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Summary
An iterative model and trajectory refinement (IMTR) strategy is proposed for trajec-

tory optimization of nonlinear systems. A high- and a low-fidelity models are used.

The high-fidelity model accurately represents the system but is not easily amenable

to trajectory optimization, because of degree of nonlinearity, computational cost,

or to being of “black-box” type. The low-fidelity model is suitable for numeri-

cal optimization but approximates the system dynamics with an error. The IMTR

method is proposed to systematically iterate between the 2 models and efficiently

converge on a control solution. Examples are drawn from orbital mechanics. The

IMTR approach is compared to optimal nonlinear quadratic control using Pontryagin

maximum principle. A convergence criterion for the IMTR iterations is established.
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1 INTRODUCTION

It is common in many applications for a system to be
described by multiple models of varying fidelity and com-
plexity. Often a high-fidelity model accurately represents the
system dynamics but is computationally complex and requires
long simulation time. These conditions can make trajec-
tory optimization difficult. Numerical optimization methods
require many iterations, and, in the absence of a good initial
guess, they may not converge.

A low-fidelity model of the system may be more amenable
to trajectory optimization. Such a model requires a shorter
simulation time and can be optimized by analytical methods
(eg, LQ optimal control, if the low-fidelity model is linear
and the cost is quadratic). However, the low-fidelity model
does not accurately represent the full system dynamics, and
an optimal control derived from the low-fidelity model alone
may not achieve the desired system output.

Iterative model and trajectory refinement (IMTR) is a
recently proposed trajectory optimization strategy1,2 that sys-
tematically uses both a high- and a low-fidelity model of

a system. The method uses intertwined steps of trajectory
optimization on the low-fidelity model and disturbance esti-
mation to make the low-fidelity model locally match the
high-fidelity model. Compared to numerical optimization
of the high-fidelity model alone, fewer simulations of the
high-fidelity model may be required, which reduces compu-
tational costs.

This paper considers the application of IMTR to two
spacecraft-maneuvering problems in which spacecraft
dynamics are represented by both low- and high-fidelity
models: an orbital transfer problem and a problem of opti-
mal control near libration points in the 3-body problem.
The orbital transfer problem can be described by nonlinear
equations of 2-body orbital motion, or the dynamics can be
approximated by the linear Clohessy-Wiltshire equations.3

Spacecraft dynamics near a libration point can be described
by the nonlinear circular restricted 3-body model, or approx-
imated by linearized equations for perturbation about the
equilibrium.

We address the orbital transfer problem using two different
approaches. The first uses nonlinear quadratic (NLQ) control
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with Pontryagin’s maximum principle (hereafter, called the
maximum principle) to minimize a quadratic cost function
of the high-fidelity trajectory. The second approach uses
IMTR to optimize the same quadratic cost function through
optimization of the low-fidelity model.

Having validated IMTR in comparison with the maximum
principle solution in the orbital transfer problem, we address
the problem of spacecraft dynamics near a libration point
using the IMTR approach only.

In both of our spacecraft examples, the dynamics are
highly nonlinear for large maneuvers; the linearization-based
low-fidelity model alone is not sufficiently accurate. As we
demonstrate, however, such a model can lead to effective, pre-
cise, and near-optimal maneuvers once enhanced with IMTR.

A preliminary study of IMTR for spacecraft trajectory opti-
mization has appeared in previous studies.4,5 The present
paper presents a significantly more in-depth treatment of
the case studies and derives theoretical conditions for IMTR
iterations convergence.

This paper focuses on high-fidelity models that are non-
linear and low-fidelity models that are linear time-invariant
with additive, time-dependent disturbance input. Thus, the
low-fidelity models are not required to be time-varying lin-
earizations of the system around a nominal trajectory. This
approach reduces the trajectory optimization problem to a
repeated solution of an LQ-type problem, where a significant
portion of the solution can be precomputed offline.

There is a growing interest in solving the LQ problem
for uncertain systems.6 The proposed approach is related to
iterative learning control (ILC)7,8 and iterative dynamic pro-
gramming (IDP).9 These techniques are different from IMTR:
ILC primarily addresses trajectory tracking where the target
trajectory is known rather than an optimal control problem,
and neither ILC nor IDP exploit cost minimization based on
low-fidelity and high-fidelity dynamic models as considered
in IMTR. The proposed approach is also related to iterative
schemes for solving optimal control problems for bilinear
systems10-13; however, IMTR is not limited to high-fidelity
models of a particular form.

The paper is organized as follows. In Section 2, the IMTR
algorithm is described. Section 3 analyzes IMTR iterations
convergence and derives sufficient conditions under which
this convergence takes place. An example for which these
sufficient conditions are satisfied is provided. In Section 4,
a condition is given under which the solution obtained by
IMTR is guaranteed to be a near-optimal solution, ie, it devi-
ates from the optimal solution of the high-fidelity model by
less than a bound. In Section 5, the NLQ and IMTR methods
are applied to an example of an orbital maneuvering optimal
control problem. In Section 6, the IMTR approach is applied
to an example of optimal control about the L4 Lagrange
point in the Earth-Moon system. Following the examples,
concluding remarks are made in Section 7.

Trajectory optimization is an inherent part of mission plan-
ning for spacecraft applications (see, eg, Conway14). While it
is a common practice to use different levels of models and
approximations in spacecraft trajectory design (eg, patched
conics followed by optimization on a higher fidelity nonlinear
simulation model), this is done heuristically and differently
from IMTR. In the present paper, we set up an iterative pro-
cess where the low-fidelity model is tunable and matched to
the higher fidelity model in each iteration, and the optimiza-
tion is performed only on the low-fidelity model.

Spacecraft trajectory optimization is one of many possi-
ble areas of application for IMTR. Similar computational
strategies can be exploited in other trajectory optimization
problems, where the dynamic system can be represented
by low-fidelity and high-fidelity models. As an example, in
Hudson et al,1 IMTR strategy is applied to clutch trajectory
optimization in an automotive vehicle, where the low- and
high-fidelity models are of drastically different orders and
complexity. In Gupta et al,2 IMTR is applied to a nonlinear
engine control problem with the low-fidelity model on the
basis of a linearization at a given operating point.

The numerical examples in this paper and further refer-
ences 1,2 indicate that the IMTR strategy can be successful in
treating a variety of practical optimal control problems. The
analysis in Section 3 establishes sufficient conditions for the
IMTR iterations to converge.

2 THE ITERATIVE MODEL
AND TRAJECTORY REFINEMENT
ALGORITHM

We consider a system described by a nonlinear, high-fidelity,
state-space model,

ẋh = f (xh, u), (1)

where xh is a vector of state variables and u is the manipulated
input. The system is also approximated by a linear low-fidelity
model,

ẋl = Axl + Bu + d, (2)

where xl is a vector of state variables, A and B are con-
stant matrices, and d is a time-dependent disturbance input
that we iteratively adjust to improve the match between
Equations 1 and 2. The subscripts l and h designate the low-
and high-fidelity models, respectively. While extensions are
possible, the dimensionalities of the state and control vec-
tors are assumed to be the same for both the low-fidelity
and high-fidelity models. The initial conditions are fixed and
xh(0) = xl(0).

It is assumed that the high-fidelity model (Equation 1)
accurately describes the system, while the low-fidelity model
(Equation 2) describes the system with an error. Note that
the linear model is not required to be a time-varying lin-
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earization about the high-fidelity model trajectory. While the
low-fidelity model (Equation 2) may be defined as a lineariza-
tion of the nominal model about some nominal (possibly
equilibrium) state and control values, it is not required to be.

The objective is to find the control u(t), defined over the
time interval t ∈ [0,T], that minimizes a quadratic cost
function,

Jh = 1
2

xh(T)TKf xh(T) +
1
2 ∫

T

0
[xh(t)TQxh(t) + u(t)TRu(t)]dt,

(3)

where QT = Q ⪰ 0, RT = R ≻ 0, and KT
f = Kf ⪰ 0.

The optimal solution to Equation 3 is not readily available,
as the high-fidelity model is nonlinear. However, a similar
problem for the linear low-fidelity model (Equation 2),

Jl =
1
2

xl(T)TKf xl(T) +
1
2 ∫

T

0
[xl(t)TQxl(t) + u(t)TRu(t)]dt,

(4)

can be solved easily. The optimal solution to the problem of
minimizing Equation 4 is given by

u = −R−1BTPxl + R−1BTr, (5)

where P and r are given by

−Ṗ = ATP + PA − PBR−1BTP + Q, (6)

−ṙ = (A − BR−1BTP)Tr − Pd, (7)

with P(T) = Kf and r(T) = 0 (see, eg, Isidori15). Note that
Equation 6 is a Riccati equation; the solution of which can be
computed independently of the iterative optimization process.

The IMTR algorithm is summarized in Table 1. Let the
superscript n indicate the iteration number.

The disturbance may be initialized at 0 or any other
reasonable value. During each iteration, IMTR solves the
low-fidelity optimization problem and estimates the distur-
bance d(t). The disturbance update is given by

dn+1(t) = dn(t) + k
(
̂̇xn

h(t) − ̂̇xn
l (t)

)
, (8)

where k>0, ̂̇xn
h(t) is the estimate of the time rate of change of xh

given by the right-hand side of Equation 1 with xh = xn
h, u =

un and ̂̇xn
l (t) is given by Equation 2 with u = un, d = dn. The

TABLE 1 IMTR algorithm

1. Initialize the disturbance for the first iteration, d 0.

2. Solve the finite horizon LQ problem for the low-fidelity
model to obtain un and xn

l .

3. Apply un to the high-fidelity model to obtain xn
h.

4. Compare xn
l and xn

h. Update the disturbance.

5. Repeat steps 2 through 4 until the algorithm converges.

estimate of the time rate of change of xn
h, ̂̇xn

h(t), can be obtained
by evaluating the right-hand side of Equation 1 on xn

h and un.
The estimate of the time rate of change of xn

l , ̂̇xn
l (t), can be

obtained by evaluating the right-hand side of Equation 2 on xn
l ,

un, and dn. Alternatively, standard numerical differentiation
or filtering techniques can be applied to obtain ̂̇xn

h(t) and ̂̇xn
l (t).

The refinement of d(t) causes the low-fidelity model to
match the high-fidelity model more closely with each itera-
tion. The constant k is a gain controlling the change in the
disturbance estimate with each iteration. Typically, a value of
k between 0 and 1 is chosen.

In principle, Equation 8 may be replaced by updating
parameters in a parametric disturbance representation of the
form,

d(t) =
m∑

i=1

𝜃i𝜙i(t), (9)

where 𝜙i(t) are given basis functions and 𝜃i are estimated
parameters.

Each iteration of the IMTR algorithm requires only one
simulation of the high-fidelity model. We are never required
to numerically optimize the high-fidelity model; all optimiza-
tion is performed on the low-fidelity model.

Remark 1. Step 3 of the IMTR algorithm can be modified to
include a check for decreasing high-fidelity model cost, Jh.
After obtaining un on the low-fidelity model and applying it to
the high-fidelity model, if Jh has increased, the control reverts
to un−1. The disturbance alone is updated until the low-fidelity
model reaches a form for which the optimal control also gives
a decrease in Jh. This modification ensures that algorithm
iterations only give a decrease in the cost and the disturbance
estimate is updated multiple times between control updates.
The orbital transfer problem in Section 5 uses this approach.

Remark 2. In this paper, the dimensionalities of the states of
Equations 1 and 2 are assumed to be the same. A generaliza-
tion of the IMTR strategy to cases where these dimensions are
not the same and when the cost function 3 is nonquadratic can
be made. See, for instance, our paper1 that addresses optimal
control of a transmission clutch on the basis of a high-order
model. The treatment of convergence in such problems could
be considerably more involved.

Remark 3. Note that d is a function of time only and not of
state; this leads to simple and fast updates, as the low-fidelity
model remains linear with time-dependent disturbance input.
If d could be chosen as a function of state in Equation 2, a
trivial choice d = f(xh, u) − Axl − Bu would provide a per-
fect match between the low-fidelity and high-fidelity models;
however, this choice, clearly, does not address the underlying
challenge of solving the optimal control problem.
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3 ITERATIVE MODEL
AND TRAJECTORY REFINEMENT
CONVERGENCE

In this section, we demonstrate that under appropriate
assumptions, the iterations of the IMTR algorithm are
expected to converge. While this analysis does not demon-
strate that the iterations converge to the optimal solution for
the high-fidelity model (and in general, examples where this
is not true can be constructed), this convergence is clearly
a desirable property because it implies that iterations do not
diverge.

At the iteration n, the optimal control for the low-fidelity
model is given by

un = −R−1BTPxn
l + R−1BTrn, (10)

while, with this optimal control, the closed-loop low-fidelity
model is given by

ẋn
l = (A − BR−1BTP)xn

l + BR−1BTrn + dn. (11)

We define the 𝜆1-norm and 𝜆2-norm for a function g(·) ∈
C0([0,T]) as follows:

||g||𝜆1
= sup

t∈[0,T]
e−𝜆t||g(t)||, (12)

||g||𝜆2
= sup

t∈[0,T]
e−𝜆(T−t)||g(t)||, (13)

where 𝜆 > 0. Note that the sup-norm overbounds and under-
bounds the 𝜆1-norm and 𝜆2-norm for a function g(·) ∈
C0([0,T]) as follows:

e−𝜆T ||g||∞ ⩽ ||g||𝜆1
⩽ ||g||∞,

e−𝜆T ||g||∞ ⩽ ||g||𝜆2
⩽ ||g||∞,

where the sup-norm is defined as follows:

||g||∞ = sup
t∈[0,T]

||g(t)||.
While, in principle, it is possible to develop results without

introducing the norms 12 and 13, as they are equivalent to the
standard sup-norm; the use of the norms 12 and 13 simplifies
the application of the contraction mapping-type arguments in
the convergence analysis and makes these arguments more
elegant. An added advantage of using the norms 12 and 13
is that one can try to adjust the parameter 𝜆 to satisfy the
sufficient conditions for convergence.

The subsequent development of various bounds proceeds
under the following assumption.

Assumption 1. Let f ∶ Rn × Rm → Rn in Equation 1 be a
globally Lipschitz continuous function so that

|| f (x, u) − f (y, v)|| ⩽ L1||x − y|| + L2||u − v|| (14)

for all x, y ∈ Rn and u, v ∈ Rm.

The derivation of conditions for IMTR convergence con-
sists of several steps that are now explained at a high level.
The reader is referred to Appendix A for details.

On the basis of Equations 1, 2, and 8, the bound on the
change in the disturbance between two consecutive iterations
is given by||dn+1 − dn||𝜆1

⩽ m1||dn − dn−1||𝜆1
+ m2||rn − rn−1||𝜆2

+ m3||xn
l − xn−1

l ||𝜆1
+ m4||xn

h − xn−1
h ||𝜆1

,
(15)

where m1 > 0, m2 > 0, m3 > 0, and m4 > 0 are appropriately
defined. Then on the basis of Equation 7, it can be shown that
there exists m5 > 0 such that||rn+1 − rn||𝜆2

⩽ m5||dn+1 − dn||𝜆1
. (16)

In turn, on the basis of Equation 11, it can be shown that
there exists m6 > 0 and m7 > 0 such that||xn+1

l − xn
l ||𝜆1

⩽ m6||dn+1 − dn||𝜆1
+ m7||rn+1 − rn||𝜆2

. (17)

It follows from Equations 1 and 5 that||xn+1
h − xn

h||𝜆1
⩽ m8||rn+1 − rn||𝜆2

+ m9||xn+1
l − xn

l ||𝜆1
. (18)

From the inequalities 15 to 18, it follows that there exists
𝛼 > 0 such that||dn+1 − dn||𝜆1

⩽ 𝛼||dn − dn−1||𝜆1
. (19)

The value of 𝛼 is given by Equation A14 in Appendix A.
The following result can now be stated.

Proposition 1. Suppose 𝛼 ∈ (0, 1), where 𝛼 is given by
Equation A14. Then the iterations of the IMTR algorithm con-
verge. Specifically, lim

n→∞
dn = d∞, lim

n→∞
rn = r∞, lim

n→∞
xn

l = x∞l
and lim

n→∞
xn

h = x∞h uniformly on [0,T] for appropriate contin-
uous functions, d∞, r∞, x∞l and x∞h , respectively. Moreover,
lim
n→∞

||xn
h − xn

l ||∞ = 0, J∞l = lim
n→∞

J(xn
l ) = lim

n→∞
J(xn

h) = J∞h .

Proof. See Appendix B.

Remark 4. The condition in Proposition 1 is sufficient and
requires the computation of 𝛼. We generally expect that small
values of k are conducive to being able to satisfy this condition
and achieve IMTR convergence. For the example in Section
5.3, we provide a numerical study of the dependence of 𝛼 on k,
and we leave further study of this dependence to future work.

Remark 5. Proceeding a bit further, it is also possible
to obtain a characterization of the low-fidelity model cost
change over 1 iteration, Jn+1

l − Jn
l as a quadratic function of

k > 0 in Equation 8. Specifically, the update equations can
be written as follows:

dn+1(t) = dn(t) + kėn(t),
rn+1(t) = rn(t) + k𝜙n(t),
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FIGURE 1 An example to demonstrate the sufficient condition in Proposition 1. Left: High and low-fidelity model trajectories. Middle:

Disturbance trajectories. Right: Control trajectories [Colour figure can be viewed at wileyonlinelibrary.com]

with 𝜙n(t) satisfying the following differential equation,

−�̇�n = ÃT
𝜙n − B̃ėn, 𝜙n(T) = 0,

where ėn = ẋn
h − ẋn

l and Ã, B̃ are defined in Appendix A.
On the basis of Equations 4 to 7, it can be shown (see, eg,
Boltyanski16, p. 76)

Jn+1
l − Jn

l = −k2∫
T

0

[
𝜙n(𝜏)T ėn(𝜏) +1

2
𝜙n(𝜏)TBR−1BT𝜙n(𝜏)

]
d𝜏

− k
[
𝜙n(0)Txn

l (0) +∫
T

0

[
rn(𝜏)T ėn(𝜏) +𝜙n(𝜏)Tdn(𝜏)

+𝜙n(𝜏)TBR−1BTrn(𝜏)
]

d𝜏
]
.

The ability to easily predict the change in the low-fidelity
model cost as a function of k may be exploited in strategies
for online selection of k. We leave the development of such
strategies to future work, while our subsequent examples use
a constant k.

Remark 6. The IMTR is a computational strategy and con-
vergence may not be expected for all types of problems.
Computational studies and further numerical analysis need
to be undertaken to understand whether highly divergent, in
particular, chaotic systems may be amenable to this strategy.

3.1 Example
We now provide an example to demonstrate the sufficient
condition in Proposition 1. In this example, the high-fidelity
model is a scalar nonlinear system, while the correspond-
ing low-fidelity model is the linearization of the high-fidelity
model at the origin plus a disturbance. Specifically, the
high-fidelity model and the corresponding low-fidelity model
are given as

ẋh = −0.1 sin xh + 0.05u,
ẋl = −0.1xl + 0.05u + d.

The cost function is given by Equation 3 with Q = 1, R = 1,
and Kf = 10. One set of parameters that satisfies the sufficient

condition in Proposition 1 is given by

𝜆 = 0.6,

k = 0.1,

T = 2,

which yields

𝛼 = 0.9635 ∈ (0, 1). (20)

The reader is referred to Appendix C for details. Thus,
the sufficient condition in Proposition 1 holds and we also
confirm the convergence by numerical simulations. Figure 1
shows the evolution of trajectories during the iterations of
IMTR. The blue and red trajectories correspond to the low-
and high-fidelity models, respectively, while the final trajec-
tory after 100 iterations is shown in green.

4 NEAR-OPTIMAL SOLUTION
BY IMTR

The control trajectory obtained by IMTR may be different
from the optimal control for the high-fidelity model, obtained,
eg, by the maximum principle and the solution of the resulting
two-point boundary value problem. By the algorithm modifi-
cation in Remark 1, a cost decrease for the high-fidelity model
is guaranteed after each control update. In several examples,
we have noticed that the solution of IMTR is close to the solu-
tion of the original optimal control problem. Motivated by
this observation, we provide the following conditions support-
ing the expectation for the near-optimality of IMTR solution
under certain assumptions.

Proposition 2. Suppose the nonlinear high-fidelity model is
of the following form:

ẋh = Axh + Bu + dh(xh, t), (21)

where A and B are the same as in Equation 2 and that there
exists d(t) such that

||dh(xh, t) − d(t)|| ⩽ 𝜖, (22)

http://onlinelibrary.wiley.com/
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for some 𝜖 > 0 and for all values of xh. Then, assuming IMTR
iterations converge in the sense of Proposition 1, the deviation
of the optimal cost (Equation 3) from the cost (Equation 3)
evaluated on the trajectories obtained by IMTR is O(𝜖) for 𝜖
sufficiently small.

Proof. See Appendix D.

Remark 7. It is clear from the proof of Proposition 2 that
Equation 22 needs to only hold for the values of xh in the
set which bounds the optimal trajectory of the high-fidelity
model and the trajectory to which IMTR converges. While
we leave further investigation of conditions under which
near-optimality of IMTR solutions can be assured to future
research, in the next sections, we investigate 2 case studies to
numerically show that near-optimal solutions can be obtained
through IMTR techniques.

5 ORBITAL TRANSFER

The problem of optimal control of a low-thrust spacecraft
orbital transfer maneuver is used to compare the NLQ and
IMTR approaches. A target orbit is a circular Earth orbit with
radius R0 and constant orbital angular velocity �̇� =

√
𝜇

R3
0

.

A spacecraft in a different initial orbit must be controlled to
match the orbital radius and velocity of the target orbit at a
fixed final time.

The high-fidelity model is the classical 2-body model, with
the equations of motion written in polar coordinates as Wie17:

r̈ − r�̇�2 = − 𝜇

r2
+ ar, (23)

r�̈� + 2ṙ�̇� = a𝜃, (24)

where r is the distance from the center of the Earth to
the spacecraft, 𝜃 is the polar angle, and ar and a𝜃 are the
thrust accelerations in the radial and tangential directions,
respectively.

The system state is

x =
⎡⎢⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎦ , (25)

where x1 = r, x2 = ṙ, x3 = 𝜃, x4 = �̇�. The control is defined
by the acceleration components,

u =
[

ar
a𝜃

]
. (26)

The low-fidelity model uses the linearized 2-body orbital
equations of motion, known as the Clohessy-Wiltshire
equations3 in the form given in Wie17:

Δr̈ = 3n2Δr + 2nR0Δ�̇� + ar, (27)

R0Δ�̈� = −2nΔṙ + a𝜃. (28)

This is a linear model with state variables Δr and Δ𝜃 rep-
resenting perturbations of the spacecraft radial distance and
polar angle from an (imagined) spacecraft on the target circu-
lar orbit. The state trajectory of the (imagined) spacecraft on
the target circular orbit is denoted by ẋtarget.

5.1 Maximum principle solution
The optimal orbital transfer control problem is first solved
using NLQ control. A finite horizon cost is defined

J = 1
2
(x(T) − xT )TKf (x(T) − xT )

+ 1
2 ∫

T

0
[(x(𝜏) − xT )TQ(x(𝜏) − xT ) + u(𝜏)TRu(𝜏)]d𝜏,

(29)

where T is the final time and xT is the target state. To minimize
the cost, the maximum principle is used. The Hamiltonian for
the minimization problem is

H = 1
2
(x − xT )TQ(x − xT ) +

1
2

uTRu + p1x2

+ p2

(
x1x2

4 −
𝜇

x2
1

+ ar

)
+ p3x4 + p4

1
x1
(−2x2x4 + a𝜃),

where p1, p2, p3, and p4 are the adjoint variables. The
first-order necessary conditions for optimality are(

𝜕H
𝜕u

)T
= Ru +

[ p2
p4

x1

]
= 0.

Therefore, the optimal control is given by

u = −R−1

[ p2
p4

x1

]
.

The adjoint equations are

ṗ = −
(
𝜕H
𝜕x

)T

= −Q(x − xT ) −

⎡⎢⎢⎢⎢⎣
p2x2

4 + 2 p2𝜇

x3
1

− p4

x2
1

(−2x2x4 + a𝜃)
p1 − 2 p4

x1
x4

0
2p2x1x4 + p3 − 2p4

x2

x1

⎤⎥⎥⎥⎥⎦
.

The transversality conditions are

p(T) = Kf (x(T) − xT ). (30)

The two-point boundary value problem is solved for x(0)
and p(0) such that Equation 30 holds.
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5.2 Iterative model and trajectory
refinement solution
The IMTR control solution to the orbital transfer problem
is found using the approach described in Section 2. The
high-fidelity model is given by Equations 23 and 24 with a
state vector xh given by Equation 25. The low-fidelity model is
given by Equations 27 and 28. The low-fidelity state is given
by perturbations of the spacecraft from the target,

xl =
⎡⎢⎢⎢⎣
Δr
Δṙ
Δ𝜃
Δ�̇�

⎤⎥⎥⎥⎦ .
Consistently, with the low-fidelity model based on the

Clohessy-Wiltshire equations 27 and 28, the disturbance to be
added to the low-fidelity model is based on the difference in
the dynamics of the perturbed state,

dn+1(t) = dn(t) + k
[(
̂̇xn

h(t) − ẋtarget(t)
)
− ̂̇xn

l (t)
]
,

where xtarget(t) represents the state trajectory of an (imagined)
spacecraft on the target circular orbit.

The low- and high-fidelity model costs are calculated
using Equation 29 with x given by (xh − xtarget) and xl,
respectively. The IMTR algorithm is applied with the mod-
ification described in Remark 1 of Section 2, ie, only the
disturbance—not the control—is updated during iterations
in which the control update would increase the high-fidelity
model cost.

5.3 Orbital transfer example
Figures 2 to 6 show an example of the maximum principle
and IMTR applied to the targeting problem with

FIGURE 2 Commanded acceleration in orbital transfer problem

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Cost in orbital transfer problem [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 4 Planar (x, y) trajectories in orbital transfer problem

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Altitude in orbital transfer problem [Colour figure can

be viewed at wileyonlinelibrary.com]

http://onlinelibrary.wiley.com/
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FIGURE 6 Angular rate in orbital transfer problem [Colour figure

can be viewed at wileyonlinelibrary.com]

x0 =
⎡⎢⎢⎢⎣

Re + 1400
0
0√
𝜇

(Re+1400)3

⎤⎥⎥⎥⎦ ,

xT =
⎡⎢⎢⎢⎣

Re + 2000
0
0√
𝜇

(Re+2000)3

⎤⎥⎥⎥⎦ ,
ie, a spacecraft transferring from a 1400 km circular orbit
to a 2000 km circular orbit. Note that a 600 km orbit trans-
fer maneuver is large and the Clohessy-Wiltshire equations
alone are not accurate at such distances to plan an accurate
maneuver. As we will demonstrate, accurate maneuvers can
be achieved using IMTR.

The transfer time T is the orbit period of the target, T =
7, 631 seconds = 2.12 hours. The penalty on the final state is

Kf =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎦ ,
which avoids penalizing the polar angle x3 = 𝜃. This rep-
resents an orbit-raising problem, with no constraint on the
final angular position of the spacecraft. In this example, Q is
set to 0, because nonzero Q makes the adjoint equations stiff
and R is

R =
[

109 0
0 109

]
,

which was found to yield solutions with low thrust accelera-
tions (existing electric propulsion systems typically produce
less than 1 N of thrust,18,19 while developmental systems may
be able to produce up to 15 N20). The parameter value k = 0.2
was selected to limit the change in d from one iteration to
the next.

Figure 2 shows the optimal control inputs ar and a𝜃 calcu-
lated by both the maximum principle and the IMTR strategy.
The results are similar, but not identical.

Figure 3 shows the cost (Equation 29) calculated by the
low- and high-fidelity models during each iteration of the
IMTR algorithm, compared to the optimal cost calculated by
the maximum principle. The low-fidelity model cost varies as
the disturbance updates improve the low-fidelity model match
over several iterations. The high-fidelity model cost decreases
in several steps.

In this example, the IMTR algorithm termination criterion
was that Jh change by less than 1% of its final value over the
previous 2 decreasing steps. This criterion was satisfied after
164 iterations. This number of iterations is reasonable com-
pared to other iterative trajectory optimization methods. For
example, Betts21 used an SQP algorithm to solve a low-thrust
orbital trajectory problem with 2 formulations requiring 125
and 263 340 iterations, respectively.

The control solution from the maximum principle approach
had a maximum total acceleration of 0.0458 m/s2, where total
acceleration is

atotal(t) =
√

ar(t)2 + a𝜃(t)2.

This maximum acceleration corresponds to a thrust of
13.7 N for a 300 kg spacecraft. The control solution from
the IMTR approach had a maximum total acceleration of
0.0443 m/s2. This maximum acceleration corresponds to a
thrust of 13.3 N for a 300 kg spacecraft. Both methods
achieved approximately the same optimal cost; J = 3, 033 for
the maximum principle solution and J = 3, 072 for the IMTR
solution.

Figure 4 shows the orbital trajectories resulting from the
maximum principle and the IMTR solution. The 2 solutions
overlap closely.

Figures 5 and 6 show the resultant time-histories of orbit
altitude and angular rate from the maximum principle and
IMTR. The results are very similar for both methods; the max-
imum principle yields a slightly slower solution, but the final
states are very similar. Both methods reach the target radius
but miss the target angular rate by about 1 · 10−5 rad/s. This
is the result of our choice of Q, R, and Kf; a small miss in
�̇� achieved the lowest total cost. A more accurate solution,
at the expense of a higher control cost, could be obtained by
adjusting these matrices.

Figures 7 and 8 show the results of the maximum principle
and the IMTR strategy for a range of initial conditions. The
orbital transfer problem with a target altitude of 2000 km was
solved for initial altitudes ranging from 1000 to 1900 km. In
the IMTR solutions, the parameter value k = 0.5 was used.
All other problem parameters were maintained at the values
given above. Each problem was terminated when Jh changed
by less than 1% over 2 sequential steps. As expected, the cost
and the maximum acceleration decreases for initial conditions

http://onlinelibrary.wiley.com/
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FIGURE 7 Cost vs initial altitude in orbital transfer problem

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Maximum acceleration vs initial altitude in orbital transfer

problem [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 𝛼 vs iteration number in orbital transfer problem [Colour

figure can be viewed at wileyonlinelibrary.com]

closer to the target orbit. The maximum principle and IMTR
solutions are very similar; the maximum principle results in
slightly lower cost and slightly higher maximum acceleration
for the cases with the lowest initial altitude.

As per Proposition 1, the value of 𝛼 in Equation 19 deter-
mines convergence of the IMTR algorithm. In the orbital
transfer example in Figures 2 to 6, 𝛼 varies as a function of
iteration number n and parameter k. Figure 9 shows the value
of 𝛼, calculated numerically using Equations 12 and A13 with
𝜆 = 2 for this example. For k ⩽ 0.1, we find 𝛼 ∈ (0, 1) on
every iteration. For k = 0.2, 0.3, 0.5, the value of 𝛼 is gener-
ally in this range, but there are exceptions on a few isolated
iterations. In these cases, the process returns to 𝛼 < 1 on the
next iteration; these exceptions do not prevent convergence.
The IMTR algorithm converged for all values of k shown in
Figure 9, with a faster rate of convergence for larger values
of k.

6 EARTH-MOON L4 TARGETING

As a second example, we apply the IMTR strategy to the
problem of optimally controlling a spacecraft near the L4

Lagrange point of the Earth-Moon system.17 The 5 Lagrange
points are the locations in a 3-body orbital system where a
small body can maintain a constant position with respect to
2 larger bodies, as gravitational and centripetal forces can-
cel. A spacecraft can orbit a Lagrange point and remain in
constant alignment with the primary bodies, which makes the
Lagrange points useful locations for many space missions.

The nonlinear equations of the planar circular restricted
3-body model17 are the high-fidelity model of the system,

ẍ − 2𝜔0ẏ − 𝜔2
0x = 𝜇1(x − D1)

r3
1

− −𝜇2(x + D2)
r3

2

+ 𝜂x + ax,

ÿ + 2𝜔0ẋ − 𝜔2
0y =

𝜇1y
r3

1

−
−𝜇2y

r3
2

+ 𝜂y + ay,

where the coordinate frame is rotating with constant velocity
𝜔0 about the center of mass of the Earth-Moon system, D1 is
the distance to the Earth from the center along the positive x
axis, D2 is the distance to the Moon from the center along the
negative x axis, and 𝜇1 and 𝜇2 are the constant gravity param-
eters of the Earth and Moon, respectively. The perturbations
𝜂x and 𝜂y are added to represent unknown system behavior,
such as control disturbances, solar radiation pressure pertur-
bations, and gravitational perturbations. The accelerations ax
and ay are the control inputs.

The linearized restricted 3-body orbital dynamics for per-
turbations from L4 equilibrium17 are the low-fidelity model of
the system,

Δẍ = 2𝜔0Δẏ + 3
4
𝜔2

0Δx +
3
√

3

2

(
𝜌 − 1

2

)
𝜔2

0Δy + ax,

Δÿ = −2𝜔0Δẋ +
3
√

3

2

(
𝜌 − 1

2

)
𝜔2

0Δx + 9
4
𝜔2

0Δy + ay,

where Δx and Δy are the components of the position vector
of the spacecraft relative to the Lagrange point and 𝜌 is the
mass ratio of the Earth-Moon system,

http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
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𝜌 = MMoon

MEarth + MMoon
.

Comparing the 2 models, the high-fidelity model alone
is more difficult and computationally expensive to optimize
because of its nonlinear structure. The low-fidelity model is
amenable to LQ optimal control, but the solution becomes
less accurate as the state moves away from L4. In the simula-
tions below, the IMTR strategy converges on a solution to the
high-fidelity problem from initial points more than 14 000 km
away from L4.

The following examples show an optimal control problem
in which the objective is to control the spacecraft from a per-
turbed initial state to the L4 point. The initial state perturbation
from L4 is

xl(0) =
⎡⎢⎢⎢⎣
Δx
Δy
Δẋ
Δẏ

⎤⎥⎥⎥⎦ .
A cost function of form 29 is defined using the high-fidelity
state,

xh =
⎡⎢⎢⎢⎣

x
y
ẋ
ẏ

⎤⎥⎥⎥⎦ .
The final time is fixed at 24 hours. The acceleration perturba-
tions are 𝜂x = 1 ·10−9 km/s2 and 𝜂y = 2 ·10−9 km/s2. The cost
to be minimized is given by Equation 3 with Kf = I4, Q = I4,
and

R =
[

1014 0
0 1014

]
,

which was found to yield low thrust acceleration solutions.
The parameter value k = 0.1 was selected.

Figures 10 to 12 show the IMTR strategy applied to the
targeting problem with initial conditions x(0) = 5, 000 km,
y(0) = 5, 000 km, in the rotating frame, relative to L4. The
IMTR algorithm was terminated when the cost (Equation 3)
varied by less than 10% over 3 iterations, and the final cost

FIGURE 10 Cost in Earth-Moon L4 targeting problem [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Trajectories in the rotating frame calculated during

selected iterations of the IMTR algorithm in Earth-Moon L4 targeting

problem [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Thrust acceleration in Earth-Moon L4 targeting

problem [Colour figure can be viewed at wileyonlinelibrary.com]

was less than any previously calculated cost. This occurred
after 55 iterations.

Figure 10 shows the costs calculated by the low- and
high-fidelity models on each iteration of the IMTR algorithm.
The cost decreases sharply over the first 10 iterations and
then approaches the minimum more slowly over the next 45
iterations.

Figure 11 shows the calculated trajectories at various iter-
ations of the IMTR algorithm. The (x, y) reference frame
rotates with the Earth-Moon system. The first trajectory ini-
tially approaches the target, but ends far from the target
point, which indicates that the low-fidelity model does not
solve the problem with this initial condition. However, accu-
racy improves over the iterations and the final trajectory
approaches the target and does not diverge.

Figure 12 shows the solution to the problem, the com-
manded thrust acceleration. The accelerations in the x and y
directions are nearly identical.

http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
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FIGURE 13 Calculated cost vs initial position relative to L4 in

Earth-Moon L4 targeting problem [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 14 Maximum acceleration (m/s2) vs initial position

relative to L4 in Earth-Moon L4 targeting problem [Colour figure can

be viewed at wileyonlinelibrary.com]

Figures 13 to 14 show the results of the same approach for a
range of initial conditions. The values of Δx(0) and Δy(0) var-
ied from -10 050 km to 10 050 km whileΔẋ(0) andΔẏ(0)were
held at 0. The final time and the constants 𝜂x, 𝜂y, Kf, Q, and R
have the values given above. The IMTR method was used to
calculate the optimal trajectory to the L4 point. The algorithm
converged for each case, with initial distances ranging from
50 km to 14 213 km from L4.

Figure 13 shows the minimum cost J calculated by the
IMTR approach for each initial position relative to the L4

point. As expected, the cost increases with distance from L4.
Figure 14 shows the maximum total acceleration required

for the trajectory from each initial position, where total accel-
eration is

atotal(t) =
√

ax(t)2 + ay(t)2.

The maximum acceleration ranges from 1.4 m/s2 at the far-
thest initial conditions to 0.0105 m/s2 at the nearest initial

conditions. For a 300 kg spacecraft, these maximum acceler-
ations correspond to maximum thrusts of 420 N and 3.15 N,
respectively.

7 CONCLUSIONS

This paper presented an IMTR approach to spacecraft trajec-
tory optimization using iterations of low- and high-fidelity
models. Sufficient conditions for IMTR convergence were
established. An example of low-thrust spacecraft orbital
transfer was described and the IMTR solution was compared
to NLQ control on the basis of the maximum principle. A sec-
ond example of spacecraft control in the 3-body Earth-Moon
system near the L4 Lagrange point was also described and
solved using the IMTR strategy.

Both examples exercised IMTR for a range of initial condi-
tions, and in all cases, we have been able to obtain reasonable
solutions. In the first example, IMTR calculated a solution
very similar to the optimal solution on the basis of the max-
imum principle. In the second example, IMTR found control
solutions for initial conditions far from the point about which
the low-fidelity equations were linearized. These examples
indicate that IMTR can be a useful strategy for many types
of trajectory optimization problems with complex, nonlinear
dynamics and low-fidelity model representations. In particu-
lar, IMTR can be used to warm start Newton-type two-point
boundary value solvers that are based on necessary condi-
tions for optimality; such solvers require a good initial guess
to achieve convergence.

While our examples illustrate the potential for IMTR appli-
cation to practical trajectory optimization problems, much
room remains for further research on conditions under which
convergence of IMTR takes place.
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APPENDIX A: DERIVATION OF
EQUATION 19

We begin with the following facts.

1. For all t ∈ [0,T], the following inequalities hold

∫
t

0
||g(𝜏)||d𝜏 = ∫

t

0
e−𝜆𝜏e𝜆𝜏 ||g(𝜏)||d𝜏

⩽ ||g||𝜆1 ∫
t

0
e𝜆𝜏d𝜏,

∫
T

t
||g(𝜏)||d𝜏 = ∫

T

t
e−𝜆(T−𝜏)e𝜆(T−𝜏)||g(𝜏)||d𝜏

⩽ ||g||𝜆2 ∫
T

t
e𝜆(T−𝜏)d𝜏.

2. For all t ∈ [0,T], the following inequalities hold

e−𝜆t ∫
t

0
e𝜆𝜏d𝜏 ⩽ 1

𝜆
,

e−𝜆(T−t) ∫
T

t
e𝜆(T−𝜏)d𝜏 ⩽ 1

𝜆
.

Define the following quantities,

c1 = sup
t∈[0,T]

||Ã(t)||, (A1)

c2 = sup
t∈[0,T]

||ÃT (t)||, (A2)

c3 = sup
t∈[0,T]

||B̃(t)||, (A3)

c4 = sup
t∈[0,T]

||K1(t)||, (A4)

c5 = ||K2||, (A5)

c6 = ||BK2||, (A6)

c7 = sup
t∈[0,T]

e−𝜆(T−t) ∫
T

t
e𝜆𝜏d𝜏, (A7)

c8 = sup
t∈[0,T]

e−𝜆t ∫
t

0
e𝜆(T−𝜏)d𝜏, (A8)

where Ã = (A − BK1), B̃ = P, K1 = R−1BTP and K2 =
R−1BT. On the basis of Equations 1, 2, and 8, it follows
that

dn+1(t) − dn(t) = (1 − k)
(
dn(t) − dn−1(t)

)
+ k

(
f
(
xn

h(t), u
n(t)

)
− f

(
xn−1

h (t), un−1(t)
))

+ k
(
(A − BK1(t))

(
xn−1

l (t) − xn
l (t)

)
+ BK2

(
rn−1(t) − rn(t)

))
.

Multiplying both sides of this expression by e−𝜆t and
taking the supremum over [0,T] on both sides yields

https://doi.org/10.1002/oca.2319
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||dn+1 − dn||𝜆1
⩽ |1 − k|
⏟⏟⏟

m1

||dn − dn−1||𝜆1
+ |k|e𝜆T (c6 + c5L2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

m2

||rn − rn−1||𝜆2

+ |k|(c1 + c4L2)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

m3

||xn
l − xn−1

l ||𝜆1
+ |k|L1
⏟⏟⏟

m4

||xn
h − xn−1

h ||𝜆1
.

(A9)

The norm of rn+1−rn is bounded as follows on the basis
of Equation 7,

rn+1(t) − r n(t) = ∫
T

t
Ã

T [r n+1(𝜏) − rn(𝜏)]d𝜏

+ ∫
T

t
B̃[dn(𝜏) − dn+1(𝜏)]d𝜏,

||rn+1(t) − rn(t)|| ⩽ c2 ∫
T

t
||rn+1(𝜏) − rn(𝜏)||d𝜏

+ c3 ∫
T

t
||dn+1(𝜏) − dn(𝜏)||d𝜏

⩽ c2||rn+1 − rn||𝜆2 ∫
T

t
e𝜆(T−𝜏)d𝜏

+ c3||dn+1 − dn||𝜆1 ∫
T

t
e𝜆𝜏d𝜏.

Multiplying by e−𝜆(T−t) and taking the supremum over
[0,T] on both sides yields

||rn+1 − rn||𝜆2
⩽ c3c7

1 − 𝜆−1c2
⏟⏞⏞⏟⏞⏞⏟

m5

||dn+1 − dn||𝜆1
. (A10)

The difference xn+1
l − xn

l is bounded as follows on the
basis of Equation 11

xn+1
l (t) − xn

l (t) = ∫
t

0
Ã(𝜏)[xn+1

l (𝜏) − xn
l (𝜏)]d𝜏

+ ∫
t

0
BK2[r n+1(𝜏) − rn(𝜏)]d𝜏

+ ∫
t

0
[dn+1(𝜏) − dn(𝜏)]d𝜏,

||xn+1
l (t) − xn

l (t)|| ⩽ c1 ∫
t

0
||xn+1

l (𝜏) − xn
l (𝜏)||d𝜏

+ c6 ∫
t

0
|| r n+1(𝜏) − rn(𝜏)||d𝜏

+ ∫
t

0
||d n+1(𝜏) − dn(𝜏)||d𝜏

⩽ c1||xn+1
l − xn

l ||𝜆1 ∫
t

0
e𝜆𝜏d𝜏

+ c6||rn+1 − rn||𝜆2 ∫
t

0
e𝜆(T−𝜏)d𝜏

+ ||dn+1 − dn||𝜆1 ∫
t

0
e𝜆𝜏d𝜏.

Multiplying both sides of the last expression by e−𝜆t and
taking the supremum over [0,T] on both sides yields

||xn+1
l −xn

l ||𝜆1
⩽ 𝜆−1

1−𝜆−1c1
⏟⏞⏟⏞⏟

m6

||dn+1−dn||𝜆1
+ c6c8

1−𝜆−1c1
⏟⏞⏟⏞⏟

m7

||rn+1−rn||𝜆2
.

(A11)

Finally, the difference xn+1
h − xn

h is bounded as follows
on the basis of Equations 1 and 5,

xn+1
h (t) − xn

h(t) = ∫
t

0
[ f (xn+1

h (𝜏), un+1(𝜏)) − f (xn
h(𝜏), u

n(𝜏))]d𝜏,

||xn+1
h (t) − xn

h(t)|| ⩽ L1 ∫
t

0
||xn+1

h (𝜏) − xn
h(𝜏)||d𝜏 + L2 ∫

t

0
||un+1(𝜏) − un(𝜏)||d𝜏

⩽ L1 ∫
t

0
||xn+1

h (𝜏) − xn
h(𝜏)||d𝜏 + c4L2 ∫

t

0
||xn+1

l (𝜏) − xn
l (𝜏)||d𝜏

+ c5L2 ∫
t

0
||rn+1(𝜏) − rn(𝜏)||d𝜏

⩽ L1||xn+1
h − xn

h||𝜆1 ∫
t

0
e𝜆𝜏d𝜏 + c4L2||xn+1

l − xn
l ||𝜆1 ∫

t

0
e𝜆𝜏d𝜏

+ c5L2||rn+1 − rn||𝜆2 ∫
t

0
e𝜆(T−𝜏)d𝜏.
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Multiplying the last expression by e−𝜆t and taking the
supremum over [0,T] on both sides yields

||xn+1
h − xn

h||𝜆1
⩽ c5c8L2

1 − 𝜆−1L1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

m8

||rn+1 − rn||𝜆2

+ 𝜆−1c4L2

1 − 𝜆−1L1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

m9

||xn+1
l − xn

l ||𝜆1
.

(A12)

Using Equations A10 to A12, Equation A9 can be writ-
ten in the same form as Equation 19,

||dn+1 − dn||𝜆1
⩽ 𝛼||dn − dn−1||𝜆1

, (A13)

where

𝛼 = m1 + m2m5 + m3(m6 + m5m7)
+ m4(m5m8 + (m6 + m5m7)m9).

(A14)

APPENDIX B: PROOF OF PROPOSITION 1
Using Equation A13, the following inequality is obtained for

m, n ∈ N and m > n,

||dm − dn||𝜆1
⩽ ||dm − dm−1||𝜆1

+ ||dm−1 − dm−2||𝜆1

+ … + ||dn+1 − dn||𝜆1

⩽ 𝛼m−1||d1 − d0||𝜆1
+ 𝛼m−2||d1 − d0||𝜆1

+ … + 𝛼n||d1 − d0||𝜆1

= ||d1 − d0||𝜆1
𝛼n

m−n−1∑
k=0

𝛼k

⩽ ||d1 − d0||𝜆1
𝛼n

∞∑
k=0

𝛼k

= ||d1 − d0||𝜆1

𝛼n

(1 − 𝛼)
.

If 𝛼 ∈ (0, 1), then for all 𝜖 > 0, there exists N ∈ N such
that for all m, n > N, ||dm − dn||𝜆1

< 𝜖, where N ∈ N can
be chosen such that 𝛼N <

𝜖(1−𝛼)||d1−d0||𝜆1

. This shows that {dn}∞n=0

is a uniformly Cauchy sequence of continuous functions in
C0([0,T]), which is a complete normed linear space under|| · ||𝜆1

. Hence, lim
n→∞

dn = d∞ for some d∞ uniformly on [0,T].
Using Equations A10, A11, and A12, it follows simi-

larly that {rn}∞n=0{xn
l }

∞
n=0 and {xn

h}
∞
n=0 are uniformly Cauchy

sequence of continuous functions in C0([0,T]), and hence
lim
n→∞

rn = r∞, lim
n→∞

xn
l = x∞l and lim

n→∞
xn

h = x∞h uniformly on

[0,T] for appropriate continuous functions r∞, x∞l and x∞h ,
respectively. As an example, for rn, we have

||rm − rn||𝜆2
⩽ ||rm − rm−1||𝜆2

+ ||rm−1 − rm−2||𝜆2

+ … + ||rn+1 − rn||𝜆2

⩽ m5(||dm − dm−1||𝜆1
+ ||dm−1 − dm−2||𝜆1

+ … + ||dn+1 − dn||𝜆1
)

⩽ m5

1 − 𝛼
(𝛼m−1||d1 − d0||𝜆1

+ 𝛼m−2||d1 − d0||𝜆1

+ … + 𝛼n||d1 − d0||𝜆1
)

= ||d1 − d0||𝜆1

m5𝛼
n

1 − 𝛼

m−n−1∑
k=0

𝛼k

⩽ ||d1 − d0||𝜆1

m5𝛼
n

1 − 𝛼

∞∑
k=0

𝛼k

= ||d1 − d0||𝜆1

m5𝛼
n

(1 − 𝛼)2
,

where m, n ∈ N and m > n. Now, if 𝛼 ∈ (0, 1), then for
all 𝜖 > 0, there exists N ∈ N such that for all m, n > N, it
implies ||rm − rn||𝜆2

< 𝜖, where N ∈ N can be chosen such

that 𝛼N <
𝜖(1−𝛼)2||d1−d0||𝜆1

m5
.

From Equation 8,

||ėn||𝜆1
=

||dn − dn−1||𝜆1|k| ,

and it follows that lim
n→∞

||ėn||∞ = 0. Since en(0) = 0,

||en||∞ = sup
t∈[0,T] ∫

t

0
ėn(𝜏)d𝜏 ⩽ ||ėn||∞T .

Thus

lim
n→∞

||en||∞ = lim
n→∞

||xn
h − xn

l ||∞ = 0,

and x∞h = x∞l .
Using uniform convergence of sequences and passing to

the limit, J∞l = lim
n→∞

Jl
(
xn

l , u
n) = Jl

(
lim
n→∞

xn
l , lim

n→∞
un
)

=

Jl
(
x∞l , u∞) = Jh

(
x∞h , u∞) = Jh

(
lim
n→∞

xn
h, lim

n→∞
un
)

=
lim
n→∞

Jh
(
xn

h, u
n) = J∞h . This completes the proof.

APPENDIX C: COMPUTATION OF
EQUATION 20

We have

K1 = R−1BTP = 0.05P,
K2 = R−1BT = 0.05,

Ã = (A − BK1) = −0.1 − 0.0025P,
B̃ = P.

The P in Equation 6 satisfies

Ṗ = 0.2P + 0.0025P2 − 1,

P(T) = 10.
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We can express P as an explicit function of t by separation
of variables,

P(t) =
40

√
5

1 − exp
(√

5

10
(t − 2) + ln

(
50−20

√
5

50+20
√

5

)) − 40 − 20
√

5,

and it is an increasing function of t ∈ [0,T].
According to Equations A1 to A8,

c1 = sup
t∈[0,T]

||Ã(t)|| = sup
t∈[0,T]

|0.1 + 0.0025P(t)| = 0.125,

c2 = sup
t∈[0,T]

||ÃT (t)|| = sup
t∈[0,T]

|0.1 + 0.0025P(t)| = 0.125,

c3 = sup
t∈[0,T]

||B̃(t)|| = sup
t∈[0,T]

|P(t)| = 10,

c4 = sup
t∈[0,T]

||K1(t)|| = sup
t∈[0,T]

|0.05P(t)| = 0.5,

c5 = ||K2|| = 0.05,

c6 = ||BK2|| = 0.0025,

c7 = sup
t∈[0,T]

e−𝜆(T−t) ∫
T

t
e𝜆𝜏d𝜏 = 1.3834,

c8 = sup
t∈[0,T]

e−𝜆t ∫
t

0
e𝜆(T−𝜏)d𝜏 = 1.3834.

Then, according to Equations A9 to A12,

m1 = |1 − k| = 0.9,

m2 = |k|e𝜆T (c6 + c5L2) = 0.0017,

m3 = |k|(c1 + c4L2) = 0.015,

m4 = |k|L1 = 0.01,

m5 = c3c7

1 − 𝜆−1c2
= 17.4742,

m6 = 𝜆−1

1 − 𝜆−1c1
= 2.1053,

m7 = c6c8

1 − 𝜆−1c1
= 0.0044,

m8 = c5c8L2

1 − 𝜆−1L1
= 0.0042,

m9 = 𝜆−1c4L2

1 − 𝜆−1L1
= 0.05,

where L1 = 0.1 and L2 = 0.05 are the Lipschitz constants of
the high-fidelity model. Finally,

𝛼 = m1 + m2m5 + m3(m6 + m5m7)
+ m4(m5m8 + (m6 + m5m7)m9) = 0.9635.

APPENDIX D: PROOF OF PROPOSITION 2

Let u* denote an optimal control for the high-fidelity
model and x* denote the corresponding state trajectory. Let

J* = J(x*, u*) denote the corresponding cost where J(x, u) is
defined by Equation 3. Consider the system,

ẋ = Ax + Bu + d∗(t), (D1)

obtained by evaluating dh(x, t) of Equation 21 at x*, ie, d*(t) =
dh(x*(t), t). Note that the control-state pair (u*, x*) represents
a trajectory of Equation D1, such that the integration of

ẋ = Ax + Bu∗ + d∗(t), x(0) = x∗(0), (D2)

recovers the optimal trajectory x* of the high-fidelity model.
For the same cost function J(x, u), system D1 has an optimal
control-state pair (u◦, x◦), satisfying

ẋ◦ = Ax◦ + Bu◦ + d∗(t), (D3)

and let the corresponding cost be J◦. Since (u◦, x◦) is optimal
for Equation D1,

J◦ ⩽ J∗. (D4)

Suppose the IMTR iterations converge and denote the cor-
responding control-state pair by (ũ, x̃). Then,

̇̃x = Ax̃ + Bũ + dl(t), (D5)

where

dl(t) = dh(x̃(t), t). (D6)

By Equation 22, Equation D6, and the triangle inequality,
we have

||d∗(t) − dl(t)|| = ||dh(x∗(t), t) − dh(x̃(t), t)||
= ||dh(x∗(t), t) − d(t) + d(t) − dh(x̃(t), t)||
⩽ ||dh(x∗(t), t) − d(t)|| + ||dh(x̃(t), t) − d(t)||
⩽ 2𝜖.

(D7)

Note that,

u◦ = −R−1BTP(t)x◦ + R−1BTr◦,
ũ = −R−1BTP(t)x̃ + R−1BTr̃,

(D8)

where P(t) comes from Equation 6 and is the same in both
cases, and

ṙ◦ = Ā(t)r◦ + B̄(t)d∗(t),
̇̃r = Ā(t)r̃ + B̄(t)dl(t),

where Ā(t) = −(A − BR−1BTP(t))T and B̄(t) = P(t).
We evaluate systems D3 and D5 with the feedback control
D8, and we have
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ẋ◦ = Ã(t)x◦ + B̃(t)r◦ + d∗(t),
̇̃x = Ã(t)x̃ + B̃(t)r̃ + dl(t),

where Ã(t) = (A−BR−1BTP(t)) and B̃(t) = BR−1BT . Note that
x◦(0) = x̃(0) and r◦(T) = r̃(T). Let Δx = x◦ − x̃, Δr = r◦ − r̃
and Δd(t) = d*(t) − dl(t). Then,[

Δẋ
Δṙ

]
=
[

Ã(t) B̃(t)
0 Ā(t)

] [
Δx
Δr

]
+
[

I
B̄(t)

]
Δd, (D9)

where the input Δd is bounded by ||Δd(t)|| ⩽ 2𝜖 for all t ∈
[0,T], Δx(0) = 0 and Δr(T) = 0. From Equation D9,

Δr(t) = Φ(t,T)Δr(T) + ∫
t

T
Φ(t, 𝜏)B̄(𝜏)Δd(𝜏)d𝜏

= ∫
t

T
Φ(t, 𝜏)B̄(𝜏)Δd(𝜏)d𝜏,

where Φ(t, 𝜏) is the state transition matrix associated with
Ā(t). Hence

||Δr(t)|| = |||||
|||||∫

t

T
Φ(t, 𝜏)B̄(𝜏)Δd(𝜏)d𝜏

|||||
|||||

⩽ ∫
T

t
||Φ(t, 𝜏)B̄(𝜏)Δd(𝜏)||d𝜏

⩽ 2𝜖(T − t)C1(t),

(D10)

where C1(t) = ||Φ(t, 𝜏)B̄(𝜏)||∞ and || · ||∞ is the supremum of|| · || over 𝜏 ∈ [t,T]. Note that C1(t) can be chosen to be finite
and independent of 𝜖. Thus, ||Δr(t)|| is O(𝜖).

Similarly, from Equation D9 and Δx(0) = 0,

Δx(t) = ∫
t

0
Ψ(t, 𝜏)(B̃(𝜏)Δr(𝜏) + Δd(𝜏))d𝜏,

where Ψ(t, 𝜏) is the state transition matrix associated with
Ã(t). Using Equation D10, it follows that

||Δx(t)|| ⩽ 2𝜖tC2(t), (D11)

where C2(t) = ||Ψ(t, 𝜏)B̃(𝜏)||∞||(T − 𝜏)C1(𝜏)||∞ + ||Ψ(t, 𝜏)||∞
and || · ||∞ is the supremum of || · || over 𝜏 ∈ [0, t]. Note that
C2(t) can be chosen to be finite and independent of 𝜖. Thus,||Δx(t)|| is O(𝜖).

Similarly, from Equation D8,

||Δu(t)|| ⩽ C3(t)||Δx|| + C4||Δr||, (D12)

where

C3(t) = ||R−1BTP(t)||,
C4 = ||R−1BT ||,

are independent of 𝜖 and are bounded.
Finally, the Taylor expansion of J̃ about the trajectory

(u◦, x◦) gives

J̃ = 1
2

x̃(T)TKf x̃(T) +
1
2 ∫

T

0
[x̃(t)TQx̃(t) + ũ(t)TRũ(t)]dt

= J◦ − x◦(T)TKfΔx(T) − ∫
T

0
[x◦(t)TQΔx(t) + u◦(t)TRΔu(t)]dt + O(𝜖2).

Therefore, on the basis of Equations D10, D11, and D12,
the difference between J◦ and J̃ is O(𝜖).

In particular, because (ũ, x̃) is a control-state pair of trajec-
tories of the high-fidelity model while (u*, x*) is the optimal
control-state pair of trajectories,

J∗ ⩽ J̃. (D13)

On the basis of Equations D4 and D13, we have

J◦ ⩽ J∗ ⩽ J̃,

and thus |J̃ − J∗| ⩽ |J̃ − J◦|.
Thus, |J̃ − J∗| is O(𝜖) and the proof is complete.
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