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Abstract

We present a verification study of three simulation techniques for fluid–particle flows,

including an Euler–Lagrange approach (EL) inspired by Jackson’s seminal work on fluidized

particles, a quadrature–based moment method based on the anisotropic Gaussian closure

(AG), and the traditional two-fluid model. We perform simulations of two problems: particles

in frozen homogeneous isotropic turbulence (HIT) and cluster-induced turbulence (CIT). For

verification, we evaluate various techniques for extracting statistics from EL and study the

convergence properties of the three methods under grid refinement. The convergence is found

to depend on the simulation method and on the problem, with CIT simulations posing fewer

difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT,

but statistics exhibit dependence on the post-processing parameters. For CIT, AG produces

similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall,

extracting converged, parameter-independent Eulerian statistics remains a challenge for all

methods.

Introduction

Fluid–particle flows are ubiquitous in chemical engineering. However, numerical methods that

accurately predict such flows are challenging to develop1. In fluidized–bed reactors, for example,

the large range of scales, from the boundary layers on individual particles to the diameter of

the bed, necessitates simulations of flows outside the reach of particle-resolved direct numerical

simulation (PR-DNS)2,3.

As with single-phase flows, only a coarse-grained approach, via either Reynolds averaging4,

volume filtering5, or multi-phase particle-in-cell6, can attempt many simulations of engineering

interest. PR-DNS provides useful insights for developing microscale models in these coarse-

grained methods2. However, knowledge of microscale dynamics is insufficient for accurate sim-

ulation of industrial processes. Emergent dynamics, such as the appearance of clusters, play

an integral role in the reactor-scale physics. Agrawal et al.7, for example, found coarse-grained

simulations that fail to account for these dynamics underestimate the settling speed of particles
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falling in a gas.

Coarse-grained simulations must incorporate models for these intermediate scales (referred

to hereinafter as mesoscale) dynamics. Results from simulations at the mesoscale are needed

to develop an understanding of the cluster dynamics and inform models capable of capturing

these effects, but even these smaller-scale structures are too large for PR-DNS to resolve. For

example, Uhlmann et al.3 have recently published a study on sedimenting particles in a gas,

performing simulations with up to 20,000 particles. While these state-of-the-art PR-DNS simu-

lations are impressive, single clusters may contain many thousands of particles, so we must turn

to alternative approaches.

Mesoscale simulation techniques can extend beyond the range possible by PR-DNS. They

can simulate the cluster dynamics and inform models for macroscale simulations. Typically, the

gas phase is solved via the Navier–Stokes equations, including coupling terms from the effect of

the particles. The method used to solve the particle phase distinguishes two classes of mesoscale

techniques: Eulerian–Eulerian (EE) and Eulerian–Lagrangian (EL).

EL methods represent particles as discrete points and solve for them using Newton’s Laws.

Traditionally, most studies focused on one-way coupled simulations in which the particles do

not affect the fluid8. However, in denser flows common in industrial processes, the fluid–particle

coupling is important and two-way coupled simulations are needed. In fact, for cluster-induced

turbulence (CIT)9, this coupling is the origin of the clustering phenomenon. In still denser flows,

simulations must account for particle–particle collisions. Several studies have investigated this

regime using EL methods10.

To date, most traditional EL methods are not capable of grid convergence for coupled fluid–

particle flows with large particles. Balachandar11 analyzes the validity of the point-particle

assumption. However, for finite-size particles, data must be mapped onto the Eulerian mesh to

compute the influence of the particles on the fluid. Garg et al.12 evaluated various interpola-

tion techniques and showed convergence under mesh refinement is impossible due to increasing

statistical error. These authors later13 proposed replacing the physical particles with computa-
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tional ones and adaptively changing the number of particles per grid cell to be within a range.

They showed convergence for the momentum coupling in a particle-laden lid-driven cavity flow

with this method. However, collisions between the computational particles have to be modeled

for dense, collisional flows. The sensitivity to grid resolution observed by Garg et al. can also

be alleviated using a volume-filtering approach, introduced by Capecelatro et al.14 and further

refined by Ireland and Desjardins15.

EE methods offer a computationally less-expensive alternative to EL methods because they

do not have to track individual particles, at the expense of requiring additional modeling. They

solve for a reduced, kinetic description for the particle phase. A wide class of techniques have

been proposed. Among them, the two-fluid model (TFM), which solves equations for lower order

moments of the number density function (NDF), specifically mass, momentum, and granular

temperature, remains one of the most popular. However, the main limitation of the TFM is

that it is only valid for dense flows in which the frequency of particle–particle collisions is high

enough to justify a hydrodynamic description. This assumption is no longer valid for dilute

flows with relatively high Stokes numbers16, in which particle trajectory crossing (PTC) can be

especially prominent. For such flow conditions, quadrature-based moment methods (QBMM)

can be used to solve for a poly-kinetic velocity field by establishing a correspondence between a

set of moments and a sum of Dirac deltas representation of a NDF via Gaussian quadrature4.

These techniques not only allow for PTC, but also handle higher-order moments of the NDF

than TFM.

Several QBMM methods based on different moment-inversion techniques have been proposed

in the literature, including tensor-product17,18, CQMOM19, multi-Gaussian20,21, and anisotropic

Gaussian22. Among them, the AG closure is the simplest and most robust, and it is computa-

tionally inexpensive, and as such it is well-suited for large-scale simulations23. Although the AG

closure cannot capture the spatial distribution of number density during PTC, it can produce

at least the right scale and energetic behavior of PTC22. The mesoscale simulations of cluster-

induced turbulence (CIT) performed by Kong et al.23 have demonstrated that AG can produce
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results comparable to EL. Therefore, the EE methods considered herein are TFM and AG.

Given the paucity of numerical convergence studies for particle-laden flows, and with the

aim of further investigating the differing behaviors of EE and EL methods, this paper presents a

detailed verification study for the TFM, AG, and EL approaches from two different perspectives.

First, we consider convergence under grid refinement for the three methods. As discussed already,

Garg et al.12 performed grid refinement studies for traditional EL methods, but there have been

few studies on grid refinement of volume-filtered EL simulations. Ireland and Desjardins15 have

studied refinement on a single particle falling through fluid. They made modifications that

enable volume-filtered EL to recover the Stokes’ drag law. Similarly, Gualtieri et al.24 have

introduced a method for choosing the volume-filtering kernel and have performed some tests for

convergence. However, neither have not studied refinement of EL simulations of more realistic

flows. For EE methods, Agrawal et al.7 performed simulations of risers using TFM and concluded

that a numerical resolution on the order of ten particle diameters is necessary to achieve grid

independence. However, the grid-refinement study was limited to two-dimensional domains, and

only convergence of the mean slip velocity and granular temperature were reported. Here, we

consider behavior of additional methods under mesh refinement, and include the convergence of

multiscale statistics.

Second, we investigate post-processing techniques for extracting statistics from EL simu-

lation data. Although volume-filtered EL simulations are robust under grid refinement, as is

confirmed in this study, these simulations only provide realizations of the particle state, while

we are interested in extracting statistics of the underlying NDF. Subramaniam25 has established

the statistical equivalence between solutions from EL simulations and the Boltzmann equation.

Therefore, the relevant statistics can be computed by first estimating the NDF from the La-

grangian particle data. Turbulence modeling will require inferring statistics from simulation

results26. This presents a challenge for EL specifically because only particle trajectories are

computed whereas, in EE, statistical quantities from the NDF are evolved directly. In this

paper, we evaluate various techniques for NDF estimation and recovery of statistics for EL.
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For verification, we perform simulations of two different fluid–particle flows with moderate

Reynolds number particles. First, we study particles in frozen homogeneous isotropic turbulence

(HIT). Particles are known to exhibit preferential concentration in such a configuration27,28. The

parameters chosen for HIT are unphysical in this study. Even so, this flow exhibits interesting

clustering dynamics, containing a range of scales with both dilute and dense regions. Few studies

have explored convergence and NDF estimation in similar regimes. Additionally, HIT avoids

the complexity of two-way coupling and convergence thereof, and therefore it is a good starting

point for this study. For detailed studies of particles in HIT see Toschi and Bodenschatz’s recent

review29. Ultimately, we are interested in fully coupled problems, so as a second configuration,

we focus on the denser CIT case wherein two-way coupling is important.

Governing Equations and Numerical Methods

Governing Equations

In this section, the governing equations of the fluid and particle phases are briefly presented.

The behavior of fluid phase is governed by a continuity equation (1) and a momentum transport

equation (2), which are solved in multi-fluid models30,31. The continuity equation for the fluid

phase is a mass balance,

∂ρfαf

∂t
+∇ · ρfαfUf = 0, (1)

where αf , ρf , Uf are fluid-phase volume fraction, density, and velocity, respectively. Note that

ρf is assumed to be constant.

The fluid-phase momentum transport equation is derived from momentum balance,

∂ρfαfUf

∂t
+∇ · ρfαfUf ⊗Uf = ∇ · ρfαfσf −∇pf + ρfαfg − ρpαp

τp
(Uf −Up) , (2)

where αp, ρp, Up are the particle-phase volume fraction, density, and velocity, respectively. g is

the gravity, pf and σf are the fluid-phase pressure and stress tensor, respectively. The particle-
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phase is described by the NDF, f (x,v). The NDF gives the expected number of particles in a

region x ∈ D with velocities v ∈ Ω via integration:
∫
D

∫
Ω fdvdx. The NDF is governed by a

kinetic equation23,

∂f (x,v)

∂t
+ v · ∂f (x,v)

∂x
+

∂

∂v
· f (x,v)A = C, (3)

where A represent acceleration due to gravity and fluid drag and C represents particle–particle

collisions. In one of the EE approaches presented below, velocity moments up to second order

are found from Eq. (3) and the AG closure22 is invoked to close the higher-order moments.

In the other EE approach, the second-order moments are closed using a Chapmann–Enskog

expansion32,33, resulting in a hydrodynamic or TFM.

Eulerian–Lagrangian Approach

In the EL approach, the fluid phase is solved using the volume-filtering approach introduced by

Anderson and Jackson34. In this paper, we use the formulation developed by Capecelatro and

Desjardins14. The volume-filtering operation is defined as a convolution with a kernel, H (|x|),

over the volume occupied by the fluid, Vf , giving

αfa = H ⋆ a =

∫
Vf

a (y)H (|x− y|) dy, (4)

where αf is the fluid volume fraction and a is the fluid quantity to be filtered. For a constant

density fluid, filtering the mass conservation and Navier–Stokes equations yields

∂

∂t
(αfρf ) +∇ ·

(
αfρfUf

)
= 0,

∂

∂t

(
αfρfUf

)
+∇ ·

(
αfρfUf ⊗Uf

)
= ∇ · τ + αfρfg −FU + Fµ −F inter,

(5)

where τ = −pfI+µf

[
∇Uf +∇U

T
f − 2

3

(
∇ ·Uf

)
I
]
. For CIT, Capecelatro et al.14 demonstrated

the sub-grid stress, FU , contributes insignificantly to the momentum balance so it is neglected

in this study. Following Capecelatro et al.14, we use Gibilaro’s model35 for the residual viscous
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stress, Fµ.

The interphase exchange term, F inter, can be decomposed into resolved and unresolved com-

ponents as

F inter = F inter
residual + F inter

resolved, (6)

where the resolved component is approximated as

F inter
resolved =

∑
H ⋆ F

(i)
resolved ≈ Vp

∑
H ⋆∇ · τ |

x
(i)
p

= (1− αf )∇ · τ . (7)

In the previous equation, ·|
x
(i)
p

indicates that the fluid quantities are evaluated at the location

of particle i. The residual component is computed as

F inter
resolved =

∑
H ⋆ F

(i)
residual, (8)

where F
(i)
residual is the residual force from particle i and must be modeled.

The state of the ith particle,
{
x
(i)
p ,v

(i)
p

}
, is found via integration of Newton’s Laws,

dx
(i)
p

dt
= v(i)

p ,

mp
dv

(i)
p

dt
= F(i) = F

(i)
resolved + F

(i)
residual +mpg + C,

(9)

where g and C are the contributions from gravity and particle–particle collisions. In this work, we

consider particles of small Reynolds number, Rep ≪ 1, and of high density, ρp ≫ ρf . Therefore,

we use a Stokes drag law to model the residual portion of the exchange term,

F
(i)
residual =

mp α̃f |x(i)
p

τp

(
Ũf

∣∣∣
x
(i)
p

− v(i)
p

)
. (10)

For accurate simulation of flows in which fluid–particle coupling plays a significant role,

Ireland and Desjardins15 demonstrated that the fluid volume fraction, α̃f |x(i)
p
, and velocity,

Ũf

∣∣∣
x
(i)
p

, must represent undisturbed quantities, i.e., the quantities if the particle i were not
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present. We use the approach introduced by Ireland and Desjardins15 for estimating these

quantities from the filtered fluid volume fraction and velocity. This correction is necessary to

ensure the Stokes settling speed is recovered in well-resolved simulations of a single particle

falling in fluid.

Statistics via Number-Density Estimation

The simplest techniques for estimating the NDF from the particle field are based on projecting

the particle information onto a Eulerian mesh. The NDFs found from these histogram density

estimation techniques depend on the mesh spacing, which cannot be specified uniquely as dis-

cussed by Garg et al.12. Instead, Capecelatro et al.14 used a kernel density estimation technique.

A realization of the particle state can be described as

f̂ (x,v) =
∑

δ
(
x− x(i)

p

)
δ
(
v − v(i)

p

)
. (11)

The NDF can be approximated by convolution of f̂ with a normalized kernel Gh with band-

width h over the simulation domain:

f (x,v) ≈ Gh (|x|) ∗ f̂ (x,v) =
∑

Gh

(∣∣∣x− x(i)
p

∣∣∣) δ (v − v(i)
p

)
(12)

Moments of this NDF give the equivalent Eulerian quantities in EE simulations. For example,

the particle volume fraction, Eulerian particle velocity, and granular temperature are given by

αp = Vp

∫
fdv = Vp

∑
Gh

(∣∣∣x− x(i)
p

∣∣∣), (13)

αpUp = Vp

∫
vfdv = Vp

∑
Gh

(∣∣∣x− x(i)
p ,
∣∣∣)v(i)

p , and (14)

αpΘp =
Vp

3

∫
|v −Up|2 fdv =

Vp

3

∑
Gh

(∣∣∣x− x(i)
p

∣∣∣) ∣∣∣v(i)
p −Up

∣∣∣2. (15)

However, the selection of the bandwidth, h, may significantly affect results from EL simulations.
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Capecelatro et al.9 have previously studied the sensitivity of the selection of filter Gh on statistics

from CIT. They also proposed an adaptive filter width, defined recursively, that appears to

reduce the parameter sensitivity, using

hn (x) =

(
Npd

3
p

αn−1
p (x)

)1/3

, (16)

where h0 is an initially fixed filter width. This filter is built to sample approximatelyNp particles.

Voronoi tessellation is an alternative technique for density estimation that has recently re-

ceived attention in both experimental36,37 and computational3 studies of particle-laden flows.

In this technique, the Voronoi tessellation of the set of particle locations defines an unstructured

Eulerian mesh. The volume fraction of each cell is set according to

αp (x) =
Vp

Vcell(i)
for x ∈ cell(i). (17)

Here, we chose the Eulerian particle velocity for each cell to be defined by

Up (x) =
1

n(i)

∑
j

v(j)
p for x ∈ cell(i). (18)

where n(i) is the number of cells adjacent to cell i and v
(j)
p is the velocity of the particle in cell

j adjacent to cell i.

We are particularly interested in computing the variance in volume fraction and the average

granular temperature from simulations because they have important modeling implications4,38.

Using the ensemble average, ⟨·⟩, the volume fraction variance is defined as

⟨
α′2
p

⟩
=
⟨
(αp − ⟨αp⟩)2

⟩
=
⟨
α2
p

⟩
− ⟨αp⟩2 . (19)

From the Eulerian particle velocity field, the velocity of particle i can be separated into correlated
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and uncorrelated components as

v(i)
p = Up|x(i)

p
+ δv(i)

p . (20)

Following Fox et al.4, particle-phase averaging of a quantity ϕ is defined as ⟨ϕ⟩p =
⟨αpϕ⟩
⟨ϕ⟩ . The

average granular temperature is then computed as

⟨Θp⟩p =
1

3
⟨δvp · δvp⟩ . (21)

As shown above, the granular temperature is approximated for EL as the velocity fluctuation

variance below a certain scale, depending on the density estimation technique used. We hope to

recover the true granular temperature, the variance from the underlying number density function,

with a careful selection of technique and parameters for estimating the NDF. Figure 1 provides

a visual comparison of the histogram, kernel, and Voronoi density estimation techniques.

Note that the granular temperature is a separate quantity from the total velocity fluctuation

energy. The total fluctuation energy contains contributions from granular temperature and the

particle turbulent kinetic energy, i.e.,

κp = kp +
3

2
⟨Θp⟩p ,

where κp =
1

2

⟨∣∣v′∣∣2⟩ and kp =
1

2

⟨∣∣∣Up − ⟨Up⟩p
∣∣∣2⟩

p

.
(22)

Fox et al.4,26 discuss the importance of this distinction for modeling. In this study, we con-

sider fixed and adaptive kernel density estimation and the Voronoi tessellation techniques for

computing various statistics from the simulation data. Simulations are performed in NGA,

a multiphase flow solver introduced by Desjardins et al.39. We use the Voro++ library40 to

perform the Voronoi tessellations.

11

Page 11 of 49

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Eulerian–Eulerian Approaches

The transport equations for three lower-order moments of particle velocity NDF, i.e., particle

mass, momentum, and granular energy tensor, are given by

∂ρpαp

∂t
+∇ · ρpαpUp = 0, (23)

∂ρpαpUp

∂t
+∇ · ρpαp(Up ⊗Up +Pp +Gp) = ρpαpg +

ρpαp

τp
(Uf −Up) , and (24)

∂ρpαpPp

∂t
+∇ · ρpαp(Up ⊗Pp +Qp +Hp) =

− ρpαp

[
Pp ·∇Up + (Pp ·∇Up)

T
]
− ρpαp

2

τp
Pp + ρpαp

2

τc
(∆∗ −Pp) , (25)

where Pp is the particle pressure tensor, Qp is the kinetic-flux tensor due to third-order central

moments, Gp and Hp is the collisional flux tensor for particle-phase momentum and gran-

ular energy tensor, respectively. In Eq. (25), a linearized Bhatnagar–Gross–Krook (BGK)

inelastic collision model41 is used to account for the collisional dissipation of Pp, in which

τc = dp/
(
6αpg0

√
Θp/π

)
and ∆∗ = η2ΘpI+ (1− η)2Pp.

In the first EE approach, the particle NDF is assumed to follow an anisotropic Gaussian

distribution, and a three-dimensional Gauss–Hermite quadrature is used to close the spatial

transport of moments22,23, i.e.,

f(v) =
αp

(2π|Pp|)3/2
exp

[
−1

2
(v −Up) ·P−1

p · (v −Up)

]
. (26)

In this approach, the collisional flux for momentum,Gp, is modeled as,Gp =
4
5ηαpg0 (3ΘpI+ 2Pp),

using the Enskog–Boltzmann kinetic theory42, where η = 1
2(1 + e), e is the particle colli-

sion restitution coefficient. The particle radial distribution function g0 can be modeled as,

g0 =
(
1− 1

2αp

)
/ (1− αp)

3 43. The collisional flux for pressure tensor, Hp, is ignored. More

details on the numerical method used to solve the AG model can be found elsewhere23.
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In the second EE approach, a hydrodynamic description (TFM) of particle dynamics is used,

so the particle-pressure tensor is decomposed into its isotropic and anisotropic components16:

Pp = ΘpI−σp. The kinetic contribution to the granular stress tensor is closed with a gradient-

viscosity model32,31,33: σp = 2νp,kSp, where νp,k is the kinetic part of particle-phase kinematic

viscosity32, and the particle-phase strain-rate tensor is defined by Sp =
1
2

[
∇Up + (∇Up)

T − 2
3 (∇ ·Up) I

]
.

Thus, the decomposition can be rewritten as a pressure term and a viscous term, i.e. Pp =

pp,kI − 2νp,kSp, where the kinetic contribution to the granular pressure pp,k = Θp. Similar to

Pp, the collisional flux tensor is also decomposed into two components: Gp = pp,cI − 2νp,cSp,

where pp,c is the collisional contribution to the granular pressure and νp,c is collisional shear

kinematic viscosity32. In the strongly collisional regime, Pp is nearly isotropic, so the transport

equation for Θp is solved instead of Pp in TFM, which is the trace of Eq. (25):

∂ρpαpΘp

∂t
+∇ · ρpαp

(
UpΘp −

2

3
kp∇Θp

)
+

2

3
ρpαp [(pp,k + pp,c)I− 2(νp,k + νp,c)Sp] : ∇Up

= −ρpαp
2

τp
Θp − ρpαp

(1− e2)

τc
Θp. (27)

The particle-phase conductivity also has kinetic and collisional contributions32: kp = kp,k+kp,c.

Under this framework, different models can be used to calculate the kinetic theory coefficients

mentioned above. An example set of these coefficients is given in Table 132, in which νp,b is the

bulk kinematic viscosity.

Both AG and TFM simulations presented in this work are performed using codes imple-

mented in OpenFOAM, an open-source CFD package44. Note that first-order spatial recon-

struction schemes are used for the convective fluxes when solving the EE models.
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Simulation Cases

One-way Coupled Homogeneous Isotropic Turbulence

For this case, a two-dimensional frozen turbulence field is generated by constructing a random,

periodic vorticity field on a domain (Lx = Ly = 2π, nx = ny = 512) with Fourier coefficients

|ω̂| ∈ [0, 5]. The vorticity field is then projected onto a divergence-free velocity field for wavevec-

tors |κ| < 16. The velocity field is advanced to t = 0.0718 using single-phase, incompressible

Navier–Stokes, with viscosity ν = 0.1387. The velocity field is then duplicated in the z-direction

to Lz = 3
16π, nz = 48. Particles are then randomly distributed within the domain while the

fluid-phase velocity field is held constant.

This method gives a velocity field with Taylor microscale Reynolds number Reλ = 18.96,

Taylor microscale λf = 0.4486, and Kolmogorov time scale τη = 0.02817. We obtain coarser

velocity fields using box filtering and finer fields using linear interpolation. The coarsest field

is resolved up to κmaxη = 2, where κmax = nx · π · Lx is the maximum wavenumber. Table 2

summarizes the HIT simulation cases.

Due to the fast convergence of EL, we only perform EL simulations up to nx = 512. For

the EE methods, we also perform nx = 1024 and nx = 2048 simulations. After seeding the

domain with particles, we advance the simulation to time t = 1.0718. We gather statistics and

perform our analysis at this time. Because these simulations are homogeneous, we approximate

the ensemble average as a spatial average over the domain: ⟨ϕ⟩ =
∫
ϕdx.

Two-way Coupled Cluster-induced Turbulence

Two-way coupled simulations of CIT are performed under grid refinement for EL and EE. We

start with a periodic domain of fluid, seeded homogeneously with particles. The particles fall

under gravity while the fluid is kept statistically stationary by an additional source term in

the fluid-phase momentum equation. Once the flow reaches a statistically stationary state,

we compute the various statistics. For EL, we also compare several fixed and variable width
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Gaussian filters in computing those statistics. We employ similar parameters as Capecelatro

et al.45, as summarized in Table 3. Because CIT is homogeneous and reaches a statistically

stationary state, we approximate the ensemble average for these simulations as a spatial and

temporal average: ⟨ϕ⟩ =
∫ Tf

Ti

∫
ϕdx dt over the domain and over a long Tf − Ti.

Due to fluid–particle coupling, the choice of volume filtering kernel in the EL simulations H

during run time can affect EL simulations, especially for the two-way coupled CIT simulations.

However, we find EL simulations to be fairly insensitive to H. We performed dp/∆ = 1/4

resolution simulations of CIT using Gaussian kernels for H with varying widths, δf . To isolate

the effect of H, we can consider statistics from the ensemble of particles because they are not

computed via density estimation. The average particle velocity and variance of the particle

velocity components are shown in Table 4. These do not show strong dependence on δf , so

we assume our CIT simulations have “converged” under changes in the volume filtering kernel

to the correct solution. We focus hereinafter on the effect of filter size on obtaining Eulerian

statistics from the simulation data.

Results and Discussion

Instantaneous Particle Fields

For particles in frozen HIT, Figs. 2, 3, and 4 show snapshots of the particle field for the three

methods under refinement. αp is shown for the EE methods and the particle locations for

EL. The results demonstrate the expected preferential concentration phenomenon for all three

methods. The moderate St = 1 particles cluster strongly compared to the St = 0.2 and St = 5

particles. For the St = 0.2 particles, the low-resolution AG simulations develop sharp regions

of accumulation inside dilute regions. For the higher resolution simulations of the same St

cases, few differences are found between AG and TFM. The St = 5 simulations demonstrate

the significant differences between AG and TFM simulations. The TFM simulations appear

smoother, eventually reaching convergence, while the AG simulations show sharp gradients
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that remain under-resolved, even at dp/∆ = 4. For all three methods, the higher resolution

simulations support finer structures. This is especially prominent in the St = 0.2 case, but less

clear in the St = 5 particles. EL simulations at grid resolutions dp/∆ = 1/2 and dp/∆ = 1 show

no significant differences for any St particles, suggesting convergence for this method.

The CIT particle fields are shown in Fig. 5. The higher resolution EE simulations appear to

show finer structures compared to the lower resolution simulations. For dp/∆ = 1/8, the volume

fraction field in TFM fails to develop fluctuations and in AG develops into a single, horizon-

tal, domain-constrained wave. Qualitatively, EL simulations appear similar at all resolutions

examined.

Filter Sensitivity in EL

Depending on the simulation, results from EL can vary strongly with the choice of post-

processing filter. Fig. 6 shows the variance in volume fraction and the granular temperature

from EL simulations of the St = 0.2, St = 1, and St = 5 particles. Note for the Fix 1 filter

(see the Fig. 6 caption for details on the nomenclature), the filter width is under-resolved for all

except the highest resolution simulation.

The volume-fraction variance for the moderate Stokes number case covers almost a decade,

for the filters tested. Even for the low- and high-Stokes cases, there is a factor of about 3

between the variance captured by the narrowest and the widest filters. Capturing the granular

temperature is even more problematic. 3 ⟨Θp⟩p /2κ ranges between 0 and up to 30% depending

on the filter used and the Stokes number of the particles. Because lower Stokes number particles

follow fluid streamlines more closely, the granular temperature should be small. But for kernel

density estimation, the wider filters suggest that granular temperature decreases with Stokes

number. For example, using Var 100, 3 ⟨Θp⟩p /2κp decreases from around 0.3 to 0.15 going from

the low to the high Stokes number case. If a wider filter is used, it will sample from particles

that are far separated. Low-Stokes-number particles follow the fluid closely, so these wider filters

are including in the granular temperature a large contribution from the fluid velocity variation.
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Narrower filters recover the expected behavior that higher Stokes number particles generate

more granular temperature. However, extremely narrow filters give zero granular temperature,

regardless of the Stokes number.

In the limit of a zero-width filter, the estimated density can be expected to become identical

to Eq. (11) and the volume fraction will approach a sum of Dirac functions. Since these functions

are not square integrable, the volume-fraction variance will diverge. In the same limit, granular

temperature will approach zero. In the limit of an infinite filter width, the volume-fraction

variance will approach zero and 3 ⟨Θp⟩p will approach 2κp. This can be shown from Eqs. (13)–

(15).

For HIT, statistics computed with the variable-width filters appear to still have significant

parameter sensitivity. Although the Voronoi technique is parameter-free, it effectively behaves as

a narrow filter. It predicts high volume-fraction variance and low granular temperature, similar

to the narrowest Gaussian filters. There does not appear to be a unique way to choose the

number density estimation technique, but the fixed and variable width kernel density estimation

approaches provide flexibility by exposing the controlling parameter, either h for the fixed-width

method or Np for the variable-width method.

In contrast to HIT, one-point CIT statistics gathered from EL, shown in Fig. 7, indicate less

sensitivity to the filter. Volume-fraction variance is converged for all except the narrowest fixed

filter. Granular temperature is still filter dependent in CIT, but not as much as in HIT. The poor

performance of NDF estimation in HIT may be attributed to the appearance of, comparatively,

highly anisotropic clusters, as evident in the particle fields shown in Figs. 2, 3, 4, and 5.

The energy spectra of the volume fraction can identify the advantages of the variable width

filter. The energy spectrum of volume fraction and the particle velocity are computed as

Eα =
⟨∣∣FFT{α′

p

}∣∣2⟩ , (28)

and EUp,i =
1

⟨αp⟩

⟨∣∣∣FFT{√αp

(
Up,i − ⟨Up,i⟩p

)}∣∣∣2⟩ . (29)
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HIT is isotropic in the x–y plane, so we perform the fast Fourier transform (FFT) over these

directions and average over the wavevector orientations and in the z direction. For CIT, we

perform the FFT in the vertical direction and average over the other two directions and over

time.

For the highest resolution HIT simulations, spectra of the particle volume fraction are shown

in Fig. 8. While the variable-width filters show significant parameter sensitivity, the fixed-width

filters are significantly more dependent on the filter width. Compared to results from HIT,

the CIT volume fraction and vertical velocity spectra in Fig. 9 show better agreement between

filters, especially at large scales (low wavenumbers).

Because of the filter sensitivity, comparisons between EL and the EE methods require care.

Averages over particle ensembles can be compared directly to particle-phase-averaged quantities

from EE. The particle-phase-averaged particle velocity and the average particle velocity over

the ensemble of particles are equal: ⟨v⟩ = ⟨Up⟩p. Similarly, the total particle fluctuating energy

can be computed equivalently in the Eulerian and Lagrangian frames. This can be seen from

Eq. (22). Figure 10 shows comparisons of these statistics between the three methods in the CIT

and HIT simulations. For all three St particles, the EL and EE methods report similar total

particle fluctuating energies, particularly in the highly resolved simulations. CIT simulations

exhibit close agreement between the AG and EL simulations. For highly resolved simulations,

the TFM simulation under-predicts the particle settling speed compared to EL and AG. As

suggested by Kong et al.23, AG allows for more anisotropic clusters that align in the vertical

direction and fall faster than the more globular clusters found in TFM simulations. AG also

predicts closer total particle fluctuating energy to EL. These results suggests AG has advantages

over TFM in flows with strong anisotropy, such as CIT.

Statistical Convergence under Grid Refinement

For particles in frozen HIT, the computed statistics establish convergence for EL. Figure 6

shows that for a given filter, EL one-point statistics converge under grid refinement. Figure 11
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shows that, for EL simulations of HIT, the volume–fraction power spectra match for all scales,

regardless of the grid resolution.

In contrast to EL, convergence of EE simulations is problem dependent. In HIT, the volume-

fraction variance increases linearly with grid resolution for both AG and TFM, as shown in

Fig. 12, except for the St = 5 TFM simulation. For granular temperature, TFM and AG

demonstrate contradictory trends under refinement. This is due to the fact that the mechanism of

generation of granular energy in TFM and AG is fundamentally different. In TFM, the primary

mechanism stems from the divergence of particle velocity. TFM shows almost zero granular

temperature for the low-Stokes-number particles because the particles follow fluid streamlines

well, so the particle velocity divergence is zero. At higher Stokes numbers, the particles can

deviate from the fluid streamlines, so granular temperature is produced in regions of particle

velocity divergence. The granular temperature is low in coarse simulations because the particle

velocity field is smoother than in fine-mesh simulations, as can be expected due to numerical

dissipation. In contrast to TFM, AG includes the full particle pressure tensor, so AG can model

some of the physics of a multi-valued velocity field23. AG can generate granular temperature

from regions of PTC and these regions are not necessarily regions of large velocity divergence.

On coarse meshes, the particles are more susceptible to PTC because the fluid velocity is sampled

with fewer grid cells. Some fluid variation is lost on these coarser grids, so the fluid will be able

to build more particle momentum. The particles will have more momentum to deviate from the

fluid streamlines, and cross trajectories. Since the PTC is more common on coarser meshes, the

granular temperature is found to decrease with grid resolution for AG.

HIT volume-fraction spectra, shown in Fig. 11, also demonstrate lack of convergence. The

St = 0.2 AG simulations appear to have more energy in the high-wavenumber fluctuations

for lower-resolution simulations. As discussed earlier, these simulations tend to form sharp

regions of accumulation inside dilute regions that disappear under refinement. It is possible

that these lower-Stokes-number simulations using AG are prone to this behavior because low-

Stokes-number flows have lower granular temperature. In dilute regions, AG may suffer from
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weak hyperbolicity, if the granular temperature is low, and degenerate to the monokinetic,

pressure-less gas equations. Finer simulations reduce the regions of PTC, so the associated

degeneracy is avoided and the accumulation regions disappear. In contrast, high-Stokes-number

particles may generate enough granular temperature to retain strong hyperbolicity in AG, so

these simulations do not develop these clumps of particles.

The St = 5 AG volume-fraction spectra appear to generate more energy in the higher

wavenumbers as the resolution increases. As discussed previously, sharp gradients in the volume

fraction field are evident in these simulations. In contrast, the spectra from the St = 5 TFM

simulation indicate convergence. However, this convergence may not be to a physically correct

solution. Discontinuous solutions to the Boltzmann equation are possible, even with smooth

initial conditions. If this is the case for the St = 5 particles, EE methods should not converge

under refinement. AG may give the correct behavior under refinement while TFM gives non-

physically smooth solutions.

CIT simulations pose fewer convergence difficulties than HIT, which is due to the fact that

kinetic energy in the system is mainly dissipated through gas viscous effects in CIT, instead

of particle collisions in HIT. Figure 13 shows one-point statistics from these simulations. The

volume-fraction variance appears converged for EL and TFM, and appears to be approaching

convergence for AG. Due to the density estimation dependence, it is again difficult to compare

EL to AG and TFM for granular temperature. However, the volume fraction variance is similar

for AG and EL, indicating similar degrees of clustering. AG also gives a prediction for anisotropy

in the particle pressure tensor. TFM is not capable of making a similar prediction.

The CIT volume fraction and vertical velocity spectra are shown in Figure 14. For all

except the coarsest mesh, the EL spectra converge. At low wavenumbers, AG and TFM both

appear converged, and predict similar power. Again, because of the filter dependence at high

wavenumbers, it is difficult to compare EL to AG and TFM.

Taken together, these results show that, at least for particles in frozen HIT, EE simulations

face similar difficulties as faced by traditional EL simulations. Grid-refinement behavior in
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traditional EL can be replicated by computing statistics under shrinking fixed filters. A statistic

computed from an EE simulation with resolution dp/∆ can be compared to the statistic from

the EL simulation using fixed-width density estimation with the analogous dp/h. ∆ and h are

not exactly equivalent here, but this allows us to qualitatively compare traditional EL to EE.

The volume-fraction variance and granular temperature comparison between the three methods,

Fig. 12, shows that statistics from AG behave much like statistics from EL under shrinking filters.

If we use Λ to denote ∆ for EE and h for EL, we see that for both EE and EL, the volume-

fraction variance increases with dp/Λ, and the granular temperature decreases with dp/Λ. Since

dp/Λ can either represent a resolution or a filter width, we can observe a filter-like behavior

in the EE methods. An EE “filter” width, related to the grid resolution, would be tied to the

numerical scheme used in the EE solvers.

Conclusions

This paper studies verification of three methods of simulating fluid–particle flows, TFM, AG,

and EL. Both TFM and EL are commonly used for these simulations and AG has recently

shown promising results in this field. Here, we study two aspects of verification. First, we find

that, depending on the type of simulation, recovering statistics from EL simulations cannot

be performed uniquely. Although EL can produce physically faithful simulation results, and

may serve as a benchmark for EE, difficulty extracting statistics from EL poses a challenge

for informing fluid–particle models. While CIT is less dependent on the density estimation

technique, HIT is heavily dependent. Second, we find that volume-filtered EL is capable of grid

convergence in both HIT and CIT. Convergence for the EE methods is poor for HIT, but better

for CIT. CIT results from EL and AG agree better with each other than with results from TFM.

Future work for EL may focus on alternative methods for density estimation. The statistics

literature has introduced many techniques, possibly useful for extracting statistics from prob-

lematic EL simulations like HIT. However, the relative ease of CIT simulations suggests that

careful selection of simulation conditions, statistics to analyze, and post-processing parameters,
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can circumvent convergence difficulties with AG and parameter sensitivity with EL. EL and AG

simulations of problems like CIT may still provide useful results for fluid–particle macroscale

models.

Acknowledgments

The authors gratefully acknowledge the financial support from the U.S. National Science Foun-

dation under Grants CBET-1437865 and CBET-1437903. This research was also partially sup-

ported (B.K. and R.O.F.) by the U.S. Department of Energy, National Energy Technology

Laboratory (NETL) through the Ames Laboratory. The Ames Laboratory is operated for the

U.S. Department of Energy by Iowa State University under Contract DE-AC02-07CH11358.

Literature Cited

1 Jackson R. The Dynamics of Fluidized Particles. Cambridge Monographs on Mechanics.

Cambridge, UK: Cambridge University Press. 2000.

2 Tenneti S, Subramaniam S. Particle-resolved direct numerical simulation for gas–solid flow

model development. Annual Review of Fluid Mechanics. 2014;46:199–230.

3 Uhlmann M, Doychev T. Sedimentation of a dilute suspension of rigid spheres at intermediate

Galileo numbers: the effect of clustering upon the particle motion. J Fluid Mech. 2017;

752:310–348.

4 Fox RO. On multiphase turbulence models for collisional fluid–particle flows. Journal of

Fluid Mechanics. 2014;742:368–424.

5 Igci Y, Andrews AT, Sundaresan S, Pannala S, O’Brien T. Filtered two-fluid models for

fluidized gas-particle suspensions. AIChE Journal. 2008;54(6):1431–1448.

6 Lu L, Konan A, Benyahia S. Influence of grid resolution, parcel size and drag models on

bubbling fluidized bed simulation. Chemical Engineering Journal. 2017;.

22

Page 22 of 49

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
7 Agrawal K, Loezos PN, Syamlal M, Sundaresan S. The role of meso-scale structures in rapid

gas–solid flows. Journal of Fluid Mechanics. 2001;445:151–185.

8 Balachandar S, Eaton JK. Turbulent dispersed multiphase flow. Annual Review of Fluid

Mechanics. 2010;42:111–133.

9 Capecelatro J, Desjardins O, Fox RO. Numerical study of collisional particle dynamics in

cluster-induced turbulence. Journal of Fluid Mechanics. 2014;747(R2).

0 Subramaniam S. Lagrangian–Eulerian methods for multiphase flows. Progress in Energy and

Combustion Science. 2013;39(2):215–245.

1 Balachandar S. A scaling analysis for point–particle approaches to turbulent multiphase

flows. International Journal of Multiphase Flow. 2009;35(9):801–810.

2 Garg R, Narayanan C, Lakehal D, Subramaniam S. Accurate numerical estimation of inter-

phase momentum transfer in Lagrangian–Eulerian simulations of dispersed two-phase flows.

International Journal of Multiphase Flow. 2007;33(12):1337–1364.

3 Garg R, Narayanan C, Subramaniam S. A numerically convergent Lagrangian–Eulerian

simulation method for dispersed two-phase flows. International Journal of Multiphase Flow.

2009;35(4):376–388.

4 Capecelatro J, Desjardins O. An Euler-Lagrange strategy for simulating particle-laden flows.

Journal of Computational Physics. 2013;238:1–31.

5 Ireland PJ, Desjardins O. Improving particle drag predictions in Euler–Lagrange simulations

with two-way coupling. Journal of Computational Physics. 2017;338:405–430.

6 Kong B, Fox RO. A solution algorithm for fluid–particle flows across all flow regimes. Journal

of Computational Physics. 2017;(in revision).

23

Page 23 of 49

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
7 Passalacqua A, Fox RO. Simulation of mono- and bidisperse gas–particle flow in a riser

with a third-order quadrature-based moment method. Industrial & Engineering Chemistry

Research. 2012;52(1):187–198.

8 Passalacqua A, Galvin JE, Vedula P, Hrenya CM, Fox RO. A quadrature-based kinetic

model for dilute non-isothermal granular flows. Communications in Computational Physics.

2011;10(01):216–252.

9 Yuan C, Fox RO. Conditional quadrature method of moments for kinetic equations. Journal

of Computational Physics. 2011;230(22):8216–8246.
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EL method using fixed width filters. Particle volume-fraction variance (left) and
granular temperature (right). Λ refers to grid resolution, ∆, for EE methods and
filter width, h, for EL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

27

Page 27 of 49

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
13 CIT one-point statistics. Volume-fraction variance (top left), granular temper-

ature (top right), and anisotropy in particle pressure tensor (bottom). For EL,
Fix 10 was used for density estimation. . . . . . . . . . . . . . . . . . . . . . . . . 41

14 αp (top) and Up,x (bottom) spectra from the three methods (left to right) for CIT
case. Spectra are shown for increasing grid resolution. For EL, Fix 10 was used
for density estimation. Per row, the black lines are from the highest resolution
EL simulation for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Figure 1: Comparison of density estimation techniques. Left: histogram. Center: Gaussian
filter. Right: Voronoi tesselation.
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Figure 2: St = 0.2 particle fields at t = 1 for TFM, AG, EL (left to right) and increasing
resolution (top to bottom) for HIT case. αp shown for EE methods and particle locations for
EL method.
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Figure 3: St = 1 particle fields at t = 1 for TFM, AG, EL (left to right) and increasing resolution
(top to bottom) for HIT case. αp shown for EE methods and particle locations for EL method.
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Figure 4: St = 5 particle fields at t = 1 for TFM, AG, EL (left to right) and increasing resolution
(top to bottom) for HIT case. αp shown for EE methods and particle locations for EL method.
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Figure 5: CIT particle fields for TFM, AG, EL (top to bottom) and increasing resolution (left
to right).
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Figure 6: Volume-fraction variance (left) and granular temperature (right) from HIT simula-
tions for three St particles (top to bottom). Statistics are captured using the various density
estimation techniques shown in the legend. Fix and Var refer to kernel density estimation using
fixed filter width and variable filter width, respectively. In the case of Fix, the number following
refers to the filter width, in multiples of particle diameter, h/dp, and in the case of Var, the
number refers to the number of particles sampled, Np.
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Figure 7: Volume-fraction variance (left) and granular temperature (right) from CIT simulations.
The NDF estimation techniques used are the same as those used for the HIT simulations,
excluding the Voronoi technique. The legend is shown previously, in Figure 6.
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Figure 8: αp spectra for EL simulations of HIT at resolution dp/∆ = 2 using fixed (left) and
variable (right) width filters for the three St particles (top to bottom).
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Figure 9: αp (top) and Up,x (bottom) spectra for EL simulations of CIT at resolution dp/∆ = 1
using fixed (left) and variable (right) filters.
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particle fluctuating energy are shown for CIT. These statistics do not depend on the EL filter.
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Figure 11: αp spectrum from the three methods (left to right) and the three particle Stokes
numbers (top to bottom) for HIT case. Spectra are shown for increasing grid resolution. For
EL, Fix 10 was used for density estimation. Darker lines refer to higher resolutions. For TFM
and AG, the black dashed lines are from the highest resolution EL simulation for comparison.
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Figure 12: HIT one-point statistics vs. grid resolution for EE methods and filter width for EL
method using fixed width filters. Particle volume-fraction variance (left) and granular temper-
ature (right). Λ refers to grid resolution, ∆, for EE methods and filter width, h, for EL.
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Figure 13: CIT one-point statistics. Volume-fraction variance (top left), granular temperature
(top right), and anisotropy in particle pressure tensor (bottom). For EL, Fix 10 was used for
density estimation.
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Figure 14: αp (top) and Up,x (bottom) spectra from the three methods (left to right) for CIT case.
Spectra are shown for increasing grid resolution. For EL, Fix 10 was used for density estimation.
Per row, the black lines are from the highest resolution EL simulation for comparison.
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Table 1: Example kinetic theory coefficients in TFM model for particle phase.

pp,c = 4ηαpg0Θp − νp,b∇ ·Up νp,b =
8ηαpg0dp

√
Θp

3
√
π

νp,k = 1
2Θp

[
1
τp

+ η(2−η)
τc

]−1 [
1 + 8

5η(3η − 2)αpg0
]

νp,c =
8ηαpg0

5 νp,k +
3
5νp,b

kp,k = 5
2Θp

[
3
τp

+ 4η(41−33η)
τc

]−1 [
1 + 12

5 η
2(4η − 3)αpg0

]
kp,c =

12ηαpg0
5 kΘ,k +

3
2νp,b
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Table 2: Parameters use for HIT simulations.

Particle Stokes number St 0.2, 1, 5
Grid resolution dp/∆

1
4 ,

1
2 , 1, 2
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Table 3: Parameters use for CIT simulations.

Particle diameter dp 90× 10−6m
Particle density ρp 1000 kgm−3

Fluid density ρf 1 kgm−3

Fluid kinematic viscosity νf 1.8× 10−5m2 s−1

Gravitational acceleration g −4.0004m s−2

Particle Reynolds number Rep 0.5
Average particle volume fraction ⟨αp⟩ 0.01

Domain size Lx
dp

= 4
Ly

dp
= 56Lz

dp
1792

Grid resolution dp/∆
1
8 ,

1
4 ,

1
2 , 1
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Table 4: Statistics from CIT EL simulations with dp/∆ = 1/4 for different Gaussian volume
filtering kernels.

δf/dp ⟨vp,x/VSt⟩
⟨
v′2p,x
⟩
/V 2

St

⟨
v′2p,y
⟩
/V 2

St

5 -2.994 6.170 2.735
10 -3.163 7.131 2.970
20 -3.085 5.825 2.512
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