizing proliferation and differentiation through control of the culture media and growth 

factors have likewise been developed.   

Recently, increasing attention has focused on recreating biophysical cues in vitro to 

promote satellite cell proliferation and differentiation, in concert with controlling media and 

growth factors. The complex nature of the satellite cell niche in vivo20,21, with signaling not only 

from chemical factors but also through physical stimuli acting on the ECM and surrounding 

microenvironment, suggests the need for similar conditions in vitro. The substrate onto which 

isolated satellite cells ultimately attach has thus been engineered to mimic native skeletal muscle 

with promising results. Instead of using stiff substrates such as polystyrene or glass, culture of 

isolated satellite cells on more compliant hydrogels promoted myogenic differentiation and 

allowed formation of advanced sarcomeric structure80,109. These hydrogels were engineered to 
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match the stiffness of healthy skeletal muscle in vivo, with Young’s Moduli of 12 kPa. Even a slight 

variation in gel stiffness to values above 20 kPa or below 5 kPa significantly reduced 

differentiation. From these results, it is clear that the biophysical stimuli transduced through the 

extracellular microenvironment play a key role in regulating satellite cell behavior in vitro.  

It naturally follows that researchers have applied additional mechanical stimuli seeking to 

further recreate the in vivo environment, commonly through custom bioreactors. These systems 

can range from aligned, cylindrical microwells designed to promote alignment and fusion into 

myotubes71, to dynamic bioreactors for providing cyclic strain either through fluid flow or 

mechanical stretch30,73. The efficacy of these bioreactors has led especially to improved satellite 

cell differentiation, but it has also brought attention to the importance of 3D tissue culture. 

Skeletal muscle tissue engineers are clearly seeking to recreate as much of the in vivo satellite 

cell niche as possible in vitro, but these efforts are inherently limited when using a flat, 2D tissue 

culture surface. The potential benefits of using a 3D culture system include improved satellite cell 

attachment and viability and myotube alignment71,110. It is expected that naturally derived 

acellularized ECM or collagen hydrogel scaffolds provide the support and 3D architecture 

necessary for satellite cell growth and development, while also avoiding potential 

biocompatibility issues25,80,111. At the same time, such scaffolds can shield the developing 

engineered tissue from the desired loading environment if degradation does not occur at the 

proper rate69. To avoid such complications, several labs including ours have developed scaffold-

free, 3D culture systems for engineering skeletal muscle tissues and implanting these tissues into 

small animal models26,28,72.  
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Such advances show promise for tissue-engineered skeletal muscle, both in terms of 

recapitulating myogenesis in vitro and restoring lost muscle function in vivo. Overall, the 

improved understanding of isolation methods and culture conditions has aided skeletal muscle 

tissue engineers in improving myogenesis. Nevertheless, engineered tissues typically exhibit an 

embryonic phenotype and produce only a fraction of the force generated by native skeletal 

muscle26,72. To address this challenge, the overall objective of this dissertation was to improve in 

vitro force production in tissue-engineered skeletal muscle to decrease its disparity relative to 

native muscle. It was expected that improving muscle fiber formation and structural 

development during the tissue engineering process would lead to such increases in force 

production. In this dissertation, novel methods for purifying isolated satellite cells, enhancing 

myogenic differentiation through steroid supplementation, and non-invasively evaluating 

metabolism and structure are described, all of which translated to improved function of tissue-

engineered skeletal muscle.  
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CHAPTER II 

Microfluidic Sorting of Isolated Skeletal Muscle Satellite Cells 

Introduction 

Skeletal muscle has the ability to regenerate itself in response to damage3, largely due to 

the presence of potent muscle progenitor cells112. As the most abundant tissue in the body113, 

skeletal muscle requires this regenerative capacity for maintaining homeostasis and restoring 

function after injury. The resident skeletal muscle stem cell, the satellite cell, plays an essential 

role in repairing muscle damage6,50. In cases of severe injury, however, the native skeletal muscle 

repair mechanism is overwhelmed, and external intervention is indicated. A prime example is 

volumetric muscle loss (VML), defined as surgical or traumatic loss of a large volume of muscle 

tissue that leads to a functional deficit4. With VML, the ability of the damaged muscle to repair 

such a large defect through the native repair mechanism is insufficient, and fibrotic scar tissue 

instead accumulates in the defect site114. Current treatment options—free functional muscle 

transfer and composite tissue allotransplantation—involve grafting healthy muscle, innervation, 

and vasculature into the defect, but limitations such as donor site morbidity and limited tissue 

availability often prevent complete recovery111,115,116. In addition, muscular dystrophies are a 

family of inherited degenerative disorders characterized by systemic muscle weakness117-119. 

Duchenne muscular dystrophy is particularly distressing, due to its early onset and the lack of an 

effective treatment120-122. To address these clinical challenges, researchers have proposed using 
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satellite cells in cell therapy36,123-125 or tissue engineering approaches26,27,30,126,127. Although other 

cell types have been implicated as contributors to skeletal myogenesis18,57,59, recent research 

shows that satellite cells act as the primary source of regeneration of adult skeletal muscle7,50. 

Due to this tissue-specific regenerative ability, satellite cells have tremendous therapeutic 

potential.  

Obtaining a suitable population of satellite cells, however, presents a continuing 

challenge. Satellite cells are relatively few in number, only accounting for 2-7% of the nuclei 

associated with a muscle fiber8,18, and current isolation methods have difficulty yielding both the 

quantity and purity required5,38,42. As described in the previous chapter, the prevailing technique 

is to combine enzymatic isolation techniques with subsequent purification methods, such as pre-

plating or fluorescence activated cell sorting (FACS). Pre-plating is limited, however, by the 

sensitivity of the pre-plate timing and the potential for loss of myogenic cells. On the other hand, 

FACS requires modification of the cells being analyzed through the addition of exogenous dyes 

or the electrical perturbations of the sorting process itself62. Microfluidic characterization and 

sorting of fluorescently labeled skeletal muscle cells has been demonstrated as an 

alternative58,128 but is currently limited to small throughputs of hundreds of cells or less. By 

examining the existing techniques, it is clear that an efficient, label-free, high-throughput method 

for purifying satellite cells following isolation is required. 

Inertial microfluidics has the potential to fill this pressing need. The inertial migration of 

particles in a microfluidic device was first observed by Segré and Silberberg in the 1960s129 and 

recently described by Di Carlo130. The efficacy of such devices has been demonstrated for 

separating particles in fluids, and a similar approach was tested in this study to examine 
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separation of cells in suspension. Thus, the physics behind inertial separation described below 

refer to forces acting on cells rather than particles. To summarize these forces, cells in straight 

microfluidic channels experience stresses that act over the channel surface: 1) normal stress that 

yields drag forces parallel to the flow direction, 2) shear stress that yields lift forces perpendicular 

to the flow direction, and 3) a wall lift effect in opposition to the shear stress130-132. Drag forces 

accelerate cells in the flow direction along laminar streamlines. In contrast, the lift forces cause 

cell migration across streamlines. The wall lift force is directed away from the channel walls and 

decays with increasing distance from the walls. The shear lift force depends on the shear gradient 

generated by the fluid flow, resulting in forces directed away from the center of the channel. The 

combination of these lift forces focuses cells to equilibrium positions along the channel cross-

section according to the density of particles and the geometry of microfluidic channel. In a curved 

channel, centrifugal effects induce secondary flow (Dean flow) on the cross-section of the 

channel. The generated double recirculation (Dean Vortices), along with the aforementioned lift 

forces, migrate cells transversely. Cell migration is correlated to the cell size and the curvature of 

the channel, resulting in new profile of equilibrium positions which separates distinct size classes 

of cells130. In our case, a typical skeletal muscle cell isolate contains a mixture of satellite cells 

ranging from 8-13 µm34,58 and myofibroblasts ranging from 10-22 µm133,134, in addition to smaller 

populations of hematopoietic, neural, and immune cells (ranging from 6 µm for smaller red blood 

cells up to 30 µm for larger monocytes and macrophages135). 

A microfluidic device, termed “Labyrinth”, was previously designed for and applied in the 

separation of circulating tumor cells (15-25 μm) from white blood cells (7-12 μm) using inertial 

microfluidics-based separation136. It is a high throughput (1800-2500 μL/min), continuous, and 
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biomarker independent microfluidic separation technology. The design of the Labyrinth (Figure 

8), inspired by the Labyrinth in Greek mythology, incorporates 11 loops and 56 corners in a total 

channel length of 637 mm. The loops have small curvature ratios and provide enough channel 

length for complete focusing of cells, whereas sharp right-angle corners have high curvature 

ratios to further enhance focusing of smaller cells. Four separate outlets are designed to collect 

the focused individual streams of cells with differing sizes. Combining these features, the 

Labyrinth enables the separation of cells in different size classes with high efficiency. 

 

In this study, we demonstrate the power of inertial microfluidic separation for purification 

of isolated satellite cells. I hypothesized that the size difference between satellite cells and 

fibroblasts, two primary cell types obtained from chemical dissociation of muscle, would allow 

for label-free, inertial separation in a microfluidic device and that purified satellite cells could be 

used to engineer our skeletal muscle units (SMUs). Throughout the engineered tissue fabrication 

 
Figure 8. Microfluidic inertial separation in the Labyrinth device. A schematic representation of the Labyrinth 

is shown in (A). Cells in suspension enter the device at the top of the image and rapidly flow (1800 µL/min) along 

the circuitous path created by a series of curved channels. Dean forces proportional to cell size and channel 

curvature act on the cells transversely to the flow direction, separating distinct size classes of particles at the outlets 

as pictured in (B). Specifically, we intended to separate satellite cells, with a size range of 8-13 µm, from 

myofibroblasts, with a typical diameter of 10-22 µm. The Labyrinth was designed to focus the smaller satellite cells 

into Channel 1 (top), larger myofibroblasts into Channel 2 (second from top), and cell aggregates and debris into 

Channels 3 and 4 (bottom). (C) Visualization of a mixed population of Pax7+ satellite cells expressing red tdTomato 

fluorescence and Achilles tendon fibroblasts labeled with CellTracker Green fluorescent dye during sorting 

confirmed efficient separation of these two cell types based on their difference in size. 
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process described extensively in previous work29,72,108,127, Labyrinth sorted cells were compared 

to unsorted controls to assess the efficiency of the microfluidic separation process and to 

examine potential improvements in myogenic proliferation, differentiation, and overall 

engineered tissue function as a result. 

 

Methods 

Animal Care 

All animal care procedures followed The Guide for Care and Use of Laboratory Animals137, 

according to a protocol approved by the University Committee for the Use and Care of Animals. 

Validation of the Labyrinth was performed using fluorescently labeled primary mouse cells. Pax7-

positive satellite cells expressing red fluorescence were isolated from a transgenic Pax7CreERT2-

r26-tdT mouse, provided by collaborators in the lab of Dr. Chris Mendias, Department of 

Orthopedic Surgery at the University of Michigan. To induce tdTomato fluorescence expression, 

mice were injected intraperitoneally with tamoxifen (Sigma-Aldrich, St. Louis, MO, cat. no. T5648) 

in corn oil (Sigma, cat. no. C8267) at a dose of 0.5 mg diluted to 10 mg/mL. Injections were 

repeated for five consecutive days, and cells were isolated at least ten days after the final 

injection. Mouse Achilles tendon fibroblasts were isolated from C57BL6 mice supplied by Charles 

River Laboratories Inc. (Wilmington, MA, USA) and were fluorescently labelled using CellTracker 

Green CMFDA Dye (Life Technologies, Carlsbad, CA, cat. no. C7025) according to the 

manufacturer protocol. 

SMUs were engineered using soleus muscles and bone marrow from 145-155g female 

Fischer 344 rats, supplied by Charles River Laboratories. Animals acclimated to colony conditions 
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for one week prior to any procedure and were fed Purina Rodent Chow 5001 and water ad 

libitum. Intraperitoneal injections of sodium pentobarbital (50 mg/kg for mice, 65 mg/kg for rats; 

Merck Animal Health, Madison, NJ, NADA # 119-807) were used to induce a deep plane of 

anesthesia. Supplemental pentobarbital doses were administered as required to maintain 

adequate anesthesia depth.  

Muscle Dissection and Cell Isolation 

From female Fischer 344 rats, both soleus muscles were removed under aseptic 

conditions and sterilized in 70% ethanol. All hindlimb muscles were dissected when isolating 

Pax7CreERT2-r26-tdT mouse muscle cells. The muscles were then minced using a razor blade and 

forceps, placed under ultraviolet light for 15 min in 15 mL of Ham’s F12 media (Gibco BRL, 

Carlsbad, CA, cat. no. 11765-047), and added to a dissociation solution consisting of 32U dispase 

(1.8 U/mg; Gibco, cat. No. 17105-04) and 2390U type IV collagenase (239 U/mg; Gibco, cat. no. 

17104-019) in 20 mL of Ham’s F12. The mixture was maintained at 37°C with agitation for 90 

minutes and trituration through a 1 mL micropipette every 30 minutes. The resulting suspension 

was then filtered with a 100 µm mesh filter (Fisher Scientific, Waltham, MA, cat. no. 22363549) 

prior to centrifugation. The dissociation solution was aspirated off and the cells were 

resuspended in growth medium. 

Microfluidic Device Fabrication 

The mold for the polydimethylsiloxane (PDMS) device was fabricated following a standard 

soft lithography protocol. Using a spin-coater, a negative photoresist layer of SU-8 100 

(MicroChem, Westborough, MA, cat. no. SU-8 100) was deposited onto a silicon wafer at 2450 
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rpm for 1 minute. The wafer was then soft-baked for 10 minutes at 65°C and 70 minutes at 95°C. 

A mask with the device geometry was aligned to the wafer and exposed to UV light for 20 seconds 

to cure the photoresist. Post-exposure-baking was applied for 3 minutes at 65°C and 10 minutes 

at 95°C. Next, the wafer was soaked in developer solution (MicroChem, cat. no SU-8 Developer) 

for 6 minutes and in isopropyl alcohol (Sigma, cat. no. W292907) for 1 minute to remove the 

inactivated photoresist. It was finally hard baked for 4 minutes at 150-180°C. The resulting height 

of the mold on silicon wafer was 100.0 ± 0.5 µm, and the width of the channel was 500 ± 0.5 µm. 

The flow chamber for Labyrinth was made from PDMS (Sylgard 184; Dow Chemical Corp., 

Midland, MI, cat. no. 4019862). 30 mL Sylgard polymer base and 3 mL curing agent were 

thoroughly mixed and poured onto a silicon mold. The mixture was placed into a desiccator for 2 

hours to remove air bubbles from the mixture and then heated at 65°C overnight to harden the 

polymer. The polymer was next cut into the desired shape, and punched with a needle for tubing 

insertion. The PDMS device was then bonded to standard sized glass slides via plasma surface 

activation of oxygen. The bonded device was plumbed with 0.76 mm diameter tubes (Cole-

Parmer, Vernon Hills, IL, cat. no. 06419-00). 

Microfluidic Inertial Separation 

The Labyrinth device was primed with 1% Pluronic acid solution (Sigma, cat. no. P2443) in 

Dulbecco’s Phosphate-Buffered Saline (DPBS; Fisher, cat. no. 14190144) at 100 μL/min for 10 

minutes and then incubated for 10 minutes to prevent cell clotting on channel walls. Cell samples 

in suspension were then pushed through the Labyrinth at a flow rate of 1800 μL/min using a 

syringe pump (Harvard Apparatus, Holliston, MA, cat. no. 55-2222). After 60 seconds of flow 

stabilization, the products from each of the four Labyrinth outlets were collected separately.  
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Preparation of Tissue-engineered Bone and Tendon Anchors 

As described in previous studies, bone and tendon constructs were fabricated to act as 

anchors onto which developing muscle monolayers could attach and fuse138,139. Bone marrow 

from both femurs of Fischer 344 rats was removed under aseptic conditions. Isolated bone 

marrow cells were plated in 100 mm tissue culture plates (BD Falcon, Franklin Lakes, NJ) in 8mL 

growth medium for 6 days. Growth medium was resupplied every 2 days and contained 40mL 

Dulbecco’s modified Eagle’s medium (DMEM; Gibco, cat. no. 11995- 065) with 10mL fetal bovine 

serum (FBS; Gibco, cat. no. 10437-028), 6 ng/mL basic fibroblast growth factor (bFGF; Peprotech, 

Rocky Hill, NJ, cat. no. 100-18B), and 0.5mL antibiotic-anti-mycotic (ABAM; Gibco, cat. no. 15240-

062). After achieving approximately 80% confluence, cells were passaged and replated at 310,000 

cells per plate. Following four passages, the cells were plated in 100 mm tissue culture plates at 

a density of 1.3 million cells per plate. They were allowed to grow in 8 mL growth medium for 2 

days before being shifted to differentiation medium for 3 days. Differentiation medium consisted 

of 46 mL DMEM with 3.5 mL horse serum (Gibco, cat. no. 16050-122), 0.13 mg/mL ascorbic acid-

2-phosphosate (Sigma, cat. no. A8960), 0.05 mg/mL L-proline (Sigma, cat. no. 81709), 2 ng/mL 

transforming growth factor beta (TGFβ; Fisher, cat. no. PHG9214), and 0.5 mL ABAM. Cells 

cultured with the growth and differentiation media described above differentiate to form a 

tendon monolayer. To drive cells to the bone lineage, 10 nM dexamethasone (DEX; Sigma, cat. 

no. D4902) was added to both the growth and differentiation media. Following 3 days on 

differentiation medium, the confluent monolayers delaminated from the tissue culture plate. The 

monolayers were collected, pinned in cylindrical forms into PDMS-coated dishes and fed 

differentiation medium, and left for 2 days prior to being cut into 5-mm sections to be used as 
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engineered bone-tendon anchors for construct implantation. The anchors were then pinned onto 

the developing muscle monolayers. This process is summarized below in Figure 9. 

 

SMU Formation  

  SMUs were engineered in 60 mm polystyrene plates (Fisher, cat no. 353002), and 

immunocytochemistry (ICC) was performed on 35 mm plates (Fisher, cat. no. 353001) as 

described previously72,140. Briefly, a substrate of PDMS was cured onto each plate, followed by 

coating with laminin (Natural Mouse Laminin, Gibco, cat. no. 23017-015) at 1mg/cm2. Isolated 

muscle satellite cells were seeded in muscle growth medium (MGM) at 600,000 cells per 60 mm 

 
Figure 9. Fabrication of a Skeletal Muscle Unit (SMU). To mimic the structure of 

native skeletal muscle, a multi-phasic engineered tissue was created. Bone marrow 

stem cells, isolated from the femur, were directed to form either tendon or bone 

monolayers by the culture media. After delamination and capture of these 

monolayers in 3D cylindrical form, sections of these bone-tendon constructs were 

cut and pinned onto developing muscle monolayers. Muscle monolayers were 

fabricated from the heterogeneous cell population obtained following digestion of 

the soleus muscle. Upon delamination, the muscle monolayer fused with the bone-

tendon anchors to form a scaffold-free skeletal muscle unit. 
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plate or 150,000 cells per 35 mm plate. MGM contained 30mL F-12 Kaighn’s Modification 

Nutrient Mixture (Gibco, cat. no. 21127-022), 12.5mL DMEM, 7.5mL FBS, 2.4 ng/mL bFGF, and 

0.5mL ABAM. After initial plating for four days to allow attachment, cells were subsequently fed 

MGM every two days until becoming fully confluent on Day 7 with a network of elongating 

myotubes. At this point, 5 mm tissue-engineered bone-tendon anchors were pinned onto the cell 

monolayers at a spacing of 2.5 cm, and the medium was switched to muscle differentiation 

medium (MDM). MDM was composed of 35mL M199 (Gibco, cat. no. 11150-059), 11.5mL DMEM, 

3mL FBS, 500µL ABAM, 50µL insulin-transferrin selenium-X (Sigma, cat. no. I1884), and 36.2µL 

50mM ascorbic acid 2-phosphate. After a week on MDM, re-supplied every other day, the 

monolayers delaminated from the plates on Day 14, rolling into cylindrical muscle constructs, 

held at length by the engineered bone anchors (Figure 9).  

Immunocytochemical Analysis 

At specific time points during SMU fabrication, samples were fixed in 20°C methanol for 

10 min and set aside for ICC. Samples were washed for 10 min in 0.1% Triton X-100 (Sigma, cat. 

no. T8787) in DPBS (PBST) and blocked with PBST containing 3% Bovine Serum Albumin (PBST-S; 

Sigma, cat. no. A2153) at room temperature. Samples were then incubated overnight at 4°C with 

primary antibodies diluted in PBST-S. Immunofluorescent staining was performed using the 

following primary antibodies: mouse monoclonal anti-desmin (1:20 dilution; Developmental 

Studies Hybridoma Bank, Iowa City, IA, cat. no. D3), mouse monoclonal anti-Pax7 (1:100 dilution; 

Abcam, Cambridge, MA, cat. no. ab199010), rabbit polyclonal anti-PDGFRα (1:100 dilution; Santa 

Cruz Biotech, Dallas, TX, cat. no. sc-431), biotin conjugated sheep polyclonal anti-BrdU (1:50 

dilution; Abcam, cat. no. ab2284), mouse monoclonal anti-MyoD (1:100 dilution; BD Biosciences, 
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San Jose, CA, cat. no. 554130), rabbit polyclonal anti-fibroblast-specific protein 1 (FSP1; 1:100 

dilution; Abcam cat. no. ab27957), and mouse monoclonal anti-α-actinin (1:200 dilution; Sigma, 

cat. no. A7752). Plates stained with anti-BrdU had previously been incubated for 24 hours with a 

BrdU labelling reagent (Life Technologies, cat. no. 00-0103) in the muscle growth medium. 

Following 3 PBST washes for 5 min each, samples were incubated in 1:500 dilutions of with Alexa 

Fluor anti-mouse, anti-rabbit, or streptavidin secondary antibodies (Life Technologies) for 3 hours 

at room temperature. Following 3 washes in PBST for 15 min each, samples were preserved in 

Prolong Gold with DAPI (Life Technologies, cat. no. P36935) and cover slipped.  

Samples were examined and photographed with a Leica Inverted microscope, and images 

were analyzed using the ImageJ software package (National Institutes of Health, Bethesda, 

MD)141. For ICC analysis, samples from each experimental group were fixed and stained (on Day 

0 for Cytospin; Day 4 for BrdU; and Day 11 for α-actinin). Cells fixed on Day 0 were attached to 

microscope slides via Cytospin at 800 RPM for 8 min. From each sample, ten random areas were 

imaged, and the number of positively stained nuclei in each image was counted.  

Myotube Fusion Index Calculation 

From the α-actinin images, the percentage of myogenic nuclei was first calculated by 

dividing the total number of DAPI-positive nuclei by the number of nuclei associated with an α-

actinin-positive cell. The structural protein α-actinin is often used to identify Z-lines in skeletal 

muscle sarcomeres, but α-actinin is also expressed in the stress fibers of myoblasts prior to 

fusion142-144. To calculate myotube fusion index, α-actinin-positive muscle cells were quantified 

depending on the number of nuclei contained. Specifically, muscle cells were divided into groups 
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with one, two, three, and four or more nuclei, and these values were reported as a percentage 

of the total number of α-actinin-positive nuclei. 

Myotube Size and Density Analysis 

On Day 14 after initial seeding, light micrographs of monolayers were captured. Ten areas 

of approximately 1 mm2 were randomly selected from both the center and periphery of each 60 

mm plate and imaged. Every myotube from these images was then measured in ImageJ to 

determine its diameter and the overall density of the developing myotube network. 

SMU Contractile Measurements 

SMU force production was measured on Day 16 following roll-up into 3D cylindrical form. 

The protocol for measuring contractility of engineered muscle constructs has been described 

previously31,127,145. Briefly, the pin on one end of the SMU was attached to a force transducer 

with a 0-5 mN range and a 0.4 μN resolution (World Precision Instruments, Sarasota, FL, cat. no. 

SI-KG7A). Platinum wire electrodes were placed along either side of the SMU for field stimulation. 

The temperature of the construct was maintained at 37° C, using a heated aluminum platform. 

Twitch contractions were elicited using a single 5 ms pulse at 10, 30, 60 and 90 mA, whereas 

tetanic force was determined using a 1 s train of 5 ms pulses at 90 mA and 10, 20, 40, 60 and 80 

Hz. Data files for each peak twitch force and peak tetanic force trace were recorded and 

subsequently analyzed using LabVIEW 2013 (National Instruments, Austin, TX).  

Statistical Analysis 

Values are presented as mean ± standard error. Measurements of significant differences 

between means were performed using GraphPad Prism 7 software (GraphPad Software, Inc., La 
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Jolla, CA). Means were compared using either a Student’s t-test or one-way ANOVA with Tukey 

post-hoc comparisons. Differences were considered significant at p<0.05. 

 

Results 

 Initial Validation of Microfluidic Satellite Cell Purification 

 The sorting efficiency of the Labyrinth microfluidic device was validated using 

fluorescently labeled primary mouse cells. A combination of Pax7-positive satellite cells 

expressing red tdTomato fluorescence and Achilles tendon fibroblasts labeled with CellTracker 

Green fluorescent dye were separated at several different fluid flow rates. Visualization of the 

fluorescent cells during sorting (Figure 8C) indicated improved separation distances between 

satellite cells and fibroblasts at lower flow rates (1800 µL/min: 148 µm, 2000 µL/min: 135 µm, 

2200 µL/min: 128 µm, 2500 µL/min: 112 µm). Based on these results, a flow rate of 1800 µL/min 

was used for all subsequent sorting runs. Sorting of the fluorescently labeled cell populations was 

repeated, and the separated cells were quantified with a hemocytomer (Table 3A). From these 

results, it is clear the Labyrinth separated the cell populations as intended, significantly enriching 

the satellite cell population in Channel 1 (p = 0.015) and the fibroblast population in Channel 2 (p 

> 0.001) as compared to unsorted controls.  

Isolated Cell Populations Immediately Following Microfluidic Sorting 

The Labyrinth device demonstrated similar sorting efficiency in separating isolated 

primary rat cells (Table 3B). Following isolation and sorting, cells attached to microscope slides 

via Cytospin were immunostained with Pax7 and desmin to characterize myogenic cells and 

PDGFRα to identify fibroblast progenitors.  Analysis of images from the separated cell populations 
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indicated that a purified population of myogenic cells was evident in Channel 1 of the Labyrinth 

device. Specifically, compared to the unsorted muscle dissociation, with a myogenic cell purity of 

39.9 ± 4.0%, Labyrinth-sorted cells were significantly enriched with myogenic cells, approximately 

two-fold, to 75.5 ± 1.6% (p < 0.001). Because of their larger cell size, the fibroblast cells were 

separated into Channels 2, 3, and 4 by the Labyrinth device. In comparison to the unsorted 

dissociation with a fibrogenic cell purity of 45.6 ± 3.1%, channels 2, 3 and 4 demonstrated 

increased fibroblast purities of 57.4 ± 2.7% (p = 0.1091), 60.8 ± 4.9% (p = 0.023), and 78.3 ± 4.5% 

(p < 0.001), respectively.  

 

A) Primary  

Mouse Cells 

Unsorted 

Control 

Sorted 

Channel 1 

Sorted 

Channel 2 

Sorted 

Channel 3 

Sorted 

Channel 4 

Pax7+ Purity  

(n = 3) 
33.3 ± 3.4 % 

66.5 ± 6.0 % 

* 

27.2 ± 5.8 % 21.2 ± 11.6 % 0.00 ± 0.00 % 

Fibroblast Purity 

(n = 3) 
43.2 ± 2.6 % 11.9 ± 4.8 % 

70.6 ± 1.3 % 

* 

17.4 ± 3.0 % 0.2 ± 0.1 % 

B) Primary  

Rat Cells 

Myogenic Purity 

(n = 6) 
39.9 ± 4.0 % 

75.5 ± 1.6 % 

* 

27.5 ± 4.2 % 12.0 ± 1.6 % 7.36 ± 1.3 % 

Fibrogenic Purity 

(n = 6) 
45.6 ± 3.1 % 21.9 ± 1.9 % 57.4 ± 2.7 % 

60.8 ± 4.9 % 

* 

78.3 ± 4.5 % 

* 

Table 3. Purity of separated cell populations following sorting. Purity in mouse cells (A) refers to the 

percentage of fluorescent cells (red for Pax7+ satellite cells, green for fibroblasts) among the total cells counted in 
each Labyrinth channel. It is worth noting that very few cells were present in Channel 4, and none of these cells 
were Pax7+. In rat isolates (B), cells were characterized as myogenic if expressing Pax7 or desmin, and fibrogenic 

based on expression of PDGFRα. The difference in sorted mouse and rat populations, evident in Channels 3 and 
4, can be explained by the methods used to label these cells. The mouse cells contained a population of unlabeled 
fibroblasts from enzymatic digestion of the muscle biopsy. It is expected that these unlabeled fibroblasts 
represented a sizeable portion of the mouse cells sorted into Channels 3 and 4. In all tables and figures, values are 
presented as mean ± standard error. * indicates significant increases relative to unsorted controls. 
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 Effects of Microfluidic Sorting on Cell Proliferation 

 To assess the influence of the microfluidic separation process on cell proliferation, 

Labyrinth sorted cells were seeded and cultured normally. ICC analysis was performed on Day 4 

following seeding to identify proliferating cells expressing BrdU, a synthetic nucleoside analog of 

thymidine. Expression of MyoD and FSP1 was examined simultaneously to identify myogenic cells 

and matrix-secreting fibroblasts, respectively. From BrdU analysis of plates (n = 10), it was clear 

that microfluidic sorting did not have an effect on overall cell proliferation (Figure 10).  

     

In unsorted controls 91.2 ± 1.2% of cells were proliferating, whereas cells sorted into 

Channel 1 of the labyrinth exhibited 91.6 ± 1.0% proliferating cells (p = 0.556).  Co-staining for 

MyoD, however, demonstrated a significant increase (p = 0.004) in proliferating myogenic cells 

 
Figure 10. Myogenic and fibrogenic proliferation of sorted cells. 

Incorporation of BrdU on Day 4 of SMU fabrication was used to identify 
proliferating cells. No difference in overall proliferation was observed 
between unsorted controls (91.2 ± 1.2%) and cells sorted into Channel 1 
(91.6 ± 1.0%, p = 0.556), suggesting sorting did not adversely affect cell 
growth. Immunostaining for MyoD and FSP1 indicated myogenic and 
fibrogenic cells, respectively. Proliferating myogenic cells were 
significantly enriched (p = 0.004) after sorting into Channel 1 (57.1 ± 
3.0%) as compared to unsorted controls (44.3 ± 2.8%). In contrast, FSP1 
staining indicated proliferating fibrogenic cells in unsorted controls, 46.9 
± 1.9%, were significantly decreased to 34.5 ± 1.9% by microfluidic 
sorting (p < 0.001). * Indicates statistical difference from control. 
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sorted into Channel 1 (57.1 ± 3.0%) as compared to unsorted controls (44.3 ± 2.8%). In contrast, 

FSP1 co-staining indicated that the percentage of proliferating fibrogenic cells in unsorted 

controls, 46.9 ± 1.9%, was significantly decreased to 34.5 ± 1.9% by microfluidic sorting (p < 

0.001). It is worth noting that insufficient myogenic cells for seeding and SMU fabrication were 

present in Channels 2, 3, and 4, so only unsorted controls and Channel 1 cells were compared for 

this and subsequent analysis. 

 Myogenic Differentiation and Myotube Fusion Following Microfluidic Sorting 

 Myotube fusion index was measured to assess the ability of sorted cells to form a network 

of myotubes following microfluidic separation. Expression of α-actinin on Day 11 of SMU 

fabrication was used to identify fused myotubes and sarcomeric structure. Myotubes in both 

control and Channel 1 plates exhibited dense networks of longitudinally-aligned myofibrils with 

advanced sarcomeric structure (Figures 11A & B). Quantification of the number of nuclei 

associated with α-actinin-positive cells yielded a myotube fusion index value. From a t-test, the 

overall percentage of nuclei associated with cells expressing α-actinin in unsorted control plates 

(n = 8) of 52.0 ± 2.8% was not significantly different (p = 0.142) from plates seeded with cells 

sorted into Channel 1 57.0 ± 2.1% (Figure 11C). However, the number of fused myotubes with 

four or more nuclei in unsorted control plates, 82.7 ± 3.7%, was significantly increased to 92.3 ± 

2.0% in Channel 1 plates (p < 0.001, Figure 11D). 
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Further analysis of the myotube network was performed on Day 14 of the fabrication 

protocol using light microscopy. The average myotube diameter in unsorted controls (n = 10) was 

16.0 ± 1.3 µm. This value was nearly identical (p = 0.938) to the myotube diameter of 16.2 ± 1.4 

µm in cells sorted into Channel 1 (Figure 12). In contrast, the density of the myotube networks in 

unsorted and sorted samples exhibit a stark difference. Specifically, unsorted control plates 

averaged 18.6 ± 3.3 myotubes/mm2, whereas cells sorted into Channel 1 formed a significantly 

denser, more aligned network (p = 0.004) averaging 33.9 ± 3.7 tubes/mm2. 

 

 
Figure 11. Structural maturation following microfluidic sorting. (A&B) Advanced 

sarcomeric structure within highly-aligned myofibrils, evident from immunostaining for α-
actinin, was observed on Day 11 in both unsorted controls and Channel 1 plates. (C) No 

significant difference was recorded in the total nuclei associated with α-actinin-positive 
muscle cells (p = 0.142). (D) Quantification of myotube fusion index, the percentage of 

muscle cells with either 1, 2, 3, or 4+ nuclei, indicated greater fusion following microfluidic 
sorting. The percentage of fully fused myotubes with 4+ nuclei significantly increased from 
82.7 ± 3.7% in unsorted controls to 92.3 ± 2.0% in Channel 1 (p < 0.001). * Indicates 
statistical difference from control. 
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Force Production in 3D SMUs after Microfluidic Sorting 

 Finally, overall function of engineered SMUs was assessed by contractile force production 

on Day 16, following monolayer delamination and capture in 3D form. As shown in Figure 13, the 

peak isometric tetanic force production in unsorted control SMUs (n = 8) of 71 ± 8 µN was 

significantly increased (p = 0.002) approximately two-fold to 144 ± 17 µN in SMUs fabricated from 

cells sorted into Channel 1 of the Labyrinth microfluidic device. 

 
Figure 12. Effects of microfluidic sorting on myotube growth. Shortly before 

delamination, light microscopy images were captured on Day 14 to assess the size and 
density of myotubes within the developing muscle monolayer. (A&B) Representative images 
of monolayers from unsorted cells and cell sorted into Channel 1. Scale Bar = 500 µm. (C) 

The average myotube diameter was indistinguishable between the two groups: 16.0 ± 1.3 µm 
in controls and 16.2 ± 1.4 µm in Channel 1 (p = 0.938). (D) Channel 1 cells, however, exhibited 

a significantly denser myotube network (p = 0.004), with 33.9 ± 3.7 tubes/mm2 in comparison 
to 18.6 ± 3.3 myotubes/mm2 in unsorted controls. * Indicates statistical difference from control. 
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Discussion   

Cells separated with microfluidic sorting were analyzed to assess effects on the myogenic 

purity of the isolated population, along with capability for subsequent proliferation, 

differentiation, and function. Immediately following microfluidic sorting, two-fold enrichment of 

the myogenic population was observed in Channel 1 of the Labyrinth device. This enrichment 

was expected based on the design of the Labyrinth device for focusing smaller particles and cells, 

including satellite cells and myogenic progenitors, into Channel 1. In contrast, the fibroblast 

population was enriched in Channels 2, 3, and 4. Again, this result was intended, since the 

Labyrinth was designed to focus the larger fibroblasts into these channels. A minority population 

of fibroblasts was present in Channel 1, however, and a similar population of myogenic cells was 

captured in Channel 2, indicating that microfluidic sorting did not occur with maximal efficiency. 

It is expected that the overlap in the size distributions of satellite cells (8-13 µm34,58) and of 

 
Figure 13. SMU functional development with microfluidic sorting. 

Functional measurement of isometric tetanic force in 3D SMUs on Day 
16 indicated a significant effect of sorting: unsorted control SMU force 
production of 71 ± 8 µN was significantly increased (p = 0.002) 
approximately two-fold to 144 ± 17 µN in Channel 1 SMUs. * Indicates 

statistical difference from control. 
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fibroblasts (10-22 µm133,134) led to this reduced sorting efficiency. Alternatively, large aggregates 

of undigested extracellular matrix debris were observed in the microfluidic device during sorting 

and in outlet Channels 3 and 4 (data not shown). This debris may have impeded fluidic focusing 

of the different cell populations and reduced the overall sorting efficiency. Nevertheless, the 

majority of satellite cells and fibroblasts were consistently separated as desired by the Labyrinth 

device. 

After microfluidic sorting, cells separated into Channel 1 were not adversely affected by 

the high shear forces imposed during flow through the Labyrinth device. These sorted cells 

exhibited similar overall proliferation to unsorted cells, in addition to improved myogenic 

proliferation and suppression of non-myogenic proliferation. We know that these sorted cells 

were more myogenically pure at seeding from our ICC analysis immediately after microfluidic 

separation, and observation of improved myogenic proliferation confirms this result. Improved 

myogenesis continued as sorted cells differentiated and fused to form a greater number of 

skeletal muscle myotubes. Increased myoblast fusion index was observed in cells sorted into 

Channel 1, resulting in a denser and highly aligned network of myotubes in the differentiation 

phase of SMU formation. Additionally, structural maturation of the muscle monolayers, indicated 

by advanced sarcomeric structure within the highly-aligned myofibrils, was observed in both 

unsorted control and Channel 1 plates. Ultimately, these improvements in myogenic proliferation 

and differentiation translated to greater force production in SMUs fabricated from Channel 1 

cells. In conclusion, microfluidic sorting efficiently separated satellite cells and fibroblasts while 

improving the capability for myogenic proliferation, differentiation, and function. 

 



54 
 

Conclusions 

 Microfluidic sorting, as demonstrated in this study, offers an alternative approach to 

purification of satellite cells enzymatically digested from a muscle biopsy. The most comparable 

approach, pre-plating to remove rapidly adhering non-myogenic cells, can achieve greater than 

80% myogenic purity40. The primary drawbacks to pre-plating, however, are the length of time 

required (5 days) and the potential for decreased cell yields. Recently, purification of isolated 

satellite cells through FACS has gained popularity due to its ability to rapidly sort Pax7+ satellite 

cells with greater than 90% purity60,146. With FACS, labeling with exogenous dyes is required, and 

incubation with these antibodies decreases throughput. Microfluidic sorting has the potential to 

fill a niche distinct from these established methods. Although the myogenic purity of cells 

separated with the Labyrinth devices was slightly lower at 75%, the sorting process was label-

free and required approximately 5 minutes. For tissue engineers, this high-throughput and label-

free purification process presents an exciting alternative. 
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CHAPTER III 

Dexamethasone Supplementation to Enhance Myogenic Differentiation in 

Engineered SMUs 

The text and figures in this chapter were originally published with the following citation:  

Syverud BC, VanDusen KW, and Larkin LM. “Effects of dexamethasone on satellite cells and tissue 

engineered skeletal muscle units.” Tissue Eng Pt A 22(5-6): 480 (2016). Excerpts from this article 

have been included with permission from the publisher, Mary Ann Liebert, Inc. 

Introduction 

Potential applications for engineered skeletal muscle include implantation as a graft 

material for repair of traumatic damage30,69, recapitulation of native development and 

regeneration for detailed physiological study or pharmaceutical testing27, and use as 

biomechanical actuators70,71. In each case, recreating the complex function and structure of 

skeletal muscle in vivo is a challenging, but essential, consideration. Engineered tissues to date, 

however, have been characterized by a neonatal phenotype in terms of force production and 

structural maturity26,29. Following sufficient recovery time, engineered skeletal muscles 

implanted into an in vivo regenerative environment have advanced towards the adult 

phenotype24,72, and several studies have attempted to utilize key chemical and mechanical stimuli 

to improve the maturity of these engineered muscles in vitro65,73.  
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 Tissue engineers have used the influence of such growth factors on myogenesis to direct 

techniques for engineering skeletal muscle. Current tissue engineering techniques utilize scaffold 

materials, ranging from acellularized tissues95,96 to collagen and fibrin hydrogels26,27,97, or opt for 

a scaffold-free approach28,29,72 to support development of extracellular matrix (ECM) for 

subsequent muscle tissue. The ultimate success of these approaches depends on the in vitro 

culture of isolated primary muscle precursor cells. A common technique in cultivation of these 

myogenic cells begins with an initial proliferation phase, allowing cells to expand sufficiently, 

followed by induction of differentiation and fusion into myotubes98. Use of media with high serum 

content is generally accepted to promote the initial proliferation phase while delaying the onset 

of differentiation, potentially due to the presence of a variety of growth factors38. Drastic 

reduction in media serum content subsequently triggers satellite cell differentiation, possibly due 

to the removal of essential mitogenic components. Because of variations in the activity and 

concentration of growth factors between lots of commercially available serum, as well as the 

consequent variability in satellite cell induction and proliferation, an optimum serum formulation 

and the identity of these mitogenic components has yet to be fully defined44. By understanding 

the essential growth factors and supplementing media with the appropriate doses, tissue 

engineers can maximize the myogenic potential of satellite cells when engineering skeletal 

muscle. 

The synthetic glucocorticoid dexamethasone (DEX) has previously been studied due to its 

profound effects on muscle in vivo and on satellite cell cultures in vitro, but its application in 

skeletal muscle tissue engineering has yet to be evaluated. In a clinical setting, DEX is typically 

used for its anti-inflammatory or immunosuppressant activity to treat several rheumatologic and 
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skin diseases, because it is 25 times more potent than endogenous cortisol147. In skeletal muscle 

specifically, exogenously delivered DEX has a variety of effects depending on the timing and 

dosage of the administration. DEX induces atrophy in adult human skeletal muscle when supplied 

orally in 4 mg doses, approximately 10 times greater than endogenous cortisol levels148,149. This 

atrophic effect has been linked to up-regulation of the myostatin promoter and inhibition of IGF-

1 expression148,150. In contrast, the administration of 5 to 25nM DEX has improved myogenesis in 

vitro by enhancing differentiation and myotube fusion of myogenic murine cells, potentially 

through its induction of dysferlin, a calcium-binding transmembrane protein thought to play a key 

role in both myogenesis and membrane repair151. Similar studies have demonstrated that DEX 

can inhibit protein synthesis and myoblast proliferation in vitro 152, however, reinforcing the need 

for careful timing of addition to culture.  

Recent research from our lab has focused on optimizing and testing Skeletal Muscle Units 

(SMUs), cylindrical tissue constructs featuring muscle fabricated from monolayers of primary 

fibroblasts and contractile myotubes9. The papers referenced above regarding DEX activity in vitro 

describe its effects on the immortal C2C12 mouse myoblast cell line in two-dimensional culture, 

rather than the primary cell population and functional three-dimensional constructs used in our 

SMU experiments. We hypothesized that exposing the heterogeneous pool of satellite cells and 

fibroblasts used for SMU fabrication to different doses of DEX at several time points may yield an 

optimal combination for improving myogenesis and ultimately maximizing in vitro development 

of our engineered skeletal muscle.  Thus, the purpose of this study was to examine the potential 

of the steroid dexamethasone as a growth factor for skeletal muscle tissue engineering.  
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Methods 

Animal care 

Tissue engineering studies were conducted using soleus muscles and bone marrow from 

145-155g female Fischer 344 rats, obtained from Charles River Laboratories Inc. (Wilmington, MA, 

USA) and Harlan Laboratories (Haslett, MI, USA). All animals were acclimated to colony conditions 

for one week prior to any procedure. Animals were fed Purina Rodent Chow 5001 and water ad 

libitum.  All surgical procedures were performed in an aseptic environment, with animals in a 

deep plane of anesthesia induced by intraperitoneal injections of sodium pentobarbital (65 

mg/kg). Supplemental doses of pentobarbital were administered as required to maintain an 

adequate depth of anesthesia. All animal care and animal surgery procedures were in accordance 

with The Guide for Care and Use of Laboratory Animals137, and the protocol was approved by the 

University Committee for the Use and Care of Animals. 

SMU formation and Dexamethasone addition 

  SMUs were fabricated in individual coated 60 mm polystyrene plates (BD Falcon, Franklin 

Lakes, NJ, USA), and ICC was performed on 35 mm plates as described previously29,72,127. Briefly, 

a substrate of Sylgard (type 184 silicon elastomer; Dow Chemical Corp., Midland, MI) was initially 

cured onto each plate, followed by coating with laminin (Natural Mouse Laminin, cat. No. 23017-

015; Gibco BRL, Carlsbad, CA) at 1mg/cm2. The cell isolation mixture was plated in muscle growth 

medium (MGM) at a density of 600,000 cells per 60 mm plate and 150,000 cells per 35 mm plate. 

MGM contained 30mL F-12 Kaighn’s Modification Nutrient Mixture (cat. No. 21127-022; Gibco 

BRL), 12.5mL Dulbecco’s modified Eagle’s medium (DMEM; cat. No. 11995- 065; Gibco BRL), 

7.5mL fetal bovine serum (FBS; cat. No. 10437-028; Gibco BRL), 2.4 ng/mL basic fibroblast growth 
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factor (bFGF; cat. No. 100-18B; Peprotech, Rocky Hill, NJ), and 0.5mL antibiotic-anti-mycotic 

(ABAM; cat. No. 15240- 062; Gibco BRL).  

After the initial plating, cells were left undisturbed for four days and subsequently fed 

MGM every two days until becoming fully confluent with elongating myotubes forming a network 

across the base of the plate. Next, 5 mm tissue-engineered bone-tendon anchors were pinned 

onto the cell monolayers 2.5 cm apart, and the medium was switched to muscle differentiation 

medium (MDM). MDM was composed of 35mL M199 (cat. No. 11150-059; Gibco BRL), 11.5mL 

DMEM, 3mL FBS, 50µL insulin-transferrin selenium-X (cat. No. I1884; Sigma-Aldrich, St. Louis, 

MO), 0.5mL ABAM, and 36.2µL 50mM ascorbic acid 2-phosphate. After approximately a week on 

MDM, re-supplied every other day, the monolayers delaminated from the plates, rolling into 

cylindrical muscle constructs, held at length by the engineered bone anchors. During this SMU 

formation process, described in Figure 14, DEX was added to the medium beginning at three 

different time points: initial plating (Day 0), six days after initial plating (Day 6), and two days after 

the switch to MDM (Day 9). These three time points were chosen to evaluate the efficacy of DEX 

in controlling isolated cell proliferation, differentiation, and maturation of the delaminating 

monolayer and subsequent 3D SMU, respectively. After the first addition, supplemental doses of 

DEX were added with each medium change. Three experimental doses were supplied (5nM, 

10nM, and 25nM), with untreated plates as controls.  

SMU contractile measurements 

Contractile properties of SMUs (n=6) from each experimental group were measured 

following roll-up into cylindrical form. The protocol for measuring contractility of engineered 

muscle constructs has been described in the previous chapter145,153. To reiterate, the pin on one 
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end of the SMU was raised from the Sylgard and attached to a force transducer. Platinum wire 

electrodes were placed along either side of the SMU for field stimulation. The temperature of the 

construct was maintained at 37° C, using a heated aluminum platform. Passive force was 

measured as the average baseline force produced prior to the onset of stimulation. Twitch 

contractions were elicited using a single 5 ms pulse at 10, 30, 60 and 90 mA, whereas tetanic force 

was determined using a 1 s train of 5 ms pulses at 90 mA and 10, 20, 40, 60 and 80 Hz. Data files 

for each peak twitch force and peak tetanic force trace were recorded and subsequently analyzed 

using LabVIEW 2013.  

 

 
Figure 14. Experimental timeline with dexamethasone timings and dosages. Addition of dexamethasone was 

initiated at three time points: on Day 0 to study effects on proliferation, on Day 6 to study effects on late proliferation 
and differentiation, and on Day 9 to study effects on structural maturation. During this SMU fabrication process, 
subsets of the developing plates were analyzed for expression of BrdU, MyoD, Fibroblast-specific protein 1 (FSP1), 
myogenin, and α-actinin as listed above. Additionally, myotube fusion and myotube size and density were 
measured in the developing muscle monolayers. Finally, the 3D SMUs were assessed for force production in 
response to electrical stimulation and for strucutral development with TEM. MGM stands for Muscle Growth 
Medium, MDM for Muscle Differentiation Medium. 
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 Immunocytochemical Analysis 

During SMU fabrication, a subset of the plates from each experimental group was fixed in 

20°C methanol for 10 min and set aside for immunocytochemistry (ICC). The plates were 

submerged for 15 min in 0.1% Triton X-100 (Sigma, St. Louis, MO, USA, cat. no. T8787) in DPBS 

(PBST) and blocked with PBST containing 3% Bovine Serum Albumin (PBST-S; Sigma, cat. no. 

A2153) at room temperature. The sections were then incubated overnight at 40C with the primary 

antibodies diluted in PBST-S. Immunofluorescent staining with specific antibodies was performed 

to detect the presence of BrdU (biotin conjugated sheep polyclonal antibody; Abcam, Cambridge, 

MA, USA, cat. no. ab2284), MyoD (mouse monoclonal antibody 1:100 dilution; BD Biosciences, 

San Jose, CA, USA, cat. no. 554130), FSP1 (rabbit polyclonal antibody 1:100 dilution; Abcam, cat. 

no. ab27957), myogenin (rabbit polyclonal antibody 1:50 dilution; Santa Cruz Biotechnology, 

Dallas, TX, USA, cat. no. sc-576), desmin (mouse monoclonal antibody 1:20 dilution; 

Developmental Studies Hybridoma Bank, Iowa City, IA, USA, cat. no. D3), and α-actinin (mouse 

monoclonal antibody 1:200 dilution; Sigma, cat. no. A7752). Plates stained with antibodies for 

BrdU had previously been incubated for 24 hours with a BrdU labelling reagent (Life Technologies, 

cat. no. 00-0103) in the culture media. Following three washes in PBST, samples were incubated 

in 1:500 dilutions of with Alexa Fluor anti-mouse, anti-rabbit, or streptavidin secondary 

antibodies (Life Technologies) for three hours at room temperature. Following three washes in 

PBST, samples were preserved in Prolong Gold with DAPI (Life Technologies, cat. no. P36935) and 

cover slipped. 

Samples were examined and photographed with a Leica Inverted microscope, and images 

were analyzed using the ImageJ software package. For ICC analysis, plates (n=5) from each 
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experimental group were fixed and stained (on Day 4 for BrdU, MyoD, and FSP1; Day 7 for 

myogenin; and Day 11 for desmin). From each plate, ten areas were randomly selected and 

imaged, and the number of positively stained nuclei in each image was counted. To calculate 

myotube fusion index from the desmin images, the number of nuclei associated with a desmin-

positive myotube was divided by the total number of nuclei.  

Myotube Size and Density Analysis 

On day 14 after initial plating of satellite cells, light micrographs of the developing 

monolayers in each experimental group were captured and analyzed. Specifically, five areas from 

each 60 mm plate (n=8) were randomly selected and imaged. Every myotube from these images 

was then measured in ImageJ to determine its size and the overall density of the myotube 

network. 

Transmission Electron Microscopy Analysis 

Following measures of mechanical function, SMUs were fixed overnight at room 

temperature in 0.1M phosphate buffer (Fisher Scientific, Pittsburgh, PA, USA, cat. no. S369-500) 

containing 2.5% glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA, USA, cat no. 16210), 

post fixed at 4°C for one hour in 0.1M phosphate buffer containing 1% osmium tetroxide (Electron 

Microscopy Sciences, cat no. 19150), and polymerized in Embed 812 resin (Electron Microscopy 

Sciences, cat. no. 14900) at 60°C for 24 hours. Ultra-thin 70nm sections were then cut and stained 

with uranyl acetate (Electron Microscopy Sciences, cat. no. 22400) and lead citrate (Electron 

Microscopy Sciences, cat. nos. 17900 and 21140) and imaged using a JEOL JEM-1400Plus 

transmission electron microscope (TEM). 
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Statistical Analysis 

Values are presented as mean ± SE. Measurements of significant differences between 

means were performed using GraphPad software. Means were compared using either one-way 

or two-way ANOVA tests with Tukey post-hoc comparisons. Differences were considered 

significant at p<0.05. 

 

Results 

Effects of Dexamethasone on Proliferation of Satellite Cells 

To assess the influence of DEX on the induction and proliferation of isolated myogenic 

satellite cells, DEX was added at the time of plating (Day 0). ICC analysis of cells expressing BrdU, 

a synthetic nucleoside analog of thymine, was used on Day 4 to identify proliferating cells154, and 

expression of MyoD and Fibroblast-specific protein 1 (FSP1) was examined simultaneously to 

identify myogenic cells and matrix-secreting fibroblasts, respectively (Figure 15). From the 

analysis of BrdU and MyoD co-staining, a dose dependent response to DEX treatment was 

evident, with the density of proliferating myogenic nuclei increasing with increasing DEX 

concentration. Following addition of 10nM and 25nM DEX, a statistically significant increase in 

MyoD+ cell proliferation relative to No DEX controls was observed (p = 0.012 and 0.003, 

respectively). Addition of 5nM DEX exhibited no difference from controls and resulted in 

significantly fewer proliferating MyoD+ cells than the 10nM and 25nM DEX doses (p = 0.037 and 

0.009, respectively). Similarly, ICC analysis for both BrdU and FSP1 showed that the administration 

of DEX on Day 0 led to a decrease in the number of proliferating FSP1+ cells. This decrease in 

FSP1+ cells was significant following 10nM and 25nM DEX addition, relative to untreated controls 
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(p = 0.002 and 0.004, respectively). Administration of 5nM DEX indicated no difference in FSP1+ 

cells from No DEX controls. In comparison to the 10nM and 25nM concentrations, however, 5nM 

DEX yielded significantly decreased proliferation of FSP1+ cells (p = 0.004 and 0.005, respectively).  

Thus, the results for MyoD and FSP1 expression in proliferating cells demonstrate that the 

influence of 10nM and 25nM DEX on early growth of heterogeneous muscle isolates was two-

fold: improved proliferation of cells in the myogenic lineage and decreased proliferation of non-

myogenic fibroblasts. 

 

Dexamethasone Induction of Muscle Cell Differentiation and Myotube Fusion 

ICC analysis of myogenin expression was used as an indicator of myoblast differentiation 

into myotubes on Day 7 of the experiment155. A dose-dependent increase in myogenin-positive 

 
Figure 15. Myogenic and fibroblast cell proliferation following dexamethasone addition. (A) With DEX 

addition on the day of initial seeding (D0), the percentage of proliferating cells expressing MyoD followed an 

increasing trend with increasing DEX concentration, as indicated by BrdU and MyoD co-staining on Day 4. 

A statistically significant increase in proliferation (p = 0.012 for 10nM, p = 0.003 for 25nM) was observed 

when comparing the higher concentrations of DEX (10nM and 25nM) to untreated controls (No DEX).  (B) 

ICC analysis for BrdU and FSP1 on Day 4 showed a decrease in the percentage of proliferating cells 

expressing FSP1+ following DEX addition. In response to administration of 10nM and 25nM DEX, the number 

of proliferating cells expressing FSP1 significantly decreased relative to No DEX controls (p = 0.002 and 

0.004, respectively). Error bars indicate mean ± standard error. * Indicates statistical difference from control, 

# from 5nM DEX.  
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cell density was observed in response to DEX treatment, independent of the timing of its addition 

(Figure 16A). Groups receiving 5nM DEX showed no difference from No DEX controls, whereas 

10nM addition significantly increased the number cells expressing myogenin (p = 0.001), and 

25nM DEX led to even greater increases (p < 0.001). Ultimately, treatment with 25nM DEX 

beginning on Day 6 yielded the highest density of myogenin+ cells, approximately 2.8 times 

greater than untreated controls.  

 

Myotube fusion index was measured to assess the ability of myoblasts to terminally 

differentiate and form a network of myotubes in the presence of DEX. Expression of desmin, a 

protein specific to muscle cells and a key subunit in intermediate filaments38,156, identified fused 

myotubes, and subsequent analysis of the percentage of nuclei associated with a myotube 

 
Figure 16. DEX effects on myogenic differentiation. (A) ICC analysis for myogenin expression on Day 7 

indicated differentiation of myoblasts into myotubes. From two-way ANOVA, a dose-dependent increase in 

myogenin-positive cell density was observed in response to DEX treatment (p < 0.001), independent of the timing 

of addition. (B) Myotube fusion index, calculated from desmin and DAPI staining on Day 11, quantified the number 

of nuclei associated with a myotube as a percentage of total nuclei. Two-way ANOVA indicated a significant effect 

of both DEX dose and timing (p < 0.001 for both). When averaged across the three timing groups, all three DEX 

concentrations yielded significantly increased myotube fusion relative to No DEX controls (p = 0.002 for 5nM, p > 

0.001 for 10nM and 25nM). Similarly, fusion index increased significantly with DEX addition on Day 0 and Day 6 (p 

= 0.015 and 0.008, respectively). Error bars indicate mean ± standard error. * Indicates statistical difference from 

No DEX controls, # from 5nM in the same DEX timing group, ♦ from 10nM in the same timing group, † from 25nM 

in the same timing group, (a) from Day 0 at the same DEX dose, (b) from Day 6 at the same DEX dose, and (c) 

from Day 9 at the same DEX dose. 
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yielded a myotube fusion index value. Two-way ANOVA indicated that both the dose and timing 

of DEX addition significantly affected myotube fusion (Figure 16B). Compared to untreated 

controls, all three experimental concentrations significantly increased myotube fusion (p = 0.002 

for 5nM, p > 0.001 for 10nM and 25nM). The effect of time indicates that the early addition of 

DEX at cell seeding (Day 0) or towards the end of the proliferative stage (Day 6) significantly 

increased myotube fusion (p = 0.015 and 0.008, respectively), whereas plates treated with DEX 

during the differentiation stage (Day 9) exhibited no difference from controls. Although no 

difference in myotube fusion was observed between the 5nM, 10nM, and 25nM concentrations 

when averaged across the three timing groups, focus on the Day 6 time point alone revealed a 

dose-dependent trend, with fusion index increasing with each DEX concentration. This trend 

included a statistically significant difference between the Day 6 5nM and 25nM DEX 

concentrations (p = 0.007). Across all experimental groups, addition of 25nM DEX on Day 6 yielded 

the highest myotube fusion index at 69%, a 250% increase over the No DEX controls. The 

combined results for myogenin expression and myotube fusion demonstrate that DEX addition 

increased myogenic differentiation and myotube fusion, with the addition of the highest 

experimental dose, 25nM, on Day 6 producing the greatest increases. 

Further analysis of myotube size and number was performed on Day 14, immediately prior 

to monolayer delamination. The dose and timing of DEX addition were observed to have 

significant effects on myotube diameter (Figure 17E). In response to the experimental DEX 

concentrations, a significant dose-dependent increase in myotube diameter was observed, 

resulting in myotubes 1.2, 1.3, and 1.4 times larger than No DEX controls following addition of 

5nM, 10nM, and 25nM DEX, respectively (p = 0.001 for 5nM, p < 0.001 for 10nM and 25nM). 
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Additionally, in plates receiving DEX at the two early time points, Day 0 and Day 6, myotube 

diameters increased significantly relative to untreated controls (p < 0.001 for both days). Plates 

subsequently treated with DEX on Day 9 showed no difference in myotube diameter from 

controls. Day 6 addition of 10nM and 25nM DEX produced the largest myotubes, with average 

diameters of 14.8 and 16.1 µm, respectively. Myotube diameters for both doses were significantly 

greater than control myotubes, with an average diameter of 9.8 µm (p < 0.001 for both doses).  

 

 
Figure 17. DEX effects on myotube growth. Monolayers were observed just prior to delamination on Day 14. 
Representative images are shown above for (A) No DEX, (B) Day 6 5nM, (C) Day 6 10nM, and (D) Day 6 25nM. 

Images from the Day 6 timing group were chosen because this time point demonstrated the significant effects of 
DEX addition detailed below. The black arrowheads in (B) & (D) indicate blebbing of myotubes. All images were 
analyzed for (E) myotube diameter and (F) myotube density. The effects of DEX dose and timing on myotube size 

were both evident from two-way ANOVA (p < 0.001 for both). Post-hoc analysis demonstrated significant increases 
in myotube diamter in response to all three DEX concentrations (p = 0.001 for 5nM, p < 0.001 for 10nM and 25nM). 
Similarly, Day 0 and Day 6 DEX addition led to significantly increased myotube diameters relative to untreated 
controls (p < 0.001 for both days). When examining myotube density, the timing of DEX addition had a significant 
effect (p = 0.004). Specifically, the number of myotubes increased significantly with DEX addition on Day 6 in 
comparison to No DEX controls (p = 0.008) , but Day 0 and Day 9 addition resulted in no significant difference. 

Error bars indicate mean ± standard error. * Indicates statistical difference from No DEX controls, (a) from Day 0 

at the same DEX dose, (b) from Day 6 at the same dose, and (c) from Day 9 at the same dose. 
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The effects of the timing of DEX addition on the overall density of the myotube network 

were also evident. Administration of DEX on Day 6 improved myotube density significantly (p = 

0.008), while addition of DEX on Day 0 and Day 9 exhibited no significant differences from 

untreated controls. Similarly, no significant differences were observed when examining the 

influence of the three DEX doses on myotube density. Together, the myotube size and density 

data indicate that the addition of DEX on Day 6 leads to a more robust network of larger 

myotubes, which may be preferable for engineering skeletal muscle. 

Structural and Functional Maturation of 3D SMUs with Dexamethasone Addition  

The influence of DEX on the overall structure and function of engineered SMUs was also 

observed during delamination and in the final 3-D form. Immunocytochemical analysis of α-

actinin (Figures 18A & B) demonstrated improved maturation of myotubes in the delaminating 

monolayer following addition of all three DEX concentrations. Plates receiving DEX on Day 0 and 

Day 6 exhibited advanced sarcomeric structure within highly aligned myofibrils in the confluent 

monolayers. This development of sarcomeric structure was not observed in control muscle 

cultures or plates receiving DEX during the differentiation stage on Day 9. Similarly, administration 

of DEX led to improved structural maturation in the fully formed 3D SMUs.  Electron micrographs 

of a SMU receiving 10nM DEX on Day 6 exhibited a denser network of aligned collagen fibers at 

the junctions of each myofiber than the No DEX SMU (Figures 18C & D). Furthermore, following 

10nM DEX administration on Day 6, the resulting SMU demonstrated development of aligned 

myofilaments and maturing Z-lines, similar to the organization of parallel sarcomeres in adult 

skeletal muscle (Figures 18E & F). Aligned myofilaments were evident in untreated control SMUs, 

but few developing sarcomeric structures were observed.      
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This improved structural maturation translated to increased function, as assessed by 

contractile force production in the 3-D SMUs. The maximum isometric tetanic forces produced by 

 
Figure 18. SMU structural maturation with DEX addition. Representative images of 
muscle monolayers (A) without DEX and (B) following DEX addition (Day 0 10nM). 

These images show α-actinin in muscle monolayers 10 days post-seeding. Formation 
of advanced sarcomeric structure and aligned myofibrils was evident in plates receiving 
DEX on either Day 0 or Day 6 in all three experimental concentrations. Transmission 
electron micrographs of longitudinal sections of SMUs following formation of a 3-D 
construct, (C & E) without DEX administration and (D & F) following Day 6 addition of 

10nM DEX, corroborate the positive effects of DEX on structural maturation during SMU 
fabrication. Both No DEX and D6 10nM DEX images show developing ECM at myofiber 
junctions, but greatly increased density and alignment of collagen fibers is evident 
following DEX addition. Similarly, both SMUs contain myofibers with highly aligned 
myofilaments, indicated by asterisks in (C & D). However, the formation of organized Z-

lines indicative of developing sarcomeric structure was observed to a much greater 
extent in SMUs receiving DEX administration, evident in (E & F).  
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engineered SMUs are displayed in Figure 19A, and two-way ANOVA indicated both DEX timing 

and dose significantly affected SMU function.  

     

 
Figure 19. SMU functional maturation with DEX addition. (A) Isometric tetanic force 

production in 3D SMUs indicated a significant effect of both DEX dose and timing (p < 0.001 

for dose, p = 0.004 for timing). Addition of 10nM DEX was optimal for SMU fabrication, 

producing a significant, five-fold increase relative to untreated controls (p = 0.004). 

Additionally, Day 0 and Day 6 administration of DEX both led to a significant, two-fold 

increase in force production (p = 0.016 for Day 0, p = 0.018 for Day 6), whereas Day 9 DEX 

addition yielded a 20% decrease compared to No DEX controls. (B) Examination of passive 

force generation also showed a significant effect of DEX timing and dose (p = 0.004 for 

timing, p < 0.001 for dose). Further analysis indicated that DEX treatment led to significant 

decreases compared to No DEX controls regardless of DEX timing or concentration (p < 

0.001 for Days 0 and 6, p = 0.006 for Day 9, p < 0.001 for 5nM, p = 0.003 for 10nM, p = 

0.002 for 25nM). Error bars indicate mean ± standard error.  * Indicates statistical difference 

from No DEX controls, # from 5nM in the same DEX timing group, ♦ from 10nM in the same 

DEX timing group, † from 25nM in the same DEX timing group, (a) from Day 0 at the same 

DEX dose, (b) from Day 6 at the same dose, and (c) from Day 9 at the same dose. 
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When averaging the values across all experimental concentrations to study timing effects, 

administration of DEX on Day 0 and Day 6 both led to a significant, two-fold increase in force 

production (p = 0.016 for Day 0, p = 0.018 for Day 6). Addition of DEX on Day 9 led to a 20% 

decrease in force production compared to No DEX controls. Surprisingly, however, when 

examining the effects of DEX dosage, only addition of 10nM DEX produced a significant 

improvement in function, represented by a five-fold increase in isometric force production 

relative to No DEX controls (p = 0.004). SMUs receiving 5nM DEX showed no increase relative to 

control SMUs, whereas addition of 25nM DEX significantly decreased force production (p = 

0.024). Overall, optimal force production was observed in SMUs receiving 10nM DEX on Day 0 

and Day 6, with average isometric tetanic forces of 257 and 254 µN, respectively.  

Additionally, administration of DEX may have affected the development and maintenance 

of passive tension in the maturing muscle monolayers, and eventually in the SMUs fabricated 

from the monolayers. This passive tension effect was quantitatively observed in the timing of 

delamination of the developing monolayers. Rather than rolling up on Day 14 as is typical in our 

SMU fabrication protocol, plates treated with DEX remained in monolayer form approximately 

20% longer, regardless of the dosage administered. Plates receiving DEX rolled up, on average, on 

day 17, and manual manipulation was occasionally necessary to assist this process. Following 

delamination, passive tension development in the newly formed SMUs was measured during 

assessment of contractile force production 24 hours post roll-up. Two-way ANOVA indicated a 

significant effect of both DEX timing and dose on passive tension (Figure 19B). Further analysis 

showed that addition of DEX addition significantly decreased passive tension in fabricated SMUs 
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(p < 0.001 for Days 0 and 6, p = 0.006 for Day 9, p < 0.001 for 5nM, p = 0.003 for 10nM, and p = 

0.002 for 25nM), regardless of the timing or dose of DEX administration. 

 

Discussion 

 The overall effects of DEX during the SMU fabrication process can be divided into distinct 

proliferation, differentiation, and maturation phases. The addition of DEX prior to myocyte 

differentiation led to improved myogenic proliferation and suppression of non-myogenic 

proliferation, indicated by increased MyoD+ cell density and decreased FSP1+ cell density. In 

addition, administration of 10nM and 25nM DEX at the beginning of proliferation (Day 0) or one 

day prior to the transition from proliferation to differentiation (Day 6) yielded increased myoblast 

fusion, resulting in a dense network of larger myotubes in the subsequent differentiation phase. 

Similarly, addition of DEX during the proliferative stage on either Day 0 or Day 6 resulted in the 

greatest structural maturation of the delaminating monolayers and the resulting fully formed 3D 

SMUs, characterized by the presence of advanced sarcomeric structure within highly aligned 

myofibrils. Ultimately, administration of 10nM DEX during proliferation on either Day 0 or Day 6 

yielded optimal force production in fabricated SMUs.  

 Although administration of 25nM DEX improved myogenic proliferation and 

differentiation, force production in these SMUs actually decreased compared to No DEX controls. 

Several factors potentially explain the ultimate decrease in the contractile function associated 

with addition of 25nM DEX. As described above, supplementation with DEX led to decreased non-

myogenic proliferation and increased myogenesis, concomitant with decreased passive tension. 

Extracellular matrix is essential to SMU fabrication, both for generation of the passive tension 
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promoting delamination and for structural support of the contractile components of the SMU. 

DEX addition may have promoted myogenic differentiation and down-regulated functional 

extracellular matrix formation. Although TEM images indicated increased collagen deposition and 

alignment following DEX treatment (Figures 18C & D), this collagen content did not translate to a 

more robust extracellular matrix, as evident from the decrease in passive tension values. Since 

plates receiving 25nM DEX exhibited the largest myotubes in the highest density, additional ECM 

would be required to support these robust muscle networks, and it is possible that the ECM 

present in the 25nM plates was insufficient to transmit force along the SMUs. Another potential 

explanation was the formation of blebs on the periphery of several myotubes accompanying 

myoblast fusion. This blebbing, seen in the light microscopy images in Figure 17, typically began 

shortly after the switch from M-GM to M-DM on Day 7 and became more pronounced during 

differentiation. Upon gross examination, these blebs were increasingly prevalent at the 25nM 

DEX dosage. Blebbing has been identified as a potential biomarker of cell injury that can occur in 

myotubes in response to toxic agents or hypotonic osmotic shock157. Based on the current 

understanding of the action of DEX in vivo148,150, namely acting as a potential agent for the 

induction of skeletal muscle atrophy, it may be possible to draw a connection between DEX 

addition and myotube membrane damage and blebbing. Further analysis is necessary to 

determine whether membrane blebbing, an inhibition of ECM formation, or some additional 

unexpected cause, resulted in the decrease in force production accompanying 25nM DEX 

addition.    
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Conclusions 

 This experiment demonstrates that addition of DEX to isolated muscle satellite cells in 

culture can improve functional and structural characteristics of our tissue-engineered skeletal 

muscle when administered at optimal doses and timings. Addition of DEX prior to induction of 

differentiation improved myogenic proliferation of muscle satellite cells, which subsequently led 

to increased myogenic differentiation and myotube fusion. The benefits of the administration of 

DEX during proliferation were further evident during the SMU maturation phase, as characterized 

by formation of advanced sarcomeric structure and increased contractile function observed in 

the fully formed 3-D SMU. The most promising improvements in SMU function were achieved 

with the addition of 10nM DEX on either Day 0 or Day 6. In addition to increased myogenic 

differentiation and myotube fusion, SMUs exposed to this concentration exhibited advanced 

structural development of sarcomeric structure and a five-fold increase in force production. Thus, 

the utilization of dexamethasone in our existing tissue-engineering model presents a blueprint 

for advancing tissue engineering of skeletal muscle. 
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CHAPTER IV 

Quantitative, Label-Free Evaluation of Tissue-Engineered Skeletal Muscle through 

Multiphoton Microscopy 

 

Introduction 

The growing deficit in suitable tissues for patients awaiting organ transplants 

demonstrates the clinical need for engineered tissues as alternative graft sources158,159. Although 

government funding for tissue engineering and regenerative medicine reached $2 billion in 2009, 

only a fraction of potential tissue-engineered products has obtained clinical approval160,161. A 

major obstacle is a lack of non-invasive methods for in vitro validation of construct robustness 

prior to implantation. A reliable, rapid method to assess construct viability is needed that avoids 

destroying or compromising the cell-based device162,163 and yields parameters employable as 

release criteria. Unfortunately, current methods to evaluate engineered tissue viability and 

structural integrity prior to implantation have significant drawbacks, including being invasive, 

destructive, or non-sterile164-166. 

To meet the need for a rigorous, quantitative methodology for evaluating engineered 

tissues in a non-destructive manner, multiphoton microscopy is a promising novel technology. In 

comparison to the gold standards of histology and immunohistochemistry (IHC), multiphoton 

microscopy presents several beneficial aspects163,167. Whereas the combination of histology and 
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IHC can provide spatial information about cells and matrix proteins in a quantitative manner that 

has been accepted by regulatory scientists, multiphoton microscopy adds the ability to acquire 

the same information in real-time without irrevocably damaging the engineered tissue. 

Multiphoton microscopy is a form of non-linear microscopy utilizing laser scanning in an 

extremely thin focal plane. It differs from conventional techniques, such as light microscopy or 

confocal microscopy, by localizing sample excitation to the focal plane alone as multiple photons 

of approximately equal energy are focused onto approximately the same molecular 

component166,168. As a result, multiphoton microscopy is beneficial as a means of imaging in 

thicker tissues, producing minimal photodamage or photobleaching, and avoiding the use of 

labelling reagents. Using such a technology, imaging up to 500 µm into a sample with spatial 

resolution on the order of 1 μm becomes possible166. 

Optical molecular imaging (OMI) techniques utilizing multiphoton microscopy have been 

demonstrated in native skeletal muscle166,169,170 and in select engineered tissues167,168,171, but 

they have not been applied to engineered musculoskeletal tissues. In particular, the following 

OMI approaches have been identified: 1) excitation of endogenous nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide (FAD) fluorescence to evaluate metabolic 

activity, and 2) second harmonic generation (SHG) imaging of myosin in skeletal muscle 

sarcomeres and of collagen in the extracellular matrix to assess structural composition. We 

sought to demonstrate the applicability of these OMI approaches to non-invasively evaluate the 

structure and metabolic activity in our tissue-engineered skeletal muscle. 

 For studying metabolic activity, multiphoton excitation fluorescence targeting NADH and 

FAD was monitored. These two mitochondrial coenzymes are necessary for cell metabolism and 
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oxygen consumption and can act as endogenous cellular fluorophores. The reduced and oxidized 

states of these coenzymes naturally fluoresce in response to multiphoton excitation166,167,172,173. 

Captured images of intracellular concentrations of NADH and FAD in engineered tissues can be 

used to characterize size, morphology, and cellular organization174-176. In addition, NADH and FAD 

signals can be used to calculate a redox ratio (RR) metric, calculated as [FAD] / [NADH] + [FAD]167, 

as an indication of metabolic activity. Intensity ratios like the RR metric measure metabolic 

variations with increased sensitivity by reducing intensity-based artifacts, including signal 

variations due to optical loss, which may be difficult to quantify or control in tissues. Previous 

work with engineered oral mucosa fabricated from primary human cells demonstrated the ability 

of this OMI method to detect significantly different RR values in metabolically stressed constructs 

as compared to controls167. Similar nonlinear OMI and quantitative analytic methods were 

applied in the current study to non-invasively assess the viability of engineered skeletal muscle 

constructs. In both our previous and current studies, label-free OMI of local tissue structure and 

biochemistry characterized morphologic and functional differences between controls and 

metabolically stressed constructs. Unlike traditional histological and functional tissue analyses, 

label-free OMI has the advantage of being non-invasive. 

 To study structural composition at a molecular level, second harmonic generation (SHG) 

is a useful tool. SHG is a multiphoton microscopy technique collecting light from non-linear 

scattering processes, differing slightly from multiphoton fluorescence. SHG depends on the 

interaction of multiphoton excitation with highly polarizable, non-centrosymmetric 

structures166,170. Myosin in skeletal muscle sarcomeres and collagen in ECM are two of the few 

biomolecular structures capable of generating a SHG signal166,168,170,177. Myosin is a filamentous 
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protein with a coiled rod region and a cross-head region responsible for interaction with actin 

filaments169. The SHG signal arises from the coiled rod region, specifically, due to the non-

centrosymmetric structure of this domain. Several researchers have used myosin SHG to examine 

native skeletal muscle, extracting measures of sarcomeric spacing correlated to contractile 

function169,178-180. In one such study, muscle biopsies from healthy patients and those with Pompe 

disease were analyzed by myosin SHG178. Pompe disease is characterized by enlarged, glycogen-

filled lysosomes and autophagic debris in muscle fibers, resulting in widespread sarcomere 

disruption. After acquiring myosin SHG images, subsequent processing of sarcomeric spacing and 

alignment data was used to generate a score indicating the condition of the muscle. These values 

were then used to distinguish between healthy and diseased patients, providing a potential tool 

for assessing muscle health. Similarly, collagen SHG has been used to image the triple helical 

fibrillar collagen structure in a range of tissues177. The SHG signal is sensitive to the fiber structural 

organization and especially to changes due to disorders such as fibrosis and connective tissue 

disorders. In engineered tissues specifically, it has been utilized to assess structural organization 

of engineered heart valves, detecting the difference in collagen deposition by cells cultured under 

normal and supraphysiological conditions181,182.  

While these studies demonstrate the efficacy of the OMI techniques proposed, to date 

most have collected data from fixed samples, not living tissues. Furthermore, the majority  of 

published data examines native tissues, not engineered tissues166,167,169,178,179. Thus, there exists 

a lack of knowledge about label-free, nonlinear OMI in engineered tissue. In this study, I combine 

these two complementary OMI methods to obtain redox ratio values indicative of metabolic 

activity and SHG of structural organization as measures of the overall integrity of our tissue-
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engineered SMUs. Thus, our goal was to use known protocols to alter the structural integrity and 

metabolic activity within our engineered tissues and to determine if these perturbations could 

be monitored using OMI. Additionally, we sought to demonstrate applicability of the reliable 

method previously demonstrated in our work167 for non-destructive and quantitative evaluation 

and characterization to engineered skeletal muscle tissue. Such optical measures could serve as 

reliable release criteria for cell-based tissue-engineered constructs prior to human implantation, 

thereby addressing a critical regulatory need in regenerative medicine.  

 

Methods 

Animal Care 

All animal care procedures followed The Guide for Care and Use of Laboratory Animals137, 

according to a protocol approved by the University Committee for the Use and Care of Animals. 

As described in Chapter II, SMUs were engineered from female Fischer 344 rats.  

Muscle Dissection and Cell Isolation 

To yield a single cell suspension, muscles were processed using the protocol described in 

Chapters II and III. Both soleus muscles were removed, minced using a razor blade, and digested 

in a dissociation solution containing dispase and type IV collagenase. The resulting suspension 

was then filtered, centrifuged, and the cells were resuspended in growth medium for seeding. 

SMU Formation  

  SMUs were engineered as described in Figure 9 and in previous work from our 

laboratory72,140. In this study, 3 variations of this established SMU fabrication protocol were used. 
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The first group (Control) contained SMUs fed every 48 hours as per our published protocol72, 

prior to studying the addition of dexamethasone. The second group (Metabolic Stress) had its 

metabolic activity altered through feeding every 72 hours. The third group (Steroid Supplement) 

of SMUs were fed every 48 hours and supplemented with dexamethasone to generate improved 

myogenesis and structural advancement140. Isolated cells were divided evenly between 

experimental groups, allowing all three to begin with cells that were essentially equivalent. To 

accommodate the constraints of the microscope, custom 60mm polystyrene dishes were used 

for SMU fabrication. After curing PDMS onto each plate, the substrate was removed and punched 

with a 46 mm punch (McMaster-Carr, Elmhurst, IL, cat no. 3418A46). This central portion of this 

layer of PDMS was then replaced in the polystyrene dish, coated with laminin at 1mg/cm2, and 

used for seeding. After initial plating, cells were left unaltered for four days to allow attachment 

and were subsequently fed muscle growth medium (MGM) as per the feeding schedule for each 

experimental group until becoming fully confluent on Day 7 with a network of elongating 

myotubes. At this point, 5 mm tissue-engineered bone-tendon anchors were pinned onto the cell 

monolayers at a spacing of 2.5 cm, and the media was switched to muscle differentiation medium 

(MDM). After a week on MDM, the monolayers delaminated from the plates on Day 14, rolling 

into cylindrical muscle constructs, held at length by the engineered bone anchors.  

Evaluation of SMU Contractile Properties 

To evaluate force production29,72,140, one end of the SMU was attached to a force 

transducer with a 0-5 mN range and a 0.4 μN resolution, and platinum wire electrodes were 

placed along either side of the SMU for field stimulation. Passive tension was measured prior to 

stimulation. Peak tetanic force was determined after subtracting the passive tension baseline in 
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response to a 1 s train of 5 ms pulses at 90 mA and 60 Hz, and data files for force traces were 

recorded and analyzed using LabVIEW 2013. 

Non-linear Optical Molecular Imaging 

OMI was performed on a Leica TCS SP5 microscope equipped with an ultrafast-pulsed 

Ti:sapphire laser (Spectra-Physics, Mountain View, CA, cat. no. “Mai-Tai”). The excitation laser 

source and emitted light were coupled through an inverted microscope with a 25X water 

immersion objective lens (0.95 NA, 2.5 mm working distance) to image developing muscle 

monolayers and 3D SMUs. Prior to measurement on the inverted microscope, the PDMS 

substrate and monolayers were flipped over onto custom measurement dishes with the 

polystyrene bottom removed and replaced with a coverslip. All images were collected in a 

controlled environment at 37 °C with 5% CO2 to mimic normal tissue culture conditions. Before 

each measurement, the excitation power at the specimen surface plane at both excitation 

wavelengths with a 10X objective was calibrated at 20 mW for cell monolayers and 30 mW for 

3D SMUs to limit photobleaching and nonreversible changes in the sample166,183. All imaging was 

thus performed at incident power levels below 30 mW, since such excitation has proven non-

damaging after thousands of scans183. Furthermore, the ability of the engineered tissue to 

assume 3D form and produce contractile force comparable to historical values72,140 suggests that 

OMI analysis did not adversely affect tissue health or function. 

 These monolayers were analyzed on Day 11 of the fabrication protocol. Because this 

procedure is sterile and non-invasive, the same monolayers were evaluated again on Day 16 

following 3D formation and contractile properties measurement. 3D SMUs were transferred onto 
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similar measurement dishes with a coverslip bottom and the addition of stainless steel pins to 

constrain the engineered tissue.  

For imaging of NADH and FAD molecules, two-photon excitation at 715 nm and 900 nm 

was used, respectively. Backscattered fluorescence for NADH and FAD were filtered through a 

band pass (440-490 nm for NADH and 500-550 nm for FAD) prior to collection with non-

descanned photomultiplier tubes (PMT) to increase collection efficiency. High-resolution images 

(1024 x 1024 pixels) were collected at a 200 Hz line-scanning rate, with a line average of eight to 

reduce noise. This line average value indicates each line of pixels is scanned eight times, with the 

resulting intensities combined and displayed as an average. The PMT gain was maintained at its 

maximum to keep measurements consistent between images and samples.  

For second harmonic generation imaging, 860 nm excitation was used to generate a 

myosin SHG signal169,170. To isolate this SHG signal, a 425-435 nm filter was placed in front of the 

PMT. For the collagen SHG signal, 900 nm excitation and a 395-405 nm filter was used169,170. Since 

SHG is a scattering process, its intensity is highly dependent on direction. In relatively thicker 

samples, such as the 3D SMU, back-scattered myosin and collagen SHG signals dominate, and a 

PMT on the same side of the sample as the excitation was employed. For the thinner monolayers, 

forward-scattered SHG signals were captured with a PMT on the opposite side of the sample 

form the excitation. As with metabolic activity imaging, high-resolution images (1024 x 1024 

pixels) were collected at a 200 Hz line-scanning rate with a line average of eight to reduce noise. 

The PMT gain was set at maximum for every measurement. 
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From each sample, 6 images were captured by sequentially scanning for myosin SHG, 

collagen SHG, FAD, and NADH. These sample sizes were chosen based on previous work using 

OMI to detect differences in control and stressed engineered oral mucosa167.  

 

Redox Ratio Calculation 

For analysis of metabolic activity, the raw fluorescence images of NADH and FAD were 

inputs into ImageJ software (Figure 20). The collagen SHG signal was also incorporated into this 

analysis. These three images were then processed with a 3 x 3 median filter to increase image 

contrast. A threshold value, set as the average fluorescence intensity signal from the whole 

image, created a binary mask to reduce background fluorescence signals. This binary mask 

 

Figure 20. OMI processing schematic. Raw images were analyzed in ImageJ. Pre-processing 

involved noise reduction with a 3 x 3 median filter and subtraction of background fluorescence 

signals. For the metabolic indicators, NADH and FAD, the collagen SHG signal was subtracted 

from each to remove collagen regions. For the structural indicators, myosin and collagen, each 

SHG signal was subtracted from the other to remove overlapping regions. 
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filtered each raw NADH and FAD fluorescence image. In the collagen SHG image, pixels having 

intensity greater than the average SHG signals from the whole image were subsequently 

subtracted from the corresponding NADH and FAD fluorescence images. Following removal of 

background noise and collagen signals, the processed NADH and FAD images were then used to 

derive a redox ratio (RR) at each image pixel as [FAD] / ([NADH] + [FAD]). Ultimately, the average 

RR across the entire image was used to quantify local intracellular metabolic activity, providing a 

quantitative parameter with minimized background artifacts184-187.  

Structure Ratio Calculation 

Myosin and collagen SHG signals were analyzed to obtain a structure ratio metric 

indicative of engineered tissue structural composition (Figure 20). Each pair of images were first 

processed with a 3 x 3 median filter in ImageJ to increase image contrast. A binary mask, based 

on a threshold at the average image intensity, was used to reduce background. Next, pixels 

having intensity greater than the average collagen SHG signal from the whole image were 

subsequently subtracted from the corresponding myosin SHG imaging, and vice versa. After 

removing noise and overlapping SHG signals, an average structure ratio was calculated for each 

image as [Myosin] / ([Myosin] + [Collagen]). 

Immunocytochemical and Immunohistochemical Analysis 

To validate the NADH signal, MitoTracker® (Fisher, cat. no. M-7512), an exogenous 

fluorescence dye that only fluoresces within mitochondria, was used to stain developing muscle 

monolayers. A 50 nM MitoTracker® solution was added to MDM on Day 11 of SMU fabrication 

and incubated for 30 minutes. Fresh medium was then resupplied, and samples were imaged for 
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colocalized fluorescence from both MitoTracker® and NADH. Additionally, media containing a 

metabolic inhibitor, 4 mM KCN (Sigma, cat. no. 60178), or an uncoupler, 0.5 mM FCCP (Sigma, 

cat. no. C2920), were employed to vary cellular metabolism during imaging. Variations in both 

NADH and FAD signals were monitored for 10 min, and KCN or FCCP was administered 

immediately after acquiring the first image. 

To confirm the accuracy of myosin and collagen SHG signals, following force testing and 

OMI evaluation, 3D SMUs were fixed in 20°C methanol for 10 min and set aside for IHC. Samples 

were washed for 10 min in 0.1% Triton X-100 (Sigma, cat. no. T8787) in DPBS (PBST) and blocked 

with PBST containing 3% Bovine Serum Albumin (PBST-S; Sigma, cat. no. A2153) at room 

temperature. Samples were then incubated overnight at 4°C with primary antibodies diluted in 

PBST-S. Immunofluorescent staining was performed using the following primary antibodies: 

mouse anti-myosin heavy chain (1:100 dilution; DSHB, cat. no. MF20) and rabbit anti-collagen I 

(1:200 dilution; Biorbyt, San Francisco, CA, cat. no. orb312178). Following 3 PBST washes for 5 

min each, samples were incubated in a 1:500 dilution of Alexa Fluor secondary antibodies (Life 

Technologies) for 3 hours at room temperature. Following 3 washes in PBST for 15 min each, 

samples were preserved in Prolong Gold with DAPI (Life Technologies, cat. no. P36935) and cover 

slipped. Samples were then examined for colocalization of the antibody fluorescence and SHG 

signals.  

Statistical Analysis 

All values are presented as mean ± standard error. Measurements of significant 

differences between means were performed using GraphPad software. Means were compared 

using either a Student’s t-test or one-way ANOVA with Tukey post-hoc comparisons. Correlation 
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between experimentally measured OMI metrics and contractile force values was assessed based 

on the Pearson correlation coefficient, r. Differences were considered significant at p<0.05. 

 

Results 

Metabolic Activity in Muscle Monolayers and 3D SMUs 

The multiphoton fluorescence signal for NADH was validated using cells labelled with 

MitoTracker®. Colocalization of the NADH and MitoTracker® signals confirmed the presence of 

NADH in cell mitochondria as expected (Figure 21). Treatment with the metabolic inhibitor, KCN, 

and the metabolic uncoupler, FCCP, also produced the expected variations in NADH and FAD 

(Figure 21). Specifically, KCN inhibits complex IV of the electron transport chain, increasing NADH 

and decreasing FAD concentrations. Following KCN addition, the normalized NADH intensity for 

treated cells increased approximately 3-fold over the 10 minutes of observation, while the FAD 

intensity decreased by half. On the other hand, FCCP uncouples electron transport and drives the 

metabolic pathway to oxidation, decreasing NADH and increasing FAD concentrations. In living 

cells, an initial increase in FAD intensity was observed 2 minutes after FCCP treatment, before 

values returned to baseline levels. The normalized NADH intensity decreased approximately 4-

fold in response to addition of FCCP.  

  After confirming the sensitivity of the NADH and FAD signals to variations in metabolic 

activity, images from the control and metabolically stressed tissues were analyzed to obtain RR 

values. As mentioned previously, the redox ratio, defined as [FAD]/([NADH] + [FAD])167, is a 

quantitative metric to compare relative metabolic rates of measured samples. Because a lower 

RR indicates a higher cellular metabolic rate, with relatively lower FAD fluorescence and higher 
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NADH fluorescence, values in this study are presented as the inverse RR. As a result, higher 

inverse RR values indicate greater metabolic activity.  

            

This inverse RR metric was used to assess cell metabolism in engineered skeletal muscle 

monolayers and in 3D SMUs. Representative raw fluorescence images from which RR metrics 

were extracted are shown in Figure 22. In monolayer form, control plates (n = 9) exhibited 

significantly greater (p = 0.02) inverse RR values (0.66 ± 0.04) than metabolically stressed cells 

(0.55 ± 0.03). Similarly, after formation of a 3D SMU, images of control tissues (n = 9) yielded 

average inverse RR values of 0.46 ± 0.02, which were significantly greater than 0.40 ± 0.02 in the 

 
Figure 21. OMI signal validation. (A) Colocalization of the NADH and MitoTracker® signals 

confirmed the source of the OMI NADH signal. Sections of 3D SMUs visualized using both IHC and 

OMI for (B) myosin SHG and (C) collagen SHG validated the source of the myosin and collagen 

SHG signals. Treatment with (D) the metabolic inhibitor, KCN, and (E) the metabolic uncoupler, 

FCCP, produced the expected variations in NADH and FAD. Following KCN addition (indicated by 

the red arrow), OMI observed increasing NADH and decreasing FAD concentrations. FCCP led to 

decreasing NADH concentrations and FAD concentrations that increased initially before returning 

to baseline levels. 
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metabolic stress group (p = 0.04). When comparing all values for metabolic activity by imaging 

time point, a significant decrease (p < 0.01) in inverse RR value was observed in 3D SMUs (0.46 ± 

0.02) relative to the cells in monolayer (0.62 ± 0.08).   

 

  

 
Figure 22. Endogenous NADH and FAD fluorescence as indicators of metabolic activity. NADH and FAD are 

mitochondrial coenzymes that function in cell metabolism and oxygen consumption. NADH fluorescence was 

excited at 715 nm, and emitted light was filtered in a band from 400-475 nm. FAD fluorescence was excited at 900 

nm and was captured from 500-600 nm. Representative images of these signals are shown above for engineered 

tissues (A) in monolayer form and (C) in SMU form. For each engineered tissue, n=6 images were recorded. 

Following processing of captured images as described in Figure 20, a redox ratio metric was calculated as [FAD] / 

([NADH] + [FAD]). The calculated redox ratios are summarized graphically for monolayers in (B) and for 3D SMUs 

in (D). For engineered tissues in monolayer form, metabolic stress significantly increased (p = 0.02) the redox ratio 

to 0.45 ± 0.06, as compared to the average control redox ratio of 0.34 ± 0.02. After formation of a 3D SMU, redox 

ratios in both groups increased. Again, the average redox ratio in the metabolic stress group, 0.60 ± 0.04, was 

significantly greater (p = 0.04) than that of the control group, 0.54 ± 0.02. Differences are considered significant at 

p < 0.05. Values are presented as Mean ± Standard Error, and * indicates significant difference from control. 
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Structural Organization in Monolayers and 3D SMUs 

 As with the metabolic fluorescence signals, engineered tissues were simultaneously 

analyzed with both OMI and with IHC to validate the source of the myosin and collagen SHG 

signals. Following cryosectioning and staining with fluorescent antibodies for either myosin heavy 

chain or collagen type I, samples of 3D SMUs were imaged and examined for colocalization of the 

SHG signal with the antibody fluorescence (Figure 21).  

Furthermore, the myosin SHG signal in fixed samples of native and engineered skeletal 

muscle was examined for the presence of advanced sarcomeric organization. Without any 

exogenous labelling reagent, both native and engineered myofibers exhibited a dense network 

of parallel sarcomeres (Figures 23A & B). The average sarcomere length measured in these 

images (2.5 ± 0.4 μm in native, 2.6 ± 0.2 μm) matched the historical range from 2.4 to 2.9 μm.  

Additionally, in living engineered SMUs, sarcomeric organization was evident during collection of 

the myosin SHG signal (Figure 23C).   

 

 After confirming the accuracy of the myosin and collagen SHG signals, images from the 

control and steroid supplemented tissues were analyzed to obtain structure ratio (SR) values 

 
Figure 23. Myosin SHG in native and engineered skeletal muscle. Light scattered from myosin filaments was 

captured from fixed samples of (A) a native muscle section and (B) an engineered SMU. From such images (n = 

12), the average sarcomere length measured in native muscle was 2.5 ± 0.4 μm. This value was statistically 

equivalent (p = 0.005) to the average sarcomere length of 2.6 ± 0.2 μm measured in engineered skeletal muscle. 

The average sarcomere length in rat skeletal muscle varies from 2.4 to 2.9 μm, and the values measured in 

engineered muscle fall within this range. (C) In living engineering SMUs, sarcomeric structure was evident from the 

myosin SHG signal. This OMI technique has not been demonstrated previously in living engineered tissue. 
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modelled after the RR metric in the previous section. The structure ratio was defined as [Myosin] 

/ ([Myosin] + [Collagen]) to create a quantitative metric for comparing the relative structural 

composition of these two key proteins. Representative raw images of the myosin and collagen 

SHG signals are shown in Figure 24. From these images, SR values were calculated and used to 

compare experimental groups.  

 

 
Figure 24. Myosin and collagen SHG as indicators of structural organization. SHG signals from myosin and 

collagen were collected in response to excitation at 860 nm and 920 nm, respectively. Due to the nature of SHG, 

scattered light was captured at half the excitation wavelength, 425-435 nm for myosin and 455-465 nm for collagen. 

Representative images of the two are pictured in (A) for engineered tissues in monolayer form and in (C) as 3D 

SMUs. n = 6 images were recorded for each sample. Following image processing summarized in Figure 20, a 

structure ratio was calculated as the myosin density relative to the combined myosin and collagen density. These 

ratios for monolayers are summarized in (B) and for 3D SMUs in (D). In monolayer form, steroid supplementation 

significantly increased (p < 0.01) the structure ratio to 0.85 ± 0.03, as compared to control at 0.57 ± 0.04. Similarly, 

the average ratio with steroid supplement, 0.79 ± 0.03, was significantly greater (p < 0.01) than that of the control 

SMUs, 0.65 ± 0.02. Differences are considered significant at p < 0.05. * indicates significant difference from control. 
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Steroid supplemented monolayers (n = 9) yielded significantly greater (p < 0.01) SR values 

(0.85 ± 0.03) than control plates (0.57 ± 0.04). In 3D SMU form, steroid supplemented tissues (n 

= 9) exhibited average inverse SR values of 0.79 ± 0.02, which were significantly greater (p < 0.01) 

than the average of 0.65 ± 0.03 in controls. When comparing structural composition values by 

imaging time point, no significant difference (p = 0.70) in SR value was observed between 

monolayers (0.65 ± 0.03) and 3D SMUs (0.67 ± 0.02). 

Contractile Properties of 3D SMUs 

Overall function of engineered SMUs was assessed by measuring passive tension and 

contractile force production on Day 15, following monolayer delamination and capture in 3D 

form. As shown in Figure 25, no significant differences in passive force generation were observed 

among the three groups. Control SMUs (n = 9) exhibited average passive tensions of 2370 ± 785 

µN, slightly higher (p = 0.208) than the average tension of 1260 ± 333 µN in steroid supplemented 

SMUs, and slightly lower (p = 0.554) than the average tension of 2970 ± 591 µN in metabolically 

stressed SMUs. The peak isometric tetanic force generated in response to electrical stimulation 

was also similar in control SMUs (67 ± 22 µN) and metabolically stressed SMUs (45 ± 12 µN, p = 

0.391). SMUs in the steroid supplement group exhibited active forces of 287 ± 82 µN, significantly 

greater than control forces (p = 0.028).   
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Correlation between OMI Metrics and Functional Measures 

 To evaluate the potential of the OMI metrics for evaluation of engineered skeletal muscle 

tissue, redox ratio and structure ratio values from samples were compared to the current gold 

standard for functional evaluation, contractile force production. A weak, non-significant 

correlation (Pearson r = 0.26, p = 0.19) was observed between inverse RR and force production 

in 3D SMUs (Figure 25). On the other hand, a significant correlation (p < 0.01) was measured 

 
Figure 25. Comparison of SMU contractile properties and OMI measures. The 

ability of 3D SMUs to generate force was used to measure tissue function. (A) Passive 

force was measured as resting tension generated by the engineered tissue, and (B) 

active force was measured in response to tetanic electrical stimulation after 

subtracting resting tension. Steroid supplementation significantly increased active 

force generation, 287 ± 82 µN, as compared to control, 67 ± 22 µN (p = 0.028). When 

comparing functional and OMI measures, (C) correlation was not evident between 

metabolic activity and force, and (D) a clear correlation was present between overall 

myosin density and active force generation. Differences are considered significant at 

p < 0.05. Values are presented as Mean ± Standard Error, and * indicates significant 

difference from control.   
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between structure ratio and force production, with a Pearson correlation coefficient of 0.62. 

Furthermore, comparing OMI measures of myosin density alone to force production values 

demonstrated the strongest correlation (r = 0.93, p < 0.01). 

 

Discussion 

This work demonstrates the potential for using label-free optical molecular imaging to 

characterize and evaluate tissue-engineered skeletal muscle constructs. In both monolayers and 

3D SMUs, the novel OMI measures successfully evaluated metabolic activity and structural 

organization. Previous work with tissue-engineered SMUs has determined that generation of 

contractile force greater than 100 μN serves as suitable threshold with which to judge constructs 

viable for implantation29,72,127,145. As a result, the optical approaches described in this work were 

first validated in tissue-engineered skeletal muscle and subsequently compared to functional 

evaluation of peak tetanic force production.  

 The potential of label-free OMI for evaluation of tissue viability has been demonstrated 

in biopsies from native skeletal muscle169,178,180 and in engineered oral mucosa167, and the ability 

to use such methods for a diverse range of engineered tissues holds great promise for advancing 

the field as a whole. In this study, cell metabolic activity, primarily contained within fluorescence 

signals from metabolic coenzymes NADH and FAD, was obtained by optically imaging thin cellular 

layers. Because OMI was performed in a non-invasive manner without the need for preservation 

or exogenous labelling reagents, metabolic activities were evaluated at multiple time points 

without adversely affecting the tissue engineering process. Using the redox ratio metric extracted 

from these signals, we successfully differentiated control and metabolically stressed engineered 
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tissues. A non-significant correlation relating increased metabolic activity to increased force 

production was observed, suggesting OMI measures of metabolism alone may not be sufficient 

to evaluate SMU suitability for implantation. Overall, decreased metabolic activity was detected 

through the RR metric in both metabolically stressed monolayers and 3D SMUs. 

 Additionally, OMI captured essential information describing structural composition 

through myosin and collagen SHG signals. The myosin SHG signal, in particular, shows great 

promise for the evaluation of organized sarcomeric structure in tissue-engineered skeletal 

muscle. In this study, I captured high-resolution images of myosin SHG in fixed native and 

engineered tissues and extracted sarcomere lengths indicative of tissue structural maturity. 

Furthermore, we demonstrated novel applicability of myosin SHG by imaging sarcomeric 

structure in living engineered tissue. Utilizing the ratio of myosin to collagen SHG signals, I was 

able to quantify structural development in our engineering tissues. The efficacy of the structure 

ratio metric was then demonstrated by distinguishing between dexamethasone-supplemented 

and control samples. Using OMI we were able to show that the addition of dexamethasone 

increased the relative myosin content, quantified by the structure ratio metric, in both 

developing muscle monolayers and 3D SMUs relative to control tissues. Furthermore, a relation 

between the structural OMI measures and force production was evident. As would be expected 

based on skeletal muscle contractile mechanics, increased myosin density observed through OMI 

was significantly correlated to increased force production. Ultimately, this positive correlation 

suggests OMI measures of SMU structure could potentially serve as an accurate predictor of 

successful implantation and tissue regeneration. 
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Conclusions 

In this work, we demonstrated the potential of non-invasive optical techniques to provide 

manufacturing release criteria that correlate to functional measures of engineered skeletal 

muscle. The optical methods described here were previously used for quality control of tissue-

engineered oral mucosa167, and this use in an engineered skeletal muscle in this work suggests 

applicability for a variety of other tissues. Because nonlinear OMI has the ability to optically 

penetrate several hundred microns into tissues, this approach should be suitable for other 

engineered cell-based devices. Additionally, this approach could be employed to evaluate the 

integration and maturation of implanted tissues in vivo during the regeneration process, whether 

through a microendoscope and or an imaging window169,172. This work illustrates how OMI 

techniques could benefit the fabrication of tissue-engineered products by enabling non-

destructive analysis of engineered tissues in real-time. Using this approach, reliable tools for 

providing quantitative measures of engineered tissue viability can enable selection of the 

healthiest engineered tissues for implantation, thereby improving therapeutic outcomes and 

enhancing patient care. 
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CHAPTER V 

Conclusions 

This work sought to develop methods for improving contractile force production in tissue-

engineered skeletal muscle. Although engineered skeletal muscle tissues hold great potential as 

a graft source for repairing muscle damage, a significant barrier to clinical translation is the ability 

to fabricate tissue with an adult phenotype in vitro160,161. Rapid maturation towards the adult 

phenotype does occur with implantation in vivo72, and it is hypothesized that improving the 

structure and function of engineered SMUs prior to implantation would unlock the maximum 

regenerative potential of these engineered tissues. 

The first aim of this dissertation demonstrated how microfluidic separation utilizing a 

Labyrinth device was able to purify satellite cells from the heterogeneous population of isolated 

cells. From initial optimization experiments, sorting at a flow rate of 1800 μL/min yielded the 

greatest separation of fluorescently labelled mouse cells. Rat cells isolated according to the 

established SMU fabrication protocol and sorted by the Labyrinth subsequently demonstrated 

significant enrichment of the myogenic population, increased myogenic proliferation and 

differentiation, and improved SMU function. Thus, microfluidic sorting was shown to efficiently 

separate satellite cells from fibroblasts while ultimately improving the force production in 3D 

SMUs engineered from the purified population.  
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In the second aim, several experimental doses of dexamethasone and timing of 

administration were studied to maximize the beneficial effects of this glucocorticosteroid on 

myogenic differentiation140. In developing muscle monolayers, treatment with 10 and 25nM Dex 

significantly increased myogenic proliferation, early and late differentiation, and structural 

maturation. Ultimately, addition of 10nM DEX beginning on Day 0 or Day 6 led to a five-fold 

increase in force production in 3D SMUs. From these results, it was clear that dexamethasone 

supplementation could be employed to enhance structure and function of engineered skeletal 

muscle tissues.  

The third aim developed optical molecular imaging (OMI) methods to non-invasively 

evaluate engineered SMUs, potentially removing the need for invasive, non-sterile functional 

measures prior to use for repair of volumetric muscle loss. In this study, redox ratios indicative 

of tissue metabolic activity extracted from NADH and FAD fluorescence successfully distinguished 

control and metabolically-stressed SMUs. Similarly, the OMI ratio metric comparing myosin and 

collagen SHG differentiated control SMUs from those supplemented with dexamethasone. 

Among these OMI measures, myosin density correlated to SMU force production, suggesting this 

technique can predict SMU force production and could potentially replace this functional 

measure. Overall, this study demonstrated the potential of OMI for evaluating metabolism and 

structure in engineered SMUs without the need for addition of exogenous labelling reagents or 

destructive sample preparation.  

As intended in the initial experimental designs, the three studies demonstrated means 

for either increasing force production or removing evaluation methods that potentially damage 

and decrease force production in tissue-engineered skeletal muscle in vitro. The applicability of 
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these novel methods is evident from incorporation of microfluidic sorting with the Labyrinth and 

addition of 10nM dexamethasone into our current SMU fabrication protocol. With additional 

development and refinement, it is expected that the OMI techniques developed in this work will 

be incorporated as well. With consistent improvements in force production in vitro through the 

methods established in this dissertation, tissue-engineered skeletal muscle is closer to utility as 

a graft for repairing VML. This work is thus essential for advancing our tissue engineering model 

towards clinical translation. It is hoped that these and similar techniques can be applied to 

advance the tissue engineering and regenerative medicine field as a whole. 

To continue advancing our engineered skeletal muscle, several future directions will play 

an essential role. In addition to the methods for promoting advanced in vitro myogenesis 

described in this dissertation, researchers have applied mechanical stimuli seeking to further 

recreate the in vivo environment. These systems can range from aligned, cylindrical microwells 

or micropatterned substrates designed to promote alignment and fusion into myotubes71,188,189 

to dynamic bioreactors for providing cyclic strain through either fluid flow or mechanical 

stretch30,73. Maximizing in vitro advancement of engineered tissues by utilizing both these 

mechanical stimuli and the techniques developed in my research have the potential to decrease 

even further the gap between our SMUs and native skeletal muscle.  

The ultimate success of these engineered SMUs will depend on their ability to regenerate 

damaged muscle. Thus, future studies will fabricate engineered skeletal muscle characterized by 

increased myogenesis and improved in vitro force production for implantation into a model of 

volumetric muscle loss72. It is expected that in vitro phenotypic advancement will translate to 
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improved in vivo regeneration, and these implantation studies will reveal the degree to which 

this hypothesis is applicable.  

Finally, scaling up of the engineered skeletal muscle from a rat model to a large animal 

model will be essential for achieving clinical relevance. Although the need for improved 

vascularization of these larger engineered tissues will prevent a significant challenge, previous 

work in our laboratory in scaling up tissue-engineered bone and ligament constructs will provide 

a model for this future research139,190. Additionally, recent studies have demonstrated potential 

methods for promoting vascularization of engineered skeletal muscle to maintain in vitro viability 

and metabolic activity and to promote anastomosis with native vasculature in vivo following 

implantation26,154. An additional challenge to the scaling up of our engineered SMUs is the limited 

proliferative capacity of muscle satellite cells. Isolated satellite cells can only be expanded to a 

limited extent, because myogenic potential rapidly decreases after a period of two weeks in 

vitro33,80,92. Developing methods to maintain the stem cell capacity for self-renewal in satellite 

cells will be essential as we seek to expand these cells for engineering skeletal muscle tissues 

suitable for repair of large-scale VML defects. With these goals and challenges in mind, it is 

exciting to imagine the potential for tissue-engineered skeletal muscle in the years to come. 
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