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In the main text we noted the similarity between our lottery model and the better-known
Lotka-Volterra competition model, which was famously used by MacArthur and Levins (1967)
to derive coexistence conditions along a niche axis. Here we expand on that comment and show
numerical results indicating the similarity between the two models.

The Lotka-Volterra model reads

dNi

dt
= Ni

ri −
∑

j

AijNj

 (S1)

where Ni is species i’s abundance, ri its maximal growth rate (intrinsic fitness), and the competition
coefficient Aij quantifies the competitive impact on species i caused by species j.

Our stochastic simulation is a Moran-like process in that it assumes the community size is fixed
and that the dynamics involve death events followed by immediate replacement by a recruited
individual. In our Moran-like process, the probability that a death event befalls species i is∑

j AijNiNj/
∑

kl AklNkNl. The new recruit can either be an immigrant with probability m or a
local birth event with probability 1−m. If it is a local birth, the probability that species i is chosen
at this stage is riNi/

∑
j rjNj , and if it is an immigration event, the probability is simply its relative

abundance in the regional pool pi, where
∑

i pi = 1.
In general, if death and replacement events alternate, and the probabilities of death and recruit-

ment of an individual of species i are di({N})Ni/
∑

j dj({N})Nj and bi({N})Ni/
∑

j bj({N})Nj

respectively, then the expected change in abundance of species i over the interval ∆t given its
current abundance Ni(t) = Ni is

E[Ni(t + ∆t)−Ni(t)|N(t) = Ni] =
(

1− di({Ni})Ni∑
j dj({Ni})Nj

)
bi({Ni})Ni∑
j bj({Ni})Nj

∆t

− di({Ni})Ni∑
j dj({Ni})Nj

(
1− bi({Ni})Ni∑

j bj({Ni})Nj

)
∆t

=
(

bi({Ni})Ni∑
j bj({Ni})Nj

− di({Ni})Ni∑
j dj({Ni})Nj

)
∆t (S2)

This is a probabilistic model where the expected change per event is the weighted sum of possible
gains and losses, weighted by the probability of their occurrence. For simplicity we are scaling time so
that the event rate per unit time is 1. The corresponding deterministic model is Ni(t+∆t)−Ni(t) =

1



E[Ni(t + ∆t)−Ni(t)|N(t) = Ni], and the affiliated differential equation is

dNi

dt
≈ Ni(t + ∆t)−Ni(t)

∆t
= bi({Ni})Ni∑

j bj({Ni})Nj
− di({Ni})Ni∑

j dj({Ni})Nj
(S3)

In our stochastic simulation, di({Ni}) =
∑

j AijNj and bi({Ni}) = ri. Substituting these leads
to

dNi

dt
= Ni

(
ri∑

k rkNk
−

∑
j AijNj∑

kl AklNkNl

)
(S4)

Although this differential equation differs from the Lotka-Volterra model in Eq. S1, numerical
simulations using the Euler method produce virtually identical dynamics for the parameter values
tested (results not shown as they are visually indistinguishable). We note that there is a time
scale conversion between the fixed size and fluctuating size models (Eqs. S4 and S1), namely
tEq.4/tEq.1 =

∑
k rkNk(0). Also note that in the main text we measured time in terms of events

(death immediately followed by replacement); if time is measured in terms of days or years etc,
there will be an exponential distribution of intervals between consecutive events (assuming deaths
follow a Poisson process). Since we are approximating the event rate as fixed, the expected value of
the relative persistence times measured in days will be the same as the relative persistence times
measured in events.

To further make sure our stochastic niche model is compatible with the Lotka-Volterra model,
we created a stochastic version of the latter by modeling death and birth events as Poisson processes,
and simulated these stochastic dynamics using the Gillespie algorithm (Gillespie, 1977). More
specifically, we modelled birth and death events as independent Poisson-distributed processes with
probability per unit time Ni(1 − m)ri + mpi and Ni

∑
j AijNj respectively for species i, where

m is the immigration rate and pi the regional abundance of species i. The Gillespie algorithm
then implements these processes by choosing the amount of time between events according to a
distribution determined by the total rate of all events, and deciding which event occurs according
the its relative probability among all events. This simulation approach gives some quantitative
differences in the persistence time distribution from our Moran process implementation of Eq. S4,
but the shape of the distributions and the comparisons between neutral and partially stabilized
communities were qualitatively the same. Namely, the niche case leads to many transient species
with shorter persistence times than the neutral case (Fig. S1), and an inhomogeneous regional pool
lessens the difference between niche and neutral persistence time distributions (Fig. S2).

We chose a lottery model (i) to be consistent with previous formulations and extensions of
neutral theory (Hubbell, 2001; Jabot and Chave, 2011), and (ii) because it has the advantage
that it does not require parameter-tuning to set the community size. The latter is convenient
because community size affects stochastic dynamics irrespective of whether competition is neutral
or niche-based. Had we not controlled for community size, we would need to tune parameters
and average over a good number of runs to make community sizes comparable across our dynamic
scenarios. This would make the project, and future study using the framework presented in this
paper, much more computationally demanding. Our model provides a simulation approach for
studying stochastic formulations of MacArthur and Levins’ (1967) classical Lotka-Volterra niche-axis
model, while disposing of the need to control for community size.
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Figure S1: Persistence time distributions under a Moran process implementation of our fixed-size niche-axis
model (left) and under a Gillespie algorithm implementation of the MacArthur-Levins model (right). Results
shown for the baseline niche scenario. While non-resident species in both the niche and neutral communities
tend to have somewhat longer persistence times with the Gillespie method, the difference between the niche
and neutral distributions is essentially the same between the Moran and Gillespie methods. Plotted are the
base-10 logarithms of the persistence times in units of community turnovers or generations. The Moran
simulation results shown are equivalent to Fig. 1C in the main text, but here persistence time is plotted in
absolute values instead of relative to the most persistent species in the simulation.

Moran

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

50

100

150

200
H0
H1

Log10 Persistence time (generations)

N
um

be
r 

of
 s

pe
ci

es

Gillespie

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

50

100

150

200
H0
H1

Log10 Persistence time (generations)

N
um

be
r 

of
 s

pe
ci

es

3



Figure S2: Effect of inhomogeneous regional abundances on the persistence time distribution in both the
neutral and niche communities. Again the left graphs show the results of the Moran simulation method and
the right the Gillespie method. The effects of a pool with logarithmically distributed random abundances
(bright-colored bars) relative to the pool with identical regional abundances (light-colored bars) are the same
across these two methods, although overall the transient species tend to have somewhat longer persistence
times under the Gillespie method. Compare with Figs. 2A and 2E in the main text. (Again, here persistence
is plotted in absolute rather than relative values.)
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