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We present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange
approach (EL) inspired by Jackson’s seminal work on fluidized particles, a quadrature–based moment method based on
the anisotropic Gaussian closure (AG), and the traditional two-fluid model. We perform simulations of two problems:
particles in frozen homogeneous isotropic turbulence (HIT) and cluster-induced turbulence (CIT). For verification, we
evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods
under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT sim-
ulations posing fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statis-
tics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT,
converging both TFM and AG poses challenges. Overall, extracting converged, parameter-independent Eulerian statis-
tics remains a challenge for all methods. VC 2017 American Institute of Chemical Engineers AIChE J, 63: 5396–5412,

2017
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Introduction

Fluid–particle flows are ubiquitous in chemical engineering.

However, numerical methods that accurately predict such

flows are challenging to develop1. In fluidized–bed reactors,

for example, the large range of scales, from the boundary

layers on individual particles to the diameter of the bed, neces-

sitates simulations of flows outside the reach of particle-

resolved direct numerical simulation (PR-DNS)2,3.
As with single-phase flows, only a coarse-grained approach,

via either Reynolds averaging4, volume filtering5, or multi-

phase particle-in-cell6, can attempt many simulations of engi-

neering interest. PR-DNS provides useful insights for

developing microscale models in these coarse-grained meth-

ods2. However, knowledge of microscale dynamics is insuffi-

cient for accurate simulation of industrial processes. Emergent

dynamics, such as the appearance of clusters, play an integral

role in the reactor-scale physics. Agrawal et al.7, for example,

found coarse-grained simulations that fail to account for these

dynamics underestimate the settling speed of particles falling

in a gas.
Coarse-grained simulations must incorporate models for

these intermediate scales (referred to hereinafter as mesoscale)

dynamics. Results from simulations at the mesoscale are

needed to develop an understanding of the cluster dynamics

and inform models capable of capturing these effects, but even

these smaller-scale structures are too large for PR-DNS to

resolve. For example, Uhlmann et al.3 have recently published

a study on sedimenting particles in a gas, performing simula-

tions with up to 20,000 particles. While these state-of-the-art

PR-DNS simulations are impressive, single clusters may con-

tain many thousands of particles, so we must turn to alterna-

tive approaches.
Mesoscale simulation techniques can extend beyond the

range possible by PR-DNS. They can simulate the cluster

dynamics and inform models for macroscale simulations. Typ-

ically, the gas phase is solved via the Navier–Stokes equations,

including coupling terms from the effect of the particles. The
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method used to solve the particle phase distinguishes two clas-
ses of mesoscale techniques: Eulerian–Eulerian (EE) and
Eulerian–Lagrangian (EL).

EL methods represent particles as discrete points and solve
for them using Newton’s Laws. Traditionally, most studies

focused on one-way coupled simulations in which the particles
do not affect the fluid8. However, in denser flows common in

industrial processes, the fluid–particle coupling is important
and two-way coupled simulations are needed. In fact, for

cluster-induced turbulence (CIT)9, this coupling is the origin
of the clustering phenomenon. In still denser flows, simula-

tions must account for particle–particle collisions. Several
studies have investigated this regime using EL methods10.

To date, most traditional EL methods are not capable of

grid convergence for coupled fluid–particle flows with large
particles. Balachandar11 analyzes the validity of the point-

particle assumption. However, for finite-size particles, data
must be mapped onto the Eulerian mesh to compute the influ-

ence of the particles on the fluid. Garg et al.12 evaluated vari-
ous interpolation techniques and showed convergence under

mesh refinement is impossible due to increasing statistical
error. These authors later13 proposed replacing the physical

particles with computational ones and adaptively changing the
number of particles per grid cell to be within a range. They

showed convergence for the momentum coupling in a particle-
laden lid-driven cavity flow with this method. However, colli-
sions between the computational particles have to be modeled

for dense, collisional flows. The sensitivity to grid resolution
observed by Garg et al. can also be alleviated using a volume-

filtering approach, introduced by Capecelatro et al.14 and fur-
ther refined by Ireland and Desjardins15.

EE methods offer a computationally less-expensive alterna-

tive to EL methods because they do not have to track individ-
ual particles, at the expense of requiring additional modeling.

They solve for a reduced, kinetic description for the particle
phase. A wide class of techniques have been proposed. Among

them, the two-fluid model (TFM), which solves equations for
lower order moments of the number density function (NDF),

specifically mass, momentum, and granular temperature,
remains one of the most popular. However, the main limitation

of the TFM is that it is only valid for dense flows in which the
frequency of particle–particle collisions is high enough to jus-

tify a hydrodynamic description. This assumption is no longer
valid for dilute flows with relatively high Stokes numbers16, in

which particle trajectory crossing (PTC) can be especially
prominent. For such flow conditions, quadrature-based

moment methods (QBMM) can be used to solve for a poly
kinetic velocity field by establishing a correspondence

between a set of moments and a sum of Dirac deltas represen-
tation of a NDF via Gaussian quadrature4. These techniques

not only allow for PTC, but also handle higher-order moments
of the NDF than TFM.

Several QBMM methods based on different moment-

inversion techniques have been proposed in the literature,
including tensor-product17,18, CQMOM19, multi-

Gaussian20,21, and anisotropic Gaussian22. Among them, the
AG closure is the simplest and most robust, and it is computa-
tionally inexpensive, and as such it is well-suited for large-

scale simulations23. Although the AG closure cannot capture
the spatial distribution of number density during PTC, it can

produce at least the right scale and energetic behavior of
PTC22. The mesoscale simulations of cluster-induced turbu-

lence (CIT) performed by Kong et al.23 have demonstrated

that AG can produce results comparable to EL. Therefore, the

EE methods considered herein are TFM and AG.
Given the paucity of numerical convergence studies for

particle-laden flows, and with the aim of further investigating

the differing behaviors of EE and EL methods, this article

presents a detailed verification study for the TFM, AG, and EL

approaches from two different perspectives. First, we consider

convergence under grid refinement for the three methods. As

discussed already, Garg et al.12 performed grid refinement stud-

ies for traditional EL methods, but there have been few studies

on grid refinement of volume-filtered EL simulations. Ireland

and Desjardins15 have studied refinement on a single particle

falling through fluid. They made modifications that enable

volume-filtered EL to recover the Stokes’ drag law. Similarly,

Gualtieri et al.24 have introduced a method for choosing the

volume-filtering kernel and have performed some tests for con-

vergence. However, neither have not studied refinement of EL

simulations of more realistic flows. For EE methods, Agrawal

et al.7 performed simulations of risers using TFM and con-

cluded that a numerical resolution on the order of ten particle

diameters is necessary to achieve grid independence. However,

the grid-refinement study was limited to two-dimensional

domains, and only convergence of the mean slip velocity and

granular temperature were reported. Here, we consider behavior

of additional methods under mesh refinement, and include the

convergence of multiscale statistics.
Second, we investigate postprocessing techniques for extract-

ing statistics from EL simulation data. Although volume-filtered

EL simulations are robust under grid refinement, as is confirmed

in this study, these simulations only provide realizations of the

particle state, while we are interested in extracting statistics of

the underlying NDF. Subramaniam25 has established the statisti-

cal equivalence between solutions from EL simulations and the

Boltzmann equation. Therefore, the relevant statistics can be

computed by first estimating the NDF from the Lagrangian parti-

cle data. Turbulence modeling will require inferring statistics

from simulation results26. This presents a challenge for EL spe-

cifically because only particle trajectories are computed whereas,

in EE, statistical quantities from the NDF are evolved directly. In

this article, we evaluate various techniques for NDF estimation

and recovery of statistics for EL.
For verification, we perform simulations of two different

fluid–particle flows with moderate Reynolds number particles.

First, we study particles in frozen homogeneous isotropic tur-

bulence (HIT). Particles are known to exhibit preferential con-

centration in such a configuration27,28. The parameters chosen

for HIT are unphysical in this study. Even so, this flow exhib-

its interesting clustering dynamics, containing a range of

scales with both dilute and dense regions. Few studies have

explored convergence and NDF estimation in similar regimes.

Additionally, HIT avoids the complexity of two-way coupling

and convergence thereof, and therefore it is a good starting

point for this study. For detailed studies of particles in HIT see

Toschi and Bodenschatz’s recent review29. Ultimately, we are

interested in fully coupled problems, so as a second configura-

tion, we focus on the denser CIT case wherein two-way cou-

pling is important.

Governing Equations and Numerical Methods

Governing equations

In this section, the governing equations of the fluid and par-

ticle phases are briefly presented. The behavior of fluid phase

AIChE Journal December 2017 Vol. 63, No. 12 Published on behalf of the AIChE DOI 10.1002/aic 5397



is governed by a continuity Eq. 1 and a momentum transport

Eq. 2, which are solved in multifluid models30,31. The continu-

ity equation for the fluid phase is a mass balance

@qf af

@t
1r � qf af Uf 50 (1)

where af, qf, Uf are fluid-phase volume fraction, density, and

velocity, respectively. Note that qf is assumed to be constant.
The fluid-phase momentum transport equation is derived

from momentum balance

@qf af Uf

@t
1r � qf af Uf � Uf

5r � qf af rf 2rpf 1qf af g2
qpap

sp
Uf 2Up

� � (2)

where ap, qp, Up are the particle-phase volume fraction, den-

sity, and velocity, respectively. g is the gravity, pf and rf are

the fluid-phase pressure and stress tensor, respectively. The

particle-phase is described by the NDF, f x; vð Þ. The NDF

gives the expected number of particles in a region x 2 D with

velocities v 2 X via integration:
Ð

D

Ð
Xfdvdx. The NDF is gov-

erned by a kinetic equation (23)

@f x; vð Þ
@t

1v � @f x; vð Þ
@x

1
@

@v
� f x; vð ÞA5C (3)

where A represent acceleration due to gravity and fluid drag

and C represents particle–particle collisions. In one of the EE

approaches presented below, velocity moments up to second

order are found from Eq. 3 and the AG closure22 is invoked to

close the higher-order moments. In the other EE approach, the

second-order moments are closed using a Chapmann–Enskog

expansion32,33, resulting in a hydrodynamic or TFM.

Eulerian–Lagrangian approach

In the EL approach, the fluid phase is solved using the

volume-filtering approach introduced by Anderson and Jack-

son34. In this article, we use the formulation developed by

Capecelatro and Desjardins14. The volume-filtering operation

is defined as a convolution with a kernel, H jxjð Þ, over the vol-

ume occupied by the fluid, V f , giving

af a5H ? a5

ð
V f

a yð ÞH jx2yjð Þdy (4)

where af is the fluid volume fraction and a is the fluid quantity

to be filtered. For a constant density fluid, filtering the mass

conservation and Navier–Stokes equations yields

@

@t
af qf

� �
1r � af qf Uf

� �
50;

@

@t
af qf Uf

� �
1r � af qf Uf � Uf

� �
5r � s1af qf g2FU1F l2F inter

(5)

where s52pf I1lf rUf 1rU
T

f 2 2
3
r � Uf

� �
I

h i
. For CIT,

Capecelatro et al.14 demonstrated the subgrid stress, FU , con-

tributes insignificantly to the momentum balance so it is

neglected in this study. Following Capecelatro et al.14, we use

Gibilaro’s model35 for the residual viscous stress, F l.

The interphase exchange term, F inter, can be decomposed

into resolved and unresolved components as

F inter5F inter
residual1F inter

resolved (6)

where the resolved component is approximated as

F inter
resolved5

X
H ? F

ðiÞ
resolved � Vp

X
H ?r � sj

x
ðiÞ
p

5 12af

� �
r � s:

(7)

In the previous equation, �j
x
ðiÞ
p

indicates that the fluid quantities
are evaluated at the location of particle i. The residual compo-
nent is computed as

F inter
resolved5

X
H ? F

ðiÞ
residual (8)

where F
ðiÞ
residual is the residual force from particle i and must be

modeled.
The state of the ith particle, x

ðiÞ
p ; v

ðiÞ
p

n o
, is found via integra-

tion of Newton’s Laws

dx
ðiÞ
p

dt
5vðiÞp

mp
dv
ðiÞ
p

dt
5FðiÞ5F

ðiÞ
resolved1F

ðiÞ
residual1mpg1C

(9)

where g and C are the contributions from gravity and particle–
particle collisions. In this work, we consider particles of small
Reynolds number, Rep � 1, and of high density, qp � qf .
Therefore, we use a Stokes drag law to model the residual por-
tion of the exchange term

F
ðiÞ
residual5

mp~af jxðiÞp

sp

~Uf

���
x
ðiÞ
p

2vðiÞp

� �
(10)

For accurate simulation of flows in which fluid–particle cou-
pling plays a significant role, Ireland and Desjardins15 demon-
strated that the fluid volume fraction, ~af jxðiÞp

, and velocity,
~Uf jxðiÞp

, must represent undisturbed quantities, that is, the quan-
tities if the particle i were not present. We use the approach
introduced by Ireland and Desjardins15 for estimating these
quantities from the filtered fluid volume fraction and velocity.
This correction is necessary to ensure the Stokes settling speed
is recovered in well-resolved simulations of a single particle
falling in fluid.

Statistics via number-density estimation

The simplest techniques for estimating the NDF from the par-
ticle field are based on projecting the particle information onto
a Eulerian mesh. The NDFs found from these histogram density
estimation techniques depend on the mesh spacing, which can-
not be specified uniquely as discussed by Garg et al.12. Instead,
Capecelatro et al.14 used a kernel density estimation technique.
A realization of the particle state can be described as

f̂ x; vð Þ5
X

d x2xðiÞp

� �
d v2vðiÞp

� �
(11)

The NDF can be approximated by convolution of f̂ with a nor-
malized kernel Gh with bandwidth h over the simulation
domain

f x; vð Þ � Gh jxjð Þ � f̂ x; vð Þ5
X

Gh jx2xðiÞp j
� �

d v2vðiÞp

� �
(12)

Moments of this NDF give the equivalent Eulerian quantities
in EE simulations. For example, the particle volume fraction,
Eulerian particle velocity, and granular temperature are given
by
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ap5Vp

ð
f dv5Vp

X
Gh

���x2xðiÞp

���� �
(13)

apUp5Vp

ð
vf dv5Vp

X
Gh

���x2xðiÞp ;
���� �

vðiÞp ; and (14)

apHp5
Vp

3

ð
jv2Upj2f dv5

Vp

3

X
Gh

���x2xðiÞp

���� ����vðiÞp 2Up

���2
(15)

However, the selection of the bandwidth, h, may significantly

affect results from EL simulations. Capecelatro et al.9 have previ-

ously studied the sensitivity of the selection of filter Gh on statistics

from CIT. They also proposed an adaptive filter width, defined

recursively, that appears to reduce the parameter sensitivity, using

hn xð Þ5
N pd3

p

an21
p xð Þ

 !1=3

(16)

where h0 is an initially fixed filter width. This filter is built to

sample approximately N p particles.
Voronoi tessellation is an alternative technique for density

estimation that has recently received attention in both experi-

mental36,37 and computational3 studies of particle-laden flows.

In this technique, the Voronoi tessellation of the set of particle

locations defines an unstructured Eulerian mesh. The volume

fraction of each cell is set according to

ap xð Þ5 Vp

VcellðiÞ
for x 2 cellðiÞ (17)

Here, we chose the Eulerian particle velocity for each cell to

be defined by

Up xð Þ5 1

nðiÞ

X
j

vðjÞp for x 2 cellðiÞ (18)

where nðiÞ is the number of cells adjacent to cell i and v
ðjÞ
p is

the velocity of the particle in cell j adjacent to cell i.
We are particularly interested in computing the variance in

volume fraction and the average granular temperature from

simulations because they have important modeling implica-

tions4,38. Using the ensemble average, h�i, the volume fraction

variance is defined as

ha2
p0 i5hðap2hapiÞ2i5ha2

pi2hapi2 (19)

From the Eulerian particle velocity field, the velocity of particle i
can be separated into correlated and uncorrelated components as

vðiÞp 5UpjxðiÞp
1dvðiÞp (20)

Following Fox et al.4, particle-phase averaging of a quantity /
is defined as h/ip5

hap/i
h/i . The average granular temperature is

then computed as

hHpip5
1

3
hdvp � dvpi (21)

As shown above, the granular temperature is approximated for

EL as the velocity fluctuation variance below a certain scale,

depending on the density estimation technique used. We hope

to recover the true granular temperature, the variance from the

underlying number density function, with a careful selection

of technique and parameters for estimating the NDF. Figure 1

provides a visual comparison of the histogram, kernel, and

Voronoi density estimation techniques.
Note that the granular temperature is a separate quantity

from the total velocity fluctuation energy. The total fluctuation

energy contains contributions from granular temperature and

the particle turbulent kinetic energy, that is,

jp5kp1
3

2
hHpip;

where jp5
1

2
hjv0j2i and kp5

1

2

	����Up2 < Up>p

����
2


p

(22)

Fox et al.4,26 discuss the importance of this distinction for

modeling. In this study, we consider fixed and adaptive kernel

density estimation and the Voronoi tessellation techniques for

computing various statistics from the simulation data. Simula-

tions are performed in NGA, a multiphase flow solver intro-

duced by Desjardins et al.39. We use the Voro11 library40 to

perform the Voronoi tessellations.

Eulerian–Eulerian approaches

The transport equations for three lower-order moments of

particle velocity NDF, that is, particle mass, momentum, and

granular energy tensor, are given by

@qpap

@t
1r � qpapUp50 (23)

@qpapUp

@t
1r � qpapðUp � Up1Pp1GpÞ

5qpapg1
qpap

sp
Uf 2Up

� �
; and

(24)

Figure 1. Comparison of density estimation techniques.

Left: histogram. Center: Gaussian filter. Right: Voronoi tesselation.
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@qpapPp

@t
1r � qpapðUp � Pp1Qp1HpÞ5

2qpap Pp � rUp1ðPp � rUpÞT
h i

2qpap
2

sp
Pp1qpap

2

sc
D�2Pp

� �
(25)

where Pp is the particle pressure tensor, Qp is the kinetic-flux
tensor due to third-order central moments, Gp and Hp is the
collisional flux tensor for particle-phase momentum and gran-
ular energy tensor, respectively. In Eq. 25, a linearized
Bhatnagar–Gross–Krook (BGK) inelastic collision model41 is
used to account for the collisional dissipation of Pp, in which
sc5dp= 6apg0

ffiffiffiffiffiffiffiffiffiffiffi
Hp=p

p� �
and D�5g2HpI1 12gð Þ2Pp

In the first EE approach, the particle NDF is assumed to fol-
low an anisotropic Gaussian distribution, and a three-
dimensional Gauss–Hermite quadrature is used to close the
spatial transport of moments22,23, that is

f ðvÞ5 ap

ð2pjPpjÞ3=2
exp 2

1

2
ðv2UpÞ � P21

p � ðv2UpÞ
� 

(26)

In this approach, the collisional flux for momentum, Gp, is

modeled as, Gp5 4
5
gapg0 3HpI12Pp

� �
, using the Enskog–

Boltzmann kinetic theory42, where g5 1
2
ð11eÞ, e is the parti-

cle collision restitution coefficient. The particle radial distribu-

tion function g0 can be modeled as, g05 12 1
2
ap

� �
= 12ap

� �343.

The collisional flux for pressure tensor, Hp, is ignored. More

details on the numerical method used to solve the AG model
can be found elsewhere23.

In the second EE approach, a hydrodynamic description
(TFM) of particle dynamics is used, so the particle-pressure ten-
sor is decomposed into its isotropic and anisotropic compo-
nents16: Pp5HpI2rp. The kinetic contribution to the granular

stress tensor is closed with a gradient-viscosity model31–33:
rp52mp;kSp, where mp;k is the kinetic part of particle-phase kine-

matic viscosity32, and the particle-phase strain-rate tensor is

defined by Sp5 1
2
rUp1 rUp

� �T
2 2

3
r � Up

� �
I

h i
. Thus, the

decomposition can be rewritten as a pressure term and a viscous
term, that is, Pp5pp;kI22mp;kSp, where the kinetic contribution

to the granular pressure pp;k5Hp. Similar to Pp, the collisional

flux tensor is also decomposed into two components:
Gp5pp;cI22mp;cSp, where pp;c is the collisional contribution to

the granular pressure and mp;c is collisional shear kinematic vis-

cosity32. In the strongly collisional regime, Pp is nearly isotropic,

so the transport equation for Hp is solved instead of Pp in TFM,

which is the trace of Eq. 25

@qpapHp

@t
1r � qpap UpHp2

2

3
kprHp

� �

1
2

3
qpap ðpp;k1pp;cÞI22ðmp;k1mp;cÞSp

� �
: rUp

52qpap
2

sp
Hp2qpap

ð12e2Þ
sc

Hp

(27)

The particle-phase conductivity also has kinetic and collisional

contributions32: kp5kp;k1kp;c. Under this framework, different

models can be used to calculate the kinetic theory coefficients

mentioned above. An example set of these coefficients is given

in Table 132, in which mp;b is the bulk kinematic viscosity.
Both AG and TFM simulations presented in this work are

performed using codes implemented in OpenFOAM, an open-

source CFD package44. Note that first-order spatial reconstruc-

tion schemes are used for the convective fluxes when solving

the EE models.

Simulation Cases

One-way coupled homogeneous isotropic turbulence

For this case, a 2-D frozen turbulence field is generated by

constructing a random, periodic vorticity field on a domain

Lx5Ly52p; nx5ny5512
� �

with Fourier coefficients

jx̂j 2 0; 5½ �. The vorticity field is then projected onto a

divergence-free velocity field for wavevectors jjj < 16. The

velocity field is advanced to t 5 0.0718 using single-phase,

incompressible Navier–Stokes, with viscosity m50:1387. The

velocity field is then duplicated in the z-direction to

Lz5
3
16

p; nz548. Particles are then randomly distributed

within the domain while the fluid-phase velocity field is held

constant.
This method gives a velocity field with Taylor microscale

Reynolds number Rek518:96, Taylor microscale kf 50:4486,

and Kolmogorov time scale sg50:02817. We obtain coarser

velocity fields using box filtering and finer fields using linear

interpolation. The coarsest field is resolved up to jmaxg52,

where jmax5nx � p � Lx is the maximum wavenumber. Table 2

summarizes the HIT simulation cases.
Due to the fast convergence of EL, we only perform EL

simulations up to nx5512. For the EE methods, we also per-

form nx51024 and nx52048 simulations. After seeding the

domain with particles, we advance the simulation to time

t 5 1.0718. We gather statistics and perform our analysis at

Table 1. Example Kinetic Theory Coefficients in TFM Model for Particle Phase

pp;c54gapg0Hp2mp;br � Up mp;b5
8gapg0dp

ffiffiffiffiffi
Hp

p
3
ffiffi
p
p

mp;k5
1
2
Hp

1
sp

1
gð22gÞ

sc

h i21

11 8
5
gð3g22Þapg0

� � mp;c5
8gapg0

5
mp;k1

3
5
mp;b

kp;k5
5
2
Hp

3
sp

1
4gð41233gÞ

sc

h i21

11 12
5

g2ð4g23Þapg0

� � kp;c5
12gapg0

5
kH;k1

3
2
mp;b

Table 2. Parameters Use for HIT Simulations

Particle Stokes Number St 0:2; 1; 5

Grid resolution dp=D 1
4
; 1

2
; 1; 2

Table 3. Parameters Use for CIT Simulations

Particle Diameter dp 9031026 m
Particle density qp 1000 kg m23

Fluid density qf 1 kg m23

Fluid kinematic viscosity mf 1:831025 m2 s21

Gravitational acceleration g 24.0004 m s22

Particle Reynolds number Rep 0.5
Average particle

volume fraction
hapi 0.01

Domain size Lx

dp
54

Ly

dp
556 Lz

dp
1792

Grid resolution dp=D 1
8
; 1

4
; 1

2
; 1
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this time. Because these simulations are homogeneous, we
approximate the ensemble average as a spatial average over
the domain: h/i5

Ð
/ dx

Two-way coupled cluster-induced turbulence

Two-way coupled simulations of CIT are performed under
grid refinement for EL and EE. We start with a periodic
domain of fluid, seeded homogeneously with particles. The
particles fall under gravity while the fluid is kept statistically
stationary by an additional source term in the fluid-phase
momentum equation. Once the flow reaches a statistically sta-
tionary state, we compute the various statistics. For EL, we
also compare several fixed and variable width Gaussian filters
in computing those statistics. We use similar parameters as

Table 4. Statistics from CIT EL Simulations with dp=D51=4

for Different Gaussian Volume Filtering Kernels

df =dp hvp;x=VSti hvp;x
02=V2

Sti hvp;y
02=V2

Sti
5 22.994 6.170 2.735
10 23.163 7.131 2.970
20 23.085 5.825 2.512

Figure 2. St 5 0.2 particle fields at t 5 1 for TFM, AG, EL (left to right) and increasing resolution (top to bottom) for
HIT case. ap shown for EE methods and particle locations for EL method.
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Capecelatro et al.45, as summarized in Table 3. Because CIT is

homogeneous and reaches a statistically stationary state, we

approximate the ensemble average for these simulations as a

spatial and temporal average: h/i5
Ð Tf

Ti

Ð
/ dx dt over the

domain and over a long Tf 2Ti.
Due to fluid–particle coupling, the choice of volume filter-

ing kernel in the EL simulations H during run time can affect

EL simulations, especially for the two-way coupled CIT simu-

lations. However, we find EL simulations to be fairly insensi-

tive to H. We performed dp=D51=4 resolution simulations of

CIT using Gaussian kernels for H with varying widths, df. To

isolate the effect of H, we can consider statistics from the

ensemble of particles because they are not computed via den-

sity estimation. The average particle velocity and variance of

the particle velocity components are shown in Table 4. These

do not show strong dependence on df, so we assume our CIT

simulations have “converged” under changes in the volume fil-

tering kernel to the correct solution. We focus hereinafter on

the effect of filter size on obtaining Eulerian statistics from the

simulation data.

Results and Discussion

Instantaneous particle fields

For particles in frozen HIT, Figures 2–4 show snapshots of

the particle field for the three methods under refinement. ap is

shown for the EE methods and the particle locations for EL.

The results demonstrate the expected preferential concentra-

tion phenomenon for all three methods. The moderate St 5 1

particles cluster strongly compared to the St 5 0.2 and St 5 5

Figure 3. St 5 1 particle fields at t 5 1 for TFM, AG, EL (left to right) and increasing resolution (top to bottom) for
HIT case. ap shown for EE methods and particle locations for EL method.

5402 DOI 10.1002/aic Published on behalf of the AIChE December 2017 Vol. 63, No. 12 AIChE Journal



particles. For the St 5 0.2 particles, the low-resolution AG
simulations develop sharp regions of accumulation inside
dilute regions. For the higher resolution simulations of the
same St cases, few differences are found between AG and
TFM. The St 5 5 simulations demonstrate the significant dif-
ferences between AG and TFM simulations. The TFM simula-
tions appear smoother, eventually reaching convergence,
while the AG simulations show sharp gradients that remain
under-resolved, even at dp=D54. For all three methods, the

higher resolution simulations support finer structures. This is
especially prominent in the St 5 0.2 case, but less clear in the
St 5 5 particles. EL simulations at grid resolutions dp=D51=2
and dp=D51 show no significant differences for any St par-
ticles, suggesting convergence for this method.

The CIT particle fields are shown in Figure 5. The higher
resolution EE simulations appear to show finer structures com-
pared to the lower resolution simulations. For dp=D51=8, the
volume fraction field in TFM fails to develop fluctuations and

Figure 4. St 5 5 particle fields at t 5 1 for TFM, AG, EL (left to right) and increasing resolution (top to bottom) for
HIT case. ap shown for EE methods and particle locations for EL method.
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in AG develops into a single, horizontal, domain-constrained
wave. Qualitatively, EL simulations appear similar at all reso-
lutions examined.

Filter sensitivity in EL

Depending on the simulation, results from EL can vary
strongly with the choice of postprocessing filter. Figure 6

Figure 5. CIT particle fields for TFM, AG, EL (top to bottom) and increasing resolution (left to right).
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shows the variance in volume fraction and the granular tem-
perature from EL simulations of the St 5 0.2, St 5 1, and

St 5 5 particles. Note for the Fix 1 filter (see the Figure 6 cap-

tion for details on the nomenclature), the filter width is under-
resolved for all except the highest resolution simulation.

The volume-fraction variance for the moderate Stokes num-

ber case covers almost a decade, for the filters tested. Even for

the low- and high-Stokes cases, there is a factor of about three
between the variance captured by the narrowest and the widest

filters. Capturing the granular temperature is even more prob-
lematic. 3hHpip=2j ranges between 0 and up to 30% depend-

ing on the filter used and the Stokes number of the particles.

Because lower Stokes number particles follow fluid stream-
lines more closely, the granular temperature should be small.

But for kernel density estimation, the wider filters suggest that

granular temperature decreases with Stokes number. For
example, using Var 100, 3 hHpip=2jp decreases from around

0.3 to 0.15 going from the low to the high Stokes number

case. If a wider filter is used, it will sample from particles that
are far separated. Low-Stokes-number particles follow the

fluid closely, so these wider filters are including in the granular

temperature a large contribution from the fluid velocity varia-

tion. Narrower filters recover the expected behavior that

higher Stokes number particles generate more granular tem-

perature. However, extremely narrow filters give zero granular
temperature, regardless of the Stokes number.

In the limit of a zero-width filter, the estimated density can

be expected to become identical to Eq. 11 and the volume

fraction will approach a sum of Dirac functions. As these func-

tions are not square integrable, the volume-fraction variance

will diverge. In the same limit, granular temperature will
approach zero. In the limit of an infinite filter width, the

volume-fraction variance will approach zero and 3 hHpip will

approach 2jp. This can be shown from Eqs. 13 to 15.
For HIT, statistics computed with the variable-width filters

appear to still have significant parameter sensitivity. Although

Figure 6. Volume-fraction variance (left) and granular temperature (right) from HIT simulations for three St particles
(top to bottom).

Statistics are captured using the various density estimation techniques shown in the legend. Fix and Var refer to kernel density esti-

mation using fixed filter width and variable filter width, respectively. In the case of Fix, the number following refers to the filter

width, in multiples of particle diameter, h/dp, and in the case of Var, the number refers to the number of particles sampled, N p.
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Figure 7. Volume-fraction variance (left) and granular temperature (right) from CIT simulations. The NDF estimation
techniques used are the same as those used for the HIT simulations, excluding the Voronoi technique.
The legend is shown previously, in Figure 6.

Figure 8. ap spectra for EL simulations of HIT at resolution dp=D52 using fixed (left) and variable (right) width filters
for the three St particles (top to bottom).
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the Voronoi technique is parameter-free, it effectively behaves
as a narrow filter. It predicts high volume-fraction variance
and low granular temperature, similar to the narrowest Gauss-
ian filters. There does not appear to be a unique way to choose
the number density estimation technique, but the fixed and
variable width kernel density estimation approaches provide
flexibility by exposing the controlling parameter, either h for
the fixed-width method or N p for the variable-width method.

In contrast to HIT, one-point CIT statistics gathered from
EL, shown in Figure 7, indicate less sensitivity to the filter.
Volume-fraction variance is converged for all except the nar-
rowest fixed filter. Granular temperature is still filter depen-
dent in CIT, but not as much as in HIT. The poor performance
of NDF estimation in HIT may be attributed to the appearance
of, comparatively, highly anisotropic clusters, as evident in the
particle fields shown in Figures 2–5.

The energy spectra of the volume fraction can identify the
advantages of the variable width filter. The energy spectrum
of volume fraction and the particle velocity are computed as

Ea5

	����FFT a0p

n o����
2


(28)

and EUp;i
5

1

hapi

	����FFT
ffiffiffiffiffi
ap
p

Up;i2hUp;iip
� �n o����

2

(29)

HIT is isotropic in the x-y plane, so we perform the fast Fou-
rier transform (FFT) over these directions and average over
the wavevector orientations and in the z direction. For CIT, we
perform the FFT in the vertical direction and average over the
other two directions and over time.

For the highest resolution HIT simulations, spectra of the par-

ticle volume fraction are shown in Figure 8. While the variable-

width filters show significant parameter sensitivity, the fixed-

width filters are significantly more dependent on the filter width.

Compared to results from HIT, the CIT volume fraction and ver-

tical velocity spectra in Figure 9 show better agreement between

filters, especially at large scales (low wavenumbers).
Because of the filter sensitivity, comparisons between EL

and the EE methods require care. Averages over particle ensem-

bles can be compared directly to particle–phase-averaged quan-

tities from EE. The particle–phase-averaged particle velocity
and the average particle velocity over the ensemble of particles

are equal: hvi5 hUpip. Similarly, the total particle fluctuating

energy can be computed equivalently in the Eulerian and

Lagrangian frames. This can be seen from Eq. 22. Figure 10

shows comparisons of these statistics between the three meth-

ods in the CIT and HIT simulations. For all three St particles,

the EL and EE methods report similar total particle fluctuating

energies, particularly in the highly resolved simulations. CIT

simulations exhibit close agreement between the AG and EL

simulations. For highly resolved simulations, the TFM simula-

tion under-predicts the particle settling speed compared to EL
and AG. As suggested by Kong et al.23, AG allows for more

anisotropic clusters that align in the vertical direction and fall

faster than the more globular clusters found in TFM simula-

tions. AG also predicts closer total particle fluctuating energy to

EL. These results suggests, AG has advantages over TFM in

flows with strong anisotropy, such as CIT.

Statistical convergence under grid refinement

For particles in frozen HIT, the computed statistics establish
convergence for EL. Figure 6 shows that for a given filter, EL

one-point statistics converge under grid refinement. Figure 11

shows that, for EL simulations of HIT, the volume–fraction

power spectra match for all scales, regardless of the grid

resolution.

Figure 9. ap (top) and Up;x (bottom) spectra for EL simulations of CIT at resolution dp=D51 using fixed (left) and var-
iable (right) filters.
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In contrast to EL, convergence of EE simulations is problem
dependent. In HIT, the volume-fraction variance increases lin-
early with grid resolution for both AG and TFM, as shown in
Figure 12, except for the St 5 5 TFM simulation. For granular
temperature, TFM and AG demonstrate contradictory trends
under refinement. This is due to the fact that the mechanism of
generation of granular energy in TFM and AG is fundamen-
tally different. In TFM, the primary mechanism stems from
the divergence of particle velocity. TFM shows almost zero
granular temperature for the low-Stokes-number particles
because the particles follow fluid streamlines well, so the par-
ticle velocity divergence is zero. At higher Stokes numbers,
the particles can deviate from the fluid streamlines, so granular
temperature is produced in regions of particle velocity diver-
gence. The granular temperature is low in coarse simulations
because the particle velocity field is smoother than in fine-

mesh simulations, as can be expected due to numerical dissi-
pation. In contrast to TFM, AG includes the full particle pres-
sure tensor, so AG can model some of the physics of a
multivalued velocity field23. AG can generate granular temper-
ature from regions of PTC and these regions are not necessar-
ily regions of large velocity divergence. On coarse meshes, the
particles are more susceptible to PTC because the fluid veloc-
ity is sampled with fewer grid cells. Some fluid variation is
lost on these coarser grids, so the fluid will be able to build
more particle momentum. The particles will have more
momentum to deviate from the fluid streamlines, and cross tra-
jectories. As the PTC is more common on coarser meshes, the
granular temperature is found to decrease with grid resolution
for AG.

HIT volume-fraction spectra, shown in Figure 11, also dem-
onstrate lack of convergence. The St 5 0.2 AG simulations

Figure 10. HIT (left) and CIT (right) one-point statistics from the three methods.

The total particle fluctuating energy, jp is shown for HIT. The particle settling speed, hUp,xip, and total particle fluctuating

energy are shown for CIT. These statistics do not depend on the EL filter.
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appear to have more energy in the high-wavenumber fluctua-

tions for lower-resolution simulations. As discussed earlier,

these simulations tend to form sharp regions of accumulation
inside dilute regions that disappear under refinement. It is possi-

ble that these lower-Stokes-number simulations using AG are

prone to this behavior because low-Stokes-number flows have
lower granular temperature. In dilute regions, AG may suffer

from weak hyperbolicity, if the granular temperature is low,
and degenerate to the monokinetic, pressure-less gas equations.

Finer simulations reduce the regions of PTC, so the associated

degeneracy is avoided and the accumulation regions disappear.
In contrast, high-Stokes-number particles may generate enough

granular temperature to retain strong hyperbolicity in AG, so
these simulations do not develop these clumps of particles.

The St 5 5 AG volume-fraction spectra appear to generate

more energy in the higher wavenumbers as the resolution

increases. As discussed previously, sharp gradients in the vol-
ume fraction field are evident in these simulations. In contrast,

the spectra from the St 5 5 TFM simulation indicate conver-
gence. However, this convergence may not be to a physically

correct solution. Discontinuous solutions to the Boltzmann

equation are possible, even with smooth initial conditions. If
this is the case for the St 5 5 particles, EE methods should not

converge under refinement. AG may give the correct behavior

under refinement while TFM gives nonphysically smooth
solutions.

CIT simulations pose fewer convergence difficulties than

HIT, which is due to the fact that kinetic energy in the system
is mainly dissipated through gas viscous effects in CIT,

instead of particle collisions in HIT. Figure 13 shows one-

point statistics from these simulations. The volume-fraction

variance appears converged for EL and TFM, and appears to

be approaching convergence for AG. Due to the density esti-
mation dependence, it is again difficult to compare EL to AG

and TFM for granular temperature. However, the volume frac-

tion variance is similar for AG and EL, indicating similar
degrees of clustering. AG also gives a prediction for anisot-

ropy in the particle pressure tensor. TFM is not capable of
making a similar prediction.

The CIT volume fraction and vertical velocity spectra are

shown in Figure 14. For all except the coarsest mesh, the EL

spectra converge. At low wavenumbers, AG and TFM both
appear converged, and predict similar power. Again, because

of the filter dependence at high wavenumbers, it is difficult to
compare EL to AG and TFM.

Taken together, these results show that, at least for particles

in frozen HIT, EE simulations face similar difficulties as faced

by traditional EL simulations. Grid-refinement behavior in tra-
ditional EL can be replicated by computing statistics under

shrinking fixed filters. A statistic computed from an EE simu-

lation with resolution dp=D can be compared to the statistic
from the EL simulation using fixed-width density estimation

with the analogous dp=h. D and h are not exactly equivalent
here, but this allows us to qualitatively compare traditional EL

to EE. The volume-fraction variance and granular temperature

comparison between the three methods, Figure 12, shows that
statistics from AG behave much like statistics from EL under

shrinking filters. If we use K to denote D for EE and h for EL,
we see that for both EE and EL, the volume-fraction variance

increases with dp=K, and the granular temperature decreases

Figure 11. ap spectrum from the three methods (left to right) and the three particle Stokes numbers (top to bottom)
for HIT case.

Spectra are shown for increasing grid resolution. For EL, Fix 10 was used for density estimation. Darker lines refer to higher res-

olutions. For TFM and AG, the black dashed lines are from the highest resolution EL simulation for comparison.
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with dp=K. As dp=K can either represent a resolution or a filter

width, we can observe a filter-like behavior in the EE methods.

An EE “filter” width, related to the grid resolution, would be

tied to the numerical scheme used in the EE solvers.

Conclusions

This article studies verification of three methods of simulat-

ing fluid–particle flows, TFM, AG, and EL. Both TFM and EL

are commonly used for these simulations and AG has recently

shown promising results in this field. Here, we study two

aspects of verification. First, we find that, depending on the

type of simulation, recovering statistics from EL simulations

cannot be performed uniquely. Although EL can produce

physically faithful simulation results, and may serve as a

benchmark for EE, difficulty extracting statistics from EL

poses a challenge for informing fluid–particle models. While
CIT is less dependent on the density estimation technique,
HIT is heavily dependent. Second, we find that volume-
filtered EL is capable of grid convergence in both HIT and
CIT. Convergence for the EE methods is poor for HIT, but
better for CIT. CIT results from EL and AG agree better with
each other than with results from TFM.

Future work for EL may focus on alternative methods for
density estimation. The statistics literature has introduced

many techniques, possibly useful for extracting statistics from
problematic EL simulations like HIT. However, the relative
ease of CIT simulations suggests that careful selection of sim-
ulation conditions, statistics to analyze, and postprocessing
parameters, can circumvent convergence difficulties with AG

Figure 12. HIT one-point statistics vs. grid resolution for EE methods and filter width for EL method using fixed
width filters.

Particle volume-fraction variance (left) and granular temperature (right). K refers to grid resolution, D, for EE methods and fil-

ter width, h, for EL.
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Figure 13. CIT one-point statistics. Volume-fraction variance (top left), granular temperature (top right), and anisot-
ropy in particle pressure tensor (bottom). For EL, Fix 10 was used for density estimation.

Figure 14. ap (top) and Up;x (bottom) spectra from the three methods (left to right) for CIT case.

Spectra are shown for increasing grid resolution. For EL, Fix 10 was used for density estimation. Per row, the black lines are

from the highest resolution EL simulation for comparison.
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and parameter sensitivity with EL. EL and AG simulations of

problems like CIT may still provide useful results for fluid–

particle macroscale models.
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