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Two paradigms for the evaluation of surrogate markers in randomized clinical
trials have been proposed: the causal effects paradigm and the causal associ-
ation paradigm. Each of these paradigms rely on assumptions that must be
made to proceed with estimation and to validate a candidate surrogate marker
(S) for the true outcome of interest (T). We consider the setting in which S
and T are Gaussian and are generated from structural models that include an
unobserved confounder. Under the assumed structural models, we relate the
quantities used to evaluate surrogacy within both the causal effects and causal
association frameworks. We review some of the common assumptions made to
aid in estimating these quantities and show that assumptions made within one
framework can imply strong assumptions within the alternative framework. We
demonstrate that there is a similarity, but not exact correspondence between the
quantities used to evaluate surrogacy within each framework, and show that the
conditions for identifiability of the surrogacy parameters are different from the
conditions, which lead to a correspondence of these quantities.
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1 INTRODUCTION

The validation of an intermediate marker (S) as a surrogate marker for the true outcome of interest (T) in clinical trials
has attracted much attention.1-3 An intermediate marker shown to be a valid surrogate would allow trials to be run more
cheaply and quickly by basing analyses on the earlier or more cheaply measured surrogate. To use an example, we will
refer to throughout this paper, in a clinical trial assessing the efficacy of a new therapy on lengthening overall survival
(OS) time in ovarian cancer, the duration of the trial could be reduced if the treatment effect on progression free survival
(PFS) time could be used to infer a treatment effect on OS time. However, in practice, demonstrating the validity of
a surrogate marker has proven challenging, possibly because of the disease process affecting T through pathways not
mediated through the surrogate or because of unobserved confounders, U, of S and T.4 For instance, suppose PFS time
(S) is being assessed as a surrogate marker for OS time (T) in ovarian cancer patients in a trial with a binary treatment
(Z), where Z = 0 is standard of care and Z = 1 is a new treatment. If patients experiencing longer PFS are also more likely
to eat a healthy diet (U), which is also associated with longer OS, a treatment that prolonged PFS would also appear to
prolong OS, indicating PFS as a potentially valid surrogate marker even though the survival benefit was not due to the
induced treatment effect on PFS.
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Several causal frameworks have been explored to identify intermediate markers as valid surrogates. Joffe and Greene5

group these frameworks into 2 paradigms. The first, termed the “causal-effects” (CE) paradigm, attempts to sepa-
rate the direct effect of the treatment (Z) on T from the effect of Z on T that is mediated through S. The second
paradigm, termed the “causal-association” (CA) paradigm, focuses on the association of the treatment effect on the
surrogate and the treatment effect on the true endpoint. VanderWeele6 argued that conceptually the CA paradigm
is more appealing when assessing surrogacy, although that may not be universally accepted. Each of the approaches
to surrogacy assessment relies on certain assumptions that one must be willing to make to proceed with estimation
and the evaluation of S as a surrogate. Ten Have and Joffe7 and Ensor et al8 provide a comprehensive reviews of the
estimation methods used and the assumptions made within both the CE and CA paradigms. Here, we explore the con-
nections between some of the typical assumptions made within each paradigm and examine the implications of these
assumptions on the quantities used to determine the validity of S as a surrogate marker within each of the CE and
CA paradigms.

The consideration of surrogacy from a causal perspective has some similarities to causal considerations of compliance
and mediation, which can both be considered as intermediate variables between an intervention or exposure and an
outcome. A number of the assumptions we consider originate in the compliance and mediation literature.7,9-12

The CE paradigm can be represented as a structural model in which one can explicitly change the values of Z or S or
both, and the model specifies how the outcome T would then change. The indirect effect of Z on T is then the part of the
effect of Z that is explained by changes in S holding Z constant, and the direct effect is the part of the effect of Z on T when
the value of S is held constant. If S is a good surrogate for T, the direct effect of Z on T should be 0 for all values of S. The
Prentice1 criteria for assessing surrogacy can be considered to be in the CE paradigm. These criteria require that S and T
be correlated, that S be affected by Z, and that T and Z be conditionally independent given S. If the coefficient of Z is 0 in
the regression model for T|Z, S, then S would be considered a valid surrogate. Because this model conditions on the post
randomization variable S, it will in general not have a causal interpretation. For the Prentice criteria to be valid from a
causal perspective requires the assumption of no unmeasured confounders of S and T. This assumption is often unlikely
to hold in the surrogate marker setting, where S and T are frequently involved in the same disease process. In general,
the parameters in the CE paradigm are not estimable without assumptions, of which no unmeasured confounders is an
example. In the PFS and OS example in ovarian cancer, this would preclude the possibility of a healthy diet affecting both
PFS and OS. Assumptions weaker than no unmeasured confounders have been suggested in the literature, and these will
be considered below.

The assessment of surrogacy within the CA paradigm includes methods based on principal stratification,13 which con-
sider the distribution of the potential outcomes of T conditional on principal strata based on the values of the potential
outcomes of S. In this framework, each subject has 2 potential outcomes (in the case of a binary treatment), one under
Z = 0 and one under Z = 1, for each of the surrogate and the final outcome. Measures of surrogacy are derived from the
distribution of the potential outcomes of T conditional on principal strata based on the potential values of the outcomes
of S. S is considered to be a valid principal surrogate if there is no expected treatment effect on T within the principal
stratum where there is no treatment effect on S. As the potential outcomes of S are prerandomization variables, they can
be regarded as baseline covariates, thereby avoiding the issue of potential unobserved confounding between the post ran-
domization observed values of S and T. However, as only 2 of the 4 potential outcomes of S and T are observed for each
person, assumptions must be made to aid in the estimation of unidentifiable parameters. Common assumptions often
involve restrictions or assumptions on certain model parameters through the use of prior distributional assumptions,14 or
conditional independence assumptions between certain counterfactual outcomes15-17 or concepts of monotonicity, under
which negative effects of the treatment on the surrogate marker or outcome are precluded.18 For the ovarian cancer
example, the potential outcomes for S are the 2 PFS times that would have arisen under each of the treatment arms, and
the potential outcomes for T are the 2 OS times that would have arisen under the 2 treatments. The CE paradigm addi-
tionally requires consideration of what the OS time would be if the PFS time could be externally manipulated. While it is
hard to specify how that could be achieved, it is never the less part of the conceptual framework of the CE paradigm.

The CE paradigm is consistent with a mechanistic view of causality as it describes how the output will change if the
inputs are separately manipulated. By allowing the manipulation of S for fixed values of Z, this framework represents a
larger, more general model. By considering the potential outcomes of S and T under each treatment arm, the CA frame-
work does not require manipulations of S, as it is concerned with how the causal treatment effect on S is associated with
the causal treatment effect on T and not with the effect of S on T. Pearl19 invited a discussion on the uses and limitations of
estimating effects using potential outcomes. A common argument against the use of potential outcomes and the principal
stratification approach is the unidentifiability of the principal strata. It is argued that this lack of identifiability makes it
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difficult to make progress in estimation within this framework. However, estimation methods within the CE framework
also rely on untestable assumptions and on conceiving of interventions on S, which may not always be possible.6,20

In this paper, to illustrate the connections between the CE and CA frameworks, we consider the setting in which S and
T are Gaussian. While the relationship between the CE and CA frameworks has been considered previously in a general
setting,5,21 restricting to the Gaussian setting facilitates consideration of a larger number of different assumptions and
also allows algebraic development, providing a more clear and concrete understanding of the relationship between these
2 frameworks. We assume that S and T are generated from structural models that include an unobserved confounder.
This model is detailed in Section 2. In Section 3, we explore the relationship between the parameters of the assumed
Gaussian structural model and the model parameters in the principal surrogacy framework and relate the structural
model parameters to the parameters used to evaluate surrogacy within both the CE and CA frameworks. In Section 4, we
briefly explore the role of baseline covariates in aiding in parameter estimation and in surrogacy evaluation. In Section
5, we review some of the common assumptions made within the CE framework to achieve identifiability and consider
the impact of these assumptions on the parameters and quantities used to evaluate surrogacy in the CA framework.
Section 6 explores some of the assumptions used to aid in estimation within the CA framework and their impact on the
parameters within the CE framework. Section 7 presents a numerical study of the correspondence between the metrics
of surrogacy under the various assumptions described in Sections 5 and 6. Section 8 briefly outlines estimation methods
for the parameters that are typically made in the 2 frameworks and explores how the explicit expressions derived for
the relationship between the parameters and identifying assumptions of the 2 frameworks could aid in the estimation of
surrogacy evaluation quantities. We conclude with a discussion in Section 9.

2 THE STRUCTURAL MODEL

Throughout the paper, we will assume that the truth is a fairly general structural model, which is a model within the CE
framework. We assume that both the surrogate marker S and the true endpoint T are continuous. We assume that the
observed Si is generated from a structural model that depends on the treatment, Zi (Zi = 0 or 1), and on an unobserved
confounder, Ui, for each subject i, i = 1, … ,n. The observed value of Ti is also generated from a structural model that
depends on Zi, Ui, and on Si. Figure 1 provides a graphical representation of the assumed model.

We use the potential outcomes framework and assume no interference; ie, the potential outcomes of individual i are
unaffected by the treatment and surrogate value of all other individuals. The assumed structural models for Si and Ti are
given by

Si(Zi) = 𝛼0 + 𝛼1Zi + 𝛼2Ui + 𝛼3UiZi + eSi(Zi) (1)

Ti(Zi, s) = 𝛽0 + 𝛽1Zi + 𝛽2s + 𝛽3Ui + 𝛽4sZi + 𝛽5UiZi + eTi(Zi) (2)

where Ui ∼ N(0, 1), eSi(0) ∼ N(0, 𝛿2
S0), eSi(1) ∼ N(0, 𝛿2

S1), eTi(0) ∼ N(0, 𝛿2
T0), eTi(1) ∼ N(0, 𝛿2

T1), and Ui, eSi(0), eSi(1), eTi(0),
eTi(1) are all uncorrelated. Note that the model is quite general in the sense that it does allow the outcome to depend on
interactions between Z and U and between Z and S. To preclude having non Gaussian error terms, the model for Ti(Zi, Si)
does not include any interactions between Ui and Si. Additionally, while the error associated with the potential outcome

FIGURE 1 Causal graph for the intervention (Z), the surrogate (S), and the final outcome (T) with an unmeasured confounder (U)
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of Ti(Zi, Si) changes with Z, there is no additional measurement error associated with S beyond that induced by the error
of the selected S(z), only a location shift for T(Z, S(z)) conditional on eS(z). Also note that the model does not include
any other baseline covariates except for the intervention, which we assume to be randomly assigned. The situation with
baseline covariates will be discussed later.

From the structural model, we have the following for the 4 potential outcomes:

Si(0) = 𝛼0 + 𝛼2Ui + eSi(0)

Si(1) = 𝛼0 + 𝛼1 + (𝛼2 + 𝛼3)Ui + eSi(1)

Ti(0) = Ti(0, Si(0)) = 𝛽0 + 𝛽2𝛼0 + (𝛽2𝛼2 + 𝛽3)Ui + 𝛽2eSi(0) + eTi(0)

Ti(1) = Ti(1, Si(1)) = 𝛽0 + 𝛽1 + (𝛽2 + 𝛽4)(𝛼0 + 𝛼1) + [(𝛽2 + 𝛽4)(𝛼2 + 𝛼3) + (𝛽3 + 𝛽5)]Ui + (𝛽2 + 𝛽4)eSi(1) + eTi(1).

In addition to no interference, the structural model 2 assumes consistency, Ti = Ti(z, s)ifZi = z, Si = s, which allows the
observed outcome to be related to the potential outcome, and positivity, P(Zi = z|Ui = u) > 0,P(Si(z) = s|Zi = z,Ui =
u) > 0 for all z, u ∈  , and s ∈  . This implies that all treatments can be observed at all levels of potential confounders
and that all levels of the surrogate marker are observable at all levels of potential confounders for all levels of treatment.
The first part of the positivity assumption is trivially satisfied in the setting of a randomized trial.

The structural model described above has 14 parameters, which is the same number of parameters as the principal
surrogacy model described in the following section. For the data that can be collected in a randomized trial, under the
assumption that S and T are Gaussian, there are 10 estimable quantities corresponding to the means and variances of
S(0), S(1), T(0), and T(1) and the correlations of (S(0),T(0)) and (S(1),T(1)). While the structural model is a mechanistic
model, the parameters still cannot all be estimated without untestable assumptions. Similarly, in the principal surrogacy
model, there are 10 estimable parameters; in the following section, we explicitly link the parameters of these 2 models.
When there are no unmeasured confounders in the structural model (ie, 𝛼2 = 𝛼3 = 0 or 𝛽3 = 𝛽5 = 0 or both), then all of
the remaining parameters of this model are identifiable, as are the parameters of the principal surrogacy framework. In
Sections 4 and 5, we explore some of the common assumptions made within the CE and CA frameworks and the impact
of these assumptions on the quantities used to evaluate S as a surrogate marker.

3 THE CA AND CE FRAMEWORKS

3.1 The causal association model
The CA paradigm of surrogacy evaluation includes methods based on the “principal surrogacy” framework of Frangakis
and Rubin.13 This framework focuses on the distribution of the potential outcomes of T conditional on principal strata
defined by the values of the potential outcomes of S. Let Si(z) and Ti(z) denote the potential outcomes of Si and Ti, respec-
tively, for subject i under treatment assignment Zi = z. We assume that the joint distribution of (Si(0), Si(1),Ti(0),Ti(1)) is
multivariate normal14 with mean 𝜇 and covariance matrix Σ and has the following distribution:

⎛⎜⎜⎜⎝
Si(0)
Si(1)
Ti(0)
Ti(1)

⎞⎟⎟⎟⎠ ∼ N

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝
𝜇S0
𝜇S1
𝜇T0
𝜇T1

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝
𝜎2

S0
𝜌s𝜎S0𝜎S1 𝜌00𝜎S0𝜎T0 𝜌01𝜎S0𝜎T1

𝜎2
S1

𝜌10𝜎S1𝜎T0 𝜌11𝜎S1𝜎T1

𝜎2
T0

𝜌t𝜎T1𝜎T0

𝜎2
T1

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
. (3)

The mean 𝜇 and the variances corresponding to the diagonal elements of Σ, as well as the correlation parameters 𝜌00 and
𝜌11, are fully identifiable from the observed data. However, because only one of the counterfactual pairs of outcomes is
observed for each subject, the correlation parameters 𝜌s, 𝜌01, 𝜌10, and 𝜌t are not identifiable from data. The parameters
of the structural model detailed in Section 2 can be directly related to the principal surrogacy model when the joint
distribution of the potential outcomes of S and T is multivariate normal. The formulas for all the 𝜇s, 𝜎s, and 𝜌s in terms
of the 𝛼s, 𝛽s, and 𝛿s are given in Appendix A.

While there is a direct mapping of the 14 parameters of the structural model to the 14 parameters of the principal
surrogacy model, there is not an explicit formula to map the parameters of the principal surrogacy model back to the
structural model parameters. For some combinations of parameters within the parameter space of the principal surrogacy
model, no parameter combinations within the parameter space of the structural model exist.
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3.1.1 Measures of surrogacy
To evaluate S as a surrogate marker within the principal surrogacy framework, Gilbert and Hudgens15 proposed 2 prop-
erties that a good surrogate should possess, “average causal necessity” (ACN) and “average causal sufficiency” (ACS).
Average causal necessity requires that there be no conditional treatment effect on T within the principal stratum where
there is no treatment effect on S, while ACS requires a nonzero conditional treatment effect on T within principal strata
where there is a nonzero treatment effect on S. For the ovarian cancer trial example with PFS as a potential surrogate for
OS, ACN would be met if patients who would experience the same PFS under either treatment arm would on average
experience the same OS under either treatment. Average causal sufficiency would be met if patients who would experi-
ence greater PFS in one treatment arm would on average experience greater OS under this treatment arm. The primary
quantities of interest from the multivariate normal model used to evaluate surrogacy can be derived from the condi-
tional distribution of (T(1) − T(0)|S(1) − S(0) = s), which in the joint Gaussian setting is normal with mean given by
E[T(1) − T(0)|S(1) − S(0) = s] = 𝛾0 + 𝛾1s, where

𝛾0 = (𝜇T1 − 𝜇T0) −

(
𝜌11𝜎S1𝜎T1 − 𝜌10𝜎S1𝜎T0 − 𝜌01𝜎S0𝜎T1 + 𝜌00𝜎S0𝜎T0

𝜎2
S0
+ 𝜎2

S1
− 2𝜌s𝜎S0𝜎S1

)
(𝜇S1 − 𝜇S0 ) (4)

𝛾1 =

(
𝜌11𝜎S1𝜎T1 − 𝜌10𝜎S1𝜎T0 − 𝜌01𝜎S0𝜎T1 + 𝜌00𝜎S0𝜎T0

𝜎2
S0
+ 𝜎2

S1
− 2𝜌s𝜎S0𝜎S1

)
. (5)

Average causal necessity is then satisfied if 𝛾0 = 0, and ACS is satisfied if 𝛾1 ≠ 0. We note that neither 𝛾0 nor 𝛾1 depends
on 𝜌t; however, the variance of [T(1) − T(0)|S(1) − S(0) = s] does depend on 𝜌t.

Based on the mapping of the parameters, the surrogacy quantities of interest in the CA framework 𝛾0 and 𝛾1 can be
rewritten as

𝛾0 = 𝛽1 + 𝛽4(𝛼0 + 𝛼1) − 𝛼1

(
𝛽4

(
𝛼2

3 + 𝛼3𝛼2 + 𝛿2
S1

)
+ 𝛽5𝛼3

𝛿2
S0 + 𝛿

2
S1 + 𝛼

2
3

)
(6)

and

𝛾1 = 𝛽2 +
𝛽4

(
𝛼2

3 + 𝛼3𝛼2 + 𝛿2
S1

)
+ 𝛽5𝛼3

𝛿2
S0 + 𝛿

2
S1 + 𝛼

2
3

. (7)

The principal surrogacy criteria requiring that 𝛾0 = 0 and 𝛾1 ≠ 0 will be met if 𝛽1 + 𝛽4(𝛼0 + 𝛼1) = 𝛼1

(
𝛽4(𝛼2

3+𝛼2𝛼3+𝛿2
S0)+𝛽5𝛼3

𝛿2
S0+𝛿

2
S1+𝛼

2
3

)
and these quantities are greater than −𝛽2𝛼1 for 𝛾1 > 0 and less than −𝛽2𝛼1 for 𝛾1 < 0. Thus, the requirements of the
structural model within the CE framework for achieving principal surrogacy under the CA framework are not simple.

3.2 The causal effects model
3.2.1 Direct and indirect effects
The causal effects framework for surrogacy evaluation attempts to quantify the direct effect of Z on T and the indirect
effect of Z on T that is mediated through S. The notions of direct and indirect effects22,23 are defined by the counterfactual
outcomes Si(z) and Ti(z, s), where Si(z) is the value of S for subject i under treatment assignment Zi = z and Ti(z, s) is
the counterfactual outcome of T for subject i when Zi is set to z and Si is set to s. Robins and Greenland22 and Pearl23

provide definitions of the natural direct effect (NDE(z)), natural indirect effect (NIE(z)), and total effect (TE). The NDE(z)
measures the effect of Z on T when S is set to its potential value under treatment assignment z. The NIE(z) measures
the effect on T when Z is set to z and S is changed to what it would have been if Z were set to 1 compared with what it
would have been if Z were set to 0. Finally, the TE of Z on T is equal to the sum of the NIE(1) and NDE(0) or to the sum of
NIE(0) and NDE(1). Imai, Keele, and Yamamoto11 focus on the average causal effects of NDE(z), NIE(z), and TE defined
by E[NDE(z)], E[NIE(z)], and E[TE], respectively. From the assumed structural model, these average causal effects are
given in Table 1. The average causal effects correspond to the relevant component parameters in the structural model. For
example, E[NDE(0)] equals the direct effects of Z on T plus the effect of Z on S brought through the interaction between
S and Z on T. Because U ∼ N(0, 1), the expected effects in Table 1 do not depend on the parameters associated with the
unmeasured confounders. An additional notion to measure the direct effect of Z on T is the controlled direct effect.22,23
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TABLE 1 Expressions for direct, indirect, and average causal effects

E[NDE(0)]: E[T(1, S(0)) − T(0, S(0))] = 𝛽1 + 𝛼0𝛽4

E[NDE(1)]: E[T(1, S(1)) − T(0, S(1))] = 𝛽1 + 𝛽4(𝛼0 + 𝛼1)
E[NIE(0)]: E[T(0, S(1)) − T(0, S(0))] = 𝛼1𝛽2

E[NIE(1)]: E[T(1, S(1)) − T(1, S(0))] = 𝛼1(𝛽2 + 𝛽4)
E[TE]: E[T(1, S(1)) − T(0, S(0))] = 𝛽1 + 𝛽2𝛼1 + 𝛽4(𝛼0 + 𝛼1)

It measures the effect of a treatment on an outcome after intervening to fix the value of the surrogate S to the same
value s for the whole population; in the context of the ovarian cancer example, this would correspond to an intervention
that sets the PFS time to be equal across the population before estimating the treatment effect on OS. In terms of the
counterfactuals, we can define it as CDE = E[T(1, s) − T(0, s)] = 𝛽1 + 𝛽4s.

Note that if there is no interaction between the surrogate and the treatment in the structural model, then the CDE and
the NDE coincide. However, the TEs decompose into the sum of the NDE and the NIE, but such decomposition is not
available when using the CDE, so we shall not consider the CDE any further in this paper.

3.2.2 Measures of surrogacy
A measure of surrogacy in the CE framework is the ratio of the indirect effect to the TE, denoted by PE(Z), which can
also be interpreted as the proportion of treatment effect on T explained by S. From the assumed structural model, PE(z)
is given by

PE(0) = E[T(0, S(1)) − T(0, S(0))]
E[T(1, S(1)) − T(0, S(0))]

= 𝛼1𝛽2

𝛽1 + 𝛽2𝛼1 + 𝛽4(𝛼0 + 𝛼1)
(8)

and

PE(1) = E[T(1, S(1)) − T(1, S(0))]
E[T(1, S(1)) − T(0, S(0))]

= 𝛼1(𝛽2 + 𝛽4)
𝛽1 + 𝛽2𝛼1 + 𝛽4(𝛼0 + 𝛼1)

. (9)

For S to be considered a perfect surrogate marker, E[NDE(z)] should be zero and E[NIE(z)] should be nonzero, indicating
that all of the effect of Z on T is mediated through S. The PE(z) provides a measure of the proportion of treatment effect
on T that is explained by S and should be large for good surrogate markers and equal to one for a perfect surrogate. In the
ovarian cancer example, an E[NDE(z)] of zero would imply that the treatment only effects OS time through its effect on
PFS time and a nonzero E[NIE(z)] would be the effect on OS time because of the treatment effect induced on PFS time,
net of any treatment effect.

3.2.3 Relationship to Prentice criteria
Special cases of the direct and indirect effects approach to determine surrogacy are the Prentice1 criteria and the closely
related mediation methods proposed by Baron and Kenny.9 The Prentice criteria consider the regression model

E[T|S,Z] = 𝜃0 + 𝜃1Z + 𝜃2S + 𝜃3SZ,

and S is considered a perfect surrogate if 𝜃1 = 𝜃3 = 0. From the structural model, it can be shown that,

𝜃1 = 𝛽1 − 𝛽3
𝛿2

S0(𝛼1 + 𝛼0)(𝛼2 + 𝛼3) + 𝛼2
2(𝛼2𝛼1 + 𝛼1𝛼3 − 𝛼0𝛼3) − 𝛼0𝛼2

(
𝛼2

3 + 𝛿
2
S1

)(
𝛼2

2 + 𝛿
2
S0

)(
(𝛼2 + 𝛼3)2 + 𝛿2

S1

) − 𝛽5
(𝛼1 + 𝛼0)(𝛼2 + 𝛼3)
(𝛼2 + 𝛼3)2 + 𝛿2

S1

and

𝜃3 = 𝛽4 − 𝛽3
𝛼2

2𝛼3 + 𝛼2
(
𝛼2

3 + 𝛿
2
S1

)
− 𝛿2

S0(𝛼2 + 𝛼3)(
(𝛼2 + 𝛼3)2 + 𝛿2

S1

)(
𝛼2

2 + 𝛿
2
S0

) + 𝛽5
(𝛼2 + 𝛼3)

(𝛼2 + 𝛼3)2 + 𝛿2
S1

.

The coefficients of the Prentice model (𝜃0, 𝜃1, 𝜃2, 𝜃3) depend on the coefficients of the confounding variables in
Equations 1 and 2 (ie, they depend on 𝛼2, 𝛼3, 𝛽3, 𝛽5). Therefore, for the assessment of surrogacy using the Prentice
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criteria to be a valid causal assessment of surrogacy, there must be no confounders of S (𝛼2 = 𝛼3 = 0) or no confounders
of T (𝛽3 = 𝛽5 = 0) so that we have 𝜃1 = 𝛽1 and 𝜃3 = 𝛽4. In the absence of confounders, S will be considered a perfect sur-
rogate marker for T based on the Prentice criteria if 𝛼1 ≠ 0, 𝛽2 ≠ 0, 𝛽1 = 0, and 𝛽4 = 0 and subsequently 𝜃1 = 𝜃3 = 0. In
this case, the direct effect of Z on T will be zero and all of the treatment effect will be completely mediated through S. The
methods of Baron and Kenny9 also require no unobserved confounders and additionally require there to be no interaction
of Z and S (𝛽4 = 0). Then, if 𝛼1 and 𝛽2 are nonzero, 𝛼1𝛽2 can be interpreted as the mediation effect or the effect of Z that is
explained by S.

In the absence of unobserved confounders and no interaction effect of S and Z, Freedman, Graubard, and Schatzkin2

proposed a quantity to measure the proportion of treatment effect explained by S, derived from the ratio of treatment
effects estimated from 2 regression models for T, one with no adjustment for S and the other adjusting for S. Freedman's
proportion explained is one minus this ratio, given by p = 1 − 𝛽1

𝛽1+𝛼1𝛽2
, where p = 1 corresponds to a perfect surrogate.

Wang and Taylor24 proposed an estimate of the proportion of treatment effect explained by S that can be estimated from
the observed data in the presence of an interaction of S and Z. For the structural model assumed here, this quantity is
equivalent to PE(z) in Equations 8 and 9.

3.3 Correspondence between the CA and CE models
Within the CE framework, S will be considered a valid surrogate when the NDEs are zero, corresponding to 𝛽1 = 0 and
𝛽4 = 0 and the NIEs are nonzero (𝛼1 and 𝛽2 are nonzero). Within the CA framework, S is considered a valid surrogate if
𝛾0 = 0 and 𝛾1 ≠ 0. VanderWeele21 referred to the expected treatment effect on T within principal strata where there is no
treatment effect on S, here corresponding to 𝛾0, as the “principal strata direct effect” and the expected treatment effect on
T within principal strata where there is a treatment effect on S, here corresponding to 𝛾1, as the “principal strata indirect
effect.” Working at the individual level, VanderWeele21 showed that when the NDEs are 0 for all subjects, corresponding
to the assumption 𝛽1 = 𝛽4 = 𝛽5 = 0 and 𝛿2

S0 = 𝛿2
S1 = 𝛿2

T0 = 𝛿2
T1 = 0, there is no principal strata direct effect, corresponding

to 𝛾0 = 0, therefore meeting the CA surrogacy criteria. In our case, where we are interested in the expected NDEs, which
are 0 when 𝛽1 = 0 and 𝛽4 = 0, the surrogacy quantities of the CA model will be 𝛾0 = − 𝛼1𝛽5𝛼3

𝛿2
S0+𝛿

2
S1+𝛼

2
3

and 𝛾1 = 𝛽2 +
𝛽5𝛼3

𝛿2
S0+𝛿

2
S1+𝛼

2
3

when the expected NDEs are 0. Therefore, when the criteria for surrogacy are met within the CE framework, the criteria
within the CA framework will not always be satisfied but will be met if either 𝛼3 = 0 or 𝛽5 = 0, ie, if either of the UiZi
interactions in Equation 1 or 2 are 0.

When there is no interaction effect between S and Z on T (𝛽4 = 0) and no interaction between the unmeasured con-
founder U and Z for either the outcome (𝛽5 = 0) or the surrogate marker (𝛼3 = 0), then there is a simple relationship
between the proportion explained (PE(z)) measure in the CE framework and the ACN and ACS parameters 𝛾0 and 𝛾1 in the
CA framework. In particular, 𝛽4 = 0 implies NDE(0) = NDE(1) = NDE = 𝛽1, 𝛼3 = 0 implies E(s) = E(S(1))−E(S(0)) = 𝛼1,
while 𝛽4 = 0 and 𝛽5 = 0 together imply that 𝛾0 = 𝛽1 and 𝛾1 = 𝛽2. Thus,

PE(0) = PE(1) = PE = 1 − NDE
TE

= 𝛾1E(s)
𝛾0 + 𝛾1E(s)

= 1 − 𝛾0

𝛾0 + 𝛾1E(s)
.

Thus, 𝛾0 can only be treated as analogous to the direct effect in the CE framework if there is no interaction effect
of S and Z on T and there is no treatment interaction with the unobserved confounder on either the outcome or the
surrogate marker.

3.3.1 Simulation experiments
The above algebra showed that the metrics of surrogacy in the CE framework (NDE(Z), NIE(Z), and PE(Z)) do not
correspond to the metrics of surrogacy in the CA framework (𝛾0 and 𝛾1) unless special conditions are met. To further
understand the magnitude of the differences between the parameters and measures of surrogacy in the CE model and the
CA model, we undertook a simulation experiment. We simulated a broad range of reasonable parameter combinations
in the structural model. Additionally, the average TE (𝛽1 + 𝛽2𝛼1 + 𝛽4(𝛼0 + 𝛼1)) was constrained to be positive. Draw-
ing the CE parameters in this way ensured that 𝛼1 > 0, 𝛽2 > 0, and (𝛽2 + 𝛽4) > 0, which is a reasonable assumption
in the surrogate marker setting where any S being considered as a potential surrogate for T would be known to have
an association with the treatment and with T. Additionally, under the distributional assumptions, the magnitude of the
coefficients of the confounding variable on S and on T must be less than the magnitude of the coefficient of 𝛼1 and



4250 CONLON ET AL.

𝛽2, respectively, and 𝛿2
S0 and 𝛿2

S1 are constrained to have the same values, as are 𝛿2
T0 and 𝛿2

T1. Restricting the average
TE to be greater than 0 ensures that PE(z) is greater than 0. For each parameter set, we calculated the corresponding
parameters in the CA model and also the measures of surrogacy in both frameworks. Details of the distributions used
to generate parameters for the simulations are provided in Appendix B. The range of R2 values for regression models
of T|Z, T|S, and T|U is also shown in Appendix B and demonstrates that the way in which the parameters were simu-
lated was not overly restrictive and leads to a wide spectrum of scenarios. We explored the sensitivity of the simulation
results to the chosen distributions and found that the results appear generalizable to parameters arising from different
distributions.

Figure 2 provides scatter plots of the correlation parameters of the CA model for the simulated CE model parameters.
The plots show that 𝜌s, 𝜌t, 𝜌00, and 𝜌11 are almost always positive, that 𝜌00, and 𝜌11 are generally larger than the other 4
correlation parameters, and that 𝜌s and 𝜌t are generally larger than 𝜌01 and 𝜌10. Figure 3 provides a scatter plot of E[NDE(0)]
versus 𝛾0. We see that there is a close correspondence between the direct effects and 𝛾0. Figure 4 provides plots of 𝛾0 vs 𝛾1
for different values of PE. When PE is small, 𝛾0 tends to be greater than 0. As PE increases, the distribution of 𝛾0 becomes

FIGURE 2 Causal-association model parameters for a range of plausible values from the assumed structural model
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FIGURE 3 Correspondence between natural direct effect (NDE) and 𝛾0 for a range of plausible values from the assumed structural model

more centered around 0. The plots show that although there is not a perfect concordance between the surrogacy measures
in the 2 frameworks, similar conclusions regarding the validity of S as a surrogate marker will often be drawn from the 2
frameworks.

The above figures represent the degree of agreement between the 2 concepts of surrogacy, as if the joint distribution of
all the counterfactual outcomes was known; that is, all the parameters in Equations 1 and 2 were known. In practice, the
parameters would have to be estimated from observed data.

4 BASELINE COVARIATES

In many settings, observed baseline covariates (X) are available that may explain some of the dependence between S and T
and explain some of the effect of Z on S and T. Often baseline covariates are sought that will control for any confounding
of S and T. If X is a binary or categorical covariate, the models and assumptions within both the CE and CA frameworks
could be made within strata defined by X. If X is a continuous covariate or a continuous linear combination of covariates,
additional parameters could be added to the structural model to give

Si(Zi) = 𝛼0 + 𝛼1Zi + 𝛼2Ui + 𝛼3UiZi + 𝜓1Xi + 𝜓2XiZi + eSi(Zi)

Ti(Zi, Si) = 𝛽0 + 𝛽1Zi + 𝛽2Si + 𝛽3Ui + 𝛽4SiZi + 𝛽5UiZi + 𝜔1Xi + 𝜔2XiZi + eTi(Zi).

This model now has 18 parameters to estimate and leads to a new CA model given by
⎛⎜⎜⎜⎝

Si(0)
Si(1)
Ti(0)
Ti(1)

⎞⎟⎟⎟⎠ ∼

N

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

𝜇S0 + 𝜓1Xi
𝜇S1 + (𝜓1 + 𝜓2)Xi

𝜇T0 + 𝜔1Xi
𝜇T1 + (𝜔1 + 𝜔2)Xi

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝
𝜎2

S0
𝜌s𝜎S0𝜎S1 𝜌00𝜎S0𝜎T0 𝜌01𝜎S0𝜎T1

𝜎2
S1

𝜌10𝜎S1𝜎T0 𝜌11𝜎S1𝜎T1

𝜎2
T0

𝜌t𝜎T1𝜎T0

𝜎2
T1

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
. The mean parameters of this model are estimable,

and as the covariance matrix does not change with the addition of baseline covariates, there are still 4 correlation param-
eters that are not estimable. Full development of the structural model given in Equations 1 and 2 can be assumed to be
conditional on X, making the common assumptions of conditional independence and sequential ignorability discussed
in the next section more plausible. In Appendix D, we describe the consequence of including additional covariates on
the natural direct and indirect effects, on the Prentice criteria and on 𝛾0 and 𝛾1.
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FIGURE 4 Correspondence between causal-association surrogacy measures (𝛾0 and 𝛾1) and causal-effects surrogacy measures (PE(0)) for
a range of plausible values from the assumed structural model

5 ASSUMPTIONS MADE WITHIN THE CE FRAMEWORK

The structural model assumed in Section 2 is not identifiable from the observed data. Therefore, assumptions must be
made to aid in the estimation of the parameters and identification of the direct and indirect effects. We review some of the
common identifying assumptions made within the CE framework and explore the implications of these assumptions on
the parameters of the principal surrogacy model. The no interference assumption is expanded to mean that the treatment
level of one individual has no effect on the surrogate of another, and we require generalized consistency, namely, S(z) = S
and T(z, S(z)) = T when Z = z.

5.1 No unmeasured confounders
A critical assumption to identification within the causal effects framework is that there are no unobserved confounders
driving the association between the outcome and the treatment or between the surrogate marker and the outcome. In
the ovarian cancer example, the assumption of no unobserved confounders between the outcome and the treatment will
be met because it is a randomized clinical trial. The assumption of no unobserved confounders between the surrogate
marker and the outcome precludes the possibility that diet affects both PFS time and OS time and therefore would only
be a reasonable assumption to make in this context if diet was not thought to be associated with both of these outcomes,
or if covariate information was available to be included in the model to sufficiently control for this association. Different
versions of the no unmeasured confounders assumption are made in the literature.
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Let X denote a set of measured covariates. Pearl23 required conditional exchangeability, meaning that conditional on
measured covariates X, treatment Z is “random” and that, once we stratify according to Z and X, their level of S is also
essentially random. More formally,

Ti(z) ⟂ Z|Xi = x
Ti(z′, s) ⟂ Si(z)|Zi = z,Xi = x

for all z, z′ and x ∈  , implying no Z − T confounding conditionally on observed covariates X and no S − T confounding
conditionally on observed covariates X and Z. The first assumption is automatically satisfied in randomized trials.

The conditional exchangeability assumption is replaced by Imai, Keele, and Yamamoto11 by sequential ignorability,
defined as

Ti(z′, s), Si(z) ⟂ Zi|Xi = x

Ti(z′, s) ⟂ Si(z)|Zi = z,Xi = x

for all z, z′ and x ∈  . Again, the first assumption is automatically satisfied in randomized trials; the second is stronger,
especially in the setting we have here without covariates.

Under our assumption of randomized treatment, Pearl and Imai, Keele, and Yamamoto correspond. Under the
structural model 2 without covariates, sequential ignorability implies Pearl's conditions for identification.

Petersen, Sinsi, and van der Laan25 replace the assumption Ti(z′, s), Si(z) ⟂ Zi|Xi = x of Imai, Keele, and Yamamoto
with the weaker assumption that the outcome rather than the joint distribution of the surrogate and the outcomes is
independent of treatment: Ti(z′, s) ⟂ Zi|Xi = x, but require the additional assumption that the magnitude of the direct
effect is independent of the potential values of the surrogate marker conditional on observed covariates:

ES(z) [Yi(1, s) − Yi(0, s)|Si(z) = s,X = x] = ES(z) [Yi(1, s) − Yi(0, s)|X = x] .

As with the assumptions of Pearl,23 the Petersen, Sinsi, and van der Laan requirements match those of sequential
ignorability in a randomized trial setting.

While these identification assumptions hold without further parametric assumptions, we can translate them into our
parametric structural model by noting

Si(0) = 𝛼0 + 𝛼2Ui + eS(0)
i

Si(1) = 𝛼0 + 𝛼1 + (𝛼2 + 𝛼3)Ui + eS(0)
i

Ti(0, s) = 𝛽0 + 𝛽2s + 𝛽3Ui + eT(0)
i

Ti(1, s) = 𝛽0 + (𝛽2 + 𝛽4)s + (𝛽3 + 𝛽5)Ui + eT(0)
i .

The requirement that Ti(z′, s) ⟂ Si(z)|Zi = z,Xi = x implies 𝛼2 = 0 or 𝛽3 = 0 when Z = 0, and 𝛼2 + 𝛼3 = 0 or 𝛽3 + 𝛽5 = 0
when Z = 1, or, more concisely, 𝛼2 = 𝛼3 = 0 or 𝛽3 = 𝛽5 = 0, so that either S(Zi) or T(Zi, Si) is independent of Ui and thus
Ui no longer confounds the surrogate marker and the outcome.

5.2 No interaction
Recent work by VanderWeele26 has highlighted the important role of interactions in mediation analysis. Baron and Kenny9

propose methods for mediation analysis based on solving a system of linear equations. To obtain causal interpretations of
the parameters of their models, an assumption of no unmeasured confounders as well as no interaction is necessary. This
leads to the structural model of Section 2 with 𝛼2 = 𝛼3 = 0 or 𝛽3 = 𝛽5 = 0 and 𝛽4 = 0. Then, E[NDE(0)] = E[NDE(1)] = 𝛽1,
E[NIE(1)] = E[NIE(0)] = 𝛼1𝛽2, and E[TE] = 𝛽1 + 𝛽2𝛼1. Under these assumptions, we have 𝜌s = 𝜌01 = 𝜌10 = 𝜌t = 0, and if
𝛿2

S0 = 𝛿2
S1 and 𝛿2

T0 = 𝛿2
T1, then 𝜌00 = 𝜌11. For our data example in ovarian cancer, these assumptions imply that diet does not

affect both PFS time and OS time and OS time changes with PFS time to the same degree under both treatment arms. This
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assumption may therefore be reasonable to make if there is clinical knowledge to support the notion that longer (shorter)
PFS times will result in similarly longer (shorter) OS times, regardless of treatment given. Under these assumptions, 𝛾0
is equal to the NDE (E[NDE(0)] = E[NDE(1)] = 𝛾0 = 𝛽1) and 𝛾1 = 𝛽2, leading to exact correspondence between the CE
and CA measures of surrogacy. Therefore, if 𝛽1 = 0 and 𝛽2 ≠ 0, S will be a valid surrogate for T from both the CE or CA
model perspective.

5.3 Conditional independence assumption
Daniels et al12 work under the assumption of conditional independence between potential outcomes, which assumes that
T(1, S(1)), T(1, S(0)), and T(0, S(0)) are conditionally independent given S(0) and S(1). In the ovarian cancer example,
this assumption implies that given 2 PFS times, s0 and s1, under Z = 0 and Z = 1, respectively, among the set of people
who have potential outcomes s0 and s1, the OS times under Z = 0 and the OS times under Z = 1 are independent
and also independent of the OS time under Z = 1 for PFS time s0. They note that this assumption is not necessary to
estimate the direct and indirect effects; however, in their Bayesian estimation strategy for estimating NDE and NIE, these
assumptions are needed to estimate features of the posterior distribution of these quantities, such as the posterior variance.
The conditional covariances of these 3 outcomes from the structural model of Section 2 are as follows:

Cov[T (0, S(0)) ,T (1, S(1)) |S(0), S(1)] = 𝛽3(𝛽3+𝛽5)𝛿2
S0
𝛿2

S1

𝛿2
S0
(𝛼2+𝛼3)2+𝛿2

S1

(
𝛼2

2+𝛿
2
S0

) ,

Cov[T (0, S(0)) ,T (1, S(0)) |S(0), S(1)] = 𝛽3(𝛽3+𝛽5)𝛿2
S0
𝛿2

S1

𝛿2
S0
(𝛼2+𝛼3)2+𝛿2

S1

(
𝛼2

2+𝛿
2
S0

) , and

Cov[T (1, S(1)) ,T (1, S(0)) |S(0), S(1)] = 𝛿2
S0
𝛿2

S1
(𝛽3+𝛽5)2+𝛿2

S0
𝛿2

T1
(𝛼2+𝛼3)2+𝛿2

S1
𝛿2

T1

(
𝛼2

2+𝛿
2
S0

)
𝛿2

S0
(𝛼2+𝛼3)2+𝛿2

S1

(
𝛼2

2+𝛿
2
S0

) .

In order for the 3 conditional independence assumptions to hold, in the structural model, we must have (𝛽3 + 𝛽5) = 0
and the possibly unrealistic assumption that 𝛿2

T1
= 0, making this assumption difficult to satisfy in most scenarios. In

terms of the parameters of the causal association model, this assumption does not change the correlation parameters 𝜌s,
𝜌00, and 𝜌10 and only slightly alters 𝜌t, 𝜌11, and 𝜌01. The surrogacy quantities of interest, 𝛾0 and 𝛾1, are unchanged by this
assumption.

5.4 Exclusion restriction
Many of the assumptions discussed so far required no unobserved confounding. The instrumental variable approach does
not make assumptions about S–T confounding but instead assumes that all of the effect of Z on the outcome are medi-
ated by the intermediate variable Si, ie, that the direct effect of Z is 0, ie, Ti(1, s) = Ti(0, s). This assumption is called
exclusion restriction. More specifically, in the setting where the intermediate variable is binary (eg, binary mediator or
binary indicator of compliance to treatment), the exclusion restriction assumption requires that the distribution of the
potential outcomes of T be independent of treatment assignment in the principal strata defined by the potential inter-
mediate variable. So for the never-takers, (Si(0) = Si(1) = 0), and the always-takers, (Si(0) = Si(1) = 1), this implies
Ti(1, s) = Ti(0, s) = 𝛽0 + 𝛽2s + 𝛽3Ui,27 and thus 𝛽1 = 𝛽4 = 𝛽5 = 0. In the continuous setting, Holland28 and Sobel29 have
a similar requirement for identifiability, requiring that 𝛽1 + 𝛽4s + 𝛽5U = 0. While in the compliance literature, it is often
reasonable to assume that the treatment has no direct effect on the outcome; we note that the exclusion restriction is not
compatible with the goals of surrogacy evaluation, as it assumes that the direct effect of treatment on the outcome is 0,
which in turn assumes that S is a valid surrogate marker,7 and would therefore never be a reasonable assumption to make
in this setting.

6 ASSUMPTIONS MADE WITHIN THE CA FRAMEWORK

As in the CE setting, some parameters of the principal surrogacy model are unidentifiable from the data, requiring assump-
tions to be made to aid in estimation. The assumptions that are typically made vary based on the setting being explored
and on the quantities of interest. In some settings, baseline covariate information is available that can aid in estimating
the missing potential outcomes of S, or a “constant biomarker” assumption can be made about the potential outcomes
of S in the control arm.15,30 Outside of these settings, assumptions must be placed on certain model parameters or on cer-
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tain relationships between potential outcomes to proceed with estimation. While there is not a one-to-one mapping of the
principal surrogacy model parameters to the structural model parameters as there is from the structural model parame-
ters to the principal surrogacy model parameters, the assumptions made in the principal surrogacy setting have implicit
effects on the parameters of the structural model.

6.1 Prior assumptions on correlation parameters
Within the setting of multivariate normally distributed outcomes of S(0), S(1), T(0), and T(1), Conlon, Taylor, and Elliott14

used a Bayesian estimation strategy and placed different plausible prior assumptions on the unidentified correlation
parameters. These assumptions, along with the positive definite restriction of the covariance matrix, aided in estima-
tion. The assumptions made include restricting the correlation parameters to be positive and a restriction with respect
to the ordering of the magnitudes of the correlations. These assumptions are reasonable in many surrogate marker set-
tings, where the surrogate marker and the final outcome are often part of the same disease process. In the context of the
ovarian cancer example, it would be reasonable to assume that the correlation parameters are positive, especially if the
observed correlations between PFS time and OS time within each treatment arm are positive. It may also be reasonable to
assume that the correlation between PFS time and OS time within the same treatment arm, the correlation between PFS
times across treatment arms, and the correlation between OS times across treatment arms are larger than the correlations
between PFS time and OS time in opposite treatment arms. The implications of these assumptions on the parameters of
the CE model are explored below.

6.1.1 Positivity of correlations
One assumption made by Conlon, Taylor, and Elliott14 restricts all of the correlation parameters to be positive. This
assumption is motivated by the fact that S and T are usually scientifically or biologically related, and therefore, if a person
has an inherent frailty, then this will result in both S and T being higher (or lower) irrespective of the treatment that they
receive. In terms of the structural model, if we assume that (𝛽2 + 𝛽4) ⩾ 0, which would be expected in any setting where
S is being considered as a potential surrogate marker, restricting the correlation parameters to be positive requires one of
the following 2 settings: (1) 𝛼2 > 0, (𝛼2 + 𝛼3) > 0, (𝛽2𝛼2 + 𝛽3) > 0, and (𝛽3 + 𝛽5) + (𝛽2 + 𝛽4)(𝛼2 + 𝛼3) > 0 or (2) 𝛼2 < 0,
(𝛼2+𝛼3) < 0, (𝛽2𝛼2+𝛽3) < 0, and (𝛽3+𝛽5)+(𝛽2+𝛽4)(𝛼2+𝛼3) < 0. These settings imply that the effect of U must act in the
same direction on both S and T. In our ovarian cancer data example, this implies that healthy diets are associated with
both longer PFS time and longer OS time and would not be associated with a longer PFS time combined with a shorter
OS time or vice versa. Figure 3 provides scatter plots from the simulation experiment of the correlation parameters of the
CA model for the simulated CE model parameters. The scatter plots show that under the assumed structural model, all 6
of the correlations are greater than 0 a majority of the time, with 𝜌00 and 𝜌11 nearly always positive and 𝜌s and 𝜌t usually
positive, indicating that the positivity assumption, at least for 𝜌s, 𝜌t, 𝜌00, and 𝜌11, would be reasonable in this setting.

6.1.2 Ordering of correlations
Another assumption explored by Conlon, Taylor, and Elliott14 restricts all of the correlation parameters to be positive
and also restricts 𝜌10 and 𝜌01 to be less than the other 4 correlation parameters. This constraint is reasonable as 𝜌10 and
𝜌01 are measures of the correlation between S and T in opposite treatment arms, which is unlikely to be larger than the
correlation between the S and T within the same treatment arm, or the correlation between the surrogate responses or
final treatment responses across treatment arms. As not all combinations of parameter values of the principal surrogacy
model are possible under the assumed structural model, it can be shown that one such set of parameters arises under the
restriction of positivity and ordering of the correlations. If only the assumption about the ordering of the correlations is
imposed and positivity is not assumed, then one of the following 2 settings is implied in terms of the structural model: (1)
𝛼2 > 0, (𝛼2 + 𝛼3) > 0, (𝛽2𝛼2 + 𝛽3) < 0, and (𝛽2 + 𝛽4)(𝛼2 + 𝛼3) + (𝛽3 + 𝛽5) < 0 or (2) 𝛼2 < 0, (𝛼2 + 𝛼3) < 0, (𝛽2𝛼2 + 𝛽3) > 0,
and (𝛽2 + 𝛽4)(𝛼2 + 𝛼3) + (𝛽3 + 𝛽5) > 0. These settings imply that the effect of U on S must be in the same direction for
Z = 0 and Z = 1 and the effect of U on T must be in the opposite direction as that of U on S, but the effect of U on T must
be in the same direction for Z = 0 and Z = 1. In terms of the ovarian cancer example, this would imply that patients with
healthy diets have longer (shorter) PFS time, regardless of their treatment assignment, but shorter (longer) OS time in
either treatment arm. The scatter plots in Figure 3 show that under the assumed structural model, the assumption that
𝜌00 and 𝜌11 are greater than 𝜌10 and 𝜌01 appears to hold nearly all the time, and the assumption that 𝜌s is greater than 𝜌10
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and 𝜌01 holds the majority of the time. However, the assumption that 𝜌t is greater than 𝜌10 and 𝜌01 holds only about half
of the time

6.2 Conditional independence assumptions
Another approach to estimation in this framework involves reducing the number of unidentified parameters that must be
estimated through assumptions about conditional independences. One common conditional independence assumption
that has been considered is that of conditional independence of T(0) and T(1) given S(0) and S(1).15,16,31,32 This assumption
reduces the number of unidentified parameters by one, as 𝜌t becomes a function of the other 5 correlation parameters.
Specifically, this implies that 𝜌t = 𝜌11𝜌10+𝜌01𝜌00−𝜌s(𝜌01𝜌10+𝜌11𝜌00)

(1−𝜌2
s )

. In terms of the structural model, conditional independence
of T(0, S(0)) and T(1, S(1)) given S(0) and S(1) implies that 𝛽3(𝛽3 + 𝛽5) = 0. Therefore, in order for this conditional inde-
pendence assumption to hold, we must have either 𝛽3 = 0 or (𝛽3 + 𝛽5) = 0; ie, there is zero effect of the unmeasured
confounder in one of the treatment arms on the outcome T. This would imply in the ovarian cancer trial example that
patients with healthy diets have similar OS times to those with unhealthy diets in at least one of the treatment arms, and
would therefore only be reasonable to make if diet is not thought to be associated with both OS time and PFS time.

A different conditional independence assumption was made by Parast, McDermott, and Tian17 who assumed that S(0)
and T(1) were conditionally independent given S(1) and that S(1) and T(0) were conditionally independent given S(0),
implying in the ovarian cancer example that given knowledge of PFS time under one treatment arm, OS time in the same
treatment arm and PFS in the opposite treatment arm are independent. The consequence of these assumptions is the
following

𝜌01

𝜌11
= 𝜌10

𝜌00
= 𝜌s.

The consequence of this on the parameters in the CE model, derived from the equations in Appendix C, requires 𝛼2 =
𝛼3 = 𝛽2 = 𝛽4 = 0 and also holds for selected other parameter combinations.

A similar, but weaker, conditional independence assumption33 is that S(0) and T(1) were conditionally independent
given S(1) and T(0) and that S(1) and T(0) were conditionally independent given S(0) and T(1), implying in the ovarian
cancer example that given knowledge of both PFS time under one treatment arm and OS time in the opposite treatment
arm, OS time and PFS in the other treatment arms are independent. The consequence of these assumptions are the
following:

Assuming S(0) ⟂ T(1)|S(1),T(0) gives

𝜌S𝜌11 − 𝜌00𝜌10𝜌11 + 𝜌T𝜌00 − 𝜌S𝜌T𝜌10

𝜌01(1 − 𝜌2
10)

=
𝜎2

S0
𝜎2

T1

𝜎2
S1
𝜎2

T0

,

and assuming S(1) ⟂ T(0)|S(0),T(1) gives

𝜌S𝜌00 − 𝜌11𝜌01𝜌00 + 𝜌T𝜌11 − 𝜌S𝜌T𝜌01

𝜌10(1 − 𝜌2
01)

=
𝜎2

S1
𝜎2

T0

𝜎2
S0
𝜎2

T1

.

6.3 Monotonicity assumption
Within the setting of a binary surrogate and final outcome, Li, Taylor, and Elliott18 impose a monotonicity assumption to
aid in the problem of nonidentifiability. Specifically, they require that Si(1) ⩾ Si(0) and Ti(1) ⩾ Ti(0) for all i. In terms of
the structural model, this requires that 𝛼1 + 𝛼3Ui + eSi(1) ⩾ eSi(0) and 𝛽1 + 𝛽4(𝛼0 + 𝛼1) + 𝛽2𝛼1 + [𝛽4(𝛼2 + 𝛼3) + 𝛽2𝛼3 + 𝛽5]Ui +
(𝛽2 + 𝛽4)eSi(1) + eTi(1) ⩾ 𝛽2eSi(0) + eTi(0), which cannot be satisfied with Gaussian random variables. If monotonicity is
only required to hold in expectation so that E[Si(1)] ⩾ E[Si(0)] and E[Ti(1)] ⩾ E[Ti(0)], this reduces to 𝛼1 ⩾ 0 and
𝛽1 + 𝛽4(𝛼0 + 𝛼1) + 𝛽2𝛼1 ⩾ 0. As 𝛼1 and 𝛽2 are assumed to be positive within the surrogate marker setting, this assumption
will hold as long as the average TE of Z on T is positive. In the ovarian cancer setting, this holds if on average the combined
effect of treatment and PFS time in the Z = 1 arm on OS time is greater than this combined effect on OS time in the
Z = 0 arm and would be reasonable to assume in this scenario for a treatment thought to improve OS time, as PFS time
is known to be positively associated with the OS time.



CONLON ET AL. 4257

7 NUMERICAL STUDY OF IMPACT OF ASSUMPTIONS ON
CORRESPONDENCE BETWEEN THE CE AND CA METRICS OF SURROGACY

The assumptions described in the previous sections are made either because they are reasonable in the scientific context or
because they aid in estimation of quantities of interest. In this section, we evaluate whether making these assumptions also
leads to closer correspondence between the metrics of surrogacy in the 2 frameworks. Using the simulation experiment
described in Section 3.3.1, we plot the distribution of 𝛾0 and of 𝛾1 when |𝛾0| ⩽ 0.25 for different ranges of PE(0). We note
that the conditional independence assumption made by Daniels et al12 is not included, as the condition cannot be met
under the parameter distributions used in our simulations. In the simulation experiment, for each assumption, we only
retain the draws of the parameters that either exactly or approximately satisfy the assumption.

7.1 Ordering of correlations assumption in CA framework
Under the assumption of Section 6.1 that 𝜌s, 𝜌t, 𝜌00, and 𝜌11 are all positive and that 𝜌01 < min(𝜌s, 𝜌t, 𝜌00, 𝜌11) and 𝜌10 <

min(𝜌s, 𝜌t, 𝜌00, 𝜌11), the boxplots in Figure 5B show that the correspondence between the measures of surrogacy in the CE
and CA frameworks is slightly improved as compared with the model without parameter restrictions (boxplot shown in
Figure 5A). There is an increase in concordance between 𝛾0 and PE(0), with 𝛾0 decreasing as PE(0) increases.

7.2 Conditional independence assumptions in CA framework
The first conditional independence assumption of Section 6.2 is that T(0) and T(1) are independent given (S(0), S(1)). The
second conditional independence assumption of Section 6.2 is that T(0) and S(1) are independent given S(0) and that T(1)
and S(0) are independent given S(1), and the third conditional independence assumption of Section 6.2 is that T(1) and
S(0) are independent given S(1) and that T(0) and S(1) are independent given S(0).

Under the first 2 assumptions, the boxplots in Figure 5C and D show that the relationship between 𝛾0 and PE(0) is
brought into slightly higher concordance by making these assumptions. In our simulations, there were no cases where|𝛾0| ⩽ 0.25 when PE(0)= 0.25, indicating that when S is a poor surrogate, the CA framework and the CE framework would
always agree. However, the relationship between 𝛾1 and PE(0) is in somewhat less concordance compared with the model
with no parameter restrictions, with very little increase in 𝛾1 as PE(0) increases. Under the third conditional independence
assumption, the boxplots in Figure 5E also show an increased concordance between the CE and CA measures of surrogacy,
with 𝛾1 increasing as PE(0) increases but with slightly less concordance of 𝛾0 and PE(0) as compared with the first and
second conditional independence assumptions.

7.3 Sequential ignorability assumptions in CE framework
Under the assumption of Section 5.1 that 𝛼2 = 𝛼3 = 0 or 𝛽3 = 𝛽5 = 0, the boxplots in Figure 6B and C show some increase
in the concordance between 𝛾0 and PE(0), with 𝛾0 larger when PE(0) is small and moving toward 0 as PE(0) increases,
but little additional concordance between 𝛾1 and PE(0) is achieved by making this assumption.

7.4 Sequential ignorability and no interaction assumptions in CE framework
The sequential ignorability assumption of Section 5.1 together with the no interaction assumption of Section 5.2 is (i)
𝛽4 = 0 and (ii) 𝛼2 = 𝛼3 = 0 or 𝛽3 = 𝛽5 = 0. For the combined sequential ignorability and no interaction assumption,
the boxplot in Figure 6D shows a similar relationship between the CE and CA measures of surrogacy as with the sequen-
tial ignorability assumption alone, with some increase in the concordance between 𝛾0 and PE(0), but little additional
concordance of 𝛾1 with PE(0) as compared with the model with no parameter restrictions.

8 ESTIMATION AND SENSITIVITY ANALYSES

8.1 Estimation
In the CA framework, the approach to estimation of the parameters in the multivariate normal model (Equation 3) is rela-
tively straightforward. Either equality types of assumptions are made to make the model identifiable, and likelihood-based
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FIGURE 5 Correspondence between causal-association surrogacy measures (𝛾0 and 𝛾1 shown on vertical axis) and causal-effects
surrogacy measure (PE(0) shown on horizontal axis) under assumptions made in the causal-association framework

methods are used, or inequality types of constraints can be expressed in the form of prior distributions, and a Bayesian
approach can be taken using Markov chain Monte Carlo (MCMC) methods. From the estimates, inference about 𝛾0 and
𝛾1 is easy either from the delta method or directly from the MCMC draws. The Bayesian approach for not fully identi-
fied models is not without its challenges,34 especially if noninformative or only very weakly informative priors are used.
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FIGURE 6 Correspondence between causal-association surrogacy measures (𝛾0 and 𝛾1) and causal-effects surrogacy measure (PE(0))
under assumptions made in the causal-effects framework

In our experience,18 MCMC algorithms can be slow to converge, and from a frequentist perspective, the coverage rates
of 95% credible intervals can deviate from the desired level. In the CE framework, estimation of the direct and indirect
effects derived from the parameters in Equations 1 and 2 usually proceeds by making identifying assumptions, such as
sequential ignorability and then nonparametrically estimating the direct and indirect effects.7,11,35,36

Because the parameters in the CA framework are a direct function of the parameters in the CE framework, a different
approach to estimation of 𝛾0 and 𝛾1 is to undertake estimation of the CE parameters in Equations 1 and 2 using a Bayesian
approach, making assumptions that are appropriate for the context and then mapping these directly to the CA parameters
to obtain 𝛾0 and 𝛾1. It may even be possible to make reasonable but not strong assumptions in both frameworks simulta-
neously using prior distributions and then undertake Bayesian estimation to obtain inference for 𝛾0 and 𝛾1. For example,
one might assume approximate sequential ignorability (as in Section 5.1) and approximate conditional independence
(as in Section 6.2) and make inequality assumptions (as in Section 6.1).

8.2 Sensitivity analyses
The estimation methods presented here for the CE approach assume no unobserved confounding. In the context
of a randomized treatment, as is the case here, this assumption translates to “no unobserved confounding” of the
surrogate-outcome relationship. Many sensitivity analyses to this unobserved confounding have been proposed, but the
strategy to follow will depend on whether there is an interaction between the treatment and the surrogate and the type of
the outcome (ie, continuous or binary). In the absence of a treatment-surrogate interaction, the NDE and the CDE coin-
cide, and thus, simpler sensitivity analysis techniques, which are available for the CDE, can be employed. VanderWeele37

develops an approach for binary confounders that computes bias in the CDE as the product of the expected difference in
the outcome at the 2 levels of the confounder conditional on treatment and the expected difference in the confounder at
the 2 levels of treatment. Imai et al11 propose a sensitivity analysis that fits more closely with the structural model pro-
posed here, by introducing a correlation between the error terms in the structural equations for T and S. Beginning with
equations analogous to Equations 1 and 2, we have



4260 CONLON ET AL.

Si = 𝛼0 + 𝛼1Zi + 𝜓1Xi + eS (10)

Ti = 𝛽0 + 𝛽1Zi + 𝛽2s + 𝜔1Xi + 𝛽4sZi + eT (11)
where X1 is a measured baseline confounder and allows for the error terms eS and eT to be correlated. The correlation
between these error terms, 𝜌, thus becomes the sensitivity parameter that the user must specify. Imai et al11 then give
expressions for the NDE and the NIE in terms of the correlation term and other parameters that can be estimated from the
observed data. This method works for both continuous and binary outcomes and has been implemented in the command
medsens, as part of the R software packagemediation. In the context of Equations 1 and 2, if we assume no confounder
treatment interaction, then the correlation between eS and eT is proportional to 𝛼2𝛽3. Thus, a sensitivity analysis could
consist of estimation with this product held fixed.

An alternative approach within the CE framework, not yet attempted to our knowledge, would be to study the sensitivity
to departures from the identification assumptions by using prior distributions with small variances. For example, instead
of sequential ignorability assumption 1 in Table 2 that 𝛼2 = 𝛼3 = 0 or 𝛽3 = 𝛽5 = 0 set 𝛼2 ∼ N(0, 𝜎2

𝛼2
), 𝛼3 ∼ N(0, 𝜎2

𝛼3
), and

𝛽3 ∼ N(0, 𝜎2
𝛽3
), 𝛽5 ∼ N(0, 𝜎2

𝛽5
) where 𝜎2

𝛼2
, 𝜎2

𝛼3
, 𝜎2

𝛽3
, and 𝜎2

𝛽5
are all small. For other parameters, less informative priors would

be used. Then proceed with Bayesian estimation.

TABLE 2 Consequence of the sequential ignorability and no interaction assumptions on parameters within the
causal-association framework

Assumption
1. 𝛼2 = 𝛼3 = 0 2. 𝛽3 = 𝛽5 = 0
No unmeasured confounders for S No unmeasured confounders for T

𝜌s 0 𝛼2(𝛼2+𝛼3)√(
𝛼2

2+𝛿
2
S0

)(
(𝛼2+𝛼3)2+𝛿2

S1

)
𝜌00

𝛽2𝛿
2
S0√

𝛿2
S0

(
𝛽2

3+𝛽
2
2 𝛿

2
S0+𝛿

2
T0

) 𝛽2

(
𝛼2

2+𝛿
2
S0

)
√(

𝛼2
2+𝛿

2
S0

)(
(𝛽2𝛼2)2+𝛽2

2 𝛿
2
S0+𝛿

2
T0

)
𝜌01 0 𝛼2(𝛽2+𝛽4)(𝛼2+𝛼3)√(

𝛼2
2+𝛿

2
S0

)(
[(𝛽2+𝛽4)(𝛼2+𝛼3)]2+(𝛽2+𝛽4)2𝛿2

S1+𝛿
2
T1

)
𝜌10 0 (𝛼2+𝛼3)𝛽2𝛼2√(

(𝛼2+𝛼3)2+𝛿2
S1

)(
(𝛽2𝛼2)2+𝛽2

2 𝛿
2
S0+𝛿

2
T0

)
𝜌11

(𝛽2+𝛽4)𝛿2
S1√

𝛿2
S1

(
(𝛽3+𝛽5)2+(𝛽2+𝛽4)2𝛿2

S1+𝛿
2
T1

) (𝛽2+𝛽4)
(
(𝛼2+𝛼3)2+𝛿2

S1

)
√(

(𝛼2+𝛼3)2+𝛿2
S1

)(
[(𝛽2+𝛽4)(𝛼2+𝛼3)]2+(𝛽2+𝛽4)2𝛿2

S1+𝛿
2
T1

)
𝜌t

𝛽3(𝛽3+𝛽5)√(
𝛽2

3+𝛽
2
2 𝛿

2
S0+𝛿

2
T0

)(
(𝛽3+𝛽5)2+(𝛽2+𝛽4)2𝛿2

S1+𝛿
2
T1

) 𝛽2𝛼2(𝛽2+𝛽4)(𝛼2+𝛼3)√(
(𝛽2𝛼2)2+𝛽2

2 𝛿
2
S0+𝛿

2
T0

)(
[(𝛽2+𝛽4)(𝛼2+𝛼3)]2+(𝛽2+𝛽4)2𝛿2

S1+𝛿
2
T1

)
𝛾0 (𝛽1 + 𝛽4(𝛼0 + 𝛼1)) − 𝛼1𝛽4

(
𝛿2

S1

𝛿2
S0+𝛿

2
S1

)
(𝛽1 + 𝛽4(𝛼0 + 𝛼1)) − 𝛼1𝛽4

(
𝛼2

3+𝛼3𝛼2+𝛿2
S1

𝛼2
3+𝛿

2
S0+𝛿

2
S1

)
𝛾1 𝛽2 + 𝛽4

(
𝛿2

S1

𝛿2
S0+𝛿

2
S1

)
𝛽2 + 𝛽4

(
𝛼2

3+𝛼3𝛼2+𝛿2
S1

𝛼2
3+𝛿

2
S0+𝛿

2
S1

)
Assumption
3. 𝛽4 = 𝛼2 = 𝛼3 = 0 4. 𝛽4 = 𝛽3 = 𝛽5 = 0
No interaction, no unmeasured confounders for S No interaction, no unmeasured confounders for T

𝜌s 0 𝛼2(𝛼2+𝛼3)√(
𝛼2

2+𝛿
2
S0

)(
(𝛼2+𝛼3)2+𝛿2

S1

)
𝜌00

𝛽2𝛿
2
S0√

𝛿2
S0

(
𝛽2

3+𝛽
2
2 𝛿

2
S0+𝛿

2
T0

) 𝛽2

(
𝛼2

2+𝛿
2
S0

)
√(

𝛼2
2+𝛿

2
S0

)(
(𝛽2𝛼2)2+𝛽2

2 𝛿
2
S0+𝛿

2
T0

)
𝜌01 0 𝛼2𝛽2(𝛼2+𝛼3)√(

𝛼2
2+𝛿

2
S0

)(
[𝛽2(𝛼2+𝛼3)]2+𝛽2

2 𝛿
2
S1+𝛿

2
T1

)
𝜌10 0 (𝛼2+𝛼3)𝛽2𝛼2√(

(𝛼2+𝛼3)2+𝛿2
S1

)(
(𝛽2𝛼2)2+𝛽2

2 𝛿
2
S0+𝛿

2
T0

)
𝜌11

𝛽2𝛿
2
S1√

𝛿2
S1

(
(𝛽3+𝛽5)2+𝛽2

2 𝛿
2
S1+𝛿

2
T1

) 𝛽2

(
(𝛼2+𝛼3)2+𝛿2

S1

)
√(

(𝛼2+𝛼3)2+𝛿2
S1

)(
[𝛽2(𝛼2+𝛼3)]2+𝛽2

2 𝛿
2
S1+𝛿

2
T1

)
𝜌t

𝛽3(𝛽3+𝛽5)√(
𝛽2

3+𝛽
2
2 𝛿

2
S0+𝛿

2
T0

)(
(𝛽3+𝛽5)2+𝛽2

2 𝛿
2
S1+𝛿

2
T1

) 𝛼2𝛽
2
2 (𝛼2+𝛼3)√(

(𝛽2𝛼2)2+𝛽2
2 𝛿

2
S0+𝛿

2
T0

)(
[𝛽2(𝛼2+𝛼3)]2+𝛽2

2 𝛿
2
S1+𝛿

2
T1

)
𝛾0 𝛽1 𝛽1

𝛾1 𝛽2 𝛽2
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9 DISCUSSION

Within the setting of Gaussian surrogate and final outcome variables, we have explored the connection between the quan-
tities used to evaluate surrogacy within the CE framework of surrogacy assessment and the CA framework of surrogacy
assessment. Under the assumed structural models for S and T, there is a direct mapping of the 14 parameters of these
models to the 14 parameters of a Gaussian principal stratification model. Not all of these 14 parameters can be identified
from the observed data alone, and therefore, assumptions must be made to proceed with estimation. We have reviewed
some of the common assumptions made within the CE and the CA frameworks and explored the consequences of these
assumptions on model parameters and quantities used to determine surrogacy. With parameter values from the assumed
structural model that are reasonable in the surrogate marker setting, there is a close correspondence between the NDE
and average causal necessity. Under the assumptions of Baron and Kenny9 of no interaction (𝛽4 = 0) and no unobserved
confounding (𝛼2 = 𝛼3 = 0 or 𝛽3 = 𝛽5 = 0), the surrogacy evaluation quantities in the CE and CA framework are equiva-
lent, with E[NDE(0)] = E[NDE(1)] = 𝛾0 = 𝛽1. This equivalence also holds under slightly weaker conditions of 𝛽4 = 0 and
either 𝛼3 = 0 or 𝛽5 = 0; however, these conditions do not lead to identifiability. With the exception of the assumptions
made by Baron and Kenny,9 the assumptions made within the CE or the CA framework that aid in estimation do not aid
in bringing the surrogacy evaluation quantities in closer alignment.

Most estimation methods within the CE framework rely on assumptions about the absence of posttreatment unobserved
confounders of S and T. This assumption is untestable and may be unlikely to hold in the surrogate marker setting, where S
and T are usually involved in the same disease process. In contrast, the CA framework does not require assumptions about
the absence of posttreatment confounders, as it focuses on the potential outcomes of S, which can be treated as baseline
covariates. However, because of unobserved potential outcomes, assumptions must be made to aid in the estimation of
unidentified parameters. If baseline covariate information is available, this may aid in the estimation of the unobserved
principal strata of S. Baseline covariate information can also be used within the CE framework to relax assumptions about
posttreatment confounding. However, estimation methods in this case require the presence of a baseline covariate that
has an interaction effect with Z on S,5,38 and we have shown in Appendix C that when such interactions exist, S will not
be a valid surrogate within the CA framework.

The CE and CA frameworks have tradeoffs in terms of assumptions, bias in parameter estimation, and variability.39 Esti-
mation methods within the CA framework have been shown to have less bias but more variability than standard methods
within the CE framework.40 As the parameters of the proposed structural model have a direct mapping to the parame-
ters of the CA model, these models offer the potential for assumptions that are reasonable to make in one framework to
aid in informing the parameter values within the alternative framework. In this way, both the CE and CA models could
be employed with reasonable, but not especially strong assumptions made in the evaluation of S as a surrogate marker.
While the research in this paper has focused on the situation of surrogate markers, the frameworks of CA and CE have
also been considered in mediation analysis. It would be of interest to evaluate the correspondence between the metrics of
mediation in this setting too. We have focused on Gaussian variables and linear models and have shown a certain degree
of correspondence for evaluating the surrogates, and the degree of correspondence increasing if certain assumptions are
made. For non-Gaussian variables, we hypothesize that we might expect broadly similar findings but with possibly a lower
degree of correspondence, because of the nonlinear link functions in the models.
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APPENDIX A: RELATIONSHIP OF CE AND CA MODEL PARAMETERS

The parameters of the principal surrogacy model (Equation 3) relate to those of the assumed structural model (Equations 1
and 2) assuming U ∼ N(0, 1) in the following way:
𝜇S0 = 𝛼0
𝜇S1 = 𝛼0 + 𝛼1
𝜇T0 = 𝛽0 + 𝛽2𝛼0
𝜇T1 = 𝛽0 + 𝛽1 + (𝛽2 + 𝛽4)(𝛼0 + 𝛼1)
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APPENDIX B: PARAMETER DISTRIBUTIONS AND R2 VALUES FOR REGRESSION MODELS OF
T|Z,T|S AND FROM SIMULATION EXPERIMENT

For the simulation experiment, the CE model parameters were generated such that

𝛼0, 𝛽0 = 0,
𝛼1 ∼ U(0.25, 1.5),
𝛼2 ∼ U(max(−0.5,min(−𝛼1 + 0.05, 𝛼1 − 0.05)),max(−𝛼1 + 0.05, 𝛼1 − 0.05)),
𝛼3 ∼ U(min(−𝛼2∕2, 𝛼2∕2),max(−𝛼2∕2, 𝛼2∕2)),
𝛽1 ∼ U(−0.3, 1.5),
𝛽2 ∼ U(0.1, 1.5),
𝛽3 ∼ U(max(−0.5,min(−𝛽2 + 0.05, 𝛽2 − 0.05)),max(−𝛽2 + 0.05, 𝛽2 − 0.05)),
𝛽4 ∼ U(min(−𝛽2∕3, 𝛽2∕3),max(−𝛽2∕3, 𝛽2∕3)),
𝛽5 ∼ U(min(−𝛽3∕2, 𝛽3∕2),max(−𝛽3∕2, 𝛽3∕2)),
𝛿2

S0, 𝛿
2
T0 ∼ U(0.3, 1),

𝛿2
S1 = 𝛿2

S0,
𝛿2

T1 = 𝛿2
T0.

Figure B1 below provides boxplots of the R2 values across all of the parameter draws for regression models of T|Z, T|S,
and T|U, where S and T are 10 000 random samples from each set of parameter draws. The plots show that the simulated
parameters lead to a broad range of R2 values, indicating that the way in which the parameters were simulated was not
overly restrictive and leads to a wide spectrum of scenarios.

https://doi.org/10.1002/sim.7430
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FIGURE B1 Proportion of variance of T explained by Z, S, and U for a range of plausible values from the assumed structural model

APPENDIX C: CONSEQUENCE OF CONDITIONAL INDEPENDENCE ASSUMPTIONS IN THE
CA FRAMEWORK ON PARAMETERS IN THE CE MODEL

In terms of the structural model, the assumptions that S(0) and T(1) are conditionally independent given S(1) and that
S(1) and T(0) are conditionally independent given S(0) require the following
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= 0.

APPENDIX D: BASELINE COVARIATES

Under the structural model with covariates, the direct and indirect effects of the CE framework become E[NDE(0)|X =
x] = 𝛽1 +𝛼0𝛽4 +(𝛽4𝜓1 +𝜔2)x, E[NDE(1)|X = x] = 𝛽1 +𝛽4(𝛼0 +𝛼1)+ (𝛽4(𝜓1 + 𝜓2) + 𝜔2) x, E[NIE(0)|X = x] = 𝛽2(𝛼1 +𝜓2x),
E[NIE(1)|X = x] = (𝛽2 + 𝛽4)(𝛼1 + 𝜓2x), and E[TE|X = x] = (𝛽2 + 𝛽4)𝛼1 + 𝛼0𝛽4 + 𝛽1 + ((𝛽2 + 𝛽4)𝜓2 + 𝛽4𝜓1 + 𝜔2) x. If
there is no interaction effect of X and Z on S (𝜓2 = 0), then the indirect effect will not be changed by the presence
of baseline covariates. Under the assumption of sequential ignorability, estimates of the direct and indirect effects in
the presence of a baseline covariate can be obtained nonparametrically by integrating over the distribution of X. The
Prentice model in the presence of baseline confounders becomes E[T|S,Z] = 𝜃0 + 𝜃1Z + 𝜃2S + 𝜃3SZ + 𝜃4X + 𝜃5XZ,
where 𝜃1 and 𝜃3 are as in Section 3.2 and 𝜃4 = 𝜔1 −

(
𝛼2(𝛽2𝛼2+𝛽3)+𝛽2𝛿

2
S0

𝛼2
2+𝛿

2
S0

)
𝜓1 and 𝜃5 = 𝜔2 +

(
𝛼2(𝛽2𝛼2+𝛽3)+𝛽2𝛿

2
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𝜓1 −(
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S1

(𝛼2+𝛼3)2+𝛿2
S1

)
(𝜓1 + 𝜓2). Therefore, if there are no unmeasured confounders, the Prentice crite-

ria will be a valid measure of surrogacy (𝜃1 = 𝜃3 = 𝜃5 = 0) if there is no interaction effect of X and Z on either
S or T (𝜔2 = 𝜓2 = 0) and additionally if either 𝜓1 or 𝛽4 is zero. In this case, the baseline covariate informa-
tion aids in estimation and does not affect the ability to determine surrogacy. Under certain conditions, it is possible
to relax the sequential ignorability assumption when baseline covariates are available. For example, when sequential
ignorability cannot be assumed and baseline covariates are available for which E[S(1)|X] − E[S(0)|X] varies with X
(ie, 𝜓2 ≠ 0) and there is no interaction effect of either Z and S on T or of Z and X on T (ie, 𝛽4 = 𝜔2 = 0), Joffe
and Greene5 showed that a 2-stage least squares procedure can be used to estimate the direct and indirect effects. Ten
Have et al38 estimate the direct and indirect effects under the same conditions as Joffe and Greene5 by assuming the
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following rank preserving model for T: T(z, s) = g(x) + 𝛾Zz + 𝛾Ss + 𝜖 and using a G-estimation procedure. Within
the CA framework, if baseline covariates are present, the surrogacy quantities of interest become E[T(1) − T(0)|S(1) −
S(0) = s,X = x] =(𝜇T1 − 𝜇T0) −

(
𝜌11𝜎S1𝜎T1−𝜌10𝜎S1𝜎T0−𝜌01𝜎S0𝜎T1+𝜌00𝜎S0𝜎T0
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s +(
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−2𝜌s𝜎S0𝜎S1

)
𝜓2

)
x= 𝛾0 + 𝛾1s +

(
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)
x. When

there is no interaction of X and Z on either S or T (𝜓2 = 𝜔2 = 0), neither 𝛾0 nor 𝛾1 is affected by the presence of
baseline covariates. In this case, controlling for X is helpful in explaining some of the variance of the potential out-
comes and does not affect the ability to estimate 𝛾0 or 𝛾1. When there is an interaction of X and Z on either S or

T, 𝛾1 is not affected but 𝛾0 becomes a function of x: 𝛾0 = (𝜇T1 − 𝜇T0) −
(
𝜌11𝜎S1𝜎T1−𝜌10𝜎S1𝜎T0−𝜌01𝜎S0𝜎T1+𝜌00𝜎S0𝜎T0

𝜎2
S0
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(
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(
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+𝜎2

S1
−2𝜌s𝜎S0𝜎S1

)
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)
x. In this case, when there is no treatment effect on S, the expected

treatment effect on T depends on the baseline covariate, implying that S may only be a valid principal surrogate for T
within certain subgroups defined by X. In order for ACN to be met and S to be considered a valid principal surrogate, we
would need to have 𝛾0 = 0 for all X, requiring ∫xE[T(1) − T(0)|S(1) − S(0) = 0,X = x] f (X|S(1) − S(0) = 0)dx be equal to
0, which is unlikely to hold. Therefore, in order for S to be considered a valid principal surrogate, there can be no inter-
action of the baseline covariate X with Z, so that both 𝜓2 and 𝜔2 are equal to 0. In the CA framework, baseline covariates
have also been used to aid in estimating the principal strata of S. For example, a model for f(S(1)|X,Z = 1) can be esti-
mated using the surrogate response values in the Z = 1 arm and a model for f(S(0)|X,Z = 0) can be estimated using the
surrogate response values in the Z = 0 arm. These models can then be used to impute missing S(1) values in patients in
the Z = 0 arm and missing S(0) values in patients in the Z = 1 arm, respectively.15,16 Implicit in this assumption is that
[S(1)|X, S(0)] = [S(1)|X], requiring that 𝜌s = 0, ie, that either 𝛼2 = 0 or 𝛼2 + 𝛼3 = 0.
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