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Cell therapy for treatment of renal failure in the acute setting has proved successful 

with therapeutic impact, yet development of a sustainable, portable bioartificial 

kidney for treatment of chronic renal failure has yet to be realized. Challenges in 

maintaining an anticoagulated blood circuit, the typical platform for solute 

clearance and support of the biological components, have posed a major hurdle in 

advancement of this technology. Our group has developed a Bioartificial Renal 

Epithelial Cell System (BRECS) capable of differentiated renal cell function while 

sustained by body fluids other than blood. To evaluate this device for potential use 

in end stage renal disease, we established a large animal model that exploits 

peritoneal dialysis fluid for support of the biologic device and delivery of cell 

therapy while providing uremic control. Anephric sheep received a continuous flow 

peritoneal dialysis (CFPD) circuit that included a BRECS. Sheep were treated with 

BRECS containing 1x108 renal epithelial cells or acellular sham devices for up to 7 

days. BRECS cell viability and activity were maintained with extracorporeal 

peritoneal fluid circulation. A systemic immunologic effect of BRECS therapy was 

observed as cell treated sheep retained neutrophil oxidative activity better than 

sham treated animals. This model demonstrates that use of the BRECS within a 

CFPD circuit embodies a feasible approach to a sustainable and effective wearable 

bioartificial kidney.  
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1. INTRODUCTION      

Renal replacement therapy (RRT) using hemodialysis or peritoneal dialysis (PD) 

has become a mainstay therapy for patients with End Stage Renal Disease 

(ESRD). Although this approach is life sustaining, it remains suboptimal with poor 

clinical outcomes. Current RRT utilize semipermeable membranes to substitute for 

the small solute clearance function of the renal glomerulus but they do not replace 

the transport, metabolic, and endocrinologic functions of the tubular cells, 

rendering them only partial substitutive therapy at best. The better outcomes in 

patients treated with kidney transplant compared to chronic dialysis emphasizes 

the benefits of full renal replacement for ESRD (US Renal Data System 2008; 

Tonelli et al. 2011). 

   Renal cell therapy incorporated into conventional RRT has shown metabolic, 

immunologic and survival benefits in acute renal failure (ARF) in preclinical (Humes 

et al. 1999; Humes et al. 2002; Humes et al. 2003a; Fissell et al. 2003; Huijuan et 

al. 2007; Wang et al. 2010; Westover et al. 2014) and clinical studies (Humes et al. 

2003b; Humes et al. 2004; Tumlin et al. 2008). The first renal cell therapy device 

used in patients with ARF, the Renal Assist Device (RAD), demonstrated that 

allogeneic renal epithelial cells (REC) maintained within an extracorporeal 

environment could provide therapeutic benefit to patients requiring continuous RRT 

and improve survival (Humes et al. 2004; Tumlin et al. 2008). The limitations of cell 
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expansion and device design made manufacture, storage, and distribution of the 

RAD a challenge to meet clinical demand. Enhanced REC propagation 

methodologies (Westover et al. 2012), along with improved fabrication techniques 

have overcome these challenges giving rise to a second generation device, the 

Bioartificial Renal Epithelial Cell System (BRECS), which was designed to 

surmount a number of obstacles preventing widespread use of cell based 

therapies. This approach resulted in the ability to maintain a dense population of 

REC within a compact, portable and cryopreservable format for on-demand 

deployment in clinical situations (Buffington et al. 2012). The BRECS is a 

bioreactor containing adult REC seeded onto porous carbon disks within a 

polycarbonate housing. Cell viability is maintained by perfusion culture through the 

disks, allowing cells to respond to alterations in the perfusate milieu, potentially 

releasing metabolic and endocrinologic products with therapeutic value. 

   In addition to previously mentioned limitations for global use of cell enhanced 

therapies, the difficulty in maintaining continuous extracorporeal blood circulation 

without thrombosis, despite continuous anticoagulation strategies, remains an 

impediment to development of a sustainable portable cell device for treatment of 

ESRD. Elimination of the blood circuit inherent to hemodialysis based therapies 

could facilitate delivery. To this end, a wearable bioartificial kidney (WeBAK) that 

exploits peritoneal fluid to maintain oxygen and nutrient delivery to a BRECS was 
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conceived and tested in an ovine model. BRECS devices were monitored during 

and after extracorporeal culture and serial blood sampling was performed on sheep 

to assess metabolic, endocrinologic and immunologic impact of BRECS therapy. 

The project aimed to provide insight into the feasibility and potential impact of 

delivering renal cell therapy in this manner for treatment in ESRD. 

2. MATERIALS AND METHODS 

2.1 Bioartificial renal epithelial cell system (BRECS) 

The BRECS is comprised of porous carbon disks colonized with up to 2 x108 

human REC within a perfusable polycarbonate housing. Perfusate flows over and 

through the disks to sustain cell viability and export cell products. An injection 

molded design allows BRECS to be fitted with monitoring systems, permitting 

monitoring of temperature and oxygen consumption in real time. Total weight of a 

cell seeded and fluid filled device is approximately 62gm. 

     Primary REC were isolated and expanded from human kidneys unsuitable for 

transplantation due to anatomic or fibrotic defects (procured from the National 

Disease Research Interchange) following an established method (Westover et al. 

2012). Details of REC isolation, seeding onto carbon disks for use in BRECS units 

and maintenance of BRECS in vitro have been described (Buffington et al. 2012).  
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Metabolic activity of REC within BRECS was evaluated using oxygen consumption 

rates (OCR) and non-destructive glutathione (GSH) metabolism. Oxygen 

measurements were performed either using an i-STAT analyzer (Abbott Point of 

Care, Princeton, NJ) on media collected from closed units or by oxygen sensors. 

RedEye patches (Ocean optics, Dunedin, FL) or PSt3 patches (PreSens, 

Regensburg, Germany) were set up in recirculating, closed, oxygen impermeable 

circuits. To determine average OCR, a linear regression approximation of slope 

was used. GSH metabolism was determined by the rate of degradation of 

exogenously added GSH. BRECS were completely filled with 20µM GSH (Sigma-

Aldrich) in Ultra MDCK media and samples collected at baseline, 10 and 30 

minutes. Samples were analyzed by the method of Tietze (Tietze 1969). After 

extracorporeal culture, a qualitative assessment of cell viability was made by 

adding 1 µg/mL fluorescein diacetate and propidium iodide to individual disks from 

disassembled BRECS within well plates. Living and dead cells were visualized 

immediately with a Zeiss Axiovert 200 inverted fluorescence microscope (Carl 

Zeiss, Inc. Thornwood, NY) equipped with corresponding filter sets, and 

micrographs obtained using Zeiss AxioCam MRm and ICc1 cameras (Carl Zeiss, 

Inc.).  

 

2.4 Experimental animals and the extracorporeal WeBAK circuit 
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Animal use adhered to principles stated in the Guide for Care and Use of 

Laboratory Animals (Institute for Laboratory Animal Research, 1996) and 

procedures were performed under protocols approved by the institutional 

committee for care and use of animals at the University of Michigan. Female sheep 

(35-45 kg) were maintained under standard laboratory conditions until onset of 

continuous flow peritoneal dialysis (CFPD), during which they were confined in 

customized stanchions while connected to the extracorporeal circuit. Sheep were 

instrumented with separate ingress and egress PD catheters and nephrectomy 

was staged to permit healing around the catheters which were placed concurrent 

with removal of the first kidney. Antimicrobial and analgesic medication was 

administered peri-operatively. CFPD was instituted within 24h of complete 

nephrectomy using commercially available 4.25% glucose dialysate solution 

(Dianeal® Baxter Healthcare, Deerfield, IL) with nafcillin [100mg/L] and gentamicin 

[4mg/L] added. An intraperitoneal instillation of 2-3L dialysate was continuously 

recirculated at 80-100ml/min through a primed extracorporeal circuit of ¾” Tygon® 

tubing using a rotary pump with a segment of collapsible tubing to prevent 

generation of negative abdominal pressure (M-pump, MC3 Inc., Ann Arbor, MI). A 

polysulfone hemofilter with a 65kD molecular weight cut-off provided 

immunoisolation for the cells by generating ultra-filtered PD that was directed by a 

peristaltic single channel pump (Masterflex® Cole-Palmer, Vernon Hills IL) through 
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a fluid warming system (Hotline®, Smith Medical) at 380C for parallel perfusion of 

the BRECS (Figure 1). Total circuit volume was approximately 1000mL. Dialysate 

was refreshed by continuous flow into and out of the circuit plus daily exchanges of 

the abdominal content. BRECS containing approximately 1x108 REC or acellular 

sham devices were cultured under identical conditions in vitro prior to placement in 

an extracorporeal WeBAK circuit. Devices were deployed subsequent to dialysate 

equilibration to physiologic pH and were maintained by ex vivo perfusion with 

peritoneal fluid for up to 7 days. 

     Serum chemistry and electrolyte values were determined using automated 

veterinary analyzers (IDEXX VetTest®, IDEXX VetLyte®, IDEXX Laboratories Inc. 

USA) according to the manufacturer’s directions. Complete blood counts and 

differentials were determined by a Hemavet® analyzer (Drew Scientific, Waterbury 

CT). Neutrophil (NE) counts and quantification of intracellular reactive oxygen 

species (ROS) were assessed as markers of immunologic status. NE were isolated 

on a discontinuous Percoll gradient, incubated with the reactive dye, 5-(and 6)-

chloromethyl-2’, 7’-dichlorodihydroflourescein diacetate, acetyl ester (CM-H2D 

CFDA, Molecular Probes) [10uM] in RPMI 15min at 37°C, followed by incubation 

(+/-) phorbol-12-myristate-13-acetate (PMA) [1uM] at 37°C for 30min. NE were 

labeled with mouse-anti-bovine unconjugated CD11b (ABD Serotech) /Anti-IgG 
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conjugate mouse 647 (Life Technologies) to allow gating then fixed. Mean 

fluorescent intensity was determined using an Accuri Flow Cytometer.  

     Endocrine support by BRECS was assessed using Vitamin D3. To ensure an 

adequate source of substrate, 3000 units/day of 25-hydroxyvitamin D3 (25VitD3, 

Sigma Aldrich) was infused into the CFPD circuit pre BRECS. Sheep serum 

samples were frozen and sent to Heartland Assays, Inc. (Ames, IO) for 

quantification of 1α,25-dihydroxyvitamin D3 (1,25VitD3) by radioimmunoassay. 

 

2.9 Statistical analyses 

Comparisons between groups were made using Student’s t test assuming equal 

variance. Significance was set at p<0.05. 

 

3. Results and Discussion 

3.1 Establishing a WeBAK using CFPD in an ovine model  

Tissue engineered devices, such as the RAD and the BRECS, have revealed the 

therapeutic value in replacing the lost metabolic, endocrine and immunologic 

functions of the kidney, however impediments to long term delivery of cell therapy 

remain. As technological advancements are made in miniaturization of medical 

devices, interest in portable dialysis systems is increasing as is recognition of PD 

as a viable platform for a sustainable wearable artificial kidney (Kim and Ronco 
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2011; Davenport 2012; Armignacco et al. 2015). A large animal model of uremia 

sustained using 24h continuously recirculating CFPD was developed to 

demonstrate a WeBAK based on this modality. Pilot animals (n=13) were needed 

to establish instrumentation and PD protocols. Catheter complications were a 

primary obstacle to a recirculating CFPD regimen, with catheter dysfunction 

occurring in 23 of the 34 total animals used. Leakage of fluid around catheters and 

catheter occlusion by omental wrapping were leading causes for disruption or 

failure of CFPD. Inclusion of a purse string suture in the peritoneum at catheter 

implantation, a 14 day healing period prior to onset of PD, and Oreopoulos-

Zellerman catheters that limit omental wrapping were found to collectively minimize 

catheter malfunction in this model. Fibrin accumulation within the circuit was 

universal and the filter was replaced as needed to maintain circuit patency. Culture 

of bacteria from PD fluid of 5 pilot animals prompted empiric addition of 

antimicrobials to the dialysate. Bacterial culture of PD fluid was positive for a single 

sheep in each of the study groups, however no microbial contamination of BRECS 

units was identified, demonstrating efficacy of the WeBAK design to maintain an 

aseptic environment for the BRECS. 

     Upon surmounting the challenges of the model, a stable uremic state could be 

established with CFPD, enabling at least 9 days of study with anephric sheep 

(Figure 2). Dialysate flow rates into the circuit and to waste were set at 420 and 
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470mL/hr respectively, providing a calculated weekly creatinine clearance of 

55L/wk and ultrafiltrate generation up to 1L/day. As study aims were to determine 

feasibility and effects of maintaining the biologic device within the WeBAK, further 

characterization or optimization of dialysis efficiency using the CFPD circuit was 

not attempted. Uremic control was dependent on dialysis dose and therefore not 

different between animals treated with cellular or sham devices. 

 

3.3 Extracorporeal maintenance of BRECS 

BRECS containing approximately 1x108 REC or acellular sham devices were 

cultured under identical conditions for an average of 21±9 days in vitro according to 

BRECS protocol prior to placement in an extracorporeal WeBAK circuit. Devices 

were maintained in the WeBAK by perfusion with ultra-filtered peritoneal fluid for up 

to 7 days then returned to in vitro culture for 48h prior to dismantling for histology. 

Cell BRECS  demonstrated relatively consistent metabolic activity throughout the 

duration of extracorporeal therapy confirming that REC within the BRECS 

remained viable and metabolically active when maintained by the nutrients 

provided by CFPD. At the commencement of extracorporeal culture, OCR in 

BRECS averaged 129 nmol/min, and by day 7, average OCR was 85 nmol/min 

(Figure3A). OCR measured on days 5-7 trended toward being slightly lower than 

initial measurements; however, these values were not significantly lower (p=0.65, 
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0.53 and 0.59 for days 5-7 respectively). Non-destructive GSH degradation by γ-

glutamyltranspeptidase (γGT) was chosen as a representative measurement of 

BRECS metabolic function. γGT, expressed on the apical brush border membrane 

of renal proximal tubules, catalyzes the salvage of GSH. GSH depletion in patients 

receiving maintenance dialysis contributes to the oxidative stress of ESRD 

patients. Average GSH degradation in BRECS at day 0 was 1194 nmol/hr and 898 

nmol/hr on day 7 (Figure 3B). Both OCR and GSH degradation increased toward 

pre study values when BRECS were removed from sheep and returned to in vitro 

culture. No metabolic activity was detected in sham devices. Histologic staining of 

individual disks removed from cell BRECS at the conclusion of the therapy period 

exhibited high densities of living cells following up to 7 days of extracorporeal 

culture (Figure 4), with few dead cells. 

       

3.4 Impact of BRECS therapy 

The BRECS was designed to be the first all-in-one culture vessel, cryostorage 

device and cell therapy delivery system for clinical perfusion with either ultra-

filtered blood or body fluids. BRECS, maintained in a hematogenous circuit has 

demonstrated therapeutic impact in a preclinical model AKI (Westover et al. 2014) 

yet this delivery method has limitations, particularly for chronic indications.  With 

the ability of cells within BRECS to be sustained by ex vivo peritoneal fluid, we 
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investigated the potential therapeutic impact of cell enhanced therapy delivered in 

this manner for ESRD. 

     Anephric sheep either received cell BRECS (n=13) or sham device (n=8) 

therapy via the CFPD circuit starting day 1 post nephrectomy. Therapy was 

continuous for up to 7 days, then devices were removed and sheep sustained with 

CFPD alone for an additional 48h post therapy. Blood was sampled prior to 

removal of each kidney then at a minimum of every 48h to assess endocrinologic, 

metabolic and immunologic parameters. Inability to maintain adequate flow in the 

CFPD circuit to perfuse devices for a full 7 days caused some animals to be 

terminated before all sampling was competed therefore data was averaged over 

each of 3 phases of the study: non-uremic, therapy, and post therapy. Nine cell 

BRECS and 5 sham treated sheep completed the entire study time course. 

     VIT D3 levels were measured as an indicator of the endocrinologic support that 

could potentially be provided by the BRECS. Western blotting of isolated REC has 

confirmed the presence of 1- alpha hydroxylase, the enzyme that controls the final 

conversion of 25VIT D3 to the biologically active 1,25VIT D3. Systemic 1,25VIT D3 

levels decreased in all sheep post nephrectomy and were highly variable in uremic 

sheep over the BRECS therapy period with no difference detected between 

cohorts (data not shown). This may be attributable to seasonal (sunlight) variation 

which impacts Vitamin D kinetics and the individual animal response to exogenous 
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precursor supplementation with 25VIT D, which can increase extra-renal 1-alpha 

hydroxylase activity in whole animal systems (Richart et al. 2007). Of note, activity 

of 1-alpha hydroxylase was not detectable in BRECS under normal tissue culture 

conditions however, when phosphate was omitted from the culture media, 1-alpha 

hydroxylase activity was upregulated inside 24h (unpublished data). Further 

investigation is needed to evaluate factors that may influence delivery of Vitamin D 

by BRECS (i.e. phosphate levels in PD fluid).  

     Circulating NE counts were stable in cell BRECS treated sheep (2.88±0.35 non-

uremic, 4.20±1.44 K/uL post-therapy) while NE counts in sham treated animals 

were increased significantly at post therapy compared to the non-uremic state 

(6.26±2.0 and 3.01±0.69 K/uL respectively, p=0.017). The differences between 

cohorts were not significant at any point. Since uremia has been associated with 

NE dysfunction (Haag-Weber and Horl 1996; Anding et al. 2003), the oxidative 

activity of isolated systemic NE was assessed by quantification of intracellular 

ROS. Results are summarized in Figure 5 with values reported as mean 

fluorescent intensity ± SE both with and without PMA stimulation. ROS data were 

not available from 4 of the cell treated sheep. The pre therapy values (basal and 

stimulated) were not different between groups. Basal ROS level was maintained 

and the ROS production of stimulated NE was significantly greater in sheep 

receiving BRECS cell treatment both during (Cell 198 +/- 69, Sham 64 +/- 20, 
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p=0.033) and post therapy (Cell 232 +/- 64, Sham 37+/- 14, p=0.003). Exclusion of 

immunologic data from the 2 sheep with septic peritonitis did not significantly alter 

these findings. 

 

4. Conclusions 

The BRECS offers the possibility of full renal replacement therapy by providing the 

transport, endocrine, metabolic and immunologic activity that is lacking in 

conventional dialysis modalities. BRECS therapy has demonstrated therapeutic 

benefit in a preclinical model of AKI and BRECS design overcomes a number of 

obstacles that have deterred clinical administration of renal cell therapy. A key 

feature of BRECS is the ability for maintaining the cells using body fluids other than 

blood. Renewed interest in utilization of PD as the basis for an artificial kidney with 

increased longevity and portability for chronic indications lends a platform for 

employment of the BRECS to provide cell therapy for patients with ESRD. In this 

study, we showed that a CFPD regimen was able to manage the uremic state of 

anephric sheep plus sustain cellular viability and functionality within BRECS as 

evidenced by oxygen consumption and glutathione metabolism during therapy. 

Viability stains post-therapy confirmed REC survival when maintained in this 

manner for up to 7 days. These experiments demonstrate proof of concept of a 
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WeBAK, free from the constraints of an anticoagulated blood circuit, to provide 

cellular enhanced therapy for chronic renal failure indications.  

     Fluid dynamics of the BRECS have been optimized so that perfusion rates as 

low as 10mL/min are able to provide adequate nutrient and oxygen delivery to cells 

for survival without the use of an oxygenator. Lower metabolic output by REC 

within BRECS, though not statistically significant, was observed over the one week 

course of WeBAK therapy in this model. Correlation of GSH metabolism in BRECS 

and cell number via DNA isolation (reported previously) suggests the reduction of 

metabolic output likely was due to a combination of viable cell loss along with lower 

metabolism by the remaining cells when maintained with peritoneal dialysis 

perfusate. A decrease in oxygen consumption is also likely a combination of fewer 

cells consuming oxygen at a lower rate and there may be some shift from aerobic 

to anaerobic metabolism. Further investigation is needed to determine if metabolic 

output from BRECS during extracorporeal culture is predictably altered and to 

determine if the changes in metabolic output have therapeutic implications. Of 

note, we have since found that including a segment of oxygen permeable silicone 

tubing pre-BRECS can increase the oxygen tension in the perfusate to 

approximate room air however studies are need to determine if this modification 

has any effect on metabolic output from BRECS during ex vivo perfusion with PD 

fluid. 
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     While the importance of renal tubule cells in glutathione metabolism and 

activation of Vitamin D3 and are well described, these cells also possess a less 

recognized, but important role in immunoregulatory function. Demonstrated 

immunologic effects of renal cell therapy in the setting of AKI have included 

differences in plasma cytokine concentrations, alterations in release of cytokines 

from isolated leukocytes and improved survival of sepsis (Humes et al. 1999; 

Humes et al. 2002; Fissell et al. 2003; Humes et al. 2003; Humes et al. 2003; 

Humes et al. 2004; Huijuan et al. 2007; Westover et al. 2014). Concomitant 

immune activation, systemic inflammation and immune deficiency have been linked 

with ESRD (Kato et al. 2008; Vaziri et al. 2012; Betjes 2013). Uremia appears to 

impair the phagocytic and killing functions of circulating granulocytes (Porter et al. 

1997; Anding et al. 2003; Sardenberg et al. 2006; Vaziri et al. 2012) although 

conflicting results about the generation of ROS by NE isolated from ESRD patients, 

particularly among those receiving different dialysis modalities, have been 

described (Porter et al. 1997; Anding et al. 2003; Morena et al. 2005; Sardenberg 

et al. 2006; Yoon et al. 2007). Infection is the second most common cause of death 

in ESRD, approaching 25% of annual mortality rate in hemodialysis patients (U.S. 

Renal Data System 2003). This infection complication rate is not diminished with 

higher dialysis dose or high flux membrane utilization. In this project, it was found 

that basal ROS production of isolated NE declined in sheep over the uremic time 
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course but was better maintained in the animals receiving cell therapy. Moreover, 

NE counts remained stable and the stimulated oxidative potential of NE was 

retained during and after BRECS treatment signifying that the ability to have an 

appropriate immune response to stimuli may be preserved with REC therapy.  

     The results of this preliminary study demonstrate that a 24h CFPD regimen is 

able to provide a stable uremic state in nephrectomized sheep. A BRECS is readily 

incorporated into an extracorporeal CFPD circuit using peritoneal fluid for perfusion 

of the device, providing cell survival and maintenance of function while eliminating 

the requirement for an anticoagulated blood circuit. Cell therapy using BRECS 

contributes to improved immunologic homeostasis during the uremic state, and 

endocrine support in the form of 1,25 Vitamin D3 may become an added benefit. 

Advancement of CFPD (ideally with a dialysate regeneration system based upon 

sorbent technology) that couples clearance of uremic toxins with perfusion to a cell 

therapy device, such as the BRECS, embodies a feasible approach to a wearable 

bioartificial kidney for treatment of ESRD. 
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