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ABSTRACT

The strong dependence between samples in large spatial data sets is the primary challenge

of designing statistically consistent and computationally efficient inference algorithms.

Gaussian processes provide a powerful tool for modelling the spatial dependence patterns

and play a crucial role in numerous tractable inference algorithms.

This thesis addresses two important problems on high-dimensional Gaussian spatial

processes. We first focus on scalable estimation of covariance parameters. Evaluating the

log-likelihood function of Gaussian process data can be computationally intractable, par-

ticularly for large and irregularly spaced observations. We build a broad family of surrogate

loss functions based on local moment-matching and a block diagonal approximation of the

covariance matrix. This class of algorithms provides a versatile balance between the es-

timation accuracy and the computational cost. The fixed domain asymptotic behaviour of

the proposed method is thoroughly studied for the isotropic Matern processes observed on

a multi-dimensional irregular lattice.

In the second part, the main emphasis is on minimax optimal detection of abrupt

changes in the mean of a one-dimensional Gaussian process. Our main contribution is

to show that in the fixed-domain asymptotic regime, neglecting the dependence structures

leads to suboptimal performance. We first show that plugging the estimated covariance

matrix into the Generalized Likelihood Ratio Test (GLRT) provides a test with near min-

imax asymptotic optimality. On the other hand, the suboptimality of the cumulative sum

test, which ignores the dependence structure of data, is substantiated for a vast range of

covariance functions.

x



CHAPTER 1

Introduction

With the advent of data mining, spatial-temporal data are more ubiquitous and richer
ever than before. Substantial amount of high-dimensional spatial-temporal are continu-
ously collected in environmental, biological and social science. The increasing availability
of such large data sets bring forward new challenges and opportunities for researchers in
wide variety of disciplines. Particularly in the past two decades, there has been volumi-
nous research in the data science community on designing efficient inference algorithms
for massive spatial-temporal datasets.

The field of spatial statistics encapsulates a broad array of methodology for analyzing
spatial-temporal processes. The first law of geography states that “everything is related
to everything else but nearby things are more related than distant things”. In other words
the independence assumption, which provides a very convenient framework for developing
tractable inference algorithms and is crucial for the theoretical understanding of large data
sets, is overly strong and unrealistic in the field of spatial statistics Consequently more di-
verse range of statistical, probabilistic and numerical tools are required for modelling the
dependence structure and developing tractable estimation, detection and prediction algo-
rithms for spatial-temporal data.

Using Gaussian Process (GP) for spatial modelling has became a common practice in
the geostatistical literature (see e.g., [Cre15,GDFG10]). The versatile correlation structure
in the GP models can conveniently capture a wide range of spatial behaviours. Furthermore
using GPs for modelling dependencies in large data sets is essential for developing compu-
tationally tractable inference algorithms. The covariance function is typically specified up
to a finite number of parameters, to guarantee the positive definiteness of its estimate.

For designing efficient inference algorithms for massive spatial GP, one is confronted
with multiple modelling, computational and theoretical challenges, which we briefly men-
tion here.

(a) Strong dependence between the near by observations requires to be intelligently in-
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corporated into the inference procedure. In other words neglecting the dependence
structure of the process leads to suboptimal result.

(b) From the computational perspective, the covariance matrix of the observations is com-
monly near ill-conditioned, particularly for large sample size. AS a result, an accurate
evaluation of the likelihood function, which is pivotal for many estimation and detec-
tion algorithms, is almost infeasible.

(c) Due to the absence of independence assumption, the asymptotic analysis is typically
far more difficult and requires numerous statistical and probabilistic tools.

For conducting a thorough asymptotic analysis of inference algorithms for spatial and
temporal GPs , one is confronted with two fundamentally different regimes, the increasing

domain asymptotics and fixed domain (infill) asymptotics. The former arises naturally in
time series analysis, which is distinguished by the constraint that the distance between con-
secutive sampling time points are bounded away from zero. Fixed domain asymptotics, one
the other hand, is a more suitable setting when the index set of sampling points is bounded,
so that the observations get denser in a bounded region as the sample size increases. This is
the case for spatially distributed data [Ste12], where the domain of the index set is typically
of one, two or three dimensions. This approach is also appropriate in the context of change
detection for non-stationary processes [Ada98, D+97, LS08].

1.1 Preliminaries

This section provides the necessary background on GPs for easier understanding the
subsequent chapters on covariance estimation and change-point detection. We mainly focus
on weakly stationary processes and the associated spectral theory. Let D be an arbitrary
subset of Rd. Consider a stochastic process G := {G (s) : s ∈D} on D (collection of random
variables indexed by D). G is called a GP on D, if for any finite sub-collection {s1, . . . , sn} ⊂

D, the random column vector [G (s1) , . . . ,G (sn)]> has a multivariate Gaussian distribution.

Definition 1.1 (The mean and covariance functions). The real valued functions m : D 7→R
and K : D×D 7→ R respectively denote the mean and covariance functions of G, if for any
finite subset {s1, . . . , sn} ⊂D,

G (s1)
...

G (sn)

 = N




m (s1)
...

m (sn)

 ,


K (s1, s1) . . . K (s1, sn)
... . . . ...

K (sn, s1) . . . K (sn, sn)


 .
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The mean and covariance function are aptly named as for any pair of points s, s′ ∈D,

m (s) = EG (s) , K
(
s, s′

)
= E

[
(G (s)−m (s))

(
G

(
s′
)
−m

(
s′
))]
.

The covariance function must trivially satisfy the following properties:

(a) (Boundedness) K (s, s) should be bounded for any s ∈D, i.e. varG (s) = K (s, s) <∞.

(b) (Symmetry) For any s, s′ ∈D, K (s, s′) = K (s′, s).

(c) (Positive semi-definiteness) The following inequality holds for any finite n, an arbi-
trary set of real coefficients {c1, . . . ,cn} and any {s1, . . . , sn} ⊂D.

var

 n∑
i=1

ciG (si)

 =

n∑
i, j=1

cic jK
(
si, s j

)
≥ 0.

As a common simplifying assumption on the stochastic process, we assume that the
probabilistic structure of G looks similar in the different regions of D. The following
Definition rigorously expresses such assumption.

Definition 1.2. G is said to be strictly stationary stochastic process on D if for all finite n,
all real numbers t1, . . . , tn, and arbitrary points t, s1, . . . , sn ∈D

P (G (s1 + t) ≤ t1, . . . ,G (sn + t) ≤ tn) = P (G (s1) ≤ t1, . . . ,G (sn) ≤ tn) .

Simply put, a strictly stationary process is invariant to translations in the input space.

The strict stationarity is very restrictive and almost infeasible to validate in practical sce-
narios. A weaker form of stationarity typically employed in statistics and machine learning
is known as the weak stationarity, which is defined in terms of the first two moments of G.
In particular, G is called weakly stationary if

• There exists a scalar m0 ∈ R such that m (s) = m0 for any s ∈ D. Namely the mean
function is constant on D.

• The covariance function K (s, s′) depend only on s′− s. In other words, there is a sym-
metric, bounded and positive semi-definite function K such that cov

[
G (s) ,G (s′)

]
=

K (s′− s).

Note that the notions of weak and strict stationarity are identical for GPs. Thus we solely
focus on weakly stationary (or in short stationary) processes in this thesis. We conclude
this section by introducing a commonly used classes of stationary covariance functions.
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Definition 1.3 (Geometric anisotropic covariance functions). Let A ∈ Rd be a symmetric
positive definite matrix. The real-valued stationary process G is called geometric anisotropic
on D if the covariance function K satisfies

cov
[
G (s) ,G

(
s′
)]

= K
(√

(s′− s)>A (s′− s)
)
,

for any pair of points s, s′ ∈ D. Let B = A1/2 stands for the symmetric square-root of A.
Then the covariance function can be equivalently rewritten as

cov
[
G (s) ,G

(
s′
)]

= K
(∥∥∥B

(
s′− s

)∥∥∥
`2

)
, ∀ s, s′ ∈D.

1.1.1 Spectral representation of the covariance function

Spectral methods are powerful tools for studying spatial processes. Expressing an inte-
gral representation of the covariance function K lies at the heart of the spectral analysis of
GPs. Consider a non-negative measure F on Rd and construct the complex-valued function
K : Rd 7→ C by

K (x) =

∫
Rd

exp
(

jω>x
)
F (dω) , ∀ x ∈ Rd. (1.1)

Here j =
√
−1 stands for the imaginary unit. It is easy to see that the function K defined

in Eq. (1.1) is positive semi-definite. In other words, K represents the covariance function
of a complex-valued stochastic process. The classical Bochner’s Theorem ( [Ste12], p.
24) guarantees the existence of such an integral representation similar to Eq. (1.1) for any
covariance function K.

Theorem 1.1 (Bochner’s Theorem). A complex-valued function K on Rd is the covariance
function of a stationary mean-square continuous complex-valued stochastic process G on
Rd if and only if it can be expressed as in Eq. (1.1) with F a non-negative finite measure F.

F is typically called the associated spectral measure for G. If F has a well-defined
density K̂ (with respect to the Lebesgue measure), the spectral representation of G can be
rewritten as

K (x) =

∫
Rd

exp
(

jω>x
)
K̂ (ω) dω, ∀ x ∈ Rd.

In the subsequent chapters, K̂ is called the spectral density of G. The duality property of
the Fourier transform gives a spectral representation for K̂ in terms of K. Specifically,

K̂ (ω) = (2π)−d
∫
Rd

exp
(
− jω>x

)
K (x) dx, ∀ ω ∈ Rd.
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1.1.2 Mean-square differentiability

The covariance function of a stationary GP can indirectly characterize the mean-square
properties of the process. Let G be a zero mean GP on D ⊂ Rd. Then G is mean-square
continuous at s ∈D if

lim
t→s

var [G (t)−G (s)] = 2 lim
t→s

[K (0)−K (t − s)] = 0. (1.2)

According to Eq. (1.2), a stationary process is mean-square continuous at any s ∈D if and
only if K is continuous at the origin.

Now we define the mean-square derivative of a process in D. We use ep, p = 1, . . . ,d to
denote the unit vector in the pth direction. Furthermore, for any mean-square continuous
stochastic process G and an arbitrary scalar δ define

Gp,δ (s) =
G

(
s +δep

)
−G (s)

δ
, p = 1, . . . ,d.

G is called a mean-square differentiable at s if for any real-valued vanishing sequence δn,
the d-dimensional random vector

[
G1,δn (s) , . . . ,Gd,δn (s)

]> converges in L2 to a limit inde-
pendent of δn. The limit, which is represented by G(1) (s) :=

[
G(1)

1 (s) , . . . ,G(1)
d (s)

]>
, refers to

the mean-square derivative of G at s. The covariance matrix of is
[
G1,δn (s) , . . . ,Gd,δn (s)

]>
can be easily obtained for stationary processes. Particularly as n→∞

cov
{[

G1,δn (s) , . . . ,Gd,δn (s)
]}
→

[
−

∂2K
∂xp∂xq

(0)
]d

p,q=1
.

In other words, G is mean-square differentiable at any point s ∈ D, when ∇2K (0) is well-
defined. In this case cov

(
G(1)

1 (s)
)

= −∇2K (0). In other words, G is mean-square differen-
tiable whenever K is twice differentiable at the origin.

In summary the mean-square smoothness of the sample paths of stationary processes
is closely related to the smoothness of the covariance function at 0. It is known that the
near origin smoothness behaviour of K is reflected in the tail behaviour of the spectral
density K̂. We refer the interested reader to Abelian and Tauberian Theorems (see e.g.,
[Fel68, BGT87]) for further details.
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1.2 Contributions of This Thesis

This thesis addresses two specific aspects of large GP data. First, we focus on a
class of computationally efficient covariance estimation algorithms for high-dimensional
stationary GPs. Designing Minimax optimal change-point detection procedure for an one-
dimensional GP observed in a bounded domain is the second problem covered in this thesis.

In Chapter 2 we examine the increasing domain asymptotic properties of a compu-
tation and memory efficient covariance estimation algorithm introduced in Anitescu et
al. [ACS16] (which will be called the inversion-free). This approach in is based upon
maximizing a loss function which is independent of the precision matrix of the observa-
tions and so can be less challenging to evaluate than the Maximum Likelihood Estima-
tor (MLE), particularly for irregularly spaced samples. However it has been claimed in that
the inversion-free algorithm is statistically comparable to the MLE, only in the case that
the covariance matrix has a bounded condition number. Indeed, a proper preprocessing of
the samples is imperatively needed for reducing the condition number of the covariance
matrix, particularly for large sample size. The consistency and asymptotic normality of the
global and local maximizers of the inversion-free loss are studied in Chapter 2, for GPs
observed on a d-dimensional randomly perturbed regular lattice.

In Chapter 3 we propose a novel class of covariance estimation algorithms (which will
be referred to as the local inversion-free), built upon the sparse block diagonal approxi-
mation of the covariance matrix and the inversion-free approach [ACS16]. The introduced
algorithm offers a rich spectrum of scalable, memory efficient and statistically consistent
estimators which can be computed in a parallel fashion. We also provide sharp fixed domain
asymptotic analysis of our algorithm for isotropic Matern covariance functions. Note that
the technical details require a careful handling of the covariance matrix of the preprocessed
samples. Our analysis surprisingly refutes the necessity of controlling the condition number
of the covariance matrix for having

√
n-consistency and asymptotic normality properties.

The performance of the proposed algorithm is also evaluated on moderate (n = 104) and
large datasets (n = 2.5×105) generated from isotropic and anisotropic Matern GP models.

In Chapter 4 we investigate the fixed-domain asymptotic behaviour of detecting abrupt
changes in the mean of a single dimensional GP observed in [0,1]. Motivated by the
piecewise locally stationary time series models, developing fixed-domain asymptotics for
change-point detection problem has become increasingly popular (see e.g., [Ada98,LS08]).
Our main contribution is to show that in this asymptotic regime, neglecting the dependence
structures leads to suboptimal performance. The objective of Chapter 4 is two fold: we
first show that plugging the estimated covariance matrix into the GLRT provides a near
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minimax asymptotic optimality. On the other hand, the suboptimality of the cumulative
sum test is substantiated for a vast range of covariance functions, as a result of ignoring the
dependence structure of data. This observation is corroborated by the simulation studies,
which exhibit a wide gap between the rate of two detection algorithms.
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CHAPTER 2

Inversion Free (IF) Covariance Estimation

2.1 Introduction

In the last two decades, there has been extensive research regarding the statistical and
computational facets of the estimation of the GPs’ covariance parameters. MLE was the
earliest favored algorithm in the geostatistics community, e.g., Mardia et al. [MM84] and
Ying [Yin91]. However, solving systems of linear equations is inevitable to evaluate the
Gaussian likelihood. Notwithstanding the recent advances toward scalable and efficient
solution of the system of linear equation ( e.g., iterative Krylov subspace method or block
preconditioned conjugate gradient algorithm [O’L80]) which moderately reduces the com-
putational and memory costs of the direct evaluation of the precision matrix, obtaining
the MLE of unknown covariance parameters using such linear systems solvers is still a
strenuous task, especially for a generic Gaussian spatial process observed at numerous and
possibly irregularly spaced locations. Vecchia [Vec88] proposed to approximate the likeli-
hood function by neglecting the conditional correlation of distant sites given their nearest
neighbors. Stein et al. [SCW04] extended this approximation method by considering more
flexible choices of conditioning sets. Roughly speaking, sparse approximation of the in-
verse covariance matrix lies at the heart of the Vecchia’s algorithm. Approximating the
likelihood function by tapering the covariance matrix is another class of algorithms aiming
to reduce the numerical burden of MLE (see Kaufman et al. [KSN08]). Tapering technique
takes advantage of the sparsity of the approximated covariance matrix to accelerate linear
solvers using the Krylov subspace iteration method, Furrer et al. [FGN06]. Recent stud-
ies [DZM+09, KSN08, WL+11] demonstrate the consistency and asymptotic normality of
this algorithm under some mild conditions on the taper function. In more recent advances
toward scalable evaluation of the MLE [ACW12,SCA+13], the computational cost of each
optimization iteration is reduced by considering an unbiased stochastic approximation of
the score function. The proposed algorithms in [ACW12,SCA+13] are statistically compa-
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rable to MLE, if the condition number of the covariance matrix has a uniform upper bound
(independent of the sample size).

Because of the obstacles of solving system of linear equations for massive data, which
is necessary for tapered and exact MLE, it is of great interest to develop estimation tech-
niques without requiring such extensive computations. Such class of algorithms, which will
be referred to as Inversion Free (IF), are based upon optimizing a loss function whose form
(and its derivatives) is independent of the precision matrix of data. The first attempt toward
such a goal has been done by Anitescu, Chen and Stein [ACS16]. Their proposed proce-
dure is faster than likelihood based algorithms. In [ACS16], the covariance parameters are
estimated by computing the global maximizer of a non-concave program. Simulation stud-
ies verify the efficiency of IF approach in the case that the covariance matrix has a bounded
condition number. The main purpose of this chapter is to appraise the asymptotic proper-
ties of the IF algorithm such as consistency, minimax optimality and asymptotic normality.
The developed theory in this chapter shows that IF algorithm has the same asymptotic rate
of convergence as the MLE. In practice, the solution of IF optimization problem may also
serve as the starting point (initial guess) of a likelihood maximization procedure.

Zhang [Zha04] showed that not all the covariance parameters are consistently estimable
in the fixed domain regime. Strictly speaking, there is no asymptotically consistent algo-
rithm for estimating the non-micro ergodic covariance parameters, which do not asymp-
totically affect the interpolation mean square error (see [Ste12] for a precise definition).
On the other hand, it is known in the literature that subject to some mild regularity condi-
tions, maximizing the likelihood provides a strongly consistent and asymptotically normal
estimate for all the covariance parameters in the increasing domain setting [Bac14,MM84].

Increasing domain asymptotic analysis of covariance estimation has two significant
benefits. First, unlike the infill asymptotic setting, the geometry of the spatial sampling
has a crucial impact on the asymptotic distribution of the parameter estimate. Thus, this
regime is a natural asymptotic framework for assessing the role of irregularity of spatial
sampling on the covariance parameter estimation [Bac14]. This claim can be verified by a
deeper look at the asymptotic distribution of the microergodic parameter estimates in the
fixed domain (see e.g., [Ste12,Yin91] for MLE and [DZM+09,KSN08,WL+11] for tapered
MLE). Another significant characteristic of increasing domain regime is that the covariance
matrix has a universally bounded condition number as n grows under some mild regularity
conditions. This feature of the covariance matrix plays a major role in our asymptotic anal-
ysis. Although in many geostatistical applications in a fixed bounded domain the condition
number of the covariance matrix increases at least linearly with respect to n, precondition-
ing filters is commonly used to uniformly control the condition number independent of

9



n [Che13,Ste12]. Therefore, we believe that our developed increasing domain asymptotics
can be useful for the fixed domain analysis of preconditioned inversion-free algorithms.

Outline of main results. In this chapter we study the increasing domain asymptotic be-
haviour of IF estimation algorithm introduced in [ACS16]. Specifically, suppose that G is
a zero mean stationary GP in Rd with covariance function cov(G (s) ,G (s′)) = R (s− s′,η)

in which η ∈ Ω denotes the vector of unknown covariance parameters. One realization of
G has been observed on a d−dimensional perturbed regular lattice of n = Nd points, which
will be formally defined in Section 2.2. The specific contributions of this work are given as
follow:

(a) Assuming the polynomial decay of R (s,η) and its gradient (with respect to η) in terms
of the Euclidean norm of s, and under some mild identifiability condition on R, we
prove that the global maximizer of IF method consistently estimates η. Furthermore,
the estimation error is of order

√
n−1 lnn which is shown to be minimax optimal up

to some
√

lnn term.

(b) As the proposed loss function in Anitescu et al. [ACS16] is not jointly concave in η,
finding its global maximizer is challenging. For a large enough sample size and under
an additional condition regarding the polynomial decay of the second derivative of
R (s,η) with respect to η, we show that any stationary point of this non-concave
program is concentrated around the true η with radius of order

√
n−1 lnn.

(c) The asymptotic normality of the stationary points of the aforementioned algorithm
will be substantiated under some mild restriction on the third derivative of R with
respect to η.

Plan of the chapter. In Section 2.2, we formulate IF estimation method and precisely
introduce the geometry of the sampling points. Section 2.3 expresses the necessary as-
sumptions and studies the asymptotic properties of the estimation algorithm. Section 2.3.1
presents the convergence rate of the global and local maximizers of the optimization prob-
lem introduced in Section 2.2. We investigate the minimax optimality and the asymptotic
normality of the local maximizers in Section 2.3.2. The objective of Section 2.4 is to assess
the performance of IF algorithm and verify the developed theory using simulation studies
on synthetic data. Section 2.5 serves as the conclusion and discusses the future directions.
Section 2.6 presents the proof of the main results. Finally, the Section 2.7 contains some
auxiliary technicalities on the nonasymptotic behaviour of the quadratic forms of GPs and
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of large covariance matrices with polynomially decaying off-diagonal entries, which are
essential in Section 2.6.

Notation. For any m ∈ N, Im and 0m respectively denote the m by m identity matrix and
all zeros column vector of length m. Moreover, ∧ and ∨ stand for the minimum and max-
imum operators. For two matrices of the same size M and M′, 〈M,M′〉 :=

∑
i, j Mi jM′i j

denotes their usual inner product. We use the following matrix norms on M ∈ Rm×n.
For any 1 ≤ p < ∞, ‖M‖`p

:=
(∑

i, j
∣∣∣Mi j

∣∣∣p)1/p
stands for the element-wise p−norm of

M. ‖M‖2→2 represents the usual operator norm (largest singular value of M). Associ-
ated to any finite set D ⊂ Rd and s ∈ D, we define D − s := {s′− s : s′ ∈D}. We also
write D (s,r) :=

{
s′ ∈D : ‖s′− s‖`2 ≤ r

}
and Dc (s,r) = D \D (s,r), for any non-negative

r. Sm stands for the m−dimensional unit sphere with respect to the Euclidean norm,
i.e., Sm :=

{
v ∈ Rm+1 : ‖v‖`2 = 1

}
. For a random sequence xn and a deterministic posi-

tive sequence an, we write xn = OP (an) when xn is bounded below by an asymptotically,
i.e., lim

n→∞
Pr(|xn| ≥Can) = 0 for some C > 0. For two sets Ω1,Ω2 ⊂ Rm, dist (Ω1,Ω2) :=

infωi∈Ωi, i=1,2 ‖ω1−ω2‖`2 represents their mutual distance with respect to the Euclidean
norm. Moreover, for A ⊂ Rm and r > 0, Nr (A) denotes a subset of A (of minimal size)
such that for any a ∈A, dist ({a} ,Nr (A))≤ r. The cardinality of such set is called the cover-

ing number of A. Given spatial points {s1, . . . , sn} ∈ Rd and the covariance function R (·,η)

parametrized by η = (η1, . . . , ηm), the associated covariance matrix and its derivatives are
defined as

Rn (η) =
[
R
(
si− s j,η

)]n

i, j=1
,

∂

∂ηr
Rn (η) =

[
∂

∂ηr
R
(
si− s j,η

)]n

i, j=1
, ∀ r = 1, . . . ,m.

The higher order derivatives can be defined in an analogous way. For two random vec-
tors v1 and v2, the expression v1

d
= v2 means that they have the same distribution. Lastly,

D (P1 ‖ P2) indicates the Kullback-Leibler divergence of two distributions Pi, i = 1,2.

2.2 Problem Set up and the IF Estimation Algorithm

Consider a mean zero and stationary (real valued) GP G : Rd 7→ R whose covariance
function belongs to a parametric family CR,Ω := {R (·,η) : η ⊂Ω}. In other words, there exists
η0 ∈Ω for which

EG (s)G
(
s′
)

= R
(
s− s′,η0

)
, ∀ s, s′ ∈ Rd. (2.1)
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Moreover, there is m ∈ N such that Ω is a compact (m + 1) dimensional subset of Rm+1

with respect to the Euclidean topology. Thus, CR,Ω is assumed to be a finite dimensional

class. For analytical convenience, we consider an alternative formulation for the unknown
parameters of the covariance function given as

η0 = (φ0, θ0) , φ0 ∈ I, θ0 ∈ Θ.

In this new representation, φ0 is a strictly positive scalar denoting the variance of G and
the m−dimensional vector θ0 stands for the other parameters of R. Moreover, I ⊂ (0,∞) is
a bounded interval and Θ ⊂ Rm is compact. For instance in isotropic Matern or powered
exponential classes, θ0 is a positive vector representing the range parameter and fractal

index. Finally, (2.1) can be rewritten as R (s− s′,η0) = φ0K (s− s′, θ0), in which K (·, θ0)

indicates the correlation function parametrized by θ0.
The objective is to estimate η0 observing one realization of G at a deterministic set

of spatial locations Dn = {s1, . . . , sn} ⊂ Rd. It is beneficial to emphasize that our asymp-
totic analysis lies in the increasing domain regime in which the diameter of Dn tends
to infinity as n→ ∞. The collected samples form a zero mean Gaussian column vector
Y = [G (s1) , . . . ,G (sn)]> of length n. Before proceeding further, let us precisely introduce
the geometric structure of Dn.

Assumption 2.1. Suppose that there is N ∈N such that n = Nd. There exists δ ∈ [0,1/2) for
which Dn is a d−dimensional δ−perturbed regular lattice (with unit grid size). Namely,

Dn =
{
vi +δpi : vi ∈ VN,d, pi ∈ [−1,1]d

}n

i=1
,

in which VN,d := {v1, . . . ,vn} = {1, . . . ,N}d denotes the d−dimensional regular lattice.

The condition δ ∈ [0,1/2) guarantees the existence of a strictly positive minimum dis-
tance (1−2δ) between the distinct points in Dn. The scalar δ quantifies the amount of
irregularity in Dn. In the case of δ = 0, Dn forms a regular lattice and the irregularity can
be more apparent as δ increases. Although the absence of randomness in Assumption 2.1
may appear problematic at first sight, our theoretical contributions are not restricted to any
further set of strong conditions on pi’s. For instance, the presented results in the next sec-
tion hold almost surely if pi’s are independent (or even dependent) draws of a distribution
supported on [−1,1]d which is absolute continuous with respect to the Lebesgue measure..

Now we present IF estimation algorithm introduced in [ACS16]. Define,

η̂n = argmax
η∈Ω

Fn (Y,η) , where Fn (Y,η) :=
1
n

{
Y>Rn (η)Y −

1
2
‖Rn (η)‖2`2

}
. (2.2)
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Note that Fn (Y,η) does not depend on the Cholesky factorization of Rn (η) and regardless of
the choice of covariance function, it can be evaluated in O

(
n2

)
operations, even for irreg-

ularly spaced samples which is an improvement over the conventional likelihood function.
The optimization algorithm in (2.2) can be reformulated as(

φ̂n, θ̂n
)

= argmax(φ,θ)∈I×Θ Fn (Y,φ,θ) ,

where Fn (Y,φ,θ) := 1
n

{
φY>Kn (θ)Y − φ2

2 ‖Kn (θ)‖2`2

}
. (2.3)

Despite the fact that Fn (Y,φ,θ) has a simple quadratic (concave) form of φ, its dependence
to θ is fairly complicated . For instance Fn is not a concave function of θ even for the
classic case of isotropic exponential covariance. So, accurate approximation of its global
maximizer can be computationally expensive.

Remark 2.1. We conclude this section mentioning two characteristics of Fn (Y,φ,θ) that
can provide a theoretical clue for generalizing IF loss function to a broader class of inversion-
free losses. The first property is also critical for the theoretical analysis in the next section.

1. As stated in [ACS16], the true parameter η0 is a stationary point of the expected value
of Fn (Y,η). That is,

E
{
∂

∂η j
Fn (Y,η) |η=η0

}
= 0, ∀ j = 1, . . . , (m + 1) .

Roughly speaking, η0 is located in a small neighborhood of a stationary point of (2.2) if
the gradient of Fn (Y,η) is smooth enough and concentrated around its expected value.
The next fact, which has not been stated in [ACS16], reveals a profound connection of
(2.2) to MLE.

2. Define Hn (Y,η) := Fn (Y,η)−Fn (Y,η0) and Ln (η,η0) := R1/2
n (η0)R−1

n (η)R1/2
n (η0). Also,

let η̃n denotes the MLE of η. Obvious calculations lead to

η̂n = argmax
η∈Ω

Hn (Y,η) ,

η̃n = argmax
η∈Ω

H′n (Y,η) ,

where H′n (Y,η) :=
1
n

{
− logdet Ln (η,η0)−n + Y>R−1

n (η)Y
}
.

Notice that EHn (Y,η0) = EH′n (Y,η0) = 0. Under Assumption 2.1 and using similar tech-
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niques as Section 2.7, one can guarantee the existence of a scalar C ∈ (0,∞) such that

EHn (Y,η) ≤C EH′n (Y,η) , ∀η ∈Ω. (2.4)

Namely, in the increasing domain regime, the objective function proposed in [ACS16]
can be viewed as an approximate minorizing surrogate of the likelihood function in the
expected value sense (it forms a perfect minorizer whenever C = 1 in (2.4)).

2.3 Main Results

We establish the asymptotic characteristics of the estimation algorithm in (2.2). Sec-
tion 2.3.1 examines the consistency of the global maximizer and the stationary points of
(2.2) under some sufficient conditions on Ω and the correlation function K (·, θ). The near
minimax optimality and the asymptotic normality of the stationary points will be covered
in Section 2.3.2

2.3.1 Consistency and the Convergence Rate

The following assumptions are assumed on the parameter space Ω = I ×Θ and the cor-
relation function K (·, θ) for studying the asymptotic behaviour of the global maximizer of
(2.2). Similar but slightly stronger conditions have been used in [Bac14] for the increasing
domain asymptotic analysis of MLE.

Assumption 2.2. The following conditions are satisfied by Ω and K.

(A1) Θ and I are compact connected subsets of Rm and (0,∞), respectively.

(A2) There are bounded scalars M > 0 and r1 > 1 such that for any s ∈Dn,

max
s′∈Dn(s,r1)

∣∣∣K (
s′− s, θ2

)
−K

(
s′− s, θ1

)∣∣∣ ≥ M ‖θ2− θ1‖`2 , ∀ θ1, θ2 ∈ Θ. (2.5)

(A3) For some q ∈ {1,2,3}, there exists a positive scalar CK,Θ such that

max
θ∈Θ

(
|K (s, θ)| ∨

∣∣∣∣∣∣ ∂

∂θ j1
. . .

∂

∂θ jq
K (s, θ)

∣∣∣∣∣∣
)
≤

CK,Θ

1 + ‖s‖d+1
`2

, ∀ s ∈ Rm,

for any j1, . . . , jq ∈ {1, . . . ,m}.

Condition (A2), assuring the identifiability of θ from the K, holds for the standard class
of correlation functions such as Matern, powered exponential and rational quadratic. A
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detailed look at (A2) is postponed to the end of this section. Before commenting on (A3),
let us define the family of geometric anisotropic covariance functions.

Definition 2.1. Let G : Rd 7→ R be a zero mean stationary GP in Rd. Then G is called
geometric anisotropic if

R
(
s− s′,η0

)
:= EG (s)G

(
s′
)

= φ0K
(√

(s− s′)>A0 (s− s′)
)
, ∀ s, s′ ∈ Rd, (2.6)

for φ0 > 0, symmetric positive definite matrix A0 ∈ Rd×d, η0 = (φ0,A0) and a correlation
function K. Specifically if A0 = θ−1

0 Id for some strictly positive θ0, then G is said to be an
isotropic GP.

For geometric anisotropic processes, K is either assumed to be a fully known function
(in this case η0 = (φ0,A0) in which φ0 ∈ I and A0 ∈ Θ, denotes the unknown parameters of
covariance function) or known up to some strictly positive scalar ν0, usually refers to as the
fractal index. In the latter case, η0 = {φ0, θ0 = (A0, ν0)}. Now, we mention some commonly
used class of covariance functions, with unknown fractal index, satisfying (A3) with q = 1
(appearing in the statement of the first main result in this section). It is supposed in the
following Remark that

Λmin,Θ ≤ min
A0∈Θ

1∥∥∥A−1
0

∥∥∥
2→2

≤ max
A0∈Θ
‖A0‖2→2 ≤ Λmax,Θ, (2.7)

for strictly positive and bounded scalars Λmin,Θ and Λmax,Θ. Namely, all eigenvalues of A0

are universally bounded away from zero and infinity.

Remark 2.2. Any compactly supported correlation function, such as spherical or Wend-

land family [Wen95] on Rd trivially admits (A3). Assumption (A3) with q = 1 also holds
for some classical families of geometric anisotropic covariances such as:

(a) Matern: The GP G has Matern covariance function if it fulfills (2.6) with

K (r) =
21−ν0

Γ (ν0)
rν0Kν0 (r) , (2.8)

in which ν0 is an unknown, strictly positive scalar lies in a compact space. Moreover,
Γ (·) and Kν0 (·) represent the Gamma function and the modified Bessel function of
the second kind, respectively. The parametric Matern family satisfies (A3) provided
condition (2.7).
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(b) Powered exponential: A covariance function in this class satisfies (2.6) with K (r) =

e−rν0 and ν0 ∈ (0,2). Like Matern class, assuming (2.7), any member of powered
exponential family fulfills (A3) with q = 1.

(c) Rational quadratic: The elements of this class are of the form (2.6) with K (r) =(
1 + r2

)−( d
2 +ν0

)
and ν0 > 0. For the case of known fractal index, (A3) with q = 1 is

valid, if (2.7) holds. Note that for unknown ν0 the exact same statement is satisfied
under a slightly stronger condition of ν0 > 1/2

Parts (b) and (c) of Remark 2.2 are verifiable by straightforward algebra and differenti-
ation rules. In order to demonstrate part (a), see [AS+66] for the derivative properties of the
Bessel function of the second kind (with respect to the entries of A0) and see Lemma 2.5 for
the asymptotic behaviour of the partial derivatives of the Matern covariance with respect to
ν0. Now, we state the first significant result of this section regarding the consistency of the
global maximizer of (2.3) under Assumption 2.2 and perturbed regular lattice sampling.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 with q = 1 hold for Dn, Ω and K.
Then the maximizer of (2.3) satisfies

Pr

∥∥∥θ̂n− θ0
∥∥∥
`2
∨

∣∣∣∣∣∣ φ̂n

φ0
−1

∣∣∣∣∣∣ ≥C

√
lnn
n

→ 0, as n→∞, (2.9)

for some constant C (which depends on Dn, Ω and K).

Remark 2.3. Let φmin and φmax denote the smallest and largest element in I. Obviously,
φmin and φmax are well defined and finite due to (A1). Moreover,

(1∧φmin)
(∥∥∥θ̂n− θ0

∥∥∥
`2
∨

∣∣∣∣∣∣ φ̂n

φ0
−1

∣∣∣∣∣∣
)
≤ ‖η̂n−η0‖`2

≤

√
1 +φ2

max

(∥∥∥θ̂n− θ0
∥∥∥
`2
∨

∣∣∣∣∣∣ φ̂n

φ0
−1

∣∣∣∣∣∣
)
.

Thus (2.9) is a stronger statement than ‖η̂n−η0‖`2
= OP

(√
n−1 lnn

)
and they are equivalent

when φmin > 0 (which is true under A1).

An analogous consistency result has been proved recently by Bachoc [Bac14] for the
MLE and cross validation estimator. Based upon Theorem 2.1, the asymptotic rate of IF al-
gorithm has not been sacrificed for increasing the speed and memory efficiency comparing
to the MLE.

Finally, we concisely address the role of the identifiability condition (A2) in Theorem
2.1. Actually, (A2) plays a decisive role in translating consistent estimation of the correla-
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tion matrix (in the relative sense) to η0. Strictly speaking, (A2) is required to deduce (2.9)
from the probabilistic statement

1
√

n

∥∥∥Kn(θ̂n)−Kn (θ0)
∥∥∥
`2

= OP

(√
n−1 lnn

)
.

The rest of this section is devoted to the analysis of the stationary points of (2.3). Solv-
ing the unique root of the derivative of Fn (Y,φ,θ) with respect to φ, yields a closed form
formula for φ̂n in terms of θ̂n, Y and the correlation function, namely

φ̂n =
Y>Kn(θ̂n)Y∥∥∥Kn(θ̂n)

∥∥∥2
`2

. (2.10)

Moreover, θ̂n can be obtained using

θ̂n = argmax
θ∈Θ

Gn (Y, θ) , where Gn (Y, θ) =
Y>Kn (θ)Y
‖Kn (θ)‖`2

. (2.11)

Note that for large n, computing the global maximizer of (2.11) can be less intensive than
(2.2) due to searching over a smaller space Θ. We first visually assess the key properties
of Fn in some simple scenarios. In Figure 2.1, Gn (Y, θ) (which is a univariate function of
scalar θ) has been plotted versus θ for the two dimensional (d = 2) isotropic Matern co-
variance function in two different scenarios. In the left panel the isotropic GP G has been
generated with the parameters (φ0, θ0, ν0) = (1,4,0.5) and has been sampled in a randomly
perturbed regular lattice with δ = 0.2 and of size N = 100. In the right panel, the covariance
parameters are given by (φ0, θ0, ν0) = (1,6,1.5) and the GP is sampled at a randomly gener-
ated perturbed regular lattice with N = 100 and δ = 0.2. As is apparent from Figure 2.1, for
these two parsimonious scenarios Gn (Y, θ) is not a concave function of θ and has a single
inflection point. However, Gn (Y, θ) has only one stationary point which coincides with its
global maximizer. In the following, we rigorously study the large sample behaviour of the
stationary points of Gn (Y, θ) (as well as Fn) in a generic case. We initiate our analysis by
stating the sufficient conditions on K and Ω.

Assumption 2.3. (A1) holds for Ω, and K fulfills (A2) and (A3) with q = 2 in Assumption
2.2.

Remark 2.4. The analysis of the stationary points of (2.3) requires a slightly stronger
conditions than that of the global maximizer in Assumption 2.2. The main distinction is
the polynomial decay of the second order derivative of K with respect to θ. Note that the
new condition on the second derivative of K is not too restrictive. For instance the same
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Figure 2.1: The above figures exhibit n−1/2Gn (Y, θ) for the isotropic Matern covariance
function (with known ν0). In the left panel, θ0 = 4, ν0 = 0.5 and the spatial samples form
a two dimensional randomly perturbed regular lattice of size N = 100 with δ = 0.3. In the
right panel, θ0 = 6, ν0 = 1.5 and Dn is a randomly chosen two dimensional perturbed regular
lattice with N = 100 and δ = 0.3.

analysis as Remark 2.2 validates this condition for all covariance families introduced in
Remark 2.2 (with a larger constant CK,Θ).

Theorem 2.2. Suppose that Dn admits Assumption 2.1 and Assumption 2.3 holds for Ω

and K. Then any stationary point of the optimization problem (2.3) satisfies

lim
n→∞

Pr

∥∥∥θ̂n− θ0
∥∥∥
`2
∨

∣∣∣∣∣∣ φ̂n

φ0
−1

∣∣∣∣∣∣ ≥C

√
lnn
n

 = 0, (2.12)

for an appropriately chosen constant C > 0 depending on Dn, Ω and K.

Theorem 2.2 shows that any stationary point of Fn is concentrated in a small neighbor-
hood of (φ0, θ0), with high probability. In other words, Fn (Y,φ,θ) shows a similar behaviour
as Figure 3.1 in the general case. In addition, the comparison between (2.9) and (2.12) re-
veals that stationary points converge to (φ0, θ0) with the same rate as the global maximizer.

We conclude this section by illustrating how restrictive the identifiability assumption
(A2) can be for the frequently used classes of the covariance functions. We first introduce a
slightly stronger identifiability condition than (A2), which will be referred to as (A4). Note
that a slightly modified version of (A4) has been first introduced in [Bac14] for studying the
increasing domain asymptotics of the maximum likelihood and cross validation algorithms.
That is to say, these identifiability conditions are not exclusive to IF method and pop up
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in the asymptotic analysis of other algorithms. The proof of the subsequent results in this
section will be omitted. We refer the reader to [KSN16] for a detailed proof.

Proposition 2.1. (A2) is satisfied, whenever

(A4) (a) There are positive scalars r2 > 1 and M2 such that for any η ∈Ω and λ ∈ Sm,

min
s∈Dn

max
s′∈Dn(s,r2)

∣∣∣∣∣∣∣∣
m+1∑
j=1

λ j
∂

∂η j
R
(
s− s′,η

)∣∣∣∣∣∣∣∣ ≥ M2.

(b) The following inequality holds for any distinct pair of points η1,η2 ∈Ω

min
s∈Dn

max
s′∈Dn(s,r2)

∣∣∣R (
s− s′,η2

)
−R

(
s− s′,η1

)∣∣∣ > 0.

Clearly, (A4.b) is necessary for any algorithm consistently estimating η and it can be
verified for all typical classes of geometrical anisotropic covariance function. However,
understanding the role and restrictiveness of (A4.a) is more subtle than that of (A4.b). Note
that unlike (A3), all the introduced identifiability conditions not only depend on the choice
of the covariance function but also to the observed locations Dn. It may be excessive to
seek the class of covariances satisfying (A4.a) for any perturbed lattice Dn. So, a more
pertinent question is: which class of covariance functions do almost surely satisfy (A4.a)

for a randomly generated perturbed lattice? The following result responds to question by
rigorously characterizing a broad subclass of the geometrically anisotropic covariances (as
defined in Definition 2.1) fulfilling (A4.a).

Proposition 2.2. Let P be a distribution in [−1,1]d which is absolutely continuous with
respect to the Lebesgue measure. Suppose that R (·,η) : Rd 7→ [0,∞) is a geometrically
anisotropic covariance function with a known ν0 (if exists). Then, (A4) almost surely holds
if

(a) K : [0,∞) 7→ [0,∞) is a nonzero, differentiable and strictly decreasing function (K
may only have right derivative at zero).

(b) Dn is a randomly generated δ−perturbed lattice associated to P. That is, pi are inde-
pendent draws of P in Assumption 2.1.

Corollary 2.1. Let Dn be d−dimensional regular lattice (associated to δ = 0) and assume
that R (·,η) : Rd 7→ [0,∞) is a geometrically anisotropic covariance function with known ν0.
Then, (A4) holds if K : [0,∞) 7→ [0,∞) admits the condition (a) in Proposition 2.2.
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Although the conditions of Proposition 2.2 trivially hold for the non-compactly sup-
ported covariance function introduced in Remark 2.2, deploying analogous proof tech-
niques can lead to a similar result for compactly supported covariance function.

Proposition 2.3. Suppose that P, R (·,η) and Dn satisfy the same conditions as Proposition
2.2. Then, (A4) almost surely holds if there exists a large enough positive scalar r0 for
which

• K : [0,∞) 7→ [0,∞) is a nonzero, differentiable and strictly decreasing function in the
interval [0,r0] and K (r) = 0 for any r > r0.

Although the required conditions on the covariance function’s formulation, in Proposi-
tions 2.2 and 2.3, are very minimal, we assume that the fractal index ν0 (if exists) is fully
known. However in the following result, ν0 is one of the unknown parameters to be es-
timated. Here the central emphasis is on the powered exponential and rational quadratic
classes, as their partial derivative with respect to the fractal index have a somewhat simple
closed form that can be handled without great difficulty.

Proposition 2.4. Let P be a distribution in [−1,1]d which is absolutely continuous with
respect to the Lebesgue measure. Suppose that R (·,η) : Rd 7→ [0,∞) is a geometrically
anisotropic covariance function. Then, (A4) almost surely holds if

(a) K : [0,∞) 7→ [0,∞) is either a powered exponential or rational quadratic covariance
functions in Remark 2.2 with unknown ν0 > 0.

(b) Dn is a randomly generated δ−perturbed lattice associated to P. That is, pi are inde-
pendent draws of P in Assumption 2.1.

Remark 2.5. A prudent look at the proof of Proposition 2.4 reveals that the following
property (which is satisfied by the powered exponential and rational quadratic families)
has the crucial role.

∂K
∂ν

∣∣∣∣
{r=0d , θ}

= 0, ∀ θ ∈ Θ. (2.13)

For the Matern class, not only ∂K
∂ν not satisfy (2.13), it does not have a tractable algebraic

form. We believe that (A4) holds true for the geometric anisotropic Matern family with
unknown ν, even though it is beyond the reach of our current proof technique.

2.3.2 Minimax Optimality and Asymptotic Normality

Now, we further investigate the asymptotic statistical properties of IF algorithm. Near
minimax optimality and asymptotic normality are respectively presented in Theorems 2.3
and 2.4.
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Theorem 2.3. Suppose that Assumptions 2.1 and 2.2 hold for Dn, Ω and K. Then there
exist n0 ∈ N and a bounded scalar C > 0 such that

sup
η0∈Ω

Pr
(
‖η̂n−η0‖`2

≥
C
√

n

)
≥

1
4
,

for any estimator η̂n and any n ≥ n0.

Theorem 2.3 reveals that the established bounds in Theorems 2.1 and 2.2 are sharp
up to order

√
lnn. This means that for the perturbed regular lattice sampling scheme, no

algorithm can achieve a significantly better rate than IF method.

Theorem 2.4. Suppose that Dn is a perturbed lattice introduced in Assumption 2.1. Fur-
thermore, (A1), (A3) with q = 3 and (A4) are fulfilled by Ω and R. There is a positive
definite matrix Σ ∈ R(m+1)×(m+1) with bounded operator norm such that

√
n (η̂n−η0)

d
→N (0m+1,Σ) . (2.14)

The exact formulation of Σ has been omitted in this section due to its complicated al-
gebraic form. We refer the reader to the proof of Theorem 2.4 in Section 2.6 for further
details. It is worthwhile to mention that the entries of Σ heavily depend on the configuration
of points in Dn, which is a major disparity between fixed and increasing domain asymp-
totics. Comparing Theorems 2.2 and 2.4, here we impose a slightly stronger differentia-
bility condition (polynomially decaying of the third derivative) for establishing asymptotic
normality. This condition has been formerly introduced in [Bac14] and holds for the geo-
metrically anisotropic covariances in Remark 2.2.

2.4 Simulation Studies

The relatively large-scaled numerical studies in this section give a fairly comprehen-
sive appraisal of the statistical and computational performance of the optimization problem
(2.3). Despite the popularity of R language, running the iterative programs such as loops
in R is much slower than that of C++ (around 250 times slower according to some stud-
ies [AFV14]). Taking advantage of the Rcpp package and hybrid programming techniques
in R can considerably expedite the execution time (up to 50 times in our simulation studies).
In order to get the maximum speed, the open MP application programming interface has
been used to exploit the multi-threaded programing technology. All the numerical experi-
ments in this section have been executed on 12 processors, except for the second simulation
study (n = 106) which has been implemented on 60 cores.
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Generating high dimensional samples from a GP on an irregularly spaced grid is the
foremost challenge that we confronted in our synthetic data simulations. Applying the tra-
ditional method based upon the Cholesky decomposition of the covariance matrix is almost
infeasible in the case that n ≈ 105 or larger. Hence, we use the considerably faster spectral
method (pp. 203− 205, [Cre15]) for generating stationary Gaussian processes. For com-
pleteness, this algorithm will be concisely presented here. Strictly speaking, the objective
is to simulate a real valued zero mean stationary GP G in Rd with the covariance function
φ0K (·, θ0) over a δ−perturbed lattice Dn = {s1, . . . , sn}. For the purpose of generating a real-
ization of G on a perturbed grid, without loss of generality we can assume that the samples
are all of unit variance, i.e., φ0 = 1. We also assume that G is geometric anisotropic. Re-
calling from Definition 2.6, there is a symmetric positive definite matrix B0 ∈ Rd×d which
represents the symmetric square root of A0, such that K (r, θ0) = K

(
‖B0r‖`2

)
. Throughout

this section d = 2 and K is either the Matern or rational quadratic covariance function which
have been previously introduced in Remark 2.2.

Let p ∈ N be a large enough number and {ξk}
p
k=1 be i.i.d. uniform random variables on

[−π,π]. Let K̂ : Rd 7→ R denotes the spectral density of G defined by

K̂ (ω) := (2π)−d
∫
Rd

K (r, θ0)cos(〈ω,r〉)dr = (2π)−d
∫
Rd

K
(
‖B0r‖`2

)
cos(〈ω,r〉)dr.

The non-negative mapping K̂ (·) is a density function in Rd (since it integrates to K (0, θ0) =

1). Furthermore, let {ωk}
N
k=1 be independent draws from the density K̂ (·). Now, define

G (s) =

√
2
p

p∑
k=1

cos(〈ωk, s〉+ ξk) , ∀ s ∈ Rd. (2.15)

It is known that G is an anisotropic process with cov {G (s) ,G (s′)} = K
(
‖B0 (s− s′)‖`2

)
for

any pair s, s′ ∈Rd (p. 204, [Cre15]), converging in distribution to a GP as p tends to infinity.
Next, we explain how to generate the random variables {ωk}

p
k=1. The following fact which

can be proved using the integration by substitution plays a principal role in our algorithm.

Remark 2.6. Let ω′ ∈ Rd be a draw from the following density function

K̂I (u) = (2π)−d
∫
Rd

K
(
‖r‖`2

)
cos(〈u,r〉)dr.

Then ω and B0ω
′ have the same distribution, i.e., ω d

= B0ω
′. Note that K̂I is an isotropic

function. Namely, there is a function Φ :R 7→ [0,∞) for which K̂I (u) = Φ
(
‖u‖`2

)
. Moreover

ω′
d
= rψd/‖ψd‖`2

in which ψd is a standard d− dimensional Gaussian vector and r is a non-
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negative random variable with the density function

fr (r) =
dπd/2

Γ (d/2 + 1)
rd−1Φ (r) =

2πd/2

Γ (d/2)
rd−1Φ (r) .

For instance in the case of d = 2, we have fr (r) = 2πrΦ (r). Hence, ω d
= rB0ψd/‖ψd‖`2

.

For Matern covariance function in two dimensional plane (d = 2), generating indepen-
dent samples of the random variable r is a straightforward task. In this case

fr (r) =
2πd/2

Γ (d/2)
rd−1Φ (r) =

2πd/2

Γ (d/2)
rd−1π

−d/2Γ (d/2 + ν)
Γ (ν)

(
1 + r2

)−(ν+d/2)

=
2rν(

1 + r2)1+ν
.

Thus the cumulative distribution is of the form Pr(r ≤ r) := Fr (r) = 1−
(
1 + r2

)−ν
. So

r
d
= F−1

r (u) =

√
1− (1−u)−1/ν,

in which u is a uniform random variable in [0,1]. One can find a closed from expression for
r in terms of u for the rational quadratic covariance function, in the case that (τ+ 1/2) ∈ N
(Recall τ from Remark 2.2). In this case, Φ (·) has a form of the Matern covariance function
(2.8) (with different constants) due to the duality principle of the Fourier transform.

Throughout this section, G is assumed to be a zero mean GP in R2, whose covariance
function is a member of either Matern or rational quadratic families with a known fractal
index. In the first experiment, G is an isotropic spatial process. In other words, we set
A0 = θ−2

0 I2 in the Definition 2.6. θ0 is a strictly positive scalar known as the range pa-

rameter. Furthermore, Dn is a randomly generated δ−perturbed lattice of size 3202, i.e.,
n = 102400 ≈ 105. The approximated realizations of G are generated using (2.15) with
p = 1.5× 105. To investigate the role of spatial irregularity in the computational and sta-
tistical performance of IF algorithm, we vary δ in the set {0.1,0.3}. The range parameter
and the standard deviation, which is represented by σ0 =

√
φ0, are respectively estimated

solving the optimization problem (2.11) and closed form formula (2.10). The range param-
eter space is chosen as Θ = [0.1,15]. The single variable constrained optimization problem
(2.11) is solved using the optimize function in R ,which exploits a combination of golden
section search and successive parabolic interpolation. We stop the iteration of the solver
when the relative change in the objective is below 10−3. Table 2.1 displays the summary of
our first simulation study.
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δ = 0.1 δ = 0.3

Matern

ν0 = 0.5
η0 = (1,4) η0 = (1,7) η0 = (1,4) η0 = (1,7)

η̂ = (0.993,4.420) η̂ = (0.978,7.565) η̂ = (1.005,3.941) η̂ = (1.028,6.553)

ν0 = 1.5
η0 = (1,4) η0 = (1,7) η0 = (1,4) η0 = (1,7)

η̂ = (0.973,3.618) η̂ = (1.023,6.568) η̂ = (1.026,4.343) η̂ = (1.005,7.102)

ν0 = 2.5
η0 = (1,4) η0 = (1,7) η0 = (1,4) η0 = (1,7)

η̂ = (1.014,4.186) η̂ = (1.010,7.428) η̂ = (1.044,4.037) η̂ = (0.993,6.505)

Rational quadratic
ν0 = 0.5

η0 = (1,4) η0 = (1,7) η0 = (1,4) η0 = (1,7)

η̂ = (1.017,4.100) η̂ = (0.976,7.415) η̂ = (1.013,3.916) η̂ = (1.001,6.639)

ν0 = 1.5
η0 = (1,4) η0 = (1,7) η0 = (1,4) η0 = (1,7)

η̂ = (1.000,4.001) η̂ = (1.014,7.210) η̂ = (1.017,3.920) η̂ = (0.994,7.063)

Table 2.1: Estimation of η0 = (σ0, θ0) for the isotropic Matern and rational quadratic co-
variance functions, where Dn is a perturbed lattice of size 3202 with δ ∈ {0.1,0.3}.

The required CPU times for the numerical experiments in Table 2.1 are approximately 30
and 60 minutes for the rational quadratic and Matern kernels, respectively. However eval-
uating the full MLE for a such large sample size is intractable. As is apparent from Table
2.1, the estimated parameters, η̂, are in a close neighborhood of η0. Moreover, estimating
σ0 has a significantly higher precision than that of the range parameters, since as the distant
samples in Dn carry negligible information about θ0. Lastly, the condition number of the
covariance matrix increases with the value of range parameter, leading to a higher estima-
tion error ‖η0− η̂‖`2

for larger θ0. In the second simulation study which has the same set up
as the first experiment, Dn is a irregular grid of size 10002 = 106. We also set p = 5×105

in (2.15). Table 2.2 encapsulates the results of this experiment. The evaluation of η̂ for this
very high dimensional numerical study takes 8 hours on 60 cores with 4GB RAM.

δ = 0.1, ν0 = 0.5 δ = 0.3, ν0 = 1.5

Rational quadratic
η0 = (1,4) η0 = (1,7)

η̂ = (1.004,4.053) η̂ = (0.999,6.948)

Table 2.2: Estimation of η0 = (σ0, θ0) for the isotropic rational quadratic covariance func-
tions, where Dn is a perturbed lattice of size 10002 with δ ∈ {0.1,0.3}.

In the next set of experiments featuring GPs with isotropic covariance functions, we set
Dn to be a two dimensional perturbed lattice of size 1002. For such a scenario, η̂ can be
estimated in a few minutes. Thus, we simulated T = 100 independent realizations and η0

is estimated using the same procedure as previous studies, for each realization. The mean
and Root Mean-Squared Error (RMSE) have been computed across T experiments. Table
2.3 displays the average and RMSE for the standard deviation and range parameters for
different values of η, δ and covariance kernels. The instances for which η̂ hits the boundary
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points of Θ have been excluded in the procedure of calculating the mean and RMSE of the
estimates.
Looking at the left and right panels of the Table 2.3 reveals that the RMSE of σ̂ and θ̂

are slightly larger for the higher values of δ. Moreover, as we have discussed before, the
RMSE and the average norm of (η̂−η0) directly depends on the range parameter. It is
immediately clear that there is a considerable reduction in RMSE for rational quadratic
kernel comparing to the Matern class. This observation may look surprising for the reader,
as the condition number of the covariance matrix associated to Matern kernel is smaller
than that of rational quadratic due to its faster decay. Thus at the first glance, it may not
corroborate our developed theory regarding the consistency of IF estimation algorithm for
covariance matrices with bounded condition number. However, obtaining a highly accurate
estimate of the dependence parameters are more difficult for a rapidly decaying covariance
function, as more samples are almost independent. In the extreme case θ0 is unidentifiable
if K (·, θ0) is a compactly supported covariance function whose support size is strictly less
than (1−2δ) (In this case all the samples are independent).

δ = 0.1 δ = 0.3

Matern covariance

(σ0, θ0) = (1,4) (σ0, θ0) = (1,7) (σ0, θ0) = (1,4) (σ0, θ0) = (1,7)

θ̂±RSME = 4.107±1.224 θ̂±RSME = 7.259±2.462 θ̂±RSME = 3.982±0.980 θ̂±RSME = 6.814±2.233
(ν0 = 0.5) σ̂±RSME = 0.999±0.067 σ̂±RSME = 0.991±0.089 σ̂±RSME = 0.995±0.062 σ̂±RSME = 1.003±0.096

Matern covariance

(σ0, θ0) = (1,4) (σ0, θ0) = (1,7) (σ0, θ0) = (1,4) (σ0, θ0) = (1,7)

θ̂±RSME = 3.936±1.127 θ̂±RSME = 6.588±2.060 θ̂±RSME = 4.180±1.181 θ̂±RSME = 6.519±2.127
(ν0 = 1.5) σ̂±RSME = 1.002±0.070 σ̂±RSME = 0.992±0.096 σ̂±RSME = 0.995±0.072 σ̂±RSME = 1.018±0.107

Rational quadratic

(σ0, θ0) = (1,4) (σ0, θ0) = (1,7) (σ0, θ0) = (1,4) (σ0, θ0) = (1,7)

θ̂±RSME = 3.889±0.599 θ̂±RSME = 6.855±1.507 θ̂±RSME = 4.032±0.647 θ̂±RSME = 6.793±1.373
covariance (ν0 = 0.5) σ̂±RSME = 1.002±0.062 σ̂±RSME = 0.986±0.082 σ̂±RSME = 0.992±0.046 σ̂±RSME = 0.990±0.069

Rational quadratic

(σ0, θ0) = (1,4) (σ0, θ0) = (1,7) (σ0, θ0) = (1,4) (σ0, θ0) = (1,7)

θ̂±RSME = 3.984±0.342 θ̂±RSME = 7.160±1.010 θ̂±RSME = 4.016±0.348 θ̂±RSME = 7.127±1.116
covariance (ν0 = 1.5) σ̂±RSME = 0.999±0.028 σ̂±RSME = 0.994±0.074 σ̂±RSME = 0.994±0.026 σ̂±RSME = 0.995±0.049

Table 2.3: Mean and RMSE of η̂ over 100 independent experiments for the isotropic Matern
and rational quadratic covariance functions, where Dn is a perturbed lattice of size 1002

with δ ∈ {0.1,0.3}.

Now we turn to investigate the precision and RMSE of estimation algorithm (2.3) for the
geometric anisotropic covariance structure. Same as before, G is a zero mean stationary GP
in R2 observed on a perturbed lattice of size 1002. G has a geometric anisotropic covariance
kernel (Matern or rational quadratic) with

B0 =

 θ−1
0 0
0 ρ−1

0

 , θ0 = 4, and ρ0 = 6.

The parameter space Θ = {(θ0,ρ0) ∈ Θ} is a two dimensional box chosen as [0.1,15]2. The
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Figure 2.2: The above figures exhibit n−1/2Gn (Y, θ) for geometric anisotropic Matern co-
variance function with ν0 = 0.5. The spatial samples form a two dimensional randomly
δ−perturbed regular lattice of size N = 100. In the left panel, (θ0,ρ0) = (4,6) and δ = 0.1.
In the right panel, (θ0,ρ0) = (3,7) and δ = 0.3.

range parameters θ0 and ρ0 are estimated by solving the optimization problem (2.11). The
Figure 2.2 exhibits the objective function in (2.11) and its contours for a GP with geomet-
ric anisotropic Matern covariance with ν0 = 0.5 which has been sampled on a δ−perturbed
regular grid. In the left and right panels of Figure 2.2, the other parameters are respectively
given by (θ0,ρ0, δ) = (4,6,0.1) and (θ0,ρ0, δ) = (3,7,0.3). It can be seen from Figure 2.2 that
Gn is a unimodal function with only one stationary point. We perform the maximization
using the optim function in R and with L-BFGS-B algorithm [BLNZ95] (box constrained
BFGS). The maximum iteration and the initial guess of the L-BFGS-B method are respec-
tively 100 and (2,2). The components of the gradient function are computed using the
finite difference approximation with the step size of 10−3. We cease the iteration when the
relative change in the objective function is below 10−5. The computation procedure of the
average and RMSE of η̂ = (θ̂, ρ̂, σ̂) is exactly the same as the former simulation study. Table
2.4 presents a summary of the final results of this simulation study. It is clear from Table
2.4 that the RMSE for Matern covariance is significantly larger in comparison to rational
quadratic class. Furthermore, increasing ν0 for each covariance kernel leads to a slightly
larger RMSE .

26



δ = 0.1 δ = 0.3

Matern covariance (ν0 = 0.5)

(σ0,ρ0, θ0) = (1,6,4) (σ0,ρ0, θ0) = (1,6,4)

σ̂±RSME = 0.988±0.096 σ̂±RSME = 0.993±0.097
ρ̂±RSME = 6.042±1.885 ρ̂±RSME = 6.478±1.908
θ̂±RSME = 4.091±1.110 θ̂±RSME = 4.038±1.272

Matern covariance (ν0 = 1.5)

(σ0,ρ0, θ0) = (1,6,4) (σ0,ρ0, θ0) = (1,6,4)

σ̂±RSME = 0.993±0.108 σ̂±RSME = 0.984±0.104
ρ̂±RSME = 05.965±1.981 ρ̂±RSME = 6.160±1.890
θ̂±RSME = 3.740±1.146 θ̂±RSME = 3.970±1.243

Rational quadratic covariance (ν0 = 0.5)

(σ0,ρ0, θ0) = (1,6,4) (σ0,ρ0, θ0) = (1,6′4)

σ̂±RSME = 0.992±0.071 σ̂±RSME = 0.989±0.076
ρ̂±RSME = 5.978±1.241 ρ̂±RSME = 5.921±1.208
θ̂±RSME = 4.092±0.843 θ̂±RSME = 4.037±1.064

Rational quadratic covariance (ν0 = 1.5)

(σ0,ρ0, θ0) = (1,6,4) (σ0,ρ0, θ0) = (1,6,4)

σ̂±RSME = 0.996±0.036 σ̂±RSME = 0.998±0.036
ρ̂±RSME = 6.116±0.821 ρ̂±RSME = 6.158±0.766
θ̂±RSME = 4.045±0.543 θ̂±RSME = 4.150±0.524

Table 2.4: Mean and RMSE of η̂ over 100 independent experiments for the geometric
anisotropic Matern and rational quadratic covariance functions, where Dn is a perturbed
lattice of size 1002 with δ ∈ {0.1,0.3}.

2.5 Discussion

Investigation of the asymptotic properties of the non-likelihood based optimization algo-
rithms for estimating covariance parameters has remained relatively intact. Notwithstand-
ing the thorough study of the consistency, minimax optimality and asymptotic normality
of the stationary points of the IF loss function, there is much future work to be done to
determine the computational and statistical strengths and weaknesses of this algorithm in
either of the two frequently used asymptotic regimes. Here we mention a few among the
many future directions which were beyond the scope of this paper.

(a) As indicated in Remark 2.1, the IF loss function can be viewed as an approximate
minorizer for the likelihood loss (in the expected value sense) in the increasing domain
setting. However, more work needs to be done to know how to precisely characterize
a rich class of minorizers for the likelihood loss. We believe that responding to this
question will provide a flexible class of fast and consistent estimators of covariance
parameters.

(b) Spatial statisticians usually cast doubt upon the benefits of increasing domain asymp-
totics as spatial processes are unlikely to be stationary over a large domain. However
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the developed theory in this chapter has persuaded us that the IF algorithm can con-
sistently estimate microergodic covariance parameters, when applied on the precondi-
tioned samples of a Gaussian random field in a fixed domain.

2.6 Proofs of the Main Results

We first introduce a few notation to simplify the algebra in the forthcoming sections. For
any strictly positive scalar r and any θ0 ∈ Θ, the ball of radius r (with respect to the Eu-
clidean norm) centered at θ0 and its complement are defined by

Θθ0 (r) :=
{
θ ∈ Θ : ‖θ− θ0‖`2 ≤ r

}
, Θc

θ0
(r) := Θ \Θθ0 (r) .

Furthermore, for any θ1, θ2 ∈ Θ define

Mθ1,θ2 :=
K1/2

n (θ1) Kn (θ2) K1/2
n (θ1)

‖Kn (θ2)‖2`2

, Hθ1,θ2 := ‖Kn (θ2)‖`2 Mθ1,θ2 . (2.16)

Proof of Theorem 2.1. Our proof has two major parts. In the first part, the consistency of
θ̂n (correlation function’s parameters) will be substantiated. In the second part, we establish
the consistency of φ̂n, which has a closed form solution in terms of Y , correlation function
and θ̂n, by conditioning on the consistency of θ̂n. To this end, various types of concentration
inequalities regarding the quadratic forms (and their supremum over a bounded space) of
GPs are of the indispensable importance. Such results will be presented in the Section 2.7.
Let Z be a standard Gaussian vector in Rn. As Y and

√
φ0K1/2

n (θ0)Z have the same distri-
bution, (2.3) can be equivalently written by

(
φ̂n, θ̂n

)
= argmax

(φ,θ)∈I×Θ

{
φφ0Z>K1/2

n (θ0)Kn (θ) K1/2
n (θ0)Z−

φ2

2
‖Kn (θ)‖2`2

}
. (2.17)

The objective function in (2.17) is quadratic in terms of φ and its maximizer φ̂n has a
simple closed form. Replacing φ̂n to (2.17) gives a surrogate form for θ̂n. Omitting the
cumbersome algebra, the final results are given by

φ̂n

φ0
= Z>Mθ0,θ̂n

Z, θ̂n = argmax
θ∈Θ

Z>Hθ0,θZ. (2.18)

We first show (as Claim 1) the consistency of θ̂n, which is the supremum of a generalized
chi-square random variable. The purpose of Claim 2 is to find the estimation rate of φ0.
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Claim 1. Choose ξ > (m−1) and let rn := Cmin

√
lnn
n for some bounded positive scalar Cmin

(See Lemma 2.3 for its exact form). Then,

Pr
{
θ̂n ∈ Θc

θ0
(rn)

}
→ 0, as n→∞.

Proof of Claim 1. Consider the sequence r′n = n−1
√

lnn, ∀n. The boundedness of Θ guaran-
tees the existence of some R0 > 0 such that a ball of radius R0 contains Θ. So, the classical
volume argument implies that

∣∣∣∣Nr′n

(
Θc
θ0

(rn)
)∣∣∣∣ ≤ ∣∣∣Nr′n (Θ)

∣∣∣ . (
R0

r′n

)m

= o
(
nm)

. (2.19)

So, there is n1 ∈ N such that Nr′n

(
Θc
θ0

(rn)
)
≤ nm for any n ≥ n1. It follows from (2.18) that

Pr
{
θ̂n ∈ Θc

θ0
(rn)

}
≤ RHS := Pr(An) := Pr

Z>Hθ0,θ0Z ≤ sup
θ∈Θc

θ0
(rn)

Z>Hθ0,θZ

 .
Thus, it suffices to control RHS from above. For a properly chosen positive scalar C2,
define the event πn by

πn :=

 sup
θ∈Θc

θ0
(rn)

Z>Hθ0,θZ ≤ sup
θ∈Nr′n

(
Θc
θ0

(rn)
)Z>Hθ0,θZ +C2

√
lnn
n

 .
Notice that rn

√
n = O

(√
n−1 lnn

)
. According to Lemma 2.1, there is a bounded C2 > 0 for

which τn := Pr
(
πc

n
)
→ 0. We refer the reader to Lemma 2.1 for the closed form expression

of C2. An upper bound on RHS is obtained by conditioning An on πn.

RHS = Pr(An∩πn) +τn Pr
(
An | π

c
n
)
≤ τn + Pr(An∩πn)

(A)
≤ τn + Pr

Z>Hθ0,θ0Z ≤ sup
θ∈Nr′n

(
Θc
θ0

(rn)
)Z>Hθ0,θZ +C2

√
lnn
n


(B)
≤ τn + nm sup

θ∈Nr′n

(
Θc
θ0

(rn)
)Pr

Z>Hθ0,θ0Z ≤ Z>Hθ0,θZ +C2

√
lnn
n

 (2.20)

The way that πn and An have been defined trivially justifies inequality (A). Furthermore
(B) is inferred from the combination of (2.19) and the union bound. Applying Lemma 2.3
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guarantees the following result for any θ ∈Nr′n

(
Θc
θ0

(rn)
)
.

Pr

Z>Hθ0,θ0Z ≤ Z>Hθ0,θZ +C2

√
lnn
n

 ≤ n−(1+ξ). (2.21)

Finally, substituting (2.21) into (2.20) yields

RHS ≤
(
τn + nm−(1+ξ)

)
→ 0, as n→∞.

Claim 2. There exists a bounded scalar C > 0, depending on Dn, K and Ω, such that

π′n := Pr

∣∣∣∣∣∣ φ̂n

φ0
−1

∣∣∣∣∣∣ ≥ r′′n := C

√
lnn
n

→ 0, as n→∞.

(Here C = 2
(
DmaxCmin +C′Λmax

√
m
)

in which C′ is a large enough positive universal con-
stant and Cmin has been defined in Claim 1. Λmax and Dmax are given in the Proposition
2.5.)

Proof of Claim 2. Recall rn and r′n form Claim 1. Obviously,

π′n ≤ T1 + T2 := Pr
{
θ̂n ∈ Θc

θ0
(rn)

}
+ Pr


∣∣∣∣∣∣ φ̂n

φ0
−1

∣∣∣∣∣∣ ≥C

√
lnn
n

⋂(
θ̂n ∈ Θθ0 (rn)

) .
Since T1 tends to zero (via Claim 1), it suffices to show that T2 is a diminishing sequence
as n→∞. Let βθ̂n

be the closest point in Nr′n

(
Θθ0 (rn)

)
(which is a deterministic set) to θ̂n.

Based upon identity (2.18), we have∣∣∣∣∣∣ φ̂n

φ0
−1

∣∣∣∣∣∣ =
∣∣∣Z>Mθ0,θ̂n

Z−1
∣∣∣ (2.22)

Given that θ̂n belongs to Θθ0 (rn), applying the triangle inequality on the right hand side of
the identity (2.22) yields that, almost surely
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∣∣∣∣∣∣ φ̂n

φ0
−1

∣∣∣∣∣∣ ≤ ∣∣∣∣Z>Mθ0,θ̂n
Z−Z>Mθ0,βθ̂n

Z
∣∣∣∣+ ∣∣∣∣Z>Mθ0,βθ̂n

Z− tr
(
Mθ0,βθ̂n

)∣∣∣∣
+

∣∣∣∣tr (Mθ0,βθ̂n

)
−1

∣∣∣∣
(D)
≤ sup

θ∈Θθ0 (rn)


∣∣∣∣tr (Mθ0,βθ −1

)∣∣∣∣+ ∣∣∣∣Z>Mθ0,βθZ− tr
(
Mθ0,βθ

)∣∣∣∣
+
∣∣∣Z>Mθ0,θZ−Z>Mθ0,βθZ

∣∣∣


:= sup
θ∈Θθ0 (rn)

{
T21 (θ) + T22 (θ) + T23 (θ)

}
. (2.23)

Replacing the random quantities θ̂n and βθ̂n
with the nonrandom parameters θ and βθ is the

key advantage of (D). Now we control the terms T21,T22 and T23 from above, uniformly
over Θθ0 (rn). Lemma 2.2 guarantees the existence of a scalar C0, for which

lim
n→∞

Pr

 sup
θ∈Θθ0 (rn)

T23 (θ) ≤C0r′n

→ 1. (2.24)

C0 depends on Λmax and Dmax. See Lemma 2.2 for its exact formulation. For large enough
n, we have

C0r′n = O
(
n−1
√

lnn
)
<

1
2
DmaxCmin

√
lnn
n
. (2.25)

Now we control T21 (θ) uniformly from above using Proposition 2.5. The goal is to show
that

sup
θ∈Θθ0 (rn)

T21 (θ) <
3
2
DmaxCmin

√
lnn
n
. (2.26)

Applying the Cauchy-Schwartz inequality shows that (recalling Mθ1,θ2 from (2.16))

sup
θ∈Θθ0 (rn)

T21 (θ) = sup
θ∈Θθ0 (rn)

∣∣∣∣∣∣∣〈Kn (βθ) ,Kn(θ0)〉

‖Kn (βθ)‖2`2

−1

∣∣∣∣∣∣∣
= sup

θ∈Θθ0 (rn)

∣∣∣∣∣∣∣〈Kn (βθ) ,Kn (βθ)−Kn(θ0)〉

‖Kn (βθ)‖2`2

∣∣∣∣∣∣∣
≤ sup

θ∈Θθ0 (rn)

‖Kn (βθ)−Kn(θ0)‖`2

‖Kn (βθ)‖`2

≤ sup
θ∈Θθ0 (rn)

‖Kn (βθ)−Kn(θ0)‖`2
√

n
. (2.27)

31



Furthermore, using the part (b) of the Proposition 2.5, we get

sup
θ∈Θθ0 (rn)

‖Kn (βθ)−Kn(θ0)‖`2
√

n
≤ Dmax sup

θ∈Θθ0 (rn)
‖θ0−βθ‖`2

≤ Dmax sup
θ∈Θθ0 (rn)

(
‖θ−βθ‖`2

+ ‖θ0− θ‖`2

)
≤ Dmax

(
rn + r′n

)
<

3
2
DmaxCmin

√
lnn
n
. (2.28)

Note that the last inequality holds for large enough n. So (2.25) follows from replacing
(2.28) into (2.27). In the sequel we achieve a uniform upper bound on T22. For brevity
define un := Λmax

√
mn−1 lnn and select a large enough universal constant C′. Recall that

βθ, by its definition, is an element of the finite set Nr′n

(
Θθ0 (rn)

)
. Thus,

Pr

 sup
θ∈Θθ0 (rn)

T22 (θ) ≥C′un

 ≤ ∣∣∣∣Nr′n

(
Θθ0 (rn)

)∣∣∣∣ sup
θ∈Θθ0 (rn)

Pr
(
T22 (θ) ≥C′un

)
.

The same trick as (2.19) leads to
∣∣∣∣Nr′n

(
Θθ0 (rn)

)∣∣∣∣ = o (nm). So, it is adequate to show that

Pr
(
T22 (θ) ≥C′un

)
≤ n−m, ∀ θ ∈ Θθ0 (rn) . (2.29)

We employ Hanson-Wright inequality (Theorem 1.1, [RV+13]) for obtaining a probabilistic
upper bound on T22 (θ) (for a fixed θ).

Pr
{
T22 (θ) ≥C′

√
m lnn

(∥∥∥Mθ0,βθ

∥∥∥
`2
∨

∥∥∥Mθ0,βθ

∥∥∥
2→2

√
m lnn

)}
≤ n−m, ∀ θ ∈ Θθ0 (rn) .

For simplifying the upper bound on T22 (θ), we control the operator and Frobenius norms
of Mθ0,βθ from above. The following inequalities can be easily justified by Proposition 2.5.∥∥∥Mθ0,βθ

∥∥∥
`2
≤ Λmaxn−1/2,

∥∥∥Mθ0,βθ

∥∥∥
2→2 ≤ Λ2

maxn−1. (2.30)

Replacing (2.30) into Hanson-Wright inequality justifies (2.29). Hence

Pr

 sup
θ∈Θθ0 (rn)

T22 (θ) ≥C′un

 ≤ ∣∣∣∣Nr′n

(
Θθ0 (rn)

)∣∣∣∣n−m→ 0, as n→∞. (2.31)

Substituting inequalities (2.24), (2.25), (2.26) and (2.31) into (2.23) concludes the proof by
confirming that T2 goes to zero as n→∞.

Combining Claims 1 and 2 ends the proof.
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Proof of Theorem 2.2. Let rn = C
√

n−1 lnn for some strictly positive C whose exact form
will be given shortly. Let (φ̂n, θ̂n) be any stationary point of the optimization problem (2.3).
Due to the space constraint, we just show that θ̂n ∈Θθ0 (rn). The same technique as Claim ??
in the proof of Theorem 2.1 attains the convergence rate of φ̂n. Notice that θ̂n is a stationary
point of the optimization problem (2.18). We show that with a high probability there is no
θ ∈ Θc

θ0
(rn) for which the gradient of the objective function in (2.18) be exactly zero. In

order to substantiate our claim, we prove that the absolute value of the inner product of the
gradient and a fixed non-zero vector is uniformly greater than zero on Θc

θ0
(rn).

Let Z ∈ Rn is a standard Gaussian vector and θl, l = 1, . . . ,m is the lth component of θ.
We first give a closed form for the gradient function in (2.18), which will be denoted by
[Gl (θ)]m

l=1.

Gl (θ) := Z>Pl
θ0,θ

Z :=
∂

∂θl
Z>Hθ0,θZ

= Z>K1/2
n (θ0)

 ∂

∂θl
Kn (θ)−〈

∂

∂θl
Kn (θ) ,Kn (θ)〉

Kn (θ)

‖Kn (θ)‖2`2

K1/2
n (θ0)Z,

Clearly,
[
Gl(θ̂n)

]m

l=1
= 0m. Choose any λ ∈ Sm−1 and let Y := K1/2

n (θ0)Z. Observe that

W (θ) :=
m∑

j=1

λ jG j (θ) = Y>


m∑
j=1

λ j
∂

∂θ j
Kn (θ)−〈

m∑
j=1

λ j
∂

∂θ j
Kn (θ) ,Kn (θ)〉

Kn (θ)

‖Kn (θ)‖2`2

Y.

We can conclude that θ̂n ∈ Θθ0 (rn) in probability, if we can prove that

Pr

 inf
θ∈Θc

θ0
(rn)
|W (θ)| > 0

→ 1, as n→∞. (2.32)

(2.32) follows from the succeeding claims, whose proofs have been thoroughly presented
in [KSN17].

Claim 1. There exists a positive finite constant C0 (depending on K, Θ and Dn) such that

lim
n→∞

Pr

sup
θ∈Θ

∣∣∣∣∣∣∣∣W (θ)−
m∑

j=1

λ j tr
(
P j
θ0,θ

)∣∣∣∣∣∣∣∣ ≥C0
√

n lnn

 = 0. (2.33)

Claim 2. The succeeding inequality holds for large enough n (C0 is from the previous
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claim).

inf
θ∈Θc

θ0
(rn)

∣∣∣∣∣∣∣∣
m∑

j=1

λ j tr
(
P j
θ0,θ

)∣∣∣∣∣∣∣∣ >C0
√

n lnn

The Claim 1 provides a uniform concentration inequality regarding the random function
W (θ). In the Claim 2, we obtain a uniform lower bound on the expected value of W (θ)

over Θc
θ0

(rn).

Proof of Theorem 2.3. We follow the standard techniques presented in the Chapter 2 of
[Tsy09] for bounding the minimax risk from below. For any θ ∈ Θ, Pθ stands for the as-
sociated distribution to a zero mean Gaussian vector with the covariance function Kn (θ).
Finding far enough (with respect to the Euclidean distance) pair of the correlation param-
eters, θi ∈ Θ, i = 1,2, for which D

(
Pθ1 ‖ Pθ2

)
< α = 1/2 lies at the heart of our proof. The

two bounded positive scalars Dmax and Λmin appearing here are defined in Proposition 2.5.
To ease notation let rn := Λmin

8Dmax
√

n
(Choose n large enough so that 4rn ≤ diam(Θ)). Choose

θ1, θ2 ∈ Θ with 2rn ≤ ‖θ2− θ1‖`2 ≤ 4rn. The connectedness of Θ guarantees the existence of
such pair of points. We first use the Proposition 2.8 to show that D

(
Pθ1 ‖ Pθ2

)
≤ α.

D
(
Pθ1 ‖ Pθ2

)
≤ 2n

(
Dmax

Λmin
‖θ2− θ1‖`2

)2

≤ 32n
(
Dmax

Λmin
rn

)2

= α =
1
2
.

As α ≥ D
(
Pθ1 ‖ Pθ2

)
, Theorem 2.2 of [Tsy09] yields

inf
θ̂n

sup
θ0∈Θ

Pr
(∥∥∥θ̂n− θ0

∥∥∥
`2
≥ rn

)
≥

(
1
4

e−α
)
∨


1−

√
α
2

2

 =
1
4
. (2.34)

The desired statement follows from the fact that ‖η̂n−η0‖`2
≥

∥∥∥θ̂n− θ0
∥∥∥
`2

.

Proof of Theorem 2.4. Let g : Ω 7→Rm+1 represents the gradient of the objective function in
(2.2) with respect to η. Here g j, j = 11, . . . , (m + 1) stands for the jth entry of g. Analyzing
the exact second order Taylor expansion of

√
ng (η) around η0 at η = η̂n is the integral part

of the proof. We argue that the second order term of the expansion, which involves the third
order derivatives of the covariance function, converges to zero in probability as n grows to
infinity. We also show that the first term (zeroth order term) in the expansion converges
weakly to a Gaussian random variable. These two ingredients lead to the desirable result
by showing the asymptotic normality of the first order term in the expansion, which directly
depends on

√
n (η̂n−η0).
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For simplicity, define RJ
n (η) =

∂Rn(η)
∂η jq∂η j1

for any q ∈ {1,2} and J ∈ {1, . . . ,m + 1}q. In fact

ng j (η) = Y>R j
n (η)Y −〈R j

n (η) ,Rn (η)〉. (2.35)

Let η̂n be an arbitrary stationary point of optimization problem (2.2). Clearly, g (η̂n) = 0m+1.
The second order approximation of g j around η̂n yields

√
ng j (η̂n) =

√
ng j (η0) + 〈

√
n (η̂n−η0) ,∇ηg j (η)

∣∣∣∣
η=η0
〉+
√

n∆ j (η0, η̂n) ,

for some residual function ∆ j (·, ·). Note that ∆ j (η0, η̂n) is given by

∆ j (η0, η̂n) = (η̂n−η0)>
[
∂g j (η)
∂ηl1∂ηl2

∣∣∣∣
η=z j

]m+1

l1,l2=1
(η̂n−η0)

in which z j lies on the line segment between η0 and η̂n. Proposition D.10 of [Bac14]
guarantees the statement (2.14) for Σ = Σ−1

2 Σ1Σ−1
2 and hence concludes the proof, if

(a) The matrix Σ2 defined as the following, is well defined and positive definite.

Vn :=
[
−
∂

∂ηl
gk (η)

∣∣∣∣
η=η0

]m+1

l,k=1

Pr
→ Σ2, as n→∞.

(b)
√

ng (η0)
d
→N (0m+1,Σ1) for a positive semidefinite matrix Σ1 ∈ R(m+1)×(m+1).

(c) Pr
(

lim
n→∞

√
n∆ j (η0, η̂n) = 0

)
= 1, for any j ∈ {1, . . . ,m + 1}.

The reminder of the proof hinges on the following technicalities which verify conditions
(a)− (c).

Validating condition (a). The entries of Vn has the following explicit form.

Vn
lk =

1
n
〈Rl

n (η0) ,Rk
n (η0)〉+

1
n

{
Y>Rlk

n (η0)Y −〈Rlk
n (η0) ,Rn (η0)〉

}
.

Now define

Σ2 :=
[

lim
n→∞

〈Rl
n (η0) ,Rk

n (η0)〉
n

]m+1

l,k=1
.

Notice that the entries of Σ2 are well defined and bounded due to part (a) of Proposition
2.6. The proof will be presented in two steps: First we show that Σ2 is a positive definite
matrix. Second, we prove that Φn

lk :=
{
Y>Rlk

n (η0)Y −〈Rlk
n (η0) ,Rn (η0)〉

}
/n converges to zero
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in probability. To substantiate the first claim, consider an arbitrary λ ∈ Sm. It is required
to show that λ>Σ2λ > c, for some constant c > 0. The condition (A4.a) guarantees the
existence of positive scalars M2,r2 such that for any s ∈Dn,

max
s′∈Dn(s,r2)

∣∣∣∣∣∣∣
m+1∑
l=1

λl
∂

∂ηl
R
(
s− s′,η

) ∣∣∣∣
η=η0

∣∣∣∣∣∣∣ ≥ M2. (2.36)

Thus,

λ>Σ2λ = lim
n→∞

m+1∑
l,k=1

λlλk
〈Rl

n (η0) ,Rk
n (η0)〉

n
= lim

n→∞

1
n

∥∥∥∥∥∥∥
m+1∑
l=1

λlRl
n (η0)

∥∥∥∥∥∥∥
2

`2

= lim
n→∞

1
n

∥∥∥∥∥∥∥∥
m+1∑

l=1

λl
∂

∂ηl
R
(
s′− s,η

) ∣∣∣∣
η=η0


s,s′∈Dn

∥∥∥∥∥∥∥∥
2

`2

(A)
≥ M2

2 . (2.37)

Here, inequality (A) is an easy consequence of (2.36). The rest of the proof is devoted
to prove the second claim. Choose an arbitrary strictly positive ε. As Φn

lk is a zero mean
random variable, using Chebyshev’s inequality we get

Pr
(∣∣∣Φn

lk

∣∣∣ ≥ ε) ≤
var

(
Φn

lk

)
ε2 =

2
∥∥∥∥R1/2

n (η0)Rlk
n (η0)R1/2

n (η0)
∥∥∥∥2

`2

n2ε2

(B)
.

(
φ0

nε

∥∥∥Rlk
n (η0)

∥∥∥
`2

)2

(C)
= O

(
n−1

)
→ 0,

in which (B) and (C) are implied by Propositions 2.5 and 2.6, respectively (See Section 2.7
for more details about the constants).
Validating condition (b). Define Q j

n := n−1/2R1/2
n (η0)R j

n (η0)R1/2
n (η0) for 1 ≤ j ≤ m + 1,

and write Ψn,λ := λ1Q1
n + . . .+λm+1Qm+1

n for any λ = (λ1, . . . ,λm+1) ∈ Sm. Rewriting (2.35)
yields

√
ng j (η0) d

= Z>Q j
nZ− tr

(
Q j

n

)
.

The asymptotic normality of
√

ng (η0) is justified if there is a positive semi-definite Σ1 such
that 〈λ,

√
ng (η0)〉

d
→ N

(
0,λ>Σ1λ

)
for any λ ∈ Sm. This statement trivially holds for zero

Ψn,λ. So, without loss of generality assume that Ψn,λ is non-zero. Observe that

〈λ,
√

ng (η0)〉 =
{
Z>Ψn,λZ− tr

(
Ψn,λ

)}∥∥∥Ψn,λ
∥∥∥
`2

∥∥∥Ψn,λ
∥∥∥
`2
.

We claim that lim
n→∞

2
∥∥∥Ψn,λ

∥∥∥2
`2

= λ>Σ1λ for a covariance matrix Σ1. The construction of Ψn,λ
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yields
2
∥∥∥Ψn,λ

∥∥∥2
`2

= 2λ>
[
〈Qk

n,Q
l
n〉

]m+1

l,k=1
λ. (2.38)

Thus, it is enough to show that the matrix defined by Σ1 := lim
n→∞

2
[
〈Qk

n,Q
l
n〉

]m+1

l,k=1
is well

defined (with bounded entries) and positive semi-definite. Well definiteness of Σ1 can be
proved using the same techniques as the proof of Claim 1 and by employing Propositions
2.5 and 2.6. The positive semi-definite property of Σ1 is an immediate consequence of
(2.38). We conclude the proof by showing that{

Z>Ψn,λZ− tr
(
Ψn,λ

)}
√

2
∥∥∥Ψn,λ

∥∥∥
`2

d
→N (0,1) .

According to Lemma 2.4, this statement is valid if the following claim holds.

Claim 1.
∥∥∥Ψn,λ

∥∥∥−1
`2

∥∥∥Ψn,λ
∥∥∥

2→2 ≤C/
√

n for some positive scalar C.

Proof of Claim 1. We show that C depends on m, Λmax, Λmin and Λ′max (Except m, all the
constant are introduced in Propositions 2.5 and 2.6). Obviously Ψn,λ can be rewritten as,

Ψn,λ =
1
√

n
R1/2

n (η0)


m+1∑
j=1

λ jR
j
n (η0)

R1/2
n (η0)

Applying Propositions 2.5, we get

∥∥∥Ψn,λ
∥∥∥

2→2∥∥∥Ψn,λ
∥∥∥
`2

≤

‖Rn (η0)‖2→2

∥∥∥∥∑m+1
j=1 λ jR

j
n (η0)

∥∥∥∥
2→2∥∥∥∥∑m+1

j=1 λ jR
j
n (η0)

∥∥∥∥
`2
λmin {Rn (η0)}

≤
Λmax

Λmin

∥∥∥∥∥∥∥∥
m+1∑
j=1

λ jR
j
n (η0)

∥∥∥∥∥∥∥∥
2→2

∥∥∥∥∥∥∥∥
m+1∑
j=1

λ jR
j
n (η0)

∥∥∥∥∥∥∥∥
−1

`2

. (2.39)

Furthermore, using Proposition 2.6 leads to∥∥∥∥∥∥∥∥
m+1∑
j=1

λ jR
j
n (η0)

∥∥∥∥∥∥∥∥
2→2

≤

m+1∑
j=1

∣∣∣λ j
∣∣∣ ∥∥∥∥R j

n (η0)
∥∥∥∥

2→2
≤ Λ′max ‖λ‖`1 ≤ Λ′max

√
m + 1.

From (2.37) we know that there is a scalar C0 ∈ (0,∞) for which
∥∥∥∥∑m+1

j=1 λ jR
j
n (η0)

∥∥∥∥
`2
≥

C0
√

n. Replacing the last two inequalities into (2.39) ends the proof.

In conclusion we state that the condition (c) can be proved using akin techniques as the
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proof of Proposition 3.2 of [Bac14]. We omit the technical details due to the space con-
straints.

2.7 Technical Results

In this section, we only prove the auxiliary results of independent interest and the proof of
other technical lemmas and propositions will be omitted. The detailed proof of all results
appearing in this section can be found in [KSN16].
The first result examines the perturbation of some norms of Kn (θ) with respect to θ. It
appears to be of great importance for proving Theorems 2.1–2.4 in the Section 2.6.

Proposition 2.5. Suppose that Dn admits Assumption 2.1. Moreover, Assumption 2.2
holds for Θ and K. Construct n×n correlation matrix Kn (θ) :=

[
K (s− s′, θ)

]
s,s′∈Dn

for any
θ ∈ Θ.

(a) There are bounded positive scalars Λmin and Λmax (depending on K, Θ, d and δ) such
that

Λmin ≤min
n∈N

min
θ∈Θ

1∥∥∥K−1
n (θ)

∥∥∥
2→2

, max
n∈N

max
θ∈Θ
‖Kn (θ)‖2→2 ≤ Λmax.

(b) There exist scalars Dmin,Dmax ∈ (0,∞) (depending on K, Θ, d and δ) such that

‖Kn (θ2)−Kn (θ1)‖2→2 ≤Dmax ‖θ2− θ1‖`2 , (2.40)

1
√

n
‖Kn (θ2)−Kn (θ1)‖`2 ≤Dmax ‖θ2− θ1‖`2 , (2.41)

and
1
√

n
‖Kn (θ2)−Kn (θ1)‖`2 ≥Dmin ‖θ2− θ1‖`2 , (2.42)

for any θ1, θ2 ∈ Θ.

For ease of reference, we present the following result as a standalone Proposition. Its proof
is akin to that of Proposition 2.5 and will be skipped to avoid redundancy.

Proposition 2.6. Suppose that Dn admits Assumption 2.1. Moreover, Θ and K satisfy
Assumption 2.3. Construct the matrix ∂Kn (θ)/∂θ j :=

[
∂K (s− s′, θ)/∂θ j

]
s,s′∈Dn

,for θ ∈ Θ

and j = 1, . . . ,m.

(a) There is a bounded strictly positive scalar Λ′max (depending on K, Θ, d and δ) such
that

max
n∈N

max
θ∈Θ

∥∥∥∥∥∥ ∂

∂θ j
Kn (θ)

∥∥∥∥∥∥
2→2
≤ Λ′max,
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(b) There is D′max > 0 such that for any θ1, θ2 ∈ Θ∥∥∥∥∥∥ ∂

∂θ j
Kn (θ2)−

∂

∂θ j
Kn (θ1)

∥∥∥∥∥∥
2→2
≤D′max ‖θ2− θ1‖`2 . (2.43)

The bounded positive scalars Dmax,Dmin and Λmax, which have been introduced in the
Proposition 2.5, become frequently apparent in the subsequent results in this section. It
is also proper to remind the reader that Nε (A) stands for the ε−net of A with respect to
the Euclidean distance. Furthermore, the matrices Hθ1,θ2 and Mθ1,θ2 have been formerly
defined in (2.16) for any pair of the correlation function parameters θ1, θ2. The succeeding
two Lemmas (2.1 and 2.2), which come in handy in the proof of Theorem 2.1, establish
a probabilistic upper bound on the maximum of a quadratic Gaussian expression over a
uncountable set Θ in terms of its largest value over one of its finite subset.

Lemma 2.1. Let Z ∈ Rn be a standard Gaussian vector and suppose that Dn satisfies As-
sumption 2.1. Furthermore, assume that Θ and K admit Assumption 2.2. For any vanishing
positive sequence {rn}n∈N, any non-empty Θ̄ ⊂ Θ and each θ0 ∈ Θ,

lim
n→∞

Pr


sup
θ∈Θ̄

Z>Hθ0,θZ− sup
θ∈Nrn(Θ̄)

Z>Hθ0,θZ

 ≥Crn
√

n

 = 0, (2.44)

where C = 2Λmax (1 +Dmax).

Lemma 2.2. Let Z ∈ Rn be a standard Gaussian vector. Suppose that Assumption 2.1 and
Assumption 2.2 hold for Dn, Θ and K. For any strictly positive vanishing sequence {rn}

∞
n=1,

any non-empty Θ̄ ⊂ Θ and arbitrary θ0 ∈ Θ,

Pr

sup
θ∈Θ̄

∣∣∣∣Z> (
Mθ0,θ −Mθ0,βθ

)
Z
∣∣∣∣ ≥Crn

→ 0, as n→∞.

Here βθ represents the nearest element of Nrn

(
Θ̄
)

to θ and C = 2Dmax
(
1 + 2Λ2

max

)
.

Now we state a lemma which plays a crucial role in the proof of Theorem 2.1.

Lemma 2.3. Let Z ∈Rn be a standard Gaussian vector and let C, ξ > 0. Suppose that Θ and
K satisfy Assumption 2.2. Select θ1, θ2 ∈ Θ such that

‖θ2− θ1‖`2 ≥Cmin

√
lnn
n
, (2.45)

in which Cmin := 4D−1
minΛ2

max
√

C′ (1 + ξ) (Recall Dmin and Λmax, from the Proposition 2.5),
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for some appropriately chosen universal constant C′ > 0. There exists n0 = O (1) (depend-
ing on C, ξ, K, Dn and Θ) such that for any n ≥ n0

p := Pr

Z>
(
Hθ2,θ2 −Hθ2,θ1

)
Z ≤C

√
lnn
n

 ≤ n−(1+ξ). (2.46)

Refer to the identity (2.16) for the definition of Hθ2,θ1 .

The next proposition rigorously expresses the uniform concentration of the Euclidean
squared norm of Gaussian vectors with the covariance matrix Kn (θ) , θ ∈ Θ around their
mean. We employ such inequality for proving Theorem 2.2.

Proposition 2.7. Let Θ ⊂ Rm be a bounded set. Consider the class of n by n matrices
{Πn (θ)}θ∈Θ parametrized by θ ∈ Θ. Suppose that the following conditions hold

(a) The operator norm of Πn (θ) is uniformly bounded in Θ. Namely,

M := sup
n

sup
θ∈Θ
‖Πn (θ)‖2→2 <∞.

(b) The mapping
(
θ,‖·‖`2

)
7→ (Πn (θ) ,‖·‖2→2) is Lipschitz. Namely, there is C > 0 for which

‖Πn (θ2)−Πn (θ1)‖2→2 ≤C ‖θ2− θ1‖`2 , ∀ θ1, θ2 ∈ Θ. (2.47)

(c)
‖Πn (θ)‖2→2

‖Πn (θ)‖`2

= o
(

1
√

lnn

)
, ∀ θ ∈ Θ.

Then, there is a constant C′ > 0 such that

lim
n→∞

Pr
(
sup
θ∈Θ

∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}
∣∣∣ ≥C′

√
n lnn

)
= 0.

Proof. Let rn = C−1√lnn/n in which C has been defined in (2.47) and let Nrn (Θ) denote
the rn-covering set of Θ. As before, for any θ let βθ represents the closest element of Nrn (Θ)

to θ. Observe that,

RHS :=
∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}−Z>Πn (βθ)Z + tr {Πn (βθ)}

∣∣∣
=

∣∣∣〈Πn (θ)−Πn (βθ) ,ZZ>+ In〉
∣∣∣ ≤ ‖Πn (θ)−Πn (βθ)‖2→2

∥∥∥ZZ>+ In
∥∥∥S1

(A)
≤ C ‖θ−βθ‖`2

∥∥∥ZZ>+ In
∥∥∥S1
≤Crn

∥∥∥ZZ>+ In
∥∥∥S1

=

√
lnn
n

(
n + ‖Z‖`2

)
,
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in which ‖·‖S1 stands for the nuclear norm (absolute sum of eigenvalues). Note that the
obtained upper bound does not depend on θ (uniform upper bound). Moreover, based upon
Hanson-Wright inequality there is c > 0 for which

(
n + ‖Z‖`2

)
≤ 3n with probability at least

1− exp(−cn). Thus, RHS ≥ 3
√

n lnn with probability at most exp(−cn). Hence, as n→∞

we get

Pr

 supθ∈Θ
∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}

∣∣∣ ≥
supθ∈Nrn (Θ)

∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}
∣∣∣+ 3
√

n lnn

→ 0. (2.48)

In the sequel we find a tight upper bound on supθ∈Nrn (Θ)

∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}
∣∣∣. Applying

condition (c) on Hanson-wright inequality and using union bound leads to

Pr

 sup
θ∈Nrn (Θ)

∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}
∣∣∣ ≥C0 sup

θ∈Θ
‖Πn (θ)‖`2

√
lnn

 ≤ ∣∣∣Nrn (Θ)
∣∣∣n−m,

for some constant C0 > 0 depending on m. Notice that supθ∈Θ ‖Πn (θ)‖`2 ≤ M
√

n according
to condition (a). Moreover, as we argued in (2.29),

∣∣∣Nrn (Θ)
∣∣∣ = o (nm). Thus,

lim
n→∞

Pr

 sup
θ∈Nrn (Θ)

∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}
∣∣∣ ≥C0M

√
n lnn

 = 0.

Replacing the last inequality into (2.48) concludes the proof.

The following result gives an upper bound on the Kullback-Leibler divergence of two zero
mean multivariate Gaussian distributions respectively associated with the two covariance
matrices Kn (θi) , i = 1,2. Such upper bound is extremely useful for establishing Theorem
2.3.

Proposition 2.8. Choose θ1, θ2 ∈ Θ in such a way that ‖θ2− θ1‖`2 ≤ Λmin/ (2Dmax). Let
Pi, i = 1,2, denotes the associated probability distribution to a zero mean Gaussian vector
with the covariance matrix Kn (θi) ∈ Rn×n, i = 1,2. Then,

D (P1 ‖ P2) ≤ 2n
(
Dmax

Λmin
‖θ2− θ1‖`2

)2

.

Proof. For any symmetric matrix A ∈Rn×n, let λi (A) , i = 1, . . . ,n, denotes its ith eigenvalue
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in decreasing order. The von Neumann’s trace inequality [Mir75] yields

D (P1 ‖ P2) = 〈K−1
n (θ2) ,Kn (θ1)〉−n + ln

(
det Kn (θ2)
det Kn (θ1)

)
≤ Q :=

n∑
j=1

{
λ j (Kn (θ1))
λ j (Kn (θ2))

−1− ln
λ j (Kn (θ1))
λ j (Kn (θ1))

}
.

We finish the proof by acquiring a proper upper bound on Q. Define f : (0,∞) 7→ R by
f (x) = |x−1− ln x|. Applying the second order Taylor’s expansion around x = 1 shows that
f (x) ≤ 2(x−1)2 for |x−1| ≤ 1/2.

Claim 1. The succeeding inequality holds for any j = 1, . . . ,n.∣∣∣∣∣∣λ j (Kn (θ1))
λ j (Kn (θ2))

−1

∣∣∣∣∣∣ ≤ Dmax

Λmin
‖θ2− θ1‖`2 ≤

1
2
.

Claim 1 provides the key tool to control Q from above.

Q =

n∑
j=1

f
[
λ j {Kn (θ1)}
λ j {Kn (θ2)}

]
≤ 2

n∑
j=1

[
λ j {Kn (θ1)}
λ j {Kn (θ2)}

−1
]2

≤ 2
n∑

j=1

(
Dmax

Λmin
‖θ2− θ1‖`2

)2

= 2n
(
Dmax

Λmin
‖θ2− θ1‖`2

)2

.

In conclusion, we substantiate Claim 1. The first inequality can be established using Propo-
sition 2.5 and the second one is obvious.∣∣∣∣∣∣λ j {Kn (θ1)}

λ j {Kn (θ2)}
−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣λ j {Kn (θ1)}−λ j {Kn (θ2)}
λ j {Kn (θ2)}

∣∣∣∣∣∣ ≤ ‖Kn (θ2)−Kn (θ1)‖2→2

λn {Kn (θ2)}

≤
Dmax ‖θ2− θ1‖`2

Λmin
.

Now we demonstrate the asymptotic normality of the normalized quadratic Gaussian forms.
We exploit this fact in the proof of Theorem 2.4.

Lemma 2.4. For n ∈N, let Zn ∈Rn be a standard Gaussian vector and let An ∈Rn×n. Then,

Ψn :=
{

Z>n AnZn− tr (An)
‖An‖`2

}
d
→N (0,2) ,

provided that lim
n→∞
‖An‖

−1
`2
‖An‖2→2 = 0.
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Proof. Let Ψ∞ be a zero mean Gaussian random variable with variance 2. So,
lnEexp(tΨ∞) = t2 for any t ∈ R. The basic properties of the quadratic forms of Gaussian
vectors yields

lnEexp(tΨn) = −
1
2

lndet
(
In−2t

An

‖An‖`2

)
−

t tr (An)
‖An‖`2

= −
1
2

n∑
j=1

{
ln

(
1−

2tλ j (An)
‖An‖`2

)
+

2tλ j (An)
‖An‖`2

}
(A)
=

n∑
j=1

( tλ j (An)
‖An‖`2

)2

+ o


(
tλ j (An)
‖An‖`2

)2

→ t2, as n→∞.

Here (A) follows from expanding ln(1− x) around 1 for infinitesimal x (since
λ j (An)/‖An‖`2 vanishes as n → ∞). Consequently, Ψn converges in distribution to Ψ∞

by the continuity theorem of moment generating functions.

The last result of this section studies the shrinkage behaviour of the partial derivatives of
Matern covariance function with respect to its fractal index. In turns out to be useful for
corroborating the part (a) of Remark 2.2.

Lemma 2.5. Let Kν : Rd 7→ R be a geometric anisotropic (Recall from Definition 2.1)
Matern correlation function given by

Kν (r) =
21−ν

Γ (ν)
Kν

(√
r>Ar

)
,

in which Kν stands for the modified Bessel function of the second kind and A satisfies the
condition 2.7. Then for any β ∈ N and m ∈ N, there is a bounded constant Cβ,A such that∣∣∣∣∣ ∂m

∂νm Kν (r)
∣∣∣∣∣ ≤ Cβ,A

1 + ‖r‖2β
`2

, ∀ r = (r1, . . . ,rd) ∈ Rd. (2.49)
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CHAPTER 3

Local Inversion-Free (LIF) Covariance
Estimation

3.1 Introduction

In Chapter 2, we have studied the computationally efficient IF covariance estimation al-
gorithm proposed in Anitescu et al. [ACS16]. The IF loss function is independent of the
precision matrix and can be computed in O

(
n2

)
flops. When the covariance matrix has a

bounded condition number, studies in [ACS16, KSN16] have established the consistency
and asymptotic normality of IF estimate. However in the presence of spatial correlation,
the condition number often grows without bound with the sample size, specifically if large
number of samples are collected in a fixed and bounded domain. In other words, the
inversion-free algorithm is ineffective, especially for large data sets, without a proper pre-
processing step for reducing the strong correlation between the samples. Some dependence
reduction schemes, which we refer to as preconditioning, are introduced in [Che13,SCA12]
and chapter 3 of [Lee12] to decrease the condition number of the covariance matrix.
In this chapter we present a versatile and computationally efficient class of inversion-free
optimization algorithms that can open new horizons to broader classes of the covariance
estimators in the geostatistics. Our proposed loss function, which will be referred to as the
Local-Inversion Free (LIF), is closely connected to the local moment matching procedure
applied to the preconditioned data. For constructing the LIF loss we split the observed
samples into bn (possibly overlapping) clusters and take the weighted average of the IF
loss functions for the different bins. The preconditioning is crucial for statistical efficiency
of the LIF algorithm as it significantly reduces the correlation between the distant clusters.
Note that the LIF procedure comprises a rich and flexible class of estimation algorithms,
depending on bn, size, and the shape of each cluster. For instance the inversion-free loss
in [ACS16] is indeed an element of the LIF class in which there is only a single cluster, i.e.,
bn = 1. Furthermore, the quadratic variation-based approach proposed by Anderes [And10]
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is a special instance in the LIF class (in the other extreme scenario of bn = n). So the LIF
class can be viewed as a spectrum of computationally scalable and statistically consistent
algorithms building a bridge between the well-known approaches in the literature. Finally,
exploiting the divide and conquer strategy can significantly expedite the estimation proce-
dure, while preserving the key statistical properties. Strictly speaking, the LIF loss can be
evaluated in order n2/bn operations. We present fairly comprehensive numerical studies on
large data to examine the computational advantage of our method.
With an appropriate choice of bn, the LIF function can be much easier to compute than the
log-likelihood. However multiple evaluation of such function, which is necessary for any
gradient-based optimization algorithm, is still formidable for large data sets, particularly on
a single computing core. Another advantage of the our proposed estimator is a fairly sim-
ple parallel implementation of evaluating the objective function on a shared or distributed
memory system, that is imperative for high resolution spatial processes.
We also analyze the large sample properties of the LIF algorithm such as

√
n-consistency

and asymptotic normality given one realization of the GP on a d-dimensional irregular
lattice. The covariance function of the GP is assumed to be isotropic Matern with known
smoothness parameter. This class of covariance functions has numerous application in
geostatistics and has attracted considerable attention on the theoretical side of the field
(see e.g., [And10, KSN08, Ste12, Zha04]). Fixed domain asymptotics are generally more
realistic as Gaussian random fields are rarely stationary over a large region. It is known that
not all the covariance parameters are consistently estimable under the fixed domain regime,
e.g., [Zha04]. It is also worthwhile to mention that studying the infill asymptotics for
covariance estimation is much more difficult comparing to the increasing domain, and there
are only few papers in the literature, particularly for GPs observed on multidimensional
irregular grids (see e.g., [KSN08, WL+11, Zha04]).

Our contributions. The aim of this chapter is two-fold: presenting the local inversion-
free spectrum of covariance estimation algorithms, and investigating its fixed-domain
asymptotic properties for d-dimensional isotropic Matern GP, observed on an irregular
grid Dn with n points. We now summarize the main contribution of this chapter with fur-
ther details.

1. We combine the divide and conquer technique and the inversion-free algorithm
[ACS16] to propose the flexible and computationally efficient class of LIF covari-
ance estimation algorithm. The proposed loss function can be effectively optimized
as
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• Breaking the preconditioned sample into bn bins, the LIF loss function (and its
gradient with respect to the covariance parameters) can be computed in order
n2/bn operations.

• Evaluating the LIF loss can be accelerated on both shared and distributed mem-
ory machines. Specifically on a machine with p cores, implementing each iter-
ation of the gradient descent algorithm can be p times faster.

2. We know from [Zha04] that for the isotropic Matern GP, the variance and the range
parameter are not separately consistently estimable when d ≤ 3. Thus we only con-
centrate on estimating the microergodic parameter which is of great interest in the
literature. We show that under some regularity conditions on Dn and for any bin-
ning scheme, all the stationary points of the LIF objective function are concentrated
around the true parameter on a ball of radius O(

√
n−1 logn), with high probability.

We also substantiate the asymptotic normality of this estimate. In other words, the
LIF loss does not sacrifice the asymptotic rate for increasing the speed and memory
efficiency.

3. A fairly comprehensive set of synthetic numerical experiments are conducted for as-
sessing the role of preconditioning, the irregularity of sampling locations, and the
clustering scheme in the performance of the LIF estimate. Our simulation studies
corroborate the developed asymptotic theory also reveals the stability of the LIF es-
timate with respect to the size and shape of the clusters. We also demonstrate the
efficiency of our proposed algorithm for data sets of 2.5×105 data points.

Plan of the chapter. Section 3.2 describes the geometry of sampling sites, the precon-
ditioning, and the IF method. In Section 3.3, we propose the family of the LIF loss func-
tions and introduce an efficient parallel technique for evaluating such functions. Section
3.4 establishes the fixed domain asymptotic properties of the LIF algorithm such as

√
n-

consistency and the asymptotic normality, given samples in a d-dimensional space with
d ≤ 3. In Section 3.5 we present a series of simulation studies to assess the performance of
the LIF estimator. Section 3.6 serves as the conclusion and discusses future directions. We
substantiate the main results of this chapter in Section 3.7. Finally, Sections 3.8.1 and 3.8
not only contain some auxiliary technicalities which are crucial in Section 3.7, also present
a comprehensive sensitivity analysis of the correlation matrix of the preconditioned data
with respect to the range parameter, which may becomes useful for the asymptotic analysis
of other estimation algorithms in geostatistics.
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Notation. For the convenience of the reader, we collect standard pieces of notation here.
j =
√
−1 denotes the imaginary unit. Boldface symbols denote vectors. ∧ and ∨ stand for

the minimum and maximum operators. For any m ∈ N, 0m denotes all zeros column vector
of length m. Furthermore, for any p ∈ {1, . . . ,m}, ep denotes the unit vector along the pth

coordinate. If u and v are vectors of length m, then uv is a compact way of referring to
Πm

i=1uvi
i (we define 00 to be 1). For matrices A and B of the same size, by writing A � B,

we mean that A− B is a symmetric positive semi-definite matrix. Furthermore, 〈A,B〉 :=
tr

(
A>B

)
refers to their trace inner product. We use various types of matrix norms on A ∈

Rn×n in this chapter. For any p ∈ [1,∞), ‖A‖`p
:=

(∑
i, j

∣∣∣Ai j
∣∣∣p)1/p

stands for the element-wise
p−norm of A. We also write ‖A‖2→2 to denote the usual operator norm (largest singular
value) of A. Moreover ‖A‖S1 represents the sum of the singular values of A, which is called
the nuclear norm. For Ω1,Ω2 ⊂ Rm, dist (Ω1,Ω2) := infωi∈Ωi, i=1,2 ‖ω1−ω2‖`2 refers to their
mutual distance with respect to the Euclidean norm. Moreover, for A ⊂ Rm and r > 0,
Nr (A) denotes a subset of A (of minimal size) such that for each a ∈A, dist ({a} ,Nr (A)) ≤
r. The cardinality of such set is called the covering number of A. We also write diam(Ω) =

supω1,ω2∈Ω
‖ω2−ω1‖`2 to denote the diameter of a bounded set Ω ⊂ Rm. For a symmetric,

positive semi-definite A ∈ Rn×n with spectral decomposition A = UΛU>,
√

A := UΛ1/2U>

represents its symmetric square root. For two non-negative sequences {am}
∞
m=1 and {bm}

∞
m=1,

we write am � bm if there are strictly positive and bounded scalars Cmin,Cmax such that
Cmin ≤ lim

m→∞
am/bm ≤ Cmax. Moreover, am . bm refers to the case that am/bm ≤ Cmax <∞

as m→∞. Lastly, Kν (·) and Γ (·) respectively represent the modified Bessel function of the
second kind of order ν and the Gamma function.

3.2 Problem Formulation and Background

Let D be a bounded subset of Rd such as [0,1]d. Consider a zero mean, real valued, and
stationary GP G on D. The strictly positive quantity φ0 refers to the variance of G and
ρ0 denotes the unknown correlation parameters (which will be referred to as the range
parameters). For instance if G is a geometric anisotropic process on D, then there are a
fully known covariance function K and a matrix ρ0 ∈ Rd×d such that

EG (s)G (t) = φ0K
(∥∥∥ρ−1

0 (t − s)
∥∥∥
`2

)
, ∀ s, t ∈D

Throughout this chapter, we assume that ρ0 belong to a compact, connected space Θ0 (with
respect to the Euclidean distance). We also restrict d to be less than or equal 3. The
objective is to estimate the covariance parameters, given n samples (from one realization)
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of G at the locations Dn = {s1, . . . , sn} ⊂D. As the first step we precisely formulate Dn. Dn is
called a d-dimensional regular (rectangular) lattice with n = Nd points, if Dn = {1/N, . . . ,1}d.
In such a lattice the smallest distance between neighboring locations decreases with the rate
of N−1. This fact provides a clue for extending the notion of the regular lattice.

Assumption 3.1. Let Dn ⊂D be a set of size n. For any s ∈Dn, let rs,i denotes the distance
from s to its ith closest neighbor in Dn \ {s}. There are positive scalars Cmin and Cmax

(depending on d) such that

Cmin

( i
n

) 1
d
≤ rs,i ≤Cmax

( i
n

) 1
d
, ∀ s ∈Dn, and i = 1, · · · , (n−1) . (3.1)

Assumption 3.1, which is obviously satisfied by a d-dimensional regular lattice, has been
introduced in Section 3 of [Lee12]. It generalizes the concept of regular lattice in two
aspects. First, on the contrary to the number of points in a regular lattice, there is no
restriction on n. Moreover, D is not restricted to be [0,1]d. Indeed D can even be the union
of a finite number of connected components, as long as each of them satisfy condition (3.1)
and encompasses a non-vanishing fraction of samples, as n tends to infinity.

3.2.1 Preconditioning

As we argued in Section 3.1, controlling the strong spatial dependence between the ob-
served samples {G (s1) , . . . ,G (sn)} is essential for reducing the condition number of the
covariance matrix. More precisely, preconditioning is a surjective linear mapping from Rn

to Rn′ for some n′ ≤ n, designed to reduce the correlation between the transformed samples.
Note that as n′ ≤ n, we may lose a meager fraction of information in the preconditioning
procedure, which can be viewed as the price we pay for reducing the correlation in the
transformed data. Various types of preconditioners has been studied for GPs observed on
regular and irregular lattices in the literature (see e.g., [Che13, Lee12, SCA12]). Now, we
precisely formulate the preconditioner proposed by [Lee12] for irregularly spaced observa-
tions. Before proceeding further, it would be more convenient to define N := bn1/dc.

Definition 3.1. Let m ∈ N (which does not grow with the sample size). For any s ∈ Dn,
consider Nm (s) ⊂ Dn and a set of real coefficients

{
am,s (t) : t ∈Nm (s)

}
satisfying the fol-

lowing conditions:

1. The maximum distance between s ∈ Dn and the other points in Nm (s) is of order
N−1. Namely, ‖t − s‖`2 . 1/N for any t ∈Nm (s).

2. For any r ∈ Zd with non-negative entries and ‖r‖`1 < m,
∑

t∈Nm(s) am,s (t) (t − s)r = 0.
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3. There is a vector r ∈ {0,1, . . .}d with ‖r‖`1 ≥ m such that
∑

t∈Nm(s) am,s (t) (t − s)r 6= 0.

4.
∑

t∈Nm(s) a2
m,s (t) = 1 and am,s (t) 6= 0 for any t ∈Nm (s).

We define the preconditioned process of order m, which is represented by Gm, as

Gm (s) := Nν
∑

t∈Nm(s)

am,s (t)G (t) , ∀ s ∈D. (3.2)

Apart from the first condition in Definition 3.1, No other restriction is imposed on the
choice of Nm (s) , s ∈ Dn. However, constructing Nm (s) by the nearest neighbors of s is
the most common setting in this chapter. Because of the first condition, the preconditioned
process is approximately proportional to the m-th derivative of G at s, for large N. We also
normalize the coefficients

{
am,s (t) : t ∈Nm (s)

}
by their Euclidean norm to uniformly con-

trol the magnitude of Gm over Dn. Moreover, for reducing ambiguity in the definition of
Gm, Nm (s) is chosen to be a minimal set, with respect to the inclusion ordering, satisfying
the conditions in Definition 3.1. The cardinality of Nm (s) depends on d,m and the geo-
metric structure of neighboring observations around s in Dn and may vary across Dn. The
reader can deduce from simple combinatorial tricks that the second condition in Definition
3.1 is translated as

(
d+m−1

d

)
linear constraints on set of coefficients

{
am,s (t) : t ∈Nm (s)

}
.

This fact gives a rough estimate of the size of Nm (s). It is also noteworthy to mention that
Gm is a non-stationary process, particularly for irregular lattices.

Remark 3.1. The preconditioning method for the d-dimensional regular lattices Dn =

{1/N, . . . ,1}d has been studied in Stein et al. [SCA12]. Discarding the boundary points
of Dn, the preconditioned process is constructed on D◦n = {(m + 1)/N, . . . ,1−m/N}d by
m−times application of the discrete Laplace operator. More specifically, the preconditioner
is recursively defined as the following.

G0 (s) = NνG (s) , ∀ s ∈Dn,

G2k (s) =

d∑
r=1

[
G2k−2

(
s +

er

N

)
−2G2k−2 (s) +G2k−2

(
s−

er

N

)]
, s ∈D◦n, k = 1, . . . ,m. (3.3)

For avoiding unnecessary algebraic complexity in Eq. (3.3), the preconditioning coeffi-
cients have not been normalized to be of norm one. It can be shown that after proper
normalization, G2m admits the conditions of Definition 3.1 with order 2m. Simply put,
(3.3) gives a recursive way of constructing the preconditioned process of even orders for
regular lattices.
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3.2.2 The IF Algorithm

With a precise formulation of the preconditioned GP in hand, we now present the IF al-
gorithm. Let Ym represent the column vector of the preconditioned samples, i.e., Ym =

[Gm (s) : s ∈Dn]>. We use Km to denote the normalized covariance function of Gm by
factor φ0. Km can be easily expressed in terms of the covariance function of G and the
preconditioning coefficients.

Km (s, t;ρ0) =
EGm (s)Gm (t)

φ0
= N2ν

∑
s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
)
K

(
t′− s′

)
.

We also use φ0Kn,m (ρ0) to denote the covariance matrix of Ym. That is

EYmY>m = φ0Kn,m (ρ0) := φ0
[
Km (s, t;ρ0)

]
s,t∈Dn

. (3.4)

Recall that ρ0 lies in a compact and connected space Θ0. The IF estimator [ACS16] of the
covariance parameters (φ0,ρ0) is given by

(
φ̂n, ρ̂n

)
= argmax
φ>0,ρ∈Θ0

{
φY>m Kn,m (ρ)Ym−

φ2

2

∥∥∥Kn,m (ρ)
∥∥∥2
`2

}
. (3.5)

The loss function in (3.5) does not depend on the Cholesky factorization of Kn,m and can
be evaluated in order n2 flops even for the irregularly spaced observations. Furthermore,
storing the whole matrix Kn,m is not necessary for computing the objective function and its
directional derivatives. More specifically, storing Ym and Dn, which needs O (n) storage,
suffices for estimating the covariance parameters. Finally (3.5) can be reformulated as a
moment matching minimization problem.(

φ̂n, ρ̂n
)

= argmin
φ>0,ρ∈Θ0

∥∥∥YmY>m −φKn,m (ρ)
∥∥∥
`2
.

3.3 The LIF Algorithm

In this section we build a versatile spectrum of scalable covariance estimation algorithms
upon the IF approach introduced in Section 3.2.2 and the block diagonal approximation
of the covariance matrix of the preconditioned data Kn,m (ρ). The block diagonal sparsi-
fication of Kn,m (ρ) can speed up the method proposed in [ACS16] without sacrificing the
asymptotic rate.
We previously used Ym = [Gm (s) : s ∈Dn]> to denote the column vector of the precondi-
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tioned samples of order m. Let B = {Bt : t = 1 . . . ,bn} be a partition of Dn into bn bins, i.e.,
Bi∩B j = ∅ for distinct i, j ∈ {1, . . . ,bn} and ∪bn

t=1Bt = Dn. We write YBt,m = [Gm (s) : s ∈ Bt]>

to represent the column vector of the preconditioned data in Bt, t = 1 . . . ,bn. Furthermore
let φ0KBt,m (ρ0) denote the covariance matrix of YBt,m. Namely,

EYBt,mY>Bt,m = φ0KBt,m (ρ0) := φ0
[
Km (s, t;ρ0)

]
s,t∈Bt

, ∀ t = 1 . . . ,bn, (3.6)

in which φ0Km (·, ·,ρ0) stands for the covariance function of Gm with the parameters (φ0,ρ0).
The LIF objective function associated to a partitioning scheme B is constructed by sum-
ming the IF loss functions corresponding to Bt’s over B. The unknown covariance param-
eters are estimated by maximizing the LIF function. Strictly speaking

(
φ̂n,B, ρ̂n,B

)
= argmax
φ>0,ρ∈Θ0

 bn∑
t=1

(
φY>Bt,mKBt,m (ρ)YBt,m−

φ2

2

∥∥∥KBt,m (ρ)
∥∥∥2
`2

) , (3.7)

in which φ̂n,B and ρ̂n,B respectively denote the estimated variance and the range parameters.
For the trivial partition B = {Dn}, the optimization problem (3.7) is exactly same as the IF
algorithm. Note that the objective function in Eq. (3.7) can be evaluated in

∑bn
t=1 |Bt|

2

floating point operations. For instance if all |Bt|’s have the same order (as n grows), then∑bn
t=1 |Bt|

2 � n2/bn. Thus in such a case, the LIF objective function can be computed almost
bn times faster than the one in (3.5). In Section 3.5, we numerically assess the connection
between the partitioning scheme of Dn and the estimation performance of (3.7).

Remark 3.2. The LIF objective function is much easier to compute than the log-likelihood
with a proper choice of bn and the bins. However, implementing one iteration any gradient-
based optimizer for (3.7), such as the BFGS method, can still be very challenging on a
single computing core, particularly for large data sets (n ≈ 106 or more), as it may require
multiple evaluation of the LIF loss. Thus developing effective parallel schemes for comput-
ing the LIF function is a necessity for high resolution spatial GPs. For simplicity assume
that all the bins have roughly the same size and we have access to p identical processor
with q cores. For any t = 1, . . . ,bn, let ft

(
YBt,m;φ,ρ

)
stands for the IF function, with the

parameters (φ,ρ), associated to Bt. In the following we introduce a distributed memory
parallel scheme for evaluating the LIF function.

1. The master processor assigns a label in {1, . . . , p} to each bin (each processor
roughly receives bn/p bins). More specifically if Bt is labelled as i, then the local
memory of processor i stores Gm (s), Nm (s), and the preconditioning coefficients{
am,s (t) : t ∈Nm (s)

}
for any s ∈ Bt.
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2. Inside each processor, the terms ft
(
YBt,m;φ,ρ

)
can be evaluated by employ-

ing the basic shared memory parallel schemes for computing
∥∥∥KBt,m (ρ)

∥∥∥
`2

and
KBt,m (ρ)YBt,m. Finally the master processor aggregatesa the received quantities{
ft
(
YBt,m;φ,ρ

)
: t = 1, . . . ,bn

}
from the slave processors to compute the LIF objective

function.

Remark 3.3. The LIF class of estimators can be enriched in the two possible ways. First
we can drop the assumption that {Bt}

bn
t=1 forms a partition for Dn. Namely, the distinct

clusters may not be mutually exclusive. The LIF loss can also be extended by considering
a weighted average of the IF functions. Strictly speaking, given a bn-dimensional vector of
strictly positive entries w ∈ Rbn ,

(
φ̂n,B,w, ρ̂n,B,w

)
= argmax
φ>0,ρ∈Θ0

 bn∑
t=1

wt

(
φY>Bt,mKBt,m (ρ)YBt,m−

φ2

2

∥∥∥KBt,m (ρ)
∥∥∥2
`2

) .
However throughout this chapter and for simplifying the theoretical analysis, we only
consider the case of non-overlapping bins. It will also be assumed that wi = 1 for any
i ∈ {1, . . . ,bn}.

Remark 3.4. We now introduce an alternative viewpoint to the LIF objective function in
(3.7). The block diagonal approximation of Kn,m (ρ) corresponding to partitioning scheme
B, which is denoted by KB

n,m (ρ), has the canonical role in the new formulation. Choose any
s, s′ ∈Dn, and let t, t′ denote the index of the elements in B containing s and s′, i.e., s ∈ Bt

and s′ ∈ Bt′ . The entries of KB
n,m (ρ) can be equivalently represented by(
KB

n,m (ρ)
)

s,s′
=

[
Kn,m (ρ)

]
s,s′ 1{t=t′}. (3.8)

Observe that

bn∑
t=1

∥∥∥KBt,m (ρ)
∥∥∥2
`2

=
∥∥∥KB

n,m (ρ)
∥∥∥2
`2
, and

bn∑
t=1

Y>Bt,mKBt,m (ρ)YBt,m = Y>m KB
n,m (ρ)Ym.

These identities provide an alternative form for Eq. (3.7) in terms of KB
n,m (ρ).

(
φ̂n,B, ρ̂n,B

)
= argmax
φ>0,ρ∈Θ0

(
φY>m KB

n,m (ρ)Ym−
φ2

2

∥∥∥KB
n,m (ρ)

∥∥∥2
`2

)
, (3.9)

Simply put any member of the LIF class is equivalent to applying the IF procedure on an
appropriate block diagonal approximation of the covariance matrix.
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We finally present a new formulation for the optimization problem in (3.9) which is more
convenient for our theoretical analysis. Due to the quadratic dependence of the LIF loss to
φ, φ̂n,B can be explicitly expressed in terms of ρ̂n,B as the following:

φ̂n,B =
Y>m KB

n,m
(
ρ̂n,B

)
Ym∥∥∥KB

n,m
(
ρ̂n,B

)∥∥∥2
`2

, where ρ̂n,B = argmax
ρ∈Θ0

Y>m KB
n,m (ρ)Ym∥∥∥KB

n,m (ρ)
∥∥∥
`2

. (3.10)

The profile LIF loss in (3.10) is indeed proportional to the angle between KB
n,m (ρ) and

YmY>m .

3.4 Fixed Domain Asymptotic Analysis

The core emphasis of this section is to investigate the fixed domain asymptotic properties
of the LIF optimization problems (3.10). Throughout this section we assume that G is a
real valued GP with isotropic Matern covariance function observed on a bounded domain
D ⊂ Rd with d ≤ 3. Strictly speaking, for any s, s′ ∈D

cov
(
G (s) ,G (t)

)
=

φ0

2ν−1Γ (ν)

(
‖s− t‖`2

ρ0

)ν0

Kν

(
‖s− t‖`2

ρ0

)
.

Here ν > 0 is a known bounded constant controlling the mean squared smoothness of G;
larger ν corresponds to smoother GP. The strictly positive scalars φ0 and ρ0 respectively
stand for the variance and the range parameter of G. Despite the complicated form of
covariance function, the Matern spectral density has a fairly simple form given by

K̂ (ω;φ0,ρ0) =
φ0ρ

−2ν
0

πd/2

 1
ρ2

0

+ ‖ω‖2`2

−(ν+d/2)

. (3.11)

It has been discussed in [Zha04] that for any bounded region D ⊂Rd with d ≤ 3, the Matern
covariance models with parameters (φ1,ρ1) and (φ2,ρ2) yield absolutely continuous mea-
sures whenever φ1ρ

−2ν
1 = φ2ρ

−2ν
2 . In this case, (φ1,ρ1) and (φ2,ρ2) are almost surely not

distinguishable when observing a single realization of G. In other words, given a single re-
alization of G in D, we are only able to estimate φ0ρ

−2ν
0 in (3.11) (which is usually referred

to as the microergodic parameter).

Remark 3.5. Given one realization of isotropic Matern G at Dn, the distinct pairs of pa-
rameters (φ1,ρ1) and (φ2,ρ2) are not discernible if φ1ρ

−2ν
1 = φ2ρ

−2ν
2 . Let us concisely ex-

plain the reason behind non-separability of (φ1,ρ1) and (φ2,ρ2). Let P j (x1, . . . , xn) , j = 1,2
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represent the distribution of [G (s1, . . . , sn)] under covariance parameters
(
φ j,ρ j

)
, j = 1,2,

respectively. Furthermore, we use p j (x1, . . . , xn) , j = 1,2 to denote the density function of
P j (x1, . . . , xn) , j = 1,2 and ρn := p2 (x1, . . . , xn)/p1 (x1, . . . , xn) for referring to the likelihood
ratio function. It is known that if φ1ρ

−2ν
1 = φ2ρ

−2ν
2 then ρn almost surely converges (with

respect to probability measure P1) to a random quantity ρ (see Section 3.2.1 of [IR12] and
Section 4.2 of [Ste12]). In addition,

P1 (0 < ρ <∞) = 1,
∣∣∣EP1 logρ

∣∣∣ <∞, and lim
n→∞

EP1 logρn = EP1 logρ. (3.12)

In other words, the likelihood ratio is almost surely bounded as n tends to infinity.

The discussion in Remark 3.5 indirectly implies that (φ1,ρ1) and (φ2,ρ2) with φ1ρ
−2ν
1 =

φ2ρ
−2ν
2 are still non-distinguishable, even from multiple number of i.i.d realizations of G

at Dn. In particular given k i.i.d realizations of G at Dn, the likelihood ratio almost surely
converges to ρk, which satisfies the inequalities in Eq. (3.12). So we solely focus on
estimating φ0ρ

−2ν
0 from one realization of G in our asymptotic analysis.

Recall from Remark 3.4 that KB
n,m stands for the block diagonal approximation of the pre-

conditioned data. Define a real valued (stochastic) mapping over Θ0 by

φ̂n,B (ρ) :=
Y>m KB

n,m (ρ)Ym∥∥∥KB
n,m (ρ)

∥∥∥2
`2

, ∀ ρ ∈ Θ0. (3.13)

For ease of presentation, we omit the dependence of φ̂n,B (·) on m in our notation. It is also
obviously apparent from (3.10) that φ̂n,B = φ̂n,B

(
ρ̂n,B

)
. Before presenting the main results

let us consider a simple extreme example in the LIF class which can reveal a key reason
behind the

√
n-consistency of any LIF estimator.

Remark 3.6. Suppose that B only comprises the singelton sets, i.e. |Bt| = 1 for any Bt ∈ B.
In this case φKBt,m (ρ) (the covariance matrix of [Gm (s) : s ∈ Bt]> associated to φ and ρ) is
a scalar which is approximately proportional to φρ−2ν. More specifically it can be shown
that for Bt = {s}

φKBt,m (ρ) = Csφρ
−2ν+εn (s,ρ,φ) , (3.14)

in which Cs is a known scalar, independent of φ and ρ, and εn (s,ρ,φ) is a vanishing se-
quence of n (which also depends on m,d, ν as well). Replacing Eq. (3.14) into Eq. (3.13)
leads to

φ̂n,B (ρ)ρ−2ν =

∑s∈Dn CsG2
m (s)∑

s∈Dn C2
s

+ o (1) , ∀ ρ ∈ Θ0. (3.15)

φ̂n,B (ρ)ρ−2ν has a simpler representation for regular lattices as Cs is constant over D◦n (D◦n
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has been defined in Remark 3.1 and denotes the interior of Dn). Furthermore, the profile
LIF loss has (roughly) no dependence to ρ, since∑bn

t=1 Y>Bt,m
KBt,m (ρ)YBt,m√∑bn

t=1

∥∥∥KBt,m (ρ)
∥∥∥2
`2

=

∑
s∈Dn CsG2

m (s)√∑
s ∈DnC2

s

+ o (1) .

Simply put, there is no need to estimate ρ using the profile LIF loss. For any ρ, φ0ρ
−2ν
0

can indeed be estimated by φ̂n,B (ρ)ρ−2ν. This estimator is identical to the one proposed by
Anderes [And10]. He also examined the fixed-domain asymptotic properties of (3.15) for
regular lattices employing some techniques for studying the quadratic variation of station-
ary Gaussian spatial processes

The first main result of this section states that for appropriately chosen preconditioning
order m, regardless of the choice of B and ρ, φ̂n,B (ρ)ρ−2ν is a

√
n-consistent estimate of

φ0ρ
−2ν
0 .

Theorem 3.1. Let G be observed on a lattice Dn satisfying Assumption 3.1. Suppose that
the preconditioning order m satisfies m ≥ (ν+ d/2). For any partition B of Dn, there exists
a bounded positive scalar CB, depending on m,d, ν,Θ0,B and geometric structure of Dn,
such that

P
 sup
ρ∈Θ0

∣∣∣∣∣∣∣ φ̂n,B (ρ)ρ−2ν

φ0ρ
−2ν
0

−1

∣∣∣∣∣∣∣ ≥CB

√
logn

n

 ≤ 1
n
, as n→∞. (3.16)

Theorem 3.1 establishes (high probability) uniform concentration of φ̂n,B (ρ)ρ−2ν around
φ0ρ

−2ν
0 in a small ball of radius O(

√
n−1 logn). The

√
n-consistency of the global (or local)

maximizers of the LIF objective function is a trivial consequence of Theorem 3.1. It is
known that an analogous bound as in Eq. (3.16) holds fo the MLE, regardless of how m is
chosen. Namely, the MLE is

√
n-consistent even for raw data, m = 0. Thus Theorem 3.1

implicitly says that, for sufficiently decorrelated samples, there are surrogates losses that
can be optimized considerably faster than the log-likelihood on a wide range of irregular
grids, and without sacrificing the asymptotic rate.
In the case that ν is either known or can be rather precisely estimated, Theorem 3.1 gives a
straightforward way of choosing m. For instance the choice of m = dν+1e is sufficient when
G is observed within a two dimensional region. Recall from Remark 3.1 that for the regular
lattices, if m′ represents the number of times that Laplace operator is applied to data, then
the transformed process is a preconditioned GP of order 2m′. Thus for GPs observed on
d-dimensional regular lattices, m = 2m′ and so m′ should not be smaller than ν/2 + d/4.

Remark 3.7. For the interested reader we present a very concise sketch of the proof of
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Theorem 3.1 and the detailed explanation will be postponed to Section 3.7. The bias-
variance decomposition has the canonical role in our analysis. Strictly speaking,

sup
ρ∈Θ0

∣∣∣∣∣∣∣ φ̂n,B (ρ)ρ−2ν

φ0ρ
−2ν
0

−1

∣∣∣∣∣∣∣ ≤ P1 + P2

:= sup
ρ∈Θ0

∣∣∣∣∣∣∣Eφ̂n,B (ρ)ρ−2ν

φ0ρ
−2ν
0

−1

∣∣∣∣∣∣∣+ sup
ρ∈Θ0

∣∣∣∣∣∣∣ φ̂n,B (ρ)ρ−2ν−Eφ̂n,B (ρ)ρ−2ν

φ0ρ
−2ν
0

∣∣∣∣∣∣∣ .
We show that P1 = o

(
1/
√

n
)

by employing a novel approach to investigate the large sample
properties of the eigenvalues of KB

n,m (ρ). Moreover, P2 is in fact the supremum of a chi-
squared process over Θ0. The classical chaining argument demonstrates that P2 is of order√

n−1 logn, with high probability. We refer the reader to Section 3.8.1 for further details.

Corollary 3.1. Under the same notation and conditions as in Theorem 3.1, the following
inequality holds for any stationary point (φ̂n,B, ρ̂n,B) of the LIF loss (3.7).

P


∣∣∣∣∣∣∣ φ̂n,Bρ̂

−2ν
n,B

φ0ρ
−2ν
0

−1

∣∣∣∣∣∣∣ ≥CB

√
logn

n

 ≤ 1
n
, as n→∞.

It has been argued in [KS+13] that estimating ρ0 can improve the statistical performance,
especially for small n. The first advantage of Corollary 3.1 is that it establishes the con-
sistency of an arbitrary stationary point of the LIF objective function. Allowing the range
parameter to be estimated in a large bounded space, which is very crucial in practice, is
another advantage of Corollary 3.1.
Remark 3.4 may induce a false impression that the convergence rate of φ̂n,Bρ̂

−2ν
n,B is de-

termined by how well the covariance matrix of the preconditioned samples Kn,m (ρ) can be
approximated by KB

n,m (ρ). However, Corollary 3.1 discloses a somewhat surprising fact that
the LIF algorithm is

√
n-consistent, regardless of the choice of B. The fast enough decay

rate of the off-diagonal entries of Kn,m (ρ) is a heuristic explanation for the
√

n-consistency
of the LIF estimator. In other words since Kn,m (ρ) can be suitably approximated by any
block diagonal matrix induced by a partitioning scheme, splitting the preconditioned data
into different bins does not affect the convergence rate of the LIF estimate. However the
influence of partitioning scheme may become more apparent in the practical situations with
the moderate sample size.

Remark 3.8. It has been discussed in [ACS16] that the global solution of the IF optimiza-
tion problem, in Eq. (3.5), has the same convergence rate as the MLE, when the covariance
matrix of the preconditioned samples has a uniformly bounded condition number over Θ0.
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Such restriction on the covariance matrix rarely holds in practice, unless under some strong
conditions on the spectral density and the geometric structure of Dn (see [SCA12]). How-
ever Corollary 3.1 requires much weaker restrictions on the covariance matrix. Two neces-
sary conditions on KB

n,m (·) can be spotted by a meticulous reader in our proof of Theorem
3.1.

1. The largest eigenvalue of KB
n,m (·) should be uniformly bounded over Θ0. Namely,

max
ρ∈Θ0

∥∥∥KB
n,m (·)

∥∥∥
2→2 � 1.

2. KB
n,m (ρ) must have O (n) non-negligible positive eigenvalues, for any ρ ∈Θ0. That is,

inf
ρ∈Θ0

∥∥∥KB
n,m (ρ)

∥∥∥
`2
�
√

n.

Note that the above conditions do not rule out the existence of near zero eigenvalues and
so the conditions number is still allowed to diverge as n tends to infinity. In this regard, our
asymptotic understanding can expand the applicability of the LIF algorithm.

Now we introduce the asymptotic distribution of all the stationary point of the LIF loss
function.

Theorem 3.2. Under the same notation and conditions as in Theorem 3.1, there exists a
bounded sequence σn,B such that for any stationary point (φ̂n,B, ρ̂n,B) of the LIF loss

√
n

σn,B

 φ̂n,Bρ̂
−2ν
n,B

φ0ρ
−2ν
0

−1

 d
→N (0,1) .

Theorem 3.2 formulates the asymptotic distribution of the LIF algorithm for joint estima-
tion of φ0 and ρ0. To our knowledge for the MLE, such result has only been appeared
in [KS+13]. Note that unlike the full or tapered MLE, in which σn,B =

√
2 (see Theorem

2 of [WL+11]), here m,d, ν, the geometric structure and the portioning scheme of Dn also
affect the asymptotic standard deviation. We could not obtain a simple closed form ex-
pression for σn,B. However its complicated formulation is stated in the proof of Theorem
3.2.

Remark 3.9. We conclude this section with a succinct discussion on the role of Θ0 in
the optimization problem presented in Eq. (3.9). The main results in this section can be
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generalized to the following constrained optimization problem

(
φ̂n,B, ρ̂n,B

)
= argmax
φ>0,ρ∈Θn

(
φY>m KB

n,m (ρ)Ym−
φ2

2

∥∥∥KB
n,m (ρ)

∥∥∥2
`2

)
.

Here {Θn}
∞
n=1 represents a class of nested subsets of (0,∞), i.e., Θp ⊆Θq ∀ p ≤ q, whose di-

ameter grows polynomially in n. Namely, diam(Θn) . nζ for some bounded positive scalar
ζ. As sample size grows, such formulation of the LIF algorithm demands less restrictive
assumptions on the range parameter and bears more resemblance to an unconstrained max-
imization problem.

3.5 Simulation Studies

This section is devoted to appraise the computational and statistical features of the LIF
algorithm on synthetic stationary GP data. The purpose of our numerical analysis is two
fold: investigating the scalability and efficiency of the proposed method in large datasets,
as well as corroborating the infill asymptotic theory presented in Section 3.4. We primarily
focus on two different scenarios regarding the sample size n. In moderate-size studies
which are designed for constructing confidence intervals of unknown parameters through
independent experiments, n = 104. Moreover, large-scale simulations with n = 2.5× 105

are conducted to study the numerical capabilities of the LIF algorithm, particularly when
the exact and approximated evaluation of the likelihood function is extremely challenging.
The computations have been performed on a UM Flux Ivy bridge compute node with 20
cores (Intel Xeon processor) and 3 GB memory per core. For expediting execution time of
the simulations (up to 100 times), the LIF algorithm has been implemented in C++ and R

using RcppParallel1 package.
Throughout this section G is a real valued stationary Matern GP observed on irregularly
spaced lattice Dn. We consider two cases of isotropy and geometric anisotropy for the
covariance function. For circumventing the obstacles of computing the Cholesky factoriza-
tion of the covariance matrix, spectral methods are used for constructing G on Dn [KSN16].
We now concisely describe the geometry of Dn. Let D = [0,T ]2 be a square of size T .
Dn is a two dimensional randomly perturbed lattice of size n = N2 if there exists a non-
negative δ, representing the perturbation parameter, such that for any point t ∈ Dn, there
are a corresponding point in the regular lattice s ∈ {T/N,2T/N, . . . ,T }2 and a randomly cho-
sen p ∈ [−T/N,T/N]2 (with uniform distribution) for which t = s +δp. The scalar quantity

1https://cran.r-project.org/web/packages/RcppParallel/index.html
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Figure 3.1: Each figure displays a perturbed lattices on D = [0,5]2 with δ = 0.5,1, and 2
from left to right. Each figure contains 102 points.

δ controls the amount of irregularity in the set of sampling locations. For instance Figure
3.1 exhibits three randomly perturbed lattices with T = 5, N = 10, and δ ∈ {0.5,1,1.5}, from
left to right.
Partitioning Dn into bn bins is necessary for implementing the LIF algorithm. For brevity
the bins are labelled 1 to bn. In the following, we elucidate three schemes for constructing
the bins.

1. Uniformly Chosen (UC) bins: Any s ∈Dn is randomly assigned to a bin in {1, . . . ,bn}

with a uniform distribution. So the average size of all bins are the same.

2. Non Uniformly Chosen (NUC) bins: The points in Dn are independently assigned to
bins labelled with {1, . . . ,bn}, according to a non-uniform distribution Q. Throughout
this section, we assume that Q is proportional to [1, . . . ,1,2, . . . ,2]>. For instance in
the case that bn = 4, an arbitrary point s ∈ Dn belongs to each bin with probabilities
[1/3,1/3,1/6,1/6]. Thus on average half of the bins are twice bigger than the other
half.

3. Rectangular bins: Dn is segregated into bn rectangular subregions and all the points
in each subregion belong to the same bin.

Figure 3.2 illustrates the three methods of constructing subgroups for a randomly perturbed
lattice of size 100 and δ = 0.5. For a simple comparison, bn is chosen to be 4 for each
scenario in Figure 3.2.
We present three sets of simulation studies to assess the performance of the LIF algorithm.
In all the experiments, G is a Matern GP observed on a randomly perturbed lattice. The
L-BFGS-B algorithm is utilized for maximizing the LIF loss function. The finite difference
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Figure 3.2: Three binning schemes of 102 points on a perturbed grid on D = [0,5]2 with
δ = 0.5

approximation with step size 10−3 is used for computing the gradient. We stop the opti-
mization procedure if either the relative change in the objective function is below 10−5 or
it reaches 50 iterations.

3.5.1 Moderate-Scale Simulations for Isotropic GPs

In all the experiments of this section, D = [0,5]2 and Dn is a perturbed lattice with δ ∈

{1,3} and 1002 points, i.e. n = 104. We generate 100 realizations of an isotropic Matern
GP G with parameters φ0 = 1,ρ0 = 5, and ν = 0.5 on 100 independent realizations of Dn.
The preconditioning order m = 2 is chosen for satisfying the condition m ≥ ν+ d/2 in the
statement of Theorems 3.1 and 3.2. Furthermore for any s ∈ Dn, Nm (s) consists of the
seven closest points in Dn to s (|Nm (s)| = 7). The goal is to estimate φ0ρ

−2ν
0 , which has

the central role in the asymptotic analysis in Section 3.4. According to Theorems 3.1 and
3.2, estimating ρ0 is not necessary for the isotropic Matern covariance functions. In other
words, ρ can be fixed in the optimization problem in Eq. (3.7). Therefore we select ρ = 10
and maximize the LIF function with respect to φ, i.e. ρ̂n,B = 10. For each realization of
G, φ̂n,B is evaluated for bn ∈ {1,2,4,8,16} and three partitioning approaches UC, NUC, and
rectangular. For brevity define

ξ̂n,B =
φ̂n,Bρ̂

−2ν
n,B

φ0ρ
−2ν
0

. (3.17)

Theorem 3.2 suggests that ξ̂n,B is normally distributed centered at 1. Figures 3.3 and 3.4
respectively exhibit the histogram of ξ̂n,B for two cases of δ = 1 and 3, different choices of
bn and partitioning schemes. Each plot also shows a kernel density estimate (KDE) of the
histogram for a simpler comparison with the normal distribution. Table 3.1 presents the
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mean and standard deviation of each histogram in Figures 3.3 and 3.4. According to Table
3.1, for different values of δ,bn and bin shapes, ξ̂n,B is concentrated around 1 with the bias
of order 10−3 and the standard deviation near 0.04, with a bell shaped density.
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Figure 3.3: The histogram of ξ̂n,B with m = 2, bn = 1,2,4,8,16 and 3 binning schemes for
isotropic Matern GP with (φ0,ρ0, ν) = (1,5,0.5) observed on a perturbed grid with δ = 1 and
n = 104.

bn = 16 bn = 8 bn = 4 bn = 2 bn = 1

δ = 1

NUC
Eξ̂n,B = 0.9968 Eξ̂n,B = 0.9979 Eξ̂n,B = 0.9993 Eξ̂n,B = 0.9993 Eξ̂n,B = 0.9990

std ξ̂n,B = 0.0417 std ξ̂n,B = 0.0442 std ξ̂n,B = 0.0448 std ξ̂n,B = 0.0459 std ξ̂n,B = 0.0481

Rectangular
Eξ̂n,B = 0.9989 Eξ̂n,B = 0.9990 Eξ̂n,B = 0.9991 Eξ̂n,B = 0.9992 Eξ̂n,B = 0.9990

std ξ̂n,B = 0.0475 std ξ̂n,B = 0.0476 std ξ̂n,B = 0.0477 std ξ̂n,B = 0.0478 std ξ̂n,B = 0.0481

UC
Eξ̂n,B = 0.9980 Eξ̂n,B = 0.9980 Eξ̂n,B = 0.9965 Eξ̂n,B = 0.9984 Eξ̂n,B = 0.9990

std ξ̂n,B = 0.0403 std ξ̂n,B = 0.0424 std ξ̂n,B = 0.0443 std ξ̂n,B = 0.0450 std ξ̂n,B = 0.0481

δ = 3

NUC
Eξ̂n,B = 0.9953 Eξ̂n,B = 0.9962 Eξ̂n,B = 0.9962 Eξ̂n,B = 0.9965 Eξ̂n,B = 0.9955

std ξ̂n,B = 0.0463 std ξ̂n,B = 0.0472 std ξ̂n,B = 0.0500 std ξ̂n,B = 0.0524 std ξ̂n,B = 0.0534

Rectangular
Eξ̂n,B = 0.9955 Eξ̂n,B = 0.9953 Eξ̂n,B = 0.9954 Eξ̂n,B = 0.9954 Eξ̂n,B = 0.9955
stdn,B = 0.0536 std ξ̂n,B = 0.0536 std ξ̂n,B = 0.0534 std ξ̂n,B = 0.0535 std ξ̂n,B = 0.0534

UC
Eξ̂n,B = 0.9966 Eξ̂n,B = 0.9954 Eξ̂n,B = 0.9954 Eξ̂n,B = 0.9952 Eξ̂n,B = 0.9955

std ξ̂n,B = 0.0456 std ξ̂n,B = 0.0465 std ξ̂n,B = 0.0496 std ξ̂n,B = 0.0513 std ξ̂n,B = 0.0534

Table 3.1: The mean and standard deviation of ξ̂n,B exhibited in histograms in Figures 3.3
and 3.4.
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Figure 3.4: The histogram of ξ̂n,B with m = 2, bn = 1,2,4,8,16 and 3 binning schemes for
isotropic Matern GP with (φ0,ρ0, ν) = (1,5,0.5) observed on a perturbed lattice with δ = 3
and n = 104.

Next we conduct the same experiment on a smoother isotropic Matern GP with φ0 = 1,ρ0 =

2.5, and ν = 1. We seek to gauge the sensitivity of our estimation algorithm to the pre-
conditioning order m by considering two cases of m = 2 and 3. Notice that the condition
m ≥ ν+ d/2 holds for both choices of m. However evaluating the LIF loss is a more diffi-
cult task for m = 3 because of dealing with larger conditioning sets (|N3 (s)| = 11 for any
s ∈ Dn). The histograms (and KDE) of ξ̂n,B associated witha m = 2 and 3 are successively
displayed in Figures 3.5-3.6 and 3.7-3.8. Almost all the histograms in 3.5-3.8 are con-
centrated around 1 with the bias ranged in from 0.02 to 0.04 and the standard deviation
between 0.3 and 0.45.Table 3.2 summarizes the mean and standard deviation of ξ̂n,B for the
different choices of m,bn, δ, and partitioning schemes.
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bn = 16 bn = 8 bn = 4 bn = 2 bn = 1

m = 2

δ = 1

NUC
Eξ̂n,B = 1.0465 Eξ̂n,B = 1.0459 Eξ̂n,B = 1.0478 Eξ̂n,B = 1.0481 Eξ̂n,B = 1.0489

std ξ̂n,B = 0.3188 std ξ̂n,B = 0.3222 std ξ̂n,B = 0.3315 std ξ̂n,B = 0.3439 std ξ̂n,B = 0.3555

Rectangular
Eξ̂n,B = 1.0491 Eξ̂n,B = 1.0489 Eξ̂n,B = 1.0487 Eξ̂n,B = 1.0491 Eξ̂n,B = 1.04889

std ξ̂n,B = 0.3548 std ξ̂n,B = 0.3550 std ξ̂n,B = 0.3554 std ξ̂n,B = 0.3556 std ξ̂n,B = 0.3555

UC
Eξ̂n,B = 1.0458 Eξ̂n,B = 1.0464 Eξ̂n,B = 1.0470 Eξ̂n,B = 1.0488 Eξ̂n,B = 1.0489

std ξ̂n,B = 0.3173 std ξ̂n,B = 0.3215 std ξ̂n,B = 0.3289 std ξ̂n,B = 0.3418 std ξ̂n,B = 0.3555

δ = 3

NUC
Eξ̂n,B = 1.0302 Eξ̂n,B = 1.0315 Eξ̂n,B = 1.0329 Eξ̂n,B = 1.0366 Eξ̂n,B = 1.0393

std ξ̂n,B = 0.3790 std ξ̂n,B = 0.3847 std ξ̂n,B = 0.4926 std ξ̂n,B = 0.4075 std ξ̂n,B = 0.4105

Rectangular
Eξ̂n,B = 1.0396 Eξ̂n,B = 1.0392 Eξ̂n,B = 1.0393 Eξ̂n,B = 1.0394 Eξ̂n,B = 1.0393
stdn,B = 0.4196 std ξ̂n,B = 0.4196 std ξ̂n,B = 0.4201 std ξ̂n,B = 0.4204 std ξ̂n,B = 0.4105

UC
Eξ̂n,B = 1.0304 Eξ̂n,B = 1.0323 Eξ̂n,B = 1.0337 Eξ̂n,B = 1.0363 Eξ̂n,B = 1.0393

std ξ̂n,B = 0.3789 std ξ̂n,B = 0.3846 std ξ̂n,B = 0.3927 std ξ̂n,B = 0.4048 std ξ̂n,B = 0.4105

m = 3

δ = 1

NUC
Eξ̂n,B = 1.0237 Eξ̂n,B = 1.0237 Eξ̂n,B = 1.0262 Eξ̂n,B = 1.0279 Eξ̂n,B = 1.0315

std ξ̂n,B = 0.4104 std ξ̂n,B = 0.4177 std ξ̂n,B = 0.4285 std ξ̂n,B = 0.4464 std ξ̂n,B = 0.4635

Rectangular
Eξ̂n,B = 1.0311 Eξ̂n,B = 1.0312 Eξ̂n,B = 1.0313 Eξ̂n,B = 1.0316 Eξ̂n,B = 1.0315

std ξ̂n,B = 0.4616 std ξ̂n,B = 0.4620 std ξ̂n,B = 0.4626 std ξ̂n,B = 0.4633 std ξ̂n,B = 0.4635

UC
Eξ̂n,B = 1.0232 Eξ̂n,B = 1.0239 Eξ̂n,B = 1.0267 Eξ̂n,B = 1.0296 Eξ̂n,B = 1.0315

std ξ̂n,B = 0.4096 std ξ̂n,B = 0.4156 std ξ̂n,B = 0.41275 std ξ̂n,B = 0.4463 std ξ̂n,B = 0.4635

δ = 3

NUC
Eξ̂n,B = 1.0206 Eξ̂n,B = 1.0228 Eξ̂n,B = 1.0223 Eξ̂n,B = 1.0255 Eξ̂n,B = 1.0271

std ξ̂n,B = 0.3771 std ξ̂n,B = 0.3835 std ξ̂n,B = 0.3934 std ξ̂n,B = 0.4069 std ξ̂n,B = 0.4216

Rectangular
Eξ̂n,B = 1.0271 Eξ̂n,B = 1.0276 Eξ̂n,B = 1.0274 Eξ̂n,B = 1.0273 Eξ̂n,B = 1.0271
stdn,B = 0.4202 std ξ̂n,B = 0.4215 std ξ̂n,B = 0.4219 std ξ̂n,B = 0.4218 std ξ̂n,B = 0.4216

UC
Eξ̂n,B = 1.0214 Eξ̂n,B = 1.0204 Eξ̂n,B = 1.02037 Eξ̂n,B = 1.0249 Eξ̂n,B = 1.0271

std ξ̂n,B = 0.3764 std ξ̂n,B = 0.3798 std ξ̂n,B = 0.3921 std ξ̂n,B = 0.4045 std ξ̂n,B = 0.4216

Table 3.2: The mean and standard deviation of ξ̂n,B displayed in histograms in Figures
3.5-3.8.

Remark 3.10. The above experiments explicate some aspects of the LIF method which did
not thoroughly explained by the asymptotic theory. In the following we list some critical
observations of the simulation studies in this section.

(a) In most of the entries in Tables 3.1 and 3.2, the bias of ξ̂n,B is considerably smaller than
its standard deviation. This phenomenon has been predicted in the proof of Theorem
3.1. The asymptotic analysis shows that for isotropic GPs observed in a d-dimensional
space

Eξ̂n,B −1 = O
(
n−2/d

)
, and std ξ̂n,B = O

(
n−1/2

)
.

So for d = 2, the bias to standard deviation ratio is order n−1/2, converging to zero as
n→∞.

(b) As long as m is chosen to satisfy m ≥ ν+ d/2, increasing the preconditioning order
does not improve the estimation performance. On the other hand larger m requires
more challenging computation for evaluating the LIF loss function. So choosing
m = dν+ d/2e can optimally balance between statistical efficiency and computational
tractability.
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Figure 3.5: The histogram of ξ̂n,B with m = 2, bn = 1,2,4,8,16 and 3 binning schemes for
isotropic Matern GP with (φ0,ρ0, ν) = (1,2.5,1) observed on a perturbed lattice with δ = 1
and n = 104.

(c) Comparing the results in Tables 3.1 and 3.2 shows that ξ̂n,B has larger bias and standard
deviation for ν = 1. Namely estimating φ0ρ

−2ν is more difficult when ν = 1. We give
a qualitative justification for this phenomenon. It has been argued in Remark 3.8 that
the LIF algorithm is consistent when the largest eigenvalue of KB

n,m (·) is uniformly
bounded (independent of n) and its Frobenius norm is of order

√
n. Simply put the

effective rank of KB
n,m (·) should be of order n. Define the quantity ΨB

n,m as

ΨB
n,m :=

∥∥∥KB
n,m

∥∥∥
2→2

√
n∥∥∥KB

n,m
∥∥∥
`2

,

Observe that ΨB
n,m is no smaller than 1 and attains its minimum for the identity matrix.

If KB
n,m (·) can be well approximated by a rank deficit matrix of rank rn = o (n), then

ΨB
n,m grows with the same rate as

√
n/rn. So roughly speaking the LIF algorithm

works better for smaller ΨB
n,m. Here we compare ΨB

n,m for the two cases of ν = 0.5
and 1. For avoiding the computational challenges of evaluating the operator norm of
large matrices, we focus on smaller size perturbed grids on D = [0,2.5]2 of size 2500
(N = 50) and with δ ∈ (0.5,1.5). The range parameter of G is assumed to be ρ0 = 1.25.

64



bn = 16 bn = 8 bn = 4 bn = 2 bn = 1

N
U

C
R

ectangular
U

C

0.2 0.8 1.4 2 0.2 0.8 1.4 2 0.2 0.8 1.4 2 0.2 0.8 1.4 2 0.2 0.8 1.4 2

0

0.5

1

0

0.5

1

0

0.5

1

Figure 3.6: The histogram of ξ̂n,B with m = 2, bn = 1,2,4,8,16 and 3 binning schemes for
isotropic Matern GP with (φ0,ρ0, ν) = (1,2.5,1) observed on a perturbed lattice with δ = 3
and n = 104.

Note that in the new experiment ρ0, the diameter of D and δ have been chosen in such
a way that the lattice of size 502 imitates the local neighbouring properties of Dn in
Figures 3.3-3.8. Figure 3.9 displays ΨB

n,m in four different scenarios of (ν,δ). It is
obviously apparent that ΨB

n,m is always larger for ν = 1, which can explain the higher
bias and variance of the LIF estimate.

(d) A prudent look at Figures 3.3-3.8 discloses a notable similarity between all the his-
tograms in each row. This observation recommends that varying bn from 16 to 1
narrowly affects the variance and bias of ξ̂n,B. In fact the covariance matrix of the
preconditioned process can be well approximated by a banded sparse matrix in our
simulations. For a more vivid explanation, define the quantity rn,m by

rn,m :=

∑
s∈Dn

∑
t∈Nm(s)

[
cov

(
G (s) ,G (t)

)]2

∑
s,t∈Dn

[
cov

(
G (s) ,G (t)

)]2 .

Notice that in this section any preconditioning set Nm (s) comprises only the closest
points to s. Thus if rn,m lies in the vicinity of 1, then the covariance structure of the pre-
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Figure 3.7: The histogram of ξ̂n,B with m = 3, bn = 1,2,4,8,16 and 3 binning schemes for
isotropic Matern GP with (φ0,ρ0, ν) = (1,2.5,1) observed on a perturbed lattice with δ = 1
and n = 104.
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Figure 3.8: The histogram of ξ̂n,B with m = 3, bn = 1,2,4,8,16 and 3 binning schemes for
isotropic Matern GP with (φ0,ρ0, ν) = (1,2.5,1) observed on a perturbed lattice with δ = 3
and n = 104.

5
7
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(ν,δ) = (0.5,0.5) (ν,δ) = (0.5,1.5) (ν,δ) = (1,0.5) (ν,δ) = (1,1.5)

Figure 3.9: The box-plot of Ψn,m for different values of δ and ν. Here Dn is a perturbed
lattice of size 2500 and G is an isotropic Matern GP with φ0 = 1 and ρ0 = 1.25.
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conditioned GP can be suitably explained by the nearest neighbours. For the isotropic
Matern GPs in the previous simulation studies, we have computed the average rn,m for
ν = 0.5 and 1. rn,m = 0.9569 and 0.9702 for ν = 0.5 and 1, respectively. Simply put,
the covariance matrix of Gm is near banded, meaning that the LIF estimate is robust to
the changes of bn, particularly for large bins.

We now numerically gauge the asymptotic behaviour of the LIF estimate. For doing so we
generate 100 independent realizations of an isotropic Matern GP with (φ0,ρ0, ν) = (1,5,0.5)

on 100 independently generated perturbed lattices of size n = N2 and with δ ∈ {1,3} on
D = [0,5]2. The LIF loss function is optimized with respect to φ and for a fixed ρ = 10.
We refer the reader to Table 3.3 for the sample average and standard deviation of ξ̂n,B for
different values of n. The results in Table 3.3 shows that the LIF estimate becomes more
accurate as n increases (in a fixed domain).

N = 20 N = 30 N = 50 N = 70 N = 100 N = 150

δ = 1
bias of ξ̂n,B 0.8643 0.5891 0.2955 0.1593 0.0299 0.0198
std of ξ̂n,B 0.3716 0.2305 0.1093 0.0700 0.0480 0.0233

δ = 3
bias of ξ̂n,B 3.2033 1.0161 0.5133 0.2157 0.0634 0.0187
std of ξ̂n,B 1.4174 0.4070 0.1218 0.0984 0.0519 0.0355

Table 3.3: The mean and standard deviation of ξ̂n,B over 100 independent experiments for
isotropic Matern GP with (φ0,ρ0, ν) = (1,5,0.5) and for different size of lattice.

From Definition 3.1, recall the notion of the preconditioning sets Nm (·). The first condition
in Definition 3.1, which we state here for convenience, says that ‖t − s‖`2 . 1/N for any
t ∈Nm (s) and any s ∈Dn. Roughly speaking, the points in Nm (s) should be in the vicinity
of s. Note that this condition is the only restriction on the choice of t. We intend to
validate the necessity of such condition through a simulation study. For this experiment
G is assumed to be isotropic Matern with parameters (φ0,ρ0, ν) = (1,5,0.5), sampled on
a perturbed lattice of size 104 with δ ∈ {1,3}. For any s ∈ Dn, Nm (s) includes s and the
six most distant points to s in Dn. Thus each preconditioning sets is of size 7. Notice
that such setting trivially violates the assumption in Definition 3.1. Furthermore, similar
to the previous experiments in this section ρ is fixed at 10. Table 3.4 reports the bias and
standard deviation of ξ̂n,B (Eq. (3.17)) for different values of bn and the formerly described
partitioning schemes. Comparing the results in Table 3.4 and 3.1 shows that accuracy of
the LIF estimator significantly declined in the new framework, which corroborates our
understanding of the preconditioning sets.

68



bn = 16 bn = 8 bn = 4 bn = 2 bn = 1

δ = 1

NUC
Eξ̂n,B = 1.0674 Eξ̂n,B = 1.0663 Eξ̂n,B = 1.0675 Eξ̂n,B = 1.0665 Eξ̂n,B = 1.0669

std ξ̂n,B = 0.8383 std ξ̂n,B = 0.8377 std ξ̂n,B = 0.8396 std ξ̂n,B = 0.8377 std ξ̂n,B = 0.8384

Rectangular
Eξ̂n,B = 1.0637 Eξ̂n,B = 1.0651 Eξ̂n,B = 1.0668 Eξ̂n,B = 1.0666 Eξ̂n,B = 1.0669

std ξ̂n,B = 0.8062 std ξ̂n,B = 0.8203 std ξ̂n,B = 0.8373 std ξ̂n,B = 0.8372 std ξ̂n,B = 0.8384

UC
Eξ̂n,B = 1.0665 Eξ̂n,B = 1.0667 Eξ̂n,B = 1.0668 Eξ̂n,B = 1.0668 Eξ̂n,B = 1.0669

std ξ̂n,B = 0.8369 std ξ̂n,B = 0.8377 std ξ̂n,B = 0.8384 std ξ̂n,B = 0.8383 std ξ̂n,B = 0.8384

δ = 3

NUC
Eξ̂n,B = 1.0315 Eξ̂n,B = 1.0321 Eξ̂n,B = 1.0320 Eξ̂n,B = 1.0315 Eξ̂n,B = 1.0321

std ξ̂n,B = 0.7707 std ξ̂n,B = 0.7707 std ξ̂n,B = 0.7679 std ξ̂n,B = 0.7712 std ξ̂n,B = 0.7711

Rectangular
Eξ̂n,B = 1.0234 Eξ̂n,B = 1.0300 Eξ̂n,B = 1.0336 Eξ̂n,B = 1.0324 Eξ̂n,B = 1.0321
stdn,B = 0.7708 std ξ̂n,B = 0.7797 std ξ̂n,B = 0.7743 std ξ̂n,B = 0.7717 std ξ̂n,B = 0.7711

UC
Eξ̂n,B = 1.0317 Eξ̂n,B = 1.0319 Eξ̂n,B = 1.0320 Eξ̂n,B = 1.0321 Eξ̂n,B = 1.0321

std ξ̂n,B = 0.7692 std ξ̂n,B = 0.7703 std ξ̂n,B = 0.7708 std ξ̂n,B = 0.7713 std ξ̂n,B = 0.7711

Table 3.4: The mean and standard deviation of ξ̂n,B for 100 independent experiments of
isotropic Matern GP with (φ0,ρ0, ν) = (1,5,0.5), sampled on a perturbed lattice of size 104

with δ ∈ {1,3}. For any s in the perturbed lattice, Nm (·) includes s and six most distant
points to s.

3.5.2 Moderate-Scale Simulations for Geometric Anisotropic GPs

This subsection is devoted to assess the performance of the LIF method for geometric
anisotropic Matern GPs lie in two dimensional fixed domains. Particularly, there is ρ0 =(
ρ0,1,ρ0,2

)
such that for any s = (s1, s2) and t = (t1, t2),

cov
(
G (s) ,G (t)

)
= φ0 fν (r) , in which r2 =

(
t1− s1

ρ0,1

)2

+

(
t2− s2

ρ0,2

)2

.

Here fν stands for the Matern standard correlation function with the smoothness parameter
ν. The quantities φ̂n,B ∈ R and ρ̂n,B ∈ R2 are obtained by maximizing the LIF loss. As φ0

and ρ0 are not discernible in the infill setting, the core emphasis of our simulation studies
in to estimate φ0ρ

−2ν
0,1 and φ0ρ

−2ν
0,2 . For brevity we reformulate ξ̂n,B as the following:

ξ̂n,B =

 φ̂n,Bρ̂
−2ν
1,n,B

φ0ρ
−2ν
0,1

,
φ̂n,Bρ̂

−2ν
2,n,B

φ0ρ
−2ν
0,2

 ∈ [0,∞)2 . (3.18)

Again, we let Dn to be a perturbed lattice of size n = 104 and with δ ∈ {1,3}. We simulate
100 independent realizations of a Matern GP with φ0 = 1, ρ0 = (1.5,4) and ν ∈ (0.5,1) on 100
realizations of Dn. The L-BFGS-B method with the initial guess ρ= (10,10) maximizes the
LIF loss function in a constrained box [0.1,50]2. In our experiments the boundary points
have not been touched during optimization, so the final results do not change even when the
box constraints are not enforced. The scatter plots of ξ̂n,B are depicted in Figures 3.10-3.11
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for bn ∈ {4,16} and two partitioning approaches. It appears that ξ̂n,B is concentrated around
(1,1) for all the scenarios. Table 3.5 also accumulates the mean and standard deviation of
ξ̂n,B displayed in Figures 3.10-3.11. It turns out from the scatter plots that the LIF estimates
have higher variance when ν = 1. As we have discussed in Remark 3.10, this observation
is because the covariance matrix of the preconditioned data has larger effective rank, in the
case that ν = 1.

bn = 16 bn = 4
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Figure 3.10: The scatter plot and two dimensional KDE of ξ̂n,B for an anisotropic Matern
GP with φ0 = 1,ρ0 = (1.5,4), and ν0 = 0.5 observed on a perturbed lattice with δ = 1 and
n = 104.

bn = 16 bn = 4

ν = 0.5
UC

Eξ̂n,B = (0.9996,1.0063) Eξ̂n,B = (1.0002,1.0049)

std ξ̂n,B = (0.0467,0.0966) std ξ̂n,B = (0.0482,0.0932)

Rectangular
Eξ̂n,B = (0.9993,1.0081) Eξ̂n,B = (0.9994,1.0104)

std ξ̂n,B = (0.0507,0.1026) std ξ̂n,B = (0.0515,0.0998)

ν = 1
UC

Eξ̂n,B = (1.004,1.0800) Eξ̂n,B = (1.0016,1.0891)

std ξ̂n,B = (0.2776,0.5656) std ξ̂n,B = (0.2864,0.5954)

Rectangular
Eξ̂n,B = (0.9992,1.1083) Eξ̂n,B = (0.9991,1.1086)

std ξ̂n,B = 0.3059,0.6432 std ξ̂n,B = (0.3061,0.6487)

Table 3.5: The mean and standard deviation of ξ̂n,B exhibited in scatter plots in Figures
3.10 and 3.11.
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Figure 3.11: The scatter plot and two dimensional KDE of ξ̂n,B for an anisotropic Matern
GP with φ0 = 1,ρ0 = (1.5,4), and ν0 = 1 observed on a perturbed lattice with δ = 3 and
n = 104.
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3.5.3 Large-Scale Simulations for Geometric Anisotropic GPs

To obtain further insights into the estimation accuracy of the LIF algorithm on large data
sets, we carry out a few simulation studies on Matern GPs observed on perturbed lattices.
The simulations are separated into two categories described as the following:

1. We fix D = [0,25]2 and choose a perturbed lattice Dn of size 2.5× 105, i.e. N = 500,
with δ = 5 on D. G is a geometric anisotropic Matern GP with ρ0 =

(
ρ0,1,ρ0,2

)
= (2,5)

and φ0 = 1 observed on Dn. Such simulation imitates the large-sample fixed domain
behaviour, as the diameter of D is considerably smaller than N. So we report the LIF
estimate of φ0ρ

−2ν
0,1 and φ0ρ

−2ν
0,2 .

2. In the second class which emulates the increasing domain setting, we select D =

[0,500]2. Furthermore, the variance and range parameter of G are given by φ0 = 1
and ρ0 = (10,20) and ν = 1. Dn is also treated the same as the first category. In these
simulations, the estimate of all the unknown parameters will be reported.

Recall ξ̂n,B from Eq. (3.18). Tables 3.6 encapsulates ξ̂n,B and the running time of maximiz-
ing the LIF loss in the box-constrained region [0.1,50] by L-BFGS-B algorithm and with
the initial guess ρ = (4,8). Comparing to the case of ν = 0.5, the optimization algorithm is
three times slower for ν = 1, which is due to the more complicated form of the covariance
function. Furthermore the running time of the LIF loss optimizer is inversely proportional
to bn.

bn = 200 bn = 50 bn = 10

ν = 0.5
ξ̂n,B (0.9978,1.0434) (0.9988,1.04085) (1.0011,1.0280)

Running time (hour) 0.5016 2.1747 4.8055

ν = 1
ξ̂n,B (0.9910,1.1060) (0.9951,1.0858) (0.9928,1.0899)

Running time (hour) 1.4128 5.4449 13.2018

Table 3.6: The summary of the large-sample simulations for the first category.

In the sequel we present the summary of the results in Table 3.7, for the case that D =

[0,500]2. The L-BFGS-B optimizer starts at ρ = (25,40). We only consider the case that
ν = 1, because of the more challenging computation. Note that obtaining the estimated
parameters in this setting is around twice slower than the former case.

bn = 200 bn = 50 bn = 10

ν = 1
φ̂n,B 1.0179 1.0072 1.0125
ρ̂n,B (10.4457,19.8137) (10.3789,19.8433) (10.4203,19.8278)

Running time (hour) 2.7441 10.5585 25.6577
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Table 3.7: The summary of the large-sample simulations for the second category.

3.6 Discussion

This chapter introduced a family of scalable covariance estimation algorithm, which is
called the LIF algorithm, by amalgamating the idea of inversion-free estimation procedure
in [ACS16] and the block diagonal approximation of the covariance matrix of the pre-
conditioned data. We have established

√
n-consistency and asymptotic normality of our

method for the isotropic Matern covariance function on a d-dimensional irregular lattice
(with d ≤ 3). Prior to this work, it had been asserted that the inversion-free estimator is
statistically comparable to the MLE, when there exists a linear transformation to uniformly
control the condition number of the covariance matrix below some constant, independent
of the sample size. However, our analysis demonstrates that the LIF algorithm has the same
convergence rate as the MLE, as long as the largest eigenvalue remains uniformly bounded
and a non-negligible percent of the eigenvalues are further away from zero. Refuting the
necessity of uniformly controlling the condition number of the covariance matrix in our
asymptotic theory can expand the applicability of surrogate loss maximization methods for
estimating the covariance estimation of Gaussian spatial processes.
Despite the relatively low cost of computing the LIF estimate for GPs observed on irreg-
ularly spaced locations, it still has several drawbacks, particularly if the goal is beyond
parameter estimation. For instance, as opposed to the likelihood based methods, still little
is known about using proxy losses such as LIF for performing the model selection. Fur-
thermore, despite recent progresses in reducing the condition number of the covariance
matrix for stationary GPs, the effective preconditioning mechanism for non-stationary ran-
dom fields is still obscure. However, we have only scratched the surface of scalable non-
likelihood based estimation algorithms and still much needs to be done for developing an
efficient class of algorithms for a broad family of spatial processes.

3.7 Proof of the Main Results

All the constants appearing in this section (including those implicitly defined in ., and
�), are bounded and depend on m, ν,d,Θ0, and the geometric structure of the sampling
locations.
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Proof of Theorem 3.1. Applying the triangle inequality, we get

sup
ρ∈Θ0

∣∣∣∣∣∣∣ φ̂n,B (ρ)ρ−2ν

φ0ρ
−2ν
0

−1

∣∣∣∣∣∣∣ ≤ sup
ρ∈Θ0

∣∣∣∣∣∣∣Eφ̂n,B (ρ)ρ−2ν

φ0ρ
−2ν
0

−1

∣∣∣∣∣∣∣+ sup
ρ∈Θ0

∣∣∣φ̂n,B (ρ)ρ−2ν−Eφ̂n,B (ρ)ρ−2ν
∣∣∣

φ0ρ
−2ν
0

.

(3.19)
Let P1 and P2 respectively stand for the two terms in the right hand side of (3.19). For
clarity, we break the proof into two parts. The first part is devoted to uniformly control P1.
Strictly speaking, we prove that

P1 .

(
1{d=1}

1
n

+1{d=2}
logn

n
+1{d≥3}n−2/d

) (
1 +1{m=ν+d/2} logn

)
.

We then show that the stochastic quadratic quantity P2 is of order
√

n−1 logn, with high
probability. The concentration inequalities involving the quadratic forms (and their supre-
mum over a bounded space) of GPs presented in [KSN16] are crucial for bounding P2 from
above.
Choose an arbitrary (φ,ρ) ∈ I ×Θ0. Recall KB

n,m (ρ) ∈Rn×n from (3.8) and φ̂n,B (ρ) from Eq.
(3.13). For brevity, define LB

n,m (ρ) := ρ2νKB
n,m (ρ). Observe that

Eφ̂n,B (ρ)ρ−2ν

φ0ρ
−2ν
0

=
ρ−2ν

φ0ρ
−2ν
0

EY>KB
n,m (ρ)Y∥∥∥KB

n,m (ρ)
∥∥∥2
`2

=

(
ρ0

ρ

)2ν 〈KB
n,m (ρ) ,KB

n,m (ρ0)〉∥∥∥KB
n,m (ρ)

∥∥∥2
`2

=
〈LB

n,m (ρ) ,LB
n,m (ρ0)〉∥∥∥LB

n,m (ρ)
∥∥∥2
`2

.

Thus,

P1 = sup
ρ∈Θ0

∣∣∣∣∣∣∣∣〈L
B
n,m (ρ) ,LB

n,m (ρ0)〉∥∥∥LB
n,m (ρ)

∥∥∥2
`2

−1

∣∣∣∣∣∣∣∣ = sup
ρ∈Θ0

∣∣∣∣∣∣∣∣〈L
B
n,m (ρ)−LB

n,m (ρ0) ,LB
n,m (ρ)〉∥∥∥LB

n,m (ρ)
∥∥∥2
`2

∣∣∣∣∣∣∣∣
(a)
≤ sup

ρ∈Θ0


∥∥∥LB

n,m (ρ)−LB
n,m (ρ0)

∥∥∥S1

∥∥∥LB
n,m (ρ)

∥∥∥
2→2∥∥∥LB

n,m (ρ)
∥∥∥2
`2

 . (3.20)

Here (a) is implied by the generalized Cauchy-Schwartz inequality. We assess the large
sample behaviour of the terms appearing in the second line of (3.20) in Section 3.8.1.
Lemma 3.6 states that minρ∈Θ0

∥∥∥LB
n,m (ρ)

∥∥∥
`2
&
√

n. For brevity define ∆B (ρ,ρ0) := LB
n,m (ρ)−
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LB
n,m (ρ0). Furthermore, Lemma 3.3 implies that

sup
ρ∈Θ0

∥∥∥∆B (ρ,ρ0)
∥∥∥S1

.
(
1{d=1}+1{d=2} logn +1{d≥3}n1−2/d

)
diam(Θ0)

�
(
1{d=1}+1{d=2} logn +1{d≥3}n1−2/d

)
. (3.21)

Thus the upper bound on P1 in (3.20) can be rewritten as

P1 .

(
1{d=1}

n
+1{d=2}

logn
n

+1{d≥3}n−2/d
)

sup
ρ∈Θ0

∥∥∥LB
n,m (ρ)

∥∥∥
2→2 . (3.22)

So it is only needed to find a uniform upper bound on the largest eigenvalue of LB
n,m (ρ) on

Θ0. Notice that LB
n,m (ρ) is a block diagonalized version of Ln,m (ρ). Hence∥∥∥LB

n,m (ρ)
∥∥∥

2→2 ≤
∥∥∥Ln,m (ρ)

∥∥∥
2→2 , ∀ ρ ∈ Θ0

In other words, we only need to focus on the case of no partitioning. For d-dimensional
regular lattices, the exact procedure as Theorems 2.1 and 2.3 of [SCA12] demonstrates that
all the eigenvalues of Ln,m (ρ) are universally bounded. Namely,

sup
ρ∈Θ0

λ j
(
Ln,m (ρ)

)
≤ αmax, ∀ j = 1, . . . , |Dn| (3.23)

for some bounded αmax > 0. Thus P1 admits the following inequality for regular lattices.

P1 .

(
1{d=1}

n
+1{d=2}

logn
n

+1{d≥3}n−2/d
)
. (3.24)

However the operator norm of Ln,m (ρ) is not necessarily uniformly bound on Θ0, for a
general irregular lattice satisfying Assumption 3.1. For such case, we show in Proposition
3.1 that ∣∣∣(Ln,m (ρ)

)
s,t

∣∣∣ . (
1 + bn1/dc‖t − s‖`2

)−2(m−ν)
, s, t ∈Dn. (3.25)

Lemma 3.9 also introduces an upper bound on the operator norm of the matrices satisfying
(3.25). Applying Lemma 3.9 yields

sup
ρ∈Θ0

∥∥∥LB
n,m (ρ)

∥∥∥
2→2 ≤ sup

ρ∈Θ0

∥∥∥Ln,m (ρ)
∥∥∥

2→2 .
(
1 +1{m=ν+d/2} logn

)
. (3.26)

The desired bound on P1 is obtained by combining (3.22) and (3.26). The next goal is
control P2 from above. Let Z ∈Rn be a standard Gaussian vector and define the symmetric
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matrix MB
n,m (ρ) by

MB
n,m (ρ) =

√
Ln,m (ρ0)

 nLB
n,m (ρ)∥∥∥LB

n,m (ρ)
∥∥∥2
`2

√Ln,m (ρ0), ∀ ρ ∈ Θ0. (3.27)

We first introduce an equivalent representation for φ̂n,B (ρ)ρ−2ν in terms of Z and MB
n,m (ρ).

Obviously, the Gaussian vectors Y and
√
φ0Kn,m (ρ0)Z = φ1/2

0 ρ−ν0

√
Ln,m (ρ0)Z have the same

distribution. Thus,

φ̂n,B (ρ)ρ−2ν = ρ−2νY>KB
n,m (ρ)Y∥∥∥KB

n,m (ρ)
∥∥∥2
`2

=
Y>LB

n,m (ρ)Y∥∥∥LB
n,m (ρ)

∥∥∥2
`2

d
=

Z>MB
n,m (ρ)Z
n

φ0ρ
−2ν
0 ,

and so P2 can be rewritten as the supremum of a centered χ2 process over Θ0, i.e.,

P2 =
1
n

sup
ρ∈Θ0

∣∣∣∣Z>MB
n,m (ρ)Z− tr

{
MB

n,m (ρ)
}∣∣∣∣ .

So if MB
n,m (ρ) admits the three conditions in Proposition 3.2, then there is a bounded scalar

C such that as n→∞, we have

P
P2 ≥C

√
logn

n

 = P
 sup
ρ∈Θ0

∣∣∣∣Z>MB
n,m (ρ)Z− tr

{
MB

n,m (ρ)
}∣∣∣∣ ≥C

√
n logn

→ 0. (3.28)

Thus we require to verify the conditions (a)− (c) in Proposition 3.2.
Validating condition (a). We should substantiate the uniform boundedness of
n−1/2

∥∥∥MB
n,m (ρ)

∥∥∥
`2

over Θ0. Namely, we must prove that U defined as the following is
bounded.

U := sup
ρ∈Θ0

∥∥∥MB
n,m (ρ)

∥∥∥
`2

√
n

= sup
ρ∈Θ0

√
n
∥∥∥√Ln,m (ρ0)LB

n,m (ρ)
√

Ln,m (ρ0)
∥∥∥
`2∥∥∥LB

n,m (ρ)
∥∥∥2
`2

.

We prove in Lemma 3.6 that minρ∈Θ0 n−1
∥∥∥LB

n,m (ρ)
∥∥∥2
`2
> 0 for large enough n. Thus, U can

be bounded above by some U′ given by

U . U′ := sup
ρ∈Θ0

∥∥∥√Ln,m (ρ0)LB
n,m (ρ)

√
Ln,m (ρ0)

∥∥∥
`2

√
n

.

Finally, Lemma 3.7 ensures the boundedness of U′ (and consequently U).
Validating condition (b). Pick two arbitrary distinct ρ1,ρ2 ∈ Θ0 with |ρ2−ρ1| ≤ 1. Our
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objective is to demonstrate the Lipschitz property of
∥∥∥MB

n,m (ρ2)−MB
n,m (ρ1)

∥∥∥
2→2 (with a

constant of order log2 n). Obviously∥∥∥MB
n,m (ρ2)−MB

n,m (ρ1)
∥∥∥

2→2

n |ρ2−ρ1|
≤

∥∥∥Ln,m (ρ0)
∥∥∥

2→2

|ρ2−ρ1|

∥∥∥∥∥∥∥∥ LB
n,m (ρ2)∥∥∥LB

n,m (ρ2)
∥∥∥2
`2

−
LB

n,m (ρ1)∥∥∥LB
n,m (ρ1)

∥∥∥2
`2

∥∥∥∥∥∥∥∥
2→2

.

We have argued in (3.26) that
∥∥∥Ln,m (ρ0)

∥∥∥
2→2 .

(
1 +1{m=ν+d/2} logn

)
≤ logn. Hence,

∥∥∥MB
n,m (ρ2)−MB

n,m (ρ1)
∥∥∥

2→2

n |ρ2−ρ1| logn
.

1
|ρ2−ρ1|

∥∥∥∥∥∥∥∥ LB
n,m (ρ2)∥∥∥LB

n,m (ρ2)
∥∥∥2
`2

−
LB

n,m (ρ1)∥∥∥LB
n,m (ρ1)

∥∥∥2
`2

∥∥∥∥∥∥∥∥
2→2

. (3.29)

Furthermore, we know from the triangle inequality that∥∥∥∥∥∥∥∥ LB
n,m (ρ2)∥∥∥LB

n,m (ρ2)
∥∥∥2
`2

−
LB

n,m (ρ1)∥∥∥LB
n,m (ρ1)

∥∥∥2
`2

∥∥∥∥∥∥∥∥
2→2

≤

∥∥∥LB
n,m (ρ2)−LB

n,m (ρ1)
∥∥∥

2→2∥∥∥LB
n,m (ρ2)

∥∥∥2
`2

+

∥∥∥∥∥∥∥∥ LB
n,m (ρ1)∥∥∥LB

n,m (ρ2)
∥∥∥2
`2

−
LB

n,m (ρ1)∥∥∥LB
n,m (ρ1)

∥∥∥2
`2

∥∥∥∥∥∥∥∥
2→2

. (3.30)

Let Ψ1
n (ρ1,ρ2) and Ψ2

n (ρ1,ρ2) stand for the first and second terms in the right hand side
of (3.30), which we aim to control from above. The fact that minρ∈Θ0 n−1

∥∥∥LB
n,m (ρ)

∥∥∥2
`2
> 0

(see Lemma 3.6) comes in handy for finding a simpler upper bound on Ψ1
n (ρ1,ρ2) and

Ψ2
n (ρ1,ρ2).

Ψ1
n (ρ1,ρ2) :=

∥∥∥LB
n,m (ρ2)−LB

n,m (ρ1)
∥∥∥

2→2∥∥∥LB
n,m (ρ2)

∥∥∥2
`2

.

∥∥∥LB
n,m (ρ2)−LB

n,m (ρ1)
∥∥∥

2→2

n
.

Furthermore, Lemma 3.4 indicates that∥∥∥LB
n,m (ρ2)−LB

n,m (ρ1)
∥∥∥

2→2 .
(
1 +1{m=ν+d/2} logn

)
|ρ2−ρ1| ≤ |ρ2−ρ1| logn.

So Ψ1
n (ρ1,ρ2) . n−1 logn |ρ2−ρ1|. Now we consider Ψ2

n (ρ1,ρ2). Observe that

Ψ2
n (ρ1,ρ2) :=

∥∥∥LB
n,m (ρ1)

∥∥∥
2→2


∥∥∥LB

n,m (ρ2)
∥∥∥2
`2
−

∥∥∥LB
n,m (ρ1)

∥∥∥2
`2∥∥∥LB

n,m (ρ1)
∥∥∥2
`2

∥∥∥LB
n,m (ρ2)

∥∥∥2
`2


≤

∥∥∥LB
n,m (ρ2)

∥∥∥
2→2

∥∥∥LB
n,m (ρ2)

∥∥∥
`2

+
∥∥∥LB

n,m (ρ1)
∥∥∥
`2∥∥∥LB

n,m (ρ1)
∥∥∥2
`2

∥∥∥LB
n,m (ρ2)

∥∥∥2
`2

∥∥∥LB
n,m (ρ2)−LB

n,m (ρ1)
∥∥∥
`2
.
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It is known from (3.26) that
∥∥∥LB

n,m (ρ2)
∥∥∥

2→2 . logn. Moreover, it is easy to verify that∥∥∥LB
n,m (ρ2)

∥∥∥
`2

+
∥∥∥LB

n,m (ρ1)
∥∥∥
`2∥∥∥LB

n,m (ρ1)
∥∥∥2
`2

∥∥∥LB
n,m (ρ2)

∥∥∥2
`2

=
1/

∥∥∥LB
n,m (ρ1)

∥∥∥
`2

+ 1/
∥∥∥LB

n,m (ρ2)
∥∥∥
`2∥∥∥LB

n,m (ρ1)
∥∥∥
`2

∥∥∥LB
n,m (ρ2)

∥∥∥
`2

.
1/
√

n + 1
√

n
√

n
√

n

� n−3/2.

Thus, the upper bound on Ψ2
n (ρ1,ρ2) can be simplified as

Ψ2
n (ρ1,ρ2)
|ρ2−ρ1|

≤
logn
n3/2


∥∥∥LB

n,m (ρ2)−LB
n,m (ρ1)

∥∥∥
`2

|ρ2−ρ1|


(c)
.

logn
n3/2

(
1{d=1}+1{d=2} logn +1{d=3}n1/3 +1{d≥4}n1/2

)
=

logn
n

(
1{d=1}

1
√

n
+1{d=2}

logn
√

n
+1{d=3}n−1/6 +1{d>3}

)
.

logn
n

,

where the inequality (c) follows from Lemma 3.5. In summary, (3.29) can be rewritten as∥∥∥MB
n,m (ρ2)−MB

n,m (ρ1)
∥∥∥

2→2

|ρ2−ρ1|
≤ n logn

(
Ψ1

n (ρ1,ρ2) +Ψ2
n (ρ1,ρ2)

|ρ2−ρ1|

)
. n logn

logn
n

= log2 n,

showing that the condition (b) of Proposition 3.2 holds.
Validating condition (c). Choose an arbitrary ρ ∈ Θ0. We should prove that Vn, which is
defined as the following, converging to zero as n goes to infinity.

Vn :=
∥∥∥MB

n,m (ρ)
∥∥∥

2→2

√
logn

n
. (3.31)

Vn can be equivalently written as

Vn =

∥∥∥√Ln,m (ρ0)LB
n,m (ρ)

√
Ln,m (ρ0)

∥∥∥
2→2

√
n logn∥∥∥LB

n,m (ρ)
∥∥∥2
`2

.

Lemma 3.6, which says the Frobenius norm of Ln,m (ρ) is of order
√

n (uniformly on Θ0)
provides a simpler asymptotic expression for Vn.

Vn �
∥∥∥∥√Ln,m (ρ0)LB

n,m (ρ)
√

Ln,m (ρ0)
∥∥∥∥

2→2

√
logn

n
≤

∥∥∥LB
n,m (ρ)

∥∥∥
2→2

∥∥∥Ln,m (ρ0)
∥∥∥

2→2

√
logn

n
.

We refer the reader to Eq. (3.26) for an upper bound on the operator norm of Ln,m and LB
n,m
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matrices over Θ0. So, Vn can be bounded above by

Vn .
(
1 +1{m=ν+d/2} logn

)2
√

logn
n
→ 0, as n→∞. (3.32)

Proof of Theorem 3.2. Let ρmax and ρmin respectively denote the largest and smallest ele-
ment of Θ0. Recall the positive semi-definite class of matrices LB

n,m (ρ) := ρ2νKB
n,m (ρ) , ρ ∈

Θ0. Moreover, define

Tn (ρ,Y) :=
√

n

 φ̂n,B (ρ)ρ−2ν

φ0ρ
−2ν
0

−1

 =
√

n

 Y>LB
n,m (ρ)Y

φ0ρ
−2ν
0

∥∥∥LB
n,m (ρ)

∥∥∥2
`2

−1

 . (3.33)

For notational convenience, the dependence to φ0,ρ0 and m has been dropped in Tn. We
aim to show that σ−1

n Tn (ρ̂n,Y)
d
→ N (0,1) for some scalar bounded sequence σn. The proof

is broken into two parts for easier digestion. We first find probabilistic upper and lower
bounds on Tn (ρ̂n,Y) in terms of Tn (ρmax,Y) and Tn (ρmin,Y). The precise statement of this
claim is as following.

Claim 1. There are non-negative sequences of random variables {pn}
∞
n=1 and {qn}

∞
n=1 con-

verging to zero in probability and scalar n0 ∈N (depending on ρ0,m,d, ν, and Θ0) such that
for any n ≥ n0

Tn (ρmin,Y) (1− pn) ≤ Tn (ρ̂n,Y) ≤ Tn (ρmax,Y) (1 + qn) . (3.34)

Next, we substantiate the asymptotic normality of Tn (ρ,Y) for an arbitrary ρ ∈ Θ0.

Claim 2. There is a bounded sequence σn,m such that 1
σn,m

Tn (ρ,Y)
d
→ N (0,1), for any fixed

ρ ∈ Θ0.

As both upper and lower bounds on σ−1
n,mTn (ρ̂n,Y) in (3.34) weakly converge to a random

variable distributed as N (0,1), the squeeze theorem for the weak convergence (see Lemma
3.11 for its rigorous statement) concludes the proof. The rest of the proof serves to establish
Claims 1 and 2.

Proof of Claim 1. Define T ′n (ρ) := 1 + Tn (ρ,Y)/
√

n. Claim 2 obviously holds if we can
show that

T ′n (ρmin)
(
1− p′n

)
≤ T ′n (ρ̂n) ≤ T ′n (ρmax)

(
1 + q′n

)
, (3.35)
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for any realization of Y and for sequences
{
p′n

}∞
n=1 ,

{
q′n

}∞
n=1 converging to zero faster than

n−1/2. Let Z be a standard Gaussian column vector with the same length as Y . Define
U :=

√
Ln,m (ρ0)Z, which obviously has no dependence on ρ. Then,

T ′n (ρ) =
U>LB

n,m (ρ)U∥∥∥LB
n,m (ρ)

∥∥∥2
`2

, (3.36)

We only prove the right hand side inequality in Eq. (3.35) and the other side can be shown
similarly. We separately analyze the numerator and denominator in (3.36). We know that
LB

n,m (ρ) � LB
n,m (ρmax) for any ρ ∈ Θ0 (see (3.61) for the details). Thus, U>LB

n,m (ρ)U ≤

U>LB
n,m (ρmax)U almost surely. Namely,

T ′n (ρ) ≤
U>LB

n,m (ρmax)U∥∥∥LB
n,m (ρ)

∥∥∥2
`2

⇔

{
T ′n (ρ)

T ′n (ρmax)
−1

}
≤

∥∥∥LB
n,m (ρmax)

∥∥∥2
`2
−

∥∥∥LB
n,m (ρ)

∥∥∥2
`2∥∥∥LB

n,m (ρ)
∥∥∥2
`2

. (3.37)

Recall that we have defined ∆B (ρ2,ρ1) := LB
n,m (ρ2)− LB

n,m (ρ1), for any ρ1,ρ2 ∈ Θ0. It is
sufficient to show that

q′n :=

∥∥∥LB
n,m (ρmax)

∥∥∥2
`2
−

∥∥∥LB
n,m (ρ)

∥∥∥2
`2∥∥∥LB

n,m (ρ)
∥∥∥2
`2

= o
(

1
√

n

)
, as n→∞. (3.38)

As we know from Lemma 3.6 that
∥∥∥LB

n,m (ρ)
∥∥∥
`2
&
√

n, we just need to show that

ψn :=
∥∥∥LB

n,m (ρmax)
∥∥∥2
`2
−

∥∥∥LB
n,m (ρ)

∥∥∥2
`2

= o
(√

n
)
, as n→∞.

On the other hand we have∥∥∥LB
n,m (ρmax)

∥∥∥2
`2
−

∥∥∥LB
n,m (ρ)

∥∥∥2
`2

=
∥∥∥LB

n,m (ρmax)
∥∥∥2
`2
−

∥∥∥LB
n,m (ρmax)−∆B (ρmax,ρ)

∥∥∥2
`2

≤ 2〈LB
n,m (ρmax) ,∆B (ρmax,ρ)〉

≤ 2
∥∥∥LB

n,m (ρmax)
∥∥∥

2→2

∥∥∥∆B (ρmax,ρ)
∥∥∥S1

.

Eq. (3.26) provides an upper bounds on
∥∥∥LB

n,m (ρmax)
∥∥∥

2→2. So

ψn ≤ 2
∥∥∥LB

n,m (ρmax)
∥∥∥

2→2

∥∥∥∆B (ρmax,ρ)
∥∥∥S1

.
(
1 +1{m=ν+d/2} logn

)∥∥∥∆B (ρmax,ρ)
∥∥∥S1

≤
∥∥∥∆B (ρmax,ρ)

∥∥∥S1
logn.

We now employ analogous techniques as Eq. (3.21) (see also Lemma 3.3) to control
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∥∥∥∆B (ρmax,ρ)
∥∥∥S1

from above. Since we only consider the case of d ≤ 3, the bound in Eq.
(3.21) can be rewritten as the following.

∃ 0 < γ <
1
2
, s.t.

∥∥∥∆B (ρmax,ρ)
∥∥∥S1

. nγ. (3.39)

Thus ψn can be upper bounded by ψn . nγ logn = o
(√

n
)
, which concludes the proof.

Proof of Claim 2. For brevity let ξn := Tn (ρ,Y)+
√

n. We suppress the dependence of ρ and
Y on ξn. Let us decompose Tn (ρ,Y) into two parts as

Tn (ρ,Y) =

Tn (ρ,Y)−ETn (ρ,Y)√
varTn (ρ,Y)

√varTn (ρ,Y) +ETn (ρ,Y)

=

(
ξn−Eξn
√

varξn

)√
varξn +ETn (ρ,Y) . (3.40)

Recall that we defined P1 := supρ∈Θ0
n−1/2ETn (ρ,Y) in the proof of Theorem 3.1. A prudent

look at Eqs. (3.22) and (3.24) reveals that P1 . nγ−1 logn for some γ < 1/2 (γ is the same
as in (3.39)). Hence,

ETn (ρ,Y) ≤
√

nP1 . n−1/2+γ logn→ 0, as n→∞.

Namely, ETn (ρ,Y) tends to zero as n grows to infinity. Thus, it is sufficient to obtain the
asymptotic distribution of the first term in the right hand side of (3.40). Now we express
ξn as a quadratic term of a Gaussian random vector. Using identity (3.33), one can easily
show that

ξn
d
= Z>

MB
n,m (ρ)
√

n
Z, (3.41)

in which Z is a standard Gaussian vector of proper size and MB
n,m (ρ) has been defined in

(3.27). The explicit expressions for the expected value and standard deviation of ξn are
given by

Eξn =

√
1
n

tr
{
MB

n,m (ρ)
}
,

√
varξn =

√
2
n

∥∥∥MB
n,m (ρ)

∥∥∥
`2
.

We showed in the proof of Theorem 3.1 that
∥∥∥MB

n,m (ρ)
∥∥∥

2→2 /
∥∥∥MB

n,m (ρ)
∥∥∥
`2
→ 0 when n→∞

(see (3.31) and (3.32)). Thus applying Lemma A.4 of [KSN16], on asymptotic normality
of the normalized generalized χ2 random variables, leads to(

ξn−Eξn
√

varξn

)
d
→ N (0,1) .
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Finally we study the limiting behaviour of
√

varξn, which is denoted by σn,m (ρ,ρ0). Notice
that

σn,m (ρ,ρ0) :=

√
2
n

∥∥∥MB
n,m (ρ)

∥∥∥
`2

=

√
2n∥∥∥LB

n,m (ρ)
∥∥∥2
`2

∥∥∥∥√Ln,m (ρ0)LB
n,m (ρ)

√
Ln,m (ρ0)

∥∥∥∥
`2
.

We claim that
lim

n→∞

σn,m (ρ,ρ0)
σn,m (ρ1,ρ2)

= 1, ∀ ρ1,ρ2 ∈ Θ0. (3.42)

Thus, σn,m has no dependence to ρ, ρ0, and Θ0. In other words, σn,m only depends on
m,d, ν, and the topology of Dn . Assuming that the claim holds, for proving the bound-
edness of σn,m, we just need to check that σn,m (ρ,ρ0) � 1 for some ρ′1,ρ

′
2 ∈ Θ0. Applying

Lemma 3.6 on the denominator of σn,m
(
ρ′1,ρ

′
2

)
, we get,

fn,m
(
ρ′1,ρ

′
2

)
.

∥∥∥∥∥√Ln,m
(
ρ′2

)
LB

n,m

(
ρ′1

)√
Ln,m

(
ρ′2

)∥∥∥∥∥
`2

√
n

.

So, σn,m
(
ρ′1,ρ

′
2

)
� 1 as a result of Lemma 3.7. We now turn to substantiate (3.42). It is

sufficient to verify the following identities for any ρ1,ρ2 ∈ Θ0.

lim
n→∞

σn,m (ρ,ρ0)
σn,m (ρ1,ρ0)

= 1, lim
n→∞

σn,m (ρ1,ρ0)
σn,m (ρ1,ρ2)

= 1. (3.43)

To avoid repetition, we only demonstrate the left hand side identity in (3.43) and the other
one can be substantiated using analogous techniques. Observe that

σn,m (ρ,ρ0)
σn,m (ρ1,ρ0)

=


∥∥∥LB

n,m (ρ1)
∥∥∥
`2∥∥∥LB

n,m (ρ)
∥∥∥
`2


2 ∥∥∥√Ln,m (ρ0)LB

n,m (ρ)
√

Ln,m (ρ0)
∥∥∥
`2∥∥∥√Ln,m (ρ0)LB

n,m (ρ1)
√

Ln,m (ρ0)
∥∥∥
`2

:= anbn.

We prove that both an and bn converge to one as n tends to infinity. Notice that |an−1| has
the same limiting behaviour as q′n defined at (3.38). So for avoiding the redundancy we just
state that |an−1| . nγ−1 logn = o

(
n−1/2

)
and refer the reader to the proof of Claim 1. The

last step of the proof is devoted to control |bn−1| from above.
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|bn−1| =

∣∣∣∣∣∣∣∣
∥∥∥√Ln,m (ρ0)LB

n,m (ρ)
√

Ln,m (ρ0)
∥∥∥
`2∥∥∥√Ln,m (ρ0)LB

n,m (ρ1)
√

Ln,m (ρ0)
∥∥∥
`2

−1

∣∣∣∣∣∣∣∣
≤

∥∥∥Ln,m (ρ0)
∥∥∥

2→2

∥∥∥LB
n,m (ρ)−LB

n,m (ρ1)
∥∥∥
`2∥∥∥√Ln,m (ρ0)LB

n,m (ρ1)
√

Ln,m (ρ0)
∥∥∥
`2

=

∥∥∥Ln,m (ρ0)
∥∥∥

2→2

∥∥∥∆B (ρ,ρ0)
∥∥∥
`2∥∥∥√Ln,m (ρ0)LB

n,m (ρ1)
√

Ln,m (ρ0)
∥∥∥
`2

≤

∥∥∥Ln,m (ρ0)
∥∥∥

2→2

∥∥∥∆B (ρ,ρ0)
∥∥∥S1∥∥∥√Ln,m (ρ0)LB

n,m (ρ1)
√

Ln,m (ρ0)
∥∥∥
`2

(a)
.

logn
∥∥∥∆B (ρ,ρ0)

∥∥∥S1∥∥∥√Ln,m (ρ0)LB
n,m (ρ1)

√
Ln,m (ρ0)

∥∥∥
`2

(b)
.

∥∥∥∆B (ρ,ρ0)
∥∥∥S1

logn
√

n
.

Here (a) and (b) are successively implied from Eq. (3.26) and Lemma 3.7. Using similar
techniques as Eq. (3.39) implies that

|bn−1|.
‖∆ (ρ,ρ0)‖S1

logn
√

n
.

nγ logn
√

n
→ 0, as n→∞.

Namely lim
n→∞

bn = 1, which concludes the proof.

3.8 Technical Results

3.8.1 Large Sample Behaviour of Covariance Matrices of GPs Ob-
served on Irregular Grids

Throughout this section, we put the following restrictions on the irregular lattice Dn with n

points. To avoid repetition, we omit these common assumptions in the statement of all the
results in this section. Moreover, the scalars implicitly expressed in � and . relations are
bounded and generally depend on m,d, ν,Θ0 and the topological structure of Dn.

• Dn is a d-dimensional grid satisfying Assumption 3.1. It is expedient to define N :=
bn1/dc.

• The set of coefficients
{
am,s (t) : s ∈Dn, t ∈Nm (s)

}
, admit the conditions in Defini-

tion 3.1.

Before jumping into stating the theoretical results in the subsequent sections, we recall
some key assumptions and notations that we have used in Chapter 3. G represents a cen-
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tered, isotropic Matern GP whose one time realization has been observed at Dn. The range
parameters ρ belongs to a compact Θ0 ⊂ (0,∞). We also write {Gm (s) : s ∈Dn} to denote
the preconditioned process of order-m (see Definition 3.1). m is chosen in such a way that
m ≥ (ν+ d/2). Let B = {Bt}

bn
t=1 be an arbitrary partition of Dn. We have defined KB

n,m (ρ)

in Eq. (3.8), a matrix which is proportional to the block diagonal approximation of to the
covariance of [Gm (s) : s ∈Dn], associated to the partitioning scheme B. We also define
LB

n,m (ρ) := ρ2νKB
n,m (ρ) for notational convenience.

3.8.1.1 The Decay of Off-diagonal Entries of KB
n,m (ρ)

The main objective of this section is to study the decay rate of the off-diagonal entries of
KB

n,m (ρ), which comes in handy for analyzing the asymptotic behavior of different norms
of KB

n,m (ρ) in Section 2.6.For achieving this goal, we need a spectral representation for the
entries of KB

n,m (ρ). For brevity define the complex valued function f N
s : Rd \ {0d} 7→ C, for

any s ∈Dn, by

f N
s (ω) := ‖ω‖−(ν+d/2)

`2

∑
s′∈Nm(s)

am,s
(
s′
)
exp

(
j〈Nω, s′− s〉

)
, ∀ ω 6= 0d, (3.44)

and the strictly increasing function hN : (0,∞) 7→ (0,1) with

hN (x) :=
[
1 + (Nx)−2

]−(ν+d/2)
. (3.45)

Choose s, t ∈Dn arbitrarily. The entries of Kn,m (corresponding to the single bin scenario)
can be expressed in terms of the Matern spectral density.

(
Kn,m (ρ)

)
s,t =

N2ν

ρ2ν

∑
s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
)∫

Rd
e j〈ω,t′−s′〉

(
‖ω‖2`2

+
1
ρ2

)−(ν+d/2)

dω

=
N2ν

ρ2ν

∑
s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
)∫

Rd

exp( j〈ω, t′− s′〉)
‖ω‖2ν+d

`2

hN

(
ρ‖ω‖`2

N

)
dω.

Change of variable method introduces an equivalent form of the above identity (replace
Nω instead of ω).

(
Kn,m (ρ)

)
s,t =

1
ρ2ν

∑
s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
)∫

Rd

exp( j〈Nω, t′− s′〉)
‖ω‖2ν+d

`2

hN
(
ρ‖ω‖`2

)
dω

= ρ−2ν
∫
Rd

exp( j〈t − s,ω〉) f N
s (ω) f N

t (ω)hN
(
ρ‖ω‖`2

)
dω. (3.46)
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Next we examine the behavior of f N
s (·) for largeω. Such analysis is decisive for controlling

the entries of KB
n,m (ρ) from above.

Lemma 3.1. There exists β ∈ (1,∞) (depending on m, ν,d and Dn) such that

max
s∈Dn

∣∣∣ f N
s (ω)

∣∣∣2 ≤ β

1 + ‖ω‖2ν+d
`2

, ∀ ω 6= 0d. (3.47)

Proof. Define the bounded integer gm by gm := maxs∈Dn |Nm (s)|. Choose an arbitrary
s ∈ Dn. f N

s is trivially continuous and well defined at any ω 6= 0d, so is the function
maxs∈Dn

∣∣∣ f N
s
∣∣∣2 (due to the continuity of the max operator). Thus for validating Eq. (3.47),

we only require to show that

1. maxs∈Dn

∣∣∣ f N
s (ω)

∣∣∣2 . (
1 + ‖ω‖2ν+d

`2

)−1
, for any ω with ‖ω‖2ν+d

`2
≥ gm.

2. There exists a bounded constant πm such that maxs∈Dn limsup
ω→0d

∣∣∣ f N
s (ω)

∣∣∣2 ≤ πm.

The first claim is an implication of the Cauchy-Schwartz inequality. In Definition 3.1, we
normalized the coefficients am,s (s′)’s to have unit Euclidean norm. Thus∣∣∣ f N

s (ω)
∣∣∣2 ≤ ‖ω‖−(2ν+d)

`2
|Nm (s)|

∑
s′∈Nm(s)

a2
m,s

(
s′
)

= ‖ω‖−(2ν+d)
`2

|Nm (s)|

≤ gm ‖ω‖
−(2ν+d)
`2

≤
1 + gm

1 + ‖ω‖2ν+d
`2

.

For proving the other claim we need to study the Taylor expansion of f N
s near the origin.

The second condition of Definition 3.1 implies that for any natural number r < m,∑
s′∈Nm(s)

am,s
(
s′
) (
〈ω, s′− s〉

)r
= 0, ∀ ω ∈ Rd, ∀ s ∈Dn.

So

limsup
ω→0d

∣∣∣ f N
s (ω)

∣∣∣2 = lim
ω→0d

1

‖ω‖2ν+d
`2

∣∣∣∣∣∣∣∣
∞∑

r=0

( jN)r

r!

∑
s′∈Nm(s)

am,s
(
s′
) (
〈ω, s′− s〉

)r

∣∣∣∣∣∣∣∣
2

= limsup
ω→0d

1

‖ω‖2ν+d
`2

∣∣∣∣∣∣∣∣
∞∑

r=m

( jN)r

r!

∑
s′∈Nm(s)

am,s
(
s′
) (
〈ω, s′− s〉

)r

∣∣∣∣∣∣∣∣
2

=
N2m

m!
limsup
ω→0d

1

‖ω‖2ν+d
`2

∣∣∣∣∣∣∣∣
∑

s′∈Nm(s)

am,s
(
s′
) (
〈ω, s′− s〉

)m

∣∣∣∣∣∣∣∣
2

. (3.48)
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Cauchy-Schwartz inequality helps to further simplify the complex expressions in Eq.
(3.48).

limsup
ω→0d

∣∣∣ f N
s (ω)

∣∣∣2 ≤ limsup
ω→0d

N2m ‖ω‖2m−2ν−d
`2

m!

∑
s′∈Nm(s)

a2
m,s

(
s′
) ∑

s′∈Nm(s)

∥∥∥s′− s
∥∥∥2m
`2

=

∑
s′∈Nm(s) ‖N (s′− s)‖2m

`2

m!
1{2m=2ν+d}.

We can argue based on the first condition in Definition 3.1 that

∃ πm ∈ (0,∞) s.t. max
s∈Dn


∑

s′∈Nm(s) ‖N (s′− s)‖2m
`2

m!

 ≤ πm.

Hence,
limsup
ω→0d

∣∣∣ f N
s (ω)

∣∣∣2 ≤ Qm1{2m=2ν+d} ≤ Qm.

It is straightforward to find a closed form expression for β in terms of gm and πm.

Proposition 3.1. For any pair s, t ∈Dn and any partition B of Dn,∣∣∣∣(KB
n,m (ρ)

)
s,t

∣∣∣∣ . ρ−2ν
(
1 + N ‖t − s‖`2

)−2(m−ν)
. (3.49)

Proof. Without loss of generality we cane assume that B has only a single bin, i.e. B = {Dn}.
In other words, we just need to validate Eq. (3.49) for the entries of Kn,m (ρ). For simplicity,
let fν,ρ denotes the Matern correlation function with parameters (ρ,ν). Notice that fν,ρ (x) =

fν,1 (x/ρ). We first prove the inequality (3.49) for the case of ‖t − s‖`2 = O
(
N−1

)
. It suffices

to show that the largest diagonal entry of Kn,m (ρ) is of order ρ−2ν. That is,

ρ2νmax
s∈Dn

∣∣∣(Kn,m (ρ)
)

s,s
∣∣∣ . 1.

The proof of this result hinges on the inequality (3.46) for s = t. Trivially,

ρ2νmax
s∈Dn

∣∣∣(Kn,m (ρ)
)

s,s
∣∣∣ = max

s∈Dn

∫
Rd

∣∣∣ f N
s (ω)

∣∣∣2 hN
(
ρ‖ω‖`2

)
dω ≤max

s∈Dn

∫
Rd

∣∣∣ f N
s (ω)

∣∣∣2 dω.

We finish the proof of this part by using Lemma 3.1.

ρ2νmax
s∈Dn

∣∣∣(Kn,m (ρ)
)

s,s
∣∣∣ ≤max

s∈Dn

∫
Rd

∣∣∣ f N
s (ω)

∣∣∣2 dω.
∫
Rd

dω

1 + ‖ω‖2ν+d
`2

�

∫ ∞

0

xd−1

1 + x2ν+d dx � 1.

So without loss of generality we can assume that ‖t − s‖`2 > h/N, for some large enough h.
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Trivially,

ψ :=

(
Kn,m (ρ)

)
s,t

N2ν =
∑

s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
)

fν,ρ
(
t′− s′

)
.

The key step of the proof is to replace fν,ρ (·) with its exact Taylor expansion of order 2m.
Strictly speaking, we have

fν,ρ
(
t′− s′

)
=

∑
|r|<2m

Dr fν,ρ (t − s)
r!

[(
t′− t

)
−

(
s′− s

)]r

+
∑
|r|=2m

Rr (t − s)
[
(t′− t)− (s′− s)

]r

r!
,

in which Rr denotes the residual function given by

Rr (t − s) = 2m
∫ 1

0
(1− x)2m−1 Dr fν,ρ

(
(t − s) + x

[(
t′− t

)
−

(
s′− s

)] )
dx. (3.50)

Thus,

ψ =
∑
|r|<2m

Dr fν,ρ (t − s)
r!

∑
s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
) [(

t′− t
)
−

(
s′− s

)]r

+
∑
|r|=2m

Rr (t − s)
r!

∑
s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
) [(

t′− t
)
−

(
s′− s

)]r . (3.51)

The first constraint on
{
am,s (t) : s ∈Dn, t ∈Nm (s)

}
in Definition 3.1 easily implies that∑

s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
) [(

t′− t
)
−

(
s′− s

)]r
= 0.

for any |r| < 2m. So the first term in the right hand side of (3.51) vanishes. Henceforth, we
only need control the second term from above. Observe that

|ψ| ≤
∑
|r|=2m

∣∣∣∣∣∣∣∣
∑

s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
) [(

t′− t
)
−

(
s′− s

)]r

∣∣∣∣∣∣∣∣ max
|r|=2m

∣∣∣∣∣Rr (t − s)
r!

∣∣∣∣∣ . (3.52)

The next step is to introduce a uniform upper bound on the residual functions using Eq.

87



(3.50) and the chain rule of derivative.

max
|r|=2m

|Rr (t − s)| ≤ max
|r|=2m

max
x∈[0,1]

∣∣∣∣Dr fν,ρ
{
(t − s) + x

[(
t′− t

)
−

(
s′− s

)] }∣∣∣∣
≤ ρ−2m max

|r|=2m
max

x∈[0,1]

∣∣∣∣∣∣Dr fν,1
{ (t − s) + x

[
(t′− t)− (s′− s)

]
ρ

}∣∣∣∣∣∣ . (3.53)

As the maximum distance between s and the points s′ ∈Nm (s) is of order 1/N, so we can
choose h large enough such that

min
x∈[0,1]

∥∥∥(t − s) + x
[(

t′− t
)]∥∥∥

`2
≥
‖t − s‖`2

2
. (3.54)

Now we apply Lemma 4 of [And10] to get an upper bound on Dr fν,1 (·) in terms of the
Euclidean norm of its argument. So for any x ∈ [0,1], we have∣∣∣∣∣∣Dr fν,1

{ (t − s) + x
[
(t′− t)− (s′− s)

]
ρ

}∣∣∣∣∣∣ .
∥∥∥∥∥∥ (t − s) + x

[
(t′− t)− (s′− s)

]
ρ

∥∥∥∥∥∥2(ν−m)

`2

.

Combining this inequality and Eq. (3.54) shows that for any pair (s, t) with ‖t − s‖`2 ≥ h/N

max
|r|=2m

|Rr (t − s)|. ρ−2m
(
‖t − s‖`2

ρ

)2(ν−m)

. ρ−2ν
(

1
N

+ ‖t − s‖`2

)2(ν−m)

. (3.55)

Substituting (3.55) into (3.52) yields (in which Ĉρ,ν
m,d is another bounded scalar)

|ψ|. ρ−2ν
(

1
N

+ ‖t − s‖`2

)2(ν−m) ∑
|r|=2m

∣∣∣∣∣∣∣∣
∑

s′∈Nm(s)

∑
t′∈Nm(t)

am,s
(
s′
)
am,t

(
t′
) [(

t′− t
)
−

(
s′− s

)]r

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
$r

.

In the sequel, we prove that $r = O
(
N−2m

)
for any |r| = 2m using the following series of

inequalities.

$r
(a)
≤

 ∑
s′∈Nm(s)

a2
m,s

(
s′
)

1/2  ∑
t′∈Nm(t)

a2
m,t

(
t′
)

1/2

max

∣∣∣(t′− t
)
−

(
s′− s

)∣∣∣r :
s′ ∈Nm (s)

t′ ∈Nm (t)


(b)
= max

∣∣∣(t′− t
)
−

(
s′− s

)∣∣∣r :
s′ ∈Nm (s)

t′ ∈Nm (t)

 (c)
= O

(
N−2m

)
.

Here, (a) is an obvious implication of the Holder inequality. The identity (b) is exactly
same as the third condition in Definition 3.1 and (c) holds for the class of non-regular
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lattices satisfying Assumption 3.1. Hence

∣∣∣(Kn,m (ρ)
)

s,t
∣∣∣ = N2ν |ψ|.

(
N
ρ

)2ν ( 1
N

+ ‖t − s‖`2

)2(ν−m) ∑
|r|=2m

N−2m

. ρ−2ν
(
1 + N ‖t − s‖`2

)−2(m−ν)

3.8.2 Sensitivity of LB
n,m (ρ) with Respect to ρ

Recall that we defined LB
n,m (ρ) as the block diagonal approximation of Ln,m (ρ) =

ρ2νKn,m (ρ), corresponding to the partitioning scheme B = {Bt}
bn
t=1 of Dn. This section is

dedicated to study the sensitivity of LB
n,m (ρ) with respect to ρ, for large n. In other words,

we are interested to study the quantity∥∥∥LB
n,m (ρ2)−LB

n,m (ρ1)
∥∥∥

|ρ2−ρ1|
, ρ1,ρ2 ∈ Θ0,

as n tends to infinity. Here ‖·‖ represents either nuclear, Frobenius or operator norm. The
presented results are decisive in Section 2.6. The quantity QN , which will be defined in the
next lemma, appears numerous times in this section.

Lemma 3.2. Let ρ1,ρ2 be distinct points in Θ0 such that ρ2 > ρ1. Define

QN :=
∫
Rd

∣∣∣ f N
s (ω) f N

t (ω)
∣∣∣ ∣∣∣∣hN

(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)∣∣∣∣dω
Choose an arbitrary pairs of s, t ∈Dn.

QN

ρ2−ρ1
.

(
1{d≥3}+1{d=2} log N +1{d=1}N

)
N2 .

Proof. Lemma 3.1 provides an upper bound on the term f N
s (ω) f N

t (ω).

∣∣∣ f N
s (ω) f N

t (ω)
∣∣∣ . (

1 + ‖ω‖2ν+d
`2

)−1
. (3.56)

For controlling the other term of the integrand from above, we employ the following in-
equality, which will be justified later.

(1 + x)−α− (1 + y)−α <
[
α (y− x)

]
∧

(
x−α− y−α

)
, ∀ 0 < x < y <∞, α > 0. (3.57)
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Using (3.57) (with α = ν+ d
2 ) yields∣∣∣∣∣∣∣∣

hN
(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)
ρ2−ρ1

∣∣∣∣∣∣∣∣ ≤
(N ‖ω‖`2

)2ν+d
ρ2ν+d

2 −ρ2ν+d
1

ρ2−ρ1

∧
 (ν+ d/2)

(
1/ρ2

1−1/ρ2
2

)
(
N ‖ω‖`2

)2
(ρ2−ρ1)

 .
The fact that Θ0 is compact and does not contain zero simplify the last inequality as the
following. ∣∣∣∣∣∣∣∣

hN
(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)
ρ2−ρ1

∣∣∣∣∣∣∣∣ .
[(

N ‖ω‖`2

)2ν+d
∧

(
N ‖ω‖`2

)−2
]
. (3.58)

Combining (3.56) and (3.58) leads to

QN

(ρ2−ρ1)
.

∫
Rd

[(
N ‖ω‖`2

)2ν+d
∧

(
N ‖ω‖`2

)−2
] dω

1 + ‖ω‖2ν+d
`2

(b)
�

∫ ∞

0

[
(Nu)2ν+d ∧ (Nu)−2

] ud−1du
1 + u2ν+d

= N2ν+d
∫ 1

N

0

u2ν+2d−1

1 + u2ν+d du +
1

N2

∫ ∞

1
N

ud−3

1 + u2ν+d du (3.59)

The change of variable u = ‖ω‖`2 in the integral validates
(b)
� . For brevity, let ψ1 and ψ2

stand for the two expressions in the last line of (3.59), respectively from left to right. We
ultimately introduce tight upper bounds on ψ1 and ψ2. Observe that

ψ1 = N2ν+d
∫ 1

N

0

u2ν+2d−1

1 + u2ν+d du ≤ N2ν+d
∫ 1

N

0
u2ν+2d−1du � N2ν+dN−2(ν+d) = N−d.

Furthermore,

ψ2 =
1

N2

∫ ∞

1
N

ud−3

1 + u2ν+d du =
1

N2

∫ 1

1
N

ud−3

1 + u2ν+d du +

∫ ∞

1

ud−3

1 + u2ν+d du


≤

1
N2

∫ 1

1
N

ud−3du +

∫ ∞

1
u−(2ν+3)du

 . 1
N2

∫ 1

1
N

ud−3du + 1


�

(
1 +1{d=2} log N +1{d=1}N

)
N2 .
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Replacing the upper bounds on ψ1 and ψ2 into (3.59) yields

QN

(ρ2−ρ1)
.

(
1 +1{d=2} log N +1{d=1}N

)
N2 + N−d �

(
1 +1{d=2} log N +1{d=1}N

)
N2

In the sequel, we prove Eq. (3.57). Choose an arbitrary α > 0 and define g1,g2 : (0,∞) 7→R
by

g1 (u) = αu− (1 + u)−α , g2 (u) = u−α− (1 + u)−α .

Notice that (3.57) is equivalent to the two inequalities g1 (x) < g1 (y) and g2 (y) < g2 (x).
Namely, we need to show that both g1 and −g2 are strictly increasing function. For any
u ∈ (0,∞), we have

g′1 (u) = α
(
1− (1 + u)−(α+1)

)
> 0, g′2 (u) = −α

(
u−(α+1)

− (1 + u)−(α+1)
)
< 0,

which concludes the proof.

For notational convenience and from now on define, ∆B (ρ1,ρ2) := LB
n,m (ρ2)− LB

n,m (ρ1), for
any ρ1,ρ2 ∈ Θ0. When we deal with a single bin (no partitioning), ∆ and L respectively
refer to ∆B and LB.

Lemma 3.3. Choose ρ1,ρ2 ∈ Θ0 such that ρ2 6= ρ1. Then∥∥∥∆B (ρ1,ρ2)
∥∥∥S1

|ρ2−ρ1|
.

(
1{d=1}+1{d=2} log N +1{d≥3}Nd−2

)
. (3.60)

Furthermore for any d ≥ 3,
∥∥∥∆B (ρ1,ρ2)

∥∥∥S1
� Nd−2 |ρ2−ρ1|.

Proof. Without loss of generality assume that ρ2 > ρ1. We claim that ∆B (ρ1,ρ2) is a pos-
itive semi-definite matrix. If such property holds then S1 norm and trace are the same.
Namely the absolute sum of eigenvalues can be expressed only in terms of the diagonal en-
tries. To see this is so begin by obtaining the spectral representation for the entries of ∆B.
Recall f N

s (·) and hN (·) from Eq. (3.44) and (3.45), respectively. Now choose an arbitrary
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unit norm vector v ∈ Rn (n = |Dn|). Observe that

v>∆B (ρ1,ρ2)v =
∑

s,t∈Dn

vsvt
(
∆B (ρ1,ρ2)

)
s,t

=
∑

s,t∈Dn

vsvt

[
ρ2ν

2

(
KB

n,m (ρ2)
)

s,t
−ρ2ν

1

(
KB

n,m (ρ1)
)

s,t

]
(a)
=

bn∑
t=1

∑
s∈Bt

vsvt
[
ρ2ν

2
(
Kn,m (ρ2)

)
s,t −ρ

2ν
1

(
Kn,m (ρ1)

)
s,t

]
(b)
=

bn∑
t=1

∫
Rd

∑
s,t∈Bt

vsvte j〈t−s,Nω〉 f N
s (ω) f N

t (ω)
[
hN

(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

) ]
dω

=

bn∑
t=1

∫
Rd

∣∣∣∣∣∣∣∣
∑
s∈Bt

vse j〈s,Nω〉 f N
s (ω)

∣∣∣∣∣∣∣∣
2 [

hN
(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

) ]
dω

(c)
> 0. (3.61)

in which (a) follows from the fact that (KB
n,m (ρ2))s,t = 0 when s and t belong to distinct

bins. The identity (b) is a simple application of Eq. (3.46). Furthermore, inequality (c)

follows from the monotonicity of hN . Now obviously we have

|Dn|min
s∈Dn

∣∣∣∣(∆B (ρ1,ρ2)
)

s,s

∣∣∣∣ ≤ ∥∥∥∆B (ρ1,ρ2)
∥∥∥S1

= tr
(
∆B (ρ1,ρ2)

)
≤ |Dn|max

s∈Dn

∣∣∣∣(∆B (ρ1,ρ2)
)

s,s

∣∣∣∣ .
The rest of the proof is devoted to study the behavior of the diagonal entries of ∆B (ρ1,ρ2).
We need to show that∣∣∣∣∣∣∣∣

(
∆B (ρ1,ρ2)

)
s,s

ρ2−ρ1

∣∣∣∣∣∣∣∣ . N−2
(
1{d≥3}+1{d=2} log N +1{d=1}N

)
, ∀ s ∈Dn,∣∣∣∣∣∣∣∣

(
∆B (ρ1,ρ2)

)
s,s

ρ2−ρ1

∣∣∣∣∣∣∣∣ & N−2, ∀ s ∈Dn,and ∀ d ≥ 3.

Applying similar techniques as (3.61) as well as Lemma 3.2 yields

max
s∈Dn

∣∣∣∣∣∣∣∣
(
∆B (ρ1,ρ2)

)
s,s

ρ2−ρ1

∣∣∣∣∣∣∣∣ = max
s∈Dn

∣∣∣∣∣∣∣∣
∫
Rd

∣∣∣ f N
s (ω)

∣∣∣2 [hN
(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)
ρ2−ρ1

]
dω

∣∣∣∣∣∣∣∣
. N−2

(
1{d≥3}+1{d=2} log N +1{d=1}N

)
.

We now proceed to establish the desired lower bound on tr(∆B (ρ1,ρ2)). Choose any s ∈Dn.
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Then,

(
∆B (ρ1,ρ2)

)
s,s

=

∫
Rd

∣∣∣ f N
s (ω)

∣∣∣2 [
hN

(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

) ]
dω

≥

∫
‖ω‖`2≥1

∣∣∣ f N
s (ω)

∣∣∣2 [
hN

(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

) ]
dω (3.62)

Let us control hN
(
ρ2 ‖ω‖`2

)
− hN

(
ρ1 ‖ω‖`2

)
from below. Due to the fact that (its proof is

similar to (3.57) and we left it to the reader)

(1 + x)−α− (1 + y)−α ≥
α (y− x)

2
, ∀ 0 < x ≤ y < 21/(α+1)

−1,

it is possible to write

hN
(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)
ρ2−ρ1

≥

(
ν+ d

2

)
2N2 ‖ω‖2`2

ρ1 +ρ2

ρ2
1ρ

2
2

&
(
N ‖ω‖`2

)−2
. (3.63)

for large enough N. Moreover, the class of functions
{
f N
s (ω)

}
s∈Dn

are nonzero (in a large
enough neighborhood of the origin), continuously differentiable, with a uniformly bounded
derivative when ‖ω‖`2 ≥ 1, and decay with the polynomial rate given in Lemma 3.1. So

∫
‖ω‖`2≥1

∣∣∣∣∣∣ f N
s (ω)
‖ω‖`2

∣∣∣∣∣∣2 dω � 1, ∀ s ∈Dn. (3.64)

Replacing (3.64) and (3.63) into Eq. (3.62) gives the desirable lower bound.

Lemma 3.4. Let ρ1,ρ2 ∈ Θ0. Then∥∥∥∆B (ρ1,ρ2)
∥∥∥

2→2 .
(
1∧ |ρ2−ρ1|

) (
1 +1{m=ν+d/2} log N

)
. (3.65)

Moreover, if Dn be a d-dimensional regular lattice, then∥∥∥∆B (ρ1,ρ2)
∥∥∥

2→2 .
(
1∧ |ρ2−ρ1|

)
. (3.66)

Proof. Consider any arbitrary partitioning B. We know that ∆B (ρ1,ρ2) is a block diagonal
approximation of ∆ (ρ1,ρ2). The basic properties of operator norm implies that∥∥∥∆B (ρ1,ρ2)

∥∥∥
2→2 ≤ ‖∆ (ρ1,ρ2)‖2→2 .

Hence, we just need to find an upper bound on ‖∆ (ρ1,ρ2)‖2→2. Without loss of generality,
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suppose that ρ2 > ρ1. If ρ2 −ρ1 > 1 then the positive definiteness of ∆ (ρ1,ρ2) (see (3.61))
implies that

‖∆ (ρ1,ρ2)‖2→2 ≤
∥∥∥Ln,m (ρ2)

∥∥∥
2→2 . (3.67)

Now assume that (ρ2−ρ1) is strictly less than 1. We also showed that for any unit norm
column vector v (of the proper size)

v>∆ (ρ1,ρ2)v
ρ2−ρ1

=

∫
Rd

∣∣∣∣∣∣∣∣
∑
s∈Dn

vse j〈s,Nω〉 f N
s (ω)

∣∣∣∣∣∣∣∣
2 hN

(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)
ρ2−ρ1

dω.

The mean value theorem gives an alternative form for hN
(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)
.

∃ ρ ∈ (ρ1,ρ2) s.t.
hN

(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)
ρ2−ρ1

= ḣN
(
ρ‖ω‖`2

)
=

2ν+ d
ρ

hN
(
ρ‖ω‖`2

)
1 +

(
Nρ‖ω‖`2

)2 .

In following identity we show that supρ∈[ρ1,ρ2] ḣN
(
ρ‖ω‖`2

)
. hN

(
ρ2 ‖ω‖`2

)
.

hN
(
ρ2 ‖ω‖`2

)
−hN

(
ρ1 ‖ω‖`2

)
ρ2−ρ1

≤
2ν+ d
ρ1

hN
(
ρ‖ω‖`2

)
1 +

(
Nρ‖ω‖`2

)2 ≤
2ν+ d
ρ1

hN
(
ρ‖ω‖`2

)
. hN

(
ρ2 ‖ω‖`2

)
. (3.68)

The last inequality in (3.68) is an easy consequence of the fact that inf (Θ0) > 0. Thus,

0 ≤
v>∆ (ρ1,ρ2)v
ρ2−ρ1

.
∫
Rd

∣∣∣∣∣∣∣∣
∑
s∈Dn

vse j〈s,Nω〉 f N
s (ω)

∣∣∣∣∣∣∣∣
2

hN
(
ρ2 ‖ω‖`2

)
dω = v>Ln,m (ρ2)v.

In other words, there is a bounded constant c > 1 for which

∆ (ρ1,ρ2)
ρ2−ρ1

� cLn,m (ρ2) ⇒
‖∆ (ρ1,ρ2)‖2→2

ρ2−ρ1
.

∥∥∥Ln,m (ρ2)
∥∥∥

2→2 . (3.69)

Combining (3.67) and (3.69) leads to

‖∆ (ρ1,ρ2)‖2→2 .
(
1∧ |ρ2−ρ1|

)∥∥∥Ln,m (ρ2)
∥∥∥

2→2 .

In the case that Dn is a regular lattice,
∥∥∥Ln,m (ρ2)

∥∥∥
2→2 is known to be less than some bounded
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scalar C (see [SCA12], Theorem 3.1), which justifies (3.66). For arbitrary irregular lattices
satisfying Assumption 3.1, Proposition 3.1 characterizes the decay rate of the off diagonal
entries of Ln,m (ρ2). Thus, applying Lemma 3.9 immediately substantiates (3.66) and ends
the proof.

Lemma 3.5. Let N := bn1/dc and select two distinct ρ1 and ρ2 in Θ0. Then,∥∥∥∆B (ρ1,ρ2)
∥∥∥
`2

|ρ2−ρ1|
.

(
1{d=1}+1{d=2} logn +1{d=3}n1/3 +1{d≥4}n1/2

)
.

Proof. The same logic as in the proof of Lemma 3.4 leads to∥∥∥∆B (ρ1,ρ2)
∥∥∥
`2
≤ ‖∆ (ρ1,ρ2)‖`2

.

So it suffices to control ‖∆ (ρ1,ρ2)‖`2
from above. When d ≤ 4, it is trivial that

‖∆ (ρ1,ρ2)‖`2
≤ ‖∆ (ρ1,ρ2)‖S1

.

Substituting the bound on ‖∆ (ρ1,ρ2)‖S1
from Lemma 3.3 in the above inequality leads to

the desired result. Now suppose that d ≥ 5. In this case, 1−2/d > 1/2 and so we inevitably
need new proof techniques. Without loss of generality assume that ρ2 ≥ ρ1. In (3.69), we
showed that

‖∆ (ρ1,ρ2)‖`2
≤

∥∥∥Ln,m (ρ2)
∥∥∥
`2

(ρ2−ρ1) .

We also know from Proposition 3.1 that∣∣∣(Ln,m (ρ2)
)

s,t
∣∣∣ . (

1 + N ‖t − s‖`2

)−2(m−ν)
, (3.70)

which means that
∥∥∥Ln,m (ρ2)

∥∥∥
`2
.
√

n (see the second part of Lemma 3.9). In summary for
d ≥ 5,

‖∆ (ρ1,ρ2)‖`2
≤

∥∥∥Ln,m (ρ2)
∥∥∥
`2
|ρ2−ρ1|. n1/2 |ρ2−ρ1| .

Lemma 3.6. There exists a large enough N0 such that for any N ≥ N0,

min
ρ∈Θ0

∥∥∥LB
n,m (ρ)

∥∥∥
`2

√
n

> 0.

Proof. Let ρmin represents the smallest member of Θ0. We have shown in the proof of
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Lemma 3.3 (inequality (3.61)) that

LB
n,m (ρ) < LB

n,m (ρmin) , ∀ ρ ∈ Θ0

Henceforth, all the eigenvalues of LB
n,m (ρ) are greater than or equal to the corresponding

eigenvalues of LB
n,m (ρmin). So n−1/2

∥∥∥LB
n,m (ρ)

∥∥∥
`2

attains its minimum at ρ = ρmin, due to the
positive definiteness of Ln,m (ρ) and LB

n,m (ρmin). As LB
n,m (ρmin) is a square matrix of size n,

it suffices to show that all of its diagonal entries are bounded away from zero.

∥∥∥LB
n,m (ρmin)

∥∥∥2
`2
≥

∑
s∈Dn

∣∣∣∣(LB
n,m (ρmin)

)
s,s

∣∣∣∣2 =
∑
s∈Dn

∣∣∣(Ln,m (ρmin)
)

s,s
∣∣∣2 .

Recall the two functions f N
s and hN from Eq. (3.44) and (3.45), respectively. Now choose

an arbitrary s ∈ Dn and a large enough R ∈ (0,∞). From the identity (3.46), we have a
closed form expression for the diagonal entries of Ln,m (ρmin).

(
Ln,m (ρmin)

)
s,s =

∫
Rd

∣∣∣ f N
s (ω)

∣∣∣2 hN
(
ρmin ‖ω‖`2

)
dω >

∫
‖ω‖`2≤R

∣∣∣ f N
s (ω)

∣∣∣2 hN
(
ρmin ‖ω‖`2

)
dω.

We trivially can choose N0 (depending on Θ0 and R) such that inf‖ω‖`2≤R hN
(
ρmin ‖ω‖`2

)
≥ 1

2

for any N ≥ N0. Thus,

∣∣∣(Ln,m (ρmin)
)

s,s
∣∣∣ > 1

2

∫
‖ω‖`2≤R

∣∣∣ f N
s (ω)

∣∣∣2 dω.

Lemma 3.7. There exist a strictly positive scalars C1 and C2 such that

C1
√

n ≥
∥∥∥∥√Ln,m (ρ1)LB

n,m (ρ2)
√

Ln,m (ρ1)
∥∥∥∥
`2
≥C2

√
n, ∀ ρ1,ρ2 ∈ Θ0. (3.71)

Proof. For brevity we use Q to refer the Frobenius norm in Eq. (3.71). The cyclic permu-
tation property of trace operator implies that∥∥∥∥√Ln,m (ρ1)LB

n,m (ρ2)
√

Ln,m (ρ1)
∥∥∥∥
`2

=

∥∥∥∥∥√LB
n,m (ρ2)Ln,m (ρ1)

√
LB

n,m (ρ2)
∥∥∥∥∥
`2

.

The inequality (3.61) indicates that Ln,m (ρ1∨ρ2) < Ln,m (ρ1) and LB
n,m (ρ1∨ρ2) < LB

n,m (ρ2).
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So∥∥∥∥∥√LB
n,m (ρ2)Ln,m (ρ1)

√
LB

n,m (ρ2)
∥∥∥∥∥2

`2

≤

∥∥∥∥∥√LB
n,m (ρ2)Ln,m (ρ1∨ρ2)

√
LB

n,m (ρ2)
∥∥∥∥∥2

`2

=
∥∥∥∥√Ln,m (ρ1∨ρ2)LB

n,m (ρ2)
√

Ln,m (ρ1∨ρ2)
∥∥∥∥2

`2

≤

∥∥∥∥√Ln,m (ρ1∨ρ2)LB
n,m (ρ1∨ρ2)

√
Ln,m (ρ1∨ρ2)

∥∥∥∥2

`2
.

Thus we may suppose that ρ2 ≥ ρ1 without losing the generality. Namely ρ1∨ρ2 = ρ2. In
summary, so far we have

Q ≤
∥∥∥∥√Ln,m (ρ2)LB

n,m (ρ2)
√

Ln,m (ρ2)
∥∥∥∥
`2
.

On the other hand,∥∥∥∥√Ln,m (ρ2)LB
n,m (ρ2)

√
Ln,m (ρ2)

∥∥∥∥2

`2
= RHS := tr

{
Ln,m (ρ2) LB

n,m (ρ2) Ln,m (ρ2) LB
n,m (ρ2)

}
.

For any matrix A, define its absolute value by |A| =
[∣∣∣As,t

∣∣∣]. The triangle inequality says that
for matrices A1, . . . ,Ab, for some b ∈ N, we have

tr (A1 . . .Ab) ≤ tr (|A1| . . . |Ab|) .

This fact help us to find an upper bound on RHS.

RHS ≤ tr
{∣∣∣Ln,m (ρ2)

∣∣∣ ∣∣∣LB
n,m (ρ2)

∣∣∣ ∣∣∣Ln,m (ρ2)
∣∣∣ ∣∣∣LB

n,m (ρ2)
∣∣∣} .

Finally, since
∣∣∣LB

n,m (ρ2)
∣∣∣ is the block diagonalized version of

∣∣∣Ln,m (ρ2)
∣∣∣ and both of these

matrices have non-negative entries, we get

tr
{∣∣∣Ln,m (ρ2)

∣∣∣ ∣∣∣LB
n,m (ρ2)

∣∣∣ ∣∣∣Ln,m (ρ2)
∣∣∣ ∣∣∣LB

n,m (ρ2)
∣∣∣} ≤ tr

{∣∣∣Ln,m (ρ2)
∣∣∣ ∣∣∣Ln,m (ρ2)

∣∣∣ ∣∣∣Ln,m (ρ2)
∣∣∣ ∣∣∣Ln,m (ρ2)

∣∣∣}
=

∥∥∥∥∣∣∣Ln,m (ρ2)
∣∣∣2∥∥∥∥2

`2
.

Combining the above inequalities yields

Q ≤
∥∥∥∥∣∣∣Ln,m (ρ2)

∣∣∣2∥∥∥∥
`2
.

Notice that the off-diagonal entries of Ln,m (ρ2) and
∣∣∣Ln,m (ρ2)

∣∣∣ decay with the same rate.
Thus applying Lemma 3.8 can determine an bound on the entries of

∣∣∣Ln,m (ρ2)
∣∣∣2 as the
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following.∣∣∣∣∣(∣∣∣Ln,m (ρ2)
∣∣∣2)

s,t

∣∣∣∣∣ . (
1 + N ‖t − s‖`2

)−2(m−ν) {
1 +1{m=ν+d/2} log

(
1 + N ‖t − s‖`2

)}
.

Finally, Lemma 3.10 guarantees the existence of a bounded scalar c for which∥∥∥L2
n,m (ρ2)

∥∥∥
`2
≤ c
√

n, finishing the proof of the first part. We now turn to the proof of the
other side. Using the same trick as before implies that

Q ≥
∥∥∥∥√Ln,m (ρ1)LB

n,m (ρ1)
√

Ln,m (ρ1)
∥∥∥∥
`2
.

3.8.3 The Basic Properties of Matrices with Polynomial Decaying Off-
diagonals

We showed in Section 3.8.1.1 that the off-diagonal entries of KB
n,m (ρ) decay polynomially

in terms of the distance to the main diagonal. In this section, we show that such class of
matrices are close to multiplication. We also investigate the large sample properties of their
norms.

Lemma 3.8. Let N = bn1/dc and suppose that An ∈ Rn×n whose entries satisfy∣∣∣As,t
∣∣∣ ≤C

(
1 + N ‖t − s‖`2

)−(d+ζ)
, ∀ s, t ∈Dn. (3.72)

for some bounded C > 0 and ζ ≥ 0. Then, the entries of B = A2 are bounded above by∣∣∣Bs,t
∣∣∣ . (

1 + N ‖t − s‖`2

)−(d+ζ) {
1 +1{ζ=0} log

(
1 + N ‖t − s‖`2

)}
, ∀s, t ∈Dn. (3.73)

Proof. For simplicity let ∆ = N (t − s). Without loss of generality assume that C = 1. We
first justify Eq. (3.73) for the special case of ∆ = 0d (associated to the diagonal entries
of B). Indeed we need to show that all the diagonal entries of B are smaller than some
bounded scalar C′, which depends on d, C, and Dn, i.e.,

∣∣∣Bs,s
∣∣∣ ≤ C′ for any s ∈ Dn. Notice

that the pairwise distances among two points in Dn have a similar behaviour to that of a
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d-dimensional regular lattice. Thus,

∣∣∣Bs,s
∣∣∣ =

∣∣∣∣∣∣∣∣
∑
r∈Dn

A2
s,r

∣∣∣∣∣∣∣∣ ≤
∑
r∈Dn

(
1 + N ‖r− s‖`2

)−2(d+ζ)
.

∫ ∞

0
xd−1 (1 + x)−2(d+ζ) dx

.
∫ ∞

1
x−(d+1+2ζ)dx � 1.

Now suppose that ∆ is a non-zero vector. Clearly 1. ‖∆‖`2 . N and so 1+‖∆‖
d+ζ
`2
� ‖∆‖

d+ζ
`2

.
We replace Eq. (3.72) with the following more algebraically convenient alternative form.

∣∣∣As,t
∣∣∣ . [

1 + ‖∆‖
d+ζ
`2

]−1
, ∀s, t ∈Dn,

(
t = s +

∆

N

)
.

Next we obtain an upper bound on
∣∣∣Bs,t

∣∣∣ as the sum of two terms.

∣∣∣Bs,t
∣∣∣ .

∑
r∈Dn

1(
1 + ‖N (s− r)‖d+ζ

`2

) (
1 + ‖N (t − r)‖d+ζ

`2

)
=

∑
r∈Dn

(
1 + ‖N (s− r)‖d+ζ

`2

)−1

2 + ‖N (s− r)‖d+ζ
`2

+ ‖N (t − r)‖d+ζ
`2

+
∑
r∈Dn

(
1 + ‖N (t − r)‖d+ζ

`2

)−1

2 + ‖N (s− r)‖d+ζ
`2

+ ‖N (t − r)‖d+ζ
`2

.

We write ξ1 and ξ2 to denote the first and second terms in the last line of the above ex-
pression. The next step serves as controlling ξ1 from above. A similar upper bound can be
found on ξ2. For doing so, we introduce a lower bound on the expression in the denomi-
nator of ξ1. Define c = 2d+ζ−1 ≥ 1. Applying Jensen’s inequality on the convex univariate
function f (x) = xd+ζ implies that

‖N (s− r)‖d+ζ
`2

+ ‖N (t − r)‖d+ζ
`2

≥
‖N (s− r)‖d+ζ

`2

c + 1
+

c
c + 1

(
‖N (s− r)‖d+ζ

`2
+ ‖N (t − r)‖d+ζ

`2

)
≥
‖N (s− r)‖d+ζ

`2

c + 1
+

(
‖N (s− r)‖`2 + ‖N (t − r)‖`2

)d+ζ

c + 1

≥
‖N (s− r)‖d+ζ

`2
+ ‖∆‖

d+ζ
`2

c + 1
.

Thus
ξ1 .

∑
r∈Dn

1(
1 + ‖N (s− r)‖d+ζ

`2

) (
1 + ‖N (s− r)‖d+ζ

`2
+ ‖∆‖

d+ζ
`2

) . (3.74)
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Notice that the points in {N (s− r) , r ∈Dn} belong to a scaled (with the factor N) and trans-
lated version of Dn. Assumption 3.1 states that the pairwise distances in Dn and a regular
lattice look alike. Hence, the summation in the right hand side of Eq. (3.74), which only de-
pends on the norm of the elements in Dn− s, can be upper bounded by an integral. Strictly
speaking (in the following x represents ‖N (s− r)‖`2)

ξ1 .
∫ N

0

xd−1dx(
1 + xd+ζ

) (
1 + xd+ζ + ‖∆‖

d+ζ
`2

)
=

1

‖∆‖
d+ζ
`2

∫ N

0

 xd−1

1 + xd+ζ
−

xd−1

1 + xd+ζ + ‖∆‖
d+ζ
`2

dx

. ‖∆‖
−(d+ζ)
`2

1 +1{ζ=0} log

 Nd ‖∆‖d`2

Nd + ‖∆‖d`2


 � ‖∆‖−(d+ζ)

`2

(
1 +1{ζ=0} log‖∆‖d`2

)
.

An analogous bound holds for ξ2. Replacing these upper bounds in
∣∣∣Bs,t

∣∣∣. ξ1 +ξ2 ends the
proof.

Lemma 3.9. Let Dn be a irregular lattice of size n satisfying Assumption 3.1. Define
N := bn1/dc and let Ψn ∈Rn×n be a symmetric matrix associated to Dn whose entries satisfy∣∣∣Ψn

s,t
∣∣∣ ≤C

(
1 + N ‖s− t‖`2

)−(d+ζ)
, ∀ s, t ∈Dn

for some non-negative ζ and C ∈ (0,∞). Then there exist bounded scalar A,A′ > 0 (depend-
ing on C,d and ζ) for which

1. ‖Ψn‖2→2 ≤ A
(
1 +1{ζ=0} logn

)
.

2. ‖Ψn‖`2 ≤ A′
√

n.

Proof. We first focus on the operator norm of Ψn. The symmetry of Ψn implies that∥∥∥Ψn
∥∥∥

2→2 ≤
√
‖Ψn‖1→1 ‖Ψ

n‖∞→∞ =
∥∥∥Ψn

∥∥∥
1→1 = max

s∈Dn

∑
t∈Dn

∣∣∣Ψn
s,t

∣∣∣
≤ C max

s∈Dn

∑
t∈Dn

(
1 + N ‖s− t‖`2

)−(d+ζ)
. (3.75)

Choose s ∈ Dn. Reorder the points in Dn based on their distance from s. Define the non-
overlapping sets Πs,l by

Πs,l =

{
t ∈Dn :

l
N
≤ ‖s− t‖`2 <

l + 1
N

}
, ∀ l ∈ N∪{0} .
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The following facts are trivial implications of Assumption 3.1.

• There exists a bounded constant a > 0 such that Πs,l = ∅ for any l > aN.

•
∣∣∣Πs,l

∣∣∣ . (l + 1)d − ld . (l + 1)d−1 for any l ≤ aN.

Thus,

∑
t∈Dn

(
1 + N ‖s− t‖`2

)−(d+ζ)
≤

∞∑
l=0

∣∣∣Πs,l
∣∣∣ (l + 1)−(d+ζ) .

aN∑
l=0

(l + 1)−(1+ζ) . (3.76)

We conclude the proof by substituting Eq. (3.76) into Eq. (3.75). Now we turn into finding
an upper bound on n−1 ‖Ψn‖2`2

. Using similar techniques as (3.76) yields

n−1
∥∥∥Ψn

∥∥∥2
`2
≤ n−1

∑
s∈Dn

∞∑
l=0

∣∣∣Πs,l
∣∣∣ sup

t∈Πs,l

∣∣∣Ψn
s,t

∣∣∣2 ≤ ∞∑
l=0

∣∣∣Πs,l
∣∣∣ sup

t∈Πs,l

∣∣∣Ψn
s,t

∣∣∣2
≤ C2

aN∑
l=0

∣∣∣Πs,l
∣∣∣ (l + 1)−2(d+ζ) .

∞∑
l=0

(l + 1)−(d+1+2ζ)
� 1. (3.77)

The next result has a similar flavor as the second part of Lemma 3.9. We omit its proof for
avoiding the repetition.

Lemma 3.10. Let Dn be a irregular lattice of size n satisfying Assumption 3.1. Define
N := bn1/dc and let Ψn ∈Rn×n be a symmetric matrix associated to Dn whose entries satisfy∣∣∣Ψn

s,t
∣∣∣ ≤C

(
1 + N ‖s− t‖`2

)−(d+ζ) {
1 +1{ζ=0} log

(
1 + N ‖s− t‖`2

)}
, ∀ s, t ∈Dn

for some non-negative ζ and C ∈ (0,∞). Then there exists a bounded scalar A > 0 (depend-
ing on C,d and ζ) for which ∥∥∥Ψn

∥∥∥
`2
≤ A
√

n.

3.8.4 Probabilistic Inequalities

We first extend Proposition A.3 of [KSN16] regarding the uniform concentration of gen-
eralized χ2 random processes around its mean. It provides a powerful tool in the proof of
Theorems 3.1 and 3.2.

Proposition 3.2. Let Θ0 ⊂ Rb, ∀ n ∈ N be a compact space with respect to the Euclidean
metric. Consider the class of n×n matrices {Πn (θ)}θ∈Θ0 parametrized by θ ∈ Θ0. Suppose
that the following conditions hold
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(a) The normalized Frobenius norm of Πn (θ) is uniformly bounded on Θ0, i.e.,

Jmax := sup
n

sup
θ∈Θ0

n−1/2 ‖Πn (θ)‖`2 <∞.

(b) The mapping
(
θ,‖·‖`2

)
7→ (Πn (θ) ,‖·‖2→2) is Lipschitz with constant of order log2 n.

Namely, there is C > 0 for which

‖Πn (θ2)−Πn (θ1)‖2→2 ≤C log2 n‖θ2− θ1‖`2 , ∀ θ1, θ2 ∈ Θ0 s.t. |θ2− θ1| ≤ 1. (3.78)

(c)

lim
n→∞
‖Πn (θ)‖2→2

√
logn

n
= 0, ∀ θ ∈ Θ0.

Then, there is a finite positive constant C′, depending on C, Jmax and b, such that

P
sup
θ∈Θ0

∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}
∣∣∣ ≥C′

√
n logn

 ≤ 1
n
, as n→∞. (3.79)

Proof. Let rn = 1/(C
√

n log3 n) for C defined in Eq. (3.78). For large enough n, we have
rn ≤ 1. Let Nrn (Θ0) represents the rn−covering number of Θ0. The simple volume argu-
ment implies that

∣∣∣Nrn (Θ0)
∣∣∣ . (

diam(Θ0)
rn

)b

= O
{(

n log3 n
)b/2

}
. (3.80)

The key idea is to reduce the supremum over Θ0 in (3.79) to the discrete finite space
Nrn (Θ0). Applying union bounded provides an upper bound on a probabilistic statement
over Nrn (Θ0). Using the Hanson-Wright concentration inequality concludes the proof.
For any θ ∈ Θ0, let γθ stands for the closest element of Nrn (Θ0) to θ. Thus, ‖θ−γθ‖`2

≤ rn.
Observe that

RHS :=
∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}−Z>Πn (γθ)Z + tr {Πn (γθ)}

∣∣∣
=

∣∣∣〈Πn (θ)−Πn (γθ) ,ZZ>+ In〉
∣∣∣ ≤ ‖Πn (θ)−Πn (βθ)‖2→2

∥∥∥ZZ>+ In
∥∥∥S1

(a)
≤ C log2 n‖θ−βθ‖`2

∥∥∥ZZ>+ In
∥∥∥S1
≤Crn log2 n

∥∥∥ZZ>+ In
∥∥∥S1

=

√
logn

n

(
n + ‖Z‖2`2

)
.

Here (a) is implied from Eq. (3.78). The Bernestein’s inequality for the sub-exponential
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random variables states that

P
(
‖Z‖2`2

≥ n + nt
)
≤ e−

nt2
8 , ∀ t > 0. (3.81)

Choosing t = 1 in (3.81) shows that RHS ≥ 3
√

n logn with probability at most exp(−n/8).
Hence,

P
sup
θ∈Θ0

∣∣∣Z>Πn (θ)Z− tr (Πn (θ))
∣∣∣ ≥ sup

θ∈Nrn (Θ0)

∣∣∣Z>Πn (θ)Z− tr (Πn (θ))
∣∣∣+ 3

√
n logn

 ≤ e−n/8.

Recall Jmax from the condition (a). Choose an arbitrary bounded ξ such that ξ > 1 + b/2.
Eq. (3.80) can be rewritten as

∣∣∣Nrn (Θ0)
∣∣∣n−ξ = o

(
n−1

)
, when n tends to infinity. The proof

will be terminated if we show that (for some bounded scalar C0)

P
 sup
θ∈Nrn (Θ0)

∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}
∣∣∣ ≥C0Jmax

√
n logn

 ≤ ∣∣∣Nrn (Θ0)
∣∣∣n−ξ = o

(
1
n

)
,

as n goes to infinity. For proving this claim, it suffices to obtain an appropriate probabilistic
upper bound on

∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}
∣∣∣ for any θ ∈Nrn (Θ0) and then exploiting the union

bound trick. Hanson-Wright inequality says that for some C0 < ∞ (depending on ξ), we
have

P
[∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}

∣∣∣ ≥C0
(
‖Πn (θ)‖`2

√
logn∨‖Πn (θ)‖2→2 logn

)]
≤ n−ξ. (3.82)

The condition (c) means that, ‖Πn (θ)‖2→2 logn = o
(√

n logn
)

as n tends to infinity. So(
‖Πn (θ)‖`2

√
logn∨‖Πn (θ)‖2→2 logn

)
=

(
‖Πn (θ)‖`2

√
logn∨o

(√
n logn

))
≤ Jmax

√
n logn, as n→∞,

due to the condition (a). Thus Eq. (3.82) can be rewritten as

P
(∣∣∣Z>Πn (θ)Z− tr {Πn (θ)}

∣∣∣ ≥C0Jmax
√

n logn
)
≤ n−ξ, ∀ θ ∈Nrn (Θ0) ,

ending the proof of the claim.

Next we rigorously state the squeeze theorem for weak convergence. It is beneficial in the
proof of Theorem 3.2.

Lemma 3.11. Let {Xn}
∞
n=1 , {Yn}

∞
n=1 be two real valued sequences converging to U in distri-
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bution. Suppose that {Zn}
∞
n=1 satisfies the following inequality

X′n := Xn (1− pn) ≤ Zn ≤ Y′n := Yn (1 + qn) , ∀ n ∈ N, (3.83)

in which pn,qn
P
→ 0. Then Zn

d
→ U.

Proof. Let t ∈ R be a continuity point of U. It suffices to show that P (Zn ≥ t)→ P (U ≥ t)

as n tends to infinity. Eq. (3.83) obviously means that

P
(
X′n ≥ t

)
≤ P (Zn ≥ t) ≤ P

(
Y′n ≥ t

)
, ∀ n ∈ N.

Both X′n and Y′n weakly converge to U by Slutsky’s theorem. Hence, P
(
Y′n ≥ t

)
→ P (U ≥ t)

and P
(
X′n ≥ t

)
→ P (U ≥ t) as n→∞. Namely, both upper and lower bounds on P (Zn ≥ t)

converge to the same limit. Thus, lim
n→∞

P (Zn ≥ t)→ P (U ≥ t) as a result of the usual squeeze

theorem.
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CHAPTER 4

Optimal Change-Point Detection

4.1 Introduction

Change-point detection is the problem of detecting an abrupt change or changes arising in a
sequence of observed samples. A common problem of this type involves detecting shifts in
the mean of a temporal or spatial process. This problem has found a variety of applications
in many fields, including audio analysis [GER07], EEG segmentation [Lav05], structural
health monitoring [NRK12, HQI07] and environment sciences [LS08, VHNC10]. Despite
advances in the development of algorithms [KS09, Lav05, LYY10, Rig10] and asymptotic
theory [BFG11, TRBK06, SZ10, LlH08] for a number of contexts, such studies are mainly
confined to the setting of (conditionally) independently distributed data. Existing works
on optimal detection of shifts in the mean in temporal data with statistically dependent
observations are far less common.
Incorporating dependence structures into the modelling of random processes is a natural
approach. In fact, this has been considered in detecting changes of remotely collected
data [CV11,AGB05]. For instance, Chandola et al. [CV11] proposed a GP based algorithm
to identify changes in Normalized Difference Vegetation Index (NDVI) time series for a
particular location in California. It is therefore of interest to study how the dependence
structures of the underlying process can be accounted for, e.g., its covariance function and
spectral density, in designing statistically efficient detection procedures.
In this chapter, we shall focus on the detection of a single change in the mean of a GP data
sequence. Consider a simplified setting in which we let G be a GP on a domain D ⊆ R
and Dn := {tk}nk=1 ⊂ D represent a finite index set of sampling points. Denote the observed
samples by X = {Xk}

n
k=1 in which Xk = G (tk) for k = 1, . . . ,n. Moreover, let t ∈ Cn,α ⊆

{1, . . . ,n} (the parameter α is a positive scalar which will be introduced in Section 4.2.1)
and b > 0 represents the point of sudden change and the jump/shift value, respectively.
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Namely, there is µ ∈ R (which will be assumed to be 0 for now) such that

EXk =

(
µ−

b
2

)
1 (k < t) +

(
µ+

b
2

)
1 (k ≥ t) , k ∈ {1, . . . ,n} . (4.1)

To design a detection procedure and analyze its performance as sample size n grows to
infinity, one is confronted with two fundamentally different frameworks, the framework
of increasing domain asymptotics and that of fixed domain (infill) asymptotics, cf., e.g.,
[RRR12]. The former arises naturally in time series analysis, which is distinguished by the
constraint that the distance between consecutive sampling time points are bounded away
from zero. The simplest instance of the sampling scenario in this regime arises when the
diameter of Dn is of order n and min |ti+1− ti| > ε for some strictly positive, fixed scalar
ε. In our notation the index set for the GP represents the sampling time points. Typically
we set D = R and

⋃∞
n=1Dn = N or Z. There is a large literature on change-point detection

via the increasing domain asymptotics [AHP97, Hor97, HH12, KL98, REN09, YD86] —
which we shall return to in a moment. Fixed domain (or infill) asymptotics, one the other
hand, is a more suitable setting when the index set of sampling points D is bounded, so
that the observations get denser in D as n increases. Particularly for D ⊂ R, we have
that min |ti+k − ti| = O (k/n) for positive integers i,k with i, (i + k) ∈ {1, . . . ,n}, and it can
be extended to multidimensional domains in a straightforward way. The development of
detection algorithms and theory for fixed domain asymptotics are relatively rare.
To gain a quick intuition on how the different asymptotic setting can affect the detection of
a change in the observed sequence X = {Xk}

n
k=1, one can look into the correlation among

nearby samples in the sequence. In the increasing domain setting, even for long range
dependent processes the correlation among samples Xi and X j is small when | j− i| is large.
By contrast, in the fixed domain regime, regardless of how large the sample size is, if | j− i|

is of order nβ for some β ∈ (0,1), the correlation among Xi and X j is still close to one. This
entails that the effective sample size is much smaller than n. As a consequence, standard
techniques that work well in the increasing domain setting do not work as well in the fixed
domain setting. In the latter, we shall need more effective techniques to account for the
strong dependence in the observed samples.

Previous works. An early attempt to study shift in mean detection was that of Chernoff et
al. [CZ64]. More general settings of this problem have been studied in subsequent works,
e.g., [Mac74, DP86, YD86]. For instance it is assumed in [YD86] that the sequence of
Xk’s are independent Gaussian variables. They proposed a detection method based on the
Generalized Likelihood Ratio Test (GLRT), also known as the Cumulative Sum (CUSUM)
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test, and given by

TCUS UM = 1

max
t∈Cn,α

{√ t (n− t)
n

∣∣∣∣∣∣∣ 1
n− t

n∑
k=t+1

Xk −
1
t

t∑
k=1

Xk

∣∣∣∣∣∣∣
}
≥ Rn

 . (4.2)

CUSUM compares the maximum of a test statistic over Cn,α with a critical value Rn. Non-
asymptotic upper bounds on the error probabilities of this simple test were obtained by the
authors under the Gaussian and i.i.d. assumptions. Due to its simplicity, the CUSUM test
is very popular, and has been applied to a variety of settings.
For example, subsequent works studied the behaviour of the CUSUM test under weaker
assumptions in the increasing domain regime [AHP97, Hor97, HH12, REN09]. We wish
to mention Rencova ( [REN09], chapter 4), who studied the same test as [YD86], but
working with the assumption that X is a strong mixing time series. Kokoszka [KL98] also
analyzed the CUSUM test, but working with a different dependent observation model with
sub-squared growth of the variance of partial sums, i.e., there is δ ∈ (0,2) such that for
any k < m, var

∑m
j=k X j . (m− k + 1)δ. Horváth et al. [Hor97, HH12] and Antoch [AHP97]

studied the performance of the CUSUM test for the detection of a sudden change in the
mean in linear processes, i.e. Xt =

∑∞
j=0 w jεt− j, in which {εt}

∞
t=−∞ are i.i.d. and zero mean

random variables and the weights
{
w j

}∞
j=0

satisfy some properties such as absolute or square
summability.
The CUSUM test may also be applied to one dimensional processes with correlated sam-
ples, after a proper standardization. For instance, Horváth et al. [HH12] used a different
normalizing factor for applying CUSUM to one dimensional Gaussian time series with
long range dependence. However apart from the standardizing factor, they do not directly
incorporate the correlation structures of the data in the formulation of the test statistics.
Furthermore, different forms of the CUSUM test were proposed to detect abrupt changes
in the sequential detection literature, see e.g., Lai [Lai98]. At first sight, it may seem puz-
zling how the CUSUM test attains nearly optimal detection performance in the increasing
domain even as its test statistic apparently ignore the dependence among data samples (see
e.g. [AHP97, Hor97, HH12, REN09]). As noted earlier, the covariance cov(Xs,Xt)→ 0 as
|t− s| grows to infinity. As a result, the percentage of pairs (Xs,Xt)n

s,t=1 whose covariance
is non-negligible tends to zero as n→∞. Thus, there is not much gain in accounting for
the dependence structures underlying the sequence, and so the CUSUM statistic provides
a good approximation of the likelihood ratio test for large n, leading to the asymptotic
optimality of TCUSUM in the increasing domain setting.
One may consider applying the CUSUM test to detect a change-point in the fixed domain
setting, but we will see in this chapter that the CUSUM test has suboptimal performance.
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We shall consider instead a generalized likelihood ratio test and show that this achieves the
asymptotically optimal rate. In comparison to the increasing domain regime, the theoret-
ical analysis for the fixed domain setting is considerably more involved from a technical
standpoint, as one needs to take into account the statistical dependence in the data sequence
in a more fundamental way.

Overview of main results. Our focus is on the change-point detection problem given
samples collected from a fixed and bounded domain. In particular, the data sequence is
assumed to be drawn from a GP that experiences a change in the mean. We consider two
scenarios for the covariance functions: fully known or with some unknown parameters. We
seek to achieve the following:

(a) Given an n-sample drawn from a one dimensional GP with a known covariance struc-
ture, we propose a generalized likelihood ratio test for detecting a sudden shift in the
mean. This method requires the knowledge of the dependence structure (via the co-
variance matrix), and will be shown to achieve asymptotically near optimal detection
performance in the fixed domain setting. Our theory holds for a variety of covariance
structures, such as the Matern class, powered exponential class, and several others
specified in terms of the covariance kernel’s spectral density. The smoothness param-
eter for the GP (which determines how fast the corresponding spectral density decays)
plays a central role in characterizing the minimax optimal detection performance.

(b) We establish an upper bound guarantee for the CUSUM detection method. This result
suggests that the CUSUM is suboptimal in the fixed domain setting. The suboptimality
is confirmed in our simulation study, which exhibits a wide gap between the CUSUM
and GLRT. This result makes sense, in light of the minimax result described earlier.

(c) Next, the GP covariance structure is assumed unknown. To address this scenario,
we propose a Plug-in Generalized Likelihood Ratio Test (PGLRT) method, and in-
vestigate its performance. Quite remarkably, we show that as long as a consistent
covariance estimate is employed (the notion of consistency will be defined in Section
4.4), regardless of its estimation rate, the PGLRT achieves asymptotically near optimal
detection performance.

(d) For completeness we have also derived the performance of CUSUM and GLRT based
algorithms in the increasing domain regime which confirms near minimax optimality
this regime. Due to space constraints, such results are included in the Section 4.10.
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The interested reader is referred to the technical report [KSN17] for a more compre-
hensive treatment of the increasing domain setting along with technical proofs.

In addition to studying the change-point detection problem for dependent data in the fixed
domain regime and distinguishing this setting from the increasing domain regime, the work
carried out in this chapter may serve as a starting point in the study of optimal detection of
discontinuities in Gaussian spatial processes on domains of higher dimensions, as initiated
by [AGB05, SHC02]. At a more technical level, our asymptotic analysis contain several
useful proof techniques worth mentioning: they include properties of mutually orthogonal
Gaussian measures, the decorrelation of samples drawn from GPs in a fixed and bounded
domain, and the classical theory of minimax detection.

Structure of the chapter. Section 4.2 presents the problem of detection of a shift in the
mean in an one-dimensional GP, and then introduces detection procedures for the cases
that the covariance structure is known and unknown. When the covariance structure is
unknown, i.e., the spectral density is given with an unknown parameter, a PGLRT will be
introduced. Section 4.3 studies sufficient conditions on shift value b and spectral density
to detect the existence of shift in mean with high probability. The analysis of the PGLRT
and the CUSUM test in the fixed domain setting is given in Section 4.4 and Section 4.5,
respectively. The minimax optimality of the proposed algorithms is established in Section
4.6. The empirical evaluation of these tests is carried out by a simulation study in Section
4.7. Section 4.8 contains the proofs of the main results and Section 4.9 presents and proves
some auxiliary results used in Section 4.8. Results on the asymptotic behaviour of both
CUSUM and GLRT in the increasing domain setting are stated in Section 4.10.

Notation. ∧ and ∨ stand for minimum and maximum operators and the indicator function
is represented by 1 (·). For any m ∈ N, Im, 0m and 1m respectively denote the m by m

identity matrix, all zeros column vector of length m, and all ones column vector of length
m. For two matrices of the same size M1 and M2, 〈M1,M2〉 :=

∑
i, j (M1)i j (M2)i j denotes

their usual inner product. For any symmetric matrix M, λmin (M) represents the smallest
eigenvalue of M. We will use the following matrix norms on M ∈ Rm×n. For any 1 ≤ p <

∞, ‖M‖`p
:=

(∑
i, j

∣∣∣Mi j
∣∣∣p)1/p

stands for the element-wise `p norm of M, while ‖M‖`∞ :=
maxi, j

∣∣∣Mi j
∣∣∣ represents the sup norm of M. For a function f : D 7→ R and p > 0, ‖ f ‖pp :=∫

D | f (u)|p du. The special case of p = ∞ is defined by ‖ f ‖∞ := supu∈D | f (u)|. For any
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f ∈ L1 (R), f̂ represents its Fourier transform defined by

f̂ (ω) =

∞∫
−∞

f (t)e− jωtdt, ∀ ω ∈ R,

where j2 = −1 denotes the imaginary unit. For two functions f and g on R, we write
f (t) � g (t) as t → t0, if C1 ≤ lim

t→t0

∣∣∣∣ f (t)
g(t)

∣∣∣∣ ≤ C2 for some strictly positive bounded scalars

C1 ≤ C2. In particular, we write f (t) ∼ g (t) as t→ t0 to indicate the case that C1 = C2 = 1.
Furthermore, for sequences an and bn, we write bn = Ω (an) when bn is bounded below by
an asymptotically, i.e. lim

n→∞
|bn/an| ≥ C for some positive C. In case an and bn are random,

bn = oP (an) means that bn/an converges in probability to zero as n→ ∞. For two sets
Ω1,Ω2 ⊂Rm, dist (Ω1,Ω2) := infωi∈Ωi, i=1,2 ‖ω1−ω2‖`2 stands for their mutual distance with
respect to Euclidean distance. Lastly, Γ (·) denotes the gamma function.

4.2 Change-Point Detection Procedures

In this section we describe the formulation of the shift-in-mean detection problem associ-
ated with GP data, and then present detection procedures that account for the underlying
process modelling assumptions. From here on, we assume that G is a one dimensional GP
in D = [0,1] with n regularly spaced samples, i.e. Dn = {k/n}nk=1. Let the symmetric real
functions K : R 7→ R and K̂ : R 7→ R respectively denote the covariance function and spec-
tral density of G. Accordingly, the covariance matrix Σn := cov

(
{Xk}

n
k=1

)
is a symmetric

Toeplitz matrix given by

Σn = {cov(Xr,Xs)}nr,s=1 =

[
K

(r− s
n

)]n

r,s=1
. (4.3)

Some regularity conditions on K will be introduced the sequel.

4.2.1 Detection Procedure Based on GLRT

The problem of detecting a sudden shift in the mean of a one dimensional GP can be
formulated as a composite hypothesis testing problem. Under the null hypothesis H0, all
the random variables have zero mean, i.e. EX = 0n. To specify the alternative hypothesis
H1 we first introduce a few additional notations. Let t ∈ Cn,α denote the occurrence times
of the single change-point. The set Cn,α ⊆ {1, . . . ,n} contains plausible occurrence time of
the change. Assume there is α ∈ (0,1/2) such that Cn,α = {t : t∧ (n− t) > αn}. The amount
of shift in the mean before and after the change-point is denoted by real parameter b. Thus,
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for a fixed change-point t ∈ Cn, the associated alternative hypothesis associated with t can
be stated as,

H1,t : ∃ b 6= 0, EX =
b
2
ζt, (4.4)

where ζt ∈ Rn is given by ζt (k) := sign(k− t) for any t ∈ Cn,α. We adopt the convention
sign(0) = 1. Since t is not known a priori, the alternative hypothesis is specified by taking
the union of H1,t. We arrive at the following composite hypothesis testing problem:

H0 : EX = 0n, v.s. H1 =
⋃

t∈Cn,α

H1,t, i.e., ∃ t ∈ Cn,α, b 6= 0, s.t. EX =
b
2
ζt. (4.5)

Next, we propose a test statistic which is constructed by the generalized likelihood ratio
(GLR). Note that the GLR is an explicit function of the joint density of samples and so the
GP assumption is essential to its calculation.

Proposition 4.1. Assuming that Σn is known, there exists Rn,δ > 0 for which the GLRT is
given by

TGLRT = 1

max
t∈Cn,α

∣∣∣∣∣∣∣∣∣
ζ>t (Σn)−1 X√
ζ>t (Σn)−1 ζt

∣∣∣∣∣∣∣∣∣
2

≥ Rn,δ

 . (4.6)

The threshold value Rn,δ depends only on n and some parameter δ determining the false
alarm rate. The precise form of Rn,δ will be presented in subsequent sections. Setting
µ = 0 in (4.1) results in a substantially simplified expression of the GLR, which eases the
exposition of our analysis of the computational and theoretical properties of the proposed
test. The general form of the GLRT, when µ is unknown, is presented as Proposition 4.2 in
Section 4.8.
Unlike the CUSUM test, cf. Eq. (4.2), the covariance function of G is explicitly taken into
account in the GLRT. As a result, it will be shown in the sequel that the proposed detection
method is optimal, while the same cannot be said for the CUSUM test, specifically in the
setting of fixed domain asymptotics.

Unknown covariance In practice, however, the covariance is not known and needs to be
estimated. To address such scenarios, we propose to approximate the likelihood ratio by
plugging into Eq. (4.6) a positive definite estimate of the covariance matrix, which will be
denoted by Σ̃n. This results in a PGLRT procedure.
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Definition 4.1. Let Σ̃n be a positive definite estimate of Σn. The PGLRT is given by

T̃GLRT = 1

max
t∈Cn,α

∣∣∣∣∣∣∣∣∣
ζ>t

(
Σ̃n

)−1
X√

ζ>t
(
Σ̃n

)−1
ζt

∣∣∣∣∣∣∣∣∣
2

≥ R̃n,δ

 , (4.7)

for some strictly positive threshold value R̃n,δ.

The specific choice of Σ̃n and the accompanying theory will be given later in Section 4.4.

4.3 Detection Rate of GLRT: Known Σn

In this section we shall establish the detection rate of the GLRT in a fixed domain regime,
given that Σn is known. We adopt the following performance measure.

Definition 4.2. For any change detection algorithm T ∈ {0,1}, the conditional detection
error probability (CDEP) of T , which is denoted by ϕn (T ), is defined as

ϕn (T ) = P (T = 1 |H0) + max
t∈Cn,α

P
(
T = 0 |H1,t

)
.

In words, ϕn is the sum of the false alarm error and the worst-case misdetection error (taken
over the set of possible change-point locations Cn,α). Clearly, CDEP hinges on the choices
of Cn,α – the value of ϕn increases as Cn,α becomes a larger proper subset of {1, . . . ,n}.
CDEP as a risk measure has been adopted for detecting abnormal clusters in a network (see,
e.g., [ACCD11,BI+13]). It also provides an upper bound on the Bayesian risk measure. We
refer the reader to [ABBD+10] for a comparison of CDEP and the Bayesian risk measure.
Given a fixed δ ∈ (0,1), we will present a sufficient condition expressed in terms of shift
value b, sample size n, δ, and the spectral properties of the GP such that the proposed
detection procedures can guarantee that CDEP is bounded from above by δ. This can be
achieved by

• first, choose the critical value Rn,δ so that the false alarm error P (T = 1 |H0) < δ/2;

• second, the proposed sufficient condition (in terms of b, n, δ, and the parameters
encoding the dependence structure of the data) guarantees that the worse-case mis-
detection error rate is also upper bounded by δ/2.

Recall that G is a GP defined on D = [0,1] whose one realization has been observed at
Dn = {k/n}nk=1. The covariance function and the spectral density of G are respectively de-
noted by K and K̂. We study two common classes of covariance functions, one of which
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admits polynomially decaying spectral densities, and the other being the Gaussian covari-
ance function.

Assumption 4.1. K is an integrable positive definite covariance function. Moreover, there
exist ν ∈ (0,∞) and CK (depending on K) so the spectral density K̂ satisfies the following
condition:

CK := sup
ω∈R

∣∣∣∣∣K̂ (ω)
(
1 +ω2

)ν+ 1
2

∣∣∣∣∣ <∞. (4.8)

We shall always choose the largest possible ν that satisfies (4.8). It is simple to see that
Assumption 4.1 holds if and only if K̂ is bounded at the origin and K̂ (ω) � ω−(2ν+1) as
ω tends to infinity. It is well-known that the tail behavior of K̂ is closely linked to the
smoothness of K at the origin (see, e.g., Section 2.8 of [Ste12]). The following are a few
examples of common covariance functions that will be studied in this chapter.

(a) Matern: This class is widely used in geostatistics, and has a fairly simple explicit form
of spectral density.

K̂ (ω) =

√
4πΓ (ν+ 1/2)

Γ (ν)
σ2ρ−2ν

(
1
ρ2 +ω2

)−(ν+1/2)

, (4.9)

where ρ,ν,σ ∈ (0,∞). Regardless of the choice of ρ and σ, condition (4.8) holds for
Matern spectral density with parameter ν.

(b) Powered exponential: Another versatile class of covariance functions is

K (r) = σ2 exp
(
−

∣∣∣∣∣ rρ
∣∣∣∣∣β) (4.10)

for some β ∈ (0,2) and ρ,σ ∈ (0,∞). Although the spectral density does not have a
closed form in terms of simple functions, Lemma 4.2 shows that K̂ admits Assumption
4.1 with ν = β/2.

(c) Rational spectral densities: Rational spectral densities form a general class admitting
Assumption 4.8. For any K̂ in this class, there are two polynomials, Qn and Qd, with
real coefficients, unit leading coefficients and p := deg(Qd)−deg(Qn) ∈ N, such that

K̂ (ω) = λ
|Qn ( jω)|2

|Qd ( jω)|2
. (4.11)

Moreover, we assume that Qd has no root on the imaginary axis and λ is a strictly
positive scalar. Since K (0) <∞ and K̂ (ω) � ω−2p as ω→∞, Assumption 4.1 holds
with ν = p−1/2.
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(d) Triangular: For ρ,σ ∈ (0,∞), the covariance function and spectral density are given
by

K (r) = σ2
(
1−

∣∣∣∣∣ rρ
∣∣∣∣∣)

+

, K̂ (ω) =
ρσ2

2

∣∣∣∣∣sinc
(
ρω

2

)∣∣∣∣∣2 .
The triangular covariance is less favorable than the aforestated cases due to the oscil-
latory behaviour of K̂ (p. 31, [Ste12]). One can easily show that this covariance fulfils
Assumption 4.1 with ν = 1/2.

The following theorem establishes a detection error guarantee for the GLRT, provided that
the GP covariance function K is known.

Theorem 4.1. Let δ ∈ (0,1). Suppose that G is a real-valued GP defined on domain D =

[0,1] whose associated spectral density K̂ admits Assumption 4.1 for some ν and CK . G

is regularly sampled at i/n, i = 1, . . . ,n. There exist Rn,δ > 0 (depending only on n and δ),
n0 := n0 (K) and a positive universal constant C such that if n ≥ n0 and

|b| ≥Cn−ν
√

CK

(
1 +

1
ν

)
log

(
n (1−2α)

δ

)
, (4.12)

we have
ϕn (TGLRT ) ≤ δ.

In the theorem statement, universal constant is used to refer to a fixed, finite positive scalar
independent of n, δ, and all the covariance parameters. See Section 4.8 for the proof of
Theorem 4.1. The right hand side of Eq. (4.12) provides a bound on the smallest detectable
shift using the GLRT algorithm associated to the CDEP risk measure. We make several
comments regarding the roles of various quantities embedded in Theorem 4.1.

(a) Rn,δ in Theorem 4.1 can be chosen as

Rn,δ = 1 + 2

log
(
2n (1−2α)

δ

)
+

√
log

(
2n (1−2α)

δ

) . (4.13)

We guarantee that CDEP is less than or equal δ by controlling the false alarm and
misdetection probabilities below δ/2. To gain some insight into (4.13), notice that
under the null hypothesis, the test statistic in Eq. (4.6) has the same distribution as
the supremum of a χ2

1 process over Cn,α, which is represented by
{
Ψ (t) : t ∈ Cn,α

}
. For

controlling the false alarm probability below δ/2, Rn,δ needs to be chosen such that

P
(
max
t∈Cn,α

Ψ (t) ≥ Rn,δ

)
≤
δ

2
.
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The standard χ2
1 tail inequality in [Bir01] implies that if Rn,δ is chosen based upon Eq.

(4.13), then Ψ (t) ≤ δ/ {2n (1−2α)} for any t ∈ Cn,α. Thus, the union bound inequality
yields

P
 sup

t∈Cn,α

Ψ (t) ≥ Rn,δ

 ≤ ∣∣∣Cn,α
∣∣∣ max
t∈Cn,α

P
(
Ψ (t) ≥ Rn,δ

)
≤

δ
∣∣∣Cn,α

∣∣∣
2n (1−2α)

=
δ

2
.

(b) The bound on the minimal detectable shift is proportional to
√

CK , as defined in (4.8).
Note that CK is determined by both low frequency and tail behaviour of the spectral
density via ν. CK is obviously linearly proportional to

√
K (0) (see Eq. (4.8)), meaning

that CK also captures the notion of the standard deviation of the observations. Thus,
Theorem 4.1 implicitly expresses that change detection is more challenging for GPs
with larger variance.

(c) Sample size n has two opposing effects on the detection rate of the GLRT algorithm.
On the one hand, n (1−2α) appearing in the logarithmic function, is connected to the
size of alternative hypothesis which is determined by

∣∣∣Cn,α
∣∣∣ = n (1−2α). On the other

hand, the term n−ν indicates the possibility of small shift detection as more observa-
tions are available.

We note that the parameter δ, the variance of observations, and sample size have similar
roles in the increasing domain setting. The main difference between the two asymptotic
settings is the role of the decay rate of K̂ in the fixed domain, which is encapsulated by ν.
See Section 4.10 for further details in the increasing domain regime. Note that ν is closely
related to the smoothness of G with larger values of ν corresponding to a smoother GP in the
mean squared sense (cf. [Ste12], Chapter 2). For smooth GPs, G (t0) can be interpolated
using the observations in the vicinity of t0 with small estimation error. This leads to a
simpler shift-in-mean detection for smoother processes. More precisely, as n → ∞ the
lower bound on detectable b, (4.12), vanishes more rapidly for larger ν.

Remark 4.1. As an easy consequence of the theorem, we can elaborate on the asymptotic
behaviour (as n→∞) of the GLRT for several specific classes of spectral densities, all of
which satisfy Assumption 4.1.

(a) Matern: The smallest detectable jump is |b| � n−ν
√

log(n (1−2α)/δ).

(b) Powered exponential: K̂ admits Assumption 4.1 with ν = β/2. Namely the smallest
detectable b has the same order as

√
n−β log(n (1−2α)/δ).
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(c) Rational spectral densities: It has been discussed previously that K̂ (ω) � |ω|−2p as
ω→∞ and ν = p−1/2. Thus |b| = Ω

(
n−(p−1/2)

√
log(n (1−2α)/δ)

)
guarantees CDEP

to remain below δ.

(d) Triangular: Assumption 4.1 with ν = 1/2 holds for K̂ , so the smallest detectable jump
is of order

√
n−1 log(n (1−2α)/δ).

Remark 4.2. Let us comment on the role of α in Theorem 4.1. The dependence on α

in Eq. (4.12) is logarithmic, which encodes how the size of Cn,α affects the detection
rate. Strictly speaking, the asymptotic behavior of the smallest detectable jump remains
unchanged, regardless of how small α has been chosen (even if α tends to zero). Note that
we did not require that α is a fixed and strictly positive scalar in the theorem. For algebraic
convenience, we assume that the mean of G fluctuates around µ = 0 in Eq. (4.5). The
fact that we assumed µ is known is the main reason behind the trifling effect of α in the
detection rate of the GLRT, as we do not need to estimate µ from the data. That is why
in this particular case α can even be chosen as small as O (1/n). The generic form of the
GLRT test for unknown µ is presented in Proposition 4.2.

Gaussian covariance function. The Gaussian covariance function is given by

K (r) = σ2 exp

−1
2

(
r
ρ

)2 , K̂ (ω) = ρσ2
√

2πexp
[
−

(ρω)2

2

]
. (4.14)

This is also a popular modeling choice of smooth GPs [LL+00]. Regarding this covariance,
we have the following result:

Theorem 4.2. Let G be a GP on [0,1] which is observed at i/n, i = 1, . . . ,n, whose co-
variance function is given by Eq. (4.14). Let δ ∈ (0,1). There are Rn,δ > 0, n0 := n0 (ρ),
C0 := C0 (ρ) > 0 and a universal constant C > 0, such that if n ≥ n0 and

|b| ≥C

√
exp

[
−n log(C0n)

]
log

(
n (1−2α)

δ

)
, (4.15)

then
ϕn (TGLRT ) ≤ δ.

The proof of this result is given in Section 4.8. Because of the super-exponential decay
of the Gaussian spectral density, Assumption 4.1 is actually satisfied for any ν > 0. This
result shows that it is possible to detect exponentially small jump size b as n increases.
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Theorem 4.2, along with Theorem 4.1 confirm the intuition that smoother the GP is (larger
ν in Assumption 4.1), the easier it is to detect the presence of a shift in the mean.

Remark 4.3. We conclude this section noting the difference in the detection error rate
guarantee in the fixed domain regime (Theorems 4.1 and 4.2) and the analogous re-
sults in the increasing domain setting. The GLRT can detect the jumps of magnitude
O

(√
n−1 log(n (1−2α)/δ)

)
for large n (that is ϕn (TGLRT ) ≤ δ) in the increasing domain

regime, regardless of the covariance structure of G. Simply put the detection rate is not af-
fected by the dependence structure of G. By contrast, we have seen in the earlier theorems
how the detection error guarantee for the GLRT in the fixed domain setting is affected by
dependence structure of G in a fundamental way.

4.4 Detection Rate of PGLRT

As we have shown in Proposition 4.1, full knowledge of Σn is central to computing the
generalized likelihood ratio. In practice, the spectral density and covariance function of G

are not known a priori, and so we take a plug-in approach, approximating the GLRT by
plugging in the covariance estimate Σ̃n (see Definition 4.1). This section serves to investi-
gate various ways of constructing PGLRTs and assessing their detection performance. In
this section we will focus only on the fixed domain setting.
We first assume that G is a Matern GP on D = [0,1] with unknown parameters η = (σ,ρ)

in a compact space Ω, and is regularly observed on {k/n}nk=1 (see Eq. (4.9)). We use
η̃m = (σ̃m, ρ̃m) to indicate the estimated parameters using m regularly spaced samples in
D. We also assume that Cn,α = {k : αn ≤ k ≤ (1−α)n}. Namely, the GP is under control
for a certain number of observations. The controlled samples before the sudden change,
XB := {Xk : k ≤ αn}, will be used to estimate η. The parameter estimation stage is typically
called the burn-in period in the literature.
It is well-known that η is not consistently estimable in the fixed domain setting when the
number of the observations in D grows to infinity (cf., e.g., [Yin91, Zha04]). In particu-
lar, Zhang [Zha04] showed that neither σ or ρ are consistently estimable but the quantity
σρ−ν can be consistently estimated using MLE. The reason behind the inconsistency is
the existence of a class of mutually absolutely continuous models for G which are almost
surely impossible to discern by observing one realization of G. The induced measures cor-
responding to two Matern GPes with parameters η and η′ are absolutely continuous with
respect to each other whenever σρ−ν = σ′ρ′−ν. Furthermore Zhang [Zha04] showed that
if one fixes ρ at an arbitrary value, then the maximum likelihood estimator for σρ−ν is
consistent. We shall show that despite the inconsistency in estimating η, quite remarkably,
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the PGLRT exhibits an analogous performance as the GLRT with fully known covariance
function, provided that the estimate of η is consistent up to its equivalence class.
It has been noted in [KS+13] that fixing ρ̃m at large values has a trifling impact on predic-
tive performance. Due to the complicated dependence of the Matern covariance function
on ρ, estimating ρ is a computationally challenging task, particularly for large data sets.
Fortunately we can accelerate the whole detection procedure without estimating ρ. In fact,
our PGLRT change detector T̃GLRT is a two stage algorithm as follows:

• Estimation step:

1. Fix ρ̃m at the largest possible element in Ω. Namely, ρ̃m is a deterministic quantity
given by ρ̃m = max {ρ : (σ,ρ) ∈Ω}.

2. Estimate σρ−ν given the controlled samples XB, using any consistent proce-
dure such as MLE [Zha04], weighted local Whittle likelihood [WLX13], or av-
eraging quadratic variation [And10]. By consistent we mean the condition that∣∣∣σρ−ν− σ̃mρ̃

−ν
m

∣∣∣ P
→ 0 as m tends to infinity.

3. Construct the approximated covariance matrix of X, as Σ̃n =
[
K

(
r−s
n , η̃m

)]n

r,s=1
(here

m := bαnc).

• Detection step:

1. Apply the GLRTby plugging Σ̃n in place of Σn into (4.6), as described in Definition
4.1.

The following theorem establishes the detection performance for the PGLRT.

Theorem 4.3. Let δ ∈ (0,1). Let G be GP whose associated spectral density K̂ has Matern
form with unknown parameters (σ,ρ) ∈ Ω, and sampled in {k/n} , k = 1, . . . ,n. There are
finite scalar C,n0 ∈ N, a non-negative sequence lim

m→∞
τm = 0, and threshold level R̃n,δ > 0

such that for any n ≥ n0,
ϕn

(
T̃GLRT

)
≤ δ+ 2τm,

whenever

|b| ≥Cn−ν
√

CK

(
1 +

1
ν

)
log

(
n (1−2α)

δ

)
. (4.16)

See Section 4.8 for the proof of Theorem 4.3.
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Remark 4.4. The threshold value for the PGLRT is chosen exactly the same as in Theorem
4.1;

R̃n,δ =

1 + 2

log
(
2n (1−2α)

δ

)
+

√
log

(
2n (1−2α)

δ

)
 . (4.17)

Since {τk}k∈N is a vanishing sequence and m = bαnc is an increasing function of n, (δ+ 2τm)

lies in the vicinity of δ for large n. The most interesting aspect of Theorem 4.3 is that if
some consistent estimate of σρ−ν is available, the PGLRT has asymptotically the same rate
as the GLRT with fully known covariance function, regardless of how efficient the point
estimate for σρ−ν is. The main asymptotic cost to pay for (potentially) mis-specifying ρ
and σ is that that constant C appearing in Theorem 4.3 is larger than the constant C of
Theorem 4.1.
We conclude this section by studying the performance of the PGLRT when both variance
and range parameters are consistently estimable. Suppose that G has a powered exponential
covariance function, introduced in Eq. (4.10). Anderes [And10] introduced a consistent
estimate of covariance parameters using empirical average of the quadratic variation of
G. According to Theorem 5 of [And10], unlike the Matern class, both σ0 and ρ0 are

consistently estimable when β ∈ (0,1/2). Namely, |ρ− ρ̃m| ∨ |σ− σ̃m|
P
→ 0, for the method

introduced in [And10]. The following result, which has a similar flavor as Theorem 4.3
and can be substantiated in a similar way, determines the detection rate of the PGLRT for
one-dimensional powered exponential GPs.

Theorem 4.4. Let δ ∈ (0,1). Let G be a GP with powered exponential covariance function
with unknown parameters (σ,ρ) and known β ∈ (0,1/2), sampled in {k/n} , k = 1, . . . ,n.
Given a consistent estimate of (σ,ρ) (e.g., the method in [And10]), there are finite scalars
n0 ∈N and C (which depends on the covariance parameters β,σ and ρ), and a non-negative
sequence lim

m→∞
τm = 0, such that for any n ≥ n0,

ϕn
(
T̃GLRT

)
≤ δ+ 2τm,

whenever

|b| ≥C

√
n−β log

(
n (1−2α)

δ

)
,

and

R̃n,δ =

1 + 2

log
(
2n (1−2α)

δ

)
+

√
log

(
2n (1−2α)

δ

)
 .
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Theorem 4.4 states that given a consistent estimate of η = (σ0,ρ0), the PGLRT procedure
has the same asymptotic behavior as the GLRT with fully known parameters (see part (b)

of Remark 4.1 for the detection rate of the GLRT with known σ0 and ρ0).

4.5 Detection Rate of CUSUM

In this section we revisit the classical CUSUM test and obtain its detection rate in the fixed
domain setting. This result should be contrasted with our earlier theorems on the perfor-
mance of the proposed exact and PGLRTs, and highlights the need for accounting for the
dependence structures underlying the data. Theorem 4.5 introduces sufficient conditions on
|b| under which CUSUM can distinguish null and alternative hypotheses with high proba-
bility.

Theorem 4.5. Suppose that ‖K‖1 <∞ and
∥∥∥K̂′

∥∥∥
∞
<∞. Moreover let δ ∈ (0,1), α ∈ (0,1/2)

and Cn,α = [αn, (1−α)n]∩N. There are Rn,δ > 0, and n0 := n0 (δ,α) such that if n ≥ n0 and

|b| ≥ 4

√
log

(
2n(1−2α)

δ

)
α (1−α)

, (4.18)

then,
ϕn (TCUS UM) ≤ δ.

The proof of this theorem is deferred to Section 4.3. The risk of fixed domain-CUSUM has
been controlled from above under mild conditions on K, which holds true for all the exam-
ples of covariance functions considered in this chapter. Due to the following inequality, K

satisfies the assumptions in Theorem 4.5 if a (r) := rK (r) is absolutely integrable:

∥∥∥K̂′
∥∥∥
∞

= sup
ω∈R

∣∣∣∣∣∣∣∣
∞∫
−∞

a (r)e− jωrdr

∣∣∣∣∣∣∣∣ ≤
∞∫
−∞

|rK (r)|dr.

The main feature of the above theorem is the sufficient condition that the jump size in-
creases (at the order of logn at least) in order to have an upper bound guarantee on the
detection error. Although we do not have a definitive proof that this sufficient condition
is also necessary, the theorem suggests that the CUSUM test is inconsistent in the fixed
domain setting: the detection error may not vanish as data sample size increases, when the
jump size is a constant. This statement is in fact verified by a careful simulation study. By
contrast, we have shown earlier that using the GLRT, we can guarantee vanishing detection
error as long as the jump size is either constant or (better yet) bounded from below by a
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suitable vanishing term.

Remark 4.5. Let us give a qualitative argument for the inconsistency of the CUSUM test
in the fixed domain setting. Suppose that b tends to zero as n→∞. Define

Ut :=

√
t (n− t)

n

 1
n− t

n∑
k=t+1

Xk −
1
t

t∑
k=1

Xk

 .
The expected value of Ut is zero, under the null hypothesis and for any t. Regardless of the
existence of a shift in the mean, the standard deviation of Ut remains the same. A careful
look at the proof of Theorem 4.5 reveals that the smallest value of the standard deviation of
Ut over t ∈ Cn,α is order

√
n. Moreover, if there is a shift in the mean occuring at the change-

point t̄ ∈ Cn,α, then the expected value of Ut̄ is given by b
√

t̄ (n− t̄)/n = O
(
b
√

n
)

(Recall
that αn ≤ t̄ ≤ (1−α)n). Generally speaking, as the mean of Ut under the null hypothesis,
denoted by E (Ut |H0), is zero for any t ∈ Cn,α, the CUSUM test cannot distinguish between
the null and the alternative (even for large sample size), since∣∣∣∣∣∣E (Ut̄ |H1)

√
var (Ut̄)

∣∣∣∣∣∣ = O
(
b
√

n
√

n

)
= O (b)→ 0, as n↗∞.

Here, E (Ut̄ |H1) represents the expected value of Ut under the alternative. This suggests
that regardless of the sample size, the CUSUM test cannot detect the existence of a small
shift in the mean in the fixed domain setting.

Remark 4.6. The threshold value of the CUSUM test in Theorem 4.5 is given by

Rn,δ =

√√√√
n

1 + 2log
(
2n (1−2α)

δ

)
+ 2

√
log

(
2n (1−2α)

δ

).
This threshold has a different form of dependence on n than that of the threshold of the
GLRT in Eq. (4.13), since, unlike the GLRT, the CUSUM test does not reduce the corre-
lation among the samples. In order to remove the gap between the threshold of GLRT and
CUSUM in the fixed domain setting, we further normalize Ut by considering U?

n = Un/
√

n.
Equivalently, CUSUM test in this regime can be written as

TCUS UM = 1

max
t∈Cn,α

∣∣∣U?
n

∣∣∣2 > R?n,δ :=
R2

n,δ

n

 .
Here, R?n,δ is exactly the same as the critical value of the GLRT.

121



4.6 Minimax Lower Bound on Detection Rate

In this section, we establish minimax lower bounds on the detectable jump in the mean of G

in the fixed domain regime. Theorem 4.6 shows that the obtained rate for the PGLRT (The-
orem 4.3) is asymptotically near-optimal in a minimax sense. This result is applicable for
rational spectral densities. First, let us formalize the notion of asymptotic (near)-optimality.

Definition 4.3. Given n samples, let T ∈ {0,1} be a shift-in-mean detection algorithm whose
CDEP is denoted by ϕn (T ). T is said to be asymptotically near-optimal in a minimax sense
if, for any δ ∈ (0,2), there is sequences {hn}

∞
n=1 dependent on n, δ and the spectral density,

such that

1. As n→∞, T can detect the existence of any abrupt change with the CDEP guarantee
ϕn (T ) ≤ δ, provided that the jump size b satisfies hn logn = o(b).

2. There is a large enough n0 (depending on the model parameters) such that if n ≥ n0

and |b| ≤ hn, then there is no algorithm whose CDEP is strictly less than δ.

Recall the fixed domain regime in which G is a GP defined on [0,1] and is observed at
{i/n}ni=1. We formally introduce a suitable class of spectral densities that we consider in
this section. While somewhat more restrictive than Assumption 4.1, it still provides a
sufficiently rich class of commonly used spectral densities.

Assumption 4.2. There are constants p ∈ N and β ∈ (1/2,∞) such that

1. lim
ω→∞

K̂ (ω) |ω|2p exists and C′K := lim
ω→∞

K̂ (ω) |ω|2p ∈ (0,∞).

2. limsup
ω→∞

∣∣∣∣∣( K̂(ω)|ω|2p

C′K
−1

)
ωβ

∣∣∣∣∣ <∞.

Generally speaking, Assumption 4.2 contains the class of spectral densities K̂ (ω) for which
there is some p ∈ N such that K̂ (ω) � |ω|−2p as ω tends to infinity. Note that the second
condition in Assumption 4.2 is of theoretical purposes and does not have a simple qualita-
tive interpretation. It can be observed that Assumption 4.2 excludes any K̂ (ω) satisfying
Assumption 4.1 with (ν+ 1/2) /∈N. For instance, Assumption 4.2 does not hold for Matern
covariance functions with (ν+ 1/2) /∈ N.

Remark 4.7. Here, we name a salient class of spectral densities satisfying Assumption 4.2.

• Simple calculations show that any rational spectral density K̂ (See (4.11)) admits
Assumption 4.2 with C′K = λ, β = 1 and p = deg(Qd)− deg(Qn) ∈ N. Moreover, K̂
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satisfies Assumption 4.1 with ν = p− 1/2. Indeed the Matern covariance function
with p := (ν+ 1/2) ∈ N has a rational spectral density. These particular instances of
Matern covariance, which are commonly used in machine learning and geostatistics,
are of the form K (r) = Q (|r|)e−d|r|, where Q (·) is a polynomial of degree p−1.

Theorem 4.6. Let δ ∈ (0,2) and assume that Assumption 4.2 holds for K. Consider the
change-point detection problem (4.5) in which cov(X) =

[
K

(
r−s
n

)]n

r,s=1
. There are positive

scalars C̄K and n0 := n0 (K) such that if n ≥ n0 and

|b| ≤ C̄Kn−p+1/2

√
log

(
1

δ (2−δ)

)
, (4.19)

then for any test T ,
ϕn (T ) ≥ δ.

See Section 4.8 for the proof of Theorem 4.6.

Remark 4.8. Comparing the detection rate of the GLRT (see Theorem 4.1) and PGLRT
(see Theorem 4.3), with the rate established in Eq. (4.19) entails the asymptotically near
optimality of the GLRT with known covariance structure and the PGLRT for the class of
spectral densities considered in Remark 4.7. Strictly speaking, under the fixed domain set-
ting, there is a gap of order

√
logn between (4.19) and the detection rate of the GLRT based

algorithms. Although we do not have a proof to establish the asymptotic near optimality
of the GLRT and PGLRT for the broader class of spectral densities admitting Assumption
4.1, our conjecture is that Theorem 4.6 can be extended to this broader class.

4.7 Simulation Study

To illustrate the performance of the proposed shift-in-mean detection algorithms, we con-
duct a set of controlled simulation studies for verifying the results in Sections 4.3, 4.4 and
4.5. We also present other simulation studies to assess the performance of CUSUM and
GLRT in the increasing domain regime. Our goals are two-fold:

(a) comparing the performance of the GLRT based algorithms with the standard CUSUM
test in the two asymptotic frameworks.

(b) assessing the sensitivity of algorithm (4.7) to the parameters of the covariance func-
tion.
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In all the numerical studies in this section we fix n = 500 and α = 0.1.
The area under the receiver operating characteristic (ROC) curve, which will be referred
as Area Under Curve (AUC), is a standard way for assessing the performance of a test.
The ROC curve plots the power against the false alarm probability. Since the ROC curve
is confined in the unit square, the AUC ranges in [0,1]. The ROC curve of a test based on
pure random guessing is the diagonal line between origin and (1,1) and so the AUC of any
realistic test is at least 0.5.
The subsequent figures in this section exhibit empirical AUC versus b. For a fixed value
of b, covariance function K and a detection algorithm T , we apply the following method to
compute the AUC of T :

1. Set T1 = 500 and T2 = 50.

2. For k = 1 to T2 repeat independently

(a) For ` = 1 to T1 repeat independently

i. Choose p ∈ {0,1} with equal probability which denotes null or alternative hy-
potheses. Thus, approximately T1/2 = 250 experiments correspond to both
null and alternative.

ii. If p = 0, generate zero mean X ∈ Rn according to covariance function K.
That is, X are sampled from a GP with no abrupt shift in mean. Otherwise,
choose t ∈ [αn, (1−α)n] = {50,51, · · · ,450} uniformly at random (recall that
t represents the location of the mean shift) and generate X ∈ Rn according to
H1,t.

iii. Compute T score.

(b) Numerically obtain the ROC curve of T based upon T1 experiments in part i.

(c) Given the ROC curve, compute AUCk using trapezoidal integration method.

3. Compute the average AUC by AUC = 1
T2

T2∑
k=1

AUCk.

The first simulation study aims to compare CUSUM and GLRT based algorithms in the
fixed domain regime and assess the role of smoothness and other parameters of K in the
performance of the GLRT. For this experiment G is a GP in [0,1] which is observed at
regularly spaced samples, Dn = {k/n}nk=1, i.e., Xk = G (k/n) , k = 1, . . . ,n . The covariance
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function of G is assumed to have Matern form with parameters (σ0,ρ0, ν). Strictly speaking,

cov(Xi,Xl) = σ2
0Kν

(∣∣∣∣∣ i− l
nρ0

∣∣∣∣∣) , i, l = 1, . . . ,n,

Kν (x) =

√
4πΓ (ν+ 1/2)

Γ (ν)

∫ ∞

−∞

e− jωx
(
1 +ω2

)−(ν+1/2)
dω, ∀x ≥ 0.

We consider ν = 0.5,1, and 1.5. We also set σ0 = 1 and ρ0 = 1/2. As customary in the
literature, we assume that ν is known and so ν will not be estimated. For conducting
the PGLRT procedure, both parameters (σ0,ρ0) are estimated using the MLE. Due to
the low dimensionality of the unknown parameters, the most effective way to estimate
(σ0,ρ0) is to apply a brute force grid search over a pre-specified set P . Here, we choose
P = {0.2,0.4, · · · ,2} × {1/4,1/3.9, . . . ,1/0.1}. The final results are exhibited in Figure 4.1.
We observe the following:

• GLRT and PGLRT have a significantly better detection performance than CUSUM.
This performance improvement is more pronounced for smoother covariance func-
tions (larger ν). In particular, the CUSUM test is completely impractical for detection
of a small change when ν = 1 or 1.5.

• In each panel of Figure 4.1, the GLRT has a slightly larger AUC than that of the
PGLRT suggesting a small gap between the smallest detectable jump of these two
scenarios. Although the two GLRTs have the same rate, this gap is likely accounted
for by the differing constants in Eqs. (4.12) and (4.16). In short, having full knowl-
edge of the covariance parameters slightly improves the detection performance and
so our proposed algorithm is robust to the estimation error of the unknown parame-
ters of K.

• Comparing the range of b in each panel of Figure 4.1 discloses that more rapid decay
of the spectral density can decrease the smallest detectable jump. This observation
substantiates the role of ν in the theory established in Sections 4.3 and 4.4.

Next, we compare the performance of the GLRT with known parameters and the CUSUM
in the increasing domain setting. We have concisely discussed that the two methods have
analogous asymptotic rates (see Section 4.60 for further details). In the left panel of Figure
4.2, we choose an exponentially decaying covariance function

cov(Xi,Xl) = σ2
0 exp

(
−
|i− l|
ρ0

)
, i, l = 1, . . . ,n,
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in which σ0 = 1 and ρ0 = 2. That is Σn has exponentially decaying off-diagonal entries.
However, in the right panel, the chosen covariance function has a polynomially decaying
tail given by

cov(Xi,Xl) = σ2
0

(
1 +
|i− l|
ρ0

)−(1+λ)

,

with σ0 = 1, ρ0 = 2 and λ = 0.5. In this case, Σn has heavier off-diagonal terms. It is evident
from Figure 4.2 that the GLRT exhibits a slightly better performance than the CUSUM, and
the gap between the two AUC curves is more visible in the case of polynomially decaying
covariance function. Thus, we still recommend the use of GLRT in the presence of strong
correlation among samples in applications described by the increasing domain regime.

4.8 Proof of the Main Results

Proof of Proposition 4.1. In the following L stands for the generalized negative log-
likelihood ratio.

2L = X> (Σn)−1 X− min
t∈Cn,α

min
b 6=0

[(
X−

b
2
ζt

)>
(Σn)−1

(
X−

b
2
ζt

)]
. (4.20)

Note that the objective function in (4.20) is quadratic in terms of b. The explicit form of 2L
can be obtained with a bit of algebraic derivations. The algebra has been skipped to save
space; we arrive at

2L = max
t∈Cn,α

max
b6=0

−ζ>t (Σn)−1 ζt

4
b2 + bζ>t (Σn)−1 X

 = max
t∈Cn,α

∣∣∣∣∣∣∣∣∣
ζ>t (Σn)−1 X√
ζ>t (Σn)−1 ζt

∣∣∣∣∣∣∣∣∣
2

.

So, there is a threshold value, Rn,δ > 0, for which the MLE is given by (4.6).

The following result expressing the form of MLE in the generic case of unknown µ can be
proved in an analogous way as Proposition 4.1.

Proposition 4.2. There is Rn,δ > 0 for which the MLE is given by

TGLRT = 1

max
t∈Cn,α

∣∣∣∣∣∣〈Y, ζt −B1 (t)1n〉
√

B2 (t)

∣∣∣∣∣∣2 ≥ Rn,δ

 , (4.21)
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Figure 4.1: The above figures assess the performance of different detection algorithms
when G is a one dimensional Matern GP, with parameters (ν,σ0,ρ0), and regularly sampled
in [0,1]. From left to right then from top to bottom, (ν,σ0,ρ0) = (0.5,1,0.5) , (1,1,0.5) , and
(1.5,1,0.5). In each panel the horizontal axis displays b and the three curves (dashed black,
solid blue and green) respectively exhibit the AUC of the GLRT with known covariance
structure, PGLRT using full MLE and CUSUM.
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Figure 4.2: The above figure assesses the performance of increasing domain detection al-
gorithms. In each panel the horizontal axis displays b and the two curves (dashed black
and solid blue) respectively exhibit the AUC of the GLRT with known covariance struc-
ture and CUSUM. In the right panel, we choose cov(Xi,Xl) = σ2

0 (1 + |i− l|/ρ0)−(1+λ) in
which (σ0,ρ0) = (1,2) and λ = 0.5. For the left panel, the covariance function is given by
cov(Xi,Xl) = σ2

0 exp(−|i− l|/ρ0) where (σ0,ρ0) = (1,2).

where Y = (Σn)−1 X and

B1 (t) =
ζ>t (Σn)−11n

1>n (Σn)−11n
, B2 (t) = ζ>t (Σn)−1 ζt −

(
ζ>t (Σn)−11n

)2

1>n (Σn)−11n
.

Proof of Theorem 4.1. Let p = dν+ 1/2e, P = {1, . . . , p} and θn = exp(−1/n). Construct a
banded triangular matrix An ∈ Rn×n by the following procedure.

An
[
k,k− j

]
=

(
p
j

)
(−θn) j , j ∈ {0, . . . , p} , k ∈ {p + 1, . . . ,n} ,

(An)P,P = n−2νIp.

It is relatively simple to verify that An is invertible. In addition, for brevity let Zt =
ζ>t (Σn)−1X
√
ζ>t (Σn)−1ζt

for any t ∈ Cn,α, in which ζt has been defined in (4.4). Lastly, define Un,t :=

Anζt ∈ Rn, W := AnX and Dn := cov(W).
Easy calculations show that under the null hypothesis {Zt}t∈Cn,α is a set of standard Gaussian
random variables and so, by Lemma 4.1, we have P

(
maxt∈Cn,α Z2

t ≥ Rn,δ
)
≤ δ/2. That is,

the false alarm probability is less than δ/2. Moreover if the alternative hypothesis H1,t̃

(for some t̃ ∈ Cn,α) holds then
{
Z2

t

}
t∈Cn,α

are non-central χ2
1 random variables and the non-
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centrality parameter of Z2
t̃ is given by

E
(
Zt̃ |H1,t̃

)
=
|b|
2

√
ζ>t̃ (Σn)−1 ζt̃.

Applying Lemma 4.1 (σ0 = σk = 1 for any k) demonstrates that ϕn (T2) ≤ δ, whenever

|b|
√
ζ>t̃ (Σn)−1 ζt̃ ≥ |b| min

t∈Cn,α

√
ζ>t (Σn)−1 ζt ≥ 8

√
log

(
4n
δ

)
. (4.22)

Thus, in order to get a sufficient condition on detectable b, it suffices to find a tight uniform
lower bound on ζ>t (Σn)−1 ζt for t ∈ Cn,α.
The identity Σ−1

n = A>n (Dn)−1 An can be shown using the linearity of covariance operator
and non-singularity of A. Choose t ∈ Cn,α in an arbitrary way. As a result of this alterna-
tive representation of Σ−1

n , we have ζ>t (Σn)−1 ζt = U>n,t (Dn)−1 Un,t. Applying Kantorovich

inequality (cf. Section 4.9) and the triangle inequality yields

ζ>t (Σn)−1 ζt = U>n,t (Dn)−1 Un,t ≥

∥∥∥Un,t
∥∥∥4
`2

U>n,tDnUn,t
≥


∥∥∥Un,t

∥∥∥2
`2∥∥∥Un,t

∥∥∥
`1


2

1
‖Dn‖`∞

. (4.23)

Now, we show that
‖Un,t‖

2
`2

‖Un,t‖`1
≥ 1

3 , for large enough n. Indeed, after some algebra, we can get

∥∥∥Un,t
∥∥∥2
`2
≥

t+p∑
k=t+1

U2
n,t (k) =

p∑
k=1

− (1− θn)p + 2
k−1∑
j=0

(
p
j

)
(−θn) j


2

(a)
≥ 2

p∑
k=1

k−1∑
j=0

(
p
j

)
(−1) j


2

= 2
p∑

k=1

[(
p−1
k−1

)
(−1)k−1

]2

= 2
(
2(p−1)

p−1

)
≥ 2p, (4.24)

where inequality (a) follows from the fact that for large enough n, θn is arbitrarily close to
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1. To get an upper bound on
∥∥∥Un,t

∥∥∥
`1

,

∥∥∥Un,t
∥∥∥
`1

=

p∑
k=1

∣∣∣Un,t (k)
∣∣∣+ t∑

k=p+1

∣∣∣Un,t (k)
∣∣∣+ n∑

k=t+p+1

∣∣∣Un,t (k)
∣∣∣+ t+p∑

k=t+1

∣∣∣Un,t (k)
∣∣∣

=

p∑
k=1

n−2ν+

t∑
k=p+1

(1− θn)p +

n∑
k=t+p+1

(1− θn)p

+

p∑
k=1

∣∣∣∣∣∣∣∣− (1− θn)p + 2
k−1∑
j=0

(
p
j

)
(−θn) j

∣∣∣∣∣∣∣∣ ≤ pn−2ν+ n1−p

+ 2
p∑

k=1

∣∣∣∣∣∣∣∣
k−1∑
j=0

(
p
j

)
(−θn) j

∣∣∣∣∣∣∣∣ (b)
≤ 2 + 2

p∑
k=1

∣∣∣∣∣∣∣∣
k−1∑
j=0

(
p
j

)
(−θn) j

∣∣∣∣∣∣∣∣
≤ 2 + 4

p∑
k=1

∣∣∣∣∣∣∣∣
k−1∑
j=0

(
p
j

)
(−1) j

∣∣∣∣∣∣∣∣ = 2 + 4
p∑

k=1

∣∣∣∣∣∣
(
p−1
k−1

)
(−1)k−1

∣∣∣∣∣∣
= 2 + 2p+1 ≤ 3 2p. (4.25)

Note that inequality (b) is valid when pn−2ν + n1−p ≤ 2, which obviously holds for suffi-
ciently large n = O (1). The remaining inequalities and identities in (4.25) can be easily
verified via basic properties of the binomial coefficients. Combining (4.24) and (4.25)
yields the desired goal. Now, inequality (4.23) can be rewritten as

ζ>t (Σn)−1 ζt ≥
1

9‖Dn‖`∞
=

[
9 max

1≤k≤n
var (Wk)

]−1

. (4.26)

In the final phase of the proof, we achieve a tight upper bound on max1≤k≤n var (Wk). It is
obvious from the formulation of An and the stationarity of X−EX that max1≤k≤n var (Wk) =
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n−2ν∨var
(
Wp+1

)
. So, the goal is reduced to give an upper bound on the variance of Wp+1.

var
(
Wp+1

)
= var

 p∑
r=0

(
p
r

)
(−θn)r Xp+1−r


(c)
=

1
2π

∫
R

K̂ (ω)

∣∣∣∣∣∣∣
p∑

r=0

(
p
r

)
(−θn)r exp

(
− jrω

n

)∣∣∣∣∣∣∣
2

dω

=
1

2π

∫
R

K̂ (ω)

∣∣∣∣∣∣∣
p∑

r=0

(
p
r

)(
−exp

(
− (1 + jω)

n

))r
∣∣∣∣∣∣∣
2

dω

=
1

2π

∫
R

K̂ (ω)
∣∣∣∣∣1− e

−(1+ jω)
n

∣∣∣∣∣2p
dω

=
1

2π

∫
R

K̂ (ω)
[
1 + θ2

n −2θn cos(ω/n)
]p

dω

(d)
≤

CK

2π

∫
R

[
1 + θ2

n −2θn cos
(
ω
n

)]p

(
1 +ω2)ν+1/2 dω, (4.27)

where, identity (c) is implied by Bochner theorem (cf. [Ste12], Chapter 2) and (d) is imme-
diate consequence of Assumption 4.1. Notice that

1 + θ2
n −2θn cos

(
ω

n

)
≤ (1− θn)2 + 2θn

(
1− cos

(
ω

n

))
≤

1
n2 + 2

(
1− cos

(
ω

n

))
=

1
n2 +

[
ω

n
sinc

(
ω

2n

)]2
.
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Let ξ = p− (ν+ 1/2) < 1. Henceforth, for any R > 0,

2πn2ν

CK
var

(
Wp+1

)
≤ n2ν

∫
R

{
1
n2 +

[
ω
n sinc

(
ω
2n

)]2
}p

(
1 +ω2)ν+1/2 dω =

∫
R

{
1/n2 +

[
ωsinc

(
ω
2

)]2
}p

(
1/n2 +ω2)ν+1/2 dω

=

R∫
−R

{
1/n2 +

[
ωsinc

(
ω
2

)]2
}p

(
1/n2 +ω2)ν+1/2 dω+

∫
|ω|≥R

{
1/n2 +

[
ωsinc

(
ω
2

)]2
}p

(
1/n2 +ω2)ν+1/2 dω

(e)
≤

R∫
−R

(
1/n2 +ω2

)ξ
dω+

∫
|ω|≥R

{
1/n2 +

[
ωsinc

(
ω
2

)]2
}p

(
1/n2 +ω2)ν+1/2 dω

( f )
≤

R∫
−R

(
1/n2 +ω2

)ξ
dω+ 5p

∫
|ω|≥R

|ω|−(2ν+1) dω
(g)
≤ 3R3 + 5p R−2ν

ν
. (4.28)

Inequality (e) follows form the fact that supω∈R |sinc(ω/2)| ≤ 1. In order to justify ( f ),
observe that |ωsinc(ω/2)| ≤ 2 for any ω ∈ R. Thus, for large enough n and |ω| ≥ R, we get{

1/n2 +
[
ωsinc

(
ω
2

)]2
}p

(
1/n2 +ω2)ν+1/2 ≤ |ω|−(2ν+1)

(
1/n2 + 4

)p
≤ 5p |ω|−(2ν+1) .

Note that there is some n0 := n0 (R, ν) such that supω∈R
(
1/n2 +ω2

)ξ
≤ 3/2R2 for all n > n0.

This immediately entails inequality (g).
Finally, minimizing the obtained upper bound in (4.28) over R > 0, we get

var
(
Wp+1

)
≤CCKn−2ν

(
1 +

1
ν

)
(4.29)

for some universal constant C > 0. Thus, there is another strictly positive universal constant,
C′, for which max1≤k≤n var (Wk) = n−2ν∨var

(
Wp+1

)
≤C′CKn−2ν

(
1 + 1

ν

)
. So, (4.26) implies

that

ζ>t (Σn)−1 ζt &
n2ν

CK
(
1 + 1

ν

) . (4.30)

The combination of (4.22) and (4.30) completes our proof.

Proof of Theorem 4.2. The proof proceeds in a similar manner as that of the preceding
theorem, in the sense that it is required to show that inequality (4.22) holds. Let θn =

exp
(
−
ρ2

n2

)
. An represents the inverse of the Cholesky factorization of Σn. For any k ≤ j and
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q ∈ [0,1], G (k, j;q) denotes the following rational function.

G (k, j;q) =

j∏
`= j−k+1

(
1−q`

)  k∏
`=1

(
1−q`

)
−1

,

and G (k, j;1) =
(

j
k

)
. G (k, j;q) is usually referred to Gaussian binomial coefficients in the

combinatorics literature. Finally, let Un,t := Anζt. Similar to (4.22), the aim is to obtain a
universal lower bound on ζ>t (Σn)−1 ζt for t ∈ Cn,α. Observe that, ζ>t (Σn)−1 ζt =

∥∥∥Un,t
∥∥∥2
`2

.
In order to achieve a tight lower bound on

∥∥∥Un,t
∥∥∥
`2

, it is pivotal to study the non-asymptotic
behaviour of the entries of An. According to Proposition 1 of [LL+00], the entries of An are
given by

(An) jk =
(
−
√
θn

)( j−k) G (k−1, j−1;θn)√
j−1∏̀
=1

(
1− θ`n

) 1{ j≥k}.

Since `ρ2

n2 tends to 0 as n gets large for any ` ∈ {0, . . . ,n} and lim
x↘0

1−e−x

x = 1, we get

 j−1∏
`=1

(
1− θ`n

)
−1

=

 j−1∏
`=1

(
1− exp

(
−
`ρ2

n2

))
−1

�
1

( j−1)!

(
n
ρ

)2( j−1)

. (4.31)

Direct calculations show that G (k−1, j−1;θn) �
(

j−1
k−1

)
for any θn in a small neighborhood

of 1 and j,k ∈ {1, . . . ,n}. Thus,

(
−
√
θn

)( j−k)
G (k−1, j−1;θn) � (−1)( j−k)

(
j−1
k−1

)
. (4.32)
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The asymptotic identities (4.31) and (4.32) come in handy to analyze ‖Un‖
2
`2

:

‖Un‖
2
`2
≥

n∑
j=t+1

(Un)2
j =

n∑
j=t+1

 j∑
k=t+1

(An) jk −

t∑
k=1

(An) jk


2

�

n∑
j=t+1

1
( j−1)!

(
n
ρ

)2( j−1)
 j∑
k=t+1

(−1)( j−k)
(

j−1
k−1

)
−

t∑
k=1

(−1)( j−k)
(

j−1
k−1

)
2

=

n∑
j=t+1

1
( j−1)!

(
n
ρ

)2( j−1)
 j∑

k=1

(−1)( j−k)
(

j−1
k−1

)
−2

t∑
k=1

(−1)( j−k)
(

j−1
k−1

)
2

=

n∑
j=t+1

1
( j−1)!

(
n
ρ

)2( j−1) [
0−2(−1) j

(
j−1

t

)]2

�

n∑
j=t+1

(
j−1
t

)2

( j−1)!

(
n
ρ

)2( j−1)

.

Thus there are universal constants C,C′ > 0 and C0 depending on α and ρ such that

‖Un‖
2
`2
≥ C

n∑
j=t+1

(
j−1
t

)2

( j−1)!

(
n
ρ

)2( j−1)

≥C

(
n−1

t

)2

(n−1)!

(
n2

ρ2

)(n−1)

(a)
≥ C′

(n
t

)t 1
√

n

(
en2

nρ2

)(n−1) (b)
≥ (C0n)n .

Note that inequality (a) can be shown using Stirling’s formula and (b) is obvious impli-
cation of the fact that t ≤ (1−α)n (Recall Cn,α from Section 4.2.1). In summary, we have
that

|b|
√
ζ>n (Σn)−1 ζn & |b| (C0n)n/2 .

We conclude the proof by appealing to Lemma 4.1.

Proof of Theorem 4.3. For simplicity set c := σ2ρ−2ν and use c̃m to represent its estimated
quantity σ̃2

mρ̃
−2ν
m . Recall that ρ̃m is a fixed quantity which has been chosen as the largest

possible range parameter in the space Ω. Since c is consistently estimable by the maximum
likelihood algorithm, there are vanishing non-negative sequences {τm}

∞
m=1 and {εm}

∞
m=1 and

n0N such that
P (Am) := P

(∣∣∣∣∣ c̃m

c
−1

∣∣∣∣∣ < εm

)
> 1−τm, ∀ n ≥ n0.

As the range of ϕn is [0,2] (See Definition 4.2), we have

ϕn
(
T̃GLRT

)
≤ 2τm +E

(
ϕn

(
T̃GLRT

)
|Am

)
. (4.33)
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Furthermore, for any η′ = (σ′, ρ̃m) ∈Ω

Zt
(
η′

)
:=

ζ>t Σ−1
n (η′) X√

ζ>t Σ−1
n (η′)ζt

.

Notice that the Matern covariance matrix associated to η′ can be re-parametrized as

Σn
(
η′

)
=

[
K

(r− s
n
,η′

)]n

r,s=1

= σ′2ρ′−2ν
[∫

R

[
ω2 +ρ′−2

]−(ν+1/2)
exp

(
− jω

(r− s
n

))
dω

]n

r,s=1
. (4.34)

Notice that the matrix appearing in the second line of (4.34), which will be denoted by
Γn (ρ′), only depends on ρ′. The following property of Γn (·) is essential in our proof.

Γn (ρ1) � Γn (ρ2) , ∀ (ρ1,ρ2) ∈Ω with ρ1 ≤ ρ2

We aim to obtain a sufficient condition on b to control the second term in the right hand
side of (4.33) below δ. Similar to the proof of Theorem 4.1, it is necessary to study the
two following quantities: 1. variance of Zt (η′) and 2. expected value of Zt (η′) under the
alternative hypothesis, to control the false alarm and miss detection probabilities. Observe
that

varZt
(
η′

)
=

ζ>t Σ−1
n (η′)Σn (η)Σ−1

n (η′)ζt

ζ>t Σ−1
n (η′)ζt

=
σ2ρ−2ν

σ′2ρ̃−2ν
m

ζ>t Γ−1
n (ρ̃m)Γn (ρ)Γ−1

n (ρ̃m)ζt

ζ>t Γ−1
n (ρ̃m)ζt

(a)
≤

1
1−εm

ζ>t Γ−1
n (ρ̃m)Γn (ρ)Γ−1

n (ρ̃m)ζt

ζ>t Γ−1
n (ρ̃m)ζt

(b)
≤

1
1−εm

. (4.35)

Where (a) is an easy implication of the fact that η′ ∈ Am. Furthermore, (b) follows from
the fact that Γ (ρ) � Γ (ρ̃m). In other words, varZt (η′) < 1/ (1−εm). Lemma 4.1 guarantees
the existence of a vanishing sequence

{
τ′m

}
m∈N, which depends on εm, such that

P

max
1≤t≤n

Z2
t (η̃m) ≥

1 + 2

log
(
2n
δ

)
+

√
log

(
2n
δ

)
 |Am

 ≤ δ2 +τ′m. (4.36)

So, we have controlled type one error from above in (4.36). Now we turn to control the
type two error from above. Assume that there is a sudden change in the mean at t̄ ∈ Cn,α.
According to Lemma 4.1, type II error is less than δ/2 whenever for any η′ ∈Am
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|b|
2

√
ζ>t̄ Σ−1

n (η′)ζt̄ ≥
4

1−εm

√
log

(
2n
δ

)
. (4.37)

Having a lower bound on ζ>t̄ Σ−1
n (η′)ζt̄ is necessary to make sure that b satisfying (4.37).

Notice that

Σn
(
η′

)
= σ′2ρ̃−2ν

m Γn (ρ̃m) � (1 +εm)σ2ρ−2νΓn (ρ̃m) = (1 +εm)cΓn (ρ̃m) .

Thus, (4.37) holds true whenever

|b|
2

√
cζ>t̄ Γ−1

n (ρ̃m)ζt̄ ≥
4
√

1 +εm

1−εm

√
log

(
2n
δ

)
. (4.38)

Theorem 4 of [SY] conveys the equivalence of the associated Gaussian measures to matri-
ces Γn (ρ) and Γn (ρ̃m). Thus Lemma 4.3 ensures the existence of a bounded scalar B > 1
for which

ζ>t̄ Γ−1
n (ρ̃m)ζt̄ ≥

1
B
ζ>t̄ Γ−1

n (ρ)ζt̄. (4.39)

Combining (4.38) and (4.39) yields a sufficient condition on b to control the type two error

|b|
2

√
cζ>t̄ Γ−1

n (ρ)ζt̄ =
|b|
2

√
ζ>t̄ Σ−1

n (η)ζt̄ ≥
4
√

B (1 +εm)
1−εm

√
log

(
2n
δ

)
.

In conclusion we employ the lower bound on ζ>t̄ Σ−1
n (η)ζt̄ in (4.30) gives the proper rate of

detectable b.

Proof of Theorem 4.4. As the proof has much in common with the proof of Theorem 4.3,
we skip the algebraic details to avoid repetition. η̃m = (σ̃m, ρ̃m) stands for an estimate of the
unknown parameters η = (σ,ρ). Note that in this case η is consistently estimable, i.e. there
are two vanishing sequences εm and τm, m ∈ N and a large enough n0 ∈ N such that

P (Am) := P (|ρ− ρ̃m| ∨ |σ− σ̃m| < εm) > 1−τm, ∀ n ≥ n0

Recall from (4.33) that ϕn
(
T̃GLRT

)
≤ 2τm +E

(
ϕn

(
T̃GLRT

)
|Am

)
. We use K̂η′ (ω) to rep-

resent the spectral density of the powered exponential covariance function associated to
η′ = (σ′,ρ′). That is

K̂η′ (ω) =

∫
R
σ′2 exp

(
−

∣∣∣∣∣ x
ρ′

∣∣∣∣∣β− jxω
)
dx.

It is trivial that K̂η′ (·) is a strictly positive, continuous function of both ω and η′. Further-
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more, due to the compactness of the parameter space Ω, K̂η′ is uniformly continuous with
respect to η′. Thus there is another vanishing sequence ε′m (depending on εm) such that∥∥∥∥∥∥ K̂η′

K̂η

−1

∥∥∥∥∥∥
∞

≤ ε′m, ∀ η′ =
(
σ′,ρ′

)
with

∣∣∣ρ−ρ′∣∣∣∨ ∣∣∣σ−σ′∣∣∣ < εm.

So, the following inequality holds for any ω ∈ R, and any η′ satisfying |ρ−ρ′| ∨ |σ−σ′| <
εm.

K̂η (ω)
(
1−ε′m

)
≤ K̂η′ (ω) ≤ K̂η (ω)

(
1 +ε′m

)
. (4.40)

Note that (4.40) can be easily translated in terms of the covariance matrices Σn (η) and
Σn (η′). (

1−ε′m
)
Σn (η) � Σn

(
η′

)
�

(
1 +ε′m

)
Σn (η) . (4.41)

Now using similar techniques as (4.35) and (4.36), we can bound the variance of Zt (η′).

varZt
(
η′

)
=

ζ>t Σ−1
n (η′)Σn (η)Σ−1

n (η′)ζt

ζ>t Σ−1
n (η′)ζt

≤
1

1−ε′m

ζ>t Σ−1
n (η′)Σn (η′)Σ−1

n (η′)ζt

ζ>t Σ−1
n (η′)ζt

=
1

1−ε′m
,

and control the type one error below δ/2 + τ′m for a vanishing sequence τ′m (depending on
ε′m). Now we introduce a sufficient condition on b to keep the type two error below δ/2.
Using Lemma 4.1 b should satisfy

|b|
2

√
ζ>t̄ Σ−1

n (η′)ζt̄ ≥
4

1−ε′m

√
log

(
2n
δ

)
.

for any η′ with |ρ−ρ′| ∨ |σ−σ′| < εm. It follows from (4.41) that

ζ>t̄ Σ−1
n

(
η′

)
ζt̄ ≥

(
1−ε′m

)
ζ>t̄ Σ−1

n (η)ζt̄.

So, we can have a slightly stronger restriction on b by combining the last two inequalities.

|b|
2

√
ζ>t̄ Σ−1

n (η)ζt̄ ≥
4

(1−ε′m)2

√
log

(
2n
δ

)
. (4.42)

Notice that as m increases we have 4/
(
1−ε′m

)2 < 5. Thus, (4.42) holds when n ≥ n0 (for
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some large enough n0) and

|b|
2

√
ζ>t̄ Σ−1

n (η)ζt̄ ≥ 5

√
log

(
2n
δ

)
. (4.43)

Inequality (4.43) is same as the sufficient condition on b for the case of known covariance
parameters, which leads to the same detection rate.

Proof of Theorem 4.5. Choose t ∈Cn,α and define

U?
t :=

√
t (n− t)

n2

 1
n− t

n∑
k=t+1

Xk −
1
t

n∑
k=1

Xk

 .
Moreover set

Rn,δ =

√√√√
n

1 + 2log
(
2n (1−2α)

δ

)
+ 2

√
log

(
2n (1−2α)

δ

).
Note that under the null hypothesis, U?

t is a zero mean random variable and

lim
n→∞

var
(
U?

t

)
(a)
= lim

n→∞

t (n− t)
n2

∞∫
−∞

K̂ (ω)
2π

∣∣∣∣∣∣∣ 1
n− t

n∑
k=t+1

exp(− jkω/n)−
1
t

n∑
k=1

exp(− jkω/n)

∣∣∣∣∣∣∣
2

dω

= lim
n→∞

∞∫
−∞

K̂ (ω)
2π

∣∣∣∣∣∣∣∣
√

β

1−β

n∑
k=t+1

exp(− jkω/n)
n

−

√
1−β
β

n∑
k=1

exp(− jkω/n)
n

∣∣∣∣∣∣∣∣
2

dω

(a)
=

∞∫
−∞

K̂ (ω)
2π

∣∣∣∣∣∣∣∣∣
√

β

1−β

1∫
β

e− jωudu−

√
1−β
β

β∫
0

e− jωudu

∣∣∣∣∣∣∣∣∣
2

dω

=

∞∫
−∞

K̂ (ω)Gβ (ω)
2π

dω,

where

Gβ (ω) :=
[
(1−β) sinc

(
βω

2

)]2
+

[
βsinc

(
(1−β)ω

2

)]2

+ 4β (1−β) sinc
(
βω

2

)
sinc

(
(1−β)ω

2

)
sin2

(
ω

2

)
. (4.44)
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The identity (a) is implied by Bochner Theorem and (b) follows from the dominated con-
vergence theorem. It is easy to see that

∥∥∥Gβ

∥∥∥
∞
≤ 1 and so lim

n→∞
var

(
U?

n
)
≤ 1 by the triangle

inequality. Moreover, Lemma 4.5 shows that the achieved upper bound on σ2
n = var

(
U?

n
)

is tight up to some constant whenever K̂ has a uniformly bounded derivative. Namely,
there is a universal constant c ∈ (0,1) such that c ≤ lim

n→∞
var

(
U?

n
)
≤ 1 for any β ∈ (0,1). Let

R?n,δ = R2
n,δ/n. Thus

P (T = 1 |H0) = P
(
max
t∈Cn,α

|Ut| ≥ Rn,δ |H0

)
= P

(
max
t∈Cn,α

∣∣∣U?
t

∣∣∣2 ≥ R?n,δ |H0

)
. (4.45)

For any t ∈ Cn,α,
∣∣∣U?

t

∣∣∣2 is a (non-normalized) χ2
1 random variable, as σ2

n ≤ 1. Moreover∣∣∣Cn,α
∣∣∣ = n (1−2α). So the part (a) of Lemma 4.1 says that

P
(
max
t∈Cn,α

∣∣∣U?
t

∣∣∣2 ≥ R?n,δ |H0

)
≤
δ

2
.

Now we turn to control the miss detection probability. Without loss of generality assume
that b > 0. Choose an arbitrary t ∈ Cn,α. A line of algebra shows that

E
(
U?

t |H1,t
)
≥ b

√
α (1−α). (4.46)

Eq. (4.18) on b implies that E
(
U?

t |H1,t
)
≥ 4

√
log(2n (1−2α)/δ). In other words, given a

sudden jump at t,
∣∣∣U?

s

∣∣∣2 , s ∈ Cn,α are non-central χ2
1 random variables satisfying the condi-

tions of the part (b) of Lemma 4.1. Hence

P
(
T = 0 |H1,t

)
= P

(
max
s∈Cn,α

∣∣∣U?
s

∣∣∣2 ≤ R?n,δ |H1,t

)
≤
δ

2
. (4.47)

Proof of Theorem 4.6. We follow the standard method for bounding the Bayes risk from
below. Observe that

inf
T
ϕn (T ) = 1− sup

T
inf

t∈Cn,α

[
P (T = 0 |H0)−P

(
T = 0 |H1,t

)]
≥ 1− inf

t∈Cn,α
sup

T

∣∣∣P (T = 0 |H0)−P
(
T = 0 |H1,t

)∣∣∣ (a)
≥ 1− inf

t∈Cn,α
H

(
P0,P1,t

)
,

where (a) follows from inequality 2.27 in [Tsy09]. So, it suffices to show that
inft∈Cn,α H2 (

P0,P1,t
)
≤ (1−δ)2. A few lines of straightforward algebra on the explicit form
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of Hellinger distance of Gaussian measures indicates that infT ϕn (T ) ≥ δ, whenever

b2 inf
t∈Cn,α

ζ>t (Σn)−1 ζt ≤ 32log
(

1
δ (2−δ)

)
. (4.48)

Henceforth, it is enough to obtain a tight upper bound on inft∈Cn,α ζ
>
t (Σn)−1 ζt.

Let σ = 1 and choose ρ > 0 by ρ−2p+1 =
C′KΓ(p−1/2)
√

4πΓ(p)
. Furthermore, let F̂ρ,p,σ : R 7→R denote

the Matern spectral density parametrized by p, ρ and σ as (4.9). Note that ρ is well defined
due to the first condition in Assumption 4.2. Define ξt ∈ Rn by ξt (k) = 1{k>t} and let ξ′t =

ξt − ζt for any t ∈ Cn,α. Moreover, let θn = exp(−1/n) and S t = {t + 1, . . . ,n}. Finally, define
the covariance matrix Ψn ∈ Rn×n by Ψn =

[
Fρ,p,σ ((r− s)/n)

]n

r,s=1
. Observe that

ζ>t (Σn)−1 ζt = 2
(
ξ>t (Σn)−1 ξt + ξ′>t (Σn)−1 ξ′t

)
−1>n (Σn)−11n

≤ 4
(
ξ>t (Σn)−1 ξt∨ ξ

′>
t (Σn)−1 ξ′t

)
. (4.49)

We aim to prove that there is a constant C := C (p) > 0 for which ξ>t (Σn)−1 ξt ≤Cn2p−1. The
same upper bound can be obtained for ξ′>t (Σn)−1 ξ′t in an analogous manner.
We first show that  K̂

F̂ρ,p,σ
−1

 ∈ L2 (R) . (4.50)

Let M represent the finite limsup in the second condition of Assumption 4.2. Without loss
of generality, we can assume that β < 2 in Assumption 4.2. Using a few lines of algebra
one can find a bounded positive scalar M for which the following inequality holds.

limsup
ω→∞

∣∣∣∣∣∣ωβ
 K̂ (ω)

F̂ρ,p,σ (ω)
−1

∣∣∣∣∣∣ = limsup
ω→∞

∣∣∣∣∣∣ωβ
(

K̂ (ω)ω2p

C′K

(
1 +

1
ρ2ω2

)p

−1
)∣∣∣∣∣∣

≤ limsup
ω→∞

∣∣∣∣∣∣ωβ
(

K̂ (ω)ω2p

C′K
−1

)∣∣∣∣∣∣
+ limsup

ω→∞

∣∣∣∣∣∣ωβ
[
K̂ (ω)ω2p

C′K

((
1 +

1
ρ2ω2

)p

−1
)]∣∣∣∣∣∣

(a)
= M +

2pρ−2

C′K
limsup
ω→∞

K̂ (ω) |ω|2p−2+β (b)
= M.

Notice that, identity (a) follows from Assumption 4.2 and first order Taylor expansion of
(1 + x)p for infinitesimal x > 0. Moreover, (b) follows from the combination of β < 2 and
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the first condition in Assumption 4.2. Namely, there is R > 0 such that∣∣∣∣∣∣ K̂ (ω)
F̂ρ,p,σ (ω)

−1

∣∣∣∣∣∣ ≤ 2M

|ω|β
, ∀ |ω| ≥ R,

which substantiates (4.50) as β > 1/2.
It is known (4.31, Chapter III, [IR12]) that there is a function φ ∈ L2 (R) with bounded
support such that F̂ρ,p,σ (ω) �

∣∣∣φ̂ (ω)
∣∣∣2 as |ω| → ∞. Theorem 4 of Skorokhod [SY] implies

that the associated zero mean Gaussian measures to spectral densities K̂ and F̂ρ,p,σ are
equivalent. Based upon Lemma 4.3, there exists a constant h ∈ (0,∞) such that

1
h
≤

∣∣∣∣∣∣ lim
n→∞

ξ>t (Σn)−1 ξt

ξ>t (Ψn)−1 ξt

∣∣∣∣∣∣ ≤ h.

So, it suffices to show that ξ>t (Ψn)−1 ξt ≤ C′n2p−1 for some appropriately chosen C′ > 0
depending on h and C. Letting ν = p− 1/2 and recalling An, W and Dn form the proof of
Theorem 4.1, we have

ξ>t (Ψn)−1 ξt = (Anξt)>D−1
n (Anξt)

(b)
≤

‖Anξt‖
2
`2

λmin (Dn (S t,S t))
. (4.51)

Note that inequality (b) is inferred from supp(Anξt) = S t. Applying a similar technique as
(4.24), we get

‖Anξt‖
2
`2

= (n− t− p) (1− θn)p +

p∑
k=1

k−1∑
j=0

(
p
j

)
(−θn) j


2

≤ n (1− θn)p + 2
p∑

k=1

k−1∑
j=0

(
p
j

)
(−1) j


2

≤ 2
(
2p−2
p−1

)
+ n (1− θn)p ≤ n−(p−1) + 2(2e)p−1 ≤ (2e)p . (4.52)

So, ξ>t (Ψn)−1 ξt ≤ (2e)2p [λmin (Dn (S t,S t))]−1.
Next, we control the smallest eigenvalue of Dn (S t,S t) from the below. We first control the
diagonal entries from below. Note that all the diagonal entries of Dn (S t,S t) are the same
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and given by (cf. (4.27))

Q =

∫
R

F̂ρ,p,σ (ω)
2π

[
1 + θ2

n −2θn cos(ω/n)
]p

dω

(c)
∝

∫
R

ρ−2ν
(

1
ρ2 +ω2

)−p [
1 + θ2

n −2θn cos(ω/n)
]p

dω

= n−2ν
∫
R

[
(1− θn)2 + 4θn sin2 (ω/2ρ)

1/n2 +ω2

]p

dω
(d)
≥

n−2νρ−2p

2

∫
R

[
sinc(ω/2ρ)

]2p dω

= C′ρn
−2ν, (4.53)

where (c) is obtained from (4.9) and the inequality (d) follows from the fact that for any
γ ∈ (0,1) (here we put γ = 2−

1
p ), there is n0 (γ) such that for any n ≥ n0 (γ),

(1− θn)2 + 4θn sin2 (ω/2ρ)
1/n2 +ω2 ≥

γ

ρ2
[
sinc(ω/2ρ)

]2 .

We skip the proof of this inequality due to the simplicity.
Now, let Ξ := Dn (S t,S t)/Q. The combination of (4.51), (4.52) and (4.53) shows that

ξ>t (Ψn)−1 ξt ≤
C0n−2ν

λmin (Ξ)
⇒ ξ>t (Σn)−1 ξt ≤

C′0n2ν

λmin (Ξ)
=

C′0n2p−1

λmin (Ξ)
,

for some constants, C0 (p) and C′0 depending on C0, h and K. It can be shown using identity
1.2 of [BL11] that there is some integrable function g : [−π,π] 7→R with mg := essinf (g)> 0
such that Ξ is a p−banded correlation matrix, i.e. Ξ (r, s) = 0 for |r− s| ≥ p, and Ξ = Tn ( f ).
In remains to note that Lemma 6 of [G+06] implies that λmin (Ξ) > mg for any n, which
concludes the proof.

4.9 Auxiliary Results

We now present several technical results needed in Section 4.8.

Lemma 4.1. Let σ0 ≥ 1 and n ≥ 2. Let Z ∈ Rn be a Gaussian random vector with EZ = µ

and varZk ≤ σ
2
0 for any 1 ≤ k ≤ n. Moreover, let Rn = 1 + 2

(
log

(
2n
δ

)
+

√
log

(
2n
δ

))
. For any

δ ∈ (0,1) and any n ∈ N, the following results hold.

1. If µ = 0, then P
[

max
1≤ j≤n

Z2
j ≥ σ

2
0Rn

]
≤ δ

2 .
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2. If max
1≤ j≤n

∣∣∣µ j
∣∣∣ ≥ 4σ0

√
log

(
2n
δ

)
, then P

[
max
1≤ j≤n

Z2
j ≤ σ

2
0Rn

]
≤ δ

2 .

Proof. For brevity, let σ j = varZ j, j = 1, . . . ,n. Notice that
(

Z j
σ j

)2
are standard χ2

1 random

variables, for any j = 1, . . . ,n. Lemma 8.1 in [Bir01] implies that P
(
Z2

j ≥ σ
2
jRn

)
≤ δ

2n . Thus,
P
(
Z2

j ≥ σ
2
0Rn

)
≤ δ

2n due to σ j ≤σ0. We conclude the proof of the first part by a union bound
argument. Now, we turn to prove the second part. Define k := arg max

1≤ j≤n

∣∣∣µ j
∣∣∣. It is easy to

verify that Rn ≤ 4log
(

2n
δ

)
. Observe that

P
[

max
1≤ j≤n

Z2
j ≤ σ

2
0Rn

]
≤ P

Z2
k

σ2
k

≤

(
σ0

σk

)2

Rn

 ≤ P Z2
k

σ2
k

≤ 4
(
σ0

σk

)2

log
(
2n
δ

) .
Moreover,

Z2
k
σ2

k
is a non-central χ2

1 random variables with non-centrality parameter Bk :=
∣∣∣∣ µk
σk

∣∣∣∣.
The lower bound condition on |µk| implies that Bk ≥ 4σ0

σk

√
log

(
2n
δ

)
. We finish the proof by

the following inequality,

P
Z2

k

σ2
k

≤ 4
(
σ0

σk

)2

log
(
2n
δ

) (a)
≤ P

Z2
k

σ2
k

≤ 1 + B2
k −2

√(
1 + 2B2

k

)
log

(
2
δ

) (b)
≤
δ

2
.

In order to demonstrate inequality (a), we need to show that 1 + B2
k −2

√(
1 + 2B2

k

)
log

(
2
δ

)
≥

4
(
σ0
σk

)2
log

(
2n
δ

)
which can be shown by obvious inequality σ0/σk ≥ 1 and a few lines of

algebra. Inequality (b) can be inferred from Lemma 8.1 of [Bir01].

Proposition 4.3 (Kantorovich inequality, (p. 452, [HJ12])). Let Σ ∈Rn×n be a non-singular

covariance matrix and let V ∈ Rn be a non-zero vector. Then, V>Σ−1V ≥
‖V‖4`2
V>ΣV .

Lemma 4.2. Let δ ∈ (0,2), d ∈ (0,∞) and define K :R 7→R by K (r) =σ2 exp
(
−

∣∣∣∣ r
ρ

∣∣∣∣δ). Then,

lim
ω→∞

K̂ (ω) |ω|1+δ = Cδ (ρ,σ) :=
σ2δΓ (δ) sin

(
πδ
2

)
πρδ

.

Proof. Obviously Cδ (ρ,σ) = σ2Cδ (ρ,1), so without loss of generality assume that σ = 1.
Moreover K (r) is of index δ as |r| → 0, i.e. lim

|r|→0

1−K(rλ)
1−K(r) = λδ ∀ λ > 0. The Tauberian

Theorem (p. 35, [SCA12]) says that

lim
ω→∞

[1−K (1/ω)]−1

∞∫
ω

K̂ (u)du =
Γ (δ) sin

(
πδ
2

)
π

=
Cδ (ρ,1)ρδ

δ
. (4.54)
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Moreover, the first order Taylor expansion of e−x is at 0, implies that
[1−K (1/ω)]−1 (ρω)−δ → 1 as ω → 0. Thus, (4.54) can be rewritten by last limiting
identity and applying L’Hospital’s rule.

Cδ (ρ,1) = lim
ω→∞

δρ−δ (ρω)δ δωδ
∞∫
ω

K̂ (u)du = lim
ω→∞

δωδ
∞∫
ω

K̂ (u)du = lim
ω→∞

K̂ (ω) |ω|1+δ .

The following Lemma is probably well-known in the literature of GPs (e.g. the identity
2 of [SCA12] (p.112) is analogous but not exactly same as the part (a) of Lemma 4.3).
Because of the absence of direct references, we include and prove the following result in
this section.

Lemma 4.3. Let Gi, i = 1,2 be two zero mean stationary GP in [0,1] associated to co-
variance functions Ki, i = 1,2, respectively. For any n ∈ N, define two positive definite
covariance matrices by Σn :=

[
K1

(
r−s
n

)]
and Ψn :=

[
K2

(
r−s
n

)]
. If G1 and G2 induce equiva-

lent measures on the Hilbert space of L2 ([0,1]), then there exists an scalar B ∈ [1,∞) for
which

1. 1
B ≤ lim

n→∞
infv6=0n

v>Σnv
v>Ψnv ≤ lim

n→∞
supv6=0n

v>Σnv
v>Ψnv ≤ B.

2. 1
B ≤ lim

n→∞
infv6=0n

v>Σ−1
n v

v>Ψ−1
n v
≤ lim

n→∞
supv6=0n

v>Σ−1
n v

v>Ψ−1
n v
≤ B.

Proof. We use Pi, i = 1,2 to denote the probability measures with respect to Gi, i = 1,2,
respectively. Abusing the notation, X ∈ Rn represents the random vector generated by
sampling GP at {k/n}nk=1 for any n ∈ N. We prove the existence of a finite scalar B1 for
which lim

n→∞
supv6=0n

v>Σnv
v>Ψnv ≤ B1. Assume toward contradiction that lim

n→∞
supv6=0n

v>Σnv
v>Ψnv tends

to infinity. So, there is a sequence of non-zero vectors {vn ∈ Rn}∞n=1 such that

limsup
n→∞

v>n Σnvn

v>n Ψnvn
=∞. (4.55)

Consider the measurable event En =
[
|〈vn,X〉| ≥

√
v>n Σnvn

]
. Simple calculations shows that

P1 (En) = Q (1) , P2 (En) = Q


√

v>n Σnvn

v>n Ψnvn

 , (4.56)

in which Q (·) stands for the Q-function, i.e. Q (r) =
∫

1√
2π

exp
(
−x2/2

)
1 (|x| ≥ r)dx. Com-

bining (4.55) and (4.56) leads to limsup
n→∞

P1(En)
P2(En) = ∞ which contradicts the absolute con-
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tinuity of P1 with respect to P2. One cam show using the same technique that there is
B2 ∈ (1,∞) such that

1
B2
≤ lim

n→∞
inf
v6=0n

v>Σnv
v>Ψnv

.

We conclude the proof by choosing B = B1∨ B2. Now, we turn to substantiate the second
claim. Pick a non-zero vector v ∈Rn. According to Lemma 4.4, there is an suitably chosen
n−dimensional vector u (The inner product of u and v is necessarily 1) such that

v>Σ−1
n v

v>Ψ−1
n v

= v>Σ−1
n vu>Ψnu =

u>Ψnu
max〈ω,v〉=1ω>Σnω

≤
u>Ψnu
u>Σnu

(a)
≤ B.

Note that the inequality (a) is obtained from the first part of this Lemma. Taking supremum
over all non-zero v ∈ Rn and n ∈ N terminates the proof.

Lemma 4.4. Let Σ ∈Rn×n be a non-singular covariance matrix and let ω ∈Rn be a non-zero
vector. Then, (

ω>Σ−1ω
)−1

= min
〈v,ω〉=1

v>Σv. (4.57)

Proof. Since the optimization problem in (4.57) is a convex program with continuously dif-
ferentiable objective function and constraint, so its minimal value can be obtained solving
the KKT equations. That is, there are λ̂ ≥ 0 and v̂ such that

2Σv̂− λ̂ω = 0, λ̂ (〈v̂,ω〉−1) = 0.

Solving the above set of equations yields, v̂ = Σ−1ω
ω>Σ−1ω

. The desired result will be established
by replacing v̂ into the right hand side of (4.57).

Lemma 4.5. Let K be a covariance function such that
∥∥∥K̂′

∥∥∥
∞
<∞ and define Gβ :R 7→ [0,1]

by (4.44). Then, there is a universal constant c > 0 such that

inf
β∈(0,1)

∞∫
−∞

K̂ (ω)Gβ (ω)dω ≥ c.

Proof. Observe that for any ω ∈ R, Gβ (ω) is a quadratic function of β in the compact
interval [0,1] and lim

n→∞

∥∥∥Gβn −Gβ

∥∥∥
∞

= 0 for any convergent sequence βn→ β. This property
implies that

inf
β∈(0,1)

∞∫
−∞

K̂ (ω)Gβ (ω)dω ≥
1
2

 inf
β∈(0,1), |β−1/2|≥r

∞∫
−∞

K̂ (ω)Gβ (ω)dω∧

∞∫
−∞

K̂ (ω)G0.5 (ω)dω

 .
(4.58)
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for some sufficiently small r > 0. Observe that, Gβ (0) = (1−2β)2 > 0 for β 6= 1/2. The
differentiability of Gβ and K̂ (ω) implies the existence of a non-degenerate open interval Iβ
centered at 0 such that,

inf
ω∈Iβ

K̂ (ω)Gβ (ω) ≥
(1−2β)2 K̂ (0)

2
⇒

∞∫
−∞

K̂ (ω)Gβ (ω)
2π

dω ≥
(1−2β)2 K̂ (0)

4π

∣∣∣Iβ∣∣∣ .
Notice that inf |β−1/2|≥r (1−2β)2

∣∣∣Iβ∣∣∣ > 0. So, we just need to show that the corresponding
term to β = 1/2 in the right hand side of (4.58) is strictly positive. For β = 1/2, Gβ (ω) =

[sinc(ω/4)sin(ω/2)]2 and so

∞∫
−∞

K̂ (ω)Gβ (ω)
2π

dω ≥

2π∫
−2π

K̂ (ω) [sinc(ω/4)sin(ω/2)]2

2π
dω

(b)
≥

2
π3

2π∫
−2π

K̂ (ω) sin2 (ω/2)dω
(c)
> 0.

Note that (b) is a consequence of monotonicity of sinc(·) in the interval (0,π/2) and in-
equality (c) follows from the combination of

∣∣∣K̂′ (0)
∣∣∣ <∞ and K̂ (0) > 0.

4.10 Change-Point Detection in the Increasing Domain
Regime

In this section we briefly investigate the detection rate of both CUSUM and MLE algo-
rithms in the increasing domain setting. Due to the space constraint, the proofs of all the
results appearing in this section are omitted. We refer the reader to [KSN17] for the de-
tailed proofs. Before proceeding further, we present the covariance structure of our GP
model in the increasing domain framework.
In the increasing domain setting, G − EG is a mean-zero GP in D = [0,∞) and Dn =

{1,2, . . .}. Define cov(X1,Xk) = fk for any k, in which { fm}∞m=0 is an absolutely summable
sequence with f0 = 1. Due to the stationarity assumption, ΣN := cov

(
{Xk}

∞
k=1

)
is an infinite

symmetric Toeplitz matrix. We view {Xk}
n
k=1 as the observed part of an infinite stationary

time series, {Xk}
∞
k=1. Accordingly, the covariance matrix of {Xk}

n
k=1, denoted by Σn, is a

symmetric (truncated) Toeplitz matrix.
It is a known fact (Chapter 4, [G+06]) that there is a symmetric and almost surely (with
respect to Lebesgue measure) positive function, f : [−π,π] 7→ R such that ΣN = TN ( f ).
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Thus Σn = Tn ( f ). For studying the asymptotic properties of the change detection algorithm,
certain regularity conditions are required on f .

Assumption 4.3. f : [−π,π] 7→ R is a real symmetric function such that

(a) There are two positive universal scalars, 0 < m f ≤ M f <∞ such that

m f := inf
ω∈[−π,π]

f (ω) ≤ M f := sup
ω∈[−π,π]

f (ω) .

(b) There exist positive constants c and λ such that

| fk| ≤ c (1 + k)−(1+λ) . (4.59)

The first condition regarding the infimum of f is necessary to have a positive definite infi-
nite covariance matrix, i.e., ν>ΣNν > 0 for any non-zero ν ∈RN. Moreover, the polynomial
decay of fk’s as stated in (4.59) is a sufficient condition to ensure that f can be equivalently
expressed by its Fourier series. Such condition is common in the non-asymptotic analysis
of Toeplitz matrices (see, e.g., [G+06]). We now present a result describing the detection
rate of the MLE algorithm with known covariance matrix (see Eq. (4.6)).

Theorem 4.7. Let δ ∈ (0,1) and suppose that Σn = Tn ( f ) in which f admits Assumption
4.3 for some positive scalars c and λ. There exist n0 ∈ N, C > 0 (depending only on c and
λ) and Rn,δ > 0 such that for any n ≥ n0, if

|b| ≥C

√
f (0)n−1 log

(
n (1−2α)

δ

)
, (4.60)

then
ϕn (TGLRT ) ≤ δ.

Some comments are in order. First, the threshold Rn,δ in Theorem 4.7 is chosen in exactly
the same way as in the fixed domain setting, as given by Eq. (4.13). Second, in contrast
to the fixed domain setting, the dependence structure for G no longer plays the central role
in the characterization of detection performance. In particular, f (0) is the only factor in
(4.60) that captures the correlation in the samples, but this scalar quantity evidently has an
insignificant effect: the asymptotic behaviour of MLE remains the same (up to some con-
stant factor) for different GPs satisfying Assumption 4.3. A related observation that arises
by comparing between (4.12) and (4.60) is that the correlation structure of observations,
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which is encapsulated into ν or f (0), and the quantities encoding the marginal density infor-
mation such as n have been completely decoupled in the rate of the MLE in the increasing
domain. An examination of the proof reveals that the decoupling effect in the increasing
domain setting arises due to the short-range correlation assumption (cov(Xr,Xs)→ 0 poly-
nomially in |r− s|). It follows that as n increases the correlation for most pairs of observed
sample become negligible.
Now we aim to study the CUSUM test whose formulation is given in Eq. (4.2)

Theorem 4.8. Let δ ∈ (0,1), and Cn,α = [αn, (1−α)n]∩N. Assume that f satisfies Assump-
tion 4.3 for some c and λ. There are n0 = n0 ( f ) and scalar C (λ,c) > 0, such that if n ≥ n0

and

|b| ≥C

√
f (0)

nα (1−α)
log

(
n (1−2α)

δ

)
, (4.61)

then
ϕn (TCUS UM) ≤ δ.

The presented detection rates in Theorems 4.7 and 4.8 reveals that the both CUSUM and
MLE exhibit similar detection performance in the increasing domain setting. However, ac-
cording to the numerical studies in Section 4.7, the MLE slightly outperforms the CUSUM
test, especially in the presence of strong long range dependence.
In the sequel we give a condition on jump size |b| according to which no algorithm in the
increasing domain can properly detect the existence of a shift in the mean.

Theorem 4.9. Let δ ∈ (0,2), and Cn,α = [αn, (1−α)n]. Suppose that Σn = Tn ( f ) in which f

satisfies Assumption 4.3. There exist n0 := n0 ( f ) and C > 0 such that if n ≥ n0 and

|b| ≤C

√
(1 +ϑ) f (0) log

(
1

δ(2−δ)

)
αn

,

then for any test T ,
ϕn (T ) ≥ δ.

The direct comparison between the detection rate of both CUSUM (in Theorem 4.8) and
MLE (see Theorem 4.7) test with the above result indicates the minimax optimality (up to
some order logn term) of both of these procedures in the increasing domain setting.
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CHAPTER 5

Future Works

In this chapter we succinctly describe the potential ways of extending the problems studies
in this thesis.

• Adjusting the LIF loss function for non-stationary processes with smoothly varying vari-

ance and range parameters: The main idea is to partition the set of sampling sites Dn

into bn small bins, so that the GP inside each bin can be well approximated by an sta-
tionary process. For any s ∈ Dn, construct the set Nm (s) using the nearest neighbours
of s inside its associated bin. The vectors variance and range parameters, denoted by
φ0 =

[
φ0,1, . . . ,φ0,bn

]> and ρ0 =
[
ρ0,1, . . . ,ρ0,bn

]>, can be simultaneously estimated by op-
timizing a penalized LIF objective function. Strictly speaking,

(
φ̂n,B, ρ̂n,B

)
= argmin

φ,ρ

 bn∑
t=1

∥∥∥YBt,mY>Bt,m−φtKBt,m (ρt)
∥∥∥2
`2

+ Jφ
(
φ1, . . . ,φbn

)
+ Jρ

(
ρ1, . . . ,ρbn

) ,
in which Jφ and Jρ are non-negative functions penalizing the rapidly varying variance and
range parameters. Such penalized loss function may be optimized using the coordinate
descent method.

• LIF estimation for the multi-dimensional Gaussian processes: Interpolation of vector-
valued spatial Gaussian processes has been rarely studied in the statistics literature. For
instance developing scalable estimation algorithms for such processes is a major com-
putational and scientific challenges for the oceanographers. Argo project, which is an
international collaborative partnership of more than 30 countries, has been operational
since the early 2000s. More than 3000 free-drifting profiling Argo floats measure the
temperature and salinity over 3◦ latitude by 3◦ longitude. Each float is launched as deep
as 2000 meter below the ocean surface to monitor the temperature and salinity. After
some suitable data preprocessing, the collected data can be modelled using a vector-
valued Gaussian process of the form

[
Gsal (s) ,Gtemp (s)

]
in a three dimensional space
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(latitude by longitude by depth). Evaluating the full likelihood function for such spatial
process is almost infeasible, as we have discussed in Chapters 2 and 3. An interesting
future path is to design an inversion-free algorithm for simultaneous interpolation of the
salinity and temperature fields. Note that due to the mutual correlation between Gsal and
Gtemp (which can not be neglected), generalizing the LIF estimator is not a trivial task.

• The smoothness parameter adaptation in the LIF estimator: Recall that the precondi-
tioning order m in the LIF class of algorithms should satisfy the condition m ≥ ν+ d/2.
Increasing m directly affects the computational complexity of the proposed estimation
algorithm, which is more pronounced for large data sets. Thus a prior knowledge of
the smallest possible preconditioning order (m = dν+d/2e) is imperative, particularly for
practical scenarios. We assumed to fully know ν in our fixed domain asymptotic analysis
in chapter 3, which is unlikely realistic. A thorough asymptotic and algorithmic analy-
sis remains to be done on adjusting the LIF algorithm for the case of unknown ν. For
stationary GPs, a consistent estimator of ν has been proposed in the literature. So a first
possible choice of m can be dν̂+ d/2e, in which ν̂ stands for the estimate of ν given the
data. However adapting the LIF estimator to the case of unknown smoothness parameter
for the smoothly varying non-stationary processes is yet to be discovered.

• Change-zone detection in spatial GPs: A systematic study of change-zone detection
methods for multi-dimensional GPs remains unavailable. The fixed domain setting is
clearly the natural way to study asymptotic behaviour of detection procedures for these
spatial processes. The one dimensional abrupt change model in Chapter 4 can be easily
extended to a multi-dimensional setting. Consider a spatial GP G in a bounded domain
D ⊂ Rd whose mean function can be formulated as the following:

EG (s) = µ01s∈Ω +µ11s/∈Ω, ∀ s ∈ Rd. (5.1)

Here µ0 6= µ1 are unknown scalars and Ω ⊂D denotes a zone with constant mean. Aside
from the sample size and smoothness of the covariance function, the geometric properties
of Ω also has a crucial role in the design and analysis of detection algorithms.

• Detecting abrupt changes in more complex Gaussian models: Taking the dependence
structure of the Gaussian time series into account can significantly improve the perfor-
mance of abrupt change detectors. Using the plug-in GLRT approach for detecting the
abrupt changes in more complicated spatial-temporal processes, such as time varying
Gaussian graphical models, can be very computationally challenging. Scalable surrogate
statistics to likelihood ratio function for sequential and off-line change-point detection in
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high-dimensional Gaussian graphical models is another viable future research direction.
Employing pseudo-likelihood based approaches is a tractable approach for alleviating the
computational burden of detection algorithms in complex dependent structures.
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[AFV14] S Borağan Aruoba and Jesús Fernández-Villaverde. A comparison of pro-
gramming languages in economics. Technical report, National Bureau of
Economic Research, 2014.

[AGB05] Denis Allard, Edith Gabriel, and Jean-Noël Bacro. Estimating and testing
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for determination of change. Journal of Statistical Planning and Inference,
60(2):291–310, 1997.

[And10] Ethan Anderes. On the consistent separation of scale and variance for gaus-
sian random fields. The Annals of Statistics, pages 870–893, 2010.

[AS+66] Milton Abramowitz, Irene A Stegun, et al. Handbook of mathematical func-
tions. Applied mathematics series, 55(62):39, 1966.

152



[Bac14] François Bachoc. Asymptotic analysis of the role of spatial sampling for co-
variance parameter estimation of gaussian processes. Journal of Multivariate
Analysis, 125:1–35, 2014.

[BFG11] Pierre Raphael Bertrand, Mehdi Fhima, and Arnaud Guillin. Off-line detec-
tion of multiple change points by the filtered derivative with p-value method.
Sequential Analysis, 30(2):172–207, 2011.

[BGT87] NH Bringham, CM Goldie, and JL Teugels. Regular variation, cam-bridge
univ. Pres, Cambridge, 1987.

[BI+13] Cristina Butucea, Yuri I Ingster, et al. Detection of a sparse submatrix of a
high-dimensional noisy matrix. Bernoulli, 19(5B):2652–2688, 2013.
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[Hor97] Lajos Horváth. Detection of changes in linear sequences. Annals of the
Institute of Statistical Mathematics, 49(2):271–283, 1997.

[HQI07] Xiao Hu, Hai Qiu, and Naresh Iyer. Multivariate change detection for time
series data in aircraft engine fault diagnostics. In Systems, Man and Cybernet-
ics, 2007. ISIC. IEEE International Conference on, pages 2484–2489. IEEE,
2007.
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