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SUMMARY

An iterative model and trajectory refinement (IMTR) strategy is proposed for trajectory optimization of
nonlinear systems. A high-fidelity model and a low-fidelity model are used. The high-fidelity model
accurately represents the system but is not easily amenable to trajectory optimization, due to degree of
nonlinearity, computational cost, or to being of “black-box” type. The low-fidelity model is suitable for
numerical optimization, but approximates the system dynamics with an error. The IMTR method is proposed
to systematically iterate between the two models and efficiently converge on a control solution. Examples
are drawn from orbital mechanics. The IMTR approach is compared to optimal nonlinear quadratic control
using Pontryagin’s maximum principle. A convergence criterion for the IMTR iterations is established.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is common in many applications for a system to be described by multiple models of varying
fidelity and complexity. Often a high-fidelity model accurately represents the system dynamics but
is computationally complex and requires long simulation time. These conditions can make trajectory
optimization difficult. Numerical optimization methods require many iterations and, in the absence
of a good initial guess, they may not converge.

A low-fidelity model of the system may be more amenable to trajectory optimization. Such a
model requires a shorter simulation time and can be optimized by analytical methods (e.g., LQ
optimal control, if the low-fidelity model is linear and the cost is quadratic). However, the low-
fidelity model does not accurately represent the full system dynamics, and an optimal control derived
from the low-fidelity model alone may not achieve the desired system output.
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Iterative Model and Trajectory Refinement (IMTR) is a recently-proposed trajectory optimization
strategy [1, 2] that systematically uses both a high-fidelity and a low-fidelity model of a system. The
method uses intertwined steps of trajectory optimization on the low-fidelity model and disturbance
estimation to make the low-fidelity model locally match the high-fidelity model. Compared to
numerical optimization of the high-fidelity model alone, fewer simulations of the high-fidelity
model may be required, which reduces computational costs.

This paper considers the application of IMTR to two spacecraft maneuvering problems in which
spacecraft dynamics are represented by both low-fidelity and high-fidelity models: an orbital transfer
problem, and a problem of optimal control near libration points in the three-body problem. The
orbital transfer problem can be described by nonlinear equations of two-body orbital motion, or the
dynamics can be approximated by the linear Clohessy-Wiltshire equations [3]. Spacecraft dynamics
near a libration point can be described by the nonlinear circular restricted three-body model, or
approximated by linearized equations for perturbation about the equilibrium.

We address the orbital transfer problem using two different approaches. The first uses nonlinear
quadratic (NLQ) control with Pontryagin’s maximum principle (hereafter, called the maximum
principle) to minimize a quadratic cost function of the high-fidelity trajectory. The second approach
uses IMTR to optimize the same quadratic cost function through optimization of the low-fidelity
model.

Having validated IMTR in comparison with the maximum principle solution in the orbital transfer
problem, we address the problem of spacecraft dynamics near a libration point using the IMTR
approach only.

In both of our spacecraft examples, the dynamics are highly nonlinear for large maneuvers;
the linearization-based low-fidelity model alone is not sufficiently accurate. As we demonstrate,
however, such a model can lead to effective, precise, and near-optimal maneuvers once enhanced
with IMTR.

A preliminary study of IMTR for spacecraft trajectory optimization has appeared in [4, 5]. The
present paper presents a significantly more in-depth treatment of the case studies, and derives
theoretical conditions for IMTR iterations convergence.

This paper focuses on high-fidelity models that are nonlinear and low-fidelity models that are
linear time-invariant with additive, time-dependent disturbance input. Thus the low-fidelity models
are not required to be time-varying linearizations of the system around a nominal trajectory. This
approach reduces the trajectory optimization problem to a repeated solution of an LQ-type problem,
where a significant portion of the solution can be pre-computed offline.

There is a growing interest in solving the LQ problem for uncertain systems [6]. The proposed
approach is related to Iterative Learning Control (ILC) [7, 8] and Iterative Dynamic Programming
(IDP) [9]. These techniques are different from IMTR: ILC primarily addresses trajectory tracking
where the target trajectory is known rather than an optimal control problem, and neither ILC nor
IDP exploit cost minimization based on low-fidelity and high-fidelity dynamic models as considered
in IMTR. The proposed approach is also related to iterative schemes for solving optimal control
problems for bilinear systems [10, 11, 12, 13], however, IMTR is not limited to high-fidelity models
of a particular form.

The paper is organized as follows. In Section 2, the IMTR algorithm is described. Section 3
analyzes IMTR iterations convergence and derives sufficient conditions under which this
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convergence takes place. An example for which these sufficient conditions are satisfied is provided.
In Section 4, a condition is given under which the solution obtained by IMTR is guaranteed to
be a near-optimal solution, i.e., it deviates from the optimal solution of the high-fidelity model by
less than a bound. In Section 5, the NLQ and IMTR methods are applied to an example of orbital
maneuvering optimal control problem. In Section 6, the IMTR approach is applied to an example
of optimal control about the L4 Lagrange point in the Earth-Moon system. Following the examples,
concluding remarks are made in Section 7.

Trajectory optimization is an inherent part of mission planning for spacecraft applications (see,
e.g., [14]). While it is a common practice to use different levels of models and approximations
in spacecraft trajectory design (e.g., patched conics followed by optimization on a higher fidelity
nonlinear simulation model), this is done heuristically and differently from IMTR. In the present
paper, we set up an iterative process where the low-fidelity model is tunable and matched to the
higher fidelity model in each iteration, and the optimization is performed only on the low-fidelity
model.

Spacecraft trajectory optimization is one of many possible areas of application for IMTR. Similar
computational strategies can be exploited in other trajectory optimization problems, where the
dynamic system can be represented by low-fidelity and high-fidelity models. As an example, in
[1] IMTR strategy is applied to clutch trajectory optimization in an automotive vehicle, where the
low-fidelity and high-fidelity models are of drastically different orders and complexity. In [2], IMTR
is applied to a nonlinear engine control problem with the low-fidelity model based on a linearization
at a given operating point.

The numerical examples in this paper and further references [1, 2] indicate that the IMTR strategy
can be successful in treating a variety of practical optimal control problems. The analysis in Section
3 establishes sufficient conditions for the IMTR iterations to converge.

2. THE ITERATIVE MODEL AND TRAJECTORY REFINEMENT ALGORITHM

We consider a system described by a nonlinear, high-fidelity, state-space model,

ẋh = f(xh, u), (1)

where xh is a vector of state variables and u is the manipulated input. The system is also
approximated by a linear low-fidelity model,

ẋl = Axl +Bu+ d, (2)

where xl is a vector of state variables, A and B are constant matrices, and d is a time-dependent
disturbance input that we iteratively adjust to improve the match between (1) and (2). The subscripts
l and h designate the low-fidelity and high-fidelity models, respectively. While extensions are
possible, the dimensionalities of the state and control vectors are assumed to be the same for both
the low-fidelity and high-fidelity models. The initial conditions are fixed and xh(0) = xl(0).

It is assumed that the high-fidelity model (1) accurately describes the system, while the low-
fidelity model (2) describes the system with an error. Note that the linear model is not required
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to be a time-varying linearization about the high-fidelity model trajectory. While the low-fidelity
model (2) may be defined as a linearization of the nominal model about some nominal (possibly
equilibrium) state and control values, it is not required to be.

The objective is to find the control u(t), defined over the time interval t ∈ [0, T ], that minimizes
a quadratic cost function,

Jh =
1

2
xh(T )TKfxh(T ) +

1

2

∫ T

0

[xh(t)TQxh(t) + u(t)TRu(t)]dt, (3)

where QT = Q ≥ 0, RT = R > 0, and KT
f = Kf > 0.

The optimal solution to (3) is not readily available, as the high-fidelity model is nonlinear.
However, a similar problem for the linear low-fidelity model (2),

Jl =
1

2
xl(T )TKfxl(T ) +

1

2

∫ T

0

[xl(t)
TQxl(t) + u(t)TRu(t)]dt, (4)

can be solved easily. The optimal solution to the problem of minimizing (4) is given by

u = −R−1BTPxl +R−1BT r, (5)

where P and r are given by

−Ṗ = ATP + PA− PBR−1BTP +Q, (6)

−ṙ = (A−BR−1BTP )T r − Pd, (7)

with P (T ) = Kf and r(T ) = 0 (see, e.g, [15]). Note that (6) is a Riccati equation, the solution of
which can be computed independently of the iterative optimization process.

The IMTR algorithm is summarized in Table I. Let the superscript n indicate the iteration number.

Table I. IMTR Algorithm

1. Initialize the disturbance for the first iteration, d0.
2. Solve the finite horizon LQ problem for the low-fidelity model to obtain un and xnl .
3. Apply un to the high-fidelity model to obtain xnh .
4. Compare xnl and xnh . Update the disturbance.
5. Repeat steps 2 through 4 until the algorithm converges.

The disturbance may be initialized at zero or any other reasonable value. During each iteration,
IMTR solves the low-fidelity optimization problem and estimates the disturbance d(t). The
disturbance update is given by

dn+1(t) = dn(t) + k(ˆ̇xnh(t)− ˆ̇xnl (t)), (8)

where ˆ̇xnh(t) is the estimate of the time rate of change of xh given by the right hand side of (1) with
xh = xnh, u = un, and ˆ̇xnl (t) is given by (2) with u = un, d = dn. The estimate of the time rate of
change of xnh, ˆ̇xnh(t), can be obtained by evaluating the right hand side of (1) on xnh and un. The
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estimate of the time rate of change of xnl , ˆ̇xnl (t), can be obtained by evaluating the right hand side
of (2) on xnl , un, dn. Alternatively, standard numerical differentiation or filtering techniques can be
applied to obtain ˆ̇xnh(t) and ˆ̇xnl (t).

The refinement of d(t) causes the low-fidelity model to match the high-fidelity model more
closely with each iteration. The constant k is a gain controlling the change in the disturbance
estimate with each iteration. Typically, a value of k between 0 and 1 is chosen.

In principle, (8) may be replaced by updating parameters in a parametric disturbance
representation of the form,

d(t) =

m∑
i=1

θiφi(t), (9)

where φi(t) are given basis functions and θi are estimated parameters.
Each iteration of the IMTR algorithm requires only one simulation of the high-fidelity model. We

are never required to numerically optimize the high-fidelity model; all optimization is performed on
the low-fidelity model.

Remark 1
Step 3 of the IMTR algorithm can be modified to include a check for decreasing high-fidelity model
cost, Jh. After obtaining un on the low-fidelity model and applying it to the high-fidelity model, if
Jh has increased, the control reverts to un−1. The disturbance alone is updated until the low-fidelity
model reaches a form for which the optimal control also gives a decrease in Jh. This modification
ensures that algorithm iterations only give a decrease in the cost and the disturbance estimate is
updated multiple times between control updates. The orbital transfer problem in Section 5 uses this
approach.

Remark 2
In this paper, the dimensionalities of the states of (1) and (2) are assumed to be the same. A
generalization of the IMTR strategy to cases where these dimensions are not the same and when
the cost function (3) is non-quadratic can be made. See, for instance, our paper [1] that addresses
optimal control of a transmission clutch based on a high order model. The treatment of convergence
in such problems could be considerably more involved.

Remark 3
Note that d is a function of time only and not of state; this leads to simple and fast updates, as the
low-fidelity model remains linear with time-dependent disturbance input. If d could be chosen as
a function of state in (2), a trivial choice d = f(xh, u)−Axl −Bu would provide a perfect match
between the low-fidelity and high-fidelity models; however, this choice, clearly, does not address
the underlying challenge of solving the optimal control problem.

3. IMTR CONVERGENCE

In this section, we demonstrate that under appropriate assumptions, the iterations of the IMTR
algorithm are expected to converge. While this analysis does not demonstrate that the iterations
converge to the optimal solution for the high-fidelity model (and in general, examples where this
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is not true can be constructed), this convergence is clearly a desirable property as it implies that
iterations do not diverge.

At the iteration n, the optimal control for the low-fidelity model is given by

un = −R−1BTPxnl +R−1BT rn, (10)

while, with this optimal control, the closed-loop low-fidelity model is given by

ẋnl = (A−BR−1BTP )xnl +BR−1BT rn + dn. (11)

We define the λ1-norm and λ2-norm for a function g(·) ∈ C0([0, T ]) as follows

‖g‖λ1 = sup
t∈[0,T ]

e−λt‖g(t)‖, (12)

‖g‖λ2
= sup
t∈[0,T ]

e−λ(T−t)‖g(t)‖, (13)

where λ > 0. Note that the sup-norm overbounds and underbounds the λ1-norm and λ2-norm for a
function g(·) ∈ C0([0, T ]) as follows

e−λT ‖g‖∞ ≤ ‖g‖λ1
≤ ‖g‖∞,

e−λT ‖g‖∞ ≤ ‖g‖λ2 ≤ ‖g‖∞,

where the sup-norm is defined as follows

‖g‖∞ = sup
t∈[0,T ]

‖g(t)‖.

While, in principle, it is possible to develop results without introducing the norms (12) and (13),
as they are equivalent to the standard sup-norm, the use of the norms (12) and (13) simplifies the
application of the contraction mapping-type arguments in the convergence analysis and makes these
arguments more elegant. An added advantage of using the norms (12) and (13) is that one can try to
adjust the parameter λ in order to satisfy the sufficient conditions for convergence.

The subsequent development of various bounds proceeds under the following assumption.

Assumption 1: Let f : Rn ×Rm → Rn in (1) be a globally Lipschitz continuous function so that

‖f(x, u)− f(y, v)‖ ≤ L1‖x− y‖+ L2‖u− v‖ (14)

for all x, y ∈ Rn and u, v ∈ Rm.

The derivation of conditions for IMTR convergence consists of several steps that are now explained
at a high level. The reader is referred to Appendix A for details.
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Based on (1), (2) and (8), the bound on the change in the disturbance between two consecutive
iterations is given by

‖dn+1 − dn‖λ1
≤ m1‖dn − dn−1‖λ1

+m2||rn − rn−1||λ2
+m3‖xnl − xn−1l ‖λ1

+m4‖xnh − xn−1h ‖λ1
, (15)

where m1 > 0, m2 > 0, m3 > 0, and m4 > 0 are appropriately defined. Then based on (7), it can
be shown that there exists m5 > 0 such that

‖rn+1 − rn‖λ2 ≤ m5‖dn+1 − dn‖λ1 . (16)

In turn, based on (11), it can be shown that there exists m6 > 0 and m7 > 0 such that

‖xn+1
l − xnl ‖λ1

≤ m6‖dn+1 − dn‖λ1
+m7‖rn+1 − rn‖λ2

. (17)

It follows from (1), (5) that

‖xn+1
h − xnh‖λ1

≤ m8‖rn+1 − rn‖λ2
+m9‖xn+1

l − xnl ‖λ1
. (18)

From the inequalities (15)-(18), it follows that there exists α > 0 such that

‖dn+1 − dn‖λ1
≤ α‖dn − dn−1‖λ1

. (19)

The value of α is given by (44) in Appendix A. The following result can now be stated.

Proposition 1
Suppose α ∈ (0, 1), where α is given by (44). Then the iterations of the IMTR algorithm converge.
Specifically, lim

n→∞
dn = d∞, lim

n→∞
rn = r∞, lim

n→∞
xnl = x∞l and lim

n→∞
xnh = x∞h uniformly on [0, T ]

for appropriate continuous functions, d∞, r∞, x∞l and x∞h , respectively. Moreover, lim
n→∞

‖xnh −
xnl ‖∞ = 0, J∞l = lim

n→∞
J(xnl ) = lim

n→∞
J(xnh) = J∞h .

Proof
See Appendix B.

Remark 4
The condition in Proposition 1 is sufficient and requires the computation of α. We generally expect
that small values of k are conducive to being able to satisfy this condition and achieve IMTR
convergence. For the example in Section 5.3, we provide a numerical study of the dependence of α
on k, and we leave further study of this dependence to future work.

Remark 5
Proceeding a bit further, it is also possible to obtain a characterization of the low-fidelity model
cost change over one iteration, Jn+1

l − Jnl as a quadratic function of k > 0 in (8). Specifically, the
update equations can be written as follows,

dn+1(t) = dn(t) + kėn(t),

rn+1(t) = rn(t) + kφn(t),
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with φn(t) satisfying the following differential equation,

−φ̇n = ÃTφn − B̃ėn, φn(T ) = 0,

where ėn = ẋnh − ẋnl and Ã, B̃ are defined in Appendix A. Based on (4)-(7), it can be shown (see,
e.g., [16, p. 76])

Jn+1
l − Jnl = −k2

∫ T

0

[φnT (τ)ėn(τ) +
1

2
φnT (τ)BR−1BTφn(τ)]dτ

− k

[
φnT (0)xnl (0) +

∫ T

0

[rnT (τ)ėn(τ) + φnT (τ)dn(τ) + φnT (τ)BR−1BT rn(τ)]dτ

]
.

The ability to easily predict the change in the low-fidelity model cost as a function of k may
be exploited in strategies for online selection of k. We leave the development of such strategies to
future work, while our subsequent examples use a constant k.

Remark 6
IMTR is a computational strategy and convergence may not be expected for all types of problems.
Computational studies and further numerical analysis need to be undertaken to understand whether
highly divergent, in particular, chaotic systems may be amenable to this strategy.

3.1. Example

We now provide an example to demonstrate the sufficient condition in Proposition 1. In this
example, the high-fidelity model is a scalar nonlinear system, while the corresponding low-fidelity
model is the linearization of the high-fidelity model at the origin plus a disturbance. Specifically,
the high-fidelity model and the corresponding low-fidelity model are given as

ẋh = −0.1 sinxh + 0.05u,

ẋl = −0.1xl + 0.05u+ d.

The cost function is given by (3) with Q = 1, R = 1 and Kf = 10. One set of parameters that
satisfies the sufficient condition in Proposition 1 is given by

λ = 0.6,

k = 0.1,

T = 2,

which yields
α = 0.9635 ∈ (0, 1). (20)

The reader is referred to Appendix C for details. Thus, the sufficient condition in Proposition 1
holds and we also confirm the convergence by numerical simulations. Fig. 1 shows the evolution
of trajectories during the iterations of IMTR. The blue and red trajectories correspond to the low-
fidelity and high-fidelity models, respectively, while the final trajectory after 100 iterations is shown
in green.
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Figure 1. An example to demonstrate the sufficient condition in Proposition 1. Left: High and low-fidelity
model trajectories. Middle: Disturbance trajectories. Right: Control trajectories.

4. NEAR-OPTIMAL SOLUTION BY IMTR

The control trajectory obtained by IMTR may be different from the optimal control for the high-
fidelity model, obtained, e.g., by the maximum principle and the solution of the resulting two-point
boundary value problem. By the algorithm modification in Remark 1, a cost decrease for the high-
fidelity model is guaranteed after each control update. In several examples, we have noticed that the
solution of IMTR is close to the solution of the original optimal control problem. Motivated by this
observation, we provide the following conditions supporting the expectation for the near-optimality
of IMTR solution under certain assumptions.

Proposition 2
Suppose the nonlinear high-fidelity model is of the following form,

ẋh = Axh +Bu+ dh(xh, t), (21)

where A and B are the same as in (2), and that there exists d̄(t) such that

‖dh(xh, t)− d̄(t)‖ ≤ ε, (22)

for some ε > 0 and for all values of xh. Then assuming IMTR iterations converge in the sense of
Proposition 1, the deviation of the optimal cost (3) from the cost (3) evaluated on the trajectories
obtained by IMTR is O(ε) for ε sufficiently small.

Proof
See Appendix D.

Remark 7
It is clear from the proof of Proposition 2 that (22) needs to only hold for the values of xh in the set
which bounds the optimal trajectory of the high-fidelity model and the trajectory to which IMTR
converges. While we leave further investigation of conditions under which near-optimality of IMTR
solutions can be assured to future research, in the next sections, we investigate two case studies to
numerically show that near-optimal solutions can be obtained through IMTR techniques.
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5. ORBITAL TRANSFER

The problem of optimal control of a low-thrust spacecraft orbital transfer maneuver is used to
compare the NLQ and IMTR approaches. A target orbit is a circular Earth orbit with radius R0

and constant orbital angular velocity θ̇ =
√

µ
R3

0
. A spacecraft in a different initial orbit must be

controlled to match the orbital radius and velocity of the target orbit at a fixed final time.
The high-fidelity model is the classical two-body model, with the equations of motion written in

polar coordinates as [17]:

r̈ − rθ̇2 = − µ
r2

+ ar, (23)

rθ̈ + 2ṙθ̇ = aθ, (24)

where r is the distance from the center of the Earth to the spacecraft, θ is the polar angle, and ar
and aθ are the thrust accelerations in the radial (r̂) and tangential (θ̂) directions, respectively.

The system state is

x =


x1

x2

x3

x4

 , (25)

where x1 = r, x2 = ṙ, x3 = θ, x4 = θ̇. The control is defined by the acceleration components,

u =

[
ar

aθ

]
. (26)

The low-fidelity model uses the linearized two-body orbital equations of motion, known as the
Clohessy-Wiltshire equations [3] in the form given in [17]:

∆r̈ = 3n2∆r + 2nR0∆θ̇ + ar, (27)

R0∆θ̈ = −2n∆ṙ + aθ. (28)

This is a linear model with state variables ∆r and ∆θ representing perturbations of the spacecraft
radial distance and polar angle from an (imagined) spacecraft on the target circular orbit. The state
trajectory of the (imagined) spacecraft on the target circular orbit is denoted by ẋtarget.

5.1. Maximum Principle Solution

The optimal orbital transfer control problem is first solved using NLQ control. A finite horizon cost
is defined

J =
1

2
(x(T )− xT )TKf (x(T )− xT ) +

1

2

∫ T

0

[(x(τ)− xT )TQ(x(τ)− xT )

+ u(τ)TRu(τ)]dτ, (29)
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where T is the final time and xT is the target state. To minimize the cost, the maximum principle is
used. The Hamiltonian for the minimization problem is

H =
1

2
(x− xT )TQ(x− xT ) +

1

2
uTRu+ p1x2 + p2

(
x1x

2
4 −

µ

x21
+ ar

)
+ p3x4 + p4

1

x1
(−2x2x4 + aθ),

where p1, p2, p3, and p4 are the adjoint variables. The first-order necessary conditions for optimality
are

∂H

∂u
= Ru+

 p2
p4
x1

 = 0.

Therefore, the optimal control is given by

u = −R−1
 p2

p4
x1

 .
The adjoint equations are

ṗ = −
(
∂H

∂x

)T

= −Q(x− xT )−


p2x

2
4 + 2

p2µ

x31
− p4
x21

(−2x2x4 + aθ)

p1 − 2
p4
x1
x4

0

2p2x1x4 + p3 − 2
x2
x1
p4

 .

The transversality conditions are

p(T ) = Kf (x(T )− xT ). (30)

The two-point boundary value problem is solved for x(0) and p(0) such that (30) holds.

5.2. IMTR Solution

The IMTR control solution to the orbital transfer problem is found using the approach described in
Section 2. The high-fidelity model is given by (23) and (24) with a state vector xh given by (25).
The low-fidelity model is given by (27) and (28). The low-fidelity state is given by perturbations of
the spacecraft from the target,

xl =


∆r

∆ṙ

∆θ

∆θ̇

 .
Consistently with the low-fidelity model based on the Clohessy-Wiltshire equations (27) and (28),
the disturbance to be added to the low-fidelity model is based on the difference in the dynamics of

Copyright c© 0000 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (0000)
Prepared using ocaauth.cls DOI: 10.1002/oca

This article is protected by copyright. All rights reserved.



12

the perturbed state,

dn+1(t) = dn(t) + k[(ˆ̇xnh(t)− ẋtarget(t))− ˆ̇xnl (t)],

where xtarget(t) represents the state trajectory of an (imagined) spacecraft on the target circular
orbit.

The low-fidelity and high-fidelity model costs are calculated using (29) with x given by
(xh − xtarget) and xl, respectively. The IMTR algorithm is applied with the modification described
in Remark 1 of Section 2, i.e., only the disturbance – not the control – is updated during iterations
in which the control update would increase the high-fidelity model cost.

5.3. Orbital Transfer Example

Figures 2 - 6 show an example of the maximum principle and IMTR applied to the targeting problem
with

x0 =


Re + 1400

0

0√
µ

(Re + 1400)3

 ,

xT =


Re + 2000

0

0√
µ

(Re + 2000)3

 ,

i.e., a spacecraft transferring from a 1,400 km circular orbit to a 2,000 km circular orbit. Note that a
600 km orbit transfer maneuver is large and the Clohessy-Wiltshire equations alone are not accurate
at such distances to plan an accurate maneuver. As we will demonstrate, accurate maneuvers can be
achieved using IMTR.

The transfer time T is the orbit period of the target, T = 7, 631 seconds = 2.12 hours. The penalty
on the final state is

Kf =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 ,
which avoids penalizing the polar angle x3 = θ. This represents an orbit-raising problem, with no
constraint on the final angular position of the spacecraft. In this example, Q is set to zero, because
non-zero Q makes the adjoint equations stiff and R is

R =

[
109 0

0 109

]
,
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which was found to yield solutions with low thrust accelerations (existing electric propulsion
systems typically produce less than 1 N of thrust [18, 19], while developmental systems may be
able to produce up to 15 N [20]). The parameter value k = 0.2 was selected to limit the change in d
from one iteration to the next.

0 2000 4000 6000 8000
−2

0

2
x 10

−5

a r (
km

/s
2 )

 

 

0 2000 4000 6000 8000
0

5
x 10

−5

a θ (
km

/s
2 )

Time (s)

Maximum Principle
IMTR

Figure 2. Commanded acceleration in orbital transfer problem.

Figure 2 shows the optimal control inputs ar and aθ calculated by both the maximum principle
and the IMTR strategy. The results are similar, but not identical.

Figure 3 shows the cost (29) calculated by the low-fidelity and high-fidelity models during each
iteration of the IMTR algorithm, compared to the optimal cost calculated by the maximum principle.
The low-fidelity model cost varies as the disturbance updates improve the low-fidelity model match
over several iterations. The high-fidelity model cost decreases in several steps.

In this example, the IMTR algorithm termination criterion was that Jh change by less than 1% of
its final value over the previous two decreasing steps. This criterion was satisfied after 164 iterations.
This number of iterations is reasonable compared to other iterative trajectory optimization methods.
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0 50 100 150
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Figure 3. Cost in orbital transfer problem.
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Figure 4. Planar (x, y) trajectories in orbital transfer problem.
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Figure 5. Altitude in orbital transfer problem.
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Figure 6. Angular rate in orbital transfer problem.
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For example, Reference [21] used an SQP algorithm to solve a low-thrust orbital trajectory problem
with two formulations requiring 125 and 263,340 iterations, respectively.

The control solution from the maximum principle approach had a maximum total acceleration of
0.0458 m/s2, where total acceleration is

atotal(t) =
√
ar(t)2 + aθ(t)2.

This maximum acceleration corresponds to a thrust of 13.7 N for a 300 kg spacecraft. The control
solution from the IMTR approach had a maximum total acceleration of 0.0443 m/s2. This maximum
acceleration corresponds to a thrust of 13.3 N for a 300 kg spacecraft. Both methods achieved
approximately the same optimal cost; J = 3, 033 for the maximum principle solution and J = 3, 072

for the IMTR solution.
Figure 4 shows the orbital trajectories resulting from the maximum principle and the IMTR

solution. The two solutions overlap closely.
Figures 5 and 6 show the resultant time-histories of orbit altitude and angular rate from the

maximum principle and IMTR. The results are very similar for both methods; the maximum
principle yields a slightly slower solution, but the final states are very similar. Both methods reach
the target radius but miss the target angular rate by about 1 · 10−5 rad/s. This is the result of our
choice of Q, R, and Kf ; a small miss in θ̇ achieved the lowest total cost. A more accurate solution,
at the expense of a higher control cost, could be obtained by adjusting these matrices.
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2000
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10000

C
os

t
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Figure 7. Cost vs. initial altitude in orbital transfer problem.

Figures 7 and 8 show the results of the maximum principle and the IMTR strategy for a range
of initial conditions. The orbital transfer problem with a target altitude of 2,000 km was solved for
initial altitudes ranging from 1,000 km to 1,900 km. In the IMTR solutions, the parameter value
k = 0.5 was used. All other problem parameters were maintained at the values given above. Each
problem was terminated when Jh changed by less than 1% over two sequential steps. As expected,
the cost and the maximum acceleration decreases for initial conditions closer to the target orbit. The
maximum principle and IMTR solutions are very similar; the maximum principle results in slightly
lower cost and slightly higher maximum acceleration for the cases with the lowest initial altitude.
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Figure 8. Maximum acceleration vs. initial altitude in orbital transfer problem.

As per Proposition 1, the value of α in (19) determines convergence of the IMTR algorithm. In the
orbital transfer example in Figures 2-6, α varies as a function of iteration number n and parameter
k. Figure 9 shows the value of α, calculated numerically using (12) with λ = 2 for this example.
For k ≤ 0.1, we find α ∈ (0, 1) on every iteration . For k = 0.2, 0.3, 0.5, the value of α is generally
in this range, but there are exceptions on a few isolated iterations. In these cases, the process returns
to α < 1 on the next iteration; these exceptions do not prevent convergence. The IMTR algorithm
converged for all values of k shown in Figure 9, with a faster rate of convergence for larger values
of k.
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Figure 9. α vs. iteration number in orbital transfer problem.

6. EARTH-MOON L4 TARGETING

As a second example, we apply the IMTR strategy to the problem of optimally controlling a
spacecraft near the L4 Lagrange point of the Earth-Moon system [17]. The five Lagrange points
are the locations in a three-body orbital system where a small body can maintain a constant position
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with respect to two larger bodies, as gravitational and centripetal forces cancel. A spacecraft can
orbit a Lagrange point and remain in constant alignment with the primary bodies, which makes the
Lagrange points useful locations for many space missions.

The nonlinear equations of the planar circular restricted three-body model [17] are the high-
fidelity model of the system,

ẍ− 2ω0ẏ − ω2
0x =

µ1(x−D1)

r31
− −µ2(x+D2)

r32
+ ηx + ax,

ÿ + 2ω0ẋ− ω2
0y =

µ1y

r31
− −µ2y

r32
+ ηy + ay,

where the coordinate frame is rotating with constant velocity ω0 about the center of mass of the
Earth-Moon system, D1 is the distance to the Earth from the center along the positive x axis,
D2 is the distance to the Moon from the center along the negative x axis, and µ1 and µ2 are the
constant gravity parameters of the Earth and Moon, respectively. The perturbations ηx and ηy are
added to represent unknown system behavior, such as control disturbances, solar radiation pressure
perturbations, and gravitational perturbations. The accelerations ax and ay are the control inputs.

The linearized restricted 3-body orbital dynamics for perturbations from L4 equilibrium [17] are
the low-fidelity model of the system,

∆ẍ = 2ω0∆ẏ +
3

4
ω2
0∆x+

3
√

3

2
(ρ− 1

2
)ω2

0∆y + ax,

∆ÿ = −2ω0∆ẋ+
3
√

3

2
(ρ− 1

2
)ω2

0∆x+
9

4
ω2
0∆y + ay,

where ∆x and ∆y are the components of the position vector of the spacecraft relative to the
Lagrange point and ρ is the mass ratio of the Earth-Moon system,

ρ =
MMoon

MEarth +MMoon
.

Comparing the two models, the high-fidelity model alone is more difficult and computationally
expensive to optimize due to its nonlinear structure. The low-fidelity model is amenable to LQ
optimal control, but the solution becomes less accurate as the state moves away from L4. In the
simulations below, the IMTR strategy converges on a solution to the high-fidelity problem from
initial points more than 14,000 km away from L4.

The following examples show an optimal control problem in which the objective is to control the
spacecraft from a perturbed initial state to the L4 point. The initial state perturbation from L4 is

xl(0) =


∆x

∆y

∆ẋ

∆ẏ

 .
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A cost function of the form (29) is defined using the high-fidelity state,

xh =


x

y

ẋ

ẏ

 .

The final time is fixed at 24 hours. The acceleration perturbations are ηx = 1 · 10−9 km/s2 and
ηy = 2 · 10−9 km/s2. The cost to be minimized is given by (3) with Kf = I4, Q = I4, and

R =

[
1014 0

0 1014

]
,

which was found to yield low thrust acceleration solutions. As in the previous example, the
parameter value k = 0.1 was selected.

Figures 10-12 show the IMTR strategy applied to the targeting problem with initial conditions
x(0) = 5, 000 km, y(0) = 5, 000 km, in the rotating frame, relative to L4. The IMTR algorithm was
terminated when the cost (3) varied by less than 10% over three iterations and the final cost was less
than any previously calculated cost. This occurred after 55 iterations.
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Figure 10. Cost in Earth-Moon L4 targeting problem.

Figure 10 shows the costs calculated by the low-fidelity and high-fidelity models on each iteration
of the IMTR algorithm. The cost decreases sharply over the first ten iterations and then approaches
the minimum more slowly over the next 45 iterations.

Figure 11 shows the calculated trajectories at various iterations of the IMTR algorithm. The
(x, y) reference frame rotates with the Earth-Moon system. The first trajectory ends far from the
target point, which indicates that the low-fidelity model does not solve the problem with this initial
condition far from the L4 point. However, accuracy improves over the iterations and the final
trajectory approaches the target.

Figure 12 shows the solution to the problem, the commanded thrust acceleration. The
accelerations in the x and y directions are nearly identical.

Figures 13-14 show the results of the same approach for a range of initial conditions. The values
of ∆x(0) and ∆y(0) varied from -10,050 to 10,050 while ∆ẋ(0) and ∆ẏ(0) were held at zero. The
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Figure 11. Trajectories in the rotating frame calculated during selected iterations of the IMTR algorithm in
Earth-Moon L4 targeting problem.

0 2 4 6 8

x 10
4

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (s)

T
hr

us
t A

cc
el

er
at

io
n 

(m
/s

2 )

 

 

a
x

a
y

Figure 12. Control solution: thrust acceleration in Earth-Moon L4 targeting problem.
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problem.

final time and the constants ηx, ηy, Kf , Q, and R have the values given above. At each point in the
range of ∆x(0) and ∆y(0), the spacecraft was initialized with zero velocity relative to the rotating
reference frame. The IMTR method was used to calculate the optimal trajectory to the L4 point. The
algorithm converged for each case, with initial distances ranging from 50 km to 14,213 km from L4.

Figure 13 shows the minimum cost J calculated by the IMTR approach for each initial position
relative to the L4 point. As expected, the cost increases with distance from L4.

Figure 14 shows the maximum total acceleration required for the trajectory from each initial
position, where total acceleration is

atotal(t) =
√
ax(t)2 + ay(t)2.

The maximum acceleration ranges from 1.4 m/s2 at the farthest initial conditions to 0.0105 m/s2 at
the nearest initial conditions. For a 300 kg spacecraft, these maximum accelerations correspond to
maximum thrusts of 420 N and 3.15 N, respectively.

7. CONCLUSIONS

This paper presented an IMTR approach to spacecraft trajectory optimization using iterations of
low-fidelity and high-fidelity models. Sufficient conditions for IMTR convergence were established.
An example of low-thrust spacecraft orbital transfer was described and the IMTR solution was
compared to NLQ control based on the maximum principle. A second example of spacecraft control
in the three-body Earth-Moon system near the L4 Lagrange point was also described and solved
using the IMTR strategy.

Both examples exercised IMTR for a range of initial conditions and in all cases we have been
able to obtain reasonable solutions. In the first example, IMTR calculated a solution very similar
to the optimal solution based on the maximum principle. In the second example, IMTR found
control solutions for initial conditions far from the point about which the low-fidelity equations were
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linearized. These examples indicate that IMTR can be a useful strategy for many types of trajectory
optimization problems with complex, nonlinear dynamics and low-fidelity model representations.
In particular, IMTR can be used to warm start Newton-type two point boundary value solvers that
are based on necessary conditions for optimality; such solvers require a good initial guess to achieve
convergence.

While our examples illustrate the potential for IMTR application to practical trajectory
optimization problems, much room remains for further research on conditions under which
convergence of IMTR takes place.
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APPENDIX A: DERIVATION OF (19)

We begin with the following facts.

Fact 1: For all t ∈ [0, T ], the following inequalities hold∫ t

0

‖g(τ)‖dτ =

∫ t

0

e−λτeλτ‖g(τ)‖dτ

≤ ‖g‖λ1

∫ t

0

eλτdτ,∫ T

t

‖g(τ)‖dτ =

∫ T

t

e−λ(T−τ)eλ(T−τ)‖g(τ)‖dτ

≤ ‖g‖λ2

∫ T

t

eλ(T−τ)dτ.

Fact 2: For all t ∈ [0, T ], the following inequalities hold

e−λt
∫ t

0

eλτdτ ≤ 1

λ
,

e−λ(T−t)
∫ T

t

eλ(T−τ)dτ ≤ 1

λ
.

Define the following quantities,

c1 = sup
t∈[0,T ]

‖Ã(t)‖, (31)

c2 = sup
t∈[0,T ]

‖ÃT (t)‖, (32)

c3 = sup
t∈[0,T ]

‖B̃(t)‖, (33)

c4 = sup
t∈[0,T ]

‖K1(t)‖, (34)

c5 = ‖K2‖, (35)

c6 = ‖BK2‖, (36)
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c7 = sup
t∈[0,T ]

e−λ(T−t)
∫ T

t

eλτdτ, (37)

c8 = sup
t∈[0,T ]

e−λt
∫ t

0

eλ(T−τ)dτ, (38)

where Ã = (A−BK1), B̃ = P , K1 = R−1BTP and K2 = R−1BT . Based on (1), (2) and (8), it
follows that

dn+1(t)− dn(t) = (1− k)(dn(t)− dn−1(t)) + k(f(xnh(t), un(t))− f(xn−1h (t), un−1(t)))

+ k((A−BK1(t))(xn−1l (t)− xnl (t)) +BK2(rn−1(t)− rn(t))).

Multiplying both sides of this expression by e−λt and taking the supremum over [0, T ] on both sides
yields

‖dn+1 − dn‖λ1
≤ |1− k|︸ ︷︷ ︸

m1

‖dn − dn−1‖λ1
+ |k|eλT (c6 + c5L2)︸ ︷︷ ︸

m2

‖rn − rn−1‖λ2

+ |k|(c1 + c4L2)︸ ︷︷ ︸
m3

‖xnl − xn−1l ‖λ1
+ |k|L1︸ ︷︷ ︸

m4

‖xnh − xn−1h ‖λ1
. (39)

The norm of rn+1 − rn is bounded as follows based on (7),

rn+1(t)− rn(t) =

∫ T

t

ÃT [rn+1(τ)− rn(τ)]dτ +

∫ T

t

B̃[dn(τ)− dn+1(τ)]dτ,

‖rn+1(t)− rn(t)‖ ≤ c2
∫ T

t

‖rn+1(τ)− rn(τ)‖dτ + c3

∫ T

t

‖dn+1(τ)− dn(τ)‖dτ

≤ c2‖rn+1 − rn‖λ2

∫ T

t

eλ(T−τ)dτ + c3‖dn+1 − dn‖λ1

∫ T

t

eλτdτ.

Multiplying by e−λ(T−t) and taking the supremum over [0, T ] on both sides yields

‖rn+1 − rn‖λ2
≤ c3c7

1− λ−1c2︸ ︷︷ ︸
m5

‖dn+1 − dn‖λ1
. (40)

The difference xn+1
l − xnl is bounded as follows based on (11)

xn+1
l (t)− xnl (t) =

∫ t

0

Ã(τ)[xn+1
l (τ)− xnl (τ)]dτ +

∫ t

0

BK2[rn+1(τ)− rn(τ)]dτ

+

∫ t

0

[dn+1(τ)− dn(τ)]dτ,

‖xn+1
l (t)− xnl (t)‖ ≤ c1

∫ t

0

‖xn+1
l (τ)− xnl (τ)‖dτ + c6

∫ t

0

‖rn+1(τ)− rn(τ)‖dτ

+

∫ t

0

‖dn+1(τ)− dn(τ)‖dτ

≤ c1‖xn+1
l − xnl ‖λ1

∫ t

0

eλτdτ + c6‖rn+1 − rn‖λ2

∫ t

0

eλ(T−τ)dτ
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+ ‖dn+1 − dn‖λ1

∫ t

0

eλτdτ.

Multiplying both sides of the last expression by e−λt and taking the supremum over [0, T ] on both
sides yields

‖xn+1
l − xnl ‖λ1

≤ λ−1

1− λ−1c1︸ ︷︷ ︸
m6

‖dn+1 − dn‖λ1
+

c6c8
1− λ−1c1︸ ︷︷ ︸

m7

‖rn+1 − rn‖λ2
. (41)

Finally, the difference xn+1
h − xnh is bounded as follows based on (1) and (5),

xn+1
h (t)− xnh(t) =

∫ t

0

[f(xn+1
h (τ), un+1(τ))− f(xnh(τ), un(τ))]dτ,

‖xn+1
h (t)− xnh(t)‖ ≤ L1

∫ t

0

‖xn+1
h (τ)− xnh(τ)‖dτ + L2

∫ t

0

‖un+1(τ)− un(τ)‖dτ

≤ L1

∫ t

0

‖xn+1
h (τ)− xnh(τ)‖dτ + c4L2

∫ t

0

‖xn+1
l (τ)− xnl (τ)‖dτ

+ c5L2

∫ t

0

‖rn+1(τ)− rn(τ)‖dτ

≤ L1‖xn+1
h − xnh‖λ1

∫ t

0

eλτdτ + c4L2‖xn+1
l − xnl ‖λ1

∫ t

0

eλτdτ

+ c5L2‖rn+1 − rn‖λ2

∫ t

0

eλ(T−τ)dτ.

Multiplying the last expression by e−λt and taking the supremum over [0, T ] on both sides yields

‖xn+1
h − xnh‖λ1

≤ c5c8L2

1− λ−1L1︸ ︷︷ ︸
m8

‖rn+1 − rn‖λ2
+

λ−1c4L2

1− λ−1L1︸ ︷︷ ︸
m9

‖xn+1
l − xnl ‖λ1

. (42)

Using (40)-(42), (39) can be written in the same form as (19),

‖dn+1 − dn‖λ1
≤ α‖dn − dn−1‖λ1

, (43)

where
α = m1 +m2m5 +m3(m6 +m5m7) +m4(m5m8 + (m6 +m5m7)m9). (44)

APPENDIX B: PROOF OF PROPOSITION 1

Using (43), the following inequality is obtained for m, n ∈ N and m > n,

‖dm − dn‖λ1
≤ ‖dm − dm−1‖λ1

+ ‖dm−1 − dm−2‖λ1
+ . . .+ ‖dn+1 − dn‖λ1

≤ αm−1‖d1 − d0‖λ1
+ αm−2‖d1 − d0‖λ1

+ . . .+ αn‖d1 − d0‖λ1
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= ‖d1 − d0‖λ1
αn

m−n−1∑
k=0

αk

≤ ‖d1 − d0‖λ1
αn

∞∑
k=0

αk

= ‖d1 − d0‖λ1

αn

(1− α)
.

If α ∈ (0, 1), then for all ε > 0, there exists N ∈ N such that for all m, n > N , ‖dm − dn‖λ1
< ε,

where N ∈ N can be chosen such that αN < ε(1−α)
‖d1−d0‖λ1

. This shows that {dn}∞n=0 is a Cauchy
sequence of continuous functions in C0([0, T ]), which is a complete normed linear space under
‖ · ‖λ1

. Hence lim
n→∞

dn = d∞ for some d∞ uniformly on [0, T ].
Using (40), (41) and (42) it follows similarly that {rn}∞n=0 {xnl }∞n=0 and {xnh}∞n=0 are

Cauchy sequences of continuous functions in C0([0, T ]), and hence lim
n→∞

rn = r∞, lim
n→∞

xnl = x∞l
and lim

n→∞
xnh = x∞h uniformly on [0, T ] for appropriate continuous functions r∞, x∞l and x∞h ,

respectively. As an example, for rn, we have

‖rm − rn‖λ2
≤ ‖rm − rm−1‖λ2

+ ‖rm−1 − rm−2‖λ2
+ . . .+ ‖rn+1 − rn‖λ2

≤ m5(‖dm − dm−1‖λ1
+ ‖dm−1 − dm−2‖λ1

+ . . .+ ‖dn+1 − dn‖λ1
)

≤ m5

1− α
(αm−1‖d1 − d0‖λ1 + αm−2‖d1 − d0‖λ1 + . . .+ αn‖d1 − d0‖λ1)

= ‖d1 − d0‖λ1

m5α
n

1− α

m−n−1∑
k=0

αk

≤ ‖d1 − d0‖λ1

m5α
n

1− α

∞∑
k=0

αk

= ‖d1 − d0‖λ1

m5α
n

(1− α)2
,

where m, n ∈ N and m > n. Now, if α ∈ (0, 1), then for all ε > 0, there exists N ∈ N such
that for all m, n > N , it implies ‖rm − rn‖λ2

< ε, where N ∈ N can be chosen such that αN <
ε(1−α)2

‖d1−d0‖λ1
m5

.
From (8),

‖ėn‖λ1
=
‖dn − dn−1‖λ1

|k|
,

and lim
n→∞

‖ėn‖∞ = 0. Since en(0) = 0,

‖en‖∞ = sup
t∈[0,T ]

∥∥∥∥∫ t

0

ėn(τ)dτ

∥∥∥∥ ≤ ‖ėn‖∞T.
Thus

lim
n→∞

‖en‖∞ = lim
n→∞

‖xnh − xnl ‖∞ = 0,

and x∞h = x∞l .
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Using uniform convergence of sequences and passing to the limit, J∞l = lim
n→∞

Jl(x
n
l , u

n) =

Jl( lim
n→∞

xnl , lim
n→∞

un) = Jl(x
∞
l , u

∞) = Jh(x∞h , u
∞) = Jh( lim

n→∞
xnh, lim

n→∞
un) = lim

n→∞
Jh(xnh, u

n) =

J∞h . This completes the proof.

APPENDIX C: COMPUTATION OF (20)

We have

K1 = R−1BTP = 0.05P,

K2 = R−1BT = 0.05,

Ã = (A−BK1) = −0.1− 0.0025P,

B̃ = P.

The P in (6) satisfies

Ṗ = 0.2P + 0.0025P 2 − 1,

P (2) = 10.

We can express P as an explicit function of t by separation of variables,

P (t) =
40
√

5

1− exp

(√
5

10 (t− 2) + ln( 50−20
√
5

50+20
√
5
)

) − 40− 20
√

5,

and it is an increasing function of t ∈ [0, T ].
According to (31)-(38),

c1 = sup
t∈[0,T ]

‖Ã(t)‖ = sup |0.1 + 0.0025P | = 0.125,

c2 = sup
t∈[0,T ]

‖ÃT (t)‖ = sup |0.1 + 0.0025P | = 0.125,

c3 = sup
t∈[0,T ]

‖B̃(t)‖ = sup |P | = 10,

c4 = sup
t∈[0,T ]

‖K1(t)‖ = sup |0.05P | = 0.5,

c5 = ‖K2‖ = 0.05,

c6 = ‖BK2‖ = 0.0025,

c7 = sup
t∈[0,T ]

e−λ(T−t)
∫ T

t

eλτdτ = 1.3834,

c8 = sup
t∈[0,T ]

e−λt
∫ t

0

eλ(T−τ)dτ = 1.3834.
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Then, according to (39)-(42),

m1 = |1− k| = 0.9,

m2 = |k|eλT (c6 + c5L2) = 0.0017,

m3 = |k|(c1 + c4L2) = 0.015,

m4 = |k|L1 = 0.01,

m5 =
c3c7

1− λ−1c2
= 17.4742,

m6 =
λ−1

1− λ−1c1
= 2.1053,

m7 =
c6c8

1− λ−1c1
= 0.0044,

m8 =
c5c8L2

1− λ−1L1
= 0.0042,

m9 =
λ−1c4L2

1− λ−1L1
= 0.05,

where L1 = 0.1 and L2 = 0.05 are the Lipschitz constants of the high-fidelity model. Finally,

α = m1 +m2m5 +m3(m6 +m5m7) +m4(m5m8 + (m6 +m5m7)m9) = 0.9635.

APPENDIX D: PROOF OF PROPOSITION 2

Let u∗ denote an optimal control for the high-fidelity model and x∗ denote the corresponding
state trajectory. Let J∗ = J(x∗, u∗) denote the corresponding cost where J(x, u) is defined by (3).
Consider the system,

ẋ = Ax+Bu+ d∗(t), (45)

obtained by evaluating dh(x, t) of (21) at x∗, i.e., d∗(t) = dh(x∗(t), t). Note that the control and
state pair (u∗, x∗) represents one trajectory of (45), such that the integration of

ẋ = Ax+Bu∗ + d∗(t), x(0) = x∗(0), (46)

recovers the optimal trajectory x∗ of the high-fidelity model. For the same cost function J(x, u), the
system (45) has a unique optimal control-state pair (u◦, x◦), satisfying

ẋ◦ = Ax◦ +Bu◦ + d∗(t), (47)

and let the corresponding cost be J◦. Since (u◦, x◦) is optimal for (45),

J◦ ≤ J∗. (48)
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Suppose the IMTR iterations converge and denote the corresponding control-state pair by (ũ, x̃).
Then,

˙̃x = Ax̃+Bũ+ dh(x̃(t), t),

˙̃x = Ax̃+Bũ+ dl(t), (49)

where
dl(t) = dh(x̃(t), t). (50)

By (22), (50) and the triangular inequality, we have,

‖d∗(t)− dl(t)‖ = ‖dh(x∗(t), t)− dh(x̃(t), t)‖

= ‖dh(x∗(t), t)− d̄(t) + d̄(t)− dh(x̃(t), t)‖

≤ ‖dh(x∗(t), t)− d̄(t)‖+ ‖dh(x̃(t), t)− d̄(t)‖

≤ 2ε. (51)

Note that,

u◦ = −R−1BTP (t)x◦ +R−1BT r◦, (52)

ũ = −R−1BTP (t)x̃+R−1BT r̃,

where P (t) comes from (6) and is the same in both cases, and

ṙ◦ = Ā(t)r◦ + B̄(t)d∗(t),

˙̃r = Ā(t)r̃ + B̄(t)dl(t),

where Ā(t) = −(A−BR−1BTP (t))T and B̄(t) = P (t). We evaluate the system (47) and (49) with
the feedback control (52), and

ẋ◦ = Ã(t)x◦ + B̃(t)r◦ + d∗(t),

˙̃x = Ã(t)x̃+ B̃(t)r̃ + dl(t),

where Ã(t) = (A−BR−1BTP (t)) and B̃(t) = BR−1BT . Note that x◦(0) = x̃(0) and r◦(T ) =

r̃(T ). Let ∆x = x◦ − x̃, ∆r = r◦ − r̃ and ∆d(t) = d∗(t)− dl(t). Then,[
∆ẋ

∆ṙ

]
=

[
Ã(t) B̃(t)

0 Ā(t)

][
∆x

∆r

]
+

[
I

B̄(t)

]
∆d, (53)

where the input ∆d is bounded by ‖∆d(t)‖ ≤ 2ε for all t ∈ [0, T ], ∆x(0) = 0 and ∆r(T ) = 0. From
(53),

∆r(t) = Φ(t, T )∆r(T ) +

∫ t

T

Φ(t, τ)B̄(τ)∆d(τ) dτ

=

∫ t

T

Φ(t, τ)B̄(τ)∆d(τ) dτ,
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where Φ(t, τ) is the state transition matrix associated with Ā(t). Hence

‖∆r(t)‖ =

∥∥∥∥∫ t

T

Φ(t, τ)B̄(τ)∆d(τ) dτ

∥∥∥∥
≤
∫ T

t

‖Φ(t, τ)B̄(τ)∆d(τ)‖ dτ

≤ 2ε(T − t)C1(t), (54)

where C1(t) = ‖Φ(t, τ)B̄(τ)‖∞ and ‖ · ‖∞ is the supremum of ‖ · ‖ over τ ∈ [t, T ]. Note that C1(t)

can be chosen to be finite and independent of ε. Thus, ‖∆r(t)‖ is O(ε).
Similarly, from (53) and ∆x(0) = 0,

∆x(t) =

∫ t

0

Ψ(t, τ)(B̃(τ)∆r(τ) + ∆d(τ)) dτ,

where Ψ(t, τ) is the state transition matrix associated with Ã(t). Using (54), it follows that

‖∆x(t)‖ ≤ 2εtC2(t), (55)

where C2(t) = ‖Ψ(t, τ)B̃(τ)‖∞‖(T − τ)C1(τ)‖∞ + ‖Ψ(t, τ)‖∞ and ‖ · ‖∞ is the supremum of
‖ · ‖ over τ ∈ [0, t]. Note that C2(t) can be chosen to be finite and independent of ε. Thus, ‖∆x(t)‖
is O(ε).

Similarly, from (52)
‖∆u(t)‖ ≤ C3(t)‖∆x‖+ C4‖∆r‖, (56)

where

C3(t) = ‖R−1BTP (t)‖,

C4 = ‖R−1BT ‖,

are independent from ε and are bounded.
Finally, the Taylor expansion of J̃ about the trajectory of (u◦, x◦) gives

J̃ =
1

2
x̃(T )TKf x̃(T ) +

1

2

∫ T

0

[x̃(t)TQx̃(t) + ũ(t)TRũ(t)]dt

= J◦ − x◦(T )TKf∆x(T )−
∫ T

0

[x◦(t)TQ∆x(t) + u◦(t)TR∆u(t)]dt+O(ε2).

Therefore, based on (54), (55) and (56), the difference between J◦ and J̃ is O(ε).
In particular, because (ũ, x̃) is one control-state pair of trajectories of the high-fidelity model

while (u∗, x∗) is the optimal control-state pair of trajectories,

J∗ ≤ J̃ . (57)

Based on (48) and (57), we have
J◦ ≤ J∗ ≤ J̃ ,
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and thus
|J̃ − J∗| ≤ |J̃ − J◦|.

Thus, |J̃ − J∗| is O(ε) and the proof is complete.
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