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Summary. We construct optimal designs for group testing experiments where the goal is to
estimate the prevalence of a trait by using a test with uncertain sensitivity and specificity. Using
optimal design theory for approximate designs, we show that the most efficient design for sim-
ultaneously estimating the prevalence, sensitivity and specificity requires three different group
sizes with equal frequencies. However, if estimating prevalence as accurately as possible is the
only focus, the optimal strategy is to have three group sizes with unequal frequencies. On the
basis of a chlamydia study in the USA we compare performances of competing designs and
provide insights into how the unknown sensitivity and specificity of the test affect the perfor-
mance of the prevalence estimator. We demonstrate that the locally D- and Ds-optimal designs
proposed have high efficiencies even when the prespecified values of the parameters are mod-
erately misspecified.
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1. Introduction

In a group testing study, the goal is often to estimate the prevalence of a rare disease or a
particular trait (Hughes-Oliver and Swallow, 1994; Hughes-Oliver and Rosenberger, 2000).
Group testing is frequently used in studies where testing individuals for a trait is expensive and
individual samples are relatively plentiful. In a group testing study, samples from individuals
are pooled and tested as a single unit. Fewer tests or trials are therefore required so that the
cost of the study is reduced. (Throughout, we use the terms trials and tests interchangeably.)
The key assumption is that the test result from a group of individuals is positive if and only if
at least one individual in the group has the trait.
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Applications of group testing abound in the literature, especially for case diagnosis (McMa-
han et al., 2012) and prevalence estimation of diseases (Shipitsyna et al., 2007). Several re-
searchers have shown that group testing techniques can be used to estimate the prevalence
of a rare disease efficiently (Hughes-Oliver, 2006). Dorfman (1943) gave an early perspective
and an overview. From the design point of view, some key research questions are to deter-
mine how many distinct group sizes should be used, and how many trials at each such group
size should be run. In practice, group testing studies usually have only one group size, but
this may be because the potential advantages of using unequal group sizes have not been well
explored.

Much of the work on group testing makes a simplifying assumption that there is no testing
error; see for example, Hughes-Oliver and Rosenberger (2000). In practice, the test in most
group testing experiments is likely to have non-zero error rates, with sensitivity and specificity
being less than 100%. We recall that sensitivity is the probability that the test will be positive
given that the sample tested is truly positive, and specificity is the probability that the test will
be negative given that the sample tested is truly negative.

A few researchers have considered application of group testing when there may be testing
errors, but they assumed that the sensitivity and specificity are known and do not depend on the
group size. When the total number of individuals is fixed and all group sizes are equal, Tu et al.
(1995) obtained the maximum likelihood estimator (MLE) of the prevalence and determined
graphically the common group size that minimizes the variance of the prevalence estimator. For
a given group size, Liu et al. (2012) determined conditions under which group testing performs
better than individual testing, when either the total number of trials or the total number of
individuals is fixed.

The sensitivity and specificity can be directly estimated if samples are tested by using both
the test of interest and a ‘gold standard’ test that has no testing errors. Such a gold standard
test may not exist, however, and, even if one does exist, it may be too expensive or complex for
routine use. Lacking a gold standard test, investigators may prespecify sensitivity and specificity
values. However, nominal values may be optimistic, and values that are estimated from different
populations could be biased. Therefore it is more realistic in applications to assume that the
sensitivity and specificity of the test are both unknown. Under this assumption, Zhang et al.
(2014) used numerical methods to obtain group testing designs with or without a gold standard
test. Their proposed designs are not fully supported by theory as being optimal.

When the cost of a test is greater than the cost of collecting an individual sample, it may be
reasonable to design the study by taking the total number of trials, rather than the total number
of individuals, to be fixed. Our goal is to apply optimal design theory to construct optimal group
testing designs when we have a fixed number of trials, and when both the sensitivity and the
specificity of the test are unknown. We consider two situations:

(a) we want to estimate the prevalence, sensitivity and specificity, all with equal interest;
(b) only the prevalence is of interest, but both testing error rates are treated as nuisance

parameters in the design problem.

In the framework of optimal experimental design (Atkinson et al., 2007; Berger and Wong,
2009), the first setting requires estimating all unknown parameters, and the second setting
requires the estimation of only one of the three unknown parameters in the model. D-optimality
as a design criterion is appropriate for the first situation and Ds-optimality is appropriate for the
second situation. The resulting optimal designs are called D-optimal and Ds-optimal designs
respectively. These optimal designs minimize the generalized variance of all or a subset of the
model parameters of interest among all designs, so they provide the most accurate inference
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for all three or just the prevalence parameter. Other design criteria, such as A-optimality or
c-optimality, can also be used.

Our set-up is different from earlier studies for finding efficient or optimal designs for group
testing experiments, such as Tu et al. (1995) and Zhang et al. (2014). The main differences are
that

(a) our optimal designs are sought among all possible designs without any restriction on the
number of different group sizes and

(b) our optimal designs are justified by theory.

Tu’s results are more restrictive because their designs are sought among all designs with a
common group size and cannot incorporate uncertainty in testing error rates. Zhang’s designs
are obtained by numerical optimization with dimension as large as the upper bound of the
group sizes; therefore their global optimality cannot be guaranteed, and we may not be able to
interpret how prespecified parameter values affect their optimal designs. To our best knowledge,
our work is the first that uses optimal design theory to provide a theoretical justification for
designing group testing experiments when testing error rates are uncertain.

The organization of our paper is as follows. Section 2 describes the statistical background.
Section 3 constructs optimal group testing designs for the two situations that were described
above. In Section 4, we evaluate the finite sample properties and robustness properties of our
proposed optimal designs when the parameter vector is misspecified. The set-up of the simulation
is based on a chlamydia study conducted in the USA. We end the paper with a discussion in
Section 5 with remarks on alternative methods and ideas for further research directions in this
area.

All computations in this paper were done by using our code called gtest.nb developed
by using Mathematica 10.0; see Wolfram (2015) for more details. The package can be freely
downloaded from http://www.math.nsysu.edu.tw/∼lomn/huangsh/.

2. Preliminaries

Throughout, we denote the prevalence, sensitivity and specificity of the test by p0, p1 and p2
respectively. We assume that p0 ∈ .0, 1/, p1, p2 ∈ .0:5, 1] and the two types of testing errors occur
randomly with testing error rates 1 − p1 and 1 − p2 respectively. Letting θ = .p0, p1, p2/T, a
direct calculation shows that the probability of a positive response (either a true positive or a
false positive) for a trial with group size x is

π.x/=π.x|θ/=p1 {1− .1−p0/x}+ .1−p2/ .1−p0/x =p1 − .p1 +p2 −1/ .1−p0/x : .1/

In practice, there are generally limits on the group sizes so we consider designs that are subject to
a known group size constraint 1�xL �x�xU <∞. We note that π.x/ is a convex combination
of p1 and 1−p2. For a study consisting of n trials at k distinct group sizes x1 <x2 <: : :<xk, the
log-likelihood function of θ is

L.θ/=
k∑

i=1
[yi log{π.xi|θ/}+ .ni −yi/ log{1−π.xi|θ/}], .2/

apart from an unimportant additive constant. Here each yi is the number of positive responses
among the ni trials at group size xi and Σk

i=1ni = n. We assume that each yi has a binomial
distribution with parameters .ni, π.xi|θ//, and the {yi}k

i=1 are mutually independent.
In what follows, we work with approximate designs that were advocated by Kiefer (1974). An

approximate group testing design denoted by ξ ={.xi, wi/}k
i=1 contains k distinct group sizes (or
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support points) x1 < x2 <: : :< xk and corresponding weights w1, w2, : : : , wk, where Σk
i=1wi = 1

and each wi >0 is interpreted as the proportion of trials at group size xi. When the total number
of trials n is fixed a priori by either cost or practical considerations, the group testing design
ξ takes nwi groups of size xi, i = 1, : : : , k, subject to nw1 +: : : + nwk = n. In reality, the group
sizes and the numbers of trials at these sizes must be positive integers. Therefore, optimal ap-
proximate group testing designs are rounded before implementation so that each group size
and its frequency are positive integers. We call such designs rounded optimal designs. Simple
rounding procedures to obtain a design for implementation have been shown to produce little
loss in efficiency. More efficient rounding apportionment that was introduced in section 12.5 of
Pukelsheim (2006) can also be applied to obtain the optimal number of trials at the rounded
group size.

Under model (1), the MLE of θ is obtained by maximizing log-likelihood (2). If design ξ
were used to obtain the data, a direct calculation shows the covariance matrix of the estimated
θ is asymptotically proportional to the inverse of the 3 × 3 Fisher information matrix given
by

M.ξ/=
k∑

i=1
wi λ.xi/f.xi/f.xi/

T =Mf .ξ/diagλ.ξ/Mf .ξ/T: .3/

Here

λ.x/= [π.x/{1−π.x/}]−1,

f.x/= .f0.x/, f1.x/, f2.x//T,

f0.x/= @π.x/=@p0 =x.p1 +p2 −1/.1−p0/x−1,

f1.x/= @π.x/=@p1 =1− .1−p0/x,

f2.x/= @π.x/=@p2 =−.1−p0/x,

Mf .ξ/= .f.x1/, f.x2/, : : : , f.xk//∈R3×k, .4/

and diagλ.ξ/ is a k ×k diagonal matrix with elements {wi λ.xi/}k
i=1.

The design that we seek for estimating θ is a D-optimal design that maximizes the determinant
of the information matrix (3), or equivalently a design that minimizes the generalized variance
of all parameter estimators, by choice of k, x1, : : : , xk, w1, : : : , wk. In other words, a D-optimal
design maximizes

ΦD{M.ξ/}= log|M.ξ/| .5/

among all possible designs under which θ is estimable. When we are interested in estimating only
a subset of the model parameters, we use the Ds-optimality criterion. Here we are interested
in accurately estimating only the prevalence, and we treat sensitivity and specificity as nuisance
parameters. The Ds-criterion here is to minimize only the asymptotic variance of the prevalence
estimator. Such a Ds-optimal design maximizes

Φs{M.ξ/}=− log.M.ξ/−/11 .6/

among all designs under which p0 is estimable, where M− is a generalized inverse of matrix M and
we use the notation O11 to denote the .1, 1/ entry of the matrix O. Note that the Ds-optimality
above is equivalent to c-optimality with c= .1, 0, 0/T (Fedorov, 1972).

The solutions to our optimization problems require solving the equations in lemma 1 below.
Its proof mainly requires calculus and the intermediate value theorem and has therefore been
omitted. Before stating lemma 1, we introduce further notation. Let
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c=p1={.p1 +p2 −1/.1−p0/xL}> 1,

δ = .1−p1/=p1 ∈ [0, 1/,

r = .1−p0/xU−xL ∈ .0, 1/

and

Δ0 = r log.r/=.1− r/:

For a∈ .r, 1/, let

Δ1.a/= .a− r/
√{.c−1/.δc+1/}+ .1−a/

√{.c− r/.δc+ r/}
.1− r/

√{.c−a/.δc+a/} ,

and let

Δ2.a/=
√{.c−1/.δc+1/}−√{.c− r/.δc+ r/}

.1− r/
√{.c−a/.δc+a/} :

These definitions imply that r<a< 1 <c, which is used in the proofs without further mention.

Lemma 1. Each of the following equations has a root a∈ .r, 1/:

2
a

{
1+ 1+Δ0 ×1=a

log.a/−Δ0 .1=a−1/

}
= 1

δc+a
− 1

c−a
.7/

and

2 {1+Δ1.a/}
a

{
1+ 1+Δ0 ×1=a

log.a/−Δ0 .1=a−1/

}
= 1

δc+a
− 1

c−a
+2Δ2.a/: .8/

3. The D- and Ds-optimal designs

Before characterizing the D- and Ds-optimal designs, we first characterize a small class of designs
that is guaranteed to contain D- and Ds-optimal designs, and then we obtain the optimal designs
from the class. Such an approach is based on the so-called ‘essentially complete classes’ that were
used in Cheng (1995) and Yang and Stufken (2009), among others, to identify optimal designs
in certain settings. Recently, a series of references, including Yang and Stufken (2012) and Hu
et al. (2015), proposed a framework to obtain essentially complete classes and provided several
important properties of optimal designs identified in the class. We follow such an approach.

A class C is called an essentially complete class if, for an arbitrary design ξ1 �∈ C, there is
a design ξ2 ∈C such that M.ξ2/ − M.ξ1/ is non-negative definite. Therefore, it guarantees that
there is an optimal design in C when the design criterion has certain properties such as concavity,
isotonicity and smoothness. For example, assumption A in Hu et al. (2015) includes criteria like
D- and Ds-optimality, and other criteria based on the information matrix. Let

C0 =
{

{.xi, wi/}3
i=1 : xL =x1 <x2 <x3 �xU,

3∑
i=1

wi =1, wi �0
}

:

By allowing wi = 0 at some points, this class contains all one- and two-point designs, and all
three-point designs with a support point at xL. By applying theorem 2(a) in Yang and Stufken
(2012), we have the following theorem which allows us to search for a D- and a Ds-optimal
group testing design in C0.

Theorem 1. The class C0 is essentially complete.
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The justifications of this result and others are given in Appendix A.

3.1. The unique D-optimal design
When we wish to estimate prevalence, sensitivity and specificity simultaneously, we need a design
with at least three points to estimate the three parameters. The sought design is a D-optimal
design for estimating the three parameters of the model. From theorem 1, such a D-optimal
group testing design exists in C0 and the following theorem ensures the uniqueness of the D-
optimal design and characterizes it.

Theorem 2. The D-optimal design ξD for estimating the prevalence and the two testing error
rates is unique. It has three group sizes xL, xÅ

2 and xU with equal weights, where xÅ
2 − xL =

log.A1/= log.1−p0/ and A1 uniquely solves equation (7).

Theorem 2 asserts that the D-optimal design requires equal numbers of trials at three distinct
group sizes, with two of them being the extreme sizes xL and xU. No design with four or more
group sizes can estimate the three parameters more accurately than the D-optimal design. In
addition, our proof of theorem 2 implies that

(a) the root of equation (7) must be unique in .r, 1/, or otherwise it contradicts the uniqueness
of the D-optimal design, and

(b) either having a smaller value of xL or having a larger value of xU always strictly reduces
the generalized variance of the MLE of θ.

Thus, we suggest the lower bound xL to be 1 whenever possible. However, too large a value of xU
may cause a dilution effect (Zenios and Wein, 1998), impacting the sensitivity or the specificity
of the test. Thus, the upper bound xU should be set carefully.

When p0 and xL are small and xU is large, we observe that π.xL/ is close to 1−p2 and π.xU/

is close to p1, which imply that trials at size xL and xU mainly provide information for p2 and
p1 respectively. We may conclude that xÅ

2 contributes most for estimating p0. In practice, p1
and p2 for a given test may be estimated by comparing the test results with a gold standard test
having no testing errors. In the absence of a gold standard, the maximum likelihood approach
can be seen as comparing the test results from the intermediate group size with those from the
two extreme group sizes, to acquire information about the error parameters p1 and p2, and the
prevalence p0. Accordingly, we may regard the test results from the two extreme group sizes
as playing a similar role to that of a gold standard test for providing information on p1 and
p2.

3.2. The unique Ds-optimal design
Theorem 2 assumes that there is equal interest in estimating prevalence, sensitivity and specificity.
In practice, the interest is usually to estimate accurately the prevalence alone, and the sensitivity
and specificity of the test are treated as unknown nuisance parameters. When the main goal is to
estimate only the prevalence as accurately as possible, the Ds-optimality criterion (6) is the most
suitable. A Ds-optimal design minimizes the .1, 1/ element of the inverse of the information
matrix (3), which is proportional to the asymptotic variance of the prevalence estimator.

To determine the optimal weights under the Ds-criterion for a fixed number of group sizes,
suppose that there are three group sizes x1 <x2 <x3 in the allowable range [xL, xU]. Let

Qi.x1, x2, x3/=λ.xi/
−1{.1−p0/x

.i/
1 − .1−p0/x

.i/
2 }2 > 0,

for i=1, 2, 3, where x
.i/
1 and x

.i/
2 are the two group sizes of {x1, x2, x3}\{xi} such that x

.i/
1 <x

.i/
2 .
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To be more specific, x
.1/
1 =x2, x

.1/
2 =x3, x

.2/
1 =x1, x

.2/
2 =x3, x

.3/
1 =x1 and x

.3/
2 =x2. For any group

testing design with three group sizes, the next lemma prescribes the optimal weights under the
Ds-criterion.

Lemma 2. For any group testing design with three group sizes x1, x2 and x3 ∈ [xL, xU], the
optimal weights under the Ds-criterion for only estimating the prevalence are unique and
given by

ws
i =Qi.x1, x2, x3/1=2

/
3∑

j=1
Qj.x1, x2, x3/1=2 .9/

for i=1, 2, 3, and

max Φs{M.ξ/}= log |Mf .ξ/|2 −2 log
{

3∑
i=1

Qi.x1, x2, x3/1=2
}

: .10/

Our next result gives a complete description of the Ds-optimal design for estimating the
prevalence when the testing error rates are unknown.

Theorem 3. The Ds-optimal design ξs for estimating the prevalence alone is unique and
requires three group sizes xL, xs

2 and xU, where xs
2 −xL = log.As/= log.1−p0/ and As uniquely

solves equation (8). The proportions of groups with such sizes are given in equation (9) in
lemma 2.

We observe that equation (8) approximates equation (7) when Δ1 and Δ2 are both close to 0,
which may occur in practice when π.xL/ tends to 0 and π.xU/ tends to 1. Consequently, A1 ≈As,
and the intermediate support point xs

2 of the Ds-optimal design for estimating the prevalence is
close to the intermediate support xÅ

2 of the corresponding D-optimal design.
Theorem 3 shows that the Ds-optimal design for estimating prevalence with unknown testing

error rates has similar properties to those of the D-optimal design for estimating the three
parameters. In particular,

(a) no design with four or more different group sizes can estimate the prevalence more accu-
rately than the Ds-optimal design with three different group sizes,

(b) the root of equation (8) must be unique in .r, 1/,
(c) either having a smaller value of xL or having a larger value of xU strictly improves the

accuracy of prevalence estimation and
(d) groups with size xL and xU mainly contribute information about the specificity and sensi-

tivity respectively, and the groups with the intermediate size mainly contribute information
about the prevalence.

When xL is small and xU is large, which imply that π.xL/ is much smaller than 0:5 and π.xU/

is much larger than 0:5 by equation (1), then Q2.xL, xs
2, xU/ is much larger than Q1.xL, xs

2, xU/

and Q3.xL, xs
2, xU/. Consequently, the proportion of groups with the intermediate size is much

larger than the other two group sizes. This observation is not surprising partly because the Ds-
optimal design criterion seeks information for the prevalence only and does so by having more
groups with the intermediate size.

4. Design performance

The optimal designs that were discussed in the previous section are locally optimal approximate
designs, and their group sizes and the number of trials at each group size must be rounded
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to positive integers for implementation. In addition, their information matrices are based on
the asymptotic distribution of the MLE of the parameter vector. In what follows, we study the
properties of the rounded optimal designs when we have moderate sample size (the total number
of trials), and their sensitivity to the prespecified value of the parameter vector.

Recall that θ = .p0, p1, p2/T is the true but unknown vector of parameters in our model,
[xL, xU] is the user-specified allowable range of group sizes and we are interested in either
estimating θ or only the prevalence parameter p0. For an approximate design ξ ={.xi, wi/}k

i=1
with integer-valued group sizes, denote its exact design with n trials as ξ.n/ = {.xi, ni=n/}k

i=1,
where n1, : : : , nk are integers that are obtained by applying the efficient rounding apportionment
(Pukelsheim (2006), section 12.5) to {nw1, : : : , nwk}. Let θ̂ξ.n/ be the MLE of the parameter
vector θ under the exact design ξ.n/. We define the mean-squared error matrix of θ̂ξ.n/ (scaled
by sample size n) by

MSE.θ̂ξ.n//=nE[.θ̂ξ.n/ −θ/.θ̂ξ.n/ −θ/T]: .11/

Note that MSE.θ̂ξ.n// converges to M.ξ/−1 as n→∞ by the asymptotic property of MLEs.
The analytical form of MSE.θ̂ξ.n// is quite complicated unless the sample size n is very small.

We therefore study MSE.θ̂ξ.n// by simulation as follows. Let N be the number of simulation
replications. For t = 1, : : : , N, we simulate a sample of n trials generated from ξ.n/, consisting
of ni binary outcomes with response probability π.xi|θ/ for i= 1, : : : k, and compute θ̂

.t/

ξ.n/, the
MLE of θ from the sample. The simulation-based mean-squared error matrix of ξ is defined by

̂MSE.θ̂ξ.n//= n

N

N∑
t=1

.θ̂
.t/

ξ.n/ −θ/.θ̂
.t/

ξ.n/ −θ/T: .12/

We use two measures to assess the finite sample performance of ξ.n/. They are the (simulation-
based) D- and Ds-efficiencies, defined respectively by

EFFD{ξ.n/}=
{ |M.ξD/−1|

|̂MSE.θ̂ξ.n//|

}1=3

,

EFFs{ξ.n/}= M.ξs/
−1
11

̂MSE.θ̂ξ.n//11

,

.13/

where ξD and ξs are the D- and Ds-optimal designs obtained from theorems 2 and 3.
In what follows, we set the number of simulation replications to N = 10000 and set the

prespecified values of the test parameters to match the chlamydia study from Nebraska, USA
(McMahan et al. (2012), Table 1). McMahan et al. (2012) prespecified the prevalence to be 0:07,
and the sensitivity and specificity to be 0:93 and 0:96 for females’ swab specimens. Suppose that
we have a budget for n=3000 trials, and the allowable range of the group size is [xL, xU]= [1, 61].

4.1. Finite sample performance of the rounded optimal designs
First, we construct the D- and Ds-optimal designs and show that the effects of rounding (both
the group sizes and their numbers of trials) and the use of asymptotic approximations are small.
Under θ = .0:07, 0:93, 0:96/T and [xL, xU] = [1, 61], the D-optimal design ξD from theorem 2 is
equally supported on {1, 16:79, 61}. For n=3000, its rounded design ξ′

D.3000/ has group sizes
{1, 17, 61} with 1000 groups per size.

Similarly, the Ds-optimal design ξs that is obtained from theorem 3 is supported on {1, 15:68,
61}. Its rounded design ξ′

s.3000/ is therefore supported on {1, 16, 61} and has {393, 1884, 723}
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Table 1. D- and Ds-efficiencies of the rounded D- and Ds-optimal designs, and the
k-point uniform designs for k D3,. . . , 6

Design ξ′
D(3000) ξ′

s(3000) ξ
.3/
U (3000) ξ

.4/
U (3000) ξ

.5/
U (3000) ξ

.6/
U (3000)

EFFD 0.9904 0.8193 0.7988 0.8456 0.8133 0.7805
EFFs 0.6977 1.0052 0.3170 0.4851 0.5274 0.5509

trials at {1, 16, 61} respectively. These numbers of trials are based on the Ds-optimal weights
on {1, 16, 61} by lemma 2, which are slightly different from the weights of ξs. The simulation
results in Table 1 show that the D-efficiency of ξ′

D.3000/ and the Ds-efficiency of ξ′
s.3000/ are

both close to 1. This indicates that the performance of the rounded D- (and Ds-) optimal design
is similar to the asymptotic performance of the D- (and Ds-) optimal approximate design.

Next, we compare the finite sample performance of the rounded D- and Ds-optimal de-
signs with k-point uniform designs ξ

.k/
U .n/, supported on the positive integers {1+60i=.k −1/ :

i = 0, : : : , k − 1}, for k = 3, : : : , 6. For example, ξ
.4/
U .3000/ has 750 trials at each group size of

{1, 21, 41, 61}. Table 1 also shows the performance of these k-point uniform designs. We ob-
serve that, although the optimal designs ξD and ξs have exactly three support points, ξ.3/

U .3000/ is
not the best among these uniform designs regarding D- or Ds-efficiency. In contrast, ξ

.4/
U .3000/

performs best for estimating θ among these uniform designs, but its D-efficiency is about 0:85
and is less than EFFD{ξ′

D.3000/}. Furthermore, the design ξ
.6/
U .3000/ has highest Ds-efficiency

among these uniform designs, but its Ds-efficiency is only about 0.55 and is significantly less
than EFFs{ξ′

s.3000/}. This indicates that, when focusing on estimating θ (or p0), the rounded
D- (or Ds-) optimal design under the true parameter vector performs much better than the
uniform designs above.

4.2. Robustness of the rounded optimal designs
Now we consider the situation where the prespecified value of θ that is used in the local
design construction is incorrect. Specifically, suppose that the prespecified parameter vector
θ̃ = .p̃0, p̃1, p̃2/T is a point in the region Θ= [0:01, 0:10]× [0:9, 1]2, containing the true value of
the parameter vector θ = .0:07, 0:93, 0:96/T.

Let ξ′
D,θ̃

.3000/ be the rounded D-optimal design under the prespecified parameter vector θ̃.
In D-optimality, the prespecified value of the parameter vector affects only the intermediate
group size xÅ

2 in theorem 2 but does not affect the other two group sizes and the weights on the
three support points. Hence, ξ′

D,θ̃
.3000/ is equally supported on {1, x̃, 61}, where x̃ depends on

θ̃. Fig. 1 shows the corresponding x̃ for selected θ̃∈Θ. We observe that, when, the specified θ̃ is
within Θ, x̃ shifts from 12 to 25, where x̃=17 for θ̃ = θ; x̃ increases as p̃0 or p̃2 decreases, or as
p̃1 increases. When the prevalence is small such as 0.01, the specificity seems to play a dominant
role on the D-optimal design, whereas, as the prevalence becomes larger, the dominant factor
shifts from the specificity to sensitivity; and the sensitivity and specificity have a similar effect
on the design when the prevalence is close to 0:04.

Fig. 2 shows the D-efficiency of ξ′
D,θ̃

.3000/ for θ̃∈Θ in terms of x̃, where x̃=12–25. Generally,
these rounded D-optimal designs under misspecified θ̃ ∈Θ have D-efficiencies that are greater
than 90%. Note that the rounded D-optimal design is equally supported on three group sizes
including two extreme sizes. In contrast, the design ξ

.3/
U has the same form but its D-efficiency is

about only 0:8. This indicates that the rounded D-optimal design under a misspecified parameter
vector is quite robust for estimating θ.
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Fig. 1. Intermediate group size x̃ of the rounded D-optimal designs under a prespecified θ̃ D .p̃0, p̃1, p̃2/T
(here p̃0 D 0.01, 0.04, 0.07, 0.10 and p̃1,p̃2 D 0.90, 0.91,. . . , 0.99, 1.00): (a) p̃0 D 0.01; (b) p̃0 D 0.04; (c) p̃0 D
0.07; (d) p̃0 D0.10

Similarly to the parameter misspecification setting for the D-optimal design, we obtain the
rounded Ds-optimal designs ξ′

s,θ̃
.3000/ supported on {1, x̃s, 61} under a possibly misspecified

parameter vector θ̃, where x̃s depends on θ̃∈Θ. A direct calculation shows that the intermediate
group size x̃s is between 11 and 25, and the weights of group sizes 1, x̃s and 61 are respectively
within 0:14±0:05, 0:67±0:14 and 0:19±0:12.

Fig. 3 shows the Ds-efficiencies of ξ′
s,θ̃

.3000/ for selected θ̃ ∈ Θ. We observe that
EFF{ξ′

s,θ̃
.3000/} is larger than or close to 0:8 when the prespecified θ̃ belongs in the region

[0:04, 0:10] × [0:90, 0:99] × [0:90, 1:00] ⊂ Θ, which limits the distance from θ̃ to the true value
of θ = .0:07, 0:93, 0:96/T. However, when p̃0 = 0:01 (not near the true prevalence p0 = 0:07) or
p̃1 = 1:00 (not near the true sensitivity p1 = 0:93), EFF{ξ′

s,θ̃
.3000/} drops to as low as 0:6. We

observe that the Ds-optimal design is slightly more sensitive than the D-optimal design when
there is substantial parameter misspecification but still performs well when the prespecified
parameter vector is not far from its true value.

Finally, comparing Figs 2 and 3 with Table 1, we observe that, when the prespecified values
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Fig. 2. D-efficiency of the design that is equally supported on {1, x̃, 61} with n D 3000, for x̃ D 12–25:
these designs arise as rounded D-optimal designs for θ̃ 2Θ as defined in the text

of parameters are moderately misspecified, a rounded D- (or Ds-) optimal design still has at
least 0.9 D-efficiency (or 0.8 Ds-efficiency), but those uniform designs have at most only 0:85 D-
efficiency (or 0.55 Ds-efficiency). Our conclusion is that, when we wish to estimate θ (or p0), we
would recommend implementing a rounded D- (or Ds-) optimal design over any of the uniform
designs that we had investigated.

5. Discussion

Our work addresses several design issues for group testing studies using optimal design theory.
Under uncertain testing error rates, we provide locally optimal designs for estimating prevalence
alone or jointly with sensitivity and specificity. Our designs are justified by rigorous theoretical
analysis and they provide the most accurate parameter estimates among all group testing designs.
By contrasting the D- and Ds-optimal designs, we observe that relatively fewer trials at extreme
group sizes are required in the Ds-optimal design, where the sensitivity and specificity are treated
as nuisance parameters in the Ds-criterion. In the optimal approximate design, the theoretical
group sizes and the frequencies of the group sizes are not guaranteed to be integers. We show
by simulations that the rounded D- and Ds-optimal designs still have very high efficiencies. In
addition, our simulation results show that our designs are still quite robust when the prespecified
values of parameters are not far from their true values.

Although our theoretical results apply in general, our simulation studies focused on settings
with 3000 trials and had a maximum group size of approximately 60. This can be compared
with two published studies using group testing: one in Russia estimating chlamydia prevalence
(Shipitsyna et al., 2007), which had three designs, involving 150–1500 trials, and one in the
USA focusing on chlamydia diagnosis (McMahan et al., 2012), which used 7000 trials. Thus the
number of trials in our simulation study is similar to what has been used in practice, where the
estimation burden is lighter because the sensitivity and specificity are treated as known there.
We also note that the number of individual samples in our simulation example is larger than
what were used in these two real world studies. Since our designs are optimal, this reflects the
unavoidable cost of estimating the prevalence as well as sensitivity and specificity from a single
data set with no prior knowledge about any of the parameters.

Our locally optimal designs can be used in the multistage adaptive approach as in Hughes-
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Oliver and Swallow (1994), where they assumed no testing errors. For example, a D- or Ds-
optimal design may be implemented based on any available prior knowledge from the first
stage. In the subsequent stages, we construct a D- or Ds-optimal design based on the information
about the parameters that were obtained in the previous stages. Alternatively, a Bayesian optimal
design approach or a minimax approach (Dette et al., 2014) can be implemented. For example,
the experimenters may obtain a design that maximizes the Ds-optimality criterion averaged
over the parameters with respect to their prior distribution, or a design that minimizes the
largest possible variance of the prevalence estimator among different values for the parameters.
Such Bayesian or minimax optimization problems are difficult to address theoretically and even
numerically but are of interest for future studies.

The results that are presented here are appropriate for a setting in which the testing errors
occur randomly and are unrelated to the group size within a prespecified range. In practice, the
plausible range of group sizes comes from cost considerations or the physical constraints that
are imposed on the study. A careful decision about the range of values for the group sizes is
important because a group size that is too large may cause dilution effects, which, in turn, may
reduce the sensitivity and the specificity of the test. Our group testing framework can potentially
be extended to accommodate dilution effects and other complicating issues, such as stratified
populations. For example, we may wish to estimate the prevalence of a rare trait in multiple
geographic regions with potentially different disease prevalences, or when the sensitivity and
specificity of the test vary among the subpopulations. Such issues may be interesting directions
for future research.
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Appendix A

Before giving the proofs of theorem 1, theorem 2, lemma 2 and theorem 3, we introduce additional nota-
tion. Let

ai = .1−p0/
xi−xL ∈ [r, 1], for i=1, 2, : : : , k,

C.a/= 1
.c−a/.δc+a/

(
a log.a/

c−a
δc+a

)(
a log.a/

c−a
δc+a

)T

=

⎛
⎜⎜⎜⎜⎜⎝

{a log.a/}2

.c−a/.δc+a/

a log.a/

c−a

a log.a/

δc+a
a log.a/

c−a

c−a

δc+a
1

a log.a/

δc+a
1

δc+a

c−a

⎞
⎟⎟⎟⎟⎟⎠

=
(Ψ5.a/ Ψ4.a/ Ψ3.a/

Ψ4.a/ Ψ1.a/ Ψ0
Ψ3.a/ Ψ0 Ψ2.a/

)
,
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P1 =

⎛
⎜⎝

.p1 +p2 −1/.1−p0/
xL−1

log.1−p0/
.p1 +p2 −1/xL.1−p0/

xL−1 0

0 −.1−p0/
xL 1

0 −.1−p0/
xL 0

⎞
⎟⎠,

and

P2 =
(

1 0 0
0 −1 c
0 1 δc

)−1

:

A.1. Proof of theorem 1
We use theorem 2(a) in Yang and Stufken (2012) to show that C0 is essentially complete. First we rewrite
the information matrix (3) as

M.ξ/= 1
.p1 +p2 −1/2.1−p0/2xL

.P1P2/

(
k∑

i=1
wi C.ai/

)
.P1P2/

T: .14/

Let fi,1.a/=dΨi.a/=da for i=1, : : : , 5 and let

fi,j.a/= d
da

{
fi,j−1.a/

fj−1,j−1.a/

}
, for j =2, : : : , 5 and i= j, : : : , 5:

Then, for a∈ [r, 1]⊂ .0, 1], we have

f1,1.a/=− c+ δc

.δc+a/2
< 0,

f2,2.a/=−2.c+ δc/.δc+a/

.c−a/3
< 0,

f3,3.a/=− .c−a/2.2a+ c/

2a2.c+ δc/2
< 0,

f4,4.a/=−2.c+ δc/

.2a+ c/2
< 0,

f5,5.a/= 4a+2c

a.c+ δc/
> 0:

Therefore,

5∏
i=1

fi, i.a/= 4
a3.c−a/.δc+a/

> 0 for a∈ [r, 1]:

Hence, the group testing model satisfies the conditions for theorem 2(a) in Yang and Stufken (2012), and
therefore the designs having at most two points together with the designs having three points including
xL (which coincides with a=1) form an essentially complete class. In addition, according to the proof of
theorem 2 in Yang and Stufken (2012), it can be shown that there exist s0, : : : , s5 =±1 such that

{siΨi}5
i=0 is a Chebyshev system on [r, 1]: .15/

This property will be used in the proof of theorem 3.

A.2. Proof of theorem 2
There are three steps in the proof. In step (a) we show that the D-optimal design is unique and requires
three group sizes with equal frequencies, including one being the smallest group size xL. In step (b), we
show that the upper bound xU is a support point of the D-optimal design. In step (c), we determine the
intermediate group size.

(a) By theorem 1 and the fact that θ is estimable only under a design with at least three group sizes,
there is a D-optimal design ξD belonging to C0 with exactly three group sizes and one of them is
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xL. Because the number of support points of the D-optimal design ξD is equal to the number of
unknown parameters, ξD must be equally supported (see, for example, section 8.12 of Pukelsheim
(2006)). By theorem 2.5 in Hu et al. (2015) and the fact that D- and Φ0-criteria are equivalent, it
follows that ξD is the unique D-optimal design.

(b) Following (a), we denote the unique D-optimal design as ξD ={.xÅ
i , 1

3 /}3
i=1, where xL = xÅ

1 < xÅ
2 <

xÅ
3 �xU. Recall that ai = .1−p0/

xÅ
i −xL (xÅ

1 =xL implies that a1 =1) and r= .1−p0/
xU−xL . It suffices to

show that @ΦD{M.ξD/}=@a3 <0 for all a3 ∈ [r, a2/, i.e. the D-criterion is a strictly decreasing function
of a3. Thus the criterion is maximized by taking a3 as small as possible, which implies that xÅ

3 =xU.
By equation (14), the information matrix of ξD can be written as

M.ξD/= 1
.p1 +p2 −1/2.1−p0/2xL

P1

(
3∑

i=1

1
3

P2C.ai/P
T
2

)
PT

1 ,

where

3∑
i=1

1
3

P2C.ai/P
T
2 =

3∑
i=1

1
3.c−ai/.δc+ai/

(
ai log.ai/

ai

1

)(
ai log.ai/

ai

1

)T

=Γ1Γ2ΓT
1 ,

Γ1 =
(

0 a2 log.a2/ a3 log.a3/
1 a2 a3
1 1 1

)
,

Γ2 =

⎛
⎜⎜⎜⎜⎜⎝

1
3.c−1/.δc+1/

0 0

0
1

3.c−a2/.δc+a2/
0

0 0
1

3.c−a3/.δc+a3/

⎞
⎟⎟⎟⎟⎟⎠:

A direct calculation shows that

@ΦD{M.ξD/}
@a3

= @

@a3
log.|Γ1|2|Γ2|/= 2

|Γ1|
@ |Γ1|
@a3

+ 1
c−a3

− 1
δc+a3

,

and the following statements are true by calculus:
(i) 1=.c−a3/−1=.δc+a3/< 1=.c−a3/−1=.c+a3/=2a3=.c2 −a2

3/< 2a3=.1−a2
3/,

(ii) @|Γ1|=@a3 = 1 − a2 + a2 log.a2/ + .1 − a2/ log.a3/ < 1 − a2 + a2 log.a2/ + .1 − a2/ log.a2/ = 1 −
a2 + log.a2/< 0 for all 0 <a3 <a2 < 1,

(iii) |Γ1|=a3.1−a2/ log.a3/−a2.1−a3/ log.a2/> lima3→a2 |Γ1|=0 and
(iv) .1−a2

3/@|Γ1|=@a3 +a3|Γ1|= .1−a3/{a2 log.a2/+a3.1−a2/}− .1−a2/{− log.a3/+ .1−a3/a3}
< 0.

The last assertion holds because a2 log.a2/+a3.1−a2/<a2 log.a2/+a2.1−a2/<0 and− log.a3/+
.1−a3/a3 > 0 for all 0 <a3 <a2 < 1. Consequently,

@ΦD{M.ξD/}
@a3

<
2

|Γ1|
@ |Γ1|
@a3

+ 2a3

1−a2
3

= 2
|Γ1|.1−a2

3/

{
.1−a2

3/
@ |Γ1|
@a3

+a3 |Γ1|
}

< 0

and the desired result holds.
(c) Our remaining goal is to determine xÅ

2 . We do this by showing that @ΦD{M.ξD/}=@a2 =0 is equivalent
to equation (7), and hence xÅ

2 =xL + log.A1/=log.1−p0/, where A1 is the solution of equation (7).
In (b) we have shown that the optimal choice for a3 is aÅ

3 = .1−p0/
xU−xL = r. By arguments that are

similar to step (b), we have that

0= @ΦD{M.ξD/}
@a2

= 2
|Γ1|

@|Γ1|
@a2

+ 1
c−a2

− 1
δc+a2

= 2[.1− r/{1+ log.a2/}+ r log.r/]
.1− r/a2 log.a2/+a2r log.r/− r log.r/

+ 1
c−a2

− 1
δc+a2

= 2
a2

{
1+ 1+Δ0 ×1=a2

log.a2/−Δ0.1=a−1/

}
+ 1

c−a2
− 1

δc+a2
,
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which is equivalent to equation (7), and hence the proof is complete.

A.3. Proof of lemma 2
Let ξ be a design that is supported on {x1, x2, x3} with x1 < x2 < x3. Our problem here is to find the
vector of the positive weights {ws

i}3
i=1 at these three given points that minimizes .M.ξ/−/11, where M.ξ/=

Mf .ξ/diagλ.ξ/Mf .ξ/T, Mf .ξ/ = .f.x1/ f.x2/ f.x3// is non-singular and diagλ.ξ/ = diag{ws
1λ.x1/, : : : ,

ws
3λ.x3/} is positive definite. Let e1 = .1, 0, 0/T. Then

Mf .ξ/−1e1 = 1
|Mf .ξ/|

(
.1−p0/

x2 − .1−p0/
x3

.1−p0/
x3 − .1−p0/

x1

.1−p0/
x1 − .1−p0/

x2

)

and we have

.M.ξ/−/11 = eT
1 .Mf .ξ/−1/T diagλ.ξ/−1 Mf .ξ/−1e1

= .Mf .ξ/−1e1/
T diagλ.ξ/−1 .Mf .ξ/−1e1/

= 1
|Mf .ξ/|2

3∑
i=1

Qi.x1, x2, x3/

ws
i

: .16/

Since Qi.x1, x2, x3/>0 for i=1, 2, 3 and |Mf .ξ/|2 >0, we apply the method of Lagrange multipliers directly
to minimize the value in equation (16) subject to the constraints on the weights. The resulting solution is
displayed in equation (9).

A.4. Proof of theorem 3
We prove theorem 3 by similar steps to those in the proof of theorem 2. In step (a), we show that

(i) p0 is estimable only under a design with at least three distinct group sizes and
(ii) the Ds-optimal design is unique.

Therefore, by theorem 1, the unique Ds-optimal design has exactly three group sizes, and one of them is
the smallest allowable group size xL. Steps (b) and (c) of this theorem’s proof use similar arguments to
those in the proof of theorem 2 and have therefore been omitted.

(i) The result is shown by contradiction. Without loss of generality, suppose that there is a design
ξ={.xi, wi/}2

i=1 such that p0 =eT
1 θ is estimable under ξ, where xL �x1 <x2 �xU, w1, w2 �0, w1 +w2 =

1 and e1 = .1, 0, 0/T. Therefore, e1 belongs to the range of M.ξ/ = Mf .ξ/diagλ.ξ/Mf .ξ/T, where
Mf .ξ/ = .f.x1/f.x2// and diagλ.ξ/ = diag{w1λ.x1/, w2λ.x2/}. Hence, e1 belongs to the range of
Mf .ξ/ or, equivalently, the determinant of .f.x1/ f.x2/ e1/=0. However,

|f.x1/ f.x2/ e1|=
∣∣∣∣∣
x1.p1 +p2 −1/.1−p0/

x1−1 x2.p1 +p2 −1/.1−p0/
x2−1 1

1− .1−p0/
x1 1− .1−p0/

x2 0
−.1−p0/

x1 −.1−p0/
x2 0

∣∣∣∣∣
= .1−p0/

x1 − .1−p0/
x2 > 0

for arbitrary x1 < x2 and p0 ∈ .0, 1/. This contradiction shows that p0 is estimable only under a
design with at least three points.

(ii) Suppose that there are two different Ds-optimal designs, ξ1 and ξ2, with at least three points. Let
ξ = 1

2 ξ1 + 1
2 ξ2. Therefore, ξ must have at least four different support points due to ξ1 �=ξ2 and lemma

2. By the concavity of Φs, we have that Φs{M.ξ/}�Φs{M.ξ1/}=Φs{M.ξ2/}, and hence ξ is also a
Ds-optimal design. By the equivalence theorem (see, for example, section 2.7 of Fedorov (1972) or
section 10.3 of Atkinson et al. (2007)), we must have

φs.x, ξ/=1−λ.x/f.x/TM.ξ/−f.x/+λ.x/fs.x/TMs.ξ/−fs.x/�0 for all x∈ [xL, xU],

with equality at each support point of ξ, where fs.x/ = .f1.x/, f2.x//T and Ms.ξ/ is the 2 × 2
submatrix of M.ξ/ deleting its first row and first column. Therefore, there is a sufficiently small
ε > 0 such that φs.x, ξ/ − ε has at least 4 × 2 − 2 = 6 roots. In contrast, by direct calculation,
φs.x, ξ/ − ε = Σ5

i=0 disiΨi.a/ for some di ∈ R with Σ5
i=0 d2

i > 0, where a = .1 − p0/
x−xL ∈ [r, 1] and

{siΨi}5
i=0 is a Chebyshev system on [r, 1] by equation (15). Therefore, theorem 4.1 on page 22 of
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Karlin and Studden (1966) shows that φs.x, ξ/− ε has at most five roots. This contradiction shows
that the Ds-optimal design is unique.
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