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Problem: Neutrophils are capable of performing phagocytosis, a primary mechanism 
for microbial killing. Intra- amniotic infection is characterized by an influx of neutro-
phils into the amniotic cavity. Herein, we investigated whether amniotic fluid neutro-
phils could phagocytize bacteria found in the amniotic cavity of women with 
intra- amniotic infection.
Methods: Amniotic fluid neutrophils from women with intra- amniotic infection were 
visualized	by	transmission	electron	microscopy	(n=6).	The	phagocytic	activity	of	amni-
otic fluid neutrophils from women with intra- amniotic infection and/or inflammation 
(n=10) or peripheral neutrophils from healthy individuals (controls, n=3) was tested 
using ex vivo phagocytosis assays coupled with live imaging. Phagocytosis by amniotic 
fluid neutrophils was also visualized by confocal microscopy (n=10) as well as scanning 
and transmission electron microscopy (n=5).
Results: (i) Intra- amniotic infection- related bacteria including cocci (eg Streptococcus 
agalactiae), bacilli (eg Bacteriodes fragilis and Prevotella spp.), and small bacteria without 
a cell wall (eg Ureaplasma urealyticum) were found inside of amniotic fluid neutrophils; 
(ii) peripheral neutrophils (controls) rapidly phagocytized S. agalactiae, U. urealyticum, 
Gardnerella vaginalis, and Escherichia coli; (iii) amniotic fluid neutrophils rapidly phago-
cytized S. agalactiae and G. vaginalis; and (iv) amniotic fluid neutrophils slowly phago-
cytized U. urealyticum and E. coli; yet, the process of phagocytosis of the genital 
mycoplasma was lengthier.
Conclusion: Amniotic fluid neutrophils can phagocytize bacteria found in the amniotic 
cavity of women with intra- amniotic infection, namely S. agalactiae, U. urealyticum, 
G. vaginalis, and E. coli. Yet, differences in the rapidity of phagocytosis were observed 
among the studied microorganisms. These findings provide a host defense mechanism 
whereby amniotic fluid neutrophils can kill microbes invading the amniotic cavity.
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1  | INTRODUCTION

Intra- amniotic infection is a clinical condition characterized by a local 
inflammatory process caused by microbial invasion of the amniotic 
cavity	 (MIAC).1-9	 Microorganisms	 associated	 with	 intra-	amniotic	
infection are commonly found in the lower genital track, including 
Ureaplasma urealyticum, Mycoplasma hominis, Streptococcus agalactiae 
(also referred to as Group B Streptococcus or GBS), Gardnerella vagina-
lis, and Escherichia coli, among others.10-14 This inflammatory response 
can result in systemic10,15-18 and/or local19-25 inflammatory responses. 
Systemically, intra- amniotic infection can be manifested as clinical 
chorioamnionitis, which refers to the presence of maternal fever asso-
ciated with clinical signs (foul- smelling discharge and uterine tender-
ness as well as maternal and fetal tachycardia) and laboratory abnor-
malities such as leukocytosis.10,15-18 Locally, intra- amniotic infection is 
characterized by an increased white blood cell (WBC) count26-31 and 
elevated concentrations of cytokines8,32 and lipid mediators (eg pros-
taglandins)33-47 in the amniotic cavity.

The most abundant WBCs (ie leukocytes) in the amniotic cavity 
of women with intra- amniotic infection are the neutrophils; therefore, 
their number is a useful marker for the detection of intra- amniotic 
inflammation.26,31 Amniotic fluid neutrophils are a part of the innate 
immune host defense mechanisms that take place in the amniotic 
cavity of women with intra- amniotic infection.48-50 Indeed, amniotic 
fluid neutrophils are a source of antimicrobial products51-55 and cyto-
kines.31 In addition, these innate immune cells can trap and kill bacteria 
invading the amniotic cavity by forming neutrophil extracellular traps 
or NETs.56 Neutrophils infiltrating the chorioamniotic membranes also 
form NETs in cases with acute histologic chorioamnionitis,57 a placen-
tal lesion associated with elevated concentrations of pro- inflammatory 
cytokines in the amniotic fluid.32,48,58-75 The formation of NETs or 
NETosis76 represents the final containment effort of a neutrophil to 
kill pathogens.77 NETs are web- like structures composed of DNA, his-
tones, and antimicrobial products that trap and/or eliminate microbes 
through their biochemical components.77-80 Yet, only a fraction (~20%) 
of human neutrophils,81 including those in the amniotic cavity,56 form 
NETs. This suggests that, in addition to forming NETs, amniotic fluid 
neutrophils use other host defense mechanisms against microorgan-
isms invading the amniotic cavity.

Neutrophils are primarily capable of performing phagocyto-
sis,82-84 a main mechanism for microbial killing.85 Phagocytosis is the 
receptor- mediated process whereby a cell (eg neutrophil) extends its 
plasma membrane around the target (eg microbe), initiating the for-
mation of a membrane- bound vacuole termed the phagosome.86,87 
Such a phagosome requires a process of maturation, which comprises 
the acquisition of microbicidal enzymes, vacuolar ATPases, and the 
NADPH oxidase complex.86 In neutrophils, however, the process of 
phagosome maturation seems to start even before microbe ingestion, 
indicating that the content, membrane composition, pH, and signaling 
in the phagosome are different from those made by other phagocytes 
(eg macrophages).87 The antimicrobial effect of the neutrophil pha-
gosome is due to the fusion of its granules with secretory vesicles, 
which contain albumin and express alkaline phosphatase and CD35 

on their membranes.86 Neutrophils contain three types of cytoplasmic 
granules: (i) primary (or azurophilic) granules, which are positive for 
peroxidase and have lytic enzymes and defensins; (ii) secondary gran-
ules (or specific granules), which contain lactoferrin; and (iii) tertiary or 
gelatinase granules.86,87 The fusion of granule components with pha-
gosomes and/or the plasma membrane is orchestrated by the NADPH 
oxidase complex, generating reactive oxygen species (ROS).87 The tim-
ing and execution of this process must be carefully regulated to kill 
microbes without causing tissue damage to the host.

As neutrophil phagocytosis is a main host defense mechanism for 
microbial killing, we investigated whether: (i) intra- amniotic infection- 
related bacteria were found engulfed in amniotic fluid neutrophils 
using transmission electron microscopy; and (ii) amniotic fluid neutro-
phils could phagocytize bacteria associated with intra- amniotic infec-
tion (S. agalactiae, U. urealyticum, G. vaginalis, and E. coli) in a similar 
manner to peripheral neutrophils by using ex vivo phagocytosis assays 
coupled with live imaging. Phagocytosis by amniotic fluid neutrophils 
was also visualized by confocal microscopy as well as scanning and 
transmission electron microscopy.

2  | MATERIALS AND METHODS

2.1 | Study population

This was a cross- sectional study of patients who underwent transab-
dominal amniocentesis due to clinical indications or amniocentesis 
during cesarean section. Patients were enrolled at Hutzel Women’s 
Hospital	of	the	Detroit	Medical	Center	(November	2015	to	November	
2016).	The	initial	observation	of	in	vivo	phagocytosis	(amniotic	fluid	
neutrophils with engulfed bacteria) was made using transmission elec-
tron	microscopy	in	6	amniotic	fluid	samples	from	women	diagnosed	
with intra- amniotic infection (Table 1; see below for clinical defini-
tions). For ex vivo phagocytosis assays, 10 amniotic fluid samples 
were collected from women with suspected intra- amniotic infection 
and/or inflammation (Table 2; see below for clinical definitions) and 
were immediately transported to the clinical and research laborato-
ries. All of the amniotic fluid samples were acquired by an automatic 
cell counter (Cellometer Auto 2000; Nexcelom Bioscience, Lawrence, 
MA,	USA)	to	obtain	the	viable	cell	numbers.	Most	of	the	viable	cells	
are leukocytes.31 The inclusion criteria were (i) singleton gestations, (ii) 
samples without blood contamination, and (iii) sufficient amniotic fluid 
leukocytes (>1×105 cells/mL) to evaluate in vivo phagocytosis using 
transmission electron microscopy or to perform ex vivo phagocytosis 
assays coupled with live imaging, confocal microscopy, and scanning 
and transmission electron microscopy.

All of the patients provided written informed consent to donate 
additional amniotic fluid for research purposes, according to protocols 
approved	by	 the	 Institutional	Review	Boards	of	 the	Detroit	Medical	
Center	(Detroit,	MI,	USA),	Wayne	State	University,	and	the	Perinatology	
Research Branch, an intramural program of the Eunice Kennedy Shriver 
National Institute of Child Health and Human Development, National 
Institutes	of	Health,	US	Department	of	Health	and	Human	Services	
(NICHD/NIH/DHHS).
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2.2 | Clinical definitions

Gestational age was determined by the last menstrual period and con-
firmed by ultrasound examination. The gestational age derived from 
sonographic fetal biometry was used when the estimation was incon-
sistent with menstrual dating. Clinical chorioamnionitis was diagnosed 
by the presence of maternal fever (temperature >37.8°C) accompa-
nied by two or more of the following criteria: (i) uterine tenderness; (ii) 
malodorous	vaginal	discharge;	 (iii)	 fetal	tachycardia	 (heart	rate	>160	
beats/min); (iv) maternal tachycardia (heart rate >100 beats/min); and 
(v) maternal leukocytosis (leukocyte count >15 000 cells/mm3). Term 
delivery was defined as birth after 37 weeks of gestation, whereas 
preterm	delivery	was	defined	as	birth	between	20	and	36	6/7	weeks	
of gestation.

Microbial	 invasion	of	 the	amniotic	 cavity	was	defined	as	a	posi-
tive amniotic fluid culture.11,64,65,88-90 Intra- amniotic inflammation was 
diagnosed	when	the	interleukin	(IL)-	6	concentration	in	amniotic	fluid	
was	≥2.6	ng/mL.91 Intra- amniotic infection was defined as the pres-
ence	of	MIAC	with	intra-	amniotic	inflammation.12,13,91-104

2.3 | Placental histopathological examination

Five- μm- thick sections of formalin- fixed, paraffin- embedded tissue 
specimens were cut and mounted on SuperFrost™ Plus microscope 
slides	 (Erie	Scientific	LLC,	Portsmouth,	NH,	USA).	 In	each	case,	sev-
eral tissue sections of the chorioamniotic membranes, umbilical cord, 
and placental disk were examined. After deparaffinization, slides were 
rehydrated, stained with hematoxylin- eosin, and evaluated by pathol-
ogists who had been blinded to the clinical outcome. Acute inflamma-
tory lesions of the placenta (maternal inflammatory response and fetal 
inflammatory response) were diagnosed according to protocols from 
the Perinatology Research Branch. While the stage of the placental 
lesion refers to the progression of the inflammatory process based on 
the anatomical regions infiltrated by neutrophils (stage 1- 3), the grade 
of the placental lesion is defined by the intensity of the acute inflam-
matory process at a particular site [grade 1 (mild to moderate) and 
grade 2 (severe)]. For more information about the staging and grading 
of the acute inflammatory lesions of the placenta, please see placental 
pathology reviews.105-108

2.4 | Sample collection

Amniotic fluid was retrieved by transabdominal amniocentesis under 
antiseptic conditions using a 22- gauge needle monitored by ultra-
sound. Amniotic fluid was also retrieved by amniocentesis during 
cesarean section under antiseptic conditions. Amniotic fluid samples 
were transported to the clinical laboratory in a capped sterile syringe 
and were cultured for aerobic and anaerobic bacteria as well as for 
genital mycoplasmas.13,26,109-112 Shortly after collection, the WBC 
count in amniotic fluid samples was determined by using a hemo-
cytometer chamber, according to methods previously described.26 
Glucose concentration was also determined,113 and Gram stain114 was 
performed in amniotic fluid samples. Cultures, WBC count, glucose 

concentration, and Gram stain were not performed in all of the amni-
otic fluid samples collected during cesarean section, as these samples 
were	collected	for	research	purposes	only.	However,	both	IL-	6	con-
centration and the presence of bacteria (bacterial live/dead stain-
ing56,115) were assessed in most of the amniotic fluid samples.

2.5 | Determination of interleukin- 6 in the 
amniotic fluid

IL-	6	concentrations	in	the	amniotic	fluid	were	determined	using	a	sen-
sitive and specific enzyme immunoassay obtained from R&D Systems 
(Minneapolis,	MN,	 USA).	 The	 IL-	6	 concentrations	were	 determined	
by interpolation from the standard curves. The inter-  and intra- assay 
coefficients	 of	 variation	 for	 IL-	6	were	8.7%	and	4.6%,	 respectively.	
The	detection	limit	of	the	IL-	6	assay	was	0.09	pg/mL.

2.6 | Detection of live/dead bacteria in the 
amniotic fluid

The presence of bacteria in the amniotic fluid was evaluated as pre-
viously described,56,115 using the LIVE/DEAD BacLight™ Bacterial 
Viability	Kit	 (Cat#	L7007;	Life	Technologies,	Grand	Island,	NY,	USA)	
in a sterile biosafety cabinet. Briefly, 100 μL of amniotic fluid were 
mixed with 900 μL of sterile 1X phosphate- buffered saline (PBS; Life 
Technologies). Three microliters of the dye mix (components A and 
B were mixed at a 1:1 ratio) were added to the cell suspension and 
incubated for 15 minutes at room temperature in the dark. Next, the 
cells were centrifuged at 10 000 g for 5 minutes and the superna-
tant was discarded. The cell pellet was then re- suspended in 5 μL of 
1X PBS, and a slide smear was prepared and air- dried. Lastly, the slide 
was gently rinsed with 1X PBS and mounted with ProLong Diamond 
Antifade	 Mountant	 with	 4′,6-	diamidino-	2-	phenylindole	 or	 DAPI	
(Life Technologies). The presence of bacteria was evaluated using 
an	Olympus	BX	60	fluorescence	microscope	with	an	Olympus	DP71	
camera and DP Controller Software (Olympus Corporation, Tokyo, 
Japan).

2.7 | Transmission electron microscopy of in vivo 
phagocytosis

Amniotic fluid samples (Table 1) were passed through a sterile 15- μm 
filter (Cat# 43- 50015- 03, pluriSelect Life Science; Leipzig, Germany) 
and centrifuged at 2300 g for 5 minutes at room temperature, and 
the supernatant was discarded. Electron microscopy fixative (2.5% 
glutaraldehyde	 in	0.1	mol/L	phosphate	buffer,	pH	7.4;	Cat#	16537-	
05,	 Electron	 Microscopy	 Science,	 Hatfield,	 PA,	 USA)	 was	 carefully	
added to the cell pellet. Following fixation for 2 hours at 4°C, the cell 
pellet was gently washed with 1X electron microscopy wash buffer 
(Sorensen’s	 phosphate	 buffer	 0.2	mol/L,	 pH	 7.4;	 Cat#	 11601-	10,	
Electron	Microscopy	 Science).	 Cell	 pellets	 from	 amniotic	 fluid	 sam-
ples	were	transported	to	the	Microscopy	&	Image	Analysis	Laboratory	
at	 the	 University	 of	 Michigan	 (https://medicine.umich.edu/med-
school/research/office-research/biomedical-research-core-facilities/

https://medicine.umich.edu/medschool/research/office-research/biomedical-research-core-facilities/microscopy-image-analysis
https://medicine.umich.edu/medschool/research/office-research/biomedical-research-core-facilities/microscopy-image-analysis


4 of 16  |     GOMEZ- LOPEZ Et aL.

T
A
B
LE
 1
 

Cl
in

ic
al

 c
ha

ra
ct

er
ist

ic
s 

of
 a

m
ni

ot
ic

 fl
ui

d 
sa

m
pl

es
 in

 w
hi

ch
 in

 v
iv

o 
ph

ag
oc

yt
os

is 
w

as
 o

bs
er

ve
d

Sa
m

pl
e

Cl
in

ic
al

 
ch

or
io

am
ni

on
iti

s

V
ia

bl
e 

ce
ll 

co
un

ta  
(c

el
ls/

m
m

3 )

G
es

ta
tio

na
l 

ag
e 

at
 

am
ni

oc
en

te
si

s

Co
lle

ct
io

n 
m

et
ho

d 
fo

r 
am

ni
ot

ic
 fl

ui
d

IL
- 6

 
(n

g/
m

L)
G

ra
m

 st
ai

n

Ba
ct

er
ia

l 
liv

e/
de

ad
 

st
ai

ni
ng

A
m

ni
ot

ic
 fl

ui
d 

cu
ltu

re

W
BC

 
(c

el
ls/

m
m

3 )
G

lu
co

se
 

(m
g/

dL
)

G
es

ta
tio

na
l 

ag
e 

at
 

de
liv

er
y

Pl
ac

en
ta

l p
at

ho
lo

gy

A
cu

te
 m

at
er

na
l 

in
fla

m
m

at
or

y 
re

sp
on

se

A
cu

te
 fe

ta
l 

in
fla

m
m

at
or

y 
re

sp
on

se

1
Ye

s
22

00
36
.6

Tr
an

sa
bd

om
in

al
8.

1
G

ra
m

- p
os

iti
ve

 
co

cc
i

Po
sit

iv
e

St
re

pt
oc

oc
cu

s 
ag

al
ac

tia
e

31
0

<1
36
.7

St
ag

e 
3

St
ag

e 
2

2
N

o
10

0
18

.9
Tr

an
sa

bd
om

in
al

12
1.

3
G

ra
m

- n
eg

at
iv

e 
ba

ci
lli

Po
sit

iv
e

Ba
ct

er
oi

de
s 

fra
gi

lis
65

20
19
.6

St
ag

e 
3

St
ag

e 
2

3
Ye

s
18

 8
00

40
C/

S
47
.6

N
eg

at
iv

e
Po

sit
iv

e
U

re
ap

la
sm

a 
ur

ea
ly

tic
um

N
A

N
A

40
St

ag
e 

2
St

ag
e 

2

4
N

o
99

20
23

Tr
an

sa
bd

om
in

al
27

G
ra

m
- p

os
iti

ve
 

co
cc

i, 
Fe

w
 

G
ra

m
- n

eg
at

iv
e 

 
co

cc
ob

ac
ill

i

Po
sit

iv
e

En
te

ro
ba

ct
er

 
ae

ro
ge

ne
s, 

En
te

ro
co

cc
us

 
fa

ec
al

is,
 

M
yc

op
la

sm
a 

ho
m

in
is,

 
Pr

ev
ot

el
la

 s
pp

., 
St

re
pt

oc
oc

cu
s 

vi
rid

an
s

69
38

4
25

.7
St

ag
e 

3
St

ag
e 

1

5
Ye

s
22

00
35
.6

Tr
an

sa
bd

om
in

al
70
.6

G
ra

m
- p

os
iti

ve
 

co
cc

i, 
Fe

w
 

G
ra

m
- p

os
iti

ve
  

ba
ci

lli
 a

nd
  

G
ra

m
- n

eg
at

iv
e 

ba
ci

lli

Po
sit

iv
e

U
re

ap
la

sm
a 

ur
ea

ly
tic

um
, 

M
yc

op
la

sm
a 

ho
m

in
is,

 
St

re
pt

oc
oc

cu
s 

ag
al

ac
tia

e,
 

St
re

pt
oc

oc
cu

s 
an

gi
no

su
s, 

Pr
ev

ot
el

la
 s

pp
.

40
00

<1
35
.6

St
ag

e 
2

St
ag

e 
3

6
Ye

s
67
80

35
.6

C/
S

N
A

G
ra

m
- p

os
iti

ve
 

co
cc

i, 
G

ra
m

- 
 ne

ga
tiv

e 
ba

ci
lli

Po
sit

iv
e

U
re

ap
la

sm
a 

ur
ea

ly
tic

um
, 

M
yc

op
la

sm
a 

ho
m

in
is,

 
Pr

ev
ot

el
la

 s
pp

.

79
20

<1
35
.6

St
ag

e 
2

St
ag

e 
3

CS
, c

es
ar

ea
n 

se
ct

io
n;

 IL
, i

nt
er

le
uk

in
; N

A
, n

ot
 a

va
ila

bl
e;

 W
BC

, w
hi

te
 b

lo
od

 c
el

l.
a V

ia
bl

e 
ce

ll 
co

un
t: 

D
et

er
m

in
ed

 w
ith

 A
O

/P
I o

n 
Ce

llo
m

et
er

 2
00

0 
A

ut
o 

(N
ex

ce
lo

m
).



     |  5 of 16GOMEZ- LOPEZ Et aL.

T
A
B
LE
 2
 

Cl
in

ic
al

 c
ha

ra
ct

er
ist

ic
s 

of
 a

m
ni

ot
ic

 fl
ui

d 
sa

m
pl

es
 u

til
iz

ed
 fo

r e
x 

vi
vo

 p
ha

go
cy

to
sis

 a
ss

ay
s

Sa
m

pl
e

Cl
in

ic
al

 
ch

or
io

am
ni

on
iti

s

V
ia

bl
e 

ce
ll 

co
un

ta  
(c

el
ls/

m
m

3 )

G
es

ta
tio

na
l 

ag
e 

at
 

am
ni

oc
en

te
si

s

Co
lle

ct
io

n 
m

et
ho

d 
fo

r 
am

ni
ot

ic
 fl

ui
d

IL
- 6

  
(n

g/
m

L)
G

ra
m

 st
ai

n

Ba
ct

er
ia

l 
liv

e/
de

ad
 

st
ai

ni
ng

A
m

ni
ot

ic
 fl

ui
d 

cu
ltu

re

W
BC

 
(c

el
ls/

m
m

3 )
G

lu
co

se
 

(m
g/

dL
)

G
es

ta
tio

na
l 

ag
e 

at
 

de
liv

er
y

Pl
ac

en
ta

l p
at

ho
lo

gy

A
cu

te
 m

at
er

na
l 

in
fla

m
m

at
or

y 
re

sp
on

se

A
cu

te
 fe

ta
l 

in
fla

m
m

at
or

y 
re

sp
on

se

1
N

o
10

0
18

.9
Tr

an
sa

bd
om

in
al

12
1.

3
G

ra
m

- n
eg

at
iv

e 
ba

ci
lli

Po
sit

iv
e

Ba
ct

er
oi

de
s 

fra
gi

lis
65

20
19
.6

St
ag

e 
3

St
ag

e 
2

2
Ye

s
22

00
35
.6

Tr
an

sa
bd

om
in

al
70
.6

G
ra

m
- p

os
iti

ve
 

co
cc

i, 
Fe

w
 

G
ra

m
- p

os
iti

ve
  

ba
ci

lli
 a

nd
 

G
ra

m
- n

eg
at

iv
e 

 
ba

ci
lli

Po
sit

iv
e

U
re

ap
la

sm
a 

ur
ea

ly
tic

um
, 

M
yc

op
la

sm
a 

ho
m

in
is,

 
St

re
pt

oc
oc

cu
s 

ag
al

ac
tia

e,
 

St
re

pt
oc

oc
cu

s 
an

gi
no

su
s, 

Pr
ev

ot
el

la
 s

pp
.

40
00

<1
35
.6

St
ag

e 
2

St
ag

e 
3

3
N

o
36
60

21
.3

Tr
an

sa
bd

om
in

al
11

8.
7

N
eg

at
iv

e
N

eg
at

iv
e

St
ap

hy
lo

co
cc

us
 

ho
m

in
is

35
5

<1
21

.9
St

ag
e 

3
St

ag
e 

2

4
N

o
11
60

22
.3

Tr
an

sa
bd

om
in

al
12

5.
5

G
ra

m
- n

eg
at

iv
e 

ba
ci

lli
Po

sit
iv

e
M

yc
op

la
sm

a 
ho

m
in

is,
 

Fu
so

ba
ct

er
iu

m
 

nu
cl

ea
tu

m

70
0

10
22

.7
St

ag
e 

2
St

ag
e 

1

5
Ye

s
86
0

39
.9

Tr
an

sa
bd

om
in

al
73

.5
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

60
0

<1
40

St
ag

e 
2

St
ag

e 
2

6
Ye

s
53

5
39
.6

Tr
an

sa
bd

om
in

al
3.

5
N

eg
at

iv
e

Po
sit

iv
e

M
yc

op
la

sm
a 

ho
m

in
is,

 
U

re
ap

la
sm

a 
ur

ea
ly

tic
um

59
0

<1
39
.6

St
ag

e 
1

St
ag

e 
1

7
N

o
25

8
40
.6

C/
S

1.
9

N
eg

at
iv

e
N

eg
at

iv
e

U
re

ap
la

sm
a 

ur
ea

ly
tic

um
, 

St
ap

hy
lo

co
cc

us
 

ha
em

ol
yt

ic
us

N
A

N
A

40
.6

N
on

e
N

on
e

8
Ye

s
18

 8
00

40
C/

S
47
.6

N
eg

at
iv

e
Po

sit
iv

e
U

re
ap

la
sm

a 
ur

ea
ly

tic
um

N
A

N
A

40
St

ag
e 

2
St

ag
e 

2

9
N

o
96
00

38
.1

C/
S

10
1.

3
N

A
Po

sit
iv

e
M

yc
op

la
sm

a 
ho

m
in

is,
 

U
re

ap
la

sm
a 

ur
ea

ly
tic

um

N
A

N
A

38
.1

St
ag

e 
1

St
ag

e 
2

10
N

o
28
6

39
.3

Tr
an

sa
bd

om
in

al
0.

5
N

A
N

eg
at

iv
e

N
eg

at
iv

e
N

A
N

A
39

.3
N

on
e

N
on

e

CS
, c

es
ar

ea
n 

se
ct

io
n;

 IL
, i

nt
er

le
uk

in
; N

A
, n

ot
 a

va
ila

bl
e;

 W
BC

, w
hi

te
 b

lo
od

 c
el

l.
a V

ia
bl

e 
ce

ll 
co

un
t: 

D
et

er
m

in
ed

 w
ith

 A
O

/P
I o

n 
Ce

llo
m

et
er

 2
00

0 
A

ut
o 

(N
ex

ce
lo

m
).



6 of 16  |     GOMEZ- LOPEZ Et aL.

microscopy-image-analysis).	Images	were	obtained	using	a	JEOL	JSM-	
1400	 plus	 transmission	 electron	 microscope	 (JEOL,	 Peabody,	 MA,	
USA).

2.8 | Bacteria strains and growth conditions for ex 
vivo phagocytosis assays

Streptococcus agalactiae (ATCC® 13813), U. urealyticum (ATCC® 
27618),	 G. vaginalis (ATCC® 14018), and E. coli (E. coli, ATCC® 
700926)	 were	 purchased	 from	 American	 Type	 Culture	 Collection	
(ATCC,	 Manassas,	 VA,	 USA).	 Ureaplasma urealyticum was also iso-
lated from a patient with intra- amniotic infection. Streptococcus aga-
lactiae and G. vaginalis were cultured in brain-heart infusion broth 
(BHI,	Cat#R060260,	Remel,	 Lenexa,	KS,	USA)	at	37°C	with	 shaking	
at 180 rpm. Escherichia coli was grown in Luria- Bertani broth (LB, 
Cat#L7658,	 Sigma,	 Saint	 Louis,	MO,	 USA)	 at	 37°C	with	 shaking	 at	
180 rpm. An overnight culture was diluted into fresh medium and 
grown to the mid- logarithmic phase (OD600 was between 0.5 and 1.0). 
Bacteria were then harvested by centrifugation at 2300 g for 5 min-
utes and re- suspended in 1X PBS. Ureaplasma urealyticum obtained 
from ATCC or a clinical sample was cultured in SP4 Broth with urea 
(Hardy	Diagnostics,	 Santa	Maria,	CA,	USA)	 at	37°C	with	 shaking	 at	
180 rpm until a color change (yellow to pink) was observed. The cul-
ture broth was then centrifuged at 1500 g for 30 minutes at 4°C. The 
identification of characteristic colonies of U. urealyticum was per-
formed on an A8 agar plate (Hardy Diagnostics).

2.9 | Fluorescent labeling of bacteria for ex vivo 
phagocytosis assays

Heat- killed bacteria were labeled using the Alexa Fluor® 488 Antibody 
Labeling Kit (CAT# A20181, Life Technologies). Briefly, heat- killed 
bacteria were re- suspended in 1X PBS and sodium bicarbonate solu-
tion was added to a final concentration of 0.1 mol/L. This solution 
was then added to a vial of Alexa Fluor® 488 dye and incubated for 
1 hour at room temperature in the dark. Bacteria were then centri-
fuged, washed, and re- suspended in 1X PBS containing 20% glyc-
erol	 (Cat#G1796,	 TEKnova,	Hollister,	 CA,	USA)	 to	 an	OD600 of 0.3 
(~1.5×107/50 μL). Fluorescent- labeled bacteria were aliquoted and 
stored	in	−80°C	until	use.

2.10 | Opsonization of bacteria for ex vivo 
phagocytosis assays

Fluorescent- labeled bacteria were thawed and incubated with 
heat- inactivated- pooled human serum (Cat#1830- 0002, Sera Care, 
Milford,	MA,	 USA)	 for	 30	minutes	 at	 37°C	with	 a	 gentle	 rotation.	
Bacteria	were	washed	with	1X	PBS	and	re-	suspended	in	RPMI-	1640	
culture medium supplemented with 10% FBS and 1% penicillin/
streptomycin (Life Technologies; hereafter referred to as “supple-
mented	 RPMI	 medium”)	 for	 ex	 vivo	 phagocytosis	 assays	 coupled	
with live imaging, confocal microscopy, and scanning and transmis-
sion electron microscopy.

2.11 | Live imaging of ex vivo phagocytosis assays

Amniotic fluid samples (Table 2) were passed through a sterile 15- μm 
filter and centrifuged at 200 g for 5 minutes at room temperature. 
This step allows the enrichment of amniotic fluid leukocytes (mostly 
neutrophils31) and the elimination of epithelial cells.56 Amniotic fluid 
leukocytes	were	then	re-	suspended	 in	supplemented	RPMI	medium	
at a concentration of 2.5×105 cells/0.5 mL, plated in a 35- mm cul-
ture	 dish	 with	 a	 cover	 glass	 bottom	 (MatTek,	 Ashland,	 MA,	 USA),	
and labeled with an anti- human CD15- PE- CF594 antibody (Clone 
W6D3,	Cat#562372,	BD	Biosciences,	San	Jose,	CA,	USA).	Following	
15 minutes of incubation at 37°C, amniotic fluid leukocytes were 
gently	 washed	 with	 supplemented	 RPMI	 medium.	 Amniotic	 fluid	
neutrophils	were	visualized	on	a	Zeiss	LSM	780	laser	scanning	confo-
cal	microscope	(Carl	Zeiss	Microscopy	GmbH,	Jena,	Germany)	at	the	
Microscopy,	 Imaging,	and	Cytometry	Resources	Core	at	 the	Wayne	
State	 University	 School	 of	 Medicine	 (http://micr.med.wayne.edu/),	
using	a	W	Plan-	Apochromat	63X/1.0	objective,	which	was	immersed	
in	the	cell	culture	with	supplemented	RPMI	medium.	Live	imaging	of	
ex vivo phagocytosis assays was performed after adding 50 μL of the 
opsonized fluorescent- labeled bacteria to the culture plate. Confocal 
time series of amniotic fluid neutrophils phagocytizing bacteria were 
recorded with a frame size of 512×512 pixels at 7.75- second time 
intervals from 5 to 20 minutes. A semi- quantification of the time- 
interval for each ex vivo phagocytosis assay was calculated based 
on the duration of the assay and the number of frames taken per 
experiment.

As controls, peripheral neutrophils were isolated from healthy 
individuals (n=3) using the density gradient reagent Histopaque 1119 
(Sigma- Aldrich), according to the manufacturer’s instructions and a 
previously published method.116	Briefly,	6	mL	of	peripheral	blood	was	
layered	on	top	of	6	mL	of	Histopaque	1119	and	centrifuged	at	800	g 
for 20 minutes with no break at room temperature. Neutrophils were 
collected from the lower phase of the gradient after the peripheral 
blood mononuclear cell band was discarded. The collected neutrophils 
were further purified using a gradient composed of 85%, 80%, 75%, 
70%,	and	65%	Percoll	(GE	Healthcare	Life	Sciences;	Uppsala,	Sweden)	
and washed with 1X PBS. Purified neutrophils were then incubated 
with labeled bacteria for ex vivo phagocytosis assays, and a semi- 
quantification was performed as described above.

2.12 | Confocal microscopy of ex vivo 
phagocytosis assays

Neutrophils were enriched from amniotic fluid samples (Table 2), 
as described above, and placed in a 24- well culture plate (Corning 
Life	 Sciences,	 Durham,	 NC,	 USA)	 containing	 12-	mm	 cover	 slips	
(Fisher	Scientific,	Waltham,	MA,	USA)	at	a	concentration	of	2.5×105 
cells/0.5	mL	 for	 1	hour	 at	 37°C	 in	 supplemented	 RPMI	 medium.	
Following the attachment of neutrophils to the cover slips, medium 
was replaced with 200 μL of fresh medium and 20 μL of an anti- human 
CD15- PE- CF594 antibody were added to the culture dish. After 30 min-
utes of incubation, excess antibody was removed by gently washing 

https://medicine.umich.edu/medschool/research/office-research/biomedical-research-core-facilities/microscopy-image-analysis
http://micr.med.wayne.edu/
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the	amniotic	fluid	neutrophils	with	supplemented	RPMI	medium.	Next,	
500 μL of fresh medium and 50 μL of opsonized fluorescent- labeled 
bacteria were added to the amniotic fluid neutrophils. The culture plate 
was	then	centrifuged	at	600	g for 4 minutes and incubated for 1 hour 
at 37°C for ex vivo phagocytosis assays. Following incubation, amniotic 
fluid neutrophils were fixed with 4% paraformaldehyde (PFA; Electron 
Microscopy	Science)	and	the	cover	slips	were	carefully	removed	from	
the culture plate. Lastly, the cover slips were mounted onto Fisherbrand 
Superfrost Plus microscope slides (Thermo Scientific, Wilmington, DE, 
USA)	using	ProLong	Diamond	Antifade	Mountant	with	DAPI.	Amniotic	
fluid neutrophils containing phagocytized bacteria were visualized on a 
Zeiss	LSM	780	laser	scanning	confocal	microscope.	Confocal	z-	stacks	
were acquired using a Plan- Apochromat 100X/1.40 Oil DIC lens with 
1.5X digital zoom.

2.13 | Scanning and transmission electron 
microscopy of ex vivo phagocytosis assays

Neutrophils (2.5×105	cells	in	0.5	mL	of	supplemented	RPMI	medium)	
were enriched from amniotic fluid samples (Table 2) as described 
above, mixed with 50 μL of opsonized fluorescent- labeled bacteria in 
a	1.6	mL	Eppendorf	tube	(Fisher	Scientific),	and	incubated	for	1	hour	
at 37°C. Next, the tube was centrifuged at 2300 g for 5 minutes and 
the supernatant was discarded. Electron microscopy fixative was 
carefully added to the cell pellet. Following fixation for 2 hours at 4°C, 
the cell pellet was gently washed with 1X electron microscopy wash 
buffer. As controls, pure bacteria were fixed and washed as described 
above. Cell pellets from amniotic fluid neutrophils plus bacteria or 
pure	bacteria	were	transported	to	the	Microscopy	&	Image	Analysis	
Laboratory	 at	 the	 University	 of	 Michigan.	 Images	 were	 obtained	
using	the	AMRAY	1910	Field	Emission	Scanning	Electron	Microscope	
(SEMTechSolutions;	North	Billerica,	MA,	USA)	 and	 JEOL	 JSM-	1400	
plus transmission electron microscope.

3  | RESULTS

3.1 | Clinical characteristics of the study population

The first observation of in vivo phagocytosis by amniotic fluid neutro-
phils	was	made	in	6	patients	who	were	diagnosed	with	intra-	amniotic	
infection (Table 1). All of the amniotic fluid samples had: (i) a positive 
microbiological	culture,	 (ii)	elevated	concentrations	of	 IL-	6	 (≥2.6	ng/
mL91), (iii) increased WBC numbers (>50 cells/mm3)26 or viable cell 
counts (ie leukocytes; >100 cells/mm3),56 and (iv) a positive bacte-
rial	live/dead	staining	(Table	1).	Most	of	the	samples	had	low	glucose	
concentrations (<14 mg/dL113) (Table 1). Four of these patients were 
diagnosed with clinical chorioamnionitis10,15-18 (Table 1). The pla-
centas from these patients presented lesions consistent with acute 
maternal and fetal inflammatory responses106-108,117-121 (Table 1). The 
most common microorganisms found in these amniotic fluid samples 
were U. urealyticum and M. hominis followed by S. agalactiae (Table 1).

A total of 10 amniotic fluid samples from women with suspected 
intra- amniotic infection and/or inflammation were freshly collected 

for ex vivo phagocytosis assays (Table 2). All of the amniotic fluid sam-
ples had increased WBC counts (>50 cells/mm3)26 or viable cell counts 
(ie leukocytes; >100 cells/mm3)56 (Table 2). Seven of these patients 
were diagnosed with intra- amniotic infection as the amniotic fluid had 
a	positive	microbiological	culture	and	elevated	concentrations	of	IL-	6	
(≥2.6	ng/mL)12,13,91-104 (Table 2). Six of these amniotic fluid samples 
had a positive bacterial live/dead staining (Table 2). The majority of the 
placentas from these patients presented lesions consistent with acute 
maternal and fetal inflammatory responses106-108,117-121 (Table 2). 
The most common microorganisms found in the amniotic cavity were 
U. urealyticum and M. hominis; yet, Gram- positive and Gram- negative 
bacteria were also observed in women with intra- amniotic infection 
(Table 2).

3.2 | The first observation of phagocytosis by 
amniotic fluid neutrophils in women with intra- 
amniotic infection

While studying the morphological characteristics of amniotic fluid 
leukocytes using transmission electron microscopy, we observed 
that bacteria were engulfed by amniotic fluid neutrophils in cases 
with intra- amniotic infection. Sample 1 was from a patient who was 
diagnosed with intra- amniotic infection due to S. agalactiae, a Gram- 
positive coccus (Table 1). This bacterium seemed to be engulfed by 
an amniotic fluid neutrophil (Figure 1, sample 1, red arrows). Sample 
2 was from a patient who was diagnosed with intra- amniotic infec-
tion caused by Bacteroides fragilis (Table 1), a Gram- negative bacil-
lus. This rod- shaped bacterium seemed to have been ingested by an 
amniotic fluid neutrophil (Figure 1, sample 2, red arrow). Sample 3 was 
from a patient who was diagnosed with intra- amniotic infection due 
to U. urealyticum (Table 1). This bacterium lacks a cell wall; therefore, 
it was identified using bacterial live/dead staining, but not by Gram 
stain (Table 1). As mycoplasmas are similar to neutrophil intracellu-
lar organelles, we used transmission electron microscopy images of 
peripheral neutrophils without phagocytized bacteria to differenti-
ate between cellular components and U. urealyticum (Fig. S1). Such a 
small bacterium was found engulfed in an amniotic fluid neutrophil 
(Figure 1, sample 3, red arrows). Sample 4 was from a patient who 
was diagnosed with polymicrobial intra- amniotic infection caused by 
Enterobacter aerogenes, Enterococcus faecalis, M. hominis, Prevotella 
spp., and Streptococcus viridans (Table 1). In this sample, a coccus 
was visualized inside of an amniotic fluid neutrophil (Figure 1, sample 
4, red arrow). Sample 5 was from a second patient who was diag-
nosed with polymicrobial intra- amniotic infection caused by genital 
mycoplasmas (U. urealyticum and M. hominis), Gram- negative bacilli 
(Prevotella spp.), Gram- positive cocci (S. agalactiae), and Gram- positive 
bacilli (Streptococcus anginosus) (Table 1). In this sample, cocci were 
ingested by an amniotic fluid neutrophil (Figure 1, sample 5, red 
arrows).	Sample	6	was	from	a	third	patient	who	was	diagnosed	with	
polymicrobial intra- amniotic infection caused by genital mycoplasmas 
(U. urealyticum and M. hominis) and Prevotella spp., a Gram- negative 
bacillus (Table 1). Yet, the Gram stain and bacterial live/dead staining 
revealed that this sample also had Gram- positive cocci, which were 
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not identified using conventional microbiological cultivation methods 
(Table 1). We observed that amniotic fluid neutrophils ingested both 
bacillus-		and	coccus-	shaped	bacteria	(Figure	1,	sample	6,	red	arrows).

3.3 | Amniotic fluid neutrophils can rapidly 
phagocytize Streptococcus agalactiae

Most	of	the	in	vivo	phagocytosis	observations	showed	that	amniotic	
fluid neutrophils can engulf cocci (Figure 1). The most common coc-
cus found in the amniotic fluid of women with intra- amniotic infec-
tion is S. agalactiae.13,122 Therefore, we first determined whether 
amniotic fluid neutrophils could phagocytize this bacterium. The 
morphology of S. agalactiae is shown by scanning electron micros-
copy in Figure 2A. When this bacterium was added to the amniotic 
fluid neutrophils, the cocci were rapidly phagocytized by these 
innate immune cells (Video S1). Prior to phagocytosis, S. agalactiae 
attached to the amniotic fluid neutrophils (Figure 2B, red arrow). 
Following phagocytosis, these cocci were engulfed by amniotic fluid 
neutrophils entirely and such a process was evidenced by confo-
cal microscopy (Figure 2C, white arrows) and transmission electron 
microscopy (Figure 2D, red arrows). Semi- quantification of ex vivo 
phagocytosis assays revealed that amniotic fluid neutrophils phago-
cytized S. agalactiae as rapidly as peripheral neutrophils (P>.05; 
Figure	6).

3.4 | Amniotic fluid neutrophils can slowly 
phagocytize Ureaplasma urealyticum

Transmission electron microscopy revealed that amniotic fluid neu-
trophils can engulf U. urealyticum (Figure 1). This mycoplasma is the 
most common bacterium found in the amniotic cavity of women with 
intra- amniotic infection.11,13,122	 Using	 ex	 vivo	 phagocytosis	 assays,	
we next evaluated whether amniotic fluid neutrophils could phago-
cytize the bacterium. The morphology of U. urealyticum is shown by 
scanning electron microscopy in Figure 3A. The strain of U. urealyti-
cum from ATCC was not phagocytized. When the strain of U. urealyti-
cum isolated from a woman with intra- amniotic infection was added 
to the amniotic fluid neutrophils, the bacterium was slowly phago- 
cytized by these innate immune cells (Video S2). Prior to phagocytosis, 
U. urealyticum attached to the amniotic fluid neutrophils (Figure 3B, red 
arrows). Following phagocytosis, this bacterium was observed engulfed 
in amniotic fluid neutrophils using confocal microscopy (Figure 3C, 
white arrow) and transmission electron microscopy (Figure 3D, red 
arrows). Semi- quantification of ex vivo phagocytosis assays revealed 
that amniotic fluid neutrophils phagocytized U. urealyticum at a slower 
speed compared to peripheral neutrophils (P=.03;	Figure	6).	 Indeed,	
the ex vivo phagocytosis of U. urealyticum lasted longer than the 
phagocytosis of S. agalactiae (P=.03) and G. vaginalis (P=.07, 2.9 fold 
decrease)	(Figure	6).

F IGURE  1 Amniotic fluid neutrophils from six women with intra- amniotic infection engulf bacteria in vivo. Transmission electron microscopy 
images from neutrophils observed in six amniotic fluid samples were captured at different magnifications (sample 1, 8000X; sample 2, 2000X; 
sample	3,	2500X;	sample	4,	15	000X;	sample	5,	2500X;	and	sample	6,	4000X).	Red	arrows	identify	bacteria	ingested	by	amniotic	fluid	
neutrophils
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3.5 | Amniotic fluid neutrophils can rapidly 
phagocytize Gardnerella vaginalis

Gardnerella vaginalis is frequently found in the amniotic cav-
ity of women with polymicrobial infection.13,14,122,123 Next, we 
 determined whether amniotic fluid neutrophils could phagocytize 
a Gram- variable bacillus. The morphology of G. vaginalis is shown 
by scanning electron microscopy in Figure 4A. When this bacterium 
was added to the amniotic fluid neutrophils, the bacilli were rapidly 

phagocytized by these innate immune cells (Video S3). Prior to 
phagocytosis, G. vaginalis attached to the amniotic fluid neutrophils 
(Figure 4B, red arrow). Following phagocytosis, these bacilli were 
engulfed by amniotic fluid neutrophils and the process was revealed 
by confocal microscopy (Figure 4C, white arrows) and transmission 
electron microscopy (Figure 4D, red arrows). Semi- quantification of 
ex vivo phagocytosis assays revealed that amniotic fluid neutrophils 
phagocytized G. vaginalis as quickly as peripheral neutrophils (P>.05; 
Figure	6).

F IGURE  2 Amniotic fluid neutrophils can rapidly phagocytize Streptococcus agalactiae. (A) A scanning electron microscopy image of 
S. agalactiae.	Magnification	10	000X.	(B)	A	scanning	electron	microscopy	image	of	amniotic	fluid	neutrophils	and	S. agalactiae (red arrow) prior 
to	phagocytosis.	Magnification	6000X.	(C)	Confocal	microscopy	images	showing	bacteria	ingested	by	amniotic	fluid	neutrophils	(white	arrows).	
Separated	images	show	DAPI	staining	in	blue,	CD15	(a	neutrophil	marker)	in	red,	bacteria	in	green,	and	a	merged	image.	Magnification	630X.	(D)	
A transmission electron microscopy image of a neutrophil engulfing S. agalactiae.	Magnification	2500X.	Red	arrows	identify	bacteria	ingested	by	
amniotic fluid neutrophils. N=5- 9 each

(A) (C) (D)

(B)

F IGURE  3 Amniotic fluid neutrophils can partially and slowly phagocytize Ureaplasma urealyticum. (A) A scanning electron microscopy image 
of U. urealyticum.	Magnification	10	000X.	(B)	A	scanning	electron	microscopy	image	of	an	amniotic	fluid	neutrophil	and	U. urealyticum (red 
arrows)	prior	to	phagocytosis.	Magnification	5000X.	(C)	Confocal	microscopy	images	showing	bacteria	ingested	by	amniotic	fluid	neutrophils	
(white arrow). Separated images show DAPI staining in blue, CD15 (a neutrophil marker) in red, bacteria in green, and a merged image. 
Magnification	630X.	(D)	A	transmission	electron	microscopy	image	of	a	neutrophil	engulfing	U. urealyticum.	Magnification	2500X.	Red	arrows	
identify bacteria ingested by amniotic fluid neutrophils. N=5 each

(A) (C)
(D)

(B)
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3.6 | Amniotic fluid neutrophils can partially 
phagocytize Escherichia coli

Escherichia coli is a Gram- negative bacillus, which has also been 
observed in the amniotic cavity of women with intra- amniotic  
infection.13,14,122 Therefore, we determined whether amniotic fluid 
neutrophils could phagocytize the rod- shaped bacterium. The mor-
phology of E. coli is shown by scanning electron microscopy in 
Figure 5A. When this bacterium was added to the amniotic fluid 
neutrophils, the bacilli were partially phagocytized by these innate 

immune cells (Video S4). Prior to phagocytosis, E. coli attached to the 
amniotic fluid neutrophils (Figure 5B, red arrow). Following phagocy-
tosis, a few bacilli were engulfed by amniotic fluid neutrophils and 
the process was evidenced by confocal microscopy (Figure 5C, white 
arrow) and transmission electron microscopy (Figure 5D, red arrows). 
Semi- quantification of ex vivo phagocytosis assays revealed that 
amniotic fluid neutrophils phagocytized E. coli slower than peripheral 
neutrophils (P=.003;	Figure	6).	Yet,	phagocytosis	of	E. coli by amniotic 
fluid neutrophils was not as delayed as in the case of U. urealyticum 
(Figure	6).

F IGURE  4 Amniotic fluid neutrophils can rapidly phagocytize Gardnerella vaginalis. (A) A scanning electron microscopy image of G. vaginalis. 
Magnification	5000X.	(B)	A	scanning	electron	microscopy	image	of	an	amniotic	fluid	neutrophil	and	G. vaginalis (red arrow) prior to phagocytosis. 
Magnification	7500X.	(C)	Confocal	microscopy	images	showing	bacteria	ingested	by	amniotic	fluid	neutrophils	(white	arrows).	Separated	images	
show	DAPI	staining	in	blue,	CD15	(a	neutrophil	marker)	in	red,	bacteria	in	green,	and	a	merged	image.	Magnification	630X.	(D)	A	transmission	
electron microscopy image of a neutrophil engulfing G. vaginalis.	Magnification	3000X.	Red	arrows	identify	bacteria	ingested	by	amniotic	fluid	
neutrophils. N=5- 8 each

(A) (C)
(D)

(B)

F IGURE  5 Amniotic fluid neutrophils can partially phagocytize Escherichia coli. (A) A scanning electron microscopy image of E. coli. 
Magnification	5000X.	(B)	A	scanning	electron	microscopy	image	of	an	amniotic	fluid	neutrophil	and	E. coli (red arrow) prior to phagocytosis. 
Magnification	7500X.	(C)	Confocal	microscopy	images	showing	bacteria	ingested	by	amniotic	fluid	neutrophils	(white	arrow).	Separated	images	
show	DAPI	staining	in	blue,	CD15	(a	neutrophil	marker)	in	red,	bacteria	in	green,	and	a	merged	image.	Magnification	630X.	(D)	A	transmission	
electron microscopy image of a neutrophil engulfing E. coli.	Magnification	1200X.	Red	arrows	identify	bacteria	ingested	by	amniotic	fluid	
neutrophils. N=5- 9 each

(A) (C)
(D)

(B)
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4  | DISCUSSION

Neutrophils are the most abundant leukocytes found in the amni-
otic cavity of women with intra- amniotic infection and/or inflamma-
tion.26,31 Amniotic fluid neutrophils participate in the innate immune 
host defense mechanisms that take place in the amniotic cavity of 
women with intra- amniotic infection.48-50 As a result, these innate 
immune cells release antimicrobial peptides53,55 and cytokines/
chemokines31 as well as trap and kill bacteria by forming NETs.56 In 
the study herein, we provide in vivo and ex vivo evidence that amni-
otic fluid neutrophils can phagocytize bacteria associated with intra- 
amniotic infection; yet, differences in the rapidity of phagocytosis 
were observed among the studied microorganisms.

Amniotic fluid neutrophils can rapidly phagocytize Streptococcus 
spp., including S. agalactiae, which is commonly found in the amni-
otic fluid of women with intra- amniotic infection.13,122 The process 
of phagocytosis for S. agalactiae is mediated by toll- like receptors (eg 
TLR2) and integrins (eg CD11b/CD18).124 However, this coccus can 
also evade neutrophil phagocytosis by binding to sialic acid- binding 
immunoglobulin- like lectin 5, a protein expressed on the surface of 
phagocytes.125 Interestingly, in cases with polymicrobial intra- amniotic 
infection, cocci were the most commonly observed microorganisms 
engulfed by amniotic fluid neutrophils, suggesting that these innate 
immune cells prefer to engulf this genus. This finding is consistent with 
a previous report demonstrating that neutrophils favor the ingestion 
of Gram- positive cocci over Gram- negative bacilli.126 Yet, our ex vivo 
phagocytosis assays showed that amniotic fluid neutrophils can also 
phagocytize bacilli. Another important observation is that the phago-
cytosis of S. agalactiae by amniotic fluid neutrophils was quicker than 
for the other bacteria. This finding indicates that when GBS invades 

the amniotic cavity, amniotic fluid neutrophils can rapidly kill these 
bacteria as a mechanism of host defense.

Ureaplasma urealyticum is the most common bacterium present 
in the amniotic cavity of women with intra- amniotic infection.11,13,122 
Herein, we found that amniotic fluid neutrophils can phagocytize this 
genital mycoplasma. However, this process was slower than with other 
bacteria. In addition, in cases with polymicrobial intra- amniotic infec-
tion, we could not find U. urealyticum engulfed in amniotic fluid neu-
trophils, suggesting that this bacterium was not always phagocytized. 
These results are consistent with previous reports demonstrating that 
U. urealyticum, as well as M. hominis, can circumvent phagocytosis and 
even survive if ingested.127-130	Mycoplasmas	 can	 evade	 phagocyto-
sis by: (i) producing proteases, lipases, phospholipases, and oxygen 
radicals, which can block the creation or maturation of the phago-
some,131-133 (ii) producing ammonia which can impair the phagosome- 
lysosome fusion,134,135 or (iii) internalizing into the  cytoplasm of 
phagocytes (mechanism unknown).130,136 In fact, it was suggested 
that neutrophils do not participate in the host defense mechanisms 
against mycoplasmas and may even aid in the dissemination of the 
infection.129 Taken together, these data suggest that amniotic fluid 
neutrophils cannot efficiently kill U. urealyticum, and this might explain 
why most intra- amniotic infections are associated with these micro-
organisms. Nevertheless, further research is needed to evaluate the 
efficiency of amniotic fluid neutrophils to phagocytize genital myco-
plasmas, and whether such bacteria can evade and survive this mech-
anism of microbial killing in the amniotic cavity.

Gardnerella vaginalis is found in the amniotic cavity of women 
with polymicrobial infection13,14,122,123 and can induce a strong pro- 
inflammatory response in the chorioamniotic membranes.137 Amniotic 
fluid neutrophils could rapidly phagocytize this Gram- variable bacillus, 
a process likely mediated by the activation of the alternative pathway 
of the complement system.138 The current study also provides evi-
dence that amniotic fluid neutrophils can phagocytize Gram- negative 
bacillus, including B. fragilis, Prevotella spp., and E. coli. However, the 
phagocytosis of E. coli by amniotic fluid neutrophils was not as effi-
cient as in cases with S. agalactiae. A possible explanation for this 
impairment is that E. coli uses its capsular antigens O75 and K5 to 
resist neutrophil phagocytosis.139 In the event that E. coli is phago-
cytized, this bacillus is able to survive the bactericidal activity of the 
neutrophils and live within these innate immune cells.140 Together, 
these data allow us to propose that amniotic fluid neutrophils can 
engulf bacilli; yet, their phagocytic efficiency may be different among 
genera.

A central question that requires further investigation is whether 
amniotic fluid neutrophils in cases with intra- amniotic infection and/or 
inflammation are of maternal and/or fetal origin. These innate immune 
cells are thought to be predominantly of fetal origin141,142 and invade 
the amniotic cavity by migrating from the fetal vessels of the chorionic 
plate.143 However, abundant neutrophils have also been observed in 
the amniotic fluid of patients with a severe maternal inflammatory 
response but without a fetal inflammatory response, indicating that 
there is a possibility that these innate immune cells are of maternal 
origin or a mixture of both fetal and maternal neutrophils.31,56 This 

F IGURE  6 Semi- quantification of ex vivo phagocytosis assays. 
Confocal time series of peripheral and amniotic fluid neutrophils 
phagocytizing Streptococcus agalactiae, Ureaplasma urealyticum, 
Gardnerella vaginalis, and Escherichia coli were recorded at 7.75- s time 
intervals from 5 to 20 min. A semi- quantification of the time- interval 
for each ex vivo phagocytosis assay was calculated based on the 
duration of the assay and the number of frames taken per experiment
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question is relevant as cord blood neutrophils display differences in 
functionality compared to peripheral neutrophils.144-148 Indeed, cord 
blood neutrophils can phagocytize E. coli and Streptococcus pyogenes 
but not S. agalactiae,149 suggesting that the phagocytosis of GBS 
observed in our study was performed by amniotic fluid neutrophils 
of maternal origin or that the amniotic fluid components enhance 
the	 phagocytic	 ability	 of	 fetal	 neutrophils.	 Moreover,	 cord	 blood	
neutrophils from preterm neonates exhibit impaired innate immune 
responses, including phagocytosis, compared to term neonates.150-152 
Therefore, it is essential to investigate the origin of amniotic fluid neu-
trophils in cases with intra- amniotic infection.

In summary, we report that amniotic fluid neutrophils can phago-
cytize bacteria found in the lower genital track, namely S. agalactiae, 
U. urealyticum, G. vaginalis, and E. coli. However, amniotic fluid neutro-
phils seem to display a delayed ability to phagocytize U. urealyticum 
and E. coli. These findings provide a host defense mechanism whereby 
amniotic fluid neutrophils can kill microbes invading the amniotic 
cavity.
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