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Abstract

Aims: Understanding the functional response of ecosystems to past global change

is crucial to predicting performance in future environments. One sensitive and func-

tionally significant attribute of grassland ecosystems is the percentage of species

that use the C4 versus C3 photosynthetic pathway. Grasses using C3 and C4 path-

ways are expected to have different responses to many aspects of anthropogenic

environmental change that have followed the industrial revolution, including

increases in temperature and atmospheric CO2, changes to land management and

fire regimes, precipitation seasonality, and nitrogen deposition. In spite of dramatic

environmental changes over the past 300 years, it is unknown if the C4 grass per-

centage in grasslands has shifted.

Location: Contiguous United States of America.

Methods: Here, we used stable carbon isotope data (i.e. d13C) from 30 years of soil

samples, as well as herbivore tissues that date to 1739 CE, to reconstruct coarse-

grain C3 and C4 grass composition in North American grassland sites to compare

with modern vegetation. We spatially resampled these three datasets to a shared

100-km grid, allowing comparison of d13C values at a resolution and extent common

for climate model outputs and biogeographical studies.

Results: At this spatial grain, the bison tissue proxy was superior to the soil proxy

because the soils reflect integration of local carbon inputs, whereas bison sample

vegetation across landscapes. Bison isotope values indicate that historical grassland

photosynthetic-type composition was similar to modern vegetation.

Main conclusions: Despite major environmental change, comparing modern plot

vegetation data to three centuries of bison d13C data revealed that the biogeo-

graphical distribution of C3 and C4 grasses has not changed significantly since the

1700s. This is particularly surprising given the expected CO2 fertilization of C3

grasses. Our findings highlight the critical importance of capturing the full range of

physiological, ecological and demographical processes in biosphere models predict-

ing future climates and ecosystems.
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1 | INTRODUCTION

Industrialization in the 18th century intensified human modification of

ecosystems, and understanding the resulting impacts on ecosystem

functioning and vegetation distributions has become a principal goal of

ecologists. A key functional attribute of grassland ecosystems that

should be sensitive to environmental change is the percentage of

grasses that use the C4 photosynthetic pathway versus the C3 ancestral

pathway. For example, C4 grasses, which are adapted to warm and

open habitats, should be favoured by increasing temperatures whereas

C3 grasses should be favoured under elevated CO2 (Ehleringer, Cerling,

& Helliker, 1997)—a balance with potential consequences for vegeta-

tion structure and fire regimes globally (Bond & Midgley, 2012). C3 and

C4 vegetation also differ fundamentally in their nitrogen and water use

efficiencies, with potential consequences for their competitive dynam-

ics (Long, 1999; Tilman & Wedin, 1991) and palatability to herbivores

(Heckathorn, McNaughton, & Coleman, 1999). In 2015, surface tem-

peratures on Earth were 1°C above pre-industrial levels and the aver-

age global CO2 concentration reached 399.4 p.p.m.–roughly

120 p.p.m. above pre-industrial levels (Blunden & Arndt, 2016). Con-

currently, atmospheric nitrogen deposition has drastically increased

(Vitousek et al., 1997), trophic structure has shifted (e.g. Ripple,

Beschta, & Painter, 2015), land management practices have changed

radically and fire regimes may have been suppressed (Ramankutty &

Foley, 1999; but see Power et al., 2008). Although post-industrial

changes in the percentage of C4 versus C3 grasses should have impor-

tant consequences for ecosystem functioning at a range of spatial

grains (Still, Berry, Collatz, & DeFries, 2003), there have not been

assessments of photosynthetic pathway representation over the last

several hundred years at regional extents despite the use of vegetation

proxies over deeper geologic time.

Stable carbon isotope data (i.e. d13C [VPDB]) from soils and her-

bivore tissues are widely used as proxies of ecological properties

and processes such as the relative abundance of C3 and C4 plants,

water use efficiency in C3 plants, productivity, trophic position, arid-

ity, and tree cover (e.g. Cerling et al., 2011; Dawson, Mambelli,

Plamboeck, Templer, & Tu, 2002; Diefendorf, Mueller, Wing, Koch,

& Freeman, 2010; Kohn, 2010; Ladd et al., 2014; Still et al., 2003).

Yet, d13C values from such proxies have only rarely been compared

directly to abundances of C3 and C4 source vegetation at the spatial

resolution and extent of many biogeographical processes (e.g. C4

range expansion; Chen, Smith, Sheldon, & Str€omberg, 2015; Jenkins

& Ricklefs, 2011; Powell, Yoo, & Still, 2012; Str€omberg, 2011; Wynn

et al., 2006). Similarly, applications that depend on d13C data often

fail to consider the spatial grain at which different d13C proxies inte-

grate C (Auerswald et al., 2009). For example, the d13C composition

of soil surface layers is related to soil texture and organic matter

over relatively small areas (~m2; Bai et al., 2012; Liang, Riveros-Ire-

gui, & Risk, 2016; Wynn et al., 2006), while herbivore tissues corre-

spond to vegetation composition over larger spatial extents (~10 s

of km2; Auerswald et al., 2009; Kohn & Fremd, 2008; Meagher,

1989; Widga, Walker, & Stockli, 2010). As a result, the spatial scale

of C integration may impact how well d13C proxies represent

vegetation at the spatial extents and spatial grains that they are

often used. In order to draw robust inferences about vegetation

change at a regional scale, we compare both soil and animal proxies

to vegetation plots across the same geographical extent.

The primary driver of naturally occurring terrestrial variation in

d13C is the difference in isotope discrimination between plants that

use either the C3 or C4 photosynthetic pathway (Farquhar, Ehlerin-

ger, & Hubick, 1989). C4 photosynthesis results in minor atmo-

sphere-plant tissue fractionation (�3 to �5&). This fractionation is

relatively consistent across >20 independent C4 grass lineages and

across C4 subtypes (i.e. 1& difference between NADP-me and PCK/

NAD-me) (Cerling & Harris, 1999; Ehleringer et al., 1997; Grass Phy-

logeny Working Group II, 2012; Long, 1999; Sage, Christin, &

Edwards, 2011). The ancestral C3 photosynthetic pathway has larger

and more variable atmosphere-plant tissue fractionation, especially

for woody plants. Beyond the differences between C3 and C4 carbon

isotope discrimination, there is considerable variation in plant d13C

among C3 plants that relates to environmental variation. For exam-

ple, trees are almost exclusively C3 (Sage & Sultmanis, 2016) but

their d13C values can vary widely with plant physiology/morphology,

biome, along environmental gradients [i.e. with mean annual precipi-

tation (MAP) (Diefendorf et al., 2010; Kaplan, Prentice, & Buchmann,

2002; Kohn, 2010; Ladd et al., 2014), and in lock step with long-

term changes to the d13C value of the atmosphere. In general, the

present-day d13C value for C4 grasses centres around �12.5

(�1.1&) while C3 grasses have a mean of �26.7 (�2.3&) (Cerling

et al., 1997), although the data come from arid environments, which

would bias the results toward more positive values (Kohn, 2010).

Palaeoecological, palaeoclimatological, and modern carbon cycling

applications using d13C that rely on measurements from soils and

palaeosols must account for changes to isotopic ratios due to plant

biomass allocation patterns, atmospheric d13C change, litter decom-

position, preservation, diagenesis, and numerous other processes

(Angelo & Pau, 2015; Bowling, Pataki, & Randerson, 2008; Ehlerin-

ger, Buchmann, & Flanagan, 2000; Fox & Koch, 2003; Passey et al.,

2002; Tipple, Meyers, & Pagani, 2010; Wynn & Bird, 2007). In addi-

tion, each of these various processes has inherent spatial and tempo-

ral ranges over which they influence the integration of C (e.g.

Bowen, 2010). For example, surface soils (i.e. 0–5 cm depth) might

reflect tens to hundreds of years of soil carbon turnover and may be

largely influenced by carbon assimilated at spatial extents on the

order of metres (Bai et al., 2012; Leavitt, Follett, Kimble, & Pruess-

ner, 2007). Since remotely sensed vegetation data are represented

at resolutions of hundreds of metres (e.g. 250 m to 1 km grids in

MODIS), grain size differences may contribute to poor alignment

with soil proxies reported in the literature. For example, Ladd et al.

(2014) show that leaf area index (LAI) measured in situ can be repre-

sented well by soil d13C across many ecosystems, but that remotely

sensed LAI at 1 km is poorly correlated with soil d13C.

In contrast to soils, d13C in herbivore tissues reflects diet composi-

tion (accounting for fractionation) over restricted life spans (or develop-

mental periods), but potentially represent forage selection across an

entire home range or migratory route (Meagher, 1989; Widga,2010).
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Therefore, animal d13C values will usually integrate C from a larger sur-

face area than soils, and the temporal and spatial extents at which C is

integrated are likely to be species (and tissue) specific depending on the

ecology of the herbivore. For example, American bison (Bison bison [Lin-

naeus, 1758]; hereafter bison) live ~15 years and their tissues represent

d13C from grazing over large spatial extents such as an entire ecosys-

tems or migration circuits. The period of time recorded by d13C in ani-

mals is tissue-specific, varying from continuous for hair (Ayliffe et al.,

2004) to c. 1 year for enamel (Gadbury, Todd, Jahren, & Amundson,

2000) and multiple years for bone (Tieszen, 1994). Because the stable

isotope composition of animal tissues reflects their dietary inputs, stud-

ies often use d13C data and other stable isotopes to determine the feed-

ing sites or origins of migrating animals such as birds (Hobson, Møller, &

Van Wilgenburg, 2012), bats (Segers & Broders, 2015), fish (MacKenzie

et al., 2011) and others (Hobson, 1999). These location assignments

depend on ‘isoscapes’, or spatially continuous representations of the

distribution of isotope signatures (Bowen, 2010; Powell et al., 2012),

which are themselves produced from datasets with different spatial

grains, such as modelled vegetation composition and interpolated cli-

mate data in the case of some stable carbon isoscapes. Carbon isotopes

from fossilized animal tissues are also used to reconstruct past climate

and vegetation conditions, for example, in investigating the Miocene

rise to dominance of C4 grasses in open habitats (Cerling et al., 1997;

Fox & Koch, 2003; Passey et al., 2002; Str€omberg, 2011).

Given the importance of carbon isotope patterns to such a wide

range of applications and fields, the goals of this study were twofold:

first to evaluate common d13C proxies for their ability to represent

vegetation at the temporal and spatial extents relevant to post-indus-

trial revolution environmental change, and second, to investigate the

magnitude of change in C3 and C4 grass relative abundances in the

conterminous USA over the last 300 years. We adopted a coarse-

grain approach so that the analysis corresponds better to the scale

(i.e. spatial grain and extent) of Earth System Models, and to many

palaeoclimatological and location-assignment studies (e.g. 100 km).

We emphasize the importance of examining the performance of our

proxy data at this coarse resolution because scaling is often complex

(Goodchild, 2011) and there is an extensive body of literature that

extrapolate point measurements of isotope values to large spatial and

temporal extents (reviewed in: Beerling & Royer, 2011; Bowen, 2010;

Dawson et al., 2002; Hobson, 1999; Str€omberg, 2011). To assess the

relationships between d13C proxies and vegetation composition, we

combined three multi-source datasets from North America: (1) herba-

ceous C3 and C4 grass relative abundances from vegetation plots, (2)

surface soil d13C measurements, and (3) herbivore tissue d13C mea-

surements. Finally, we examined differences between d13C proxies

and modern vegetation through time in order to detect vegetation

change occurring over last 300 years.

2 | MATERIALS AND METHODS

Bison d13C, soil d13C, and plot-level estimates of grass relative abun-

dance are each multi-source datasets assembled from the literature

(Supplemental Methods). Vegetation cover-abundance data come

from plots (<1,000 m2) that sampled grass-dominated herbaceous

strata to the species level, regardless of the presence of other strata

such as trees (Griffith et al., 2015). The plot data were not originally

restricted to grasslands; however, in this study we used only grass-

land plots as the soils come from grassland sites. The dataset

includes roughly 40,000 plots collected in the last 40 years. We

chose to represent the relative cover abundance of grasses using dif-

ferent photosynthetic pathways (i.e. C3 versus C4) using a single

metric based on the percent of grasses that use the C4 pathway.

Grass species were classified as C3 or C4 according to Osborne et al.

(2014) and a metric of relative percent C4 abundance called ‘C4

Cover (%)’ was calculated by dividing the C4 absolute abundance by

the sum of C4 and C3 grass absolute abundances. Some of the domi-

nant C4 species included Andropogon gerardii, Bouteloua gracilis and

Schizachyrium scoparium, whereas C3 dominants included, for exam-

ple, Poa pratensis and species from Festuca and Agropyron. We used

the C4 grass percentage, rather than the entire herbaceous fraction,

because the plots are grass dominated, C4/C3 assignments are read-

ily available for grasses, grass areal cover represents standing bio-

mass well, and to maintain consistency with previous studies that

focus on grasses (e.g. Hoppe, Paytan, & Chamberlain, 2006). The raw

bison d13C data include 281 separate samples of collagen, hair,

enamel or horn sheaths from modern and historical bison (<300 yr;

48 unique sites) and are adjusted to represent the d13C of the

animal’s diet by correcting for tissue-dependent fractionation and

for industrial modification to atmospheric d13C (pre-industrial

d13C = �6.3&; Friedli, L€otscher, Oeschger, Siegenthaler, & Stauffer,

1986). As such, our modern and historical bison d13C data were cor-

rected to reflect pre-industrial values, instead of modern atmospheric

d13C which is continually changing. Bison samples come from

unploughed, non-agricultural lands. Soil d13C data come from 262

new and literature derived measurements of surface organic C sam-

ples (single cores to 5 cm depth), collected within the last 30 years

and therefore representing C integration over the last <100 years

depending on residence times (Leavitt et al., 2007). The soils have

not been tilled recently or had fertilizers added. New surface soil

samples were analysed following the methods of Cotton and Shel-

don (2012) and details are reported in Supporting Information.

To facilitate the comparison of these independent datasets, the

data were resampled onto common raster grids of varying grain

sizes, evaluating grid dimensions of 5, 10, 50, 100 and 200 km. We

adopted a grain size of 100 km because this resolution offered the

maximum number of grid cells containing isotope data (i.e. either soil

or bison samples) while preventing large grid cells with very distant

isotope and corresponding plot data (i.e. within grid cells nearest

neighbour distances between isotope and plot data were kept below

around 10 km; Fig. S1 in Appendix S1). This process resulted in 38

grid cells with both soil and plot data, and 18 grid cells that contain

both bison and plot data (Figure 1). When aggregating raw data to

the grid, each cell was assigned the mean of all overlaying point data

as its value (mean number of samples per grid cell � SE was

138.9 � 21.0, 3.1 � 0.5, and 7.6 � 3.5 for plots, soils, and bison
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respectively). We considered weighting the mean values by distance,

but we proceeded with the simple mean because inverse-distance

weighting for the bison grid cell with the largest range of sample-to-

centroid distances only changed the value by 0.1&. While this

approach allows for the comparison of these datasets, it must rely

on the assumption that grassland composition is uniform within grid

cells and that the values apply only to grassland portions of cells.

Gridding the data therefore produces another source of error that

can contribute to misalignment of proxies and vegetation because

point measurements now represent larger areas.

We assembled several additional environmental and ecological

datasets representing factors that might influence the isotopic com-

position of surface soil and herbivore tissue. Mean annual tempera-

ture (MAT) and MAP were extracted from the PRISM Climate Group

30-year climate normal dataset for 1971–2000 (http://www.prism.

oregonstate.edu/; 800 m resolution). Summer precipitation (SP) was

calculated from PRISM monthly data. For each bison sample, data on

atmospheric CO2 concentrations were obtained based on sample

date from Keeling et al. (2005) and from Friedli et al. (1986),

whereas palaeoatmospheric CO2 data come from L€uthi et al. (2008).

Additional soil data including organic carbon (OC%) and clay (%)

were obtained from the Harmonized World Soil Database

(Nachtergaele & Batjes, 2012). Tree cover and other non-herbaceous

strata were not sampled in a consistent manner in vegetation plots

so we used the percent tree cover dataset from (Sexton et al., 2013)

(30 m resolution). The percentage of grasses that were C3 invaders

in the vegetation plot dataset was also calculated from the vegeta-

tion plot inventory (Griffith et al., 2015). Ladd et al. (2014) suggest

that leaf area index (LAI) correlates well with soil d13C across ecosys-

tems because it reflects water use, but LAI showed very little varia-

tion among all grid cells and was therefore not included. All

additional environmental/vegetation data were resampled onto the

same grid as the isotope data as a simple mean.

Data analysis began by fitting separate weighted least squares

regression models relating source vegetation (i.e. C4 Cover %) to the

resulting soil d13C and bison d13C values from the 100 km grid (Fig-

ure 2). The isotope data were weighted inversely proportional to

their errors using the lm() function in the statistical computing envi-

ronment R (R Core Team, 2016). To assess whether additional varia-

tion in d13C values could be explained by factors other than C4

Cover %, we developed structural equation models (SEMs) that

allowed us to disentangle the direct effects of variables on d13C

from indirect effects on d13C that were mediated by their effects on

vegetation composition (C4 cover). In essence, SEM can be concep-

tualized as a network of interconnected linear regressions (i.e. some

response variables are themselves predictor variables) that are fit

simultaneously, often with the goal of distinguishing direct and indi-

rect causal relationships. The individual paths, or causal links, have

standardized effect sizes that can be interpreted similarly to correla-

tion coefficients (Grace, Anderson, Olff, & Scheiner, 2010). We con-

structed separate a priori models for soil (Figure 3a) and bison

(Figure 3b) d13C values that specified all causal relationships (paths

in Figure 3) among variables. Climate variables are expected to have

indirect effects on both soil and bison d13C, mediated through their

influence on C4 plant distributions. However, climate might also have

direct influences on isotopic values due to effects on microbes,

metabolism, plant biomass allocation or other processes influencing

C integration (e.g. Angelo & Pau, 2015).

Many studies have demonstrated that the seasonal distribution

of rainfall and temperature are important drivers of C4 and C3 vege-

tation (Griffith et al., 2015; Teeri & Stowe, 1976; Winslow, Hunt, &

Piper, 2003). We used MAT and SP as potential climatic predictors

of C4 abundance. Our primary goal was to describe any variation in

d13C that was not driven directly by C4 abundance (e.g. variable frac-

tionation related to MAP; Diefendorf et al., 2010; Kohn, 2010). In

the case of the bison data, we also account for temporal variation in

CO2, but did so by relating CO2 directly to d13C because there is

limited temporal variation in the vegetation plots (Collatz, Berry, &

Clark, 1998; Kohn & McKay, 2012). Paths from tree cover and soils

to d13C were not included in the bison SEM as they are not

expected to have any direct links to grazer tissue composition (i.e.

they should be absent from their diets). We included C3 invasives as

a predictor of C4 abundance because the presence of C3 invasive

grasses reduces C4 abundance below climate expectations (Griffith

et al., 2015) and some invasives have been present for long enough
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F IGURE 1 Vegetation plot grass percentage C4 cover (a), soil
d13C (b) and bison d13C (c) data from North America resampled onto
a common 100-km grid. Raster cells shown for isotope data only
when they overlap with plot data, and vice versa
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to be reflected in bison diets (Grace, Smith, Grace, Collins, & Stohlg-

ren, 2000). These models were fit to data using the sem() function in

the R package ‘lavaan’ (Rosseel, 2012) and model fit was assessed

following Grace et al. (2010) (see Supplemental Methods) (Figure 4).

We applied equation 1 from Kohn (2010) to predict theoretical

d13C C3-endmember values for modern and historical bison samples

to explicitly account for d13C variability in the C3 endmember (Die-

fendorf et al., 2010; Kohn, 2010). The predicted end members had a

mean of �26.7 � 0.14 SE and a range of �25.4 to �27.9. Variation

in these theoretical C3-endmembers was not associated with bison

diet d13C (or with residuals after accounting for actual C4 grass

abundance) (Pearson’s correlation, p > .05). We inspected the three

most negative bison d13C values, which had measurements of

�26.85, �26.44, and �26.23& after converting the data from pre-

industrial to modern to values (Fig. S2). For these three samples, the

predicted C3 endmember values using equation 1 from Kohn (2010)

were 0.38, 0.17, and 0.32& more negative than our measurements

respectively.

Finally, to explore potential differences between the spatial vari-

ability of soil d13C and bison d13C data, we fit spherical semivari-

ograms to each dataset, including the plot-level C4 cover % for

reference. A semivariogram is a geostatistical function that describes

variability of a given parameter over different spatial ranges (lag dis-

tances). The parameters from fitted theoretical semivariograms

describe important spatial features of a dataset, such as the ‘sill’,

which describes the total variation of the variable, and the ‘nugget’,

which describes unexplained fine-scale variation (see Supplemental

Methods) (Table 1). We focus on the nugget-to-sill ratio, which is a
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F IGURE 2 (a) Surface soil d13C as a function of grass percentage C4 cover in North American vegetation plots. (b) Bison d13C as a function
of vegetation C4 cover; these data have been adjusted to account for tissue fractionation and represent the presumptive dietary d13C of bison
under pre-industrial atmospheric conditions. Trend lines and grey-shaded 95% prediction intervals are from weighted least squares regression
models
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F IGURE 3 A priori conceptual models relating environmental and biotic factors to variation in soil d13C (a) and bison d13C (b) in North
America. SEM analyses were conducted using these models as starting points. Details about model selection procedure and the individual
paths can be found in the main text. OC is soil organic carbon
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measure of the spatial variation that exists below our 100 km grid

cells as well as non-spatial measurement error. This metric is impor-

tant because it is a quantitative estimate of variation at local scales

(i.e. < grid resolution) and provides a test of the hypothesis that

there are scale differences among d13C proxies that could influence

how well they perform at coarse-grain sizes. Semivariograms were fit

with the fit.variogram() function in the R package ‘gstat’ (Table 1)

using the entire grid-aggregated d13C proxy and vegetation plot data

from across the conterminous USA.

Following the assessment of soil and bison isotopic proxies, veg-

etation change over the last 300 years was investigated by compar-

ing bison d13C data from three time slices to modern C4

distributions. To do so, bison data were organized into three tempo-

ral categories: ‘modern’ samples (last 50 years), ‘historical’ samples

(51–300 years ago), and a third, ‘fossil’ dataset was obtained from

Cotton, Cerling, Hoppe, Mosier, and Still (2016) dating to the Last

Glacial Maximum (LGM) were included as a reference for the magni-

tude of geological vegetation change. The modern (n = 17) and his-

torical (n = 16) data subsets were a representative sample of the full

bison dataset, both spatially and in terms of diet d13C (Fig. S5). We

fit a weighted least squares regression with the modern bison d13C

as the dependent and C4 % from plots as the independent variable,

and then used this calibration model to predict the expected d13C of

the historical and fossil data. The residuals (the observed—predicted)

from this model were calculated for the modern, historical, and fossil

datasets. This was used to represent differences from modern vege-

tation by relating the residuals from this relationship to the number

of years before present with a Generalized Additive Model (GAM)

(Figure 5; using the R package ‘mgcv’; Wood, 2011).

3 | RESULTS

The linear model relating bison d13C to source vegetation performed

very well (Figure 2; 88% variance explanation, regardless of regres-

sion weighting), whereas soil d13C was only weakly related to source

vegetation at a resolution of 100 km (Figure 2; 42%, and only 21%

in a simple linear model). We considered the possibility that a source

of error in the soil relationship could be due to the presence of non-

grass herbaceous vegetation; however, a re-analysis of soil d13C with

the C4 percentage of the entire herbaceous layer (assuming all forbs

to be C3) resulted in a slightly reduced variance explanation (18%).

Both the bison and soil datasets had similar ranges of d13C values,

representing expected source vegetation ranging from completely

C3- to completely C4- dominated sites (Fig. S2 in Appendix S1). Vari-

ation in bison d13C was associated with variation in modern vegeta-

tion abundance, even for samples up to 300 years old (Figure 5;

Cotton et al., 2016) and the calibration regression model fit only to

modern bison samples was strong (r2 = .89).

Structural equation models were fit in order to assess the direct

effects of environmental and biogeographical variation on soil and

bison isotope values beyond their indirect controls on C4 versus C3

vegetation (see Methods). Previous independent analyses for the

raw bison (Cotton et al., 2016) and vegetation plot (Griffith et al.,

2015) datasets suggest that C3 and C4 vegetation abundances can

be predicted by the crossover temperature (COT) model. COT is a

compound variable that consists of a count of months per year that

climatically favour C4 vegetation (e.g. monthly mean >22 °C and

>25 mm rainfall and assuming modern CO2 concentrations; Collatz

et al., 1998; Still et al., 2003). However, we used MAT, SP and CO2

instead of COT so that it was possible to parse out any direct and

indirect influences of each climate variable on d13C values indepen-

dently (see methods; Fig. S3 and S4 in Appendix S1). Additional

Climate

MAT SP   MAP

Soil

OC Clay C3 Invasives

Tree cover

Soil δ13CC4 Cover (%)

Climate

MAT

Soil

OC Clay C3 Invasives

Tree cover

Bison δ13CC4 Cover (%)

(a) (b)

0.66 0.28 0.79 0.92

SP   MAP  CO2

F IGURE 4 Final structural equation models, relating environmental and biotic factors to variation in North American soil d13C (a) and bison
d13C (b), showing significant paths (Supplementary Methods). Path coefficients for direct effects are represented by arrows that are either
significantly positive (solid lines) or negative (dashed). Arrow widths are proportional to the standardized effect sizes. Response variables have
small text boxes in the top right showing the r2 values for their respective linear sub-models

TABLE 1 Fitted semivariogram results for North American plot,
soil and bison data. Nugget variance reflects the amount of variation
present at scales below the grain size of the data (i.e. 100 km2 grid
cells) and non-spatial measurement error. The sill represents the
total variance of the data. Therefore, the proportion of variation
unaccounted for at fine resolutions can be assessed by dividing the
Nugget variance by the Sill

Variable
Nugget
variance Sill

Range
(km)

Nugget/
Sill (%)

C4 Cover (%) 0.02 0.09 1,272 19.3

Soil d13C (&) 2.05 6.59 878 31.1

Bison d13C (&) 0.56 6.86 536 8.2
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explanatory variables increase the explained variance (values from

simple lineage models used for comparison to SEM) for both soil

(from 21% to 28%) and bison (from 88% to 92%) d13C (Figure 4).

For soils, this increase is due mostly to the incorporation of tree

cover because of a direct influence (as a carbon source) on d13C of

soil organic matter and the reduction in C4 abundance due to tree

cover (which indirectly modifies d13C). For both soil and bison, pre-

cipitation had a direct, positive effect on d13C. The environmental

controls on C4 relative abundance were consistent between the two

models and similar to the analysis of the raw vegetation plot data

(Griffith et al., 2015).

Each dataset (soil, bison and vegetation plot) independently cap-

tures the latitudinal gradient in vegetation C4 % cover across the

Great Plains of North America (Paruelo & Lauenroth, 1996; Teeri &

Stowe, 1976), yet the semivariogram revealed unique spatial patterns

in each dataset (Table 1). Most notably, the datasets differed in the

degree of heterogeneity that exists at a spatial range smaller than

our grid dimensions (i.e. <100 km), as represented by the nugget-to-

sill ratio. There was an intermediate amount of unexplained local

variation (19%) in C4-cover data, consisting of measurement error

and variation at distances <100 km. In contrast, soil d13C had more

(31%) and bison d13C had less (8%) variation that was not explained

by autocorrelation.

Finally, our exploration of deviations in C3 and C4 grass relative

abundances over time revealed, that for the previous 300 years,

photosynthetic representation has been similar to modern conditions

(Figure 5). This result is demonstrated by the overlap of the 95%

confidence interval from our GAM with a residual of zero (horizontal

zero line in Figure 5) for all times prior to 300 year BP.

4 | DISCUSSION

Across the Great Plains in the conterminous United States, coarse-

grain variation in the percentage of grasses that use the C4 photo-

synthetic pathway has changed little in the last 300 years (Figure 5).

Most surprising is the complete lack of a CO2 fertilization for C3

grasses expected based on physiology (Collatz et al., 1998), suggest-

ing that there are complicating factors that are buffering this

response in grassland ecosystems (Morgan et al., 2011). This stasis

in vegetation distributions is unexpected from both biogeographical

and ecophysiological perspectives, given the drastic changes to the

environment that have occurred during this time period (Blunden &

Arndt, 2016). Global atmospheric CO2 concentrations and surface

temperatures, factors directly influencing the physiology of C3 versus

C4 plants (Ehleringer et al., 1997), have rapidly increased over the

last 300 years to the highest levels since before the appearance of

the genus Homo. Furthermore, nitrogen deposition has increased, fire

regimes may have been reduced, and land management has changed

drastically—all factors expected to have large, differential impacts on

C3 versus C4 grasses (Long, 1999; Ramankutty & Foley, 1999; Til-

man & Wedin, 1991). Despite these changes, the distribution of

grass photosynthetic types appears to be broadly unchanged in

grassland sites.
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F IGURE 5 Residual variation in animal diet d13C (from a linear model with 50 years of diet d13C data as a function of C4 cover), for
modern, historical and fossil tissues over log-time. As such, data points represent deviations of diet d13C from modern vegetation abundance—
positive means higher values than current vegetation. The black dotted line is a residual of zero. The vertical grey lines mark the boundaries
between the modern animal samples used in our analysis and historical (50 yr) or fossil data (300 yr) from Cotton et al. (2016) that are not
otherwise reported in this study. Fossil samples are radiocarbon dated, but the modern samples were directly dated based on registration as
museum specimen; all dates were converted to years before 2016 CE (Years BP) to fit on the same axis. The smoothed grey line is a GAM fit
with 95% confidence intervals (grey polygon). The GAM represents the relationship between the d13C residuals and time. The mean
residuals � CI overlap zero (i.e. no change) for all modern and historical time-points supporting the assertion that C4 abundance has not
changed much over the last 300 years in North America. Fossil data are shown as a reference in order to illustrate the relative stasis in
composition of the modern and historical data, and the drivers of fossil variation are discussed in Cotton et al. (2016). The fossil bison d13C
values used have also been adjusted to account for the pre-industrial atmospheric d13C. The second axis and the grey dotted line represent
atmospheric CO2 change
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This result is highly relevant to both Miocene C4 range expan-

sions as well projections for near-future global change. Physiologi-

cally, a 1°C increase in temperature should have only a small impact

on C4 versus C3 photosynthesis, but the insensitivity of C4 distribu-

tions to a 143% increase in CO2 is particularly striking (Ehleringer

et al., 1997). This result mirrors the findings of (Cotton et al., 2016)

that C4 grasses expanded northward despite rising CO2 since the

LGM and that most CO2-driven (post-glacial) increase in C3 grasses

has occurred at concentrations below 280 p.p.m., although some

change is still expected (Collatz et al., 1998; Cotton et al., 2016).

Similarly, reduced fire frequencies due to human activities has not

favoured C3 grasses broadly across the C4 sites. In contrast, the Mio-

cene rise to ecological dominance of C4 grasses occurred largely dur-

ing times of little CO2 or temperature change (Beerling & Royer,

2011), with changes to precipitation seasonality and consequences

for fire frequency being the most likely drivers (Cotton et al., 2016;

Scheiter et al., 2012). Therefore, it is unclear what mechanisms have

reinforced photosynthetic type composition since the industrial revo-

lution. As this study focuses on grass only, it also provides a useful

comparison to work focusing on CO2 enrichment effects on C4

grasses versus C3 woody vegetation, a contrast that is potentially

more sensitive to CO2 change and interactions with fire and precipi-

tation regimes in tropical regions (Bond & Midgley, 2012).

Using spatially coarse-grain data, the relative composition of C3

and C4-grass from vegetation plot inventories was better correlated

with bison than soil d13C. Furthermore, the relationship between

bison and vegetation composition was surprisingly strong given that

the bison tissues date across the last 300 years (Figure 5), but plot

data are from only the last 40 years (44% of the modern bison data

are older than 40 years). Conversely, the vegetation-soil d13C rela-

tionship was surprisingly weak (Figure 2). Previous studies have

found strong positive relationships between soil and herbivore d13C

and vegetation composition. For the study extent (the conterminous

USA) these studies include Great Plains soil d13C with modelled C4

vegetation percentage (von Fischer, Tieszen, & Schimel, 2008) and

bison d13C with nearby (<40 km) vegetation plots (Hoppe et al.,

2006). In this study, we find a much weaker relationship than von

Fischer et al. (2008) for soil d13C when compared to standing vege-

tation. To our knowledge, this is the first study that compares soil

and bison d13C proxies to measured vegetation composition at a

consistent, coarse spatial grain over a broad spatial extent. Thus, this

study offers a key assessment of the impact of the differing spatial

resolutions of processes, such as C integration in herbivores versus

soils, on their representation in biogeographical- and palaeo-d13C

datasets. Although the scale difference between proxies from herbi-

vore tissues and collections of soil points is intuitive, we stress that

it is commonplace in the literature to apply local soil measurements

across large spatial and temporal extents (as reviewed in: Beerling &

Royer, 2011; Bowen, 2010; Dawson et al., 2002; Hobson, 1999;

Str€omberg, 2011). The superior performance of herbivore proxies

compared to soils in this study suggests that other grazer and brow-

ser vegetation proxies, especially those with longer fossil records like

camels or deer, may also perform well (barring the effects of diet

preference)—as such, conducting similar studies in such species

would represent a significant step forward.

Soil d13C was linearly related to relative abundance of C4

grasses, but the relationship was also improved by the addition of

tree cover and MAP as direct predictors of d13C in our SEM (Fig-

ure 4). Tree cover had a negative relationship to soil d13C values,

likely reflecting trees as an isotopically depleted (C3) carbon source,

a finding that mirrors the woody cover relationship used by (Cerling

et al., 2011). Our vegetation plots are located in grass-dominated

areas and 98% of the grid cells contained mean LAI values <1 as

observed with MODIS LAI (i.e. they are grassland plots) (Asner, Scur-

lock, & Hicke, 2003). As such, comparing local- and ecosystem-level

variation in d13C proxies might also be valuable for studies that

examine d13C across broader LAI gradients (similar to Ladd et al.,

2014) or for combination with phytolith data for improving palaeo-

LAI proxies (Dunn, Stromberg, Madden, Kohn, & Carlini, 2015). The

SEM path from MAP to soil d13C was positive, and harder to explain

than the other paths because rainfall is expected to increase carbon

isotope fractionation in woody C3 vegetation (resulting in more neg-

ative d13C), although this has not been investigated in mixed C3 and

C4 ecosystems (Diefendorf et al., 2010; Kohn, 2010). Because the

effect of MAP on soil d13C was positive, it is also unlikely that it

reflects unaccounted patterns of OC or root allocation (Angelo &

Pau, 2015). It is also possible that this relationship reflects increased

abundance of C4 NADP-me grasses that have less negative d13C

(Cerling & Harris, 1999), although most likely this result is an artefact

of low sample size. In contrast to soils, the strong link from C4 rela-

tive cover abundance and bison d13C was only slightly improved by

the addition of a SEM path from MAP, indicative of the stronger

connection between herbaceous vegetation and herbivore diet at

100-km resolution. Working with bison data is potentially challeng-

ing because they have variable migratory routes (local to >100 km),

sample vegetation across seasons, and they may consume herbs or

shrubs (up to 2%) or have dietary preferences, but may eat a sub-

stantial amount of sedges (Coppedge, Leslie, & Shaw, 1998; Mea-

gher, 1989). Our data suggest that despite these sources of

variability, bison are strongly representative of the grass C4 percent-

age at a coarse grain and are not systematically biased. Finally, given

that the bison isotope data are up to 250 years older than the vege-

tation data (Figure 5), the strong alignment of bison and vegetation

data suggests an impressive degree of ecosystem and community

level stasis in terms of relative representation of photosynthetic

pathways in these grasslands.

One major difference between the bison and soil d13C data is

the drastically different temporal and spatial scales at which they

integrate C. Bison are mobile and sample grassland vegetation over

large areas over short time scales (diet), whereas soils incorporate

d13C variation across a local spatial range and over the time scale of

soil carbon turnover. Our semivariogram analysis revealed that

around one-third of variation in soil d13C is contained at local scales

(here, <100 km) (Auerswald et al., 2009), suggesting that much of

the unexplained variance in our statistical model predicting d13C is

due to local variation not captured on our grid (Table 1). This
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contrasts with bison, which had much less unexplained local varia-

tion than the vegetation plot inventories, indicative of the coarse

spatial grain over which these organisms integrate C.

In conclusion, across the North American Great Plains and in

sites minimally impacted by land-use conversion, we found no sys-

tematic change in C4 grass distributions over the last few hundred

years. In particular, this result suggests that there has been no signif-

icant role for CO2 fertilization of C3 grasses at a biogeographical

extent (Cotton et al., 2016; Morgan et al., 2011). To capture grass

distributions at a broad extent during recent environmental change

we used a multi-proxy approach that allowed us to assess the quality

of isotopic proxies and examine differences in the spatial grains that

different proxies represent. The spatial resolution of processes gen-

erating d13C heterogeneity should be thoroughly considered in

determining the grain at which we analyse and make inferences from

data (Goodchild, 2011). This means that different proxies will per-

form better than others when used to represent the broad spatial

extents and coarse-grain sizes over which ecologists and geologists

often use them. We suggest that studies using d13C proxies explicitly

address how well their isotopic proxies can be scaled-up (to larger

grain sizes), especially when the spatial or temporal scale of C inte-

gration differs from the ecological processes in the study. One fruit-

ful avenue for studies using stable isotope approaches would be to

sample across gradients using a nested sampling scheme (e.g. using

Modified-Whittaker plots; Stohlgren, Bull, & Otsuki, 1998) to parti-

tion variation in soil d13C at different spatial ranges and to link that

variation to processes at different spatial extents explicitly (e.g. varia-

tion driven by a rainfall gradient versus local soil heterogeneity). This

work shows that bison d13C data are better vegetation proxies than

soils at coarse resolutions. While soils and palaeosols may be useful

for local-scale vegetation reconstructions, large-scale interpretations

of palaeovegetation based on isotopic reconstructions should be

made using grazers rather than soils. Ultimately, the reconstruction

of post-industrial vegetation change reported here reveals surpris-

ingly little variation in C3 and C4 grass relative abundance, in the

face of massive global changes. This also implies that future changes

in the C3/C4 composition of grasslands projected by biosphere mod-

els may be significantly overestimated.
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