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I. INTRODUCTION

This report deals with the development and use of a mathematical model
for the simulation of automobile occupant kinematics in two dimensions in
event of a collision. The model was developed as a tool to study advanced
concepts and designs of seat restraint systems from the viewpoint of
occupant protection.

A schematic for the two-dimensional model is sﬂown in Figure 1. The
three parts of the model are the occupant, the vehicle, and the decelera-
tion profile. The occupant is represented by eight mass elements located
in the head, uvver torso, lower torso, upper leg, lower leg, unper arm,
and lower arm. Attached to the various body elements are geometric sur-
faces serving to outline the body in order that contact between the
occupant and the interior or exterior of a vehicle can be vredicted. The
vehicle is represented by a series of planar contact surfaces which can
be arranged to revresent either a vehicle interior for occuvant kinematics
studies or the exterior for pedestrian studies. Belt restraints are in-
cluded in the model if their use is desired. Forces are apvlied to the
body of the occupant whenever interaction is sensed between the occuvant
and the vehicle. In order to produce occuvant motions, a front-end or rear-
end deceleration is applied to the vehicle and the resulting occuvant
motions listed as computer program output.

In addition to the analytical description of the model in Part II,

a Users' Guide is included as Part IV of this report. Sections are in-
cluded describing preparation of input data decks and the options available
in studying the output produced by the computer program. The techniques
which can be used in operating the model at a teletyve terminal remote

from The University of Michigan are described in a Teletyve Users' Guide.
Documentation of the program includes an overall program description,
subroutine descriptions and flow diagrams, and a complete symbol dictionary.

The comparison of the predic:ions of the model with experimental




Figure 1. Schematic of mathematical model showing
occupant, possible contact surfaces, seat, and
restraint system.



impact sled tests i1s the subject ot Part III or the report. The comples
problem of gathering a set o1l input data describing the occupant and the
vehicle is discussed and the techniques by which this is carried out

are described. The equally difficult task of obtaining appropriate ex-
perimental data is also considered. Comparisons between a 30 mph impact
sled test involving a belt-restrained ©0th percentile male dummy and the
predictions of the model conclude Part III,

The model which is described in this report is proposed as a powerful
tool for studying and designing advanced integrated seat-restraint systems.
It has been exercised several hundred times to study belt restraint
systems, varilous deceleration prcfiles, headrest and seatback shape,
pedestrian kinematics, occupant size and position, etc., and represents the

current state of the art in two-dimensional crash victim simulators.

A, STATE OF THE ART

Mathematical models have been developed for the motion of the human

body in several environments, including auto occupant dynamics,* human
gait, and the motions experienced by the legs and arms during walking.9-ll
This work is often applied to the design, development and use of prosthetic
devices. In connection with aerospace applications, analytical studies
of self-generated motions possible in J.‘ree-falllg-lj4 and O-gravity environ-
ments are being carried out and ’ind application in such activities as
sky-diving and space-walking. Also, studies are being made of such work
tasks as lifting,li’16 resulting in the development of work capability
amplifiers.

Fundamental theoretical work has heen carried out in the field of
mathematical models for more than sixty years, as seen in the work of

1
Fischer. 7 However, it is only with the coming-of-age of the high speed

computer in the last twenty years that practical sclutions of equations as

*Note: Only a small number of representative papers published on this
subject are included in this list.



complex as those proposed by Fischer have been realized. Hence, the
mathematical simulation of human body motions has become a very active
research topic in the last ten years.

Generally, two approaches have been used in analyses simulating auto
occupant protection. On one hand, various researchers have adopted rela-
tively simple physical models for studying specific aspects ol human
kinematics. Weaver18 has used a two-mass, two-degree-of-ireedom model tC
rimulate belt loadings and head impact velocity in the case of a lap-
belted occupant. Similar models have been developed by Aldman19 and
Renneker20 for studying slack in restraint systems and the et'fect of various
input deceleration profiles., Other authors, including Martinez,g1 Mertz,P
and Roberts,23 have used somewhat more sophisticated models for studying
the phenomenon of whiplash. Roberts has added an additional complicating
tactor to his model—the motion of the brain mass inside the brain case.

On the other hand, several authors " have developed more :omplex
models of human kinematics utilizing several masses for simulating body
motions. In addition, complex vehicle geometry is introduced in these
simulations to provide an intricate array of forces acting on the segmented
occupant. Particularly noteworthy in the early development of these
models are the efforts of McHenry.2 All these models are marked by
extensive development programs requiring at least two years from project
initiation to the production of a functioning computer program.

Most of the modeling work mentioned above has been concerned with
simulations of occupant motion in two dimensions. The only known published
cimulations involving three dimensions are those of Roberts,l Thompson,
Robbins,6 and Young.7 The first of these is a simple-one-mass model
capable ol simulating belt loads and upper torso motions in three dimensions,
while the second is part of a large program involving vehicle crush
characteristics. The third model simulates a three-dimensional occupant
by three masses and twelve degrees-of-freedom while the recently completed

fourth model describes the occupant by twelve masses and thirty-one degrees-



ol'-ireedom while possessing a less sophisticated model ot occupunt-vehicle
interactions than that of Robbinso6

kven with the advent of the highly complex computer programs describe
here, there still exist major problem areas such as:

1. Verification of the model by experiment;

2. Lack of highly controlled tests;

%, Lack o: anthropometric data and verilication of the models using
human volunteers;

. Lack of impact test data reduction techniques specifically oriented
towards mathematical model verification.

5. Difficulty in using the models because of the complex input
data requirements; and

6. Difficulty in using the model at locations other than the
laboratories of the developer.

These problems can be classified into two general types: (a) lack o
closely coordinated efforts to insure that the mathematical models predict
and anticipate physical reality, and (b) ease of use. The latter problem
is somewhat easier to approach than the first one. One needs to identily
ihe user and his capabilities and then write a program which is user-
oriented. Computer programs of this nature are in actual use, particularly
in styling and design laboratories in the auto industry. The users need
not be highly trained computer experts.

In assigning staff to the various subject areas of the current re-
search project, a concerted effort was made to coordinate the sled test
program and the analytical program. One group was assigned the task ol
analysis; another group was responsible for the impact sled test program;
and a new key group was formed to bridge the gap which was found to exist
between the analytical and experimental groups. The task of the key
group was to insure that meaningful date was genersted in the tests and to
establish techniques for reducing this cata into a form which could be
compared with the output of a mathematical model.

This discussion is intended to show that the current state of the

art is quite advanced from the viewpoint of producing computer programs



which predict vehicle occupant motions in a crash environment. However,
considerable research must be carried out to make programs of this nature
easily usable. Additionally, it is recommended that experimental work

accompany the development of future models to make assessment of their

validity more straightforward.




II. ANALYTICAL DESCRIPTION OF THE TWO-DIMENSIONAL
CRASH VICTIM SIMULATOR

This part of the report consists of an analytical description of the
two-dimensional crash victim simulator, a schematic of which is shown in
Figure 1. The parameters which have been chosen for use in the physical
model are discussed, then there is a brier presentation of the equations of
motion describing the movements of the crash victim. This is followed by &
detailed description of the analytical models used to define the mass anu
gecmetry of the body, the contact surface causing force interactions between
tne occupant and the vehicle, the seat, the joint structures connecting the

various segments of the body, and a belt restraint system.

A. SELECTION OF PARAMETERS

Four major groups of parameters have been considered in the development
of this model: the occupant, seat, external restraint environment, and the
deceleration profile.

The occupant is difficult to describe both experimentally and analyli-
cally. Controversy arises over the use of anthropometric dummies, cadavers,
human volunteers, and laboratory animals. The physical properties of dummies
are the most easily obtained and controlled but there is a question whether
they represent human kinematics. Four sets of parameters are used to model
the dynamic behavior of the body. First, the body is modeled by eignht rigid
mass elements representing the head, upper torso, middle torso, lower torso,
upper arm, lower arm, upper leg, and lower leg. Second, these mass elements
are connected by joint structures represented as viscoelastic, nonlinear,
torsional springs. Resistance is slight over most of the range of motion of
each joint. However, stops, located at the end of practical motion of eacn
joint, are modeled by a torsional spring possessing a high degree of stiff-
ness. Third, muscle tone is delineated rather crudely in this moael by a

constant torque, acting in each joint, resisting whatever relative motion is



cxperienced by the adjacent rigid body clements. Constant torque is also
used to model the friction joints found in present generation antnropomctric
dummies. Fourth, body geometry is represented by the moments of inertia ol
the eight rigid masses as well as contact body surfaces. These surtaces,
which are rigidly attached to the head, torso, hip, and extremities, allow
the user of the model to ascertain if a body part impacts any part of the
vehicle or seat.

The seat would seem to be easier to describe for use in a model. How-
«ver, it is unfortunate that very little research has been carried out to ae-
termine dynamic deformation characteristics such as stiffness and damping of
seats. Three parts of the seat are included in this model: seat back, seat
cushion, and head rest. The seat back may apply a force to the lower part of
the occupant's back at the hip and to the upper torso. The seat back is
modeled by a plane surface. The head rest is independent of the seat back
and can be composed of a number of contact surfaces representing a nonplanar
geometry. The seat cushion is again represented by a plane. Vertical forces
are applied at the hip and at the front of the seat. A horizontal force is
also applied at the front of the seat cushion to prevent the lower leg from
rotating back "through the seat cushion." Each of these elements is de-
scribed by dynamic force-deforration relations, friction coefficients, and
geometrical configurations.

The external system restreining an occupant is ordinarily defined in
terms of specific devices such as a seat belt or an airbag. One common fea-
ture of all these devices is the fact that they can be described in terms of
a dynamic force-deformation profile. For example, an acceleration-dependent
inertial reel used in conjunction with a shoulder harness will have a differ-
ent characteristic curve than a controlled permanent deformetion device or
one of the harnesses used in most current production vehicles. In each case
a different formula must be used which computes force as & function of defor-
mation and deformation rate. Therefore, provisions must be made for forces
to be applied to the occupant in a rather general manner in order that they

can be used in modeling any one of the proposed restraint devices.
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Three types of interactions are possible between the occupant anc veul-
cle: (a) the seat, already discussed, (b) a system of belts attacned to tne
occupant as a seat belt and/or shoulder harness, and (c) a collection of geo-
metric surfaces representing the profile of a vehicle interior or exterior.
These surfaces, each represented by a different dynamic force-deformation re-
lationship, interact with the contact surfaces fixed to the body of the occu-
pant to generate a complex interaction of forces and occupant motions repre-
senting the collision of the occupant with seat, restraint system, or venicle
structural member.

An example of a complex set of force interactions between an occupant
and a vehicle interior is represented by sinulating the airbag restraint
system. The occupant is represented in the usual way and may or may not be
restrained by a lap belt. Vehicle components such as the seat back, seat
cushion, floor, windshield, and lower dash panel are described in terms of
contact surfaces. It is necessary to know the force-motion interrelationship
between the head or torso and the bag before the simulation can be carried
out as the model itself cannot predict any force-deformation relationships.
They must be obtained using experimental procedures and be provided as input
data for the operation of the computer simulation.

It should also be noted that this general formulation allows studies of
much more than a seated occupant restrained in some manner inside the vehicle.
Stuaies have been carried out of more esoteric concepts such as the airbag,
the rear-end collision, and the pedestrian. Also, studies of the dynamics of
a child in any one of the large numoer of seats and restraint devices avail-
able on today's market are possible.

The deceleration profile which is used in this model is relatively
simple, it can be either a forward or rearward deceleration. However, the
snape of the profile is limited to 200 linear segments. Typical examples are

shown in Figures 2 and 3.
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B. FORMULATION OF THE MODEL

The equations of motion are derived by Lagrangian techniqueseh:

E
4a a(KES] _O(KE) | O(PE) | O(DE) _ (II.B.1)
at az.J x, &, @ x, Z,
i i i i i
where

KE is the system kinetic energy

PE is the system potential energy

DE is the system dissipated energy rate

FZ are the classical generalized forces

Z4 are the classical generalized coordinates or degrees of free-
dom of the model

Since the only driving force is applied to the vehicle and not directly
to the body,. the FZi terms are all zero. After the energy terms have besn
written, the resulting equations of motion are rearranged so that all the
terms containing generalized accelerations appear on the left-hand side and
all others appear on the right-hand side. Thus rearranged, these equations

are of the form
> >
mZ = b (II.B.2)

where m is the matrix of generalized acceleration coefficients and Z is the
acceleration vector. In this analysis the right-hand side E, will be called
the "generalized force" and contributions to it from the pctential and ki-
netic energy in Eq. (II.B.1) will be referred to as the gereralized force
from that part of the model. The total generalized force :s the vectorial
sum of each contributing component (gravity, joints, belts, seat cushion, and
contacts). The kinetic energy contributions to the genera.ized force are
centrifugal and Coriolis force terms.

Kinetic energy alone determines the left-hand side of the equations of

motion. In the computational procedure, the inverse of the matrix, m’l,

12



>
multiplied by the generalized force vector, b, yields the solution for tue

generalized accelerations, i.e.,

7 = ot D (II.B.3)

The generalized force vector may be expanded to show the various contributions

o'y
1
(eep ]
]
4
+
o4
+
YUy
+
Qs
+
D
Iy
=

(4]
+
=2
+
o

(II.B. k)

where

is due to kinetic energy
is due to gravity

is due to contact forces

is due to seat cushion

Qy Oy OF Q¥ Y

is due to joint elasticity
is due to contact friction
is due to seat friction
is due to joint friection

is due to belts

> > >
Oy oy OV OV
o 4 ©n O

C. BODY

The crash victim is simulated by eight body segments: three segments in
the torso to introduce some flexibility into the spine, one segment for the
head, two segments in the arms (right and left combinei) representing the
forearm and upper arm, and two segments for the legs (right and left combined)
representing upper and lower legs. Figure 1 shows a crash victim in a typi-
cal seating configuration restrained by a shoulder harness and lap belt.
Figure L4 illustrates the body segments and their lengtas, centers of gravity,
and moments of inertia. Tables I and II contain the subscripting schemes for
the body elements and joints which are used in the computer program while

Figure 5 shows the angular coordinates defining the orientation in space of

13
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(X,Y) = Coordinates for vehicle relative to inertial
system. This is the point on the vehicle
occupied by the hip at zero time.

(x,y) = coordinates of hip relative to inertial system.

Figure 5. Body aagles.
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the various body elements and the translational coordinates of the hip. It
should be noted that x and y plus the eight angles defined in this figure are

the generalized coordinates used in the analysis.

TABLE I. SUBSCRIPTS OF BODY JOINTS

Subscript 1 2 3 Y 5 6 7
Joint Hip Lover Up?er Neck | Shoulder | Elbow | Knee
Spine | Spine

TABLE II. SUBSCRIPTS OF BODY SEGMENTS

Subseript 1 2 3 4 5 6 7 8

Lower | Middle | Upper Head Upper | Lower | Upper | Lower

Body segment
v seen Torso | Torso | Torso Arm Arm Leg Leg

TABLE ITI. SUBSCRIPTS OF CONTACT ARCS

Subscript 1 2 3 4 5 6 7 8
Contact arc | Hip | =-- Upper Head | Elbow | Hand | Knee | Foot
Torso

The coordinates for the center-of-gravity of each body segment are
stated in Eq. (II.C.l) in terms of the generalized coordinates. Based on
this the velocities of the eight centers-of-gravity are given in Eq. (II.C.2).
Tebles I, II, and XIV as well as Figures L4 and 5 should be referred to in
reading these equations.

Using Egs. (II.C.1) and (II.C.2) the kinetic and potential energy asso-

ciated with the body can be written. After extensive formal manipulation of

16



the kinetic and potential energies, those portions of the equations of motic:

which can be stated are terms due to centrifugal and gravitational
well as to the matrix. This matrix is shown in Eq. (II.B.2) which

bulk of the left-hand side of the equations of motion.

xl = x + pl cos Gl

yl =yt pl sin el

x2 = X + Ll cos 61 + p2 cos 62

y2 =yt Ll sin 61 + p2 sin 62

x5 = X + Ll cos 61 + L2 cos 62 + 95 cos 65

YB =yt Ll sin 91 + L2 sin 62 + p3 sin 95

Xh = X + Ll cos el + L2 sin 92 + L3 cos 93 + pL+ cos eh
yu =yt Ll sin 61 + L2 sin 92 + L3 sin 95 + pLL sin eh
x5 = x + Ll cos 91 + L2 cos 62 + Lh cos 65 + 95 cos 95
y5 = y+ Ll sin 61 + L2 sin 62 + Lu sin e5 + p5 sin 65
Xe = X + Ll cos 91 + L2 cos 62 + Lu cos 65 + L5 cos 95
Vo = ¥ F Ll sin 91 + L2 sin 62 + Lh sin 95 + L5 sin 65
x7 = x + p7 cos 67

y7 = y + p7 sin 67

x8 = x + L7 cos 97 + p8 cos 68

y8 =yt L7 sin 97 + p8 sin 68

17
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The components of the equations of motion due to centrifugal force iorm

ﬁ and can be written

6
- 22 .
B = L 'Z e, ej sin [ej-el]
J=2
.2 6 2
B2 = L2 8, el sin (61-92) * L, .é aj ej sin (ej-eg)
J=3
2 .2 2
B3 = e JEL Lj ej sin (63'65) + L3 a, 6} sin (eu-e5)
6 2
+L L a, 65 sin (6.-6.)
)4 .
j=5 9 4 J 3
P L e
B = a L. 65 sin (6,-6)
L4 L4 j=1 J b
B. = a g L. 6% sin (6.-6.) + L a_ 6° sin (6.-6_)
5 5 99 iy k53 55
+a, L_6° sin (0,-6 )
675 6 6 5
525 ”
B, = a L. 67 sin (6.-6 )
6~ 6., ;6
B = I_a, 0° sin (6.-6.)
T 7 878 8 7
B, = I_a, 0> sin (6 -6 )
8 7 8 7 7 8
e 2
B = ) a, 6, cos 6,
9 3=1 J
8 2
BlO = jzi aj ej sin ej ‘ (II.C.3)



Due to gravity the contribution to the right-hand side of the equations

->
of motion forms G and can be written

G, = ga_ cos®

1 1 1
G2' = g a2 cos 62
G3 = g a5 cos 63
Gh = g ah cos 6u
G5 = g a5 cos 65

= S]
G6 g a6 cos 6
G = a_ cos 6
€%

G8 = g a8 cos 98

G. = 0

9
6o = &8 (II.C.%)

where
6
ai = mi pi + Li Y m i=1,2
j=i+l
a5 = m3 P tm Lt (m5+m6) LJ+
a, = m op, i=4,6,8
a, = m p * m, Li i=25,7
8

a = 2 m, (II.c.5)

|
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The matrix m in Eq. (II.B.2) formed from the kinetic energy terms is shown as

Egs. (II.C.6) and (II.C.7).

6
e, = I +m p2,+L2, L for i = 10,11
do b I gagn and j = i-9
2 2 2
= I + + +
8, 3 m3 Py *m L3 (m5+m6) Lh
2 .
8, = I.+m, p, for i = 13,15,17
o Jd and j = i-9
a, = I, +m, p? + m L? for i = 14,16
J JJ J J and j = 1-9 (I1.C.7)

D. CONTACT SURFACES

The nine distinct surfaces simulating the interior of the vehicle and
capable of applying forces on the body of the occupant are represented by
straight line segments as shown in Figure 7. After the computer program user
chooses whether the occupant is a driver, front-seat passenger, or rear-seat
passenger, & table is generated showing which body segments are allowed to
contact which surfaces. ,

This computer generated table is equivalent to the corresponding column
in Table V. The user may choose to model any special contact surface with
one of the standard contact surfaces. The choice of which standard contact
to use must include matching the expected interactions of this contact with
the table of permissible interacsions (the appropriate column of Table V).
Each contact surface has & unique name shown in Table IV which will be used
in the program output. The user has the option of changing these names to

represent, for example, an airbag.
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Figure 7. Definitions of vehicle contact surface (shown for
driver).
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TABLE IV. NORMAL CONTACT SURFACE INDICES

Index* Normel Contact Surface

Floor

Seat back

Roof or head rest

Upper steering wheel,
upper dash, back of
front seat

Windshield

Lower steering wheel

Lower panel

Steering column

Toeboard

9 Steering wheel

W o HO

o~ o\ &

*It is permissible to use any index
for any other cortact surface as long
as it is compatible with the table of
possible contacts in Table V, For
example, an airbag could be simulated
by using the various segments of the
steering wheel.

Each contact surface is defined by four quantities: the x and y coordi-
nates of its reference point, its length, and its angular orientation. This
reference point is at the end of the surface line which is most counter-
clockwise relative to the origin. The angle is found by drawing a horizontal
line through the other end point and measuring the angle from the forward
part of this line to the surface.

Each contact surface produces two forces. The first force acts perpen-
dicularly to the surface through the center of curvature of the contacting

body segments and the second force is frictional in nature and has the form:

oo M, P sgn Vi for |v_; > §a

0 IVT‘ <E, (II.D.1)
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where
vT is the tangential velocity of the body segment along the surface
P is the force applied normel to the contact surface

Ky is the friction coefficient

ga is the velocity limit
When the velocity limit (a small quantity such as 0.1 in./sec) is exceeded
the friction force is applied; otherwise, it is set to zero representing
sliding or Coulomb friction.

The material properties of the contact surfaces are given by a load-
deflection polynomial which mey be up to the fifth order in both deflection
and deflection rate representing a nonlinear, viscoelastic material. This
applies while a load is being applied to & surface.

The force developed at any contact interface is given by
o & o]

5 + 8 II.D.
mk k  ‘mt5,k Kk (11.0.2)

P =0 + 2

2
k o,k _ [

m=1

where

where

6,  is the distance which a particular body element impinges into
a particular surface representing a segment of the vehicle
interior

8 _is the deflection rate

6ko is the value of 5_when 8
is a preload on any given contact surface

first becomes positive

o
o,k

through o are the material polynomial coefficients

%,k 10,k
The quantity k is the general force index. Values of k greater than four
correspond to particular combinations of contact arcs on the body and contact
surfaces and are shown in brackets in Table V. Hence, for each value of k

and choice of passenger position, ther=z corresponcs a unique contget arc
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subscript which appears in parentheses on the left margin of Table V and a

unique contact surface subscript which appears in parentheses in the body of

s 1

Table V. Throughout the remainder of this section 1" is this contact arc
subscript and "a" is this contact surface subscript.
The deflections used to compute the force in Eq. (II.D.2) are given in

the following equations.

- - "_ ] . + ll_ 1
6k r, (xa xi) sin v, (ya yi) cos v,
é = ! s - !
K xi sin Wa yi cos Wa
= 9! + v' ai + é .D.
Vi X, cos Wa y{ sin Wa r, 6, (II.D.3)
xi = X
y, =9
' = x +L cos® +1L 6+ p! )
x3 X , €08 8 5 cos 5 p3 cos 5
yé = y + Ll sin Gl + L2 sin 82 + pé sin 85
'o= + 56, + e+ + p! e
XL X Ll co 1 L2 cos 5 L3 cos 65 ph cos L

y1+ = y+L sin 6, +L sin6_ + L3 sin 65 + pL sin eh

'o= + 6. + 6 + 6 + )
x5 X Ll cos 1 L2 cos 5 Lh cos 3 L5 cos
yé = y + Ll sin el + L2 sin 62 + LLl sin 63 + L5 sin 95
x' = x+1L cos 6
T T T
y! = y+L_sin 6
T 1 T
xé = x + L7 cos 87 + L8 cos 88
o= oyt in 6_ + i .D.
vg y L7 sia 7 Lg sin 88 (II.D.L)

xg, yg, wa are the contact surface reference coordinates and orientation, r,
i

is the radius of the contact arc attached to each body segment.
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1
y, =¥
ké = X - Ll él sin 61 - L2 é2 sin 82 - ! é5 sin 65
&g = y + Ll él cos el + Lg é2 cos 92 + pé é5 cos 63
kL = X - Ll él sin el - L2 é2 sin 92 - L5 é5 sin 63- pL éh sin eu
&L = y+ L, él cos 91 + 1, é2 cos 6, * L3 95 cos 85-+pi éh cos eu
ké = X - L, él sin el - L2 é2 sin 62 - L, é5 sin 95 -L5 é5 sin 95
&5 = y + Ll él cos el + L2 é2 cos 92 + Lh é3 sin 95-+L5 é5 cos 85
k% = X - L7 é7 sin 67

&% = y+ L7 é7 cos 67
ké = X - L7 é7 sin 67 - g é8 sin g
yé = g+ L7 é7 cos 67 *t g é8 cos By (II.D.5)

and the other quantities are defined in Figures L4-7.

The form of Pk shown in Eq. (II.D.2) is used only while a load is being
applied, i.e., when the deflection is increasing. During loading, the mate-
rial may absorb energy so that its characteristics while unloading can be
different than before.

The resulting permanent deformation is modeled by means of two param-

eters:
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G, the ratio of permanent deformation to maximum deflection, and

R, the ratio of conserved to total energy.

These two parameters are not independent but the relationship is complex
so both are required by the program. The unloading force is assumed to be
parabolic in nature and deflection to decrease from a maximum at & = Qk to
zero force at 8 = G Qk' This latter value (G Qk) is taken as the permanent
deformation, i.e., the value of deflection which must be exceeded before

loading will begin again. The formula used for Pk for unloading is

5(F, 9,(1-G) - 28 ]

P = (b -aa)
k Qi(l-G)B k Qk

nk[6Elk - F Qk(L-G)(2+G)]
P 3(F, o (1-6) - 25 ]

o) (II.D.6)
where

F, is the loading force (Py) at the maximum deflection

O is the maximum deflection

E., is the consgerved energy. This quantity is computed as R times
the total energy for this load-unload cycle plus the conserved
energy from.previous cycles if any.

The Eq. (II.D.6) results from an evaluation of the co:fficients of a

parabola which fits thé constraints stated below:

(1) The unloading curve starts at the point of maximim deflection
Q, with the force F,. '

(2) The unloading curve goes to z2ro at the point whare deflec-
tion equals the permanent deformation (i.e., G Q by defini-
tion of G). '

(3) The total work done by the unloading curve (the conserved
energy in the contact) is RE, where E, is the tctal energy
and R is the ratio of conserved to total energy as defined
above. The total energy is computed by a stepwise

approximation through the loading portion of the cycle and
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Elk which appears in the formulas above 1s computed as REk'

Since G and R are not really independent, & constraint:

2B, < F Qk(l-G) < 3B (11.D.7)
is applied to insure that the force goes to zero at & = G Qk' The constraint
equation (II.D.7) comes about from evaluation of the roots of the unloading
curve. The conditions that G Qk be the larger root and that the unloading
curve increase for increasing deflection at that point yield the two halves
of the constraint.

Loading followed by unloading constitutes one cycle. Provision is made
for accumulating permanent deformations over several cycles. The effect of
this accumulation is used to determine the starting point of succeeding
cycles; however, the shape of the loading curve is always the same as the
first cycle. The unloading curve is recomputed for ea:zh cycle.

The contribution to the equations of motion due t> contact forces is a
sum of the effects of the many possible interactions. For each passenger
position, the number of possible interactions changes. In particular, the
total number of interactions is fourteen for the driver (NPASGR = 1), eleven
for the front right passenger (NPASGR = 2), and ten for the back seat passen-
ger (NPASGR = 3). NS is the maximum value of the subscript k and is the
above stated total number of interaztions plus four.

NS-3

Q = I k§6 P, cos (9.-4) (II.D.8)

where a again is the corresponding 2 for the k as explained on page 27.
NS-3

Q, = L, kgé P cos (6,-¢ ) (II.D.9)
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L L
p! L Pk cos (93""a) + L3 z P, cos (© -‘Va)

93 5 k=6 k=K+1 - 5
+ Lu PL+l cos (63-wl) (II.D.10)
K
Q = p! L P cos (8 -y ) (II.D.11)
I Y K=K+l k 4 Ta
Q = L_P cos (8 _-V.) . (11.D.12)
5 5 "L+l 51

where K and L are a function of NPASGR as follows:

NPASGR | K | L
1 9 [ 1%
2 7 | 11
3 7T 1 10
Q6 = 0
NS
= L L P cos (6.-y)
T Mg B T
NS
Q = L, & P cos (6,-¥ )
8 8k=.rNS-l k 8 'a
NS
Q. = -2 P sin ¥
9 k=5 k 8
NS
Q.. = L P cos V¥ (1I.D.13)
10 k=5 k a

The contribution to the generalized force due to friction at the force

contact is of the form

M = P'U, (II.D.1k)
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where Pﬁ is the computed frictional force explained on page 26 corresponding
to the normal force Pk'

Gi is the proper "lever arm" vector defined below for the value of the
contact arc subscript corresponding to k. The quantity a is the matching
contact surface subscript for the k in what follows.

Where

-sin ¥, (I1.D.15)

(=32
"
(@)

(1I.D.16)

-CoSs W%

-sin ¥, (11.D.17)
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[e=p 2

[e=p 2

(=A

(=14

Ly sin (el-Wa)
L2 sin (Ga-wa)
Lz sin (93'Wa)
pj sin (8)=¥,) - 1),

O O O O

-Cos Wa

-sin Wa

El sin (el-ﬂ!a)

L, sin (ea-wa)

Lh sin (GB-Wa)

0

Ly sin (65-wa)--r5

o O O

-COS Wa

o _r o ocooool

-CoSs Wa

-sin Wa
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(II.D.20)

(II.D.21)



OOOOOO]

L7 sin (97-\1:&)
Lg sin (67-¢a)-r8

-CcOos Wa

-sin ¥, (II.D.22)

E. SEAT CUSHION

The seat cushion model contains provision for four separate forces as
shown in Figure 8. The first one acts vertically at the hip joint whenever
it is above the seat cushion and is modeled by a third order polynomial
spring and a linear damper. The second, modeled by a linear spring, acts
vertically at the front edge of the seat and affects the upper or lower leg
depending on the size of the occupant and his position. This is especially
useful in the case of children whose lower legs often are on the seat cushion.
The third force, also modeled by & linear spring, acts in a forward direction
at the top of the front edge of the seat. This force was included to prevent
the lower legs from passing backward through the seat and producing large
spurious forces. All three of these forces are continuous. The fourth force
models seat friction and is discontinuous as well as dissipative. The force

applied at the hip is
m .
F =W - L B yo-C ¥ (II.E.1)

where
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Description of seat bottom.
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X

N

y + (X-x) tan 7y

7+ (X-x) tan 7,

equilibrium force on seat cushion at hip
polynomial spring constants

damping constant

horizontal position of seat as a function of time
horizontal position of hip as a function of time

vertical position of hip as a function of time (II.E.2)

The force acting vertically at the at the front edge of the seat cushion is

F' = F' = - E.
. o - sy, ) (II.E.3)
where
y + 2 tan 97 for the upper leg
y =
2 yt+ L7 sin 97 + (z - L7 cos 97) tan 6g for the lower leg
(II.E.L)
and
z = 2z, +X - X
Fio, = initial upward force at front of seat
s = spring constant
Voo = vertical distance from seat front edge to level of seat
cushion directly below hip joint at time zero
z, = initial value of z
with all other quantities defined in Figure 8.
The force acting horizontally at the front edge of the seat is
s (r-x ) forx -r <O
Po= Z2Z Z z Z
2 0 otherwise (II.E.5)

where

37




cos ©

x, = (z,tan y, -y - L7 sin 67) ;E;—gg -.(z - L7 cos 67)
s, = spring constant
r, = distance from centerline of lower leg to outside of calf
and the other quantities are previously defined. (11.E.6)
The friction force is
.. -ps(Fs+Fé) sgn(X-x) for |X-x| > &
0 otherwise (II.E.7)

where
Hg = friction coefficient

The contributions from the seat cushion to the generalized force vector,

-»>
D, are:

D, = 0, i=1-6
i
( 2
F' 2z sec™©_for z <L_ cos ©
s 7 -7
D = F'L (cos® +sin® tan6,) -F L_ -
T < s 7( T T g - T T
sin ® + cos 6_ cot 6,) for z > L_ cos © II.E.8)
L (sin & 7 g/ 7 7
O for z <L_ cos ©
D = -7 T
8 , 2 2 g
- + + -
Fs(z L7 cos97) sec” 6y + F (v L7 sin 97 yzo) esc” 6y
otherwise
-F' tan 6_ for z < L_ cos ©
D = ] T =T T
9 -F' tan 6, + F otherwise
s 8 z
- + L. .E.
Dlo FS FS F, cot 68 (II.E.9)
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The components of the contribution of seat friction to the generalizea

->
force vector, Abs, are

0 for i = 1-8,10

-f for i (II.E.10)

1]
\O

F. JOINTS

Each joint is considered to have an elastic torque resisting motion away
from its initial position, a coulomb-type friction resisting any relative mo-
tion above a certain velocity limit (see Figure 9), anc a joint stop to pre-
vent substantial motion beyond specified angular limits (see Figure 10 or
Figure 11).

The contribution to the system potential energy from torque is defined

by
= K. (6 -6, +6, -6 ) fori=1-7 (II.F.1)
1 1 10 mo

(see Table I for joints associated with each subscript), with each i defining

& unique m as follows for calculation of proper relative angle.

P
3131518

The other two torques are dissipative in nature. The coulomb friction
equation is:

-C! 6, -6 6. -6 | >
Ci sgn( i ) for | i ml > §i

m

fi
0 otherwise (II.F.2)

Also the stop torque is of the same type:
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Figure 9. Form of friction in Jjoints.
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TORQUE

Slope is T;

Flgure 10. Form of symmetric Joint stops for
neck and two spinal Joints.
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Slope is T} Upper stop
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Slope is T;

Figure 11. Form of nonsymmetric joint stops
of hip, shoulder, elbow, and knee.
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T, for |6, - & | >¢.
i i m =i

i
S 0 otherwise

(II.F.3)

where the form of Ti depends on the particular joint.

The elements of the stop torque vector are defined as follows.

r .
! - + f - d -
T (Oi o, 97) or 6, 97 <o, end 6 é7 <0
Al . .
= - - f - -
Tl { Tl (Ql 91 e,() or 6, 97 > Q and el 97 >0
0 otherwise
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T =

T =

T =

T =

Tol6) - 95 = 9
0

T
0
T
0
T
A
T
0
T
A
T
0
T! -6_+86
7% = 8 * %)
A

T'(Q -6_+6
7% = 87 7 %)
0

8 -6, -0
[2 0

3 5 3

W85 -8 -0

©
]
D
\n
]
=
~r

é(es - 9%t C‘6)

é(95 - e6 + 96)

sgn(el - 92)]

sgn(e2 - 95)]

sgn(e5 - eu)]

6. -0
forll 2]>02

6,-6_) = -6
and sgn(:L 2) sgn(el 2)

otherwise

for Ie2 - 95' > %
and sgn(62-65) = sgn(eg-GB)

otherwise

for 195 - eh[ >

= sgn(6_ -6

and sgn((i)5 - 6)+) 5 h)

otherwise

otherwise

for 66-65 < a6 and 65-e6>0

for 66-65 > 96 and 85-66<O

otherwise

for ® -6, < o and 6,-6_ >0
T 877 8 7

> Q_ and 6 -é7<o

for 67 - 68 7 8

otherwise
(II.F.4)

Note that the neck and the two spinal joints are assumed symmetric, while the

hip, shoulder, elbow and knee are not.
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The joint elasticity generalized force vector is:

= - - - - -0
Cl Kl(e"( el ¥ e10 670) K2(81 e2 ¥ e20 lO)
02 = K2(61-92+920-elo) - 1%(62- e3 +ejo- 920)
c5 = K}(e2 - e5 + 930 - 620) - Kh(e5 -6, ¥ eho = 950)

- 6. -0 2] -6
Ko(8y = 85+ 055 = 850)

c, = K

(e3 -9 +6 )

u L " o " Y30

Cc = K((®, -6_+6_-06_)-K

8 -8 $) - 0
5 = K55 7 85 T 85 7 O (0 - 8¢ * )

C, = K6, -6,+6,_ -06_)

65 = 86 T 86 " O

Q
i

7 = K8 -0 8- 8g) - K (0, -8+, -6)

1
D

«Q
1]

8 K:Y(e7 - 0 + 05, 970

]
~

Clo = 0 (II.F.5)

Joint friction and the joint stops are applied to the generalized force

vector by the equation

_>
Abj = (in + Jsi) v, (II.F.6)

where Vi is a vector whose components are all zero except i'or the ith and the

mth which are plus one and minus one, respectively.
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The i is the joint index and m is as specified previously on page 39.

G. RESTRAINT SYSTEM

The conventional restraint system simulated in this program consists of
a set of three belt segments, all of whose forces act independently at fixed
points on the body.

The shoulder harness is modeled by two such independent segments (see
Figure 12); the upper is assumed to act at the shoulder joint, the lower at
a specified distance above the first spinal joint. Both segments have their
attachment points fixed in the vehicle and the forces act along the lines
connecting the point on the occupant with the belt attachment points in the
vehicle.

The lap belt is modeled by one segment, thus assuming that the two sides
of the real lap belt have the same fixed attachment point coordinates in the
plane of motion. The force produced is twice that of one real segment. The
shape of the lap belt segment is more complicated than that of the shoulder
harness segments. It has not only & linear portion, but also a circular arc
portion centered on the hip joint (see Figure 13). The linear portion is
tangent to this circle.

An option in the program allows the user to specify no belts, lap belt
only, shoulder harness only, or all three segments. Unconventional restraint
systems such as an airbag may be crudely simulated by proper selection of
contact surfaces.

For each of the three belt segments, elongation is computed as the cur-
rent length (1,) minus the zero-time length (1go)+ Deflection rate (8) is
just ik' The same load-deflection procedure is used to compute force as has
been previously used for contact forces. The quantity ¢k is the belt angle
for the corresponding segment.

For the lap belt, the following equations apply (see Figure 13).
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Upper belt
anchor

‘?\%L|

3 Neck

Shoulder

.

Upper and lower
torso belt
attachment points

, Upper
" Spine

h V4

Lower belt
anchor

Figure 12. Shoulder belt geometry.
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Figure 13.

Lap belt geometry.

Lg

>X1



2 2 2
= + 1 ¢| + + 1 a9 ¢l -
1l ~[(x 1lo cos 10) (y llO sin lo) r
ooy - o) r/2)
, 2 2
= ! - + - +
Lo (11)7 = 7y *+ 1 (05 = 89 + /2)
|} ¢'
, ) X 1 y o+ llO sin 10
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For the lower and upper shoulder belt segments (k = 2 and 3, respec-

tively), the equations are: (see Figure 12)

Jax® + a2 for k = 2,3

k k
Ay
-1 k
t —— R .
. an <A"k> (II.G.2)

A zero appended to the subscripts of a variable denotes the zero time value
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]

©
"

of that variable,
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where Py is the force computed by use of the load-deflection procedure for

the kth segment.
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ITI. EXPERIMENTAL VERIFICATION OF THE MATHEMATICAL MODEL

In this section of the report comparisons are made between the pre-
dictions of the mathematical model and an experiment carried out on the
HSRI impact sled with an anthropometric dummy. Beginning with an outline
of the criteria on which the validation is based, the report continues
with a description of the sled test and concludes with a description of
the degree to which the model describes the real test situation.

A, CHOICE OF A CRITERION OF VERIFICATION

The choice of a criterion of verification of the mathematical model
describing human body impact is based on three premises: (a) whether
or not the mathematical analysis and computer program are correct; (b) the
extraction of appropriate experimental data on which the validation
procedures can be based; and (c) the observation that the mathematical
model consists of parameters describing the occupant, the force field con-
sisting of belts and contact surfaces which act on the occupant, and the
externally applied deceleration forcing function.

The use of a Lagrangian formulation of Newtonian mechanics as a
basis for these models follows a long history of succes:ful application
to problems in impact, and hence, offers no cause for ccncern. Thus,
sources of problems can arise only in writing down the yarticular equations
and computer program which apply to the present analysi:s. All equations
and the computer program have been derived independently by two or more
persons leading to very low incidence or’ errors in the final computer
program.

The second premise, which is concerned with the extraction of
appropriate experimental data on which the validation can be based, has
been the basis for a major research effort. The acquisition of the

necessary transducer and photometric data is straightforward and requires
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only the proper usage of the appropriate high speed cameras, data tape
recorders, and light beam oscillographs. The processing of the transducer
data is also relatively simple. For example, the determination of the
magnitude of the linear acceleration of the head of the dummy requires
computation of the simple vector sum of the three linear acceleration
components.

Analysis and graphing of the test data is only part of the problem
because preparation of a well-founded set of inputbdata is necessary
for the successful operation of any computer analysis. Therefore, a
description of the mass, geometric, and inertial properties of the
test subject 1s required. This must be supplemented by a geometrical
profile of the vehicle components with which the test subject is expected
to interact. Finally, the force-deformation characteristics of the inter-
actions between the test subject and the vehicle components must be
measured in order to specify the proper balance between subject motions
and loadings.

In order to define the test subject, the eight basic body elements were
weighed and moments of inertia measured using a trifilar pendulum or
predicted using formulas similar to those of I-Ianavang5 and Patten.26 After
the geometry of the test sled and the initial position of the dummy subject
were carefully measured, it was then necessary to develop test procedures
defining the force-motion relationships between test cubject and vehicle
elements. This was carried out for the seat and for a belt restraint
system using a combination of photometric and transducer data described ?
later in this report. (The simulation of an airbag restraint system
was accomplished using similar techniques and will be discussed in the
final report on that phase of the research project.)

The third premise serves to define the mathematical model as a system
of parameters describing the occupant, the force field consisting of belts
and contact surfaces which acts on the occupant, and tne externally

applied deceleration forcing function. All these basic parametere must
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be included in any test validation.

To properly study the field of forces acting on the subject it is
necessary to simulate both contact surfaces (such as a seat cushion and
seat back) and belts (such as a lap belt and single diagonal shoulder
harness). The use of an occupant unrestrained by belts would not provide
a sufficient test of this important section of the analysis.

Based on these three premises, an impact sled test using a 50th
percentile male anthropometric dummy was carried §ut at a speed of
approximately 30 mph. This represented the most standard test configuration
in use in impact sled test laboratories. The dummy was restrained by a
lap belt and a single diagonal shoulder harness. Thus, this test repre-
sented a complete and economical test of the basic parameters described
in the model—the occupant, the restraint and interior contact forces,

and the vehicle deceleration.

B. THE EXPERIMENT

The validation experiment was carried out on the HSRI impact sled
(Figure 1L4), which is of the acceleration-deceleration type. It can
be accelerated over a 12-ft distance up to a top speed of 4O mph using a
compressed air-actuated puller arm. The deceleration stroke has a
maximum length of 3 ft and a maximum potential of 88 g's. For the purpose
oi" high-speed photography a total of 50 kw of lighting is available. Real
time and high-speed movies are taken as well as still photographs before
and after each test.

Kistler Piezotron 818's triaxial accelerometer packs were located
in the head and chest of the 50th percentile Sierra dummy. A Statham
strain-gage accelerometer was used to record the sled deceleration pulse.
Four Lebow seat-belt load transducers were mounted on the seat belt and
shoulder harness.

The data was recorded simultaneously on a Honeywell 7600 tape re-
corder and a Honeywell 1612 Visicorder. No filtering was used during
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the initial recording other than the limitation of the light-beam
galvanometers to frequencies under 1000 cps. The following transducer

data was recorded: (a) lower right shoulder belt force; (b) left lap

belt force; (c) upper left shoulder belt force; (d) right lap belt force;
(e) sled deceleration; (f) head anterior-posterior G-loading; (g) chest
anterior-posterior G-loading; (h) head superior-inferior G-loading;

(1) chest superior-inferior G-loading; (Jj) head left-right G-loading;

(k) chest left-right G-loading; (1) impact velocity; and (m) timing signals.

The test setup for the validation of the mocel is shown in Figure 15.
The bucket seat is bolted securely to a framework which is attached to
the sled. This framework serves as a mount for attaching belts and other
types of restraint systems, and can be rotated to simulate lateral or
oblique impact.

The test data presented in Figures 16 through 25 were obtained as a
result of either detalled analysis of the high-speed films using a
Vanguard Film Analyzer of by measuring points from the oscillographic
recording. All acceleration and belt transducer data were determined
from the oscillographic records and appropriate sums and resultant values
were computed.

In the model, the excursion and forward mot:ion of the head were
determined directly by measurement of the motion of a target placed on
the head of the dummy. Likewise the angle of head pitch and the upper
leg were obtained by direct measurement (and the subsequent scaling and
tabulation by means of specially developed compu:er programs). The
motion of the H-point was very difficult to determine as no direct

measurements were possible., However, its location was determinable by
trigonometry using data from a thigh target, a lower back target, and the
angle of the upper leg with a horizontal line. These data, determined
on the Vanguard Analyzer, were then processed or the HSRI 1130 digital
computer using the appropriate trigonometric data handling subroutines.




Pigure 15. Test setup for two-dimensional model validation.
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Figure 17. Excursion of head center-o?-gravity and H-point
as a function of time.
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Figure 18. Resultant chest linear acceleration in g's.
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Figure 19. Resultant head liiear acceleration in g's.
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Figure 20. Seat onelt loads.
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Figure 21. Shoulder harness loads.
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Figure 22. Forward motion of H-point.
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Figure 25. Pitch angle of the upper leg.
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Dimensions of Upper Torso Assembly:
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C. PREPARATION OF A DATA SET FOR THE COMPUTER SIMULATION

The preparation of a data set for the validation exercise of the model
involved determination of the mass and inertial properties of the
HSRI 50th percentile male Sierra dummy as well as the force-deformation
interactions between the dummy and his seat and restraint system. Various
other quantities such as the initial impact velocity, the sled deceleration
profile, and the positioning of the dummy at the beginning of the decelera-
tion event were measured directly from the test movies or transducer data.

The center of gravity of the various body parts was found by suspend-
ing the piece by wires and observing the location of intersecting lines
of action. The eight momeits of inertia of the body parts for use in
the model were found by suspending each piece on a trifilar pendulum. The
weights of the body parts rere measured on a precision scale. This data,
tabulated in Table VI and 'igures 26-28, is felt to be accurate within
1% as repeated measurement were taken on the various quantities, A
correction to the moments >f inertia was made based on the weight and
distribution of the body s..in element.

Because no impact data is available in a form suitable for use in
the computer program, two static tests were carried out. The test
configurations are shown in Figure 29 and the results in Figures 30 and
51, In determining the curve for load-deflection under the buttocks, the
deflection was measured by taking height readings "h" at points on the
pelvis as shown, as weigh. was added. For determining the load-deflection
curve at the front of the seat, the dummy was hung as shown with the legs
up, knees locked, and the buttocks just touching the cushion. The hip
joint was loose. The legs were lowered gradually, and load scale
readings were taken at progressive points until the scale read zero. At
this time the seat front is supporting the legs. Weights were then added
until the seat front bottomed out of the seat frame. This test has the

disadvantages of being static and only applying the load over part of the
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TABLE VI. WEIGHTS AND MOMENTS OF INERTIA OF
HSRI 50th PERCENTILE SIERRA DUMMY

Segment Segment Moment
Body Segment Weight, of Inertia,
1b in. 1b sec?

Right forearm and hand 5. 09k 0. 300
Left forearm and hand 5. 187 0. 309
Right upper arm 5. 938 0.241
Left upper arm 5. 656 0. 233
Lower spine L.531 0. 078
Lower torso pelvic area 17. 062 1. 709
Right upper leg 20.125 1. 316
Left upper leg 20, 156 1. 307
Right lower leg and foot 9.781 1.211
Left lower leg and foot 9.81% 1. 186
Upper torso (including shoul-

der and chest mode, plas-

tic "sub-skin" around »ib 37,428 1. 344

cage and two lower nec’

vertebrae clamped tigh:)
Head (including two upper 15. 781 0.1436

neck vertebrae)
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A) LOAD-DEFLECTION UNDER BUTTOCKS- - -+

BAGS OF LEAD SHOT
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For Results, See Graph, Fig. |

B) LOAD-DEFLECTION AT FRONT OF SEAT

|
calves W Seat F '

(19.59) )
W thigh (40.28)

Figure 29. Test confipguration for seat
property tests.
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seat. However, it does have the advantage of determining a2 curve which
includes deformation properties of both the seat and dummy used in the test.

The seat belt load-deflection characteristic also led to difficulties
in measurement. In this case, deformation properties of the belt, buckles,
vehicle attachment points, and of the dummy itself must be reflected in
the modulus which is used in the model. In addition to this, it is
necessary that the deformations be a projection on the two-dimensional
plane of events which actually occur in three-space.

Thus, the load-deformation characteristics of the seat belts were
measured by making use of data gathered during the test itsclf. Force
transducers were used to record the loads in the belts and high-speed
movies recorded a plane view of the action of the belts. Therefore, using
the known location of the H-point, the belt angle, and the location of |
the belt attachment point in the vehicle, it was possible to construct a
table of the seat-belt length as a function of time. This, when combined
with the data from the load cells, was used to construct Figure 32.
Measurement of the deformation characteristics of the shoulder harness
elements similarly was carried out using high-speed movies and loads from

the force transducers.

D. COMPARISON OF THE SLED TEST DATA WITH THE PREDICTION OF THE MODEL

The comparison between the sled test and the mathematical model was
accomplished by measuring the parameters necessary for the operation of
the model and then exercising the model based on this set orf input data.
The only parameters which were not determined experimentally were the
stiffnesses of the stops in the various joints. These were given arbitrary
high values compatible with the definition of a "stop." In most computer
simulations the various body segments do not even interact with the stops
making precise definition unnecessary. Also, it has been found in other
exercises of the model that variation of these quantities over rather

wide ranges does not have a large effect on the body kinematics. Thus,
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it is felt that the impact data which was measured provides a valid
test case. y

Two types of comparisons can be made between analysis and experiment.
On one hand, the actual dummy body motions are studied; on the other, the
forces and accelerations experienced by the body are examined.

The excursion of the head center of gravity and the H-point are
shown in Figure 17 as a function of time. It can be noted that both
the head and the hip moved down to a greater degree in the test than they
did in the simulation. Also, the hip was observed to move further forward
in the test. It is felt that this can be explained by an examination
of the hip structure of the Sierra dummy in comparison to the model.

In the dummy, the seat belt was observed in the test tc ride over the
pelvic structures into the abdominal area. In the model, the belt was
required to stay on a radius which was a fixed distance from the H-point.
Thus, in the test submarining was allowed, while in the simulation, it
was impossible. The fact that submarining was ctserved in the test may
well explain the substantial nonlinear softening-spring behavicr of the
seat belt load-deflection curwve.

Figures 22 and 23 describe the forward motion of head and hip as
a function of time. The prediction of head motion is quite good whereas
the motion of the hip differs during rebound possibly as a result of
submarining and the fact that the belt is buried in the dummy abdomen
after the test.

The pitch angle of the head is plotted in Figure 24. Although the
phase 1s correct, the magnitudes are not. The error in pitch magnitude
is about 2%2%. It is felt at this time that the greater flexibility of
the dummy neck (note that this would be even more exaggerated iq a living
subject) leads to this error. It is possible that this phenomenon can be
compensated for by altering the joint stop angle from —he values used in
this simulation. By increasing their values, greater 'flexibility" is

introduced to the dummy.
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Figure 25 shows the pitch angle 1or the upper leg. In the model
this body element pitched up and down more quickly than in the test.
However, the peak values are similar, possibly because the rotation of
the pelvic area of the dummy down under the seat belt is in the same
direction as the rotation of the upper leg. This seems likely from quali-
tative observations of the high-speed movies.

Figure 18 shows the resultant chest linear acceleration in G's.
Agreement between these curves is remarkably good both with respect to
phase and peak G-values, The test data were determined as a combination
of the three recadings of a triaxial accelerometer pack. The readings [or
the model were obviously limited to accelerations in the plane. The
spike at 180 ms in the model and the rise in the test data reflect
rebound into the seat back.

Similarly, in Figure 19 there is fairly good agreement between the
predicted and test values of head linear acceleration. The 70 G spike
predicted by the model occurred as the head pitched forward sufficiently
far to encounter the "stop" briefly. Spikes of this nature are likely
to occur in any segmented collection of rigid bodies in which stops are
allowed to act. The peaks will be reduced only as flexibility is added
to the system.

Figures 20 and 21 show the comparative seat belt and shoulder harness
loads. Agreement is quite good both in phase and magnitude in the seat
belt loads. The predicted harness loads appear to be lw although the
peak values are within 15%. The reason for this is unkiown at present.

It is possible that the error could be experimental in shat signal clipping
was observed on strain gage channels in several tests conducted near the
time of this test. Other reasons could be improper selection of force-
deformation curves and slack for the harness system.

The comparisons between theory ind experiment which have just been

presented represent the beginning of the most important phase of the model

development program——the determination of the ability o the model to
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describe the physical system. Agreement is good on many important

quantities discussed above. The differences noted in other quantities
reflect both difficulties in mathematically describing a continuous
body by lumped masses and also difficulties in determining the input

data with which the model can be exercised.




IV. USERS' GUIDE FOR THE TWO~DIMENSIONAL CRASH VICTIM SIMULATOR

This part of the report is intended to serve as a complete Users' Gulde
for exerclsing the HSRI Two-Dimensional Crash Victim Simulator, Sections A
and B provide information for the preparation of an input data deck or file.
Each card (or file line) is defined in Table VII of Section A with references
to Figures included in this report describing the physical nature of the
various input data and to tabular data included in Section B.

The output from the computer program is discussed in Section C. This
materlal is complete with regard to the detailed printout produced in those
cases where debugging Information is needed.

Sectlion D is a technlcal gulde to the user familiar with the MTS27 who
wishes to exerclise the model from a teletype terminal. The RUN statement for
exercising the model 1s described first, followed by a description of the use
of a conversational program which allows the user easy cccess to desired por-
tlons of the output generated in an exercise of the model.

The final four sections of Part IV (E, F, G, and H describe and docu-
ment the functioning of the computer program. Sectlon ™ contains an overall
brief description of the program along with a flow diag-am; techniques for
integrating the equations of motion are described in Se:tion F; =nd flow
disgrams for the individual subroutines are included in Section G.

A. DESCRIPTION OF INPUT DATA CARDS

All except the last several input cards have the same format, and are
laid out in elght fields of ten columns each. With the exception of the first,
each field contains one input datum. The first field contains one input datum
in columns two through ten plus an identification letter. This letter, which
appears in column one, defines the set of parameters on that card. The order
of the data cards 1s irrelevant yp to the "Z" card which precedes the SUMMARY

card. If more than one of the same card is included, the last one will be
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given priority and its data used.
Starting with "Z" card, the follcy}ng order must be.preserved:

1. "Z" card.
2. SUMMARY card. ’ v .
3. Relabelling cards (if any).
L, "-2" card.
5. Tolerance level reset cards (if any).
6. "-1" card (if injury potential switch is on).
7. 3 cards containing probability data (if injury potential switch

and probability switch are on).

8. First field control card.

9. Second field control card.

10. Cards specifying STYX print times if requilred.

11. Contact radll print control card.

More than one data deck may be submitted at the same time by simply
putting them one after another, each with its own full complement of cards
("A" through "STYX"). When the program is finished with the first data deck,
it will look for a second. If it finds more data, it will continue, other-
vise 1t will sign off.

The Inclusion of the SUMMARY data card at the end of a deck of input
«ata results in the tabular output included at the end of a computer run.
This output is the result of a successfully executed program and allows the
user to evaluate the physics of the problem.

At present, the contact surface label 1s chosen according to Table XV.
However, the user may alter the labels using the RELABEL card described in
Table VII. This card may be inserted after the SUMMARY card in the data.deck
with the index of the surface to be relabelled in columns one and/or two and
the elghteen BCD characters of the new label in columns eleven thrdugh twenty-

elght sultably centered; e.g.:
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TABLE VII. INPUT DATA CARDS (page 7)

Cards Fleld Table Filgure Quantlity Unit
A% 1 XVII number specifying the input table
v 2 switch indicating whether table is

a constant or not (O=yes, 1l=no)

\ 3 time of next break point in piecewise
linear curve sec
\ L value at the inflection point in./sec?
v 5-8
W table element deleting mechanism

(not used)
X,Y not used
z 1 XVIII debugging switch value (IBUG)
NOTE: Several additional cards follow the Z-card when the summary table printout, the graphical plot,

or the stick drawings are to be produced. These cards are exceptions to the rule governing letters
in the first column.
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A graphical output called STYX which is based on the tabular data output
is in use at HSRI., The user of STYX has several options avallable which are
fixed both in the input to the main program in the case of the contact surfaces
and in the input directly to STYX. Turthermore, there is the option to use
“TYX or skip it altogether,

The contact surfaces which are specified in the input for a particular
run are represented in the STYX output. To this end, each contact must have
its reference point fixed, and its length and angle specified on its own &
card in the input to the main program. In addition, the third field of the
T card for each contact surface desired must contain a nonzero, floating
point number., These set up the vector IGNORE (I) which controls the use of
the contact surfaces in both the program and the stick figure representation.

Controlling the use of STYX is a switch, NSTICK, read by SUMARY. In the
input, this switch is on the card immediately following the Z card, There
are 2 floating point fields of 10 spaces each and L integer fields of 5 spaces;
NSTICK is the third integer field, If it is blank or zero, STYX will be exe-
cuted; if nonzero, it will be skipped.

If STYX is to be used, its input follows the second SUMARY "go" card,
The first card contains seven integer fields, each five columns long. The
first fleld holds the number of horizontal lines, NHL, with restriction:

2 < NHL < 2L, The second field is used to specify the number of spaces
between horizontal lines, NSBH, which must satisfy the inequality: (WHL-1)
ISBH + NHL < 48, The thi~d field has the number of vertical lines, NVL, with
restriction: 2 < NVL < 53. The fourth field details the number of spaces
between vertical lines, NS3V, which must satisfy the inequality: (NVL-1)
“NSBV + NVL < 106,

The fifth field is the switch that controls the printing of the zero
lines, If thils field cont:ins a zero, the zerc lines print; otherwise they
are omltted, The sixth field specifies ISTEP, :he number of plots to be
printed, subject to the restriction ISTEP < 200 The seventh field holds
METH, the switch controlling the m=thod of gene -ating input, If METH # O, the
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time points are generated automatlcally; if METH = O, then the time points
must be specified by the user,

The next card is divided into six floating point fields, 10.4 wide. The
first four of these are the minimum and maximum values of X and Y, respectively,
that are to be printed. Care must be exercised so that the entire figure will

be contained by these boundaries. For scaling purposes the equation:

(XMAX-XMIN)/(ESV—B;%M = (YMAX=YMIN)/(NSBH*@EL-1) * MLy

must be satisfled. The next two flelds are the two parameters necessary when
METH # O, FIRST is the first time step to be printed, and DELTA is the incre-
ment between the time points., ISTEP, specified above, is the number of time
points that are generated automatically.

If METH = O, the next ISTEP cards contain the desired time points, If
METH # 0, these cards must not be included., Each time point must be in the
first 8 columns of its own separate card, and the number of cards specifying
tim: polnts must be equal to IST7P, These time points may be at any regular
or ‘irregular intervals, but they must be in chronological order. The requested
time points need not match exact.y the calculated time points. The nearest
available time point to the requ:sted time point will be printed. If any
requested time points are larger than the last available time point, the
last avallable one will be printed—but only once, The time that 1s printed
in “he label is the actual calculated time, not the requested time,

The last card contains 8 integer fields, 5 wide. These are the switches
consrolling the printing of the contact radii, Each one prints on 0.and is
omisted if the field contalns ansthing else, These switches control respec-
tiv:ly: the hip, nothing, the ciest, nothing, the elbcw, the hand, the knee,
the foot,

To avoid congestion, only tie man is priated out with connecting dots,
All of the contact surfaces have only their end points printed out and must

be connected by the user., Similirly, only the end points of the lower shoulder
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and seat belts are printed, and the upper shoulder beit should be connected
to the fifth joint., The contact radil are indicated as unobtrusively as
possible.

B. INFORMATION TABLES

The followlng tables describe the subscripting used in the program. In
addition, certain print aad tabular indices are given as well as quantities
used in the injury criteria model. Certain tables listed earlier in the

text are repeated in this section for ease and assessability to the user.

TABLE VIII, SUBSCRIPTS OF BODY JOINTS

Subscript 1 2 3 L 5 6 7
Joint Hip Lower Upper Neck Shoulder Elbow Knee
Spine Spine

TABLE IX. SUBSCRIPTS OF BODY SEGMENTS

Subscript 1 ) 3 L 5 6 7 8
Body Segment | Lower | Middle | Upper | Head | Upper | Lower | Upper | Lower
Torso | Torso Torso Arm Arm Leg Leg

TABIE X. SUBSCRIPTS OF CONTACT ARCS

Subscript 1 2 3 L 5 6 7 8
Contact Arc | Hip | - | Upper | Head | Elbow | Hand | Knee | Foot
Torso ’

TABLE XI. ICONTL VALUES
0 - Prints Summary + Krunch A if IBUG=0
LCONTL = 1 - Prints Summary + Krunch A
\2 - Prints Krunch A
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TABLE XII. BELT PARAMETER INDEX

Belt parameter index =

TABLE XIII,

NBELT =

WM H O

1, lap belt
2, lower shoulder belt

3, upper shoulder belt

NBELT VALUES

no belts

lap belt

shoulder belts

lap belt and shoulder belt

TABLE XIV. OCCUPANT POSITION OPTIONS

Occupant positlion option

1, driver
2, front passenger

3, rear passenger

TABLE XV, NORMAL COVTACT SURFACE INDICES

Index* Normel Contact Surface

0 floor

1 seat back

2 roof or head rest

3 upper steering wheel,
upper dash, back of
front seat

L windshield

5 lower steering wheel

6 lower penel

T steering column

8 toeboard

9 steering wheel

*It 1s permlssible to use any index for any
other contact surface as long as it is com-
patlible with the table of possible contacts
in Table XVI, For example, an alr bag could
be slmulated by using the various segments
of the steering wheel,
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TABLE XVI. OCCUPANT CONTACTS VERSUS VEHICLE CONTACTS (page 2)

Contact Front Front
Arc Passenger (2) Passenger (3)
Subscript Driver (1) Contacts Contacts Contacts
elbow (5) seat back (1) [15] seat back (1) [12] seat back (1) [11]
knee (7) lower panel (6) [16] lower panel (6) [13] back of front seat (3) [12]
foot (8) floorboard (0) [17] floorboard (0) [14] floorboard (0) [13]

toeboard (8) [18]

toeboard (8) [18]

back of front seat (3) [14]



TABLE XVII, INPUT TABLE SWITCHES

1 - vehicle deceleration function
Input table = 2 - time-varying debugging switches*
3 - (read but not used)

*Use of this switch 1s controlled by IBUG value in
Table XVIII.

TABLE XVIII, IBUG SWITCHER

negative integer - Input table 2 is used
IBUG = 0 - no debugging printout

1-3 - various levels of debugging
(See Debug Section)
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TABLE XIX, INDICES FOR THE INJURY CRITERIA QUANTITIES

Index Quantity
1 Severlty Index
2 Head Pitch Acceleration (rad/sec?)
3 Chest Load (1b)
L Shoulder Belt Load (1b)
5 Pelvic Belt Load (1b)
6 Knee Load (each) (1b)
7 Chest A-P G-Load
8 Chest S-I G-Load
9 Hip Angle Flexion (deg)
10 Lower Spine Angle Flexion (deg)
11 Upper Spine Flexion (deg)
12 Neck Angle Flexion (deg)
13 Shoulder Angle Flexion (deg)
1k Elbow Angle Flexion (deg)
15 Knee Angle Flexion (deg)
16 Hip Angle Hyper :xtension (deg)
17 Lower Spine Angle Hyperextension (deg)
18 Upper Spine Angle Hyperextension (deg)
19 Neck Angle Hyperextension (deg)
20 Shoulder Angle Hyperextension (deg)
21 Elbow Angle Hyperextension (deg)
22 Knee Angle Hyperextention (deg)

Note: See Reference 28 for a discussion of the injury
criteria model and a sample output generated by
the computer program,
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TABLE XX,

PROBABILITY LABELS

Index

Card 1

Card 2

Card 3

(User option)
Front collision

Rear collision

(User option)
Driver
Right front passenger
Right rear passenger

Left rear passenger
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(User option)

No restraint

Lap belt only
Shoulder harness only

Shoulder harness and
lap belt

Alrbag and lap belt
use

Inverted y-yoke and
lap belt use



C. GENERAL PROGRAM OUTPUT

The program printout consists of the following parts: run statement
and map, allowable contact specifications, input data, intermediate general
printout with various possible debugging options, and tabular summary.

There are four levels of debugging printout provided in the program.
The first level of printout (IBUG = O) is always printed upon program execu-
tion. However, not all of it is printed if Fortran Logical Unit Number 6 is
set to *DUMMY* or equivalent, The other levels (IBUG = 1, 2, 3) are set up
uring the input data cards labeled "V." Because of the piecewise-linear
neture of information inputted to the computer program using "V-cards" it
1s possible to isolate small time segments within the forward integration
period covered by the simulation and produce detalled debugging printout as
needed,

Although variable levels of debugging printout are speclfied only by
plecewlse linear sections, only integer values of TRUIZ have meaning, so the
best practice is to use a very small time step between integer values of
IBUG, A sample of the "V card" input is gilven in Table XXI and graphed in
Figure 34,

If a print time occurs while IBUG is a linear ramp, some intermediate
IBUG printout will occur (IBUG = 1, 2) as the values are rounded off approxi-
mately to integer values.

The first item printed out after the EXECUTION BEGINS statement is a
table of the permissible contacts for the NPASGR option selected. "NS" is
the total number of contacts and the next two lines give the indices of the

body segment and its corresponding allowed contact surface (see Table XV).
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TABLE XXI, SAMPLE V CARD DEBUG INPUT DATA SET

Data Card Column 1 11 2l 31
Information on ve. 1. 0. 0.
each data card V2, 1, 0,099 0.
Ve, 1. 0,100 bR
V2. 1. 0.14g 3,
Va2, 1, 0,150 O.
Ve, 1. 0.200 C.

It should also be noted that contact forces are labeled by the following
scheme in printouts from subroutines LODFEC and CONTAC (see Table XXII).
Indices 1, 2, and 3 are belts (lap, lower shoulder harness, upper shoulder
harness). Index 4 is vestiglal. The index pairs listed under I and A are
labeled from 5 through a maximum of 18 (see Table XVI).

The input data follows the listing of the contacts, These variables
are described in Part IV, Section A of this paper. The surface index A is
printed one greater than the listing in Table VII, For example, A = 1 is
the floor index whereas the value in the table is zero,

Intermediate general printout can be described by a table and a list of
accompanying comments. Table XXII consists of the debug level, the subroutine
generating the output, and the variables included in each output group and
Table XXIII lists speclfic comments which are generated by the program indi-

cating certain error conditlions and other aspects of program function.
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N
I

IBUG

.099 149

.05 A .15
Time - Sec.

Figure 33. Description of time-varying debug table.
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TABLE XXII, INTERMEDIATE GENERAL PRINTOUT (page 1)

Debug Level¥

(and debug printout | Routine | Label Contents
number)
0 (1) MAIN -- Number of contact surfaces (NS), index

of contact arcs (I), index of contact
surfaces (A) (see note on Table XXIIT)

0 (2) MAIN - Output of input (See Part IV. A of
report) {see note on Table XXIIT)

0 (3) KRUNCH | IGNORE | Switch indicating status of the contact
surfaces (+1 = no contact, -1 = no
friction, O = friction)

1 (k) GETY - Present time (ARG), time modulo 2L (MOD
ARG), table number (TABLE), ordinate
(ORD)

5 (5) ACCEL | STEP |sin 6y, cos 65, 62, L1612, 216;2 in

five columns for i = 1-8 in eight lines,
(L = in.) (© = rad)*, Quantity "a" is
matrix perameter,

2 (6) SEAT SEAT Z (in) (distances from hip to front of
seat)

FS (Fs) (1b) (hip seat force)

FSPRM (F's) (1b) (front edge seat force)
FZ (Fz) (1b) (force on front seat)
SMALLF (f) (1b) (friction force magni-
tude)

SUMBY (Byy, + o¥> + Bsv?) (1b) (non-
linear hip force)

ZMLCTS (z - Ly cos 87) (in.) (distance
from knee to front of seat)

1-8’ 1b for
10-17.)

*(ay = 1b in.for i
1=9, 1b 1n.° for 1

i

*NOTE: The terms "Debug Level" and "IBUG value" are equivalent throughout
this report.
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TABLE XXII. INTERMEDIATE GENERAL PRINTOUT (page 2)

Debug

Level Routine Iabel Contents

0(7) LODFEC LODFEC N (index of force) (See Table XVI and

text above)

SDL (8) (in.) (deflection)

SDID (B) (in./sec) (deflection rate)

PN (F) (1b) (contact force)

ET (E) (in. 1b) (energy since last unloaded
cycle)
EPSINT

(e) (in.) (permanent deformetion)

2 (8) CONTAC CONTAC N (index of contact)

DELOA (8) (in.) (deflection)

DELIAD (5) (in./sec) (deflection rate)

PN (F) (lb) (fozce)

EONE (%) (in. 1b) (total conserved energy)
EPSLNY %e) (in,) (permanent deformation)

2 (9) CONTAC QUE QUE (Subscript I = 1-10 referring to the
VECTOR body segments (1-8) as defined in Table
IX and the x-y ccordinates of the hip,
Units for subseripts 1-8 are in, 1b and
for 9-10 are 1b) (Contribution to genera-
lized force vector of contact surfaces is
defined in Table XV.)

2 (10) BODY BODY I (index for each line defined as QUE
subseripts)

GEE (gravitational contribution to gen-
eralized force vector)

DEE (contribution of seat bottom and belts)
BEE (contribution of centrifugal forces)
SMALLB (total generalized force vector)

2 (11) ZMAKER A AA (doubly subscripted matrix of differen-
MATRIX tial equations. Rows possess units defined
in QUE)

2 (12) ZMAKER A ANVERS (doubly subscripted inverse of AA)
INVERSE

2 (13) ZMAKER CHECK ck (A~1a + aa~1) (chec< of inversion
OF routire)
INVERSE
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TABLE XXII, INTERMEDIATE GENERAL PRINTOUT (page 3)

Debug

Routine Iabel Contents
Level

1 (14) DELZMK DELZMK A subscription comment "FOR MODE No. (K),
I=(1), A=(H)"

K (Index of jittering friction mode,

For K = 1-7, index refers to jolnt. For

K = 8, index refers to seat cushion, For
K =9,..., index is k + L, see page 26,
DELZ (J,K) This doubly subscripted vector
shows the change in acceleration vector

(J = 1-10) due to an instability (K = 1...)

1 (15) KRUNCH 7K ZVECPP (acceleration vector due to con-
BASE tinuous forces and unstable friction forces.
Subscripts refer to angular coordinates
(1-8), linear coordinates (9-10), and
vehicle (11). Units are rad/sec? and
in./sec?)

1 (16) KRUNCH TIME Time since beginning of collision event.
IMAX MAXI (aumber of possible instabilities)
IBIG (listing of possible unstable modes
with subsceript I = 1...M/XI)

1 (18) JITTER I I (index of averaging pair)
AK AK (weighted averaging coefficient used
in eliminating instabilities)

1(17) JITTER Comment: MODE (index) TURNED ON (or OFF)
or JITTER FOR MODE (index)

1 (19) JITTER ZRV = Relative acceleration from ZKBASE for
mode N

ZPPP = Relative acceleration from previous -
averagings

DELNU = Relative acceleration from DELZMK (K = 7)
FMM = Slope of vehicle deceleration (in./secd)
These quantities are largely vestigial

109



TABLE XXII., INTERMEDIATE GENERAL PRINTOUT (page 4)

Debug

Level Routine Iabel Contents

1 (20) TAUMAK TAUMAK ITAU (i;) (index of jittering friction
contact)

TAUHAT (%) (selected time interval)
TAUI (all predicted time intervals)

(I = 1-16, in two lines)

1 (21) TAUMAK MODE MODE (Switch array stating whether each
friction mode (1-16) is on (+1), off (-1),
or unstably jittering (0).)

3 (22) LIMIDT LIMIDT T (index)

AZ (red or in,) (predicted sngular posi-
tion of body elements, 1-8, x and y hip
position 9-10, and cart location 11)

AZP (rad/sec or in./sec) (associated
velocities)

AX (in.) (Horizontal joint coordinates.
Note index 8 refers to knee and both 1
and 7 to the hip joint here only)

AY (in.) (vertical joint coordinates)
AXD (1in./sec) (horizontal joint velocity)
AYD (in,./sec) (vertical joint velocity)

1 (23) FECLOD FECLOD TIME (sec) (time)

INDEX (index of contact force checked)

SDEL (in.) (predicted deflection)

SDEID (in./sec) (predicted deflection rate)
FTT (1b) (predicted contact force)

1 (2h) NORMUT AT TIME | TIME (sec)

(0 at THETA ZVEC (deg) (angular position of body

print elements 1-8)

times) ZVECP (deg/sec) (angular velocities)

ZVECPP (deg/sec?) (angular accelerations)
XHIP ZVEC, ZVECP, ZVECPP (in., in./sec, in./sec?)
YHIP (9-12) (position, velocity, and accelera-
¥CAR tion of hip in x and y directions and of
the vehicle)
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TABLE XXII. INTERMEDIATE GENERAL PRINTOUT (page 5)
Debug Routine Label Constants
Level
TIME TIME (sec)
FS FS (1b) (seat bottom force on hip)
FSPRM FSPRM (1b) (force at front edge of seat
bottom)
SMALLF SMALLF (1b) (friction force from seat
bottom)
X XHEAD, XCHEST (in./sec®) (horizontal ac-
celeration of head and chest c, & )
Y YHEAD, YCHEST (in./sec?) (vertical ac-
celeration of head and chest c, g.)
A AHEAD, ACHEST (in./sec®) (resultant
acceleration of head and chest)
GAMMA GHEAD, GCHEST (deg) (angle of resultant
acceleration vector)
M Index of belt segment: seat belt (1)
upper shoulder (2), lower shoulder (3).
DELTA SDELTA (in,) (elongation of belt)
DELTA DOT SDELTD (in. sec) (rate of belt elongation)
FM PN (1b) (belt force)
PHI PHI (deg) (belt angle)
EIM EONE (in./1b) (total energy conserved in
belt)
EPSILON EPSINY (in.,) (permanent belt deformation)
DEM
1 (25) KRUNCH RVEL MAXR (present number of friction modes
being considered)
RVEL (rad/sec, in./sec) (relative velocity
for the friction modes being considered)
RSEL (rad/sec2, in./sec?) (relative accel-
eration for friction modes considered)
0 (26) KRUNCH KRUNCH A KPRINT (print switch)
or KINFL (inflection switch)
1 KSTED (maximum time step switch)
if ITAU (mode selected)
LCONTL TAUHAT (sec) (minimum predicted mode time)
>0 TPRINT (sec) (next print time)
TINFL (sec) (next inflection time)
TSTEP (sec) (last inflection time)
DELTAT (sec) (time step selected)
TIME (sec) (new time)
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TABLE XXIII. PROGRAM COMMENTS (page 1)

Subroutine Comment Conditions

GETY TABLE HAS NO ENTRIES empty table
AND CALLED UPON

GETY TABLE MINX = . off low end of table
EXCEEDED BY ARG
Y SET TO

GETY TABLE MAXX = off high end of table
EXCEEDED BY ARG .
Y SET TO

LODFEC CHANGED R FROM __ TO ___ R, G, not compatible
FOR INDEX

LODFEC RESET CONSERVED ENERGY TO R reset lower
LOWER LIMIT AT T = __ SEC

LODFEC RESET CONSERVED ENERGY TO R reset higher
UPPER LIMIT AT T = __ SEC

LODFEC | CHANGED G FROM __ TO __ | R, G not compatible
FOR INDEX

LODFEC OUTSIDE MONOTOMIC RANGE OF during loading part of cycle
LOADING CURVE FOR INDEX N = | F (t) < F (t - At)

ZMAKER BAD MATRIX., DUMP determinant of matrix = 0
JITTER TWO LINEAR JITTER MCDES 2 contact friction jitter
AT T = modes want to jltter at same

time (fatal)

LIMIDT AT TIME = DELTA some forward contact forces
T = RESET TO ____ predicted to change by > 1000 1b

NOTE: These comments will be printed out regardless of whether Unit 6
is set to *DUMMY* or not.

LODFEC NEGATIVE FORCE SET TO during loading part of
ZERO FOR INDEX N = cycle F (t) < 0; set
AT TIME = equal to zero,
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TABLE XXIII. PROGRAM COMMENTS (pege 2)

Subroutine Comment Conditions
TAUMAK RESET MODE ( YTO ZERO | Indicates jitter mode selected
KRUNCH AT TIME = , ANGLE leil > 360° (fatal)
EXCEEDS 360 DEGREES
KRUNCH AT TIME = s MORE Space alloted to storsge for
THAN EIGHT ITEMS IN JITTER Jltter process would be
RUN STOPPED exceeded (fatal)
FECLOD AT TIME = FORCE fatal
COMING ON FFOM BEHIND FOR
INDEX

Logical input/output units used are:
6 for statements and most output except first two items
of Table XII and all of Table XIII
9 for storage for SUMMARY

These must be specified in the run statement.

D. TELETYPE USERS' GUIDE

This section is a technical guide for the user of the two-dimensional
crash victim simulator whro is familiar with MTS27 and wishes to exercise the
model from a teletype terminel remote from The University of Michigan. The
RUN statement which causcs the model to be exercised is described, followed
by a description of the use of a conversational program which allows the user

easy access to desired portions of the output generated in an exercise of the

model.

The RUN statement for the two-dimensional crash victim simulator is

$RUN SP78:2D SCARDS=datefile 9=summary file G=¥DUMMY*
SPRINT=¥DUMMY *

The terms "data file" and "summary file" refer to file names which must
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be supplied by the user. The input data for exercising the program, which

has been described in Part IV, Section A of this report is stored in "data
file." The output from the program must be stored in a file (referred to here
as "summary file") which should be approximately 25 pages in length. The
command "6=*DUMMY*" deletes printing of O-level debug output out over the
teletype terminal. If 1t is not desired to produce the output on paper at

The University of Michigan Computing Center, then the command "SPRINT=*DUMMY*"
should be used. If printout is desired, then "*DUMMY*" should be replaced

by another file, approximately 25 pages in length.

Because the complete output from one exerclse of the program could take
up to three hours to print out at a teletype terminal, it 1is necessary to
provide a technique for accessing sections of the output quickly and conve-
nlently. Use of the program which accomplishes this is described in the re-
mainder of thls section.

The program can also be used to retrieve information from the output of
a previous run. In either case, the summary option must have been used in
carrying out the exercise. The flle in whilch the summary information 1s
stored ("summary file") becomes the input file to the teletype output access
program.

The program has three sections: "initial," "general," and "complex."
The "initlal" section enables the user to list any of 5k different input
values which were used in carrying out the exercise. The "general" section,
allows the user to list any of 61 differsnt output variables over any time
period. The "complex" section enables the user to make comparisons. When one
variable reaches a critical value, the values of other variables can be de-
termined.

The model 1s designed to be conversatlional with the user. However, the
user is gliven the option of putting his instructions in a file.

The following command will trigger sxecutlon of the program.

$RUN SP78:TALK2 1 = summary file

or, 1f no conversation with the program is desired:
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$RUN SP78:TALK2 1 = summary file 7 = ¥DUMMY* L = instruction file
The program will begin with
ENTER 6 IF CONVERSATIONAL, 7 IF NOT

If a 7 is entered, the program will proceed to get the rest of its information
from the file specified oa logical unit 4. If the end of this file is reached
and the program has not been terminated, the program will return to conversa-
tional mode. If a 6 is entered, the program will proceed to prompt the user
for instructions beginning with:

ENTER 1 IF INITIAL, 2 IF GENERAL, 3 IF COMPLEX, 4 IF DONE

Entering a 1, 2, or 3 will cause the program to go to the indicated section—
each of which is desceribei below, and a 4 will result in termination of the
program.

In using the "initial" section of the teletype output access program,
the user is prompted by tie following:

1 ENTER VARIABLE NUMBER - O IF DONE
( )

2 )
3  ENTER OCCU°ANT POSITION NUMBER

Statement 1 indicates tha-, the user should enter a number. The entry of a
number from 1 to 54 resulis in the value of the corresponding input constant
(as described in Tables XIV and XXV) being printed. Then, the user is
prompted for another number by a pair of parentheses only. This process can
be discontinued at any tiie by entering a O.

The first time that +, 13, or 39 is entered, the user will be prompted
with statement 3. A 1, 2 or 3 must be entered, corr:sponding to driver,
front seat passenger or r:ar seat passenger. (This iaformation is used only
to make the titles more d:scriptive and does not change any of the numerical
results.)

In using the "general" section of the teletype cutput access program,
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the user is prompted by the followlng:

1. HOW MANY VARIABLES

2. ENTER TIME INTERVAL
FROM () ) )

3. ENTER TIME INTERVAL
FROM ( ) to ( )

L. ENTER OCCUPANT POSITION NUMBER
ENTER VALUE OF "PHEAD"

6. ENTER VALUE OF "CHEST"

Statement 1 wants to know how many variables the user is interested in
seeing. This number can be from 1 to 4. Statement 2 asks for the appropriate
number of variable numbers. These numbers range from 1 to €1 and correspond
to the variables as listed in Tables XXVI and XXVII. If a 50 or 55 is entered,
statement L4 will ask for the occupent position number. Enter 1 if driver,

2 if front seat passenger, or 3 if rear scat passenger. If a Ll or L5 is
entered, statement 5 will ask for a value of "PHEAD." This is the distance
from the neck joint to the location of the head accelerometer. If a L6 or

47 is entered for a variable number, statcment 6 will ask for the value of
"PCHEST." This is the location of the chest accelerometer. After the vari-
able numbers have been recorded, a time interval must be specified. A car-
riage return will result in initial value: being printed. Any other time
period must be specified in the appropriate spaces. (NOTE: If a contact

that does not occur is asked fcr, the comrient CONTACT NUMBER XX NEVER OCCURRED
will be printed and the corresronding heading will be meaningless.)

' section of the teletype output access program,

In using the "complex'
the user is prompted by the following:

1. ENTER DECISION VARIABLE

2. ENTER COMPARISON VALUE

3. ENTER COMPARISON MODE - 1 if GT, 2 if LT

L. HOW MANY VARIABLES?
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5. ENTER VARIABLE NUMBERS
(0 0 )

6. ENTER TIME INTERVAL
FROM ( ) to ( )

7. ENTER OCCUPANT POSITION NUMBER
8. ENTER VALUE OF "PHEAD"
9. ENTER VALUE OF "PCHEST"

This section prints the values of' variables at the time when another
variable reaches a critical value. Ary of the variables listed in Tables
XXVI and XXVII can be observed in thic manner. For example, the user interested
in the position of the head when 1t hi.ts the windshieid would make the fol-

lowing entries.

1. 56 (head on windshield is the decision
variable)
2. 0 (0 is the critical value—we become

interested when the force becomes
greater than O (hence the 1).)

39) (ko)

0.) to (2.0) (Normally the time interval should cover
the entire run, although some variables
reach the critical point several times
during the run and the time interval must
be carefully chosen if you are not inter-
ested in the first occurence.)

3. 1
L, 2 (NOTE: maximum is 3)
5. (
6. (

The user will be prompted by statements 7, 8, and 9 only in certain

Instances as described in tte "general"

section, page 116.
The output of this sectlion consicts of the time at which the critical
value was exceeded, along with the value of the decision variable and the

other variasbles at that time.
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TABLE XXIV. INPUT CONSTANTS (NUMERICAL ORDER) (page 1)

Number Deseription
1 Floor-X
2 Seat Back-X
3 Roof -X
L4 Upper Steering Wheel-X (When NPASGR=1)
Upper Panel-X (When NPASGR=2)
Front Seat Back-X (When NPASGR=3)
5 Windshield-X
6 Lower Steering Wheel-X
T Lower Panel-X
8 Steering Column-X
9 Toeboard-X
10 Floor-Y
11 Seat Back-Y
12 Roof-Y
13 Upper Steering Wheel-Y (When NPASGR=1)
Upper Panel-Y (When NPASGR=2)
Front Seat Back-Y (When NPASGR=3)
1k Windshield-y
15 Lower Steer!ng Wheel-Y
16 Lower Panel-Y
17 Steering Co.umn-Y
18 Toeboard-Y
19 Hip Contact Arc Radius
20 Upper Torso Contact Arc Radius
21 Head Contact Arc Radius
22 Elbow Contact Arc Radius
23 Hand Contact Arc Radius
2k Knee Contact Arc Radius
25 Foot Contact Arc Radius
26 To Chest Center of Curvature
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TABLE XXIV. INPUT CONSTANTS ( NUMERICAL ORDER) (page 2)

Number Description

27 To Head Center of Curvature

28 Lower Torso Length

29 Center Torso Length

30 Upper Torso Length

31 Center Torso to Upper Arm

32 Upper Arm Length

33 Lower Arm Length

3L Upper Leg Length

35 Lower Leg Length

36 Floor-Length

37 Seat Back-Length

38 Roof-Length

39 Upper Steering Wheel-Length (When NPASGR=1)
Upper Panel-Length (When NPASGR=2)
Front Seat Back-Length (When NPASGR=3)

Lo Windshield-Length

L1 Lower Steering Wheel-Length

L2 Lower Panel-Length

L3 Steering Column-Length

Ly Toeboard-Length

L5 Distance From Hip to Seat Front

L6 Number of Belt Segments

L7 Lower Torso-Center of Gravity to Lower Joint

L8 Center Torso-Center of Gravity to Lower Joint

L9 Upper Torso-Center of Gravity to Lower Joint

50 Head-Center of Gravity to Lower Joint

51 Upper Arm-Center of Gravity to Lower Joint

52 Lower Arm-Center of Gravity to Lower Joint

53 Upper Leg-Center of Gravity to Lower Joint

54 Lower Leg-Center of Gravity to Lower Joint
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TABLE XXV. INPUT CONSTANTS ( ALPHABETICAL ORDER) (page 1)

Number Description
39 Back of Front Seat-Length (When NPASGR:3)
L Back of Front Seat-X (When NPASGR=3)
13 Back of Front Seat-Y (When NPASGR=3)
26 Chest Center of Curvature (Distance to)
L8 Center Torso-Center of Gravity to Lower Joint
29 Center Torso-Length
31 Center Torso to Upper Arm (Distance from)
22 Elbow Contact Arc Radius
36 Floor-Length
1 Floor-X
10 Floor-Y
25 Foot Contact Arc Radius
23 Hand Contact Arc Radius
27 Head Center of Curvature (Distance to)
50 Head-Center of Gravity to Lower Joint
21 Head Contact Arc Radius
19 Hlp Contact Arc Radlus
L5 Hip to Seat Front (Distance from)
2k Knee Contact Arc Radius
52 Lower Arm-Center of Gravity to Lower Joint
33 Lower Arm Length
54 Lower Leg-Center of Gravity to Lower Joint
35 Lower Leg-Length
L2 Lower Panel-Length
T Lower Panel-X
16 Lower Panel-Y
L1 Lower Steering Wheel-Length
6 Lower Steering Wheel-X
15 Lower Steering Wheel-Y
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TABLE XXV. INPUT CONSTANTS ( ALPHABETICAL ORDER) (page 2)

Number Description
b7 Lower Torso-Center of Gravity to Lower Joint
28 Lower Torso-Length
L6 Number of Seat Belt Segments
38 Roof-Length
3 Roof-X
12 Roof-Y
37 Seat Back-Length
2 Seat Back-X
11 Seat Back-Y
43 Steering Column-Length
8 Steering Column-X
17 Steering Column-Y
Ly Toeboard-X
18 Toeboard-Y
51 Upper Arm-Center of Gravity to Lower Joint
32 Upper Arm-Length
53 Upper Leg-Center of Gravity to Lower Jolnt
3L Upper Leg-Length
39 Upper Panel-length (When NPASGR=2)
L4 Upper Panel-X (When NPASGR=2)
13 Upper Panel-V (When NPASGR=2)
39 Upper Steering Wheel-Length (When NPASGR=1)
L Upper Steering Wheel-X (When NPASGR=1)
13 Upper Steering Wheel-Y (When NPASGR=1)
ITe) Upper Torso-Center of Gravity to Lower Joint
20 Upper Torso Contact Arc Radius
30 Upper Torso Length
Lo Windshield-Length
5 Windshield-X
1k Windshield-Y
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Number
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TABLE XXVI.

Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Angles
Body Motion
Body Motlon
Body Motion
Body Motlon
Body Motion

Description

Lower Torso
Center Torso
Upper Torso
Head

Upper Arm
Lower Arm
Upper Leg
Lower Leg
Lower Torso
Center Torso
Upper Torso
Head

Upper Arm
Lower Arm
Upper Leg
Lower Leg
Lower Torso
Center Torso
Upper Torso
Head

Upper Arm
Lower Arm
Upper Leg
Lower Leg
Horizontal
Horizontal
Horizontal
Vertical
Vertical
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VARTABLES (IN NUMERICAL ORDER) (page 1)

Position
Position
Position
Position
Position
Position
Position
Position
Velocity
Velocity
Telocity
Telocity
Jelocity
Velocity
Jelocity
Jelocity
Acceleration
Acceleration
Acceleration
Acceleration
Acceleration
Acceleration
Acceleration
Acceleration
Position’
Velocity
Acceleration
Posltion

Velocity



Number
30
31
32
33
3k
35
36
37
38
39
Lo
41
L2
43
Ly
45
L6
LT
48
k9
50

51
52
53
54
55

TABLE XXVI.

Vehicle
Vehicle
Vehlcle
Vehicle

Belt Forces
Belt Forces
Belt Forces
Seat Forces
Seat Forces
Relative Head
Relative Head
Belt Angles
Belt Angles
Belt Angles
Accelerometer
Accelerometer
Accelerometer

Accelerometer

Hip on Seat Back

Description
Motion

Motion
Motion
Motion
Lap Belt
Lower
Upper
Hip
Front Edge
Position
Position
Lap Belt
Lower
Upper
Head
Head
Chest
Chest

Upper Torso on Seat Back

Upper Torso on Upper Steering Wheel
Upper Torso on Upper Panel
Upper Torso on Front Sest Back

Upper Torso on Lower Steering Wheel

Upper Torso on Steering Column

Head on Seat Back

Head on Roof

Head on Upper Steering Wheel
Head on Upper Panel
Head on Front Seat Back
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VARIABLES (IN NUMERICAL ORDER) (page 2)

Veloclty
Velocity
Velocity
Acceleration
Shoulder
Shoulder
Shoulder

Horizontal

Vertical

Shoulder
Shoulder
Resultant
Angle
Resultant

Angle

(When NPASGR=1)
(When NPASGR=2)
(When NPASGR=3)

(Wehn NPASGR=1)
(When PNASGR=2)
(When NPASGR=3)



TABLE XXVI. VARIABLES (IN NUMERICAL ORDER) (page 3)

Number Description
56 Head on Windshield
57 Head on Lower Steering Wheel
58 Elbow on Seat Back
59 Knee on Lower Panel
60 Foot on Floor
61 Foot on Toeboard
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TABLE XXVII.
Number

L7 Accelerometer
L6 Accelerometer
L5 Accelerometer
Ly Accelerometer
b1 Belt Angles
L2 Belt Angles
43 Belt Angles
3L Belt Forces
3 Belt Forces
34 Belt Forces
18 Body Angles

2 Body Angles
10 Body Angles
20 Body Angles

L4 Body Angles
12 Body Angles
22 Body Angles

6 Body Angles
1k Body Angles
24 Body Angles

8 Body Angles
16 Body Angles
17 Body Angles

1 Body Angles

9 Body Angles
21 Body Angles

5 Body Angles
13 Body Angles
23 Body Angles

Description
Chest

Chest

Head

Head

Lap Belt
Lower

Upper

Lap Belt
Lower

Upper

Center Torso
Center Torso
Center Torso
Heed

Head

Head

Lower Arm
Lower Arm
Lower Arm
Lower Leg
Lower Leg
Lower Leg
Lower Torso
Lower Torso
Lower Torso
Upper Arm
Upper Arm
Upper Arm
Upper Leg
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VARTABLES ( IN ALPHABETICAL ORDER) (pege 1)

Angle
Resultant
Angle
Restltant

Shovlder
Shoulder

Shoulder
Shoulder
Acceleration
Position
Veloclity
Acceleration
Position
Veloclity
Acceleration
Position
Velocity
Acceleration
Position
Velocity
Acceleration
Position
Velocity
Acceleration
Position
Velocity

Accelerstion



TABLE XXVII.
Number

7 Body Angles
15 Body Angles
19 Body Angles

3 Body Angles
11 Body Angles
27 Body Motion
25 Body Motion
26 Body Motion
30 Body Motion
28 Body Motion
29 Body Motion
58 Elbow

60 Foot

61 Foot
55 Head
57 Head

pL Head
53 Head

55 Head

55 Head

56 Head

L8 Hip

59 Knee

39 Relative Head
Lo Relative Head
37 Seat Forces
38 Seat Forces
50 Upper Torso
51 Upper Torso

Description
Upper Leg

Upper Leg
Upper Torso
Upper Torso
Upper Torso
Horizontal
Horizontal
Horizontal
Vertical
Vertical
Vertical

On

On

On

On

On

On

On

On

On

On

On

On

Position
Position
Hip

Front Edge
On

On
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VARIABLES (IN ALPHABETICAL ORDER) (page 2)

Position
Velocity
Acceleration
Position
Velocity
Acceleration
Position
Velocity
Acceleration
Position
Velocity
Seat Back
Floor

Toeboard

Front Seat Back (3)

Lower Steering Wheel

Roof
Seat Back

Upper Panel (2)
Upper Steering Wheel ( )

Windshield
Seat Back
Lower Panel
Horizontal

Vertical

Front Seat Back (3)

Lower Steering Wheel



TABLE XXVII.
Nunber
L9 Upper Torso
5 Upper Torso
50 Upper Torso
50 Upper Torso
33 Vehlcle
31 Vehicle
32 Vehicle

Description
On

On
On
On
Motion
Motlon
Motion
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VARIABLES (IN ALPHABETICAL ORDER) (page 3)

Seat Back

Steering Colﬁmn

Upper Panel (2)

Upper Steering Wheel (1)
Acceleration

Position

Velocity




E. OVERALL PROGRAM DESCRIPTION AND FLOW DIAGRAM

Figure 34 is a flowchart for the computer program. Initially data is
read, constants computed, and the problem initlalized to zero where necessary.
The cart acceleration and the level of output printling are then ascertained
from the data. Acceleration components due to inertia, continuous joint re-
actions and external forces are computed in subroutine ACCEL. The effective
acceleration due to dlscontinuous forces is then computed and added to the
continuous accelerations in subroutines, JITTER and TAUMAK. After the accel-
erations are finally predicted, standard checking, storing, incrementing and
integrating of results are carried out. The program then is run in loop
fashion for the required number of print time increments.

Figure 35 shows how the subprograms in the computer implementation fit
together in usage. The left margin of the figure contains a numbered list of
the subroutines which comprise the program. Across the top is a list of
numbers, each representing the subprogram with the same number on the left
margin. The figure itself consists of a set of "X"'s at various interszctions
of rows and colums. An "X" at the mth row and nth columns indicates that
subroutine n makes use of subroutine m. The row for a particular subroutine
shows all the other subroutines which use it. The column for a particular
subroutine also shows all the subroutines which it uses.

Figure 36 is similar to Figure 35 and shows the uses of library routines.

F. INTEGRATION OF DISCONTINUOUS ACCELERATICNS

In the digital computer simulation, integration is done by mathema@ical
approximation. The usual technique is to base the integration on a poly-
nomial which has been fit through several ordinates of the integrand. This
approach will work well only when the Integrand is very much like the poly-
nomial obtained by the curve fitting. If the integrand is continuous, it is
possible to find a set of intervals over each of which the integrand "looks"
like a polynomlal. If, however, the integrand is discontinuous, the discon-
tinuity will remain regardless of the length of the interval within which it
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Start

Y

MAIN — Initialize to zero.
Read input data. Compute constants.

Y

KRUNCH — Initialize output. Compute constants.

Y

KRUNCH — Determine debug switch
and deceleration.

’4—-—— ,

Y

ACCEL — Compute continuous accelerations.

Y

KRUNCH — Determine jitter modes.

!

KRUNCH — Is MAXI > 0? ‘
(Are there any accelerations in jitter?)

INO

—

YeS | I TTER — Determine

accelerations.

!

RELSEL — Compute relative accelerations.

Y

TAUMAK — Compute time next acceleration will jitter.
Check values of external forces.
Update storage of output.

!

KRUNCH — Update print and inflection times.

'

KRUNCH
Ist > tmax?

No
——

SRUNCH KRUNCH
t=t+ At Integrate

Yes

1Yes

ouT

No
|

MAIN — More data?

L&~ SUMRY — Print summary

Figure 34.
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Simplified program flow chart.
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is Imbedded, so decreasing the interval length 1s not effective. In this
situation, either the integration must be styled to the discontinuity or the
discontinulity removed. For the two-dimensional crash victim simulator, the :
latter course is adopted.

Discontinuities arise in the model for seat friction force, contact
surface friction force, and friction-like forces in the joints. FEach of these
models has a velocity-dependent component (force, torque, or slope of torque)
which assumes a fixed value “or all veloclties greater than the velocity
limit (an input parameter), the negative of the value for all velocities less
than the negatlve of the velocity limit, and zero for the open interval
defined by minus and plus values of the velocity limit.

Each instance of these discontinuous models is called a "mode" in the
computer program and in the dlscussion which follows. If a particular mode
is in either of the extreme velocity intervals, the mode is said to be "full
on." If the mode is in the zero interval, the mode is said to be "full off."
When velocity is at the velocity limit or its negative (the points of dis-
continuity), one of several things can happen, which may be catagorized into
one of two general possibilities. Either the mode will pass on through the
limit point without mishap to full on or full off in the other direction, or
the mode will try to do one of these and be thrown back. In the latter case,
the mode is said to be "in jitter." Jitter will often take the form of a
rapid alternation of the full on and full off states. This occurs when momen-
tum and other forces drive the mode to full on but the force developed by the
mode coming on is large enough to throw the mode back to off. The mode going
in turn causes the mode force to go to zero which leaves the momentum and
other forces free to drive the mode on egain and so on, and on.

The jitter type of phenomenon occurs in reality, for example, as chatter
due to backlash in gears. The technique employed in the two-dimensional
crash victim simulator to compensate foi* jitter is based on the observation
that a rapld alternation of the on-off states would effectively hold the ve-
locity at the velocity limit. Hence, for a time interval during which a
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single mode 1s jittering, the effective body accelerations are computed to

be a welghted average of the accelerations computed with the mode turned full
off and those computed with the mode turned full on, such that the mode accel-
eration 1s made zero, or the mode veloclty is the same at the end of the time

interval as 1t was at the beginning.

eff  off ( on off
where
v
a == °f§ (IV.F.1)
on off
Eeff is the effective generallized acceleration vector.

X

Eon is the generalized acceleration vector with the mode full on.

Zoff 1s the generalized acceleration vector with the mode full off.

ioff is the mode acceleration magnitude with the mode full off.

oon is the mode acceleration magnitude with the mode full on.

When the mode is infulenced by an outside acceleration (such as vehicle
deceleration) applied arbit arily, the mode acceleration forced to zero may
not guarantee that there wil be no change in velocity over an interval.
Arbitrary accelerations are treated by the two-dimensional crash victim simu-
lator as plecewise linear fimctions. Those modes which are dependent uﬁon
vehicle acceleration, e.g., any interaction of contact surface and contact
arc, are termed "coupled" modes and lead to "linear" jitter. Linear jitter

requires a different welghted average and also an iteration for resolution.
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- off
al = . - \0’
on off
A 1.,on 4
T = — (IV.F.2)
os
ac Wa

where

Wa i1s the orientation angle of the contact surface if a contact surface
is involved in the mode. Vg is defined zero if no contact surface
is involved in the mode, e.g., seat cushion.

%o is a computed time interval in which the mode will reach the velocity
limit. It is used in the iteration as shown on page 135.

For several modes in jitter or "multiple jitter,"

all possible combina-
tions of the jittering modes in the full on state and the full off state are
consldered and averages developed by reapplications of the single mode aver=-
aging procedure so that all the mode velocities are held constant. Only one
linear jitter can be handled at one time and must be processed last in com-
bination with other jittering modes.

If no mode changes state during a time interval, then the generalized
accelerations are continuous. If the time interval is kept small enough,
the generalized accelerations are nearly constant over the interval and a
one point integration scheme can be validly employed.

The grand strategy for integration in the two~dimensional crash victim
similator revolves around malntalning the valldity of these two requirements
and taking advantage of their consequences. At each time throughout the
initial value solution of the equations of motion, an integration time interval
is computed that will meet the requirements that the generslized accelerations
are continuous and approximately constant. The determination of the time
interval is carried out by taking the smallest of the predicted time intervals,
after the end of which the requirements wil’ no longer be met due to one or

another cause. In particular, the computer program predicts the next time at
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which any of the modes will change state. If that time is less than the time
to which the program would integrate from other considerations (deceleration
slope change, print time, etc.), the program integrates to that time and indi-
cates that the mode i1s jittering. The program always employs the averaging
procedure to resolve the questionable accelerations from jittering modes.

The time interval prediction equation (until a change of state) for an

uncoupled mode is

T = E sgnn-v

v
where

v for |v] > ¢ and sgn v # sgn v

=3
1}

v for Ivl <t

¢ is the mode veloclity limit
v 1s the mode velocity

v is the mode acceleration

Note that if ]0] = ¢, then 7 1s not used since the mode is already known to
be jittering. If Iv] >t and sgn v = sgn v, then T is infinite since the mode
is going away from the velocity limit. The corresponding equation for a

v [ 1 ]//*l _ 2t sgnn-v) ]
8 8 cos V¥
v 8

coupled mode 1s

v

Qo for 1. |v| >¢ and sgn v = sgn v
2. lvl =k

3. arg of radical 1s negative

where av is the acceleration rate and the other conventions are as previously
glven. The equation is used in an interative procedure in which it is alter-

nated with the acceleration averaging procedure and recomputation of %o until
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two consecutive values of T are approximately the same.

G. SUBPROGRAMS DESCRIPTIONS AND FLOW DIAGRAMS

For each of the subprograms which make up the computer implementation of
the model a short description tocgether with a flow diagram is presented here,
These are in alphabetlcal order by the subprogram name with the main program
ordered as if its name were MAIN. This form is thought to be the most useful

reference. The subroutines included are:

1 ACCEL 15 MAIN

2 ARCSIN 16 MULLER
3 BELT 17 NORMUT
L BODY 18 PAGE4
5 CONTAC 19 RELSEL
6 DATE 20 RELVEL
7 DELZMK 21 SEAT

8 FECLOD 22 SIPP

9 GETY 23 STYX

10 ITOPOW 24 SUMARY
11 JITTER 25 TAUMAK
12 KRUNCH 26 ZKMAKR
13 LIMIDT 27 ZMAKER
14 LODFEC
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Subroutine ACCEL carries out the following steps:
1. Computes sines and cosines of body angles and other needed variables.

2. Gets seat forces and contributions to the generalized force vector via
SEAT.

5. Computes all joint coordinal.e positions and velocities.
4. Gets belt forces and contributions via BELT.

5. Gets contact forces and contributions via CONTAC.

6. Computes joint elasticity torques and contributions.

7. Procures generalized force vector from BODY.

8. Computes variable matrix elements.

9. Procures acceleration vector from ZMAKER.
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Compute body
angle sines and
cosines together
with other inter-
mediate variables.

Print
debugging
information
number five,
Table XXII.

No

Y

Compute seat
generalized
force vector
by calling
SEAT.

!

Compute Joint
coordinates
and velocities.

|

Compute belt
genera-ized
force vector
by calling
BELT.

Y

Compute contact
generalized force
vector by calling
CONTAC.

{

Compute Joint
elasticity
generalized force
vector using equa-
tions II.F.5.

Y

Compute mass
matrix elements
using equation
II.C.6.

{

Compute continuous
acceleration vector
by calling ZMAKER.

1

Compute total
continous
generalized force
vector by calling
BODY.
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Function ARCSIN finds the angle for a given sine value. The argument X is in
the range -1 s X s 1 and is the sine of the angle to be computed by this rou-
tine.

ARCSIN(X)

Set
X

Yes

X = X
No
SQ = 1- X
Is
K
No

RETURN

Set extreme values as

Yes /7 \ I
59 <0 \J0=™ arcsIN = 2 IF %0
ARCSIN = -II/2 IF X<0

Evaluate arcaine magnitude by following power series.

ANS = g - {1-x(-.001262491 xx7 + .00667009 XX -.01708813 xx°

+.03090188 XX[‘l

i
+3)

-.0501743 xx3 + .08897899 XX ° -.2145988 XX

ARCSIN = +ANS
Where ANS is given

the samesign as X

RETURN

iy
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Subroutine BELT carries out the following steps:
1. Computes angle, elongation, and rate for each belt.
2. Obtains belt force from LODFEC.

5. Computes total belt generalized force vector and adds it to seat total
generalized force vector.

2 or 3

How
many belts

10 |

Compute X and Y
components of

belt length, belt
angle, belt elonga-
tlon, length and
elongation rate

for lower shoulder
harness using equa-
tions II.G.2 and 3.

Compute belt force
by calding LODFEC
with defection set
equal to elongation,

—

etc.
Y

Compute belt force
for upper shoulcer
harness using equa-
tions II.G.2 and 3
and calling LODIEC.

Compute generalized
force contributions
from harness using
equation II.G.4.

Yes

there?

Compute lap belt

force using equa-
tions II.G.1 and

calling LODFEC.

Compute generalized
force contributions
for lap belt using
equation II.G.4.

y
(30 )

>\ 3

RETURN
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Subroutine BODY

Computes generalized force vectors due to gravity and centrifugal force, a-

Combines all five continuous generalized force vectors for total.

BODY

Compute angular
gravitational
generalized forces
using equation

II.C.bL.

Compute centrifugal
generalized forces
using equations

~I.C.3.
Y

Compute total
continuous
generalized force
vector using
equation II.B.4.

!

Print debugging
output number
10, TABLE XXII,
if IBUG is non-
zZero.

RETURN
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subroutine CONTAC carries out the following steps

L. Searches table of possible contacts (as set up in MAIN) and determines
whether contact exists using coordinates of body segment center of curva-
Lture and contact surface ret'erence point.

2. Does bookkeeping for linear jitter modes.
5. Obtains contact forces from LODFEC.

L. Computes contribution of contacts to total generalized force vector.

CCNTAC ’

y
Set possible
Jitter mode
counter MAXR=8.

Find body seg-
ment index, "i"
from KTABLE.

Set count-
ing index INN=
1; se: distance
fudg: factor
to .1.

i

Compute coordinates
of body segment
center of curvature
and rates using
equations II.D.4

Zero all con-

and 5. tact relative
velocitles, con-
tact generalized
force comporients
and tre BASIC
array.
‘,
Comput > deflection, Shift contact
parallel distance, indices from
and velocity using IFORK to JFORK Print debug
equations II.D.3. and s=t IFORK ging output
1 to zero. number 9,

TABLE XXII,
if IBUG is
not zero.

Find surface
inde¢ "a" for| Mo
inte ~acton N
from KTABLE.

allowed for
contact a?

Yes

urface"a'
present?

Set force and
conserved energy
to zero.

Print debugging

output number 84
TABLE XXII, if

IBUG nou zero.

Pu: indices
1 ind a into (next page)
IF JRK.

Set MAXR =
MAXR+1. Set
count index
to MAXR-8.

Set relative
velocity to
parallel
velocity.

Set relative
velocity limit
to surface "a"
velocity limit.
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Is
parallel
distance
test
passed?

Compute contact
force for this
interaction by
calling LODFEC.

(next page)

Is
there friction
allowed for
contact a?

No

Update count
index by one.

Compute generalized
force vector using
equations II.D.8

he computed

through 13.

Move up entries
in JFORK and set
MODE to natch.

(last page)

36¢

Full off,
set MAXR entry
to minus one.

relative velocit
to velocity
limit,

In Jitter,

set MODE for
the MAXR entry
to zero.

No

Reset array
IFORK to
Zero.

Eliminate this
mode from JFORK
and set MODE.

MAXR=
MAXR-1

(last page)

Full on, set
MAXR entry
of MODE to
one.
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friction
allowed for
contact a?

300 )=

Y

Full off, set
entry MAXR of
MODE to minus
one.

r;zpy Jitter mode

indices at and
above this place
in JFORK up and
shift MODE to
match.

Coripare
relative velocit
to velocity
linit.

In ji .ter, set
entry MAXR of
MODE to zero.

Full on, set
entry MAXR of
MODE to one.
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Subroutine DATE

Calls Library routine TIME to get date program is being run for print-out
identification.

Obtain calendar
date by calling
MTS library
routine TIME.

RETURN
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Subroutine DELZMK
Computes contributions to the acceleration vector of joint, seat, and contact

friction. The argument K of DELZMK is the mode number for which acceleration
contributions are to be computed.

10 &

»{370

Obtain contact
Compute proper
joiht scop e st bniex
friction torgues 2 IF%RK
using K for I in rom :
equations II.F.2
through 4.
Compute accelera- Print optional
tion contributions debugging o'it-
by applying nirth put if IBUG=0.
universe columr to
Y seat friction force
Compute acceleration| | with proper sign.

contributions by
applying proper in-
verse columns to
Joint torque using
equation II.F.6.

Compute friction
force with proper
sign using equa-
tion II.D.1.

Y

Compute accelera-
tion contributions
by applylng proper
inverse columns to
friction force using
equations II.D.14
through 22.

\
(500)<— |

Print debugging
output number
14, Table XXII
if IBUG 1s nct
Zero.
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Subroutine FECLOD is used to predict contact and belt forces during the
selection a new time step.

FECLOD

Copy variables
needed into
temporary
storage.

present rels
ative deflectio
>0°

Set force | to
zero.

present
deflection
rate
<0?

previous
deflection
rate

deflection deflection >

off deflection?

Compute new

T - - { unloading
nd ne eset permanen coefficients. Print error
permanent deflection by gggg:tiozgSOt comment, call
deflection the deflection | fi are byon SUMARY, and
by calling force went off | | ' nay yont Comoute exit.
MULLER . at. . unlgading
1 > 6 10\ < | force
Compute
loading
force.
Recompute present To fes
relative deflection 240
and set previous
deflection rate to
one. Set force
‘ 3 to zero. No
to
100

Print debugging
printout number
23, TABLE XXII,
if IBUG not zero.
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Subroutine GETY

determines the ordinate of piecewise-linear tabular function for a given
abcissa.

Arguments are:

XX = abcissa desired
ITABL = table number, and
ORD = computed ordinate.
TS=XX
TT=ITABL
IMAX=MAX(II)
=0
onp Sopeve 1" 10 SUITCH (TI) >
>0
30 Set periodic argument
TS = AMOD (TS,21)
Print <0
TABLE 'II' HAS <
NO ENTRIES AND 40 IMAX
CALLED UPON.
>0

:

Find current positio?in))table
IMIN = MAXO (1,IPOST(II
15WT=0 ORD = YYY(IMAX,II)
Y

Print II', MAXX =
'XXX(IMAX,II)',
EXCEEDED BY ARG='TS'
Y SET TO YYY(IMAX,II)

ORD=YYY(JJ,JI)

Store current Interpolate ordinate

position in table. @ ORD=FIM (33 I.B:gg—l
= RD=
TPOST (11)=JJ +BBB(J3,II)

Print
DEBUG OUTPUT
NUMBER FOUR
TABLE XXII.

TABLE 'II' MIN X =
XXX(1,II); NOT EX-
CEEDED BY ARG='TS'
Y SET TO 'YYY(1,II)'
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Function ITOPOW raises 2 to an integer power.

¢ that is desired,

ITOPOW = 29

149

The argument J is the power of




Subroutine JITTER

y combining the continuous accel-

eration vector with the contribution of frictional forces in the form of dis-

continuous accelerations using a weighted averaging technique.

Computes the effective acceleration vector b
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16T

Print debugglng
output number 19,
TABLE XXII if IBUG
1s non zero.

ompute total
relative mode
acceleration

for (ITOP+1)tH
combination.

Compute
TAHATZ using
equations
IV.F.2.

250

Print error

comment about
more than one
linear Jitter.

Call SUMARY
and exit.

and IV.F.1l.

Set LITGAM=K,
compute welghting
coefficient and
generalized accel~
eration vector using|
equations IV.F 2

this modeé
turn on}

Set MODE=1
and add in
contributions
to continuous
vector.

350

To 240



Subroutine KRUNCH carries out the following steps:

14,

15.
16,

Initializes varisbles and parameters.
Recomputes joint stop coefficients as needed,

Starts time loop by finding debug variable and vehicle acceleration from
tables via GETY.

Calls ACCEL for body accelerations due to continuous forces.

Computes relative velocities between body segments and between the hip
and seat cushion.

Predicts unstable computational behavior and sets up the means (jitter
vector) for compensating for it.

Computes the turned on friction forces contributions to the acceleration
vector via DELZMK.

Checks number of jitter mcdes,

Computes effective acceleration due to jittering, via JITTER.
Computes all relative accelerations via RELSEL.

Computes next time intervsl via TAUMAK.

Resets print and inflection times as needed.

Checks time for end of program: (1) if done, returns to MAIN, and,
(2) if not done, updates time and continues.

Integrates body variables.
Integrates vehicle deceleration.

Returns to 3.
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KRUNCH

}

Initialize inflec-
tion, print, and
step times and
other quantities.

For each unsym-
metric Joint stop
with non-zero
1imit, recalculate
lower Jjoint co-
efficient.

ittering
! is the status

4

Set relatlve mode
velocity to exact-
ly the velocity
1imit and compute
mode contributions
to generalized
acceleration by
calling DELZMK.

what

Compuate

cf mode I?

on

Compute initial
relative angles
a~d zccrstart mas
matrix elements.

y

¢Gt

Print debugging

output number

three, table

XXII if proper
IB

Compute IBUG
and vehicle
accleration
values by
callings of
GETY.

A

Compute continuous
genieralized accel-
eration vector by
calling ACCEL.

y

Compute angular
reltaive veloclties
by calls to RELVEL.

Compute
MAXI=MAXI
+1

Compute
generalized
acceleration
contributions
by calling
DELZMK and
add into
Siolah b R Yo
generallzed
acceleration
vector.

I=I+1

IBUG value.

Copy continuous
generalized accel-|
eration vector
into base accel-
eration vector.

Print
error
comment .

Compu+e effecti-
sereralized a-z
evraticn vestor o
czlling

For each possible
jitter mode, com-
oute new relative
mode acceleration
by calling RELSEL.

1

Compute next
integrationtimre
step bycallirg
TAUMAK.

int debugging
i-tout number
1¢ vroper

1ue of TBUG.

T
r
£
ES
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Subroutine LIMIDT carries out the following steps:

1. Integrates body variables forward to a tentative new time.
2. Computes new forward contact forces via FECLOD.

3. Checks to see if changes in forces are more than 1000 lbs, If any one
is, the time increment is decreased proportionately.

( LIMIDT (JP,JI,J8))

4

Compute the next values for body position and velocity and
vehicle position and veloclity. Set the time step decrement
at 1. Compute sines and cosines. Compute the horizontal
and vertical positions and velocitles for the Joints.

If IBUG>2,
print DEBUG
number 22,
Table XXII.

Compute deflection and the
rate of deflection for each |
forward contact.

Is
Compute new forward Yes there\ No
contact forces using 80 contact? 90 Set L=I‘or~ce/1000]
FECLOD
Set L to the change in N

force divided by 1000. r&?~

Increase the time step
decrement if L 1s too
large.

Set JP,JI, and JS
to zero. Compute
the time increment
that was used.

time step decrement
been increased ~

RETURN

Print comment
_ | noting time step
=] change.
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Subroutine LODFEC carries out the following steps:
1. Determines whether external forces are on loading or unloading portion
of force deformation profile,

¢. If loading, forces are computed from fifth order polynomiel in both deflce-
tion and rate,

3, If unloading, forces are computed from second order polynomial.

4, If in transition, the peak value is selected and coefficients for unload-
ing computed.
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LODFEC

Compute relative
deflection from
start of cycle
for this time and
previous time.

¥

Compute elasticity
ratio and shift
force into storage
array.

present
deflection To 260
rate (next page)

>0?

deflection
rate
<0?

Compute new Increment
permanent permanent
y |deflection deflection
by calling by deflec-
MULLER and tion when
solving force went
using roots. off. A
1 J

@)

Compute relative
deflection again
and set previous
relative deflec~
tion to zero.

Compute zeroth

order load=derlvet 1y
coeffictent ultngy
equation TI D 2

Compute deflect

and total force
using equation
II.D.2.

portion of force

ion

Is
deflection

monotonic?

part of force

Print
Comment

Compute change in
energy, total ene
conserved energy,
move present defl
and rate to previ

rey,
and

ection

ous.

i

output number
A seven, Table
XXII if IBJG
proper.

RETURI\)
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)

Is

No previous

present
deflection
> off deflection?

previous

deflection

> off deflection
2

Set present
deflection to
off deflection.

To 410
Previous Pape

rate
>0?

Yes

To

No
To 410

Previous Page

To 420
Previous Page

158

Compute equi-~

valent conserved
energy, previous
force and deflec-

410

Page

To 410
Previous Page

Compute
¢4 unloading
force by
II.D.6.

400

Is
previous
force >0?

Set off deflection
reference conserved
energy. Reset total
energy to zero.

!

| needed, and compute

Apply energy test,
recompute plasticity
or energy ratio as

unloading coefficients
using equations II.D.7.




main program carries out the following steps:

Zeroes some input and variables.

Defines some constants and tables,

Reads input data for amin progrem up to and including 7 card.
Sets up table of contact indices for occupant and prints it out.
Sets up input deceleration and debug tables.

Prints out input data.

Computes constants,

Sets time to zero,

Rewinds buffer storage unit 9.

Calls KRUNCH.

Calls SUMARY.

Reads additional data decks if eny.
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Set up the array IDATE with
the EBCD equivalent of the
current day's date.

Y

Eject to a new page

!

Zero the follcwing

AA IPOST SIGMAL
BBB MAX SIGMAC
BL NEW SPSIA
CPSIA PHI SWITCH
PSIA XISMLA
DA RA XSMALL
FMM SDELTA XXX
YSMALA
FMUA SDEL1D YYY
GA SIGMA ZERO

Y
Set

MFORI o
7,1,2, 3:3,5,£

"

Set

I
0TR=zgs = 01745 29
PITWO=% = 1.5707'6

GRAVIT=386.14

!

Set the underflow trap
monitor

16)




Read

ID from column 1 with A format,

8 fields into CARD from columns

2-10, 11-20, 21-30, 31-40, 41-50,
51-60, 61-70, and 71-80 respectively.

1s ID = the ith
the alphubet?

Print comment
"Illegal Card
Skipped" and
the input card.

For any 1 fron 1 to 26,
let er of

Yes
193

Continue at the
statement number
foind opposite

the value of 1

in the table below.

—
ID Statement 1D Statemer t

letter i number letter i number

A 1 140 N 14 560

B 2 180 0 15 600

C 3 200 P 16 630

D L 230 Q 17 660

E 5 260 R 18 700

F 6 300 S 19 730

G 7 330 T 20 760

H 8 360 U 21 800

I 9 400 \ 22 104

J 10 430 W 23 107

K 11 460 X 24 850

L 12 500 Y 25 900

M 13 530 Z 26 1000
-
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Note: CARD V -- TABLE READ

Enter a new point
into one of the

storage tables. @

ITABL = CARD(1l) rounded
(get table no. of table for new entry)

@ (bad input)

SWITCH (ITABL) = CARD(2) (scan type setting)
IT = min of MAX(ITABL) + 1 and 300 (storage pos’tion for new
point)
YYY (II, ITABL) = CARD(4) (new Y value’
XXX (II, ITABL) = CARD(3) (new X value
_
Yes
Is CARD(2) zero
(new car
MAX(ITABL) = II Recognize new point L
NEW(ITABL) = 1 Set switca to sort in new point.
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Note:
Delete a range CARD W -- TABLE DELETE
of lines from
one of the

storage tables. @

ITABL = CARD(1) rounded
(get table no. of table
to be deleted from)

102) (bad input)

(illeg;al tatle no.)

Are
fields 2 and 3 both zero?
(CARD(2) & CARD(3))

SWITCH(ITABL) = 0
MAX(ITABL) = 0
NEW(ITABL) = O
(Delet: entire
table.)

I1 1

XA = min of card(2) and card(3) @ {new ¢ ird)
XB = max of card(2) and card(3)
(Set up independent variable
deletion interval)
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CARD W -- TABLE DELETE (cont)

(Does
XXX(II,ITABL)

lie out of the
deletion interval?)

Ts XXX(II,ITABL)<KESsmes
9

JJ = II+1
NEW (ITABL) = 1

MAX(ITABL) = II-]

119
\
@ (new card)
XXX(II,ITABL) = XXX(JJ,ITABL)
YYY(II,ITABL) = YYY(JJ,ITABL)
II = II+1
|

(copy down point
outside interva’)

JJ = JJ+1

(Skip point inside
interval)
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CARD A

O

Copy CARD elements one
through seven into
CPRIME on through seven.

(new card)

&

CARD B

of

Copy CARD elements one
through eight into EYE
one through eight.

B

(new card)

CARD C

@]

Copy CARD elements one
through seven into
BIGKI one through seven.

CARD D

«@I@«

Copy CARD elements one
through eight into EL
one through eight.

&=

—

65



CARD E

26()

Copy CARD e.ements one
through eight into EM
one through eight.

\

EMFVSX
EMTHSX
EMTWSX

EM(5)+EM(6) (sum of 5,6)
Sum of 3,4,5,6
Sum of 2,3,4,5,6

|

CARD F

3C0

Copy CARD elements one
through eight into AR
one through eight.

CARL G

6

Copy CARD elements one
through seven into
TPRIME one through

seven.
e
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CARD H

Copy CARD elements one
through four into ALFAI
elements one, five, six,
and seven, converting them
from degrees to radians.

A /

Copy CARD elem=nts five
through eight into THATPW,
THATPV, THATPX, and THATPS,
respectively.

1m>

1]
(29

Copy CARD elements one
through seven into OMEGA
elements one throuszh
seven, converting them
from degrees to radians.

105)
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CARD J

~®

Copy CARD elements one
through seven into RPSI
elements one through
seven, converting them
from degrees to radians.

CARD K

f @

460

Copy CARD elements one
through eight into RHO
elements one through
eight.

——

100

CARD L

~®

Copy CARD elements one

through eight into THETAZ
elements one through eight,
converting them from degrees
to radians. Simultaneously
compute the sine and cosine
for each element of THETAZ

and store them in the cor-
responding elements of

STHETZ and CTHETZ respectively.

100
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CARD M

Copy CARD elements one,
two, four, five, and six
to FSPRMZ, RH, WZEROC,
RHOPTZ, and RHOPFZ res-
pectively.

/

Convert CARD(7) from
degrees to radians
and put it in GAMZER.

A

Put the rounded absolute
value of CARD(8) into
LCONTL as an integer.

CARD N

-® [ e~

Copy CARD elements one
through eight into CS,
S, RPSI(8), FMUS, BETA
elements one through
three, and ZZERO respec-

tively.

(B
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ERET. FERTREN

CARD 0O

Copy CARD elemen.s one
through eight into
ELPTEN, ELTWTY, :ILTHRY,
H, FEPTEN conver:ing
from degrees to radians,
DESTEP, RZ, and SZ res-
pectively.

{

Set DELTAT = DISTEP

Put the rounded wvalue
of CARD(1) into Il as an
integer.

~

Copy ZARD elemen:s two
through eight inso G(M),
R(M), PHIZ(M), DILTA(M),
SIGMA(1,M), SIGMi(2,M),
SIGMA(3,M) respe:tively,
converting CARD(4) from
degrees to radians before
storing it in PHIZ(M).

309)

170

no
s M in the range on€ 102!
to three? /



Put rounded value of
CARD(1) into M as an
integer.

M in the range one
to three?

Copy CARD elements two
through eight into
SIGMA(4,M) through
SIGMA(10,M) respectively.
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ICARD RI
Copy CARD elements two,
three, five, six, and
seven into XPACZ, XVEHZ,|

APRNTD, TIMAX, and EMC |
respectively.

Y
Put rounded integer version ’
of CARD(1) into NPASGR after
it has been forced into the ‘
range one to three. AAJ

!

Put rounded integer version
of the absolute value of
CARD(Y4) into NBELT.

Put absolute value of
CARD(8) into PCNTL.
R

Y
DTPRNT = PCNTL*APRNTD

'

r
i Set BPRNTD to the larger of DTPRNT-
APRNTD and APRNTD. J

172




Put the rounded integer
version of CARD(1)+1
into IA.

Is
IA in the range from
one to ten?

Copy CARD elements two
through seven into DA(IA),
GA(IA), RA(IA, XSMALA(IA),
YSMLA(IA) respectively.

Y

Put CARD(8) converted from
{ degrees to radians into
PSIA(IA) and the sine and
cosine of this angle into
SPSIA(IA) and CPSIA(IA)
respectively.
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Put the rounded Integer
version of CARD(1)+1
into IA.

Is IA
n the range from
one to ten?

Copy CARD elements two
through eight into
FMUA(IA) and SIGMAA(I,IA)
through SIGMAA(6,IA) res-
pectively.

Put the rounded integer
version of CARD(1)+1 into

IA.
Is IA N
in the range frc
one to ten?

Copy CARD elements two
through five into
SIGMAA(7,IA) through
SIGMAA(10,IA) respectively.

17k



CARD X

B&®

(Skip Card)

CARD Y

&

(Skip Card)

CARD Z

Is
CARD(1)<0?

Yes

(Use present
tab’e 2 for
DB cutput)

Set up Table " to
be constant vilue
for all time »f

CARD(1).

Z:ro out 18 elements
of SIGZ and 28 elements

o7 KTABLE.

Compare
NPASGR to 2
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KTABLE(1,4)
KTABLE(2,14)
KTABLE(1,5)
KTABLE(2,5)
NS

K
M

Set

18
10
6

oW VW

50

Set

2
= e
o+

a2 R
nouwonon
O ==

]
—
oy

NS

60

[
non
n -3

(Set up table of
possible contact
interactions)

176

Set
KTABLE(1, 1)
KTABLE(2,3)
KTIBLE(1,K+1
KTABLE(1,K+2)
KTABLE(1,K+3)
KTABLE(1,K+4)
KTABLE(2,K+1)
KTABLE(2,K+2)
KTABLE(2,K+3)
KTABLE(2,K+4)

~ n n
oo n N =

4= &g v oo\

For all N “rom M to K
KUABLE(1,N) = 4
KTABLE(2,N) = 2+N-M

4
Set
KTABLE(1,2)
KTABLE/2,1)
KTABLE/1,3)
KTABLE(2,1)

PO Lo PO W




(Tnitialize contact MAIN 18
deformationratios) .

For all N from 5 to NS, set
G(N) = GA(KTABLE(2,N-4))
R(N) = RA(KTABLE(2,N-4))

Y

For all J from 1 to NS-4,
set MODE(J) = KTABLE(2,J)-1

(Print possible
interactions) *

Print NS, KTABLE(1,J) and MODE(J) across
two lines for J = 1 to NS-4.

If IBUG 1is appropriate, print Debug number 1, Table XXII.

/K
.
—»@IA(I) = 092

Set
IGNORE(I) = -1

Is DA(I)>07

Set IGNORE(I)

MAIN 19
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IMAX

MAX(I)
2

O,

Set

J = J+1

MAIN 19

Set I =1

Set IPOST(I) = 1

(order the tables)

Set

Set
JJ = J-1

Y(1) = YYY(J,I)

orde

Set

YYY(JJ,I) = Y(1)

Compute
slopes and
intercepts

To 1020

Set
XXX(JJ,1)
= XXX(JJ+1,1
YYY(JJ,I) =
YYY(JJ+1,1)

Set
JJ = JJ+1

ED
No

Set
IMAX = IMAX-1

!

To 1017

178

-0

I =

I+1

Set

X(1) = »XX(J,I)
Y(1) = vYY(J,I)
JJ = J-1

o)

Se
XXX(JJ+1,I) = XXX(JJ,I)
YYY(JJ+1,I) = YYY(JJ,I)
JJ = JJ-1

MAIN 20

Set
XXX(JJ+1,1)
YYY(JJ+1,1)

X(1)
¥(1)

l

To 1016




( MAIN 20 )
Y

Print the input If IBUG is

values established appropriate,
for this run.

print debug
number 2,
TABLE XXII.

PHIZ(1) =

Set

Set

RH
ELPIE |

)

_1,RH
FEPTEN+sin I(EETTEN) FEPTEN = PHIZ(1)-sin~(
>100
Se

(Compute crash) |CALL KRUNCH

(Report results) CALL SUMARY

ELZTEN= /ELP' 'EN2-RH2

Y

Compute arrays A, GRAVA, ELAME
according to formilas found ir
Eqn I1.C.5. and Ecn II.C.7

Set TIME = 0

v
| REWIND E]

L]

6 )
(Start Over)
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Subroutine MULLER solves a real polynomial for its complex roots.

Its arguments are:

COE(10), which is the array of coefficients of the poly-

nomial in descending order; N1, which is the order of the polynomial; ROOTR(15)
and ROOTI(15), which are respectively the real and imaginary parts of the roots,

Search for first non-zero
coefficient and set
J = 1ts index.

there any
non-zero

coefficients
?

Set N1=0,

ROOTR (NU)=0,
ROOTT (N4)=0

Set

HELL=TEMR,
BELL=TEMI

2 Copy the non-zero
288£§E13=8’ coefficlents to the /fSet AXE=.8, AXI=0.,
) beginning of the L=1, N3=1, ALP1R=AXR,
array COE and modify ALP1I=AXI, M=1.
N2, N1 to correspond.
Compute
ROOTR(1)
-COE(2)
COE(3),
Set
ﬁogTI(l) For I=1 through N1, calculate Set
— TE1=TEMR*¥AXR-TEMI¥*AXI, TEMR=COE(1),
|TEMI=TEMI*AXR+TEMR¥AXI, TEMI=0.
TEMR=TE1+COE(I+1).

Calculate

5| TEM1=AXR-ROOTR(I),
TEM2=AXI-ROOTI(I),
TEl=(TEM1)2+(TEM2)2.

Calculate

TEMR=TE2.

TE2=(TEMR*TEM1+TEM1*TEM2 ) /TE1,
TEl=(TEM1*TEM1-TEMR*TEM2)/TE1,
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Set BET1R=TEMR)
BET1I=TEMI,AXR=.8
ALP2R=AXR, ALP2I
=AXI, M=2.

Set BET2R=TEMR,
BET2I=TEMI, AXR=.9
ALP3R=AXR, ALP3I
=AXI, M=3.

Zalculate
. TE1=ALP1R-ALP3R,
Yei//Ls TE2=ALP1I-ALP3I,
TE!=0 D«

; TE5=ALP3R-ALP2R,
TE6=ALP3I-ALP2I,
No TEM=(TE5)2+(TE6)2.
Calculate

TE3=(TE1*TES +TE2*TE6 ) /TEM,
TEl=(TE2*TE5-TE1*TE6 ) /TEM.

Calculate

TE7 = TE3+1,

TEQ = TE3*TE3-TE4*TEL,

TE10 = 2¥TE3*TEM4,

DE15 = TE7*BET3R-TE4*BET3I,

DE16 = TE7*BET3I-TEL*BET3R,

TE1l = TE3I*BET2R-TE4*BET2I+BET1R-DEIS5,

TE12 = TE3*BET2I-TE4*BET2R+BET1I-DE16,

TE7 = TE9-1,

TE1 = TE9¥*BET2R-TE10¥BET2I,

TE2 = TE9*BET2I+TE1Q*BET2R,

TE13 = TE1=BET1R-TE7*BET3R+TE10*BET.I,

TE14 = TE2-BET1I-TE7*BET3I-TE10¥BET. R,

TE15 = DE15*TE3-DE16*TEl,

TE16 = DE15*TE4+DE16¥*TE3,

TE1 = TE13#¥2-TE14%%2_4#(TE11%TE15-TE12¥TE16),
TE2 = 2.%#TE13¥TE14-L4¥(TE12*TE15+TE11¥TE16),
TEM = SQRT(TE1*¥2+TE2#¥2),
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Calculate

TE3= J1/2 (TEM+TEL) .

(19—

Set

TE7=TE9,
TE8=TE10.

Calculate

Yes 53
o0p>oey - 23

Calculate

TE4Y=J1/2(TEM-TE1

Yes No| Calculate
@) s

TE2
2¥TEL

111 |

Is
(TE7)2+(TE8)2<
(TE9)2+(TE10)22

Calculate
TE7=TE13+TE3,
TEB=TE1L+TEY,
TE9=TE13-TE3,
TE10=TE14-TE4,
TlE1=2%¥TE15,
TE2=2*TE16.

Calculate
TEM=(TE7 )2+ (TE8)2.

Calculate
TE3=(TE1*TE7+TE2¥TE8)/TEM,
TE4=(TE2*¥TE7-TE1*TE8)/TEM.

31050

Calculate
AXR = ALP3R+TE3*TES-TEL*TES,
AXI = ALP3I+TE3*TE6+TE4¥TES.

Set
ALFi4R=AXR,
ALPHI=AXI,
M=4,
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HELL | +|BELL >
51g;20

Calculate

TE7=| ALP3R-AXR|
+|ALP3T-AXTI|

Is
TE7

[AXR]+[AXT]

<10-7

No

Calculate and set
N3=N3+1,
ALP1R=ALP2R,
ALP1I=ALP2I,
ALP2R=ALP3R,
ALP2I=ALP3T,
ALP3R=ALPUR,
ALP3I=ALP4T,
BET1R=BET2R,
BET1I=BET21,
BET2R=BET3R,
BET2I=BET31I,
BET3R=TEMR,

BET3I=TEMI.

No
(9 )

Yes

Set

ALP1
M=5

AXI=-ALP1I,

Set N4=NU+1,

ROOTR(N4 )=ALPAR,
ROOTI(NA4)=ALPA4T,

N3=0.

AXR=ALP1R

I=-ALP1I,

Set BET2R=TEMR,
BET2I=TEMI, AXR=
ALP3R,AXI=-ALP3T,
ALP3I=-ALP3I,L=2,
M=3.

Y

Set BET1R: TEMR,

ET1I=TEMI,A. R=ALP2R

AXI=-ALP2I,A] P2]1=
-ALP2T,11=6.
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Subroutine NORMUT carries out the following steps:

1. Computes head and chest resultant acceleration vectors (magnitudes and
angles) at their centers of gravity.

2. Writes normal output on unit 6.

3. Writes data for SUMARY on unit 9.

NORMUT

Calculate head and chest center of gravity acceleration
magnitudes and directions.

Yes

from table XXII.

RETURN

there to
be a summary
?

No

Compute items for summary record.

Store constants
for summary.

Store virlables
for sumnrary.
S —

184



Subroutine PAGE L computes probability data and prints it out after readine
three input cards for the necessary information.

Print a
sub heading.

Initialize total
probability to
1, and set I=1.

—

Read a probability
value and the
assoclated label.

Prepare the 1

Print the label
and the probability
of 1ts occurrence.

new label.

Update the
total probability.

Set I=I+1

Print the total
probability.

L Yes Is No

< \I>3”/

RETURN
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Subroutine RELSEL determines base relative acceleration of joints and contnct
surfaces subject to jitter via RELVEL and adds contributions of centrifu nl
accelerations for linear jitter modes.

RELSEL

Compute base relative accelerations
of jJoints and contact surfaces
using RELVEL

Is
this a contact
surface?

Complete the computation of the
base relative accelerstions by
adding the contributicns of
centrifugual accelerations.
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Subroutine RELVEL

Computes relative velocities between joints or contact surfaces and body se; -
ments which are subject to jitter.

Get the body index
from IFORK. Get

the surface 1ndex
from IFORK. Com-
pute the linear
portion. Then
compute the angu-
lar portion and add
the two to get the
relative velocitles)

(:RELVEL

Contact

Surface Angle

contact surfacesy
geats or angles?

The relative velocity is
the occupant's veloclity
minus the vehicle velocity.

Get the angle index
from MFORI. Compute
the relative velocity
as the difference of
the two angular
velocities.

(:RETURN
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Subroutine SEAT carries out the following steps:
1. Computes vertical hip seat force.

2. Computes vertical seat front force and applies it to proper leg segment.
Computes horizontal force on lower leg.

5. Computes magnitude of seat friction force.

L. Computes total continuous generalized seat force vector.
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68T

Iritcialize seat
Zeneralized force
vector to -zero.

Comobute tan ag
reversing sign in
quadrants 2 and 3.

Compute distance
of hip from front
edge of seat.
Z=Zo-x+Xc

Print debugging
output number six,
table XXII 1if
IBUG proper.

Set
seat force, front
edge seat force,

and seat frictional
force all to zero.

s the
hip out in
front of
seat3

RETURN

Compute vertical
hip motion and
rate from equa-
tion II E.2.

!

Compute hip
seat force

using equa-
tion II.E.1.

Set seat force
to zero,

setar s

e from front
-

Compute generalized
Sarne sortpibt £1Ans
«sing equations

ITI E 5. and 9 for
ipper leg

Compute fror+* edge
of seat force on
lower leg using
ejuations II E =
and 4.




Subroutine SIPP carries out the following steps:

1.

2.

3.

Reads cards to reset injury tolerance levels (if any) and prirts values,

ete.

Scans certain variables to see 1f any exceed their tolerance level and
prints out values, times, and durations above tolerance for those that do.

Calls PAGE 4 for probability output if desired.

Read tolerance
input data.

Print tolerance
data for forces,
accelerations,
and relative
angles,

Convert hip, elbow,
and knee t.olerances
to generallzed co-
oriinate 1limits.

Initiaiize
current

tolerance
to first one.

Set
the time
point 1ndex
I=1

Ccmpute the test
vilue corresponding

Compute starting

time of violation.[|

a tolerance

Record test
value and time
as those of

peak.

tion.

Ccmpute ending
time and dura-
tion of viola-

{

the magnl-
fude of the vicld
tion increasednvep
last previo .s

Frint peak,
time of peak,
starting time,
ending time,
nd tolerance

tabel.

t¢ current tolerance

ard time peint I.

!

to 330

Change current tolerance
to next one.

No

all the

1%0

tolerances

Print title
| and call
PAGE4,

'_>< RETURN )
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Subroutine STYX carries out the following steps:

1. Reads its input cards to determine size and content of output stick fig-
ures.

2. Computes positions, etc., sets up plot images, and prints.

STYX
FKEAD

NHL, NSBH,NVL,NSBV,IZERO,ISTEP,METH,NCRT,
XMIN,XMAX,YMIN,YMAX,FIRST,LELTA.

Y

ISTEP = MINO(ISTEP,200)

Set STEPS(1)=FIRST
Calculate STEPS(I)=STEPS(1l-1)
+DELTA, for I=2,ISTEP.

READ
STEPS(I), I=1,ISTEP.

READ
NCNTCT

Calculate and set
NCHAR=0,
LABEL=0,
INT=4,
Set PTLEN=.25,
ZERO(I)=0. ANG=U45,
for I1=1,100, NSCALE(1)=0
VZERO(1)=YMIN MSBH=NSBH¥ (NHL-1),
ZERO(1)=XMIN, MSBV=NSBV* (NVL-1),
VLINE=(YMAX=YMIN)/RNSBV, RNSBH=MSBH+NHL,
HLINE=(XMAX-XMIN)/RNSBH, RNSBV=MSBV+NVL,
VZERO(I)=VZERO(I-1)+VLINE L=1.
for I=2,MSBH,
HZERO(I)=HZERQ(I-1)+HLINE
for I=2,MSBV. No
Yes
—(7
Calculate
SALEY=(YMAX-YMIN)/(RNSBH/S ), SCALEX=(XMAX-XMIN)/(RNSBV/10. ) ,

YFLOOR(2)=YFLOOR(1)~DA(1)*SPSIA(1), XFLOOR(?2)=XFLOOR(1)-DA(1)#CPSIA(1),
YSEAT(2)=YSEAT(1)-DA(2)*SPSIA(2),  XSEAT(2)=XSEAT(1)-DA(2)*C SIA(2),
YSEAT(3)=YSEAT (1)+ZZERO*TGAMZ . XSEAT(3)=XSEAT(1)+ZZERO,
YR(2)=YR(1)-DA(3)*SPSIA(3), XR(2)=XR(1)-DA(3)*CPSIA(3).
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Calculate

YWS(2)=YWS(1)-DA(5)*SPSIA(5),
YLSW(2)=YLSW(1)-DA(6)*SPSIA(6),
YLP(2)=YLP(1)-DA(7)*SPSIA(T),
YSC(2)=YSC(1)-DA(8)*SPSIA(8),
YTOE(2)=YTOE(1)-DA(9)*SPSIA(9),
YLAP(1)=-YLAP(1),

YUSDF(2)=YUSDF(1)-DA(Y4)*SPSIA(4), XUSDF(2)=XUSDI*(1)-DA(4)*CPSIA(4),

XWS(2)=XWS(1)~DA(5)*CPSIA(5),
XLSW(2)=XLSW(1)-DA(6)*CPSIA(6),
XLP(2)=XLP(1)-DA(7)*CPSIA(T),
XSC(2)=XSC(1)-DA(8)*CPSIA(8),
XTOE(2)=XTOE(1)-DA(9)*CPSIA(9),
XLAP(1)=-XLAP(1).

Calculate
A=9.375/(XMAX-XMIN),
B=A*XMIN, No
C=9.375/(YMAX-YMIN) ||
D=C*YMIN.

Write
ISTEP,NBELT,XL(1),YL(1)
XU(1),YU(1),YLAP(1)
XSEAT,YSEAT,A,B,C,D onto 9

Is

TEPS(1)>(STIME(K)

+STIMFE(K+1))/2
?

Calculate

YJOINT(2)=YJOINT(1)+EL(1)*SZVEC(1),
YJOINT(3)=YJOINT(2)+EL(2)*¥SZVEC(2),
YJOINT(4)=YJOINT(3)+EL(3)*SZVEC(3),
YJOINT(5)=YJOINT(3)+EL(L)*SZVEC(3),
YJOINT(6)=YJOINT(5)+EL(5)*SZVEC(5),
YJOINT(7 )=YJOINT(6)+EL(6)*¥SZVEC(6),
YJOINT(8)=YJOINT(1)+EL(7)*SZVEC(T),
YJOINT(9)=YJOINT(8)+EL(8)¥SZVEC(8),

for I=1,

XJOINL(L)=POST(K,1),
XJOINT(1)=POST(K,4),
DTR=THETA(K,1,I)*.017453°925,
for I=1,8 CZVEC(I)=COS(DTR),
SZVEC(I)=SIN(DTR),

XJOINT(2)=XJOINT(1)+EL(1)*CZVEC(1),
XJOINT(3)=XJOINT(2)+EL(2)*CZVEC(2),
XJOINT (4 )=XJOINT(3)+EL(3)*CZVEC(3),
XJOINT(5)=XJOINT(3)+EL(4)¥CZVEC(3),
XJOINT(6)=XJOINT(5)+EL(5)¥ CZVEC(5),
XJOINT(7 )=XJOINT(6)+EL(6)* CZVEC(6),
XJOINT(8)=XJOINT(1)+EL(7)* CZVEC(7),
XJOINT(9)=XJOINT(8)+EL(8)*CZVEC(8),

XLEN(I)=CZVEC(I)/PTLEN,
10 ( YLEN(I)=SZVEC (I)/PTLEN,

N(I)=PTLEN*EL(I)+1.,

N(4)=360./ANG,

NT=0.

©
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Set JJ=N(J

Calculate

for
I=1,JJ

NST=NT+I,

R=I-1,

XMAN(NST)=XJOINT(J)
+ R¥XLEN(J),

)

YMAN(NST)=YJOINT(J)
+ R¥YLEN(J),

Calculate

R- I-1,

N T=NT+I,
for XIIAN(NST)=XJOINT(1)
I=1,JJ + R*XLEN(7),

JIAN(NST)=YJOINT(1)
+ R*YLEN(7).

Calculate
HEADX=xJOINT(4)+
RHOPFZ*CZVEC (4),
HEADY=YJOINT(4)+
RHOPFZ¥SZVE (4),

R=I-1
RANG=R¥ANG¥.0174532925,
for NST=NT+1
I=1,JJ \XMAN(NST)=HEADX

+AR(4)*COS(RANG),
YMAN (NS )=HEADY
+AR 4)¥SIN(RANG).

e

Set

NT=NT+N(J)
NPTS1=1
NPTS2=2
NPTS3=3

Print
IDATE, IPAGE

STIME(X).

DRAW GRID.

Calculate

ANGLE=((360.-THETA(K,1,1)
+THETA(K,1,7))/6.)
*,0174532325,

TS=THETA(K,1,1)*%.0174532925,

TS=TS+ANGLE,

XHIP(J)=XJOI} "(1)+AR(1)*
Cos(TS),

YHIP(J)=YJOII 7(1)+AR(1)*¥
SIN(TS),

Y
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Calculate

for
J=1,3

for
Jul 6

XRHO=XJOINT(3)+RHOPTZ*CZVEC(3),
YRHO=YJOINT(3)+RHOPTZ#*SZVEC(3),

FRTYFV=U45,#(,0174532925),
TS=~FRTYFV,
XCHT(J )=XRHO+AR(3)*COS(TS)
YCHT(J )=YRHO+AR (3 )*SIN(TS)
TS=TS+FRTYFV,
TS=TS+FRTYFV,
{XCHT(J)-XRHO+AR(3)‘COS(TS)
YCHT (J )=YRHO+AR(3)*SIN(TS)

3
’

|PLOT CHEST POSITiBﬁ]

Calculate

for
J=1,3

TS=THETA(K,1,8)%.0174532925,
ANGLE=( (180 .+THETA(K,1,7)
~-THETA(K,1,8))/4%.0174532925,
TS=TS+ANGLE,
XKNE (J )=XJOINT(8)+AR(7)
#C0S(TS),
YKNE (J )=YJOINT(8)+AR(7)
¥SIN(TS).

Calculate

TS=(THETA(K,1,6)-180)
*.0174532925,

SIXTY=60.%.0174532925,

TS=TS+SIXTY,

XHND(J )=XJOINT(7)+AR(6)
*COS(TS),

YHND(J )=YJOINT(7)+AR(6)

for
J=1,5

®SIN(TS).

Y
[

lPLOT KNEE POSITIONi}

Is
NCNTCT(8)¥0?

Yes

-

< PLOT HAND POSITION. ]

Calculate

TS=(THETA(  ,1,8)-180)*.0174532925
TS=TS+SIXT ,

XFT(J)=XJO NT(9)+AR(8)*COS(TS),
YFT(J)=YJO NT(9)+AR(8)*SIN(TS).

P.OT ALL CONTACT POSITIONS
TAT HAVE BEEN DEFINED.

)
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Calculate
XLAP(2)=XLAP(1)+BL1(K)*COS(PHI1(K)),
YLAP(2)=YLAP(1)+BL1(X)*SIN(PHI1(X)).

Y

PLOT LAP BELT POSITION.

No Calculate
w——)p XL(2)=XL(1)+BL2(K)*¥COS(PHIL(K)),
YL(2)=YL(1)+BL2(K)*SIN(PHI1(K)).

y

| PLOT SHOULDER BELT POSITION.

PLOT THE POSITION OF
EACH OF THE 9 JOINTS.

¥

PRINT LABELS,
SCALING FACTORS.

Calculate
IPAGE=IPAGE+1,
L=L+1.

RETURN

Write
XL(2),YL(2),XJOINT
YJOINT ,HEADX ,HEADY

XLAP(2),YLAP(2) on 9
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Subroutine SUMARY carries out the following steps:

Writes end-of-run indicator on summary record and rewinds it.

Reads one instruction data card.

Alters labeling of contact surfaces.

Reads storage summary record, sets up page images, and prints.

Calls SIPP to produce injury criteria if desired.

Uses University of Michigan plot subroutines and produces graphical out-

put if desired.

Calls STYX to produce stick figures at selected times if desired.

SUMARY

Write end of
summary record
indicator and
rewind record.

Y

Read summary
control card,
time independent
values from
summary record,
and contact
label changes.

Y

Read time dependent
values from summary
record, compute
accelerameter read-
ings and injury
acceleration and
store all this.

Y

Set starting
time point
index to one
and ending
time point
index to mini-
mum of number
of time points
and 52.

Print standard
output pages
for time points
—p-| fT0m starting
index to end-
ing 1index.

the number
of time points
exceed the
ending
ngex

Yes

No

Set starting
index equal

to ending index
and ewnding in-
dex to the
minimum of the
number of time

points and
itself incre-
mented by fifty.

/
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Carry out injury
tolerance checking
by calling SIPP

i1f desired.

Y

Make graphs

using the printer
plot routines if
desired.

Y

Draw stick
figures by
calling STYX
1f desired.

RETURN




Subroutine TAUMAK carries out the following steps:

1.

Computes time intervals in a manner to reduce the probability of insta-
bility.

Utilizes LIMIDT to check time interval for force change size.
Modifies effective acceleration vector to suit time interval.
Calls NORMUT for normal printout storage.

Updates switches.
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661

Print debugging
output numbers
20 and 21 if
IBUG proper.

Record data for
summary output

by calling NORMUT
and set update
switches KPRINT,
etc. from JPRINT,
etc.

RETURN

Set JPRINT,
JSTEP, and
JINFL to

Zero
JPRINT,

JSTEP and
JINEL.

print time®

Set
JPRINT=1

inflection
time greater than
print time?

Set Set

JINFL=1, JPRINT=1,

and compute and compute

TIMASK=TINFL- TIMASK=TPRINT- For mode LITGAM,

TIME. TIME. compute mode enough to

acceleration, ZRV,
full off mode
acceleration,
ZPPP(1) and on
ZPPP(2).

!

TAHATZZ

Set
DELTAT=TAUHAT

@ (last pzgze)

and
MODE (ITAU)=0.

Compute welghting coefficient, For mode LITGAM, To Compute general-
AK= TTMASY corpute mode 680 acceleration ve
SRy lrFE Ll ) —mpmpmm L CRVT L/ lures -, ) ieration, ZRV, ZVECPP=Z¥B+Z</
TAHATZ ' cff mode accel- +AK(ZK{Z)-2¥ (7
Set JSTEP=1; ZPPP(1)-ZPPP(2) lon, ZPPP(1), and recorpne. -
TIMASK=§ES’PEP; full -, ZPPP(2) | mode aosesemne’ s
an ce.erzt S
JPRINT,J NFL To 4
to zero 302 Con te
P ————— h wis ompu
Compute LELT.7| [Purtrer reduce BrzX(1) TAUHAT 1/52RV ZPPP (1)-1/ 07855
To Le mini-um time step 1f Set -2K(1) TAHATZ =¥ AK= ZPPP(1)=ZPFP /5%
OF TIMASK ana forces charge ISTAR=1 ’
TAUHAT. tos ~vch by

callirg LIMILT

To
360




Subroutine ZKMAKR

Sets up the components of an array of acceleration vectors needed in JITTER.

Its arguments are: K which is the index of the appropriate combination of

Jitter modes; 2Q (11) which is the vector containing the resultant asccelera-
tions due to this combination.

ZKMAKR

RETURN

Check each binary bit of L in turn,
if zero, skip. If non-zero, add the
appropriate DELZ to ZQ.
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Subroutine ZMAKER carries out the following steps:
1. Inverts matrix by calling on SSP routine.

2. Computes acceleration vector by applying inverse matrix to generalized
force vector.

3. Checks matrix inverslon by pre- and post-multiplication if desired.

ZMAKER

Copy the computed triangular portion of the
matrix into the other portion and into a
dummy matrix for the 1nverse.

Y

Print debug #11 |
from table XXII.

Obtain the matrix inverse by
calling library routine MINV.

Print error
comment.

Call SUMARY.
Exit

Calculate acceleration vector
by applying matrix inverse to
generalized force vector,
Eqn.II.B.3.

Print debug #12
from table XXII.

the 1nverse
desired?

RETURN

Check inverse by pre- and
post multiplication and
addition.

Print debug #13
from table XXII.
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H. SYMBOL DICTIONARY

The dictionary which follows 1s arranged in alphabetical order by the
FORTRAN name of each variable or array used in the program. If the same
FORTRAN neme is used in different subroutines with different meanings, the
meanings are listed on separate lines for each of the uses. The second column
is the FORTRAN dimension which 1s specified for arrays. The third column is
the analytical symbol which corresponds to this FORTRAN name and is supplied
if such a correspondence exists. The fourth column gives the physical units
for those quantities which have them. The numbers shown are subscript ranges
if units are not the same for all elements of arrsys. The last colum is a
short definition of the quantity.

As an appendix to the symbol dictionary, there is an alphabetical 1list
of analytical symbols together with the corresponding FORTRAN names of each
quantity. This 1list indicates the name which can be used to find the defini-
tion,
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Symbol Dictionary (page D5)

FORTRAN

Name Dimension Symbol Units Definition

BETA 3 Bm 1, 1b/in. hip seat force spring coefficients

2, 1b/in.2

3, 1b/in.>
BET1I - - - imaginary part of first polynomial evaluation
BET1R - - - real part of first polynomial evaluation
BET2I - - - imaginary part of second polynomial evaluation
BET2R - - - real part of second polynomial evaluation
BET5I - - - imaginary part of third polynomial evaluation
BET3R - - - real part of third polynomial evaluation
BH - - g-units/in. head horizontal acceleration linear coefficient
BIGKTI T K5 in. lb/rad joint elasticity coefficient for each joint
BIGML 8 Je in. 1b joint elasticity torque for each joint
BL 3 1 in. belt segment length for each belt segment
BL1 200 - in. lap belt length storage
BL2 200 - in. lower shoulder belt length storage
BL3 200 - in. upper shoulder belt length storage
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Symbol Dictionary (page 16)

FORTRAN .
Name Dimension Symbol Definition

HZERO 130 in. horizontal distance represented at plot origin

I - i general index but often body segment index

IA - a contact surface index

IALPH 26 contains alphabetic characters for identifying input
cards

IBIG 8 Ik contains indices of modes in jitter state in order that
they came in jitter except for linear jitters which are
always last

IBUG - debug printout control level

ID - input card identification field storage

IDATE 3 contains calendar date of the current run

IFORK 3,8 element one is body segment index, element two is con-
tact surface index, and element three is the interaction
index for each of eight possible linear jitter modes

IGNORE 10 contalns a switch for each of the contacts which tells
whether the surface is not used or has no friction

IT - i body segment index

IMAGE 1392 temporary storage for prediction of summary plots
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Symbol Dictionary (page 34)

Fo Dimension Symbol Units Definition
Name
A
THATPV - Té in. lb/rad upper shoulder joint stop torque coefficient
A
THATPW - T, in. 1b/rad upper hip joint stop torque coefficient
A
THATPX - T¢ in. 1b/rad upper elbow joint stop torque coefficient
THEDSQ 8 é? (rad/sec)2 square of body angular velocity
THEFEE - - rad initial value of relative angle between lower torso
centerline and lap belt
THETA 200,3,8 - deg,etc. body angular position, velocity, and acceleration
storage
THETAZ 8 TP rad initial values of body angles
TIA - Tia in. length of the line joining the body center of curvature
to the contact surface reference point projected on the
contact surface
TIMASK - T™* sec minimum of print interval, inflection interval, and max-
imum time step
TIMAX - tmax sec duration of simulation
TIME - t sec value of time during simulation
TIMTJ 16 - rad body relative angles
TIMTJZ 16 - rad initial values of body relative angles



Lee

Symbol Dictionary (page 35)

FOﬁiE:N Dimension Symbol Units Definition

TINFL - - sec time of next vehicle acceleration table entry (inflec-
tion time)

TMATIT 8 TiJ in. 1b joint stop torque

TOF - toff sec time that the tolerance violation ceases

TOL 22 - - tolerance level values

TON - ton sec time that the tolerance violation begins

TPRIME T T{ in. lb/rad symmetric or lower joint stop torque coefficient

TPRINT - - sec next print time

TS - - - temporary storage

TSA - - - temporary storage

TSB - - - temporary storage

TSC - - - temporary storage

TSTEP - - sec last vehicle acceleration inflection time

TT 3 cH deg body angles

TV 8 éi deg body angle velocities

VAR - - - injury tolerance quantity
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Symbol Dictionary (page 40)

FORTRAN

Name Dimension Symbol Units Definition
YCHEST - - in./sec2 chest center of gravity upward acceleration
YCHT 6 - in. y-coordinates of chest contact arc points
YELB 3 - in. y-coordinates of elbow contact arc points
YEPSLN - - in. cumulative permanent deflection
YFLOOR 2 - in. y-coordinates of floor end points
YFT 5 - in. y-coordinates of foot contact arc points
YHEAD - - in./sec2 head center of gravity upward acceleration
YHEAD 200 - in. head center of gravity y-coordinate storage
YHTP 5 - in. y-coordinates of hip contact arc points
YHND 5 - in. y-coordinates of hand contact arc points
YIDOT T - in./sec joint upward velocity
YJOINT 9 - in. y-coordinates of joints including wrist and ankle
YKNE 3 - in. y-coordinates of knee contact arc points
YL 2 - in. y-coordinates of lower shoulder belt end points
YLAP 2 - in. y-coordinates of lap shoulder belt end points



e

Symbol Dictionary (page 41) .

FOE:E:N Dimension Symbol Units Definition

YLEN 8 - in. y-coordinates of plot arcs

YLP 2 - in. y-coordinates of lower panel end points

YLSW 2 - in. y-coordinates of lower steering wheel end points
YMAN 64 - in. y-coordinates of stick figure points

YMAX - - in. maximum y-coordinate of plot area

YMIN - - in. minimum y-coordinate of plot area

YPRM 8 - in. y-coordinates of body centers of curvature

YR 2 - in. y-coordinates of roof end points

YRHO - - in. y-coordinate of chest center of curvature

YS - Vg in. deflection of hip seat spring

YSC 2 - in. y-coordinates of steering colum? end points

YSEAT 3 - in. y-coordinates of seat end points and intersection
YSMALA 10 - in. y-coordinates of contact surface reference points
YSP - &s in./sec deflection rate of hip seat spring

YTOE 2 - in. y-coordinates of toeboard end points



e

Symbol Dictionary (page 42)

FORTRAN

it

Name Dimension Symbol Units Definition

YU - - in. y-coordinate of upper shoulder belt anchor point

YUSDF 2 - in. y-coordinates of steering wheel end points

WS 2 - in. y-coordinates of windshield end points

YYY 300,3 - 1, in./sec? ordinates of input tables
2)3, =

YZZERO - Y,0 in. vertical distance from the front edge of the seat to the

point of seat cushion directly beneath the hip joint
Z - z in. horizontal distance of the front edge of the seat from
the hip joint

ZERO - - - (vestigial)

ZERO 130 - - zero line plot array

ZK 11,128 Ek 1-8, rad/sec? generalized acceleration contributions for all combina-
9-11, in./sec® tions of jitter modes on and off

ZKB 11 - 1-8, ra.d/sec2 base acceleration vector including both all continuous
9-11, in./sec® and turned on discontinuous

ZKBASE 11 - 1-8, rad/sec2 base acceleration vector including both all continuous
9-11, in./sec? and turned on discontinuous

XMILCTS - - in.

horizontal distance of knee joint from front edge of
seat
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Appendix to Symbol Dictionary (page 1)

Symbol FORTRAN Name( s)
8 KA, LA, IA
al A
ak AK
>
B BEE
>
b SMALLB
>
C CEE
c, CZERON
c, CONEN
C, CTWON
C, cs
C i CPRIME
>
D DEE
E, EONE
E, ET
f EHAT
A
E, EO
F FORCE, FT, FTT
F FFM
F1 FTOLD
Fs FS
F FZ

L7



Appendix to Symbol Dictionary (page 2)

Symbol FORTRAN Name( s)
F; FSPRM
Fé FSPRMZ

o]
f SMALLF
G G
->
G GEE
Ga GA
g GRAVIT
h H
I 1 EYE
i KI, LI, I, II
i* ISTAR
K 1 BIGKI
J . BIGMI
L 1 EL
L' ELP
lk BL
ll 0 ELZTEN
1 20 ELTWTY
l3 0 ELTHRY
li 0 ELPTEN
mi EM
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Appendix to Symbol Dictionary (page 3)

Symbol FORTRAN Narie( s)

m AA

-1
m ANVERS
P PI
-
Q QUE
R R, RNEW
Ra RA
rl'1 RH
r 1 AR
rz RZ

s S

sZ SZ
Tie TIA
i TMATII
T i TPRIME
A
Ti THATPW
@ '

5 THATPV
A
T é THATPX
A
7! THATPS
t TIME
tmax TIMAX
to of TOF

pIIe)



Appendix to Symbol Dictionary (page k)

Symbol

on

FORTRAN NAME( s)

TON
VTIA
VXIA
VYIA
WZERO
XC

XCP

XAP
PLX
HEADX

X, X

XZ

YS

YSP
YZZERO
YA

YAP
PLY

HEADY
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Appendix to Symbol Dictionary (page 5)

symbol FORTRAN Name( 5)
5;1 Y, AY

z ZZERO

o

Z, 7K

4 Z

zk AZ

zk AZP

LF

o ALFAI

B, BETA

y LITGAM

% GAMZER

(o]

A DELL, DELTA
A DELTAT

BY DESTEP

-’

Az DELZ

AV DELNN, DELNU
5 SDELTA, SDELA
5 SDL

n

8 1 DELOLD

8 SDELTD, SDELD
8 SDLD

5 OLDELD, DELDCD
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Appendix to Symbol Dictionary (pege 6)

Symbol FORTRAN Name(s)
€ EPSLNY
€, EPSLNZ
e' EPSLNP
| ETA
o, TT
Qio THETAZ
.i -

f THEDSQ
‘9'1 TA

N ELAMB
ua FMUA
Mg FMUS

v RVEL

v RSEL
3 RPSI
£, XISMLA
b1 PI

o) 4 RHO

o j', RHOPRM
p% RHOPTZ
pl". RHOPFZ
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Appendix to Symbol Dictionary (page 7)

Symbol FORTRAN Name(s)
o, SIGZ, SAGXX
O SIGMAA
0, SIG, SIGMA
T TAUI
T* TIMASK
A
T TAUHAT
A
T TAHATZ
¢'0 FEPTEN
¢m PHI
il PHIZ

mO
A PSTA

Q OMGT, FOM
2 OMEGAT
24 POMG
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