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Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and

resistance to therapeutic agents; they are usually less sensitive to conventional cancer

therapies, and could cause tumor relapse. An ideal therapeutic strategy would

therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse.

The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs)

pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs

against renal cancer cells in vitro and in vivo. We identified “stem-like” characteristics

of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell

lysates did not change the characteristics of the DCs. However, DCs loaded with

lysates derived from CD105+ CSCs induced more functionally specific active T cells

and specific antibodies against CSCs, and clearly depressed the tumor growth in mice.

Our results could form the basis for a novel strategy to improve the efficacy of DC-

based immunotherapy for human RCC.
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1 | INTRODUCTION

Human tumors arise from a small subset of primary cells known as

cancer stem cells (CSCs) or tumor initiating cells,1,2 which are

responsible for tumor initiation, progression, and resistance to

traditional therapeutic agents.3,4 CSCs have been identified in several

solid tumors including human renal cell carcinoma (RCC).5–11 There are

several hypotheses to describe the origin of CSCs, such as the

accumulation of mutations, or reprogramming of tumor cells via

dedifferentiation due to hypoxia and/or epithelial-to-mesenchymalXiao-Fei Zhang and De-sheng Weng contributed equally to this work.
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transition (EMT).12–14 Although conventional methods, including

chemotherapy and radiotherapy are able to reduce the tumor burden,

and improve the survival of some cancer patients, CSCs are usually

slow cycling and therefore pose an obstacle to such therapy.15

Therapies that target the pool of differentiated tumor cells but fail to

eradicate CSC compartments could end up with new tumors in

different locations, and lead to tumor relapse. Thus, the development

of novel therapeutic strategies focusing on the elimination of CSCs

could prove instrumental in preventing tumor regression and

relapse.16 There have been several recent studies on CSC-targeting

strategies, including focusing on specific CSC markers or molecular

signaling pathways, targeting the CSC niche, manipulating miRNA

expression, and inducing apoptosis or differentiation in CSCs.17–23We

have described the immunological targeting of CSCs in several animal

models.24,25

Emerging CSC-targeted therapies may help understand the

immune-escape-mechanisms of cancers. Current immunotherapeutic

strategies are mainly based on antigens presented to effector T-cells

by dendritic cells (DCs). These antigens are mostly derived from

differentiated tumor cells, but may not be expressed by CSCs.26

Further, CSC antigen presentation could be defective due to the

downregulation of human leukocyte antigen (HLA) surface expres-

sion.27 Therefore, in a heterogeneous tumor entity, CSCs are likely not

affected by current therapeutic agents and therefore cause treatment

failure and disease progression. The efficacy and success of the cellular

immunotherapy, using sipuleucel-T, in the treatment of metastatic

prostate cancer28 has prompted the evaluation of DC vaccines to treat

metastatic renal cell cancer. Phase I studies of vaccines containing DCs

transfected with tumor RNA or pulsed with tumor lysate showed that

these were safe and effective in treating RCC either alone29–32 or in

combinationwith cytokines.33,34 Recent studies have shown that CSCs

can be used as antigen sources to elicit DC-mediated CSC-specific

humoral and cellular immune responses, leading to efficient antitumor

immunity.24,25,35–39 These studies support the hypothesis that CSCs

can be recognized and eradicated by the immune system, and provide a

basis for new immunotherapeutic approaches targeting CSCs.

CD105 is a surface transmembrane molecule and act as a co-

receptor for TGF-beta. It regulates cell proliferation, differentiation, and

migrationandhasan important role in angiogenesis.40 In2008,Bussolati

et al11 proposed CD105 as a marker for tumor-initiating stem cells for

the first time. They found that CD105+ cancer cells isolated from renal

cancer samplesdisplaypropertiesof stemcells suchasclonogenicityand

expression of the stem cell markers Nestin, Nanog, and Oct-3/4. In

addition, CD105+ meningioma cells have similar increased tumorige-

nicity and capacity to differentiate into adipocytes and osteocytes as

reported by Hu et al.41 The similar results were also found in ovarian

cancer,42 glioblastoma,43 Wilms tumor cells,44 oral cancer.45

In the present study, we attempted to target human renal CSCs by

using DC-based immunotherapy. Our results demonstrated the

potency of DCs loaded with CSC antigen to induce cellular (cytotoxic

T-lymphocytes) and humoral (specific antibody) responses that

specifically target renal CSCs and thereby significantly inhibit the

tumor growth in animal models.

2 | MATERIALS AND METHODS

2.1 | Cell lines

The human RCC cell lines A498 and SK-RC-39 were purchased from

the American Type Culture Collection (Manassas, VA). All cells were

maintained in RPMI 1640 medium (Invitrogen, Shanghai, China)

supplemented with 10% fetal bovine serum (FBS; Gibco, NY), and

1% penicillin-streptomycin at 37°C in a humidified atmosphere of 5%

CO2 in air.

2.2 | Cell sorting and flow cytometry

Cell sorting was performed using MACS positive selecting kits

(Miltenyi Biotec, Bergisch Gladbach, http://www.miltenyibiotec.

com), according to manufacturer's instructions.

For isolation of CD105+ and CD105-cell populations, cells were

magnetically labeled with the kit-provided antibody against CD105.

Cells were first washed twice and subsequently resuspended in MACS

buffer. An aliquot was removed and combined with 10 uL anti-CD105

microbeads (per 107 total cells). The cells were then incubated for

15min at 2-8°C and subsequently washed with kit buffer. The cells

were then re-suspended in 500 uL MACS buffer and CD105+ cells

were isolated by magnetic separation.

For B-cell positive selection, peripheral blood mononuclear cells

(PBMCs) were magnetically labeled with kit-provided antibody against

CD19. And then the cells were separated according to the

manufacturers instructions.

The purity of the MACS-isolated CD105+ CSCs and B-cells was

assessed by flow cytometry (Beckman Coulter, Inc., Kraemer

Boulevard Brea, CA, https://www.beckmancoulter.com); purity was

routinely >90%. The obtained subpopulationsweremaintained for less

than 12 h at 4-8°C until further use.

2.3 | Sphere formation assay

To examine the ability of the sorted CD105+ cells and CD105−

subpopulations to produce tumor spheres, the cells were suspended in

serum-free medium (SFM) consisting of DMEM/F-12 supplemented

with 20 ng/mL EGF (Epidermal Growth Factor) (PeproTech, https://

www.peprotech.com), 20 ng/mLbFGF (basic Fibroblast Growth Factor)

(PeproTech, https://www.peprotech.com), and B27 (1×) (Invitrogen,

http://www.thermofisher.com). In all experiments, cellswere incubated

at 37°C in a humidified 5% CO2 atmosphere for a maximum of 12 days.

2.4 | Tumor genesis assay

The limiting dilution assay was carried out to compare the tumor

induction potency of the renal carcinoma cell subpopulations. Briefly,

4-week-old female BALB/c nude female mice (Medical Experimental

AnimalCenter ofGuangdongProvince,Guangzhou,China, http://www.

gdmlac.com.cn) were challenged with four dilutions of both sorted

tumor cell subpopulations (CD105+ and CD105− RCC cells from A498
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and SK-RC-39). The number of injected cells was 10 000, 100 000,

1000 000, or 5000 000 for eachmouse in the groups. Sorted cells were

suspended in 100 µL PBS containing 50% Matrigel (BD Biosciences,

Lake Franklin, NJ, http://www.bd.com), chilled on ice, and then injected

subcutaneously into the flanks of themice via a 26-gauge needle using a

1-mL syringe. Typically, CD105+ and CD105− cells were injected into

the left and right sides of the same animal. The tumorigenic potential of

each subpopulationwas followeddaily for 12weeks. Tumor size in cubic

millimeters was assessed weekly with calipers and was calculated as

tumor size = (largest diameter × smallest diameter2)/2.

2.5 | Immunofluorescence

Indirect immunofluorescence was performed on cells cultured on

chamber slides. Sorted CD105+ and CD105− cells were fixed in 3.5%

paraformaldehyde and permeabilized with Hepes-Triton X-100 buffer.

The following antibodies were used: anti-SOX2, anti-Nanog, anti-c-Myc,

and anti- KLF4 (Cell Signaling Technology, Trask Lane Danvers, MA,

https://www.cellsignal.com). Alexa Fluor 594 anti-rabbit IgG (Molecular

Probes, https://www.thermofisher.com) were used as secondary anti-

body. DAPI dye (Sigma, Darmstadt, Germany, http://www.sigmaaldrich.

com) was added for nuclear staining.

2.6 | Analysis of cell cycle status of CSCs

For cell cycle analysis, the sorted CD105+ and CD105− RCC cells were

collected and washed with ice-cold PBS for 5min by centrifugation at

125 × g. The cells were then fixedwith 75%ethanol at−20°C overnight.

The cells were then treated with RNase at 37°C for 30min and stained

with propidium iodide for 60min at 4°C in the dark. Finally, cells were

analyzed with a Flow Cytometer (Beckman Coulter, https://www.

beckmancoulter.com) according to manufacturer's instructions.

2.7 | Cell viability assay

Cell viability was determined using a sensitive colorimetric assay (MTS;

Promega, https://cn.promega.com). Cells (8 × 103 cells per well) were

seeded in flat-bottom 96-well plates. After incubation for 12h, cells were

treatedwith varying concentrations of cisplatin. After further incubation for

48h,20μLMTSsolutionwasaddedtoeachwell, followedby4h incubation

at 37.5°C Absorbance at 490nm was measured using a SpectraMax M5

plate reader (Molecular Devices, https://www.moleculardevices.com).

Relative cell viability was calculated as percentage of untreated controls.

Drug sensitivity was determined from three separate experiments and

expressedas thedrugconcentration required to inhibit proliferationby50%

(IC50), by using standard curve-fitting routines (GraphPad Software, Inc,

http://www.graphpad.com).

2.8 | Apoptosis assay

For the cell apoptosis assay, the CD105+, and CD105− cells that were

treated with 10 μmol/L cisplatin for 12 hwere harvested, washed twice

with ice-cold PBS, and stained with Annexin V-FITC, and PI (Bestbio,

http://bestbio.bioon.com.cn) according to manufacturer's instructions.

Cellswere analyzed using a FlowCytometer (Beckman Coulter, https://

www.beckmancoulter.com) according to manufacturer's instructions.

2.9 | Generation of monocyte-derived dendritic cells,
T cells, and B cells

PBMCs were separated from 50mL peripheral blood obtained from

HLA-A*02 healthy donors by Ficoll density gradient centrifugation (GE

Health, http://www.gehealthcare.com), andwere incubated in six-well

culture plates at 37°C for 1 h in RPMI 1640 with 5% human AB serum.

After incubation for about 2 h, the adherent PBMCs were cultured in

Quantum 007 Lymphocytes medium (PAA, Freiburg, Germany, http://

www.paa.com) containing 1000U/mL granulocyte macrophage col-

ony stimulating factor (GM-CSF) and 500 U/mL interleukin-4 (IL-4)

(both from Life Technologies, Guangzhou, People's Republic of China).

On day 5, DCswere harvested by dispenser and enriched byOpti-Prep

density gradient medium. Lysates of unsorted renal cancer cells,

CD105+ CSCs, or CD105− non-CSCs were added to DCs at a 1:3 cell

equivalent ratio. On day 6, to mature the DCs and help them

upregulate the expressions of costimulatory molecules, OK-432

(Shandong Lukang Pharmaceutical Co. Ltd. http://www.lkpc.com)

was added into the culture medium at 0.1 KE/mL.

The non-adherent cells were divided into two aliquots. One was

cultured in RPMI 1640with 20U/mL IL-2 (Peprotech, Suzhou, People's

Republic of China, http://www.peprotechchina.com) and 10% human

AB serum, to obtain autologous T cells. The other was magnetically

labeled with kit-provided antibody against CD19. CD19 B cells were

positively selected as described in the “Cell sorting” section. Purified B

cells were cultured in complete medium supplemented with 5 μg/mL

LPS(Beyotime, http://www.bio-equip.cn), 2 μg/mL anti-CD40 (Sino

Biological Inc, http://sbi2007.en.ec21.com), and 60 IU/mL IL-2.

Half of the total culture medium was changed every two days.

Non-adherent and loosely adherent cells were harvested after 6 days.

2.10 | Preparation of cell lysates loaded-DCs

To prepare tumor cell lysates, unsorted renal cancer cells, sorted CD105+

CSCs, orCD105− cellswere suspendedat a concentration of 1 ×107/mL in

PBS. Cells were lysed by five rapid freeze-thaw cycles in a 37°Cwater bath

and liquid nitrogen. After centrifugation (12000 rpm for 20min), tumor cell

lysates were collected. Lysates of A498 unsorted renal cancer cells, A498

CD105+CSCs, orA498CD105−non-CSCswere added toDCsat a1:3 cell

equivalent ratio. And lysates of SK-RC-39 unsorted renal cancer cells, SK-

RC-39CD105+CSCs, or SK-RC-39CD105−non-CSCswere also added to

DCs at a 1:3 cell equivalent ratio. TheDCswere then incubated at 37°C for

24h with 5% CO2. After incubation, the A498 unsorted renal cancer cell

lysate-pulsedDCs (A498Unsorted_DCs),A498CD105+ lysate-pulsedDCs

(A498CD105+ _DCs), orA498CD105− lysate-pulsedDCs (A498CD105−

_DC) and the SK-RC-39 unsorted renal cancer cell lysate-pulsed DCs (SK-

RC-39 Unsorted_DCs), SK-RC-39 CD105+ lysate-pulsed DCs (SK-RC-39

CD105+ _DCs), or SK-RC-39 CD105− lysate-pulsed DCs (SK-RC-39

CD105− _DC) were used in the subsequent experiments.
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2.11 | Phenotypic analysis of cell lysates loaded-DCs

Cell lysates loaded-DCs were harvested, washed, and re-suspended in

FACS buffer (PBS containing 2% FCS). The cells were then stainedwith

anti-CD80, anti-CD83, anti-CD86, anti-HLA-DR, and anti-HLA-ABC

antibodies (all from Biolegend, http://www.biolegend.com) for 20min

at 4°C and analyzed for the expression of the above-mentioned

phenotypic markers, by flow cytometry.

2.12 | Functional analysis of cell lysates loaded-DCs
(enzyme-linked immunosorbent assay)

Cell lysates loaded-DCs (2 × 105) were cultured in a 48-well plate in

1mL DC medium. Supernatants were harvested after 24 h, and IL-

12p70 production was determined using a commercially available

ELISA kit (Neobioscience Technology, http://www.made-in-china.

com) according to the manufacturer's protocol.

2.13 | Cytotoxic T Lymphocyte (CTL) generation

T cells from the same healthy donor were used as responder cells and

stimulated with cell lysates loaded-DCs at an S:R ratio of 1:10. Cells

were cultured in Quanta-007 lymphocyte culture medium containing

IL-2 (20 U/mL) and IL-7 (5 ng/mL; Peprotech). Half the medium was

replaced every other day with fresh medium. On day 7, CTLs were

harvested and used for phenotypic and functional studies.

2.14 | Cytotoxicity assay

After 7 days of co-culture, CTLs were used for cytotoxicity assays. T cells

were divided into four groups; (i) T cells stimulatedwithCD105+cell lysate-

loaded DCs (A498 CD105+ _CTLs, SK-RC-39 CD105+ _CTLs); (ii) T cells

stimulatedwith CD105− cell lysate-loadedDCs (A498CD105− _CTLs, SK-

RC-39 CD105− _CTLs); (iii) T cells stimulated with unsorted cell lysate-

loaded DCs (A498 Unsorted_CTLs, SK-RC-39 Unsorted_CTLs); and (iv) T

cells stimulatedwithcontrolmatureDCsalone (Con_CTLs).Thecytotoxicity

assayswereconductedusingtheCytoTox96Non-RadioactiveCytotoxicity

Assay Kit according to the protocol provided (Promega). For A498 CD105

+ _CTLs, A498 CD105− _CTLs, A498 Unsorted_CTLs, and Con_CTLs, the

targets were A498 CD105+ CSCs, A498 CD105− non-CSCs, and A498

unsorted cells, respectively. For SK-RC-39 CD105+ _CTLs, SK-RC-39

CD105−_CTLs, SK-RC-39Unsorted_CTLs, andCon_CTLs, the targetswere

SK-RC-39 CD105+ CSCs, SK-RC-39 CD105− non-CSCs, and SK-RC-39

unsorted cells, respectively. After washing, effector T cells were added to

the targets at E:T ratios of 3:1, 10:1, or 30:1.

2.15 | Winn assay

Unsorted RCC cells (2 × 106) were mixed with 2 × 107 CTLs and

injected subcutaneously into BALB/c nude mice. A control group of

mice was injected with unsorted renal cells alone. Tumor size was

assessed every 2 days with calipers. All mice were sacrificed at

12 weeks, and xenografts were removed for IHC and FACS analyses.

2.16 | Intracellular cytokine analysis

For intracellular staining, the CTLs (alone or cocultured with CD105+

CSCs) were stimulated for 4 h in the presence of 50 ng/mL phorbol

myristate acetate, 500 ng/mL ionomycin (Sigma), and 2 µM monensin

(GolgiStop, BD Biosciences). The cells were incubated with anti-CD4

and anti-CD8 for surface staining, followed by intracellular staining

using anti-TNF-α, anti-IFN-γ, anti-Perforin, or anti-Granzyme B (all

from Biolegend) in FIX/PERM buffers (BD Pharmingen, http://www.

yubiotech.com) according to the manufacturers’ instructions. The

samples were evaluated on an FC500 flow cytometer (Beckman

Coulter, https://www.beckmancoulter.com) and analyzed using CXP

Software (Beckman Coulter, https://www.beckmancoulter.com).

2.17 | B cell activation

B cells from the same healthy donor were used as responder cells and

stimulated with cell lysates loaded-DCs at an S:R ratio of 1:10. Cells

were cultured in complete medium supplemented with 5 μg/mL LPS,

2 μg/mL anti-CD40, and 60 IU/mL IL-2. Half the mediumwas replaced

every other daywith freshmedium. On day 7, the culture supernatants

were collected and used for functional studies.

2.18 | CSC binding by immune supernatant

The concentrations of IgG in the mixed B cell culture supernatants

were detected using ELISA (Westang, http://westang.bioon.com.cn)

before we performed the binding assays. Based on the ELISA results

(concentration of IgG), we determined the volume required from each

mixed sample to ensure that an equal quantity of IgG from each

coculture activated group was present to assay binding to CD105+

CSCs, Unsorted cells, or CD105− non-CSCs. Unsorted RCC cells,

sorted CD105+ CSCs, or CD105− non-CSCs were incubated with the

appropriate volume of immune supernatants collected from the

cocultured B cells comprising an equal quantity of IgG. They were then

incubated with FITC-conjugated anti-human IgG. The binding of

supernatant antibody to CD105+ CSCs, CD105− non-CSCs, or

Unsorted cells was subsequently assessed using flow cytometry.

2.19 | Antibody- and complement-mediated
cytotoxicity against CSCs

ViableCD105+CSCs,CD105−non-CSCs,orUnsortedcellswere incubated

with immune supernatants obtained from activated B cells cocultured with

cell lysates loaded-DCs. The cells were then incubated with rabbit

complement (Merck) for another 1 h. Trypan blue staining was used to

assess cell lysis, which was expressed as: percent viable cells = number of

viable cells after immune supernatant and complement incubation/105.

2.20 | Statistical analysis

All statistical analyses were performed using SPSS version 19.0 (SPSS

Inc., Chicago, IL). The Student t-test or Wilcoxon test was used to
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analyze the differences between quantitative variables. The Pearson

χ2 test or Fisher exact test was used to analyze the differences

between qualitative variables. All tests were two-sided, and P < 0.05

was considered statistically significant.

3 | RESULTS

3.1 | The CD105+ fraction of human renal cell
carcinoma cells was considered as cancer stem cells

The RCC subpopulations were analyzed and sorted according to the

expression of CD105. Prior to MACS, the frequency of CD105+ cells

was 8.3 ± 1.3% for A498 (n = 3 repeat experiments) and 4.9 ± 1.7%

(n = 3 repeat experiments) for SK-RC-39. Then cells were sorted by

MACS and the purity of the two fractions was more than 92%

(Supplementary Fig. S1). The sorted CD105+ and CD105− cells from

the A498 and SK-RC-39 cell lines were studied for spheroid formation

potency in SFM. When plated in sphere-generating medium, the

CD105+ cells were able to grow in non-adhesive condition and

generate spheres; however, most of the CD105− cells did not survive

in the SFM (Fig. 1A). Moreover, we determined the tumorigenic ability

of CD105+ cells; serial dilutions of sorted CD105+ and CD105− cells

from the A498 and SK-RC-39 cell lines were injected subcutaneously

into nude mice. The results showed that the tumorigenicity of the

CD105+ (red arrows) renal cancer cells was much higher than that of

the CD105− (black arrows) cells (Fig. 1B). Because of the enhanced

tumorigenic and spheroid formation abilities of CD105+ cells, they

were considered as renal CSCs.

In addition, we found that CD105+ renal cancer cells exhibit stem-

cell-like properties such as the significant expression of the established

stem cell markers Sox2, Nanog, c-Myc, and KLF4 (Fig. 1C).

The quiescent state is likely necessary for the self-renewal of stem

cells including CSCs.46 We therefore analyzed the cell cycle status of

CD105+ and CD105− cells. The proportion of cells arrested at the G0/

G1 phase in the CD105+ population was significantly higher than the

corresponding percentages in the CD105− population (Fig. 1D).

Another main feature of CSCs is a strong resistance to

chemotherapeutic drugs43,47; the degree of resistance to cisplatin

could be used to differentiate CSC-like mammary tumor cells from

normal mammary cells.48 Here, we treated CD105+ and CD105− cells

with various doses of cisplatin and performed a MTT assay to assess

their growth capacity after 12 h of incubation (Fig. 1E). Both cell

populations showed a significant resistance to cisplatin; however,

CD105− cells showed significantly lower cisplatin resistance. What's

more, treatment with cisplatin at 10 μmol/mL induced significantly

more apoptosis in CD105− cells than in CD105+ cells.

3.2 | Generation and analysis of cell lysates
loaded-DCs

Because CD105+ renal cancer cells presented characteristics of tumor

stem cells in human renal cancer, we hypothesized that these cells could

be an immunological target for RCC CSC-directed immunotherapy.

Human peripheral blood mononuclear cell-derived DCs were loaded

withCD105+cell lysates,CD105−cell lysates,unsorted renal cancercell

lysates, or not loaded with anything (negative control). As shown in

Supplementary Fig. S2A (A498 cell line) and Supplementary S2B (SK-

RC-39 cell line), mature DCs loaded with CD105+ cell lysates (CD105

+ _DCs), CD105− cell lysates (CD105− _DCs,) or unsorted renal cancer

cell lysates (Unsorted_DCs) expressed high levels of the costimulatory

and activation markers CD80, CD83, CD86, HLA−ABC, and HLA-DR,

which were similar to those observed in the mature DCs without cell

lysate (Con_DCs). To determine whether the lysate-loaded DCs were

functionally active, IL-12p70, which is considered important for the Th1

response, was detected in the culture supernatants of monocyte-

derived DCs after loading with cell lysates. The production of IL-12p70

was not significantly altered in DCs loaded with CD105+ lysates

compared to unloaded mature DCs or DCs loaded with CD105− cell

lysate andunsorted renal cancer cell lysates (Supplementary Fig. S2C,D).

3.3 | Cell lysates loaded-DCs potently stimulate
autologous T cells

To determine whether cell lysate-loaded DCs could activate T cells, we

determined the number of effector T cells after incubating autologous T

cells with the different treated DCs, using IFN-γ expression as a marker

of functionally active T cells. A498CD105+ _DCs, A498 CD105− _DCs,

and A498 Unsorted_DCs stimulated the production of significantly

higher numbers of IFN-γ-expressing T cells than did Con_DCs (Fig. 2A,

C). SK-RC-39 CD105+ _DCs, SK-RC-39 CD105− _DCs, and SK-RC-39

Unsorted_DCs stimulated the production of significantly higher

numbers of IFN-γ-expressing T cells than did Con_DCs (Fig. 2B,D).

However, the percentage of IFN-γ production level by CD8+ CTL cells

were not significantly different among T lymphocytes stimulated by

CD105+ _DCs, CD105− _DCs, or Unsorted_DCs both in A498 cell line

and SK-RC-39 cell lines. Thus, cancer cell lysate-loadedDCs are capable

of inducing greater numbers of functionally active T cells.

3.4 | Preferential destruction of the CD105+ RCC
CSC population by T cells stimulated with CD105
+ _DCs in vitro and in vivo

Next, we tested the CTL activity of T cells stimulated with CD105

+ _DCs (CD105+ _CTLs), CD105− _DCs (CD105− _CTLs), Unsor-

ted_DCs (Unsorted_CTLs), or Con-DCs (Con_CTLs) against CD105+

CSCs, Unsorted cancer cells, and CD105− non-CSCs, respectively by

using the LDH release assay. CTLs induced by A498 CD105+ _DCs

exhibited the highest levels of cytotoxicity against A498 CD105+

CSCs, lower activity against the bulk population ofA498Unsorted cells

and sorted A498 CD105− non-CSCs. CTLs induced by SK-RC-39

CD105+ _DCs exhibited the highest levels of cytotoxicity against SK-

RC-39 CD105+ CSCs, lower activity against the bulk population of SK-

RC-39 Unsorted cells and sorted SK-RC-39 CD105− non-CSCs

(Fig. 3A). Lysis by CTLs induced with Con_DCs was significantly less

effective, regardless of whether the target was CD105+ cells, CD105−

cells, or bulk unsorted cells both in A498 cell line and SK-RC-39 cell
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lines (Fig. 3A). Thus, we concluded that A498 CD105+ CSCs could be

preferential destruction by A498 CD105+ _CTLs, but not A498

CD105− _CTLs, or A498 Unsorted_CTLs; SK-RC-39 CD105+ CSCs

could be preferential destruction by SK-RC-39 CD105+ _CTLs, but not

SK-RC-39 CD105− _CTLs, or SK-RC-39 Unsorted_CTLs.

To confirm the anti-tumor effects of T cells induced by CD105+ cell

lysate-loaded DCs, unsorted renal cancer cells mixed with different CTLs

were injected subcutaneously into nude mice. The same number of renal

cancer cells suspended in PBSwas injected subcutaneously into nudemice

as controls. At week 12 after injection, the mice were sacrificed and the

tumors were extracted for flow cytometry and IHC analysis. The results

showed that CTLs induced by A498 CD105+ _ DCs significantly delayed

tumor growth in A498 renal cancer xenografts models (Fig. 3B[a, b]). And

CTLs induced by SK-RC-39 CD105+ _ DCs significantly delayed tumor

growth in SK-RC-39 renal cancer xenografts models (Fig. 3C[a, b]). This

inhibitionwasconsistentwithasignificant reductionofresidualCD105+cell

content compared with tumors from the control group (Fig. 3B[c],C[c]).

3.5 | CD105+ _CTLs could recognize HLA-A2+
CD105 peptide and lyse CD105+ CSC populations

To determine the mechanism underlying CD105+ _CTL-mediated

reduction of CD105+ CSCs, we determined whether CD105+ _CTLs

could release specific anti-tumor cytokines against CD105+ CSCs.We

FIGURE 1 Characterization of CD105+ cancer stem cells obtained from human renal cell carcinoma cells. (A) Micrograph representative of
spheres generated by culture of CD105+ vs CD105− clones (A498 and SK-RC-39); original view ×200. (B) Tumorigenicity of CD105+ cells
determined by xenograft assay. The indicated numbers of cells were subcutaneously injected into nude mice and tumor formation was
monitored weekly. A498 CD105+ (or SK-RC-39 CD105+) cells and A498 CD105− (or SK-RC-39 CD105−) cells were subcutaneously
inoculated into the left and right flanks of mice, respectively. (C) Representative immunofluorescence expression of the stem cell markers
SOX2, NANOG, C-MYC, and KLF-4 by CD105+ vs CD105− cell clones; original view ×650. Nuclei were counterstained with DAPI. (D)
Cytofluorimetric analysis of cell cycle status (G0/G1, S, G2/M) of CD105+ vs CD105- cells. (E) CD105+ cells showed enhanced
chemoresistance. Up: A498 and SK-RC-39 CD105+ cells were more sensitive to cisplatin. Middle: Sensitivity of CD105+ vs CD105− cells to
cisplatin. IC50, median inhibitory concentration; SD, standard deviation. Down: 10 μmol/m cisplatin induced less apoptosis in CD105+ cells
than in CD105− cells. (*P < 0.05, **P < 0.01)
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found that, after co-culture of A498 CD105+ CSCs with A498 CD105

+ _CTLs, A498 CD105− _CTLs, A498 Unsorted_CTLs, or Con_CTLs,

A498 CD105+ _CTLs secreted significantly high levels of TNF-α,

Perforin, Granzyme B than A498 CD105− _CTLs, A498 Unsor-

ted_CTLs, and Con_CTLs did (Fig. 4A-D). After co-culture of SK-RC-39

CD105+ CSCs with SK-RC-39 CD105+ _CTLs, SK-RC-39 CD105−

_CTLs, SK-RC-39 Unsorted_CTLs, or Con_CTLs, SK-RC-39 CD105

+ _CTLs secreted significantly high levels of TNF-α, Perforin,

Granzyme B than SK-RC-39 CD105− _CTLs, SK-RC-39 Unsor-

ted_CTLs, and Con_CTLs did (Fig. 4E-H). The comparisons of

differences of cyctokines released by CTLs after co-culture with

CD105+ CSCs were shown in Fig. 4A-D (A498) and E-H (SK-RC-39).

Therefore, stimulation with A498 CD105+ cell lysate-loaded DCs

could induce specific CTL activity against A498 CD105+ RCC CSCs

and stimulation with SK-RC-39 CD105+ cell lysate-loaded DCs could

induce specific CTL activity against SK-RC-39 CD105+ RCC CSCs.

To determine whether the CTLs stimulated with CD105+ _DCs

could recognize CD105+ CSCs specifically, we performed tetramer

analyses by using CD105 antigen tetramers. As shown in Fig. 4I(i),

CD105+ antigen-specific CTLs were present in the A498 CD105

+ _DCs stimulated T cells. As shown in Fig. 4J(j), CD105+ antigen-

specific CTLs were present in the SK-RC-39 CD105 + _DCs stimulated

T cells. The percentages of antigen-specific CTLs were ∼30%. Clearly,

optimization of peptide and tetramer designs and conditions will likely

improve the detection of antigen-specific CTL generation.

Together, these results provide direct experimental evidence that

RCC CD105+ CSCs can be eliminated by CTLs in vitro and in vivo.

Targeting CSCs/CICs could provide a novel therapeutic paradigm with

important clinical implications.

3.6 | CD105+ _DCs modulates humoral responses
specifically targeting CD105+ RCC CSCs

To determine whether the CD105+ _DCs could reinforce humoral

responses specifically targeting CD105+ CSCs, we evaluated CD105

+ _DCs-induced antibody immune responses against CD105+ CSCs.

After co-culture of autologous B cells with the different treated DC

populations, ELISA analysis was performed to detect IgG antibodies in

the B cell culture supernatant. To test the specificity of the CD105

+ _DCs-primed antibody, we assessed the binding of the immune

supernatant to CD105+ CSCs, Unsorted renal cancer cells, and CD105

− non-CSCs. As shown in Fig. 5A, culture supernatant of B cells

cocultured with various A498 renal cancer cell lysate loaded DCs were

used to test their binding to A498 CD105+ CSCs (left column), A498

Unsorted renal cancer cells (middle column), and A498 CD105 non-

CSCs (right column). As shown in Fig. 5B, culture supernatant of B cells

cocultured with various SK-RC-39 renal cancer cell lysate loaded DCs

were used to test their binding to SK-RC-39 CD105+ CSCs (left

column), SK-RC-39 Unsorted renal cancer cells (middle column), and

SK-RC-39 CD105 non-CSCs (right column). Fluorescein isothiocya-

nate (FITC)-labeled anti-human IgG secondary antibody was then used

for detection of immunoreactivity via fluorescence cytometry. As

shown in Fig. 5C, A498 CD105+ _DCs-primed immune supernatant

bind to A498 CD105+ CSCs significantly more than supernatant

FIGURE 2 Characterization of T cells stimulated by untreated or cancer cell lysates loaded DCs. (A,B) Expression of IFN-γ in stimulated
CD8 T cells was measured by flow cytometry. (A) Autologous T cells stimulated for 7 days with untreated mature DCs (Con-CTLs), A498
CD105+ CSCs lysate-loaded DCs (A498 CD10+ _CTLs), A498 Unsorted renal cancer cell lysate-loaded DCs (A498 Unsorted_CTLs), and A498
CD105− non-CSC lysate-loaded DCs (A498 CD105− _CTLs) were double stained with monoclonal antibodies against IFN-γ and CD8, and
analyzed by flow cytometry. (B) Autologous T cells stimulated for 7 days with untreated mature DCs (Con-CTLs), SK-RC-39 CD105+ CSCs
lysate-loaded DCs (SK-RC-39 CD105+ _CTLs), SK-RC-39 Unsorted renal cancer cell lysate-loaded DCs (SK-RC-39 Unsorted_CTLs), and SK-
RC-39 CD105- non-CSC lysate-loaded DCs (SK-RC-39 CD105− _CTLs) were double stained with monoclonal antibodies against IFN-γ and
CD8, and analyzed by flow cytometry. (C,D), The percentages of IFN-γ-positive CD8 cells from three experiments are shown in the bar graph;
C for A 498 cell line, D for SK-RC-39 cell line. Data are presented as mean ± SD. CTLs, cytotoxic T lymphocytes; DCs, dendritic cells; IFN-γ,
interferon gamma
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FIGURE 3 Preferential killing of RCC CSCs by CTL cells induced with CD105+ cell lysate-loaded DCs in vitro and in vivo. (A) up: T cells
stimulated for 7 days with A498 CD105+ _ DCs (A498 CD105+ _CTLs), A498 Unsorted_DCs (A498 Unsorted_CTLs), A498 CD105− _ DCs
(A498 CD105− _CTLs), or control mature DCs (Con-CTLs) were incubated with A498 CD105+, A498 CD105−, or A498 Unsorted renal cacner
cells; (A) bottom: T cells stimulated for 7 days with SK-RC-39 CD105+ _ DCs (SK-RC-39 CD105+ _CTLs), SK-RC-39 Unsorted_DCs (SK-RC-39
Unsorted_CTLs), SK-RC-39 CD105− _ DCs (SK-RC-39 CD105− _CTLs), or control mature DCs (Con-CTLs) were incubated with SK-RC-39
CD105+, SK-RC-39 CD105−, or SK-RC-39 Unsorted SK-RC-39 renal cancer cells at ratios of 3:1, 10:1, and 30:1. CTL activity was measured
in triplicate using Cyto Tox 96 Non-Radioactive Cytotoxicity Assay Kit. The results are presented as the mean ± SD. *P < 0.05; **P < 0.01. (B)
A498 renal cancer cells mixed with A498 CD105+ _CTLs, A498 Unsorted_CTLs, A498 CD105− _CTLs, Con_CTLs, or PBS were injected
subcutaneously into nude mice. (C) SK-RC-39 renal cancer cells mixed with SK-RC-39 CD105+ _CTLs, SK-RC-39 Unsorted_CTLs, SK-RC-39
CD105− _CTLs, Con_CTLs, or PBS were injected subcutaneously into nude mice. (a) Tumor sizes were determined in individual mice by
measurements of two opposing diameters and are presented as tumor areas in mm2. Points, mean for each group of mice; bars, SD. Statistical
significance of tumor sizes was calculated using two-way ANOVA (*P < 0.05; **P < 0.01). (b) After 12 weeks, mice were sacrificed and the
tumors were extracted. (c) The tumors of each group were immediately mechanically disaggregated and filtered to prepare signal cell
suspensions or made into paraffin sections and used for immunohistochemical analysis. The CD105+ cells in the tumors were analyzed by
flow cytometry and IHC. CTLs, cytotoxic T lymphocytes; DCs, dendritic cells; PBS; phosphate buffered saline
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collected from A498 CD105− _DC, A498 Unsorted_DC, or Con_DC

primed B cells. As shown in Fig. 5F, SK-RC-39 CD105+ _DCs-primed

immune supernatant bind to SK-RC-39 CD105+ CSCs significantly

more than supernatant collected from SK-RC-39 CD105− _DC, SK-

RC-39 Unsorted_DC, or Con_DC primed B cells. To understand the

immunological consequences of the binding of CD105+ _DCs-primed

antibody to CD105+ CSCs, we performed antibody and complement-

dependent cytotoxicity (CDC) assays directed against CSC targets.

Immune supernatant collected from A498 CD105+ _DCs-primed B

cells were significantly more efficient mediators of A498 CD105+ CSC

lysis (Fig. 6A). In contrast, immune supernatant collected from A498

Unsorted_DC-primed B cells and A498 CD105− _DC-primed B cells

were significantly more efficient mediators of A498 Unsorted and

A498 CD105− cell lysis, respectively (Fig. 6A). Immune supernatant

collected from SK-RC-39 CD105+ _DCs-primed B cells were signifi-

cantly more efficient mediators of SK-RC-39 CD105+ CSC lysis

(Fig. 6B). In contrast, immune supernatant collected from SK-RC-39

Unsorted_DC-primed B cells, and SK-RC-39 CD105− _DC-primed B

cells were significantly more efficient mediators of SK-RC-39

Unsorted and SK-RC-39 CD105− cell lysis, respectively (Fig. 6B).

FIGURE 4 Dendritic cell loaded with CD105+ CSC lysate generate CSC-specific Th1 response. (A-D): TNF-α, Granzyme B, Perforin, and
IFN-γ release by CD8+ CTLs after treatment with different A498 cell lysate-loaded DCs. The portion of TNF-α+CD8+, Granzyme B+CD8+,
Perforin+CD8+, and IFN-γ+CD8+ cells in A498 CD105+ _CTLs significantly increased when cocultured with A498 CD105+ CSCs; however, the
proportion of these Th1-related effector cells was not significantly changed in A498 Unsorted_CTLs, A498 CD105− _ CTLs, and Con_CTLs.
(E-H): TNF-α, Granzyme B, Perforin, and IFN-γ release by CD8+ CTLs after treatment with different SK-RC-39 cell lysate-loaded DCs. The
portion of TNF-α + CD8+, Granzyme B + CD8+, Perforin + CD8+, and IFN-γ + CD8+ cells in SK-RC-39 CD105 + _CTLs significantly increased,
when cocultured with SK-RC-39 CD105+ CSCs; however, the proportion of these Th1-related effector cells was not significantly changed in
SK-RC-39 Unsorted_CTLs, SK-RC-39 CD105− _ CTLs, and Con_CTLs. Numbers represent frequencies (%) of TNF-α+, Granzyme B+, Perforin+,
and IFN-γ+ cells in CD8+ CTL populations. (a,b,c,d for A498 cell line and e,f,g,h for SK-RC-39 cell line): The mean value of increase in TNF-α+,
Granzyme B+, Perforin+, IFN-γ+ cells of CD8+ CTLs after coculture with CD105+ CSCs in the respective culture conditions in 3 independent
experiments **P < 0.01; ***P < 0.001. (I), A498 CD105+ _CTLs could recognize specific CD105-associated antigen peptide; (J) SK-RC-39
CD105+ _CTLs could recognize specific CD105-associated antigen peptide. Assessment of CD105-associated antigen-specific CTL clones by
HLA/peptide tetramer staining. CD105+ _CTLs, Unsorted_CTLs, CD105− _CTLs, and Con_CTLs clones (1 × 105 cells) were stained with PE-
conjugated peptide/HLA tetramer at room temperature for 30min. Cells were then incubated with antibody against CD8 for 30min at 4°C.
Cells were then examined by fluorescence-activated cell-sorting analysis using 10 000 events/sample. Numbers represent frequencies (%) of
tetramer+ cells in CD8+ CTL populations. The portion of tetramer + CD8+ cells in CD105+ _CTLs was significantly higher than that in
Unsorted_CTLs, CD105− _CTLs, and Con_CTLs. i,j, Mean value of tetramer+ cells of CD8+ CTL cells in the respective culture conditions in
three independent experiments. ***P < 0.001
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These data support the conclusion that CD105+ _DCs confer

significant host anti-CSC immunity by producing CD105+ CSC-

specific antibodies, which bind and kill CD105+ CSCs.

4 | DISCUSSION

Current therapeutic strategies against cancer have serious limitations

that frequently lead to treatment failure. A common cause of

treatment failure in multiple malignancies is resistance to chemother-

apy, radiotherapy, and immunotherapy. In addition, many strategies

that can be toxic to differentiated cancer cells are not sufficiently

selective against CSCs; patients therefore face the risk of recurrence

and metastasis because of CSC persistence.48 CSC populations are

more resistant to conventional cancer therapies than non-CSC

populations are. Therefore, the elimination of CSCs is crucial in

treating malignant diseases.49–57 Thus, studies on CSC-targeted

therapeutic regimens, which could lead to complete eradication of

cancer, are of great significance.

In recent years, there has been a focus on the identification and

characterization of CSCs in most malignant tumors including human

RCC. Bussolati et al11 firstly demonstrated that CD105+ RCC primary

cancer cells possessed tumorigenicity and self-renewal through

detecting their in vivo transplantation and serial propagations at

limited dilutions. Similar to the results of Bussolati et al, we found that

sorted CD105+ cell subpopulations fromA498 and SK-RC-39 RCC cell

lineswere able to form non-adherent spheroids in SFM in the presence

of EGF and bFGF, and could produce a tumor mass with few cell

number when transplanted into immunodeficient mice. Thus, CD105+

subpopulation was considered to be RCC CSCs in our further

investigation.

FIGURE 5 Co-culture of B cells with CD105+ DCs confers significant humoral response against renal cancer sem cells. (A) Specificity of
the humoral immune response to CSCs was determined by assessing binding abilities to A498 CD105+ CSCs (left column), A498 Unsorted
cells (middle column), A498 CD105− cells (right column) of the immune B cell culture supernatants collected from the culture of activated B
cells cocultured with different A498 renal cancer cell lysate loaded DCs: Con_DCs, A498 Unsorted_DCs, A498 CD105− _DCs, and A498
CD105+ _DCs. (B) Specificity of the humoral immune response to CSCs was determined by assessing binding abilities to SK-RC-39 CD105+
CSCs (left column), SK-RC-39 Unsorted cells (middle column), SK-RC-39 CD105- cells (right column) of the immune B cell culture
supernatants collected from the culture of activated B cells cocultured with different SK-RC-39 renal cancer cell lysate loaded DCs: Con_DCs,
SK-RC-39 Unsorted_DCs, SK-RC-39 CD105− _DCs, and SK-RC-39 CD105+ _DCs. Secondary antibody only was used as negative control. (A,
B): representative flow cytometry dot plot. (C) Statistical results from three repeated experiments showing different A498 renal cancer cell
lysate loaded DCs activated B cells supernatants binding to A498 CD105+ CSCs, which was consistent with the left column of A. (D)
Statistical results from three repeated experiments showing different A498 renal cancer cell lysate loaded DCs activated B cells supernatants
binding to A498 Unsorted cells, which was consistent with the middle column of A; (E) Statistical results from three repeated experiments
showing different A498 renal cancer cell lysate loaded DCs activated B cells supernatants binding to A498 CD105− cells, which was
consistent with the right column of A; (F) Statistical results from three repeated experiments showing different SK-RC-39 renal cancer cell
lysate loaded DCs activated B cells supernatants binding to SK-RC-39 CD105+ CSCs, which was consistent with the left column of B; (G)
Statistical results from three repeated experiments showing different SK-RC-39 renal cancer cell lysate loaded DCs activated B cells
supernatants binding to SK-RC-39 Unsorted cells, which was consistent with the middle column of B; (H) Statistical results from three
repeated experiments showing different SK-RC-39 renal cancer cell lysate loaded DCs activated B cells supernatants binding to SK-RC-39
CD105- cells; which was consistent with the right column of B
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Recently, cancer immunotherapy strategies attempting to direct the

immune system to eradicate tumor initiating and maintaining CSCs have

been developed.52 Tumor recurrence could be prevented if CSCs are

specifically killed. CSC-targeting immunotherapy is potentially the most

effective strategy to treat a wide range of cancers. Several reports have

shown that CSCs can be eradicated by innate immune effector cells, such

as natural killer (NK) cells and γδ T lymphocytes. Castriconi et al55

demonstrated that stem-like cells are highly susceptible to lysis by

allogeneic and autologous activated NK cells. Besides, DCs, the most

powerful antigen presenting cells, have been used to induce effective

antitumor immune responses in experimental animals and numerous

clinical trials.58–61 Fields et al,60 reported that bone marrow-derived DCs

loaded with tumor lysates could induce CTL and T cell proliferative

responses. Moreover, several other studies also suggested that vaccina-

tion with autologous DCs arising from peripheral blood monocytes is a

safe and promising approach for the treatment of renal cancer.29–34 Our

results demonstrated that human PBMC-derived DCs are powerful

immunizers, and can mediate anti-tumor immune responses against RCC

CSCs. Furthermore, we demonstrated that the loading of DCs with RCC

CSC lysates as tumor antigen more efficiently directs CTL responses

towardCSCs. These resultswere similar to Pellegatta et al,30who showed

that splenocytes frommice immunizedwithmalignant gliomaCSC-loaded

DCs had specific lytic activity against glioma CSC. Additionally, we

reported previously that the DC-based vaccination could be used to

selectively targetCSCs and confer antitumor immunity.24 Theseproof-of-

concept results provide a rationale for a novel cancer immunotherapy

method based on the development of CSC-DC vaccines that can

specifically target CSCs.25 Consistentwith the above reports, our present

results showed that CSC_CTLs directly target CSCs. The CTL reaction is a

potent response, inducing potential protective immunity against nearly all

tumors.53,54 The present study demonstrated that CD105+ CSC-loaded

DCs induced greater numbers of functionally active T cells. Further, these

effector T cells preferentially killed CD105+ RCC cells, accompanied by a

decrease in the frequency of the CD105+ subpopulation within the RCC

bulk population both in vitro and in vivo. Our results showed that CSC

lysate-loaded DCs not only induce more efficient CTL activity against

CSCs, but also increase the IFN-γ secretion, indicating a shift to the TH1

phenotype. A switch fromTH1 to TH2 profiles could result in progressive

tumor growth in a wide variety of murine malignancies, including B cell

leukemia/lymphoma, melanoma, RCC, and colon adenocarcinoma. Xu et

al62 also showed that CSC-pulsed DCs induce the antigen-specific TH1

immune response. However, they found that mice immunized against

glioma cells depleted of CSCs produce significantly less INF-γ than those

immunized with CSC-pulsed DCs. Consistent with their results, we

observed that, vaccination with DCs loaded with RCC CSCs, but not the

non-CSC cells or unsorted cells, induced CTLs that recognized CSCs. In

addition, when co-cultured with CD105+ CSCs, the portion of IFN-γ+

CD8+ cells were significantly higher in CD105+ _CTLs than in Un-

sorted_CTLs, CD105− _CTLs, andCon_CTLs. Furthermore,we found that

CD105+ CSC-loaded DCs could induce humoral anti-CSC immunity in

vitro.We observed specific binding of CD105+CSCs by IgG produced by

CD105+ _DCs-primed B cells. Importantly, specific binding of IgG

produced by CD105+ _DCs-primed B cells to CD105+ CSCs resulted in

significant lysis of the target cells in the presence of complement. This is

similar with our previous reports,24,25 which showed that CSC lysate-

pulsed DCs could significantly induce more CSCs specific antibody,

compared to whole D5 tumor cell lysate-pulsed DCs.

FIGURE 6 Antibody generated by B cells cocultured with CD105
+ DCs could target CSCs selectively via complement-dependent
cytotoxicity (CDC). (A) Antibody and complement-mediated
cytotoxicity was measured by incubating A498 CD105+ cancer
stem cells (CSCs), A498 unsorted cancer cells, or A498 CD105−
non-CSCs with immune B-cell culture supernatant collected from
the culture of activated B cells co-cultured with A498 CD105
+ _DCs, A498 Unsorted_DCs, A498 CD105− _DCs, Con-DCs,
respectively. (B) Antibody and complement-mediated cytotoxicity
was measured by incubating SK-RC-39 CD105+ cancer stem cells
(CSCs), SK-RC-39 unsorted cancer cells, or SK-RC-39 CD105− non-
CSCs with immune B-cell culture supernatant collected from the
culture of activated B cells co-cultured with SK-RC-39 CD105
+ _DCs, SK-RC-39 Unsorted_DCs, SK-RC-39 CD105− _DCs, Con-
DCs, respectively. Data are expressed as the percentages of viable
cells. The lower the percentage of viable cells, the higher the
percentage of cell lysis. Data are representative of three
experiments. ***P < 0.001
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5 | CONCLUSION

The CSC hypothesis is well established and widely accepted,63 and

postulates that targeted ablation of CSCs could circumvent the problem

of therapeutic resistant cells and consequent tumor relapse. Our results

showed that CSC-targeted DC therapy could be a potent strategy for

CSC elimination and therefore prevention of tumor metastasis and

relapse after conventional tumor therapies. However, much of the

research on CSC-targeted DC based therapy is preliminary, and more

studies are required to clarify this attractive field.
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