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ABSTRACT 
 

The photochemistry and photophysics of three types of photoswitchable compounds have 

been investigated. Chiral overcrowded alkenes, which undergo unidirectional photoisomerization 

are examples of light driven molecular-scale motors. Photochromic photoacids based on the 

reversible light induced ring-closure and ring-opening of spiropyran and merocyanine release a 

proton causing a large drop in pH upon switching from the ring-open merocyanine to the 

ring-closed spiropyran form. Hydroxocobalamin and aquocobalamin, derivatives of vitamin B12, 

act as light activated hydroxyl radical catalysts under aerobic conditions in solution. Ultrafast 

UV-vis transient absorption spectroscopy has been used to investigate the details of excited state 

dynamics and photoproducts involved in the photochemistry of these molecules. 

Light driven molecular motors undergo 360° of internal rotation about their central 

carbon-carbon double bond in four steps: P-cis à M-trans à P-trans à M-cis, etc. The cis to 

trans and trans to cis steps are photoisomerizations, while the “M” to “P” steps are thermal 

conformational changes. Transient absorption spectroscopy and pump-repump probe (PrPP) 

spectroscopy were used to probe the excited state behavior of all four conformations of the 

molecular motor. We have found evidence for unintended backward isomerization in the M-cis 

conformation, previously thought to be insensitive to photoexcitation. 

Spiropyran and merocyanine can reversibly interchange upon absorption of light. 

Merocyanine is a planar π conjugated molecule with visible absorption bands. Spiropyran 

possesses a central “spiro” carbon breaking the conjugation between both sides of the molecule, 



	 xviii 

and therefore has absorption bands in the UV. The indazole and phenol based versions of 

merocyanine/spiropyran investigated here display a large pKa difference between the 

merocyanine and spiropyran forms. As a result, light activated ring closure of merocyanine to 

form spiropyran is accompanied by a drop in pH of ~ 2 units. Transient absorption in aqueous 

solution and a polar aprotic solvent (DMSO) uncovered solvent effects in the photochemical 

formation of spiropyran. In the phenol-based merocyanine, water appears to extend the lifetime 

of the cis-merocyanine precursors to spiropyran. 

Hydroxocobalamin (HOCbl) and aquocobalamin (H2OCbl) are derivatives of vitamin B12 

that have long been thought to be photostable. However, recent transient absorption studies and 

anaerobic photolysis experiments have demonstrated otherwise. Transient absorption 

experiments exciting with 269 nm light show homolytic bond cleavage to form hydroxyl radicals 

and cob(II)alamin with ~ 1.5% quantum yield. In addition, anaerobic photolysis with 

wavelengths ≤ 300 nm demonstrates homolysis as well. As a result, HOCbl and H2OCbl are 

potential hydroxyl radical photocatalysts. 
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Chapter 1 
 

Introduction to photoswitching materials 

Nature is an abundant source of inspiration for chemists. Natural systems interact ingeniously 

with the environment to transform energy – light energy, chemical energy, electrical potential – 

into useful work. Living systems consist of molecular-scale “machines” harmoniously 

performing their microscopic functions manifesting as macroscopic life. All the macromolecules 

in a cell work together, the cells in a specific tissue or organ work together, and all of the tissues 

of a living organism together. Zooming out from this microscopic picture, a view of macroscopic 

life comes into focus. 

Human beings discovered how to build machines such as motors and pumps at the beginning 

of the industrial revolution. Humanities’ relatively recent discovery pales in comparison to how 

long ago single celled organisms developed motors and pumps. Over the years, scientists have 

delighted in discovering incredibly intricate molecular machines orchestrating life on the cellular 

level. ATP synthase is a molecular scale rotary pump driven by electrochemical gradients across 

the mitochondrial membrane, which synthesizes the cellular currency of energy for all life 

adenosine tri-phosphate (ATP)1–3. Molecular walkers such as dynein and kinesin “walk” up and 

down the cytoskeletons of our cells, powered by the hydrolysis of ATP, transporting cargo 

throughout the cell4,5. The bacterial flagellar motor is a rotary motor imbedded in bacterial 

membranes, which is powered by chemical energy and allows bacteria to move along chemical 

gradients6. The molecular machinery of cells demonstrate that it is possible to build smaller and 

smaller machines7–9. 
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The previous examples of molecular scale machines rely on chemical energy, but light is a 

useful source of energy for powering molecular machines as well. Light has many easily 

controllable attributes, such as wavelength, intensity, phase, and timing. This gives the designers 

of light driven molecular devices a high degree of control over their machines. And of course, 

nature thought of it first. One only needs to open their eyes and experience vision to appreciate a 

light driven molecular scale machine. The retinal molecules contained in your eyes 

photoisomerize upon absorption of light inducing a signaling cascade which manifests as 

vision10,11. 

Pulsed lasers provide invaluable tools for studying and controlling light driven molecular 

devices. Pulsed lasers deliver incredible intensities of light over a wide range of wavelengths in 

ultrashort pulses. Ultrafast spectroscopy probes timescales in the femtosecond (fs, 10-15 second) 

to picosecond (ps, 10-12 second) range, which is the timescale of many photochemical processes 

such as bond isomerization and bond photolysis12. This technique reveals key details about how 

a molecule absorbs light and converts that energy into useful work. The research presented here 

relies heavily upon ultrafast spectroscopy to uncover mechanistic details about the functioning of 

light driven molecular-scale devices. 

Overview of work presented. The research presented here covers three photo-switchable 

molecular systems intended for use in molecular scale machines and devices. Chapters three and 

four encompass light driven molecular motors based on chiral overcrowded alkenes. Chapter five 

deals with photochromic photoacids based on the spiropyran/merocyanine (SP/MC) system. 

Chapter six discusses light activated hydroxyl radical reagents based on vitamin B12 derivatives, 

hydroxocobalamin (HOCbl) and aquocobalamin (H2OCbl). The line drawing structures of these 

molecules and simple schemes for their photochemical mechanisms are shown in Figure 1.1. In 
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all of these cases, time-resolved ultraviolet and visible transient absorption (UV-vis TA) 

spectroscopy covering the femtosecond to nanosecond (ns, 10-9 second) timescales is used to 

track the evolution of excited electronic states and formation of photoproducts. UV-vis TA is 

uniquely suited to measure the spectra of transient species, which are difficult to capture in a 

standard chemistry lab setting. 

Molecular motors. Professor Ben Feringa and co-workers developed light-driven rotary 

motors based on the cis/trans and trans/cis isomerization of chiral overcrowded alkenes in the 

1990’s13–15. Similar to most alkenes – ethylene, stilbene, azobenzene – undergoing cis/trans 

photoisomerization, π-π* excitation of the central carbon-carbon double bond induces twisting of 

the carbon-carbon bond to a perpendicular geometry. Pyramidalization of one of the carbons 

from a planar (sp2) geometry to a pyramidal (sp3) geometry allows the molecule to access a 

conical intersection with the ground state, completing the cis/trans isomerization. Unlike the less 

crowded systems known to undergo cis/trans isomerization16–21, chiral overcrowded alkenes 

developed by Feringa et al. undergo unidirectional photoisomerization. Symmetric molecules 

like ethylene, trans-stilbene, and trans-azobenzene, have no preference for isomerization in one 

direction over another because of their symmetry. The unidirectional photoisomerization 

observed in chiral overcrowded alkenes is an immensely useful property utilized in applications 

ranging from light activated metastable pharmaceuticals22, photo-switchable hydrophobic 

surfaces23, and even providing the motive force for light driven nano-cars and 

nano-submarines24–27. 
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Figure 1.1 Schemes of photoswitching cycle of the molecules presented in this thesis. (a) Rotary cycle of 

the molecular motor investigated in chapters three and four, (b) photoswitching cycle of the 

photochromic photoacids based on spiropyran investigated in chapter five, (c) photocatalytic cycle of 

hydroxyl radical formation by hydroxocobalamin and aquocobalamin investigated in chapter six. 
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The key insight Professor Feringa brought to the field was steric crowding on the periphery 

of the chromophore induces the molecule to take on a helical shape, as depicted by the 3-D 

structures and Newman projections in Figure 1.2. As a result, the excited state potential energy 

surface governing the direction of photoisomerization becomes asymmetric28 along the central 

carbon-carbon twisting coordinate. The asymmetric molecular motor isomerizes in only one 

direction, like the rotor of a motor13,14,29. The early work in this field relied on low temperature 

photolysis and circular dichroism studies to prove unidirectional photoisomerization was 

occurring13–15. Several synthetic, spectroscopic, and theoretical investigations have been 

undertaken to determine the details of the rotary cycle of these novel light-driven molecular 

motors. 

 

Figure 1.2. Relevant structures of first-generation molecular motor under investigation. (a) 

3-dimensional structures in their rotary cycle. (b) Newman projections of structures, which 

demonstrate the helical nature of the molecule. 

 

The “first-generation” molecular motors are synthetic modifications to stiff stilbene, which 

incorporate a methyl group on one side of the strain imposing cyclohexane ring of stiff stilbene 

and naphthyl rings on the other side as shown in Figures 1.2 and 1.3. The first-generation 
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molecular motors consist of two identical sub-units on either side of the central carbon-carbon 

double bond, existing as either cis or trans isomers. In the case of the cis isomer, the naphthyl 

groups interact with each other via steric repulsion and take on a gauche-like configuration, 

where the naphthyl groups on either side of the carbon-carbon double bond have an angle of 

much less than 120°. In the case of the trans isomer, a methyl group interacts with the aromatic 

rings on the opposite side of the double bond, again adopting a gauche configuration as shown in 

Figure 1.2. The molecular motor adopts a helical geometry, which could have right-handed (P) 

or left-handed (M) helicity. The chirality of the molecule dictates whether P or M helicity is 

more stable. In the case of the molecules studied herein, the P-type helicity conformers are more 

thermodynamically stable and dominate the population at equilibrium30. 

The molecular motor undergoes one 360° rotary cycle in four steps as shown in Figure 1.2. 

Early studies using low temperature photolysis and circular dichroism uncovered two important 

details leading to these conclusions14. Low temperature photolysis of the P-cis or P-trans only 

produces M-trans or M-cis, respectively. Heating of M-trans or M-cis forms P-trans or P-cis, 

respectively. These findings support a four-step cycle such as this: P-trans (photoisomerization) 

à M-cis (helix inversion) à P-cis (photoisomerization) à M-trans (helix inversion) à 

P-trans … etc., as shown in Figure 1.2. This model suggests the rotary cycle of the molecular 

motor is unidirectional. In other words, P-trans never forms P-cis as its photoproduct and vice 

versa. Unidirectional rotation results from the steric interactions between the two sides of the 

central carbon-carbon double bond, which make the molecular motor helical. 
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Figure 1.3. Synthetic evolution of the molecular motor. (a) Original first-generation molecular motor, 

relying on six membered fusing rings. The half life of the unstable cis isomer at room temperature is 

439 hours14,31, (b) Improved first-generation molecular motor, relying on five membered fusing rings. 

This is the molecule studied in chapters three and four. The half life of the unstable cis isomer is 43 

minutes30,31. (c) Second-generation molecular motor relying on a fluorene as the stator, the half life of 

the unstable conformation is 190 seconds31. 

 

The barrier for thermal helix inversion governs the rate-limiting step of the rotary cycle. One 

of the main foci of this field of research is to increase the overall rate of rotation in the molecular 

motor. The primary approach to achieve rate increase is reduction of the amount of steric 

hindrance by synthetic modification. Thermal helix inversion activation energy decreases by 

alleviating the steric hindrance between the crowding functional groups of the molecule. For 

example, the originally reported molecular motor’s M-trans to P-trans thermal helix inversion 

barrier was 109 kJ/mol32, while recently reported thermal helix inversion barriers are as low as 

35.8 kJ/mol33. Such decreases led to a 1012 fold increase in the rate of rotation at room 

temperature!  

 Pursuit of smaller and smaller thermal helix inversion barriers created a wide array of unique 

molecular motors, including the so-called “second-generation” molecular motor. The 

second-generation molecular motor is asymmetric across the carbon-carbon double bond, using a 

fluorene “stator” and an indene “rotor” as shown in Figure 1.3. Second-generation molecular 
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motors benefit from the same size thermal helix inversion barrier on either side of the stator, and 

fewer possible UV-vis absorption spectra. These benefits make the second-generation molecular 

motor a more useful molecular device and easier to systematically improve. Synthetic chemists 

need only concern themselves with one thermal helix inversion barrier, rather than two as with 

the first-generation molecular motor. It is important to keep in mind, however, the rate-limiting 

step in the rotary cycle of molecular motors is a necessary design flaw needed to induce 

unidirectional rotation. One can imagine as synthetic efforts continue to reduce the thermal helix 

inversion barrier; eventually the molecular motor will lose its helicity and its preference for 

unidirectional rotation. Therefore, efforts to minimize the thermal helix inversion barrier will 

eventually lose their benefits. As the benefits of ground state synthetic modifications diminish, 

research is now focusing on the excited states. There is the possibility of further innovation by 

investigating the photoisomerization step in the rotary cycle of the molecular motor. 

The excited state dynamics of the molecular motor have gone largely unnoticed until 

recently. This is because alkene isomerization takes place on the fs to ps timescales, many orders 

of magnitude faster than thermal helix inversion. The photoisomerization is nowhere near the 

rate-limiting step of these devices. Ultrafast fluorescence up-conversion34,35, UV-vis TA35–38, and 

UV-pump IR probe38 TA have studied the excited state dynamics of some second-generation 

molecular motors. Taken together, these studies demonstrate photoisomerization of the 

second-generation molecular motor can be understood along the lines of typical alkene 

photoisomerization involving ultrafast twisting motion about the central carbon-carbon bond and 

pyramidalization of one of those carbons to return to the ground state via a conical intersection16–

18,39–48.  
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UV-vis TA spectroscopy was carried out on a second-generation molecular motor in hexane 

excited by 360 nm in 2009 by Augulis et al.36 The authors’ analysis revealed two lifetimes, 

1.7 ps and 12-16 ps, in the data. The 1.7 ps lifetime corresponds to the decay of an excited state 

absorption and stimulated emission. The 12 – 16 ps lifetime corresponds to the formation of 

photoproducts, which persist for hundreds of picoseconds after excitation. The authors interpret 

these results in terms of a single excited electronic state with a barrier crossing. The initial 

excited state crosses a barrier with a timescale of 1.7 ps. Afterwards, the molecules form 

metastable products via conical intersection, relaxing on a 12 – 16 ps timescale. 

Fluorescence up-conversion studies were carried out on a second-generation molecular motor 

in dichloromethane and cyclohexane by Conyard et al.34 In this work, the authors probed the 

dynamics of the bright excited state in the photoisomerization of the molecular motor. The 

fluorescence (455 – 576 nm) decays with two timescales, ranging from 110 – 310 fs and 0.87 – 

1.3 ps. The blue side of the fluorescence decays much faster than the red side. The steady state 

fluorescence spectrum of the molecule is incredibly weak (Φ ≈ 10-4) and broadened on the red 

side. Taken together, the authors concluded a large amount of structural relaxation happens in the 

excited state during the first ~ 100 fs after excitation. The authors detected two oscillatory 

features in the time resolved emission profiles with frequencies of 130 and 180 cm-1. They go on 

to speculate π-π* excitation leads to rapid decay from the Franck-Condon region by twisting of 

the central double bond and pyramidalization of one of the carbons, returning to the ground state 

on a ~ 1 ps timescale. However, this study was not sensitive to dark excited states, all they 

measured was the decay of fluorescence. 

More recently, Conyard et al.35,37 and Amirjalayer et al.38 conducted pump probe 

spectroscopy on a second-generation molecular motor, examining the effect of substitutions on 
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the molecule and the role of solvent in the excited state dynamics. These investigations reveal an 

additional dark excited state produced after the decay of the initial bright state. Conyard et al. 

showed electron donating and withdrawing groups on either side of the bridging carbon-carbon 

double bond could modulate the lifetime of the dark state37. Amirjalayer et al. used 400 nm 

pump/IR probe spectroscopy and found the existence of a dark state whose lifetime is ~ 12 ps38. 

Prior to the formation of this dark state, broad electronic transitions in the mid-infrared 

(~1500 cm-1) were observed which decay on a ~1.5 ps timescale. This timescale was assigned to 

the timescale for formation of the dark state. These recent TA studies indicate the presence of 

two excited states involved in the photoisomerization of the second-generation molecular motor. 

Theoretical calculations examining the excited state potential energy surfaces and conical 

intersections involved in the photochemistry have been carried out as well28,49–57. These studies 

focus on the excited state potential energy surfaces along the twisting and pyramidalization 

coordinates. A wide variety of methods have been employed, including complete active space 

self consistent field theory (CASSCF) and complete active space second order perturbation 

theory (CASPT2), time dependent density functional theory (TDDFT) and state averaged spin 

restricted Kohn Sham theory (SA-REKS), and molecular dynamics (MD). These studies stress 

the importance of the twisting and pyramidalization coordinates as well as the role of two excited 

electronic states in the photochemical pathway. 

In a 2012 study by Morukuma et al.28, CASSCF and CASPT2 calculations were performed to 

analyze the excited state minimal energy path (MEP) of a series of sterically crowded alkenes, 

ranging from stilbene, to stiff stilbene, and a first-generation molecular motor. The MEP of the 

first-generation molecular motor is asymmetric with respect to central carbon-carbon twisting 

motion and very steep for twisting in one direction. This study demonstrates the effect of steric 
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crowding on the profile of the excited state potential energy surfaces. In 2016, Morukuma et al.52 

used CASSCF and spin flip TDDFT (SFDFT) to locate minimal energy conical intersections for 

first and second-generation molecular motors, once again showing the importance of 

pyramidalization in the nonadiabatic decay of the excited state to the ground state. 

In 2009 through 2011, Filatov et al. carried out MD simulations on the excited states of a 

second-generation molecular motors using DFT and SA-REKS49,50, multireference methods, and 

surface hopping51. These investigations identified two conical intersections between the ground 

and excited state that are reached through twisting and pyramidalization of the central double 

bond. The MD simulations found the average excited state lifetime was ~ 1.4 ps with a quantum 

yield of Φ = 0.92 for forward rotation (stable to unstable) and Φ = 0.4 for reverse rotation 

(unstable to stable)50. In both investigations, the authors stressed the importance of twisting and 

pyramidalization as the relevant reaction coordinates. Notably, these investigations fail to 

account for the longer timescales observed in TA measurements35–38, as well as the results 

presented in this dissertation. 

A first-generation molecular motor, 

(E and Z) dimethyl-tetrahydro-bi(cyclopenta[α]napthalenylidene), or “P-cis” and “P-trans” as 

shown in Figure 1.2b, was chosen as the subject of chapters three and four of dissertation for a 

number of reasons. Foremost, all four conformations (P-cis, M-cis, P-trans, and M-trans) have 

distinct UV-vis absorption spectra making them ideal for pump-repump probe (PrPP) and 

pump-dump probe studies featured in chapter four. In contrast, the second-generation molecular 

motor only has two unique UV-vis absorption spectra, making clockwise or counter-clockwise 

isomerization indistinguishable by TA spectroscopy. Also, this particular molecular motor has 

absorptions at 400 nm as shown in chapter 3 Figure 3.1, which is a convenient wavelength to 
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produce in the lab. Finally, it is easily synthesized based on a small number of well-established 

techniques reported in the literature30,58–60. The TA studies in chapter three serve as a useful basis 

for understanding the PrPP and PDP experiments carried out in chapter four. 

Photochromic photoacids. Photochromic molecules undergo reversible changes in their 

UV-vis absorption spectrum after light exposure61. This property is utilized in a diverse range of 

technologies from optical data storage, DNA photoswitching62–65, and optical control of 

functionalized surfaces66–68. The spiropyran/merocyanine (SP/MC) system is one of the most 

extensively studied and useful examples of a photochromic system69–78. In SP/MC systems, 

reversible switching mediated by light or heat causes the planar merocyanine (MC) to undergo 

ring closure forming spiropyran (SP) and vice versa. Recently, Liao et al. built on the SP/MC 

theme by incorporating acidic functional groups on the molecule79–82 as well as attaching a 

propyl-sulfate moiety to make the molecules water soluble as shown in Figure 1.4. These new 

molecules experience a two unit pH drop after irradiation and reversibly revert to their less acidic 

MC configuration on a roughly one minute timescale. Therefore, they are “metastable” 

photoacids. 
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Figure 1.4. UV-vis spectra of (a) phenylhydroxy photoacid and (b) indazole photoacid in their 

merocyanine and spiropyran forms. The merocyanine forms are given by the red spectra, and the 

spiropyran forms are given by the light blue spectra. The deprotonated Phenylhydroxy-MC- 

merocyanine (a) spectrum is in dark blue. 

 

Conjugation lies at the heart of photochromism in SP/MC systems. The MC form consists of 

two aromatic groups, indoline and phenol as given in Figure 1.4a and benzothiazole and indazole 

in the case of Figure 1.4b. The aromatic groups are connected by a central carbon-carbon double 

bond allowing for delocalization of the π electrons and visible light absorption. The SP 
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(b) 
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ring-closed form has an sp3 central carbon, which breaks the conjugation between the two sides 

of the molecule resulting in a blue shift of the absorption into the UV61,70,73,83.  

The equilibrium stability and photochemistry of SP/MC systems are governed by 

substitutions and solvent polarity71,73,75,76,78,81,83,84. In the case of 6,8-dinitro-benzopyran indoline 

(6,8-dinitro-BIPS) is predominantly in the MC form in solution at room temperature. In contrast, 

6-nitro-benzopyran indoline (6-nitro-BIPS) is predominantly in the SP form in solution at room 

temperature. 6,8-dinitro-BIPS ring opening proceeds only through singlet states72,74,76,84–88. 

6-nitro-BIPS will ring-open upon irradiation, but the MC form has no quantum yield for ring 

closure76. In the case of un-substituted spiropyran, the equilibrium is shifted toward SP and the 

ring opening involves only singlet states85.  

  

There are four conformations of trans-MC in the ground state as shown in Figure 1.5, 

corresponding to rotation of functional groups on either side of the trans central carbon-carbon 

bond. The dominant species in most cases are TTC and TTT72,75,76,83,84. The cis-MC conformers 

are not stable and exist as intermediates in the formation of SP.  

 

Figure 1.5. trans-phenylhydroxy-MCH conformers, similar conformers are possible for 

indazole-MCH as well. R group is propyl-sulfate in TA experiments, R group is CH3 in DFT 

calculations. 
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Computational and spectroscopic studies show at least two trans-MC species present in solution 

at room temperature72,75,76,83,84. 

 

Figure 1.6. Proposed scheme of photoswitching by trans-phenylhydroxy-merocyanine (MCH) to 

phenylhydroxy-spiropyran (SP). This scheme is adapted from “Long-Lived Photoacid Based upon a 

Photochromic Reaction” by Liao et al.79 

 

Professor Yi Liao’s group synthesized the MC molecules studied in this work. Their work 

demonstrates SP/MC photoacids’ ability to catalyze esterification reactions and modulate the 

volume of pH sensitive polymers79. Also, the group proposed their utility for studies of proton 

transfer processes in biological assays82. These photochromic photoacids are novel modifications 

of the SP/MC system because they are water-soluble and the SP form releases a proton after 

ring-closure, decreasing the pH two units. Figure 1.6 depicts the scheme put forth by Liao et al. 

for the photoswitching mechanism of phenylhydroxy-MCH/SP79. The 

trans-phenylhydroxy-MCH species dominates the solution at room temperature. Irradiation of 

the phenylhydroxy-MCH with visible light produces phenylhydroxy-SP in steady state 

photolysis79–82. Phenylhydroxy-SP is formed by ring closure of phenylhydroxy-MCH, and 

afterwards phenylhydroxy-SP ring-opens in the dark to reform phenylhydroxy-MCH with a 
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half-life of ~ 70 seconds in water at room temperature. This points to a pathway on the ground 

state connecting trans-phenylhydroxy-MCH to phenylhydroxy-SP. In addition, the 

phenylhydroxy-MCH has a pKa of 5.5 and exists in a protonated acid state or a deprotonated 

conjugate base state depending on the pH. Recently, Liao et al. developed a metastable photoacid 

functioning at physiological pH 7.4 by replacing the phenol with a less acidic indazole functional 

group82. Little is known about the photoswitching mechanism of such water-soluble SP/MC 

systems77. 

In chapter five, the excited state dynamics and photoproducts formed in the photoactivated 

ring closure of phenylhydroxy-MCH/SP and indazole-MCH/SP were investigated by a 

combination of femtosecond UV-vis TA spectroscopy and density functional theory (DFT). The 

key findings show that photoexcitation of indazole-MCH in phosphate buffered saline (PBS) or 

dimethylsulfoxide (DMSO) produces a long-lived photoproduct on a ~ 30 ps timescale, 

consistent with formation of indazole-SP. Steady state photolysis of phenylhydroxy-MCH in 

pH 5.5 citrate buffer or DMSO promptly produces phenylhydroxy-SP. However, TA results for 

the phenylhydroxy-MCH are solvent dependent. In pH 5.5 citrate buffer, photoproducts with 

red-shifted absorption form on a ~ 10 ps timescale and persist for >> 3.5 ns. Time dependent 

DFT (TDDFT) calculations support the assignment of this long-lived species to deprotonated cis 

phenylhydroxy-MC-. In DMSO, the phenylhydroxy-MCH forms a long-lived photoproduct on a 

~ 50 ps timescale which persists for >> 3.5 ns, consistent with the formation of either a 

protonated cis isomer or phenylhydroxy-SP. 

Hydroxocobalamin and aquocobalamin. Vitamin B12 is a cobalt-centered corrin ring with a 

dimethylbenzimidazole lower axial ligand and a variable upper axial ligand as shown in 

Figure 1.1. There are many derivatives of vitamin B12 each with different chemical and 
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photochemical properties largely governed by the nature of the upper axial ligand.  The vitamin 

B12 derivatives can be divided into two categories: alkylcobalamins, whose upper axial ligand is 

an alkyl group, and non-alkylcobalamins, whose upper axial ligand is a non-alkyl group. The 

alkylcobalamins, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) are the 

enzymatically active forms, functioning as co-factors to a wide array of enzymes89–93. Many 

alkylcobalamins undergo Co-C homolysis to form cob(II)alamins and alkyl radicals after 

photoexcitation94–98. In contrast, the non-alkylcobalamins, such as cyanocobalamin (CNCbl), 

hydroxocobalamin (HOCbl), aquocobalamin (H2OCbl) are biologically inert and less 

photolabile96,98–101. 

Although there are a wide number of B12 derivatives, their UV-vis spectra have similar 

features. This is because the UV-vis spectra are dominated by π-π* transitions of the corrin 

ring102–107. The π system of non-planar ring interacts with the cobalt axial ligands. Therefore, the 

UV-vis spectra of various B12 derivatives are sensitive to the nature of the axial ligands. Three 

general spectral features characterize the UV-vis spectra: the αβ band (~ 525 nm), the DE band 

(~ 400 nm), and the γ band (~ 350 nm). Non-alkylcobalamins such as CNCbl, HOCbl, and 

H2OCbl display “typical” UV-vis spectra, with narrow γ band transitions. Alkyl-cobalamins such 

as AdoCbl and MeCbl display “unique” UV-vis spectra with broad γ band transitions composed 

of at least three peaks as shown in Figure 1.6. Cob(II)alamin, the radical product of cobalt/upper 

ligand homolysis, has an αβ band which is centered at 475 nm89,91,94,95,97,101,108,109. The UV-vis 

spectra of these molecules are sensitive to ligation and oxidation state, making UV-vis an 

excellent technique for studying cobalamin photochemistry. 

Many B12 dependent enzymes have been studied extensively. For example, Glutamate 

mutase uses adenosylcobalamin as its co-factor to catalyze radical rearrangement 
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reactions89,92,93,97,101. Methionine synthase uses methylcobalamin as its co-factor and catalyzes 

methyl transfer reactions89,101. Previous ultrafast studies in our lab investigated the effect of the 

enzyme environment on the photochemistry of AdoCbl in glutamate mutase97. More recently, 

CarH has attracted interest because it behaves as a photoswitch regulating the expression of 

carotenoid synthesis genes. CarH utilizes of the photolability of its co-factor AdoCbl to function 

as a photoswitch110. 

 

Figure 1.7. (a) UV-vis spectra of cyanocobalamin (red), hydroxocobalamin (light blue), 

adenosylcobalamin (dark blue), cob(II)alamin (green), and (b) the corresponding structures 
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Recently, work by Miller et al.111 targeted novel cobalamin derivatives, 

phenylethylcobalamin (PhEtyCbl) and 4-ethylphenylcobalamin (EtPhCbl), as potential light 

activated drug delivery agents. These derivatives are metabolically inert “antivitamins”, being 

transported through the body without being utilized as enzymatic co-factors112,113. In principle, 

the ligand of the antivitamin can be released by photolysis, delivering drugs to targeted areas in 

the body where the antivitamin has accumulated. Exposing only the desired tissues to light 

would control the release of the drug to only diseased areas. These studies challenge the alkyl- 

versus non-alkylcobalamin photostability paradigm98, as the antivitamin PhEtyCbl is 

photostable. TA data indicates PhEtyCbl decays to its ground state on a ~ 60 ps timescale by 

crossing a ~ 13 kJ/mol barrier to internally convert to the ground state. These studies are laying 

the ground-work for using cobalamin derivatives as photoswitchable drug delivery molecules. 

Other groups suggest HOCbl and H2OCbl are possible photocatalytic reagent delivery 

molecules114–116. In 2011, Shell et al.114 demonstrated HOCbl and H2OCbl’s ability to uncoil 

supercoiled DNA under aerobic conditions after light exposure, likely due to hydroxyl radical 

damage. This is a surprising result, since several reports96,98,109,117 show HOCbl and H2OCbl are 

photostable after irradiation with 400 or 530 nm. Our lab carried out TA on HOCbl with 269 nm 

excitation and anaerobic photolysis to determine that HOCbl and H2OCbl undergo homolytic 

bond cleavage to form Cob(II)alamin with ~ 1% quantum yield100. This supports the Shell et al. 

finding that HOCbl and H2OCbl can be used as a photocatalytic source of hydroxyl radicals 

under aerobic UV irradiation. 
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Thesis Outline 

Chapter two - Methods.  This chapter describes the techniques employed over the course of 

this dissertation. It starts with a detailed description of the ti:sapph laser used for the 

time-resolved measurements. TA and pump-repump setups are described in detail. Steady state 

spectroscopy techniques such as UV-vis absorption, steady state fluorescence, and low 

temperature photolysis and supporting techniques are described as well. The chapter ends with 

synthesis procedures and sample preparation of the molecular motors, photochromic photoacids, 

and cobalamins. 

Chapter three – Transient absorption of molecular motors. This chapter encompasses an 

UV-vis TA study of the cis and trans isomer of a first-generation molecular motor. The 

molecular motor was excited with multiple wavelengths (269, 368 and 404 nm) and the 

anisotropy of the excited states was measured by varying the relative polarization between the 

pump and probe. DFT calculations and steady state spectroscopy were used to support spectral 

assignments made in the TA studies. This chapter lays the foundation for design and 

understanding of the pump-repump probe and pump-dump probe experiments on the molecular 

motor presented in chapter four. 

Chapter four – Pump-repump probe transient absorption of molecular motors. This chapter 

involves re-excitation of excited states of the molecular motors with a secondary “repump” or 

“dump” pulse. The time delay between the pump and secondary pulse is chosen to intercept the 

excited state population at critical times during the course of their excited state evolution. The 

pump pulse in these experiments is 269 nm and the repump pulse is 404 nm. 

 Chapter five – Photochromic photoacids. This chapter focuses on the TA spectroscopy of 

novel water soluble photochromic photoacids based spiropyran and merocyanine. Water has an 
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unusual effect on the photoproducts produced after excitation of the phenylhydroxy photoacid. 

When the molecules are dissolved in anhydrous DMSO, different dynamics and photoproducts 

are observed. The indazole photoproduct spectrum is less sensitive to solvent. TDDFT 

calculations assisted in assignments of photoproducts. 

Chapter six – Hydroxo- and aquocobalamin photochemistry and anisotropy. This chapter 

discusses the results of work published in “Photostability of Hydroxocobalamin: Ultrafast 

Excited State Dynamics and Computational Studies” which show a non-alkylcobalamin can be 

photolabile to wavelengths less than ~ 300 nm. In addition, that article clarifies previously 

published data about the excited state lifetimes of HOCbl. The hydroxyl group has a pKa of eight 

and exists as a mixture in pure water. Previous TA studies carried out in pure water have been 

measurements of mixtures HOCbl and H2OCbl. This research was carried out in pH 10.5 or 

pH 5.5 buffers to favor > 99% of HOCbl or H2OCbl. Different excited state lifetimes were 

observed for HOCbl and H2OCbl. In addition, the relative polarizations of the pump pulses were 

manipulated to analyze the anisotropy of the molecules. 

Chapter seven – Conclusions and future directions. This chapter will summarize the key 

conclusions of the dissertation and discuss future investigations of possible interest. 
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Chapter 2 

Experimental Methods 

 All of the experiments described here make use of a homebuilt femtosecond laser system 

to do UV-vis transient absorption (TA) spectroscopy. This chapter begins by discussing the 

details of the laser system and the TA system. From there more specific details concerning 

individual experiments will be given. 

 

Figure 2.1. Schematic of the oscillator. (1) First curved mirror, (2) titanium:sapphire crystal, angle of 

incidence is Brewster’s angle, (3) second curved mirror, (4) cavity folding mirror, (5) first cavity 

dispersion compensating prism, (6) second cavity dispersion compensating prism, (7) high reflector, 

and (8) output coupler. 

 

Titanium:sapphire oscillator. In order to achieve the time resolution required by ultrafast 

experiments, a titanium:sapphire (ti:sapph) based solid-state laser (“the oscillator”) produces 

laser pulses with 20 – 30 femtosecond (fs) durations as shown in Figure 2.1. The oscillator was 

built from a K&M labs kit. The gain medium is pumped by the 527 nm output of a continuous 

wave Spectra Physics™ Millennia III laser. The ti:sapph has a broad emission spectrum centered 
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at ~ 800 nm, which is the key for generating fs pulses1. The oscillator cavity is slightly detuned 

in the vertical axis of the cavity while in continuous wave operation to favor higher intensity 

modes, inducing a Kerr lens2–5. The numerous frequencies produced by the ti:sapph are brought 

into phase with each other by a slight disturbance of the cavity. As a result, constructive 

interference between the modes leads to extremely high intensities for a very brief period of 

time, followed by essentially zero intensity until the next pulse. Pulses emerge from the cavity 

with a period τ 

τ =
2l
c

 

Equation 2.1 

where l is the cavity length (~ 1.6 meters) and c is the speed of light (2.99 x 108 m/s). In other 

words, pulses emerge from the cavity after they have completed a round trip through the 

cavity3,6. The bandwidth of the oscillator is ~ 35 nm and centered at ~ 808 nm. One can estimate 

the duration of these pulses using the time-bandwidth product for a Gaussian pulse,  

ΔτΔω = 0.44 	

Equation 2.2 

where ∆τ is the duration of the pulse and ∆ω is the bandwidth of the pulse in frequency. This 

relationship results from the Fourier transform relationship between frequency and time of a 

Gaussian pulse. The duration of the pulses is ~ 25 fs if they are assumed to be Gaussian and 

transform limited. 

Although the pulses produced by the oscillator are high intensity, they are not intense enough 

for the non-linear processes required for our experiments. In order to increase the intensity of the 

pulses a common method called chirped pulse amplification (CPA) is used. The CPA system 

consists of three main components: a stretcher, an amplifier, and a compressor7,8. The peak 
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intensity of the pulses is above the damage threshold of the ti:sapph gain medium in the 

amplifier. The strategy used in CPA is to lengthen the pulses with a stretcher thereby decreasing 

their peak intensity, amplify them, and then shorten the pulses with a compressor as shown in 

Figure 2.2. 

 

Figure 2.2. Simple diagrams of (a) stretcher and (b) compressor. For the stretcher (a), (1) f = 500 mm 

curved mirror, (2) diffraction grating, (3) flat folding mirror, and (4) pick-off mirror. For the 

compressor (b), (1) diffraction grating 1, (2) diffraction grating 2, (3) hollow retro mirror, (4) pick-off 

mirror. 

 

The oscillator pulses are at 88 MHz but the rest of the laser system operates at 1 kHz. An 

electro-optic pulse picker (Quantum Technologies), consisting of a K*DP crystal in between two 

crossed polarizers, is used to extract one pulse per millisecond and reject the other 87,999 pulses 

per millisecond. The pulse picker’s design is based on the static Kerr effect, where a sufficiently 

high voltage applied to a crystal will induce a birefringence3,6. If 8 kV (λ/2 voltage) is applied to 

the crystal, the birefringence rotates the polarization of a pulse by 90°. The pulse picker is 

synchronized to the laser pulses emerging from the oscillator such that it applies the λ/2 voltage 

at 1 kHz kilohertz frequency for a duration of ~ 8 ns, rotating the polarization of a single pulse 

once a millisecond. The pulses go through the pulse picker after going through the stretcher. 

The stretcher consists of a diffraction grating, a curved mirror (f = 500 mm), and a flat 

folding mirror at the focus of the curved mirror. The stretcher adds second order dispersion 

(“chirp”) and third order dispersion (“TOD”) to the phase of the laser pulses by creating a 
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wavelength dependent path length through the apparatus4,9. The duration of the pulses is 

increased to several hundred picoseconds (ps) by adding chirp and TOD to the phase of the 

pulses. As a result, the peak intensity of pulses is decreased well below the damage threshold of 

the ti:sapph gain medium in the amplifier. This prevents damage to the gain medium during 

amplification. 

 

The majority of the experiments in this work were carried out using an eight pass amplifier 

based on Kapetyn and Murnane’s design10. The amplifier consists of a ti:sapph gain medium 

pumped by a Q-switched 527 nm 1 kHz 9.5 W pump laser (Quantronix Darwin), two 

f = 500 mm curved mirrors, an 11 cm flat folding mirror, and an eight holed mask as shown in 

Figure 2.3. The pump laser is focused by an f = 500 mm lens onto the ti:sapph and the stretched 

output of the oscillator is spatially overlapped with the pump. The oscillator output gains energy 

on each of the eight passes through the amplifier by stimulated emission. The ti:sapph is placed 

at the focus of the curved mirrors which are angled off axis by ~ 15° to direct the beam at the 

11 cm folding mirror. The mask is inserted in the beam path to reduce amplified spontaneous 

 

Figure 2.3. Schematic of the eight-pass amplifier. (1) Oscillator injection mirror, (2) folding mirror, (3) 

mask, (4) f = 300 mm pump laser lens, (5) f = 500 mm curved mirror, (6) ti:sapph gain medium, (7) 

f = 500 mm pump retro mirror, (8) f = 500 mm curved mirror, and (9) amplified pulse pick-off mirror. 
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emission caused by the pump laser. After eight passes through the gain medium, the pulse energy 

has increased from ~ 10 nJ to ~ 1.1 mJ, and the beam is extracted from the amplifier by a 

pick-off mirror which is carefully set to only intersect the eighth pass. Then the beam is sent to 

the compressor. 

The compressor’s purpose is to remove the chirp and TOD induced by the stretcher and any 

dispersion caused by passing through various optics in the beam path. The compressor consists 

of two parallel diffraction gratings and a hollow retro mirror as shown in Figure 2.2. Similar to 

the stretcher, the compressor creates a wavelength dependent path length. Tunable amounts of 

dispersion can be added to the pulse by choosing the angle of incidence on the gratings and the 

separation between the gratings. Once the pulses are compressed, they are ready for experiments 

in the TA setup. 

Transient absorption. TA measurements were performed using two different home built 

Ti:Sapphire laser systems of similar design as depicted in Figure 2.3, relying on either an 

eight-pass amplifier or a regenerative amplifier/two-pass post amplifier combination. TA is 

expressed as: 

ΔA λ, t( ) = ApumpON − ApumpOFF = log
I pumpON
Io,pumpON

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟− log

I pumpOFF
Io,pumpOFF

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= log

I pumpON
IpumpOFF

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	

Equation 2.3 

as long as one assumes that Io,pumpON is equal to Io,pumpOFF. In order to measure the TA of a 

sample, one must have a pump pulse, a probe pulse, and a method for achieving relative time 

delays between the two11. 
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Figure 2.4. Schematic of the TA setup. (1) Optical chopper, (2) SHG BBO crystal, (3) THG BBO 

crystal, (4) f = 250 mm pump focusing lens, (5) f = 90 mm quartz achromatic lens, (6) computer 

controlled delay line, (7) f = 100 mm lens, (8) 5 mm thick CaF2 window, (9) either KG3 filter or nickel 

sulfate filter, (10) f = 500 mm curved aluminum mirror. 
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The laser fundamental (808 nm) of the CPA system is capable of multiple non-linear optical 

processes, such as second and third harmonic generation, self-phase modulation, and optical 

parametric amplification12. As a result, multiple pump wavelengths and probe ranges can be 

achieved. The second harmonic of the fundamental (404 nm) pump is generated in beta barium 

borate (BBO), the third harmonic (269 nm) pump is the sum-frequency of the fundamental and 

second harmonic in BBO, and wavelengths from 500 – 700 nm are produced in a home-built two 

stage noncollinear optical parametric amplifier13–15. The pump pulse intensity (J/cm2) is kept at a 

level where 10% or less of the sample molecules in the pump focus are excited. This can be 

estimated by: 

Pex =
photonsabsorbed

moleculesin focus
	

Equation 2.4 

where photonsabsorbed is the percentage of absorbed photons per pump pulse and moleculesin focus 

is the number of molecules in the pump focus given the sample concentration and diameter of the 

pump beam at the sample. For isotropic measurements, the pump polarization is kept at magic 

angle (54.7°) with respect to the probe polarization by rotation with a half-waveplate. Every 

other pump pulse is blocked by a synchronized optical chopper (Thorlabs™ M1000) inserted in 

the beam, rotating at 500 Hz. The chopper blocks every other pump pulse, allowing 

differentiation between the “Pump ON” and “Pump OFF” probe pulses. 

The probe utilized in all experiments is a broad-band continuum resulting from self-phase 

modulation occurring in a 5 mm CaF2 window. The continuum spans from either ~ 325 –800 nm 

(“visible continuum”) or ~ 270 – 600 nm (“UV continuum”) depending on whether the 

fundamental of the laser or the second harmonic of the laser, respectively, is employed. In both 

cases, the CaF2 is continuously linearly translated in the Fourier plan of the beam at a slow 
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frequency, approximately 1 Hz. Continuous translation is critical for preventing optical damage 

to the CaF2 window. A 1 mW beam with a 6 mm diameter is focused with an f = 100 mm fused 

silica lens into the CaF2 window to generate the continuum. In the case of visible continuum, a 

KG3 filter after the CaF2 absorbs the residual 808 nm from the continuum. In the case of UV 

continuum, a 1 mm path length quartz cuvette filled with saturated nickel sulfate is placed in the 

beam after the CaF2 to absorb residual 404 nm. A neutral density filter ensures the probe energy 

is ~ 15 nJ. An f = 500 mm concave aluminum mirror focuses the continuum on the sample to a 

spot size of ~ 70 µm. The pump spot size is kept around 150 µm. The pump and probe are 

spatially overlapped in the sample with a 200 µm pinhole.  

Relative time delays between the pump and probe are achieved by increasing the relative 

path length between the pump and probe. The instrument alters the length of the probe arm prior 

to continuum generation by using a computer controlled delay stage (Newport™ ESP300). “Time 

zero” is the configuration of the instrument in which the pump and probe beams have equal path 

lengths and arrive at the sample at the same time. Step sizes are kept between 20 and 30 fs 

around time zero to accurately determine the instrument response function. The probe is 

“chirped” such that the high frequencies in the continuum arrive at the sample ~ 1.8 ps prior to 

the low frequencies. As a result, fine time steps are necessary for ~ 1.8 ps around time zero. The 

step sizes increase exponentially with time delay. This scheme is employed to prevent the 

experiments from taking too long.  

Several experiments in chapters three, five, and six require excitation wavelengths other than 

the second (404 nm) or third (269 nm) harmonic of the laser. Such experiments make use of a 

home built two-stage non-collinear optical parametric amplifier (NOPA). In the first stage, a 

404 nm “pump” beam parametrically amplifies certain frequencies of a visible continuum by 
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phase matching with the continuum in a BBO crystal, crossing at an internal angle of ~ 6.7°. 

This produces a signal pulse and an idler pulse. The first stage produces signal pulses that are 

~ 1 µJ. The signal pulse is then selected for further amplification in the second stage of the 

NOPA by a similar scheme as stage one. Stage two typically produces a signal with ~ 7 µJ per 

pulse. The NOPA is tunable across 500 – 700 nm. The experiments featured in chapter three, 

using 368 nm as the pump wavelength made use of a high power frequency doubled NOPA in 

the Laboratory for Ultrafast Multidimensional Optical Spectroscopy (LUMOS). 

Sample delivery to the pump and probe pulses is achieved by two main methods: thin walled 

quartz flow cell or wire guided flow. Samples are continuously refreshed between laser shots by 

flowing with a peristaltic pump to prevent contamination of the signal by photoproducts 

produced by the previous laser pulse. 1 mm quartz flow cells (NSG™, Starna™, FireflySci™) are 

connected to a sample reservoir by chemically resistant tubing. The wired guided flow produces 

a ~ 300 µm thick sheet of sample between two parallel 300 µm steel rods held in place Teflon™ 

swaglok™ at a nominal spacing of 5 mm. The wired guided flow is useful in reducing pump 

scatter and self phase modulation occurring in the walls of a flow cell. However, the wire guided 

flow requires a very concentrated sample due to its short path length and is not compatible with 

volatile solvents. 

The probe is measured after interacting with the pump in the sample with an Avantes 

AvaspecFast CCD 16-bit detector operating at 1 kHz, sensitive from 195 – 950 nm. The probe is 

focused by a quartz achromatic lens (f = 90 mm) onto a fiber optic coupled to the spectrometer. 

The spectrometer consists of an f = 75 mm Czerny-Turner with 50 µm entrance slit and a 1350 

pixel detector. Typically, 800 probe spectra are collected per time point and averaged to create a 

TA (∆A) spectrum. 
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ΔA λ, t( ) = log
Ion
Ioff

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	

Equation 2.5 

The experiment and instrument are controlled by custom software written in LabVIEW™. 

Typically, 4-10 scans are taken during an experiment for averaging. The direction of the delay 

stage is reversed every other scan to minimize systematic drifts occurring from improper 

alignment up and down the delay stage. 

Time zero in the raw data is wavelength-dependent, resulting from the chirp of the probe as 

mentioned previously. The chirp is removed from the data by fitting its profile to a third order 

polynomial and interpolating the data onto a new time grid. The chirp corrected data are 

analyzed by a global analysis program, either written in the lab, or “Glotaran”, a open-source 

global fitting program16,17. The data are fit to a sum of exponential decays with associated 

amplitudes and a time independent amplitude. The amplitudes resulting from the fit, decay 

associated difference spectra (DADS), can be transformed into species associated difference 

spectra (SADS) if one assumes a particular kinetic model. The procedure for the DADS to SADS 

transformation is described below. 

dA
dt = −k1A(t)

dB
dt = +k1A(t)− k2B(t)

dC
dt = +k2B(t)− k3C(t)

dD
dt = +k3C(t)− k4D(t);k4 → 0

 

Where A, B, C and D are the species in a sequential kinetic model (AàBàCàD) and k1, k2, k3, 

k4, are the rates for each reaction. This system of coupled linear first order differential equations 

can be written in matrix form. 
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⎥
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⎥

 

This system of equations can be solved by diagonalizing K. 

D =C−1KC  

Where D is the eigenvalue matrix of K, C is the eigenvector matrix of K. The general solution to 

the system of equations is solved by: 

!
N(t) =CeDtC−1 !N(t = 0)  

Where N(t = 0) is the initial conditions of the problem, usually assuming 100% population as 

species A initially. The species associated difference spectra (SADS) can be produced by: 

SADS = DADS × ((C−1N(t = 0))n,n )
−1 ×C−1  

Where (C-1N(t = 0))nxn has the elements of the product of C-1 and N(t  = 0) on the diagonal of a 

square matrix. 

Pump-repump. A pump-repump TA spectrometer was developed in the lab based on existing 

designs18–21. Pump-repump and pump-dump data (∆∆A) are generally expressed as double 

differences 

ΔΔA(λ, t) = ΔA(λ, t)pump&repump − ΔA(λ, t)pump −α *ΔA(λ, t)repump  

Equation 2.6 

This allows subtractions of background signals resulting from either the single pump pulse or 

single repump/dump pulse. If there is ground state absorption of the sample by the repump, a 

scale factor α may be necessary to account for the percent of ground state molecules excited by 

the pump (equation 2.4) in the ∆Apump&repump signal. These experiments require an additional 
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delay stage to set a relative time delay between the pump and repump. An additional chopper is 

necessary to expedite the data collection process. If the 500 Hz pump chopper is triggered by the 

output of the 250 Hz repump chopper, then enough data for a ∆∆A signal is acquired every four 

probe pulses as shown in Figure 2.5. All of the details regarding the pump, probe and 

spectrometer hold true for the pump-repump instrument. 

 

Figure 2.5. Schematic of the two synchronized pump and repump choppers. The pump chopper 

operates at 500 Hz, the repump chopper operates at 250 Hz, and the unchopped probe functions at 

1 kHz. The three needed TA signals are acquired every four shots of the probe. Thus, the reference 

(pump OFF) for each signal is acquired first, then pump ON, then repump ON, the pump and repump 

ON. 

 

Steady state measurements. A Shimadzu UV-2600 dual beam scanning UV-vis spectrometer 

was used throughout the course of this research. In addition, a Horiba Fluoromax 3 scanning 

spectrofluorometer was used to acquire steady state emission spectra. The fluorescence 

measurements used 5 nm entrance and exit slits, a 0.1 second integration time, and 1 nm step 

size. 
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Molecular motors synthesis. Synthesis of the molecular motors studied in chapters three and 

four was based on published procedures, using the well-known McMurry coupling22–25 and a 

pictorial scheme of the synthesis is given in Figure 2.6. Two grams of 99.6% pure  

 

Figure 2.6. Synthesis scheme for McMurry coupling to form both the cis and trans molecular motor 

isomers. 

 

2,3-dihydro-2-methyl-1H-benz(e)inden-1-one (“1”) were purchased from GLSyntech and used 

without further purification. Zinc dust, tetrahydrofuran (THF), and titanium (IV) chloride were 

purchased from Sigma-Aldrich and used without further purification. Titanium (IV) chloride 

reacts violently with water and oxygen, so great care was taken to keep the system dry and under 

N2 atmosphere. To a 0 °C, three-necked 250 mL round bottom flask (RBF), 3.2962 grams 

(0.05042 moles, eight equivalents) of zinc dust was added, along with a stir bar. To the middle 

neck of the RBF, a reflux condenser was attached. A side neck of the RBF was capped with a 

rubber septum, while the third neck was attached to a schlenk line. An additional schlenk line 

was attached to the top of the reflux condenser. The atmosphere in the RBF was evacuated and 

back-filled with dry nitrogen three times, and ~ 30 mL of freeze pump thawed THF were 

syringed into the flask to form a greyish-black slurry. Titanium (IV) chloride (2.82 mL, 

0.02521 moles, four equivalents) of was syringed drop wise onto the slurry, causing egg-yolk 

yellow fumes to evolve from each drop. The reagent was allowed to reflux for two hours at 

80 °C, turning the slurry slightly bluish-grey. A solution of 2.3 grams (0.0061 moles, one 

P-cis P-trans “1” 

O

Zn, 8 equivs
TiCl4, 4 equivs
THF, 80 oC, 
48 hours
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equivalent) 1 in 20 mL FPT THF was prepared and syringed onto the reagent in a drop wise 

fashion. The solution was allowed to stir and reflux for 48 hour and turned completely black. The 

RBF was brought to room temperature and the rubber septum was removed and ~ 100 mL of 

saturated aqueous ammonium chloride was added to neutralize any remaining reagent. The crude 

was extracted three times with ethyl acetate and the organic layer was collected, dried over 

sodium sulfate, and crudely filtered through a small (5 x 0.5 cm) silica gel column and ethyl 

acetate. The solvent was removed under reduced pressure. The remaining solids weighed 

1.702 grams, giving a 74% crude yield. 

Thin layer chromatography on a silica plate with 10:1 heptane to ethyl acetate of the reaction 

crude indicated 1 was consumed completely in the reaction. The products have an Rf of 0.29. 

Further purification of the solids was carried out with a silica gel column and 10:1 heptane to 

ethyl acetate ratio as the mobile phase, yielding 1.4190 grams (62% yield). The cis isomer was 

recrystallized in ethyl acetate at -20 °C and the trans isomer was recrystallized through repeated 

recrystallizations with ethyl acetate and ethanol (1:1) at -20 °C.  

In order to verify the structures of the cis and trans isomers, mass spectra were collected for 

each sample, giving a parent peak of 360.5 amu, the molar mass of the molecules. Nuclear 

magnetic resonance (NMR) spectra were collected as well and are in agreement with published 

NMR spectra of the two isomers24,26. The UV-vis spectra of the samples were collected and are 

in good agreement with published spectra as seen in chapter three Figure 3.124,26. Fluorescence 

spectra of the samples were collected and are shown in chapter three Figure 3.1. 

In order to obtain UV-vis spectra of the unstable M-cis and M-trans isomers, low temperature 

(-30 °C) photolysis was performed on the P-cis and P-trans molecules in heptane. The samples 

were kept in a sealed insulated container with fiber optics inserted into the container for 
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collecting UV-vis spectra. The container was filled with a dry ice/isopropanol bath to maintain 

a -30 °C temperature and dry nitrogen was continuously blown over the sample to prevent frost 

formation. The samples were exposed to the output of a 450 W Xe arc lamp for 30 second 

intervals until no further changes were observed in the UV-vis spectra. This process took 

approximately 10 minutes. 

Cis and trans molecular motors samples were prepared in heptane or 2-butanol for TA 

measurements. Sample concentrations were chosen to produce an optical density of ~ 0.5 in a 

1 mm sample cell. The sample volumes were kept around 100 – 150 mL to minimize the 

concentration of photoproducts building up during the course of an experiment. Over the course 

of a TA experiment samples are monitored by steady state UV-vis spectroscopy about once an 

hour to ensure minimal photoproduct accumulation. 

Photoacid sample preparation. Indazole-based and phenylhydroxy-based photoacids were 

synthesized by Prof. Yi Liao’s group according to procedures published27–30 previously and 

generously provided for TA experiments. Solutions were prepared by sonication of solids in 2 mL 

dimethylsulfoxide (DMSO) for one minute, or until fully dissolved. A Fisher Scientific “Sonic 

Dismembrator 550” (400W) sonicator was necessary to achieve complete dissolution into the 

DMSO. After dissolution in DMSO, 18 mL of aqueous buffer was added to the solution. The 

solutions were prepared at an OD between 0.3 and 1.0 in a 1 mm flow cell for TA experiments. 

An 11 mM pH 7.4 phosphate buffered saline solution was used for the indazole-based photoacid30. 

The phenylhydroxy-based photoacid can be prepared as the acidic (protonated phenylhydroxy 

group) or the conjugate base (deprotonated phenylhydroxy group) by controlling the pH of the 

buffer, since the hydroxyl group pKa is ~ 7.827. The acidic form of the phenylhydroxy-based 

photoacid was dissolved in 10 mM pH 5.5 citrate buffer to ensure > 99 % acidic species. The 
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conjugate base of the phenylhydroxy-based photoacid was dissolved in 10 mM pH 10 carbonate 

buffer to ensure > 99% conjugate base species. In addition, the indazole-based photoacids and 

phenylhydroxy-based photoacids were prepared in pure anhydrous DMSO. Anhydrous DMSO 

was purchased from Sigma-Aldrich and used without further purification. All TA measurements 

involving the anhydrous DMSO were kept under dry nitrogen to prevent accumulation of water. 

Photoacid steady state photolysis. Photolysis experiments were carried out with a 450W 

Osram Xe lamp. A 10 cm cuvette filled with steam-distilled water functioned as a heat filter for 

the lamp, and a GG375 3 mm glass filter was used to filter wavelengths shorter than 375 nm. The 

lamp was focused on the sample by an f = 250 mm fused silica lens. UV-vis spectra were 

collected with either a Shimadzu UV-2600 spectrometer or an Avantes 2048 spectrometer. In 

water, the reverse reaction, in which the spiropyran ring opens to reform merocyanine, has a 

half-life of ~ 76 seconds27. The Avantes 2048 spectrometer is a diode array that allows for 

acquisition of a spectrum in ~ 10 milliseconds. The Avantes 2048 spectrometer was used to keep 

reversion back to merocyanine in the data to a minimum.  

Hydroxo- and Aquocobalamin sample preparation. The pKa of hydroxocobalamin (HOCbl) 

is eight31. In order to study HOCbl, 11 mM pH 10.5 carbonate buffer was used as the solvent to 

ensure > 99% of the sample was the deprotonated hydroxocobalamin species. In order to study 

aquocobalamin (H2OCbl), 11 mM pH 5.5 phosphate buffer was used as the solvent to ensure 

> 99% of the sample was the protonated H2OCbl species. In the case of steady state photolysis 

experiments, five molar equivalents of sodium benzoate were dissolved in the HOCbl or H2OCbl 

solutions to function as a hydroxyl radical scavenger. Also, it is critical to degas the solvents 

with nitrogen to keep the samples anaerobic over the course of the steady state photolysis 

experiments. In the case of TA experiments, no radical scavenger or degassing is required. 
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Hydroxo- and Aquocobalamin steady state photolysis. Samples were prepared at ~ 0.2 mM 

and kept in a sealed and stoppered 1 mm quartz cuvette (NSG™). Multiple light sources were 

employed to investigate the wavelength dependence of photolysis. The 532 nm output of a YAG 

laser, the 253 nm line of an Hg calibration lamp, the entire spectrum of a 450 W Xe arc lamp, 

and a 13 mm pyrex window (≤ 290 nm cutoff) in the Xe lamp were used in photolysis 

experiments32. UV-vis spectra were collected at regular intervals of the photolysis experiment to 

measure the progress of photolysis. Photolysis experiments utilizing un-filtered UV light sources 

took ~ 30 minutes to go to completion, whereas experiments using filtered UV light to determine 

the “turn on” wavelength took ~ 12 hours owing to the low intensities of effective photons. 

TA measurements of HOCbl and H2OCbl relied on higher concentrations. Concentrations 

were chosen to give an optical density between 0.3 – 1.0 at the pump wavelength in either a 

1 mm quartz flow cell or a ~ 0.3 mm wire guided flow. In the case of 404 nm pump experiments, 

the concentrations were ~ 0.5 mM (0.7 mg/mL), and carried out in a flow cell. In the case of 

269 nm pump experiments, the concentrations were ~ 0.2 mM (0.3 mg/mL), and also carried out 

in a flow cell. In the case of pump wavelengths from 540 – 560 nm experiments, the 

concentrations were ~ 2.0 mM (3 mg/mL), and carried out in the wire guided flow. 
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Chapter 3 
 

First generation molecular motor 

The subject of investigation in this chapter and Chapter four is a first generation molecular 

motor, (E and Z)-2,2'-dimethyl-2,2',3,3'-tetrahydro-1,1'-bi(cyclopenta[a]naphthalenylidene), 

referred to as P-trans and P-cis hence forth. This family of molecules garnered a great deal of 

interest in recent years for potential applications as a light driven rotary motor for 

molecular-scale devices1–5. Based on the cis/trans isomerization of alkenes, the molecular motor 

photoisomerizes about a central carbon-carbon double bond6–13. The molecular motor’s 

overcrowding substituents impart a useful property of unidirectional isomerization to the 

molecule14–18. The substituents give the molecule a ratchet-like, or sawtooth, potential energy 

profile to the molecule along its internal rotation coordinate19–21. Such an asymmetric potential 

causes unidirectional isomerization.  

Synthetic research to optimize the ground state potentials for increases in the rate of rotation 

has been the primary focus until recently. This resulted in molecular motors with rotary rates of 

3 MHz (3 x 106 1/s)22,23, quite the achievement! The ultrafast photoisomerization of the 

molecular motor is attracting attention, since the ground state of the molecular motor is getting 

closer and closer to synthetic perfection24–28. Mechanistic details of the photoisomerization of the 

molecular motor are necessary for further optimization. 
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Figure 3.1. (a) Steady state UV-vis spectra of P-Cis (solid red) and P-trans (solid blue) in heptane. 

Normalized steady state fluorescence spectra of P-Cis (dash red) and P-trans (dash blue) in heptane. 

Black arrows mark the excitation wavelengths used in TA experiments. (b) Comparison of P-cis (red) 

and M-cis (purple) steady state UV-vis spectra. (c) Comparison of P-trans (light blue) and M-trans 

(dark blue) UV-vis spectra. 

269 nm pump 

368 nm pump 

404nm pump 

(a) 

(b) 

(c) 
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Ultrafast UV-vis transient absorption (UV-vis TA) spectroscopy was the primary technique 

employed to carry out these studies. Other supporting experiments include polarized TA, steady 

state UV-vis absorption, low temperature photolysis, and steady state fluorescence. The cis/trans 

and trans/cis photoisomerization of P-trans and P-cis, was investigated in heptane and 2-butanol 

with a variety of excitation wavelengths, ranging from 269, 368, and 404 nm. The majority of the 

studies were carried out in heptane. Density functional theory (DFT) and time dependent density 

functional theory (TDDFT) calculations were used to calculate ground state energies, vibrational 

frequencies, vertical excitation energies and activation energies29–31. 	

The steady state UV-vis spectra and steady state fluorescence spectra of P-cis and P-trans are 

shown in Figure 3.1 along with the corresponding structures. M-cis and M-trans, the unstable 

conformers of P-cis and P-trans, are featured in Figure 3.1b and 3.1c. The TA measurements 

featured in this chapter were obtained with a continuum probe spanning ~ 325 – 800 nm. The 

probe tracks the ground state bleach (GSB), stimulated emission (SE), and visible excited state 

absorption (ESA) transitions. 

 

Sample handling 

The P-cis and P-trans molecular motors samples were synthesized according to methods 

detailed in Chapter two. Heptane and 2-butanol were obtained from Sigma-Aldrich and used 

without further purification. All samples were sonicated to ensure complete dissolution of the 

samples in solvent. All samples were prepared in the dark to prevent unintended degradation. 

UV-vis spectra were collected every hour over the course of TA experiments to monitor the 

buildup of photoproducts. TA measurements were carried out with the instrument described in 

Chapter two. 
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Table 3.1. Typical time-points and step sizes used in a TA experiment 

 

 

The UV-vis TA spectra of the P-cis, P-trans, and M-trans isomers are presented below. 

Relative polarization between the pump and probe was either maintained at 54.7º (magic angle) 

or adjusted to examine the anisotropy of molecules in their excited states. The time points in 

Table 3.1 were typically used to collect the data. 

The UV-vis spectra of the metastable M-helicity conformers were collected at low 

temperatures to trap the unstable species. The activation barriers for thermal helix inversion of 

Region of interest 
(ps) Step size (ps) 

-25 - 

-1.0 1.0 

-0.5 0.1 

2.5 0.025 

5.5 0.075 

11 0.125 

22 0.250 

55 0.500 

110 1.0 

330 2.0 

550 5.0 

900 10.0 
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trans and cis isomers are ~ 19 kcal/mol and ~ 22 kcal/mol, giving half-lives of about 18 seconds 

and 74 minutes at room temperature32. Low temperature photolysis experiments were carried out 

in a dry ice/isopropanol bath at -30 ºC to trap the M-helicity conformers. Dry nitrogen gas was 

continuously flowed over the sample to prevent accumulation of ice and condensation on the 

cuvettes. A 400 W mercury arc lamp served as the excitation source. Spectra were collected by 

an Avantes 2048 diode array UV-vis. 

 

Results 

P-cis transient absorption. The UV-vis TA spectra of the P-cis isomer in heptane and 

2-butanol were measured after excitation with 404 nm or 269 nm. The TA spectra in heptane are 

shown in Figures 3.2 and 3.3. The data are characterized by an initial excited state, an 

intermediate state, and production of M-trans photoproduct. Upon formation of the M-trans 

photoproduct, the sample reaches a steady state where the TA signal does not change for the next 

>> 1ns. 

The GSB appears within the instrument response (IRF, ~ 300 fs) of the experiment and is 

centered at 370 nm. Within the IRF of the experiment, ESA from ~ 500 – 800 nm appears as 

well. In the 404 nm excitation data a SE signal from ~ 450 – 540 nm appears within the IRF of 

the experiment. This SE signal agrees with the steady state fluorescence spectrum of P-cis shown 

in Figure 3.1. In the 269 nm excitation data, there is no net negative SE signal in the          

~ 450 – 540 nm region. This net positive TA signal is likely due overlapping ESA. 
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Figure 3.2. TA spectra of P-cis molecular motor excited with 404 nm. Early time spectra (a) at 0.5 ps 

(green), 1.0 ps (blue), 2.0 ps (purple), 6.0 ps (yellow) and 10 ps (red). Later time spectra (b) at 25 ps 

(red), 60 ps (yellow), 90 ps (purple), 130 ps (blue), and 300 ps (green) 
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1.0 ps 
2.0 ps 
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Figure 3.3. TA spectra of the P-cis molecular motor excited with 269 nm. Early time spectra (a) at 0.5 

ps (green), 1.0 ps (blue), 2.0 ps (purple), 6.0 ps (yellow) and 10 ps (red). Later time spectra (b) at 25 ps 

(red), 60 ps (yellow), 90 ps (purple), 130 ps (blue), and 300 ps (green) 

 

The early time ESA and SE signals decay quickly as an intermediate species grows in. The 

intermediate is characterized by a new ESA peak centered at ~ 425 nm. This intermediate ESA 

signal decays on a longer timescale than the initial species. In addition, ESA from             

~ 500 – 800 nm decays on this longer time scale as well as shown in Figures 3.2 and 3.3. The 

intermediate species forms a steady state difference spectrum by 300 ps which persists for 

0.5 ps 
1.0 ps 
2.0 ps 
6.0 ps 
10.0 ps 
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90 ps 
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300 ps 
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>> 1 ns. The steady state difference spectrum is in excellent agreement with the difference 

between steady state UV-vis spectra of the P-cis and M-trans as shown in Figure 3.4. 

 

Figure 3.4. Comparison of steady state TA spectrum (dark blue) to P-cis (red), M-trans (light blue) 

UV-vis spectra, and the difference between M-trans and P-cis (grey dash). Steady state TA spectrum 

was scaled by a factor α = 43,000. 

 

Global analysis of P-cis data. The TA data are analyzed by globally fitting the dataset to the 

convolution of an IRF and a sum of exponential decays with associated amplitudes: 

Data(λ, t) = IRF(t0, fwhm)⊗ Ai (λ)e
−t/τ i

i=1

N

∑ 	

Equation 3.1 

where Ai are wavelength dependent amplitudes, τi are the time constants, and N is the number of 

components in the fit. The data are best fit by three exponential decays and a time independent 

amplitude to capture the steady difference spectrum at long times as shown in Figure 3.5. The 

fitting results for multiple trials of both excitation wavelength and both solvents (heptane and 
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2-butanol) are summarized in Table 3.2. The decay amplitudes, “Decay associated difference 

spectra (DADS)” obtained from the global analysis of the data are plotted in Figure 3.6. 

 

Table 3.2. Rate constants obtained from global fits of P-cis TA data in heptane and 2-butanol, using 

404 or 269 nm as pump wavelengths.	

	

	

	

heptane experiments τ1 (ps) τ2 (ps) τ3 (ps) τ4 (ps) 

404 nm excitation 0.53 ± 0.05 13 ± 3 71 ± 4 >> 1 ns 

269 nm excitation 0.85 ± 0.2 17 ± 4 71 ± 5 >> 1 ns 

2-butanol experiments τ1 (ps) τ2 (ps) τ3 (ps) τ4 (ps) 

404 nm excitation 0.41 ± 0.02 4.5 ± 0.7 39 ± 0.7 >> 1 ns 

269 nm excitation 0.51 ± 0.2 5.4 ± 0.6 37 ± 0.7 >> 1 ns 
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Figure 3.5. Kinetic lineouts from P-cis in heptane using either 404 nm as the pump (a and b) or 269 nm as 

the pump (c and d). Early times in the top panels (a and c) and late times in the bottom panels (b and d). 

370 nm (light blue) tracks the GSB, 420 nm (dark blue) tracks the SE and the photoproduct, 475 nm 

(purple) tracks SE and the intermediate state, and 700 nm (red) tracks the early ESA.	
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475 nm 
700 nm 

370 nm  
420 nm 
475 nm 
700 nm 

370 nm 
420 nm 
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700 nm 
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Figure 3.6. Decay associated difference spectra (DADS) of P-cis in heptane after 404 nm excitation. 

DADS are the amplitudes at every wavelength of each decay term in the global fit. 

	
 

P-cis transient absorption anisotropy. TA data of the P-cis in heptane were collected as a 

function of relative polarization between the pump and probe to examine the anisotropy of the 

molecule’s excited states. The anisotropy signal, r, is given by the following equation: 

r = I|| − I⊥
I|| − 2* I⊥

	

Equation 3.2 

Where I|| and I⊥ are the ∆A signals when the pump is parallel or perpendicular to the probe. A 

tail-matching scale factor of 1.095 for 269 nm excitation and 1.092 for 404 nm excitation is 

applied to the perpendicular data in order to ensure r(t = ∞) = 0. The tail-matching scale factor 

accounts for differences between the parallel and perpendicular pump intensities resulting from 

reflection losses by the sample cell. The raw anisotropy data are complicated by overlapping 

signals coming from each species in the cascade through excited states. To simplify the data, the 
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parallel and perpendicular datasets were fit to the results of a global analysis of the magic angle 

data while holding the lifetimes constant. The amplitudes of the DADS are transformed into 

species associated difference spectra (SADS) assuming a sequential kinetic model (A à B à C 

à D), according to the transformation procedure in Chapter two. Parallel and perpendicular 

SADS were constructed from the fit results and the anisotropy of each SADS was calculated by 

Equation 3.2 and shown in Figure 3.7.	
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Figure 3.7. Anisotropy of P-cis in heptane SADS assuming a sequential kinetic model after excitation 

with 404 nm (a-d) or 269 nm (e-h). 

 

P-trans transient absorption. The UV-vis TA of the P-trans isomer in heptane and 2-butanol 

was measured after excitation with 368 and 269 nm. The results in heptane are shown in 

	

(a) (e) 

(b) (f) 

(c) (g) 

(h) (d) 

an
is
ot
ro
py

 
an
is
ot
ro
py

 
an
is
ot
ro
py

 
an
is
ot
ro
py

 

an
is
ot
ro
py

 
an
is
ot
ro
py

 
an
is
ot
ro
py

 
an
is
ot
ro
py

 



	 61 

Figures 3.8 and 3.9. At early times the spectra show ESA from ~ 450 – 800 nm. This ESA 

decays to form intermediate ESA, which is more narrow and centered at ~ 450 nm. This 

intermediate ESA gives rise to the M-cis photoproduct, which is in good agreement with steady 

state P-trans/M-trans difference spectra. After formation of the M-cis photoproduct, the sample 

reaches steady a state that does not change for the remaining nanosecond of time sampled in our 

experiment. 

 

Figure 3.8. TA spectra of P-trans in heptane and excitation with 368 nm. Early times (a) 0.5 ps (green), 

1.5 ps (blue), 3.0 ps (purple), 5.0 ps (yellow), 7.0 ps (red), and 10 ps (dark blue). Later times (b) 10 ps 

(dark blue), 20 ps (red), 30 ps (yellow), 50 ps (purple), and 300 ps (light blue). 
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Figure 3.9. TA spectra of P-trans in heptane and excitation with 269 nm. Early times (a) 0.5 ps (green), 

1.5 ps (blue), 3.0 ps (purple), 5.0 ps (yellow), 7.0 ps (red), and 10 ps (dark blue). Later times (b) 10 ps 

(dark blue), 20 ps (red), 30 ps (yellow), 50 ps (purple), and 300 ps (light blue). 

 

The GSB appears within the IRF (~ 300 fs) of the experiment and is centered at 360 nm. The 

vibronic peaks of the UV-vis spectrum at 352 and 368 nm are easily visible in the GSB in 

Figure 3.9. At early times, ESA from ~ 450 – 800 nm appears within the IRF of the experiment. 

Both pump wavelengths show an SE signal from ~ 380 – 450 nm, which appears within the IRF 

of the experiment. This SE signal is in agreement with the steady state fluorescence spectrum of 

P-trans as shown in Figure 3.1a. 
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The early time ESA and SE signals decay quickly as an intermediate species grows in. The 

intermediate is characterized by a new ESA peak centered at ~ 450 nm. The intermediate species 

forms a steady state difference spectrum by 200 ps, which persists for up to a nanosecond. The 

steady state difference spectrum agrees with the difference between steady state UV-vis spectra 

of the M-trans and P-trans from ~ 385 – 450 nm, but does not agree in the 350 – 385 nm region 

as shown in Figure 3.10. This is likely due to the presence of residual P-trans in the M-cis 

UV-vis spectrum as demonstrated by the P-trans vibronic peaks at 352 and 368 nm. 

 

Figure 3.10. Comparison of steady state TA spectrum to P-trans and M-cis. Steady state TA spectrum 

was scaled by a factor �  = 220,000. 

 

The TA data were globally fit to a sum of three exponential decays with associated 

amplitudes. Kinetic lineouts demonstrating the quality of the fit are shown in Figure 3.11. The 

fitting results for multiple trials of both excitation wavelength and both solvents (heptane and 

2-butanol) are given in Table 3.3.   
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Figure 3.11. Kinetic lineouts from the P-trans in heptane TA data using either 368 nm as the pump 

(a and b) or 269 nm as the pump (c and d). Early times in the top panels (a and c) and late times in the 

bottom panels (b and d). 345 or 368 nm (light blue) tracks the GSB, 400 nm (dark blue) tracks the SE 

and the photoproduct, 450 nm (purple) tracks SE on and the intermediate state, and 600 nm (red) 

tracks the early ESA. 
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(b) 

(c) 

(d) 



	 65 

	
Table 3.3. Rate constants obtained from global fits of the P-trans TA data in heptane and 2-butanol, 

using either 368 or 269 nm as pump wavelengths. 

 

 

P-trans transient absorption anisotropy. TA anisotropy data of the P-trans were collected 

using 368 and 269 nm excitation. In the 368 nm excitation data, a tail-matching scale factor of 

1.175 is applied to the perpendicular data in order to ensure r(t = ∞) = 0 at long times, when the 

anisotropy has decayed to zero. In the 269 nm excitation data, a tail-matching scale factor of 

1.215 was used. 

heptane 
experiments τ1 (ps) τ2 (ps) τ3 (ps) τ4 (ps) τ5 (ns) 

368 nm excitation 0.50 3.6 12 - >> 1 ns 

269 nm excitation -	 4.2 ± 0.2 11 ± 2 45 ± 4 >> 1 ns 

2-butanol 
experiments τ1 (ps) τ2 (ps) τ3 (ps) τ4 (ps) τ5 (ns) 

269 nm excitation -	 4.9 ± 0.1 12.7 ± 0.3 63 ± 2 >> 1 ns 
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Figure 3.12. Anisotropy of P-trans in heptane SADS assuming a sequential kinetic model after 

excitation with 368 nm (a-d) or 269 nm (e-h). 

 

The anisotropy signals are complicated by multiple overlapping signals. To simplify the data, 

the magic angle data were globally fit, and then the rates were held fixed in a fit of the parallel 
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and perpendicular data. The resultant DADS were transformed into SADS, assuming a sequential 

kinetic model, for the parallel and perpendicular data. These SADS were used to create the 

anisotropy of each species involved in the photochemical formation of M-cis and shown in 

Figure 3.12.  

M-trans transient absorption. The UV-vis TA of the M-trans isomer in heptane was 

measured after excitation with 404 nm and shown in Figure 3.13. Samples of M-trans are 

prepared by dissolving P-trans in solution. The M-trans constitutes ~ 4.5% of the total 

concentration at room temperature. M-trans’ UV-vis spectrum is red-shifted absorption with 

respect to P-trans such that excitation with 404 nm only excites M-trans.  The data are 

characterized by an initial excited state, an intermediate state, and a return to the ground state 

with no measurable photoproduct formation. Notably, the M-trans isomer produces no 

photoproducts unlike the more thermodynamically stable P isomers. 

The GSB is centered at 390 nm, a close match to the M-trans UV-vis as seen in Figure 3.1c. 

Sharp ESA centered at 645 nm and broad ESA peak from 650 – 800 nm appear within the IRF 

(~ 150 fs) of the experiment. An SE signal from ~ 490 – 610 nm appears within the IRF of the 

experiment as well. 
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Figure 3.13. TA spectra of M-trans excited with 404 nm in heptane. (a) Early time spectra at 0.5 ps 

(green), 1.5 ps (blue), 2.0 ps (purple), 4.0 ps (yellow) and 10 ps (red). (b) Later time spectra at 10 ps 

(red), 25 ps (yellow), 50 ps (purple), 80 ps (blue), and 250 ps (green). 

	
 

0.5 ps 
1.0 ps 
2.0 ps 
4.0 ps 
10.0 ps 

10 ps 
25 ps 
50 ps 
80 ps 
250 ps 

(a) 

(b) 

Table 3.4. M-trans global fitting results in heptane and 2-butanol, excitation wavelength is 404 nm 

 

solvent τ1 (ps) τ2 (ps) 

heptane 2.3 ± 0.1 40 ± 5 

2-butanol 2.4 ± 0.1 20.4 ± 0.1 
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Global analysis of the M-trans gives two exponential decay components. A time independent 

component is not necessary in the fit since the M-trans isomer does not produce photoproducts. 

The fitting results for 404 nm excitation in heptane and 2-butanol are given in Table 3.4. Kinetic 

lineouts at selected wavelengths along with the fit results and residuals are shown in Figure 3.14. 

 

Figure 3.14. Kinetic lineouts from the M-trans in heptane TA data using 404 nm as the pump. Early 

times (a) and late times in the bottom panel (b). 390 nm (light blue) tracks the ground state bleach, 

450 nm (dark blue) tracks the intermediate state, 550 nm (purple) tracks SE and the intermediate 

state, and 640 nm (red) tracks the early ESA 

 

Density functional theory calculations. The PBE0 functional and the 6-31G** basis set were 

used to calculate the ground state geometries and energies of the P-cis, P-trans, M-cis, and 

M-trans in vacuum and in polarizable continuum models (PCM) heptane and 2-butanol. PBE0 

390 nm 
450 nm 
550 nm 
640 nm 

390 nm 
450 nm 
550 nm 
640 nm 

(a) 

(b) 
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was chosen because of its low computational cost and ability to accurately calculate energies of 

the A and B excited states of stilbene and stiff stilbene30. Frequency calculations ensured true 

minimum energy geometries by inspecting for imaginary vibrational frequencies. The enthalpy 

and entropy of each structure were calculated in the frequencies calculations and the results are 

summarized in Table 3.5. The vertical excitation energies from the ground state minima of each 

conformer in vacuum and in PCM were calculated with Time Dependent DFT (TDDFT) and are 

shown in Table 3.6. The growing string method31 was used to search for the transition states and 

activation energies for thermal helix inversion between the M and P isomers shown in Table 3.7. 

 

Table 3.5. Thermodynamic properties of all four conformations of the molecular motor. Quantities 

were obtained by frequency calculations in DFT, using PBE0/6-31G**. 

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

Conformation Enthalpy (kcal/mol) Entropy (kcal/K*mol) Free energy, T=293K (kcal/mol 

P-cis 289.599 0.151006 244.5765611 

M-cis 289.564 0.149492 244.9929602 

P-trans 289.624 0.150478 244.7589843 

M-trans 289.66 0.148996 245.2368426 
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Table 3.6. Vertical excitation energies of all four conformations of the molecular motor calculated 

using TDDFT with PBE0/6-31G** and are compared to the measured peaks in the UV-vis spectra. (f is 

the oscillator strength of the transition). Top value in each cell is calculated in vacuum, middle value is 

calculated with PCM in dielectric constant = 1.92 and refractive index = 1.39 (heptane) and bottom 

value is calculated with PCM in dielectric constant = 17.26 and refractive index = 1.40 (2-butanol). 

	
 

Table 3.7. Activation energies for thermal helix inversion for both molecular isomers. Second column 

contains reported activation energies32. 

	
 

Discussion 

The goal of these TA experiments was to understand the excited state behavior of a first 

generation molecular motor. P-cis and P-trans cascade through multiple excited states prior to the 

formation of photoproducts, M-trans and M-cis. In short, the initial bright excited states 

internally convert to dark states, which then form photoproducts. The ground electronic state of 

P-trans and M-trans are in equilibrium with ~ 5% M-trans. Unlike P-trans, M-trans produces 

Conformation S0/S1, (nm, f) S0/S2, (nm, f) UV-vis 

P-cis 
367.1, 0.3713 
381.6, 0.2903 
382.7, 0.2853 

345.1, 0.00004790 
331.7, 0.0006853 
334.1, 0.001618 

369 nm 

M-cis 
394.3, 0.3835 
420.0, 0.2787 
416.9, 0.2726 

328.2, 0.00003012 
349.3, 0.001495 
352.8, 0.002951 

~400 nm 

P-trans 
352.0, 0.6188 
365.3, 0.4796 
365.3, 0.4764 

316.8, 0.004492 
320.8, 0.005806 
321.1, 0.006005 

359 nm 

M-trans 
385.0, 0.6676 
404.8, 0.4799 
405.3, 0.4732 

333.7, 0.0001662 
337.1, 0.00001643 
337.9, 0.00001729 

388 nm 

Transition Activation energy (kcal/mol) Reported activation energy (kcal/mol) 

M-cis à P-cis 32.1 22.2 

M-trans à P-trans 26.4 19.1 
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little to no photoproducts. P-cis will also be in equilibrium with M-cis, but the percentage of 

M-cis is insignificant. 

 

P-cis discussion. The photoisomerization of P-cis forming M-trans proceeds through three 

species with lifetimes of ~ 500 fs, ~ 13 ps and ~ 70 ps. The initial excited state relaxes on a 

~ 500 fs timescale, forming a new excited state with ESA centered at 425 nm and a lifetime of 

~ 13 ps. This second excited state is also a bright state because there are signatures of SE in the 

SADS from 460 to 535 nm shown in Figure 3.7b. In addition, parallel polarization pump/probe 

TA data show negative values for as long as 10 ps in Figure 3.15. This second excited state, 

whose spectrum is distinct from the initial state as shown in Figure 3.7a and 3.7b, produces SE 

since the initial excited state, whose lifetime is ~ 500 fs, has decayed to essentially zero percent 

population by 10 ps. The initial excited state is too short lived to account for such long-lived SE. 

 

Figure 3.15. Kinetic lineouts of P-cis after being with parallel pump polarization 404 nm. 483 nm (light 

blue), 487 nm (dark blue), 495 nm (purple), 525 nm (red). SE signal continues for ≥ 10 ps. 

 

The second excited state internally converts to a third species with a ~ 70 ps lifetime and 

ESA at ~ 435 nm. The signature of this species is complicated by a large amplitude, nearly flat, 



	 73 

positive signal across the visible spectrum, from 550 – 800 nm, similar to the P-trans data when 

excited with 269 nm. However, this ESA feature is likely not an background signal caused by 

269 nm excitation. The DADS are large amplitude in the global fitting results, and the 

component is present in 269 nm and 404 nm excitation results as shown in Figures 3.6 and 3.7.  

The third species forms the M-trans photoproduct on a ~ 70 ps timescale, which is stable for 

times much longer than the nanosecond accessed in our measurements. The TA spectrum at long 

times is in excellent agreement with the difference between the M-trans and P-cis steady state 

UV-vis spectra at -30 °C. The M-trans UV-vis spectrum acquired by low temperature photolysis 

contains no residual P-cis, indicating 100% conversion to M-trans by steady state photolysis. 

According to kinetic studies by Feringa et al.32, the barrier for thermal helix inversion is 

~ 19.1 kcal/mol with a half-life of ~ 18 seconds at room temperature. The barrier deduced by the 

Feringa group is similar to transition state growing string calculations, 26.4 kcal/mol, as shown 

in Table 3.7. The M-trans UV-vis spectrum is in agreement with the low temperature photolysis 

spectrum published by Feringa et al.32 Finally, TDDFT calculations shown in Table 3.6 predict a 

red shift of ~ 20 nm for the M-trans conformer with respect to P-cis, in agreement with TA and 

steady state UV-vis measurements in Figure 3.4. 

The pump-repump experiments in Chapter four utilize 269 nm as the pump pulse, and this 

choice was made out of practical concerns of signal to noise. The extinction coefficient of P-cis 

at 269 nm is ~ 20,000 1/M*cm versus ~ 5000 1/M*cm at 404 as shown in Figure 3.1. However, 

the P-cis isomer’s TA data excited with either 404 or 269 nm gives similar timescales and 

spectra. 
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P-trans discussion. The photoisomerization of P-trans proceeds through two species with three 

timescales, 500 fs, ~ 4 ps and ~ 10 ps. The initial excited state of P-trans shows SE centered at 

400 nm and three ESA peaks (600, 670, and 715 nm). After excitation, relaxation from the 

Franck Condon region takes place on a ~ 500 fs timescale, which is demonstrated by a red-shift 

in the SE signal to ~ 420 nm as seen in Figure 3.12a and 3.12b. Following relaxation from the 

Franck-Condon region, the molecule undergoes internal conversion to a dark state on a ~ 4 ps 

timescale. The dark state’s absorption spectrum is completely different, characterized by a sharp 

peak at 445 nm and a broad peak at 550 nm and no measurable SE signals. TDDFT calculations 

locate a low oscillator strength transition as the second lowest energy transition as shown in 

Table 3.6, indicating a dark state close in energy to the initial excited state. This is a common 

theme in polyene photochemistry supported by several experimental26,27,33–37 and theoretical 

studies7–9,38–40. The lifetime of the dark state is ~ 10 ps which then forms the M-cis ground state 

conformer. 

The steady state TA spectrum is assigned to the difference between the M-cis and P-trans 

conformers. TDDFT predicts a red-shift in the S0/S1 transition for M-cis relative to P-trans of 

~ 20 nm as shown in Table 3.6. The TA signal only partially agrees with the difference between 

the P-trans and M-cis molecules’ UV-vis spectra as shown in Figure 3.10. This is likely due to a 

photostationary state between P-trans and M-cis forming in steady state photolysis. M-cis is 

probably photoactive, and this will be tested in Chapter four with pump-repump TA.  

The M-cis ground state conformer undergoes no further changes over the nanosecond 

measured in our experiment. Work by Feringa et al.23,32 indicates the M-cis conformer undergoes 

thermal helix inversion to form the P-cis conformer on a 74 minute timescale at room 

temperature in hexane, deducing a barrier of ~ 22.2 kcal/mol. Calculations of the thermal helix 
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inversion barrier to be 32.1 kcal/mol using the growing string method31 get reasonably close to 

Feringa et al.’s experimental measurement as shown in Table 3.7. It is also in agreement with the 

experimental observation that the barrier between M-cis and P-cis is larger than the barrier 

between M-trans and P-trans. 

Much of the TA data on P-trans was collected using 269 nm as the excitation wavelength. 

Assuming Kasha’s Rule holds41, excitation with 269 nm produces a higher energy excited state, 

which converts to the lower energy excited states, likely faster than the IRF (~ 300 fs) of our 

experiment. This wavelength was chosen out of practical purposes, since 368 nm is not 

achievable by the equipment available in the lab. However, there are only minor differences 

between the 269 nm excitation data and the 368 nm excitation data. First of all, the 500 fs 

lifetime measured in the 368 nm data cannot be resolved in the 269 nm data due to low signal to 

noise ratio and an insufficient IRF (~ 300 fs). The ~ 4 ps and ~ 10 ps SADS in each data set are 

similar as seen in Figures 3.8, 3.9, and 3.12. There is an additional 45 ps timescale in the 269 nm 

excitation data, which is not present in the 368 nm excitation data. This component is essentially 

featureless with small amplitude in the DADS as shown in Figure 3.16. It is likely to be a solvent 

signal or a minor ionization signal of the sample, which in either case plays a minor role in the 

dynamics of the data. Overall, exciting P-trans with 269 nm or 368 nm leads to the same cascade 

of excited electronic states to form M-cis. 
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Figure 3.16. Decay associated difference spectra of P-trans dissolved in heptane and excited with 

269 nm. Note the broad featureless amplitude associated with the 45 ps component. This is likely an 

artifact of using 269 nm, either coming from the solvent or multi-photon ionization of the sample. 

 

M-trans discussion. The P-trans/M-trans free energy difference is small enough to allow a small 

population of M-trans at room temperature in solution. Calculation of the free energies obtained 

from DFT in vacuum and PCM, assign ~ 70% P-trans and 30% M-trans. This is an overestimate, 

UV-vis data suggest a ~ 4.5% M-trans present in solution at equilibrium as shown in Figure 3.17. 

The M-trans conformer’s UV-vis absorption spectrum is ~ 20 nm red shifted with respect to the 

P-trans conformer’s spectrum. This is observed in previously published work23,32, our low 

temperature steady state photolysis data in Figure 3.1b, and TDDFT calculations as shown in 

Table 3.6. In addition, distinct steady state fluorescence spectra result if trans solutions are 

excited by 405 nm versus 370 nm as shown in Figures 3.1a and 3.18. The red shifted absorption 

of M-trans conformer ensures 404 nm pump/probe experiments only target the M-trans 

conformer. 
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Figure 3.17. UV-vis spectra of P-trans (light blue), M-trans (dark blue dash), and 4.5% M-trans (dark 

blue). (Inset) Zooming in demonstrates the agreement between the shoulder of the P-trans (light blue) 

and the scaled amount of M-trans (dark blue). 

 

The TA spectra and dynamics of the M-trans conformer are distinct from the P-trans 

conformer. The dynamics are characterized by two timescales, ~ 2 ps and ~ 40 ps and no 

measureable photoproduct formation. The initial excited state is a bright state with SE in 

agreement with the steady state fluorescence spectrum excited at 405 nm as shown in 

Figure 3.18. The GSB is in the same location at the peak of the steady UV-vis spectrum of 

M-trans as well. The initial ESA at ~ 645 nm appears to be sharp due to the overlapping profile 

of the SE. The initially excited bright state decays on a ~ 2 ps timescale to form a secondary 

excited state with no SE and a lifetime of ~ 40 ps. This excited state decays to the ground state 

M-trans isomer and displays no further change within our time window. 

0.045*M-trans 

0.045*M-trans 
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Figure 3.18. Comparison of M-trans UV-vis (teal blue), and M-trans steady state fluorescence excited by 

405 nm (yellow), to the first SADS spectrum (red) from a global analysis of TA data on M-trans. 

 

Conclusions 

P-cis and P-trans isomers of the molecular motor go through two electronic states to form 

M-trans or P-cis, respectively. Whether excited with 269 or 404 nm, P-cis shows three timescales 

in the formation of M-trans: ~ 800 fs, ~ 15 ps, and ~ 70 ps. The initial excited species shows 

stimulated emission and broad excited state absorption. Stimulated emission from 480 – 530 nm 

from P-cis is observed for as long as 10 ps, indicating the second species is also a bright state. 

The third species is a dark state which forms M-trans on a ~ 70 ps timescale. M-trans shows no 

further changes for at least a nanosecond, which is supported by measured half-life of ~ 18 

seconds22,23,32. In the case of P-trans, excitation with 368 nm gives three timescales in the 

formation of M-cis: ~ 500 fs, ~ 4 ps, and ~ 12 ps. The initial excited state relaxes from the 

Franck-Condon region on a 500 fs timescale, and then internally converts to a dark state on a 

4 ps timescale. The dark state decays to form M-cis on a 12 ps timescale. No further changes to 
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the M-cis product are observed for the next nanosecond. Again, this is expected based on the 

~ 70 minute half-life of M-cis measured by Feringa et al.22,23,32 Minor differences are observed 

after 269 nm excitation of P-trans. For one, no ~ 500 fs component is observed because the IRF 

and signal to noise are unable to resolve that component. The 269 nm has ~ 4 ps and ~ 12 ps 

components in common with 368 nm excitation as shown in Figure 3.12. However, 269 nm 

excitation gives a low amplitude ~ 45 ps component not observed in 368 nm excitation. 

P-trans appears to be in equilibrium with a small percentage of M-trans in solution. This is 

demonstrated by the excitation dependence of steady state fluorescence spectra as well as the 

unique transient absorption results when exciting P-trans solutions with 404 nm. The distinctive 

features in the M-trans data prove useful in analysis of the pump-repump data to be described in 

the Chapter four. These preliminary TA studies lay the groundwork for the pump-repump and 

pump-dump experiments in Chapter four. 
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