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Summary

Theview that ectomycorrhizd ECM) fungi commonlyparticipatein the enzymatic liberation of
N from soil*erganic matter (SOM)as recently beenvoked as a key mechanism governing the
biogeochemical cycles of forest ecosysterere we provide evidencéhat not allevolutionary
lineages of ECM have retaindlte gaetic potential tgproduce extracellular enzymes that
degrade SOM;.calling into question the ubiquity of the proposed mechanism. Fuehigscuss
several untestegonditions that must bempirically validatedbeforeit is certainthatany lineage
of ECM fungiactivelyexpresses extracellular enzyne®rder todegrade SOM and transfir

contained thereito its host plant

Key wordsw=ectomycorrhiza, evolution, extracellular enzynméspgen(N), soil organic matter
(SOM), symbioeses.

l. Introduction
In many terrestrial ecosystems, nitrogdBi mineralizations ofteninsufficient to
account for annual plant N demafiasholm et al., 2009). Torectify this disparity organicsoil

N has been hypothesized to be an important component of plant N @\pfilgt al., 2003).
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Ectomycorrhizal (ECMjungi play asignificantrole in provisioning plants with N. Through the
productionof prolific hyphae, these fungi compose one-third of microbial biomass in boreal and
temperate ecosystems (Hogberg & Hogberg, 2a02M fungi greatlyincreasethe volume of
soil exploited by fine roots and henioereasenorganic N uptake by plan{Smith & Read,
2008). Additienally, ECM fungassimilate amino acidand amino sugaffsom soil solution
(Lilleskov et al.4+2002;Smith & Read 2008), degradproteirs (Bending & Read1996; Read &
PerezMoreng2003), and transfer the N contairtbdreinto their plant hostéAbuzinadah &
Read 1996aNasholmet al., 2009).

However,c. 95% of soilN is complexed in the end produafplant andmicrobial
decay collectivelyknownassoil organic mattefSOM; Schulten & Schnitzer, 1998illig et al.,
2007). While saprotrophic fungi asgmebacterigpossessie capacityto metabolizeSOM, he
idea that ECM fungi obtain N bound 8OM has recently becongeneralizedn awide body of
literature(Shahet al., 2015; Cheeket al., 2016; Averill & Hawkes 2016; Trapet al., 2016).

This purported ECM physiologlgassignificantimplications forunderstandingoill
biogeochemieal cycle©rwin et al., 2011;Averill et al., 2014),as well asnodels of planNPP.
Acquisition*ofsN from SOM has been postulated to provide plants with an addittanmaksof
growth{imiting N, therebyallowing sustainegrowth under elevated atmospheric {@erreret
al., 2016).Fhe aforementionedtudies argutheir resultsarise at least in parfrom the
physiologcal cambility of ECM fungi to usdignocellulolytic enzymes thadepolymerizeSOM
and transfer the hereinto the host plantiowever this generalization ignores the fact that
ECM fungishave independently addferentially evohed fromsaprotrophic ancestodozens of
times(Hibbettet al., 2000),causingthe degree to which they have retained gevits
saprotrophic function tdramaticallydiffer amonglineageqKohleret al., 2015). The unique
evolutionary history of each ECM lineage serioudiigwsinto question the assumption that all
ECM function similarly to provide host plants withdgund inSOM.

Understanding theapacityfor ECM fungi to obtain N from SOM and transfer it to their
plant hostegquires the empirical validation séveralconditionsoutlinedin Fig. 1. Foremost, the
extent to which ECM funginetabolizeSOM is first contingent on whether genes encoding
lignocellulolyticenzymesi(e., glycoside hydrolases)ass Il fungaperoxidases, glyoxyl
oxidases, and phenol oxidases) were retained during their evolutionary history and are deployed
when in symbiosis with plant root8y critically reviewing pertinentstudies andheir bearing on
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the conditions presented in Fig. 1, we conclidg to the best of our knowledgdirect
evidence establishing that all these conditsinsultaneously occur for any ECM fungi is
presently absent from the literatuFénally, wediscussecentbiogeochemicabbservationsvith

respect tahe implicationgderived from our conclusions.

Il. Have ECM fungi retained geneswith lignocellulolytic potential from saprotrophic
ancestors?

ECM fungi‘evelved primarily in the Basidiomycetes, but independ&M lineagesalsoappear
in the AscomycotédSmith & Read2008). The evolution of genes encodiiggin and
manganesgeroxidases, however, appéahaveprimarily evolved in the Basidiomycota
(Floudasetal., 2012). Accordingly, Ascomycete ECM fungi, such as the widespread
Cenoccoccum geophilum, are unlikely topossess the genetic potential to depolymerize SOM.

Althoughtheancestor to thAgaricomyete clade has been reconstructed as a wdtite
saprotrophklibbettet al., 2000; Floudast al., 2012), the evolution of theCM lifestyle was
thought todnvelvdargelosses of genamediating the decay difjnocellulcsseand phenolic
compounds insSONMartin et al., 2008;Plett & Martin 2011;Wolfe et al., 2012). Recently
however, numerous copies of genes potentially mediatindeitayof SOMwere observet
some lineages &CM fungi (Bodekeet al., 2009; Kohleret al., 2015 Fig. 2). Infact, the
largest survey 0dECM fungal genomes to datevealedhatsomeECM possesgenesncoding
class llperoxidases, glyoxal oxidase®llobiohydrolases, laccasesd otheenzymeswhich,
when presentin the genomes of white and brown rot fungi, mediate the saprotrophic decay of
plant and miecrobiatietritusas well asSOM (Kohleret al., 2015. Available evidence shows that
ectomycorrhizal genomes have fewer lignocellulolytic genes than do theirrsgprotancestors
(Martin et al., 2016). Theoccurrenceof thesegenes has led some to specuthtd ECM fungi
actively transcribéhem intoenzymes that depolymerizemplexorganic macromolecules
SOM, thereby. providing plani@ccess to thiarge pools of N previously theorized to be
unavailabledor plant uptake (Bodeletal., 2014;Lindahl & Tunlid, 2015).

Importantly, the occurrenceof geneswith saprotrophicfunction varies widely across
lineages oECM fungi (Fig. 2). For instanceAmanita muscaria evolvedwithin a clade of brown
rot saprotrophsnd consequently fmalostthe genetic capacityo depolymerizeorganic matter
(Wolfe et al., 2012; Kohleret al., 2015). Similarly, Laccaria bicolor has lostmost genes
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encoding enzymes that ach crystalline cellulose and lignin, althouié genome does contain
11 copies of lytic polysaccharide monooxygengs#dMO; Martin et al., 2008; Kohleret al.,
2015). Ectomycorrhizal taxa in thevell-known Boletales clade occuwithin a paragpyletic
group of brown rot fungi theseECM taxa generalljlack the genetic potentiato degradehe
polyphenolic.andolysaccharideeomponents oplant cell wall microbial residuesas well as
analogous,compounds in SO{ohler et al., 2015; Fig 2). For the Boletales, it appears that
parallel“losse®f genesnediating saprotrophic decagcurred in each of the thre@edependent
originationsof‘a'mutualistic lifestyléKohleret al., 2015).

By contrast,Hebeloma cylindrosporum evolved froma white rotancestothat useslass
Il fungal perexidaseso oxidize polyphenolic compounds in SONKohler et al., 2015). H.
cylindrosporumrhas retaine® copies ofclass Il peroxidases, as well 28PMO copies(Kohler
et al., 2015 Fig\2). Lastly, Cortinarius glaucopus has retained the greatdstown number of
genes withputative saprotrophidunction, including 11 Mnperoxidass derived fran white rot
saprotrophic@ancestorgBodekeret al., 2014 Martin et al., 2016).Clearly, the genetigotential
to decaySOMwarieswidely acrosdineages oECM fungi, making broad generalizations about
therole of these organiseas agents of litter and SOM metaboligmuous at best.

Asweach of the aforementionbdeagesevolved intoECM fungi, hypotheticakelective
anddrift precessegoverned the retentiar lossof genes involved in the depolymerization of
SOM.If ECM fungi evolved under conditions whichthe fungi or hosplant were consistently
N limited, there may have beeelective pressure toaintainenergetically expensive
lignocellulalytiegeneghatmediatethe release of N from SONFrurther because¢he ECM
lifestyle evolvedrepeatedlyovera relativdy large span of evolutionatyme, it would be
unlikely thateachof the dozens of independédransitiors toECM symbiosisresultedn the
samewhole-genome alteratian(.e., loss of genes with saprotrophic functiohis
phenomenon has some precedent in the fungal symbionts of @artieetesin whicheach of
the multiple origins of ambrosia fungi experienced different pattergertd loss or gain (Cassar
& Blackwell;2996). In sum, becaus€M fungi have lost genes with saprotrophic function over
their evolutienary history in a differential manner (Masiral., 2016), we should not expect that

theyrepresent ainglefunctional group thatiniformly provides host plants with flom SOM.

lll. Are genes with saprotrophic function expressed by ECM fungi when in symbiosis?
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In cases where ECltaxa haveetairedgenesncoding enzymes that medi&©®M decay it
remains unclear if these genes are actively transcwhéd forming mycorrhizgFig. 1).
Ecological predictions based on the results of whole-genome sequencing sugdgeSMtiangi
retainingthe.dargest numbers of class Il fungal peroxidase genes should have the greatest
physiological ability to oxidize the polyphenolic compounds in SOM (Kadtlar., 2015).
However, ‘available evidence does not support this hypothesis wiesnbeemestedn culture.
Rather multiple“studies have found that the number of pdnexidase genes present in ECM
genomes did not predict enzyme activity when grown on SOM extracts €S4lal2015) or leaf
litter (Talbetetal., 2015).

Insightsfintathe ability of ECM to synthesizdignocellulolytic enzymesind alter the
biochemistry ofiSOMand plant cell walin culture arentriguing (Rineatet al., 2012; Talbott
al., 2015;Shabhet al., 2015); but because transcriptional profiles of ECM fungi vary depending
upon whether the fungi are free-living or actively forming mycorrhiza (Matiah., 2008;
Kohler et al#2015; Liaoet al., 2016), these studies canmainclusivelydemonstratéhat
identicalphysielogy occurs when forming mycorrhiza fact, althoughL. bicolor has dimited
genetic capacity to degrade plant cell wialtlid not transcribe these genelile forming
mycorrhiza®(Martiret al., 2008). Accordingly,liereare few definitivestudiesdemonstrating that
ECM fungiexpresgienesncoding saprotropheEnzymesvhile in symbiotic association with
their plant-hostsin an importantexception Bodeker and colleagues (2014) obsemedECM
fungi in thesgenu€ortinarius expressigh levels of Mnrperoxidasen boreal forest soils

Finallyzif genes with saprotrophic potential are expresseter field conditiongt is
likely thattheir expression ontext-dependenteterminedy a myriad of ecological and
edaphic factors.including pH, tlaailability of inorganic N anarganic Nin soil solution.This
phenomenoiis. well known for saprotrophic fungBinsebaughet al., 2010; Edwardst al.,

2011) and,has.now been demonstrated for ECM fumie field(Bodekeret al., 2014).For
example, vmenNH," is added to soilin the field the expression &CM genes with
lignocellulolytic capacity arelownregulated (Bodeket al., 2014). Extrapolationfom these
patternsuggest thaECM fungi deployingMn-peroxidases and othenergetically expensive

lignocellulolyticenzymesdo so only when they and tireir plant hosts are N limite®&esolving
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theabiotic conditions and nutritional status of the host plastwell as symbiomh whichthese
ECM genes residayill add significant insight to our understanding of this phenomenon.

IV. Do transcribed enzymes operate tobtain N from SOM?
Classic studieslemonstrated that certain ECM fungi can obtain N from various organic sources
(Abuzinadah &Read 1986, 198Bmith & Read 200§. Below, we clarify why previous work
has nodefinitively resolvel the ability forECM fungi to obtain N from SOM. Evidence that
ECM obtain"oerganic N and transfierto their host plantsomesprimarily from studies using
pure protein or amino acidsan organic N source (Abunzinadah & Read, 1986; Lilleskov
al.,2002).Howeyver,most protein in soil is complexed with SQvimineral surface@Nannipieri
& Paul 2009 Rillig et al., 2007),andmoreover tie macromolecular structure of SOM results in
amino acids, amino sugars, and protein being both physically and chemically resistant to
enzymes that degrade peptidRdlig et al., 2007). Thusstudiesusing pure protein as ah
source ar@nlikely to beecologicallyrealistic(Jonest al., 2005;Nannipieri & Paul 2009).
Recognizinghiese challengeBending& Read(1996) provided N to ECM fungi as a protein-
polyphenolicomplex in pure culture, and observedE@¥ fungidisplayedsignificantly
reduced uptake of organit

An.additional level otincertaintyassociateavith the function of saprotrophic genes in
ECM fungiarisesrom the facthat the enzymes they encode may halternativefunctions.
ECM transcribing laccasgenesthereby producinghenol oxidase enzymesavebeen
suggesteadsimportantto SOM decay(Talbot & Treseder2010; Shalet al., 2015. However,
laccasegenesean transcribéothextra andintracellularenzymesthe latter of which isnvolved
with rigidifying fungalcell walls, producingnelanin and detoxifying cell§Kues& Ruhl,
2011).Apart from Mn- and lignin peroxidasewhose substrates anbierentlyextracellular
(Baldrian 2006), theoccurrence and expressiohfungallaccasegenesneed not imply that
ECM expresghem tooperateextracellularlyon SOM.

Finally; "1t has beenssume thatthe oxidative potentialfadhe enzymegxpressed by
ECM fungtis equivalent to those produced by saprotrophic fungi (Bodekky2014).
Nonethelesggenesannotated abin-peroxidases ifECM fungi, includingH. cylindrosporum, C.
glaucopus andP. croceum were described datypical (Kohler et al., 2015; Shalet al., 2015
Martin et al., 2016) suggesting thahe conformation oénzymedranscribedrom thesegenes
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may not allow for the oxidation of lignin and polyphenols. Presently, we simply do not
understand the effectivenesstioé arrayof enzyme produced by ECM to oxidize or hydrolyze

the wide range of organic bondsS©OM.

V. Is the organic N derived from SOM transferred to the plant host?

Finally, if someECM taxaobtain N from SOM, they may natansferthis N totheir plant hosts
(Fig. 1) "Forexample, Abuzinadahal. (1986)[Author, Abuzinadah & Read (1986a) has
been alteredto"Abuzinadahet al. (1986)for consistency with the References. Please check
that this is correct.] noted thaPaxillusinvolutus obtainedN from pure proteinbut in so doing
sequestered high quantitiestbis N intoits mycelium.This may be a general phenomenon,
becauseurrentevidence for ECM fungi expressing saprotrophic enzymes in the environment
occurs inborealiforests (Bdekeret al., 2014); dherstudiesin the boreal foresevealthat ECM
fungi transferonly smallamounts of organic N to thgiant host§Nasholm et al., 2013). In

fact, modelingeffortsin boreal foresecosystems suggest that increasitrgosphericCO;, in
direct contrastito Terret al. (2016),will exacerbate plant N limitatiothrough increases in the
biomass and'N‘content fafngal myceliumeven as plants allocate greater amounts of
photosynthate belowgrountl@sholmet al., 2013; Frankliret al., 2014). We conclude that the
role of ECMFin enzynatically liberating Nfrom SOM and transferring to host plantss an open
guestion, andat present, ndirect evidence has been gathereddemonstrat¢hatECM enhance

plant N supply by accessing NSOM.

VI. Concludingtemarks
The rationale we presehere highlights theignificant complications invoked by the broad
assumption thadll ECM fungi liberate N from SOMUntil additional experimental evidence
accumulates,.it.is ambiguous, at begiether ECM fagi can provision their host plants with N
from SOM._There is however, an urgent neéaltest thigpossibilityunderfield conditionsas
multiple studiesuggesthis mechanisnholdssignificant implications for the construction of
accurate coupled climatdogeochemical models (Orwat al., 2011 Averill et al., 2014; Terrer
et al., 2016).

We note that thentriguing pattern®bserved irsomerecent biogeochemical models
likely occur through a plurality of belowground interactions, includivegphysical and
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biochemicalactivity of ECM fungi on theisoil surroundingsECM may contributéo SOM
dynamics through the accumulation of hyphae to exploit soil volume, which can vary
substantially in architecture and bioméSgmmenset al., 2015) further,hyphaltraits such
as melaniationmay rendesomehyphaemoreresistant to decatyan others (Fernandéz
Koide, 2014.Accumulation of hyphae, and tigeesaterfunctional exploitation of soil volumfer
inorganic and simple organic N compoundgjistinctfrom the ideathat certaifeCM fung
biochemically“alter SOM through the exudatioregfracelluladignocellulolytic enzymesAs

we have discussetineages of ECM funghat have retained genes with lignocellulolytic
capacityaremorelikely to depolymerize SOM than otheBecayresistanhyphae and
enzymatic.activitiemeednot be mutually exclusive, aiidis plausiblethat certain fungal
communitieontribute to SOMlynamics more than others. Finally, given current knowledge of
the turnover of ECM communities across space (Tadbalt, 2014) it is unlikely that ECM
lineages with the potentitd operate on SOM are distributed uniformly across ecosystems.
Therefore,simproved understanding of the biogeographic distribatidanzymatic physiology
of differentilineages of ECM fungi will instruct ecologically realistiodels of C and N cycling

across ecosystems.
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independent ECM origination. Modified with kind permission from Kobted. (2015).
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Have ECM fungi
retained genes from
saprotrophic

ancestors?

Yes

Are genes with
saprotrophic function
expressed in ECM hyphae
and root tips when
in symbiosis?

Yes

Do
transcribed enzymes
operate to liberate
N from SOM?

Yes

Is the N
derived from SOM
transferred from ECM
to the plant host?

No

Yes
No N rel d Organic N from SOM No N from SOM
?rorr:estgll\sne transferred transferred
to host plant to host plant
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(a) Pisolithus microcarpus (b)
Pisolithus tinctorius
Scleroderma citrinum
Paxillus involutus
Paxillus rubicundulus
Hydnomerulius pinastri
Suillus luteus
Coniophora puteana
Serpula lacrymans

1 Piloderma croceum

7 Plicaturopsis crispa

Hebeloma cylindrosporum

Galerina marginata

Hypholoma sublateritium

Laccaria bicolor

Coprinopsis cinerea

Agaricus bisporus var. bisporus

Amanita muscaria

Amanita thiersii

Gymnopus luxurians

Schizophyllum commune

Pleurotus ostreatus

Heterobasidium annosum

Gloeophyllum trabeum

6 1 1 Jaapia argillacea

11 Punctularia strigosozonata

26 Trametes versicolor

1 Fomitopsis pinicola

16 Phanerocheate chrysosporium

(o2}

17 Fomitiporia mediterranea

© 62 Sphaerobolus stellatus

O 18 Auricularia delicata
/ : Piriformospora indica

Agaricomycetes Sebacina vermifera

Pisolithus microcarpus
Pisolithus tinctorius
Scleroderma citrinum
Paxillus involutus

Paxillus rubicundulus
Hydnomerulius pinastri
Suillus luteus

Coniophora puteana
Serpula lacrymans
Piloderma croceum
Plicaturopsis crispa
Hebeloma cylindrosporum
Galerina marginata
Hypholoma sublateritium
Laccaria bicolor
Coprinopsis cinerea
Agaricus bisporus var. bisporus
Amanita muscaria
Amanita thiersii
Gymnopus luxurians
Schizophyllum commune
Pleurotus ostreatus
Heterobasidium annosum
Gloeophyllum trabeum
Jaapia argillacea
Punctularia strigosozonata
Trametes versicolor
Fomitopsis pinicola
Phanerocheate chrysosporium
Fomitiporia mediterranea
Sphaerobolus stellatus
Auricularia delicata
Piriformospora indica
Sebacina vermifera

©.0.,01-3 O =24 Y ECM origination event Qo O1-3 O47 O=8 Y ECM origination event
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