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 IMPACT: INTEGRATED MODELING OF PERTURBATIONS IN 
ATMOSPHERES FOR CONJUNCTION TRACKING 

Alexei Klimenko§, Sean Brennan**, Humberto Godinez**, David Higdon**, 
Josef Koller**, Earl Lawrence**, Richard Linares**, David M. Palmer**, Michael 
Shoemaker**, David Thompson**, Andrew Walker**, Brendt Wohlberg**, Mori-
ba Jah††, Eric Sutton‡‡, Thomas Kelecy§§, Aaron Ridley***, Craig McLaugh-

lin††† 

The United States relies heavily on its space infrastructure for a vast number of 
applications, including communication, navigation, banking, national security, 
and research. However, NASA predicts that between now and 2030 orbital colli-
sions will become increasingly frequent and could reach a runaway environ-
ment. This devastating scenario, also known as the Kessler Syndrome, has the 
potential to eventually destroy our assets in near-Earth space and result in a de-
bris cloud that could make space itself inaccessible. Preventing the Kessler Syn-
drome requires, in addition to an object removal technique, a groundbreaking 
new orbital dynamics framework that combines a comprehensive physics-based 
model of atmospheric drag with an accurate uncertainty quantification of orbital 
predictions. The IMPACT project (Integrated Modeling of Perturbations in At-
mospheres for Conjunction Tracking), funded by the Los Alamos National La-
boratory Directed Research and Development office, has the goal to develop 
such an integrated system of atmospheric drag modeling, orbit propagation, and 
conjunction analysis with detailed uncertainty quantification to address the 
space debris and collision avoidance problem. We discuss the components and 
capabilities of the IMPACT framework and show a short demonstration of mod-
eling interface and resulting 3D visualizations. 

 

INTRODUCTION 

The IMPACT (Figure 1) project, funded by an internal research and development process at 
Los Alamos National Laboratory (LANL), has the goal to develop an integrated modeling system 
for addressing current needs in space debris and conjunction analysis for resident space objects 
(RSO) in low-Earth orbit. Now with almost three years into the project, we have developed an 
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integrated solution combining physics-based density modeling of the upper atmosphere between 
120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, 
and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several 
novel approaches including 

• a Raven-class observational facility for ground-based observations of space objects 
• physics-based density modeling and data assimilation for integrating density measure-

ments with model forecasts similar to terrestrial weather prediction 
• drag coefficient modeling with Test Particle and Direct Simulation Monte Carlo methods 

to accurately account for changes in density, chemical composition, temperature and 
their effect on the drag coefficient and orbit propagation during geomagnetic storms 

• atmospheric density reconstruction using Satellite Orbit Tomography based on X-ray 
Computed Tomography from the medical imaging field 

• collision statistics and uncertainty quantification using full Monte Carlo sampling and 
importance sampling for collisional probabilities and allowing for non-Gaussian proba-
bility distributions 

• machine learning approach to enable a coupling between solar drivers and the upper at-
mosphere resulting in tremendous computational efficiency while preserving modeling 
accuracy  

 
Figure 1. IMPACT logo. 

 

In the following subsection, we will describe in details some of the technological develop-
ments as part of the IMPACT project.  

 

GROUND BASED OBSERVATIONS 

   LANL is using a Raven-class telescope (0.35 m aperture C14 on a Paramount ME mount) to 
track satellites.  This observational facility is located at 2650 m altitude under dark skies about an 
hour from Los Alamos, NM.  We typically take several nights of observation around each New 
Moon, weather and wildfire permitting.  This provides both good metric accuracy for orbit deter-
mination and lightcurves for object characterization. The objects we observe for IMPACT are 
primarily: 

a) Satellites with accurately known orbits, which we use to characterize the accuracy of our 
metric determinations.  These satellites include the GPS and WAAS constellations, geodesy satel-
lites, and satellites carrying on-board GPS receivers. 

b) Cubesats, many of which are similar in terms of mass, volume, shape, and surface materials 
and hence are good test particles for looking at atmosphere-induced variation in drag.  We also 
observe other LEO satellites that have size/shape/mass information available. 
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c) Objects in highly eccentric orbits that dip into the atmosphere at perigee.  The drag pertur-
bation over an orbit for one of these objects is dominated by the atmosphere at the geographic 
location and altitude of the perigee pass.  Rocket bodies in GTO are numerous and particularly 
useful, since they tend have known physical characteristics.  We produce light-curves from our 
observations in order to derive the spin-states of the objects, which affect the average frontal area 
around the time of perigee. 

We have also observed debris from satellite collisions and the Breeze-M explosion. These ob-
servations include over 300 different RSOs, including 26 GPS satellites and 76 rocket bodies. 

 

PHYSICS-BASED DENSITY FORECAST MODELING 

A key element in improving satellite orbital predictions is the correct specification of the iono-
sphere-thermosphere environment, given that atmospheric density exerts significant drag over 
satellites. There are a number of models that can estimate the composition and density of the ion-
osphere-thermosphere, from empirical models to physics based models. Empirical models, such 
as the Mass Spectrometer and Incoherent Scatter (MSIS) [1] model, can provide an accurate es-
timation of current or past ionosphere-thermosphere density, based on a number of observations. 
Unfortunately, these types of models do not have predictive capabilities, that is, they provide a 
good nowcast but are often not suitable for a forecast. The IMPACT project uses a physics-based 
model, which has the potential to estimate a forecast of the ionosphere-thermosphere since they 
include the relevant physical behavior of the system. In particular, the project uses the Global 
Ionosphere-Thermosphere Model (GITM) [2] but the IMPACT framework is able to switch be-
tween different models for comparative studies. 

 

Ionosphere-Thermosphere Models and Assimilation Method 

GITM is a physics-based three-dimensional model that solves the full Navier-Stokes 
equations for density, velocity, and temperature for a number of neutral and charged components. 
To account for solar activity, GITM uses at the moment the F10.7 solar flux, hemispheric power 
index (HPI) (which is derived from the 3-hour Kp), interplanetary magnetic field (IMF) data and 
solar wind velocity. GITM inherently allows for non-hydrostatic solutions to develop which al-
lows for realistic dynamics in the auroral zones [2]. As with many of the physics-based models, 
GITM includes a number of assumptions and physical representation of the ionosphere-
thermosphere that might not be accurate and introduce errors into the estimation of the density. 
This severely affects the quality of a density forecast. 

In order to improve the predictability of GITM, and provide a good forecast of the iono-
sphere-thermosphere, we implement a data assimilation system based on the ensemble Kalman 
filter (EnKF) [3,4]. The EnKF uses an ensemble of model simulations to approximate the proba-
bility distribution of the model, as well as the covariance matrix. The main advantages of the 
EnKF are the ease of implementation and the computational efficiency for non-linear models. In 
particular we use the localized ensemble transform Kalman filter (LETKF) [5], which is a local-
ized version of the EnKF. The LETKF assimilates by local volume centered at each grid-point 
variable, where the area of the local volume depends on model dynamics and assumptions of cor-
relations between model variables. Given the local nature of the LETKF, the algorithm is highly 
parallel since all grid-point variables can be assimilated simultaneously. 
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Assimilation of Derived Density Fields 
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Figure 2. Example of data assimilation: (left) CHAMP observations over a 30 minute assimilation 

window; (right) assimilated state after combining CHAMP observations with GITM forecast. 

 

 
Figure 3. Left plot: daily averaged measured F10.7 (red line), ensemble average F10.7 from the 

assimilation of CHAMP neutral density observations (blue line) and ensemble standard deviation for 
F10.7 (blue dashed line). The oscillations in the estimated F10.7 seems to follow the day-night change 
seen by the CHAMP satellite. Right plot: ensemble average density field for October 21 2002 at 0800 
hours UTC. 

 

To enhance the density estimation of GITM with data assimilation, we use derived density ob-
servations from the CHAllenging Minisatellite Payload (CHAMP) [6,7] and Gravity Recovery 
and Climate Experiment (GRACE) [8]  missions. Both mission satellites have GPS and accel-
erometer data that are processed to estimate a neutral density field [9]. Figure 2 shows an example 
of assimilating a 30 minute observational window into the GITM forecast.  

Given the scarcity of the data, it is challenging to constrain the whole model field. To address 
this issue, the assimilation is used to estimate both model variables and key model parameters that 
influence the global evolution of the model. To select the most relevant model parameter(s), a 
sensitivity study was performed a reveled that a key parameter is F10.7 index. This result is con-
sistent with the physical representation of the F10.7 index within the model, since it is being used 
as a proxy for solar activity. The F10.7 index is not strictly an independent input parameter for 
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the model, since it’s a measured index. Therefore, the assimilation will “calibrate” this index by 
adding a correction provided by the data assimilation. That is, the assimilation estimates δF10.7 for 
the model input index in the following way, 

where Fm
10.7 is the model index used by GITM, and F10.7 is the observed index. In this formu-

lation, the correction to F10.7 is actually taking into account model bias and trying to correct it 
using data assimilation. 

Figure 3 shows the daily averaged measured F10.7 value (red line), the ensemble average of 
the estimated F10.7 (blue line) using data assimilation with CHAMP data, as well as the ensem-
ble standard deviation of F10.7. All index values are valid for October 21-31 2002. The estimated 
F10.7 value (blue line) is oscillating in accordance with the day-night position of the CHAMP 
satellite, indicating that the assimilation is correcting an overestimation/underestimation, suffered 
by the GITM model, through the F10.7 index. The left plot shows the ensemble average neutral 
density estimation for October 21 2002 at 0800 hours UTC. 

The assimilation results indicate that using data assimilation can reduce the forecast error of 
the model. Furthermore, the model bias can be corrected through the calibration of key model 
parameters through data assimilation. Other key parameters that influence other fields and proper-
ties of the mode, such as temperature, composition, etc., will be explored and included for cali-
bration in the data assimilation. Initial condition and boundary conditions are also a concern for 
the model simulation, and will be addressed in the assimilation scheme as well. 

 

DRAG COEFFICIENT MODELING 

Drag is the largest source of uncertainty in the orbital trajectories of satellites in low Earth 
orbit (LEO). The acceleration on a satellite due to drag,  a


D , is defined by [10] 

 a

D = 1

2
ρCD

A
m
vrel
2 v

rel

v

rel

 

 

where r  is the local atmospheric mass density, CD is the satellite drag coefficient, A is the pro-
jected area of the satellite normal to the velocity vector, m is the satellite mass, and vrel is the rela-
tive velocity between the satellite and the co-rotating atmosphere. For artificial satellites, the pri-
mary source of drag acceleration uncertainty stem from inadequate knowledge of r  and CD. 

Atmospheric mass densities are often inferred from the orbital decay of satellites by using 
fixed or fitted drag coefficients [11,12];  however, the use of such drag coefficients introduces 
biases into the inferred mass densities [1]. These biases can be partially removed by using physi-
cal drag coefficients computed based on the momentum exchange between atmospheric particles 
and the satellite surface. The vast majority of LEO satellites orbit in free molecular flow where 
intermolecular collisions between atmospheric particles can be neglected. In such conditions, the 
drag coefficients for satellites with simple convex geometries have closed-form solutions [13–
15]. A numerical method, such as Test Particle Monte Carlo (TPMC), is required to accurately 
calculate drag coefficients for satellites with complicated concave geometries. At lower altitudes, 
where the free molecular flow assumption breaks down, a rarefied gas dynamic technique that 
accounts for intermolecular collisions, such as Direct Simulation Monte Carlo (DSMC), is re-
quired [16].  

Fm
10.7 = F10.7 + �F10.7 (1)
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Physical drag coefficients are dependent on a variety of atmospheric and satellite properties, 
including: atmospheric translational temperature, satellite surface temperature, relative velocity 
between the satellite and the co-rotating atmosphere, atmospheric composition, satellite surface 
composition, and, most importantly, the gas-surface interaction (GSI) [13,15]. The GSI is gener-
ally controlled by one or more momentum or energy accommodation coefficients, depending on 
the GSI model. One of the simplest GSI models, Maxwell’s model, is not dependent on accom-
modation coefficients. Instead, Maxwell’s model splits the population of reflected particles into a 
fraction, e, that is reflected specularly, while the remaining portion, 1-e, are diffusely reflected. 
Recently, we have recently shown in [17] that Maxwell’s model is incapable of matching fitted 
drag coefficients as a function of altitude. Two more sophisticated GSI models are diffuse reflec-
tion with incomplete accommodation (DRIA) [18] and the Cercignani-Lampis-Lord (CLL) model 
[19]. The DRIA model has been applied in satellite drag coefficient modeling for nearly 50 years; 
however, the CLL model was only recently applied to satellite drag coefficient modeling for first 
time by our group [17]. 

We have developed closed-form solutions [17]  for simple convex geometries such as a 
sphere and flat plate for use with the CLL GSI model. Closed-form solutions were developed by 
fitting analytic expressions (modified from the original Schaaf and Chambre [13] solutions) to 
DSMC simulations with NASA’s DAC [20] that were sampled from the global parameter space 
using Latin Hypercube sampling. These CLL closed-form solutions fit the DAC simulations with-
in ~0.5% of the global parameter space. 

Decades of work by Moe et al. [21–25] has shown that satellite surfaces are likely covered by 
varying levels of atomic oxygen. The atomic oxygen adsorbate changes the nature of the GSI, 
specifically, the effective energy accommodation coefficient, a in the DRIA model, when com-
pared to particles interacting directly with a clean spacecraft surface. Pilinski et al. [26] was the 
first to fit the variation of a as a function of altitude with a Langmuir isotherm dependent on the 
partial pressure of atomic oxygen, PO; however, their original model had several deficiencies, in-
cluding a  going to zero as PO goes zero. Walker et al. [17] and Pilinski et al. [27] have improved 
upon this deficiency by computing a as a weighted sum of unit accommodation (aads - 1)due to 
the adsorbate covered surface) and the energy accommodation coefficient of the clean satellite 
surface, aads,  based on Goodman’s formula [28]  

α = (1−θ )α srf +θα ads

α srf =
2.4µ
(1+ µ)2

 

 

We compared CLL and DRIA GSI models [17] while including the effects of atomic oxygen 
adsorption and found that both models can match fitted drag coefficients [29] equally well below 
~500 km altitude. They also found larger (greater than ~20%) variations in the drag coefficients 
of simple geometries between solar minimum and solar maximum, confirming previous results 
from Moe et al. [22]. We investigated also in [17] the differences in drag coefficients computed 
using NRLMSISE-00 [1] and Global Ionosphere-Thermosphere Model (GITM) [2] atmospheric 
properties. At solar maximum, minor drag coefficient discrepancies of ~3% were found; howev-
er, much larger differences (up to ~11%) were found during solar minimum. 

More recently, we developed a response surface model (RSM) technique [30] for drag coeffi-
cient modeling. The method was validated for a sphere and then extended to the more realistic 
case of the GRACE satellite. Comparison of the original TPMC training simulations and the 
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RSM predictions show errors of ~0.25% for the sphere and ~0.7% for GRACE. We compared in 
[31] Langmuir, Temkin, and Freundlich adsorption models and showed that the Temkin and 
Freundlich models match fitted drag coefficients better and both low and high altitudes. Further-
more, both adsorption models alleviate some of the physical deficiencies present in the Langmuir 
model, such as constant adsorption energy and monolayer adsorption. 

 

ATMOSPHERIC DENSITY RECONSTRUCTION 

The ground-based tracking observations are used to estimate the orbital state and drag ballistic 
coefficient of a number of satellites. By analyzing the change in the satellites’ orbits over time, 
one can estimate the atmospheric neutral density, in the form of corrections to an assumed density 
model. This approach is often called a Dynamic Calibration of the Atmosphere (DCA) in the lit-
erature [10]. This “nowcast” density estimate can then be fed into the data assimilation described 
above to provide better physics-based density forecasts. 

 

We have developed a new DCA method called Satellite Orbit Tomography, which was origi-
nally inspired by X-ray computed tomography. Here, rather than using the decay in X-ray intensi-
ty, we use the decay in orbital specific mechanical energy (ξ). Shoemaker et al [32] describes the 
mathematical formulation, and Shoemaker et al [33] gives simulation results of an operationally 
realistic scenario. The method is outlined as follows: 

• Identify a set of target satellites for tracking, nominally those that are inactive (e.g. de-
bris, rocket bodies). Track each target over a span of time (>days) to build up estimates of 
the position, velocity, and drag ballistic coefficient (β). In the simulations considered to 
date, we have used a Constrained Admissible Region Multiple Hypothesis Filter (CAR-
MHF) [34–36] to estimate these states based on measured angles and angle-rates. 

• Remove bias in the estimated β introduced by global errors in the assumed density model 
used in the CAR-MHF. This is done by including at least some tracking targets that have 
fairly well-modeled β, and comparing their modeled β with that estimated by the CAR-
MHF. This approach also leverages the drag coefficient modeling described above: given 
the published information on a satellite’s shape and mass, we are able to sufficiently 
model β. 

• Using a given satellite’s estimated position and velocity at one time (t1), and then again at 
a later time (t2), calculate the decay in ξ using the osculating orbit states at those times. 
The time span Δt = t2 - t1 should be long enough to observe the decay signal above the 
measurement noise, yet short enough to recover some time-resolved information in the 
density model. Our simulations have used Δt of 48 hours, but a lower limit of 24 hours is 
feasible given the expected accuracy of our ground-based tracking system and the likely 
revisit rate (~1 to 2 passes per night) for our mostly LEO targets. 

• Using the measured decay in ξ from the set of targets, solve for a spatially-resolved scalar 
correction (s) to the assumed density model. The correction factor s is defined in a grid; 
we have used grids spanning 300 to 500 km altitude, with 100 km altitude spacing and 20 
deg spacing in latitude and longitude. In general, the problem is underdetermined (there 
are more grid elements than target satellites) and ill-posed (most satellites do not pass 
through each grid element). Thus, we use Tikhonov regularization to stabilize the solu-
tion, with a spatial smoothness constraint on the solved-for s field.  
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Our most recent simulations use actual resident space objects from the publically available 
catalog, and assume a single ground site at Fenton Hill, NM. Using only 40 targets and having 
suitable visibilities from this single ground site, we are able to reconstruct the time-averaged, yet 
spatially resolved, density field over 48 hours to within approximately 10%. These results also 
assume reasonable orbit estimation errors, and that each satellite’s assumed ballistic coefficient β 
will have zero-mean error with 1-σ standard deviation of 10%. The satellite orbit tomography 
approach has some practical advantages over typical weighted least-squares approaches, such as 
allowing easy density model specification i.e. not requiring Jacobian matrices that describe the 
sensitivity of the density model dynamics to the states. 

 

MACHINE LEARNING FOR FAST DENSITY FORECASTING 

Given the significant computational expense of a full physics-based simulation of the spatial 
variation of the atmospheric density profile, there is a need for a rapidly computable model ap-
proximating this profile. Our goal is to apply machine-learning methods to construct such a mod-
el, enabling estimation of the density profile based on current measurements of physical parame-
ters such as solar activity and terrestrial magnetic field. Our initial attempts to learn a model 
based on historical point-measurements of atmospheric density from instrumented satellites (e.g. 
CHAMP and GRACE) showed that the spatial sampling density of available data is entirely inad-
equate for such a task. Our current approach, therefore, is to construct a computationally cheap 
surrogate model learned from simulations produced by the GITM code; this work is still in pro-
gress. Our initial task has been the construction of a low-dimensional parameterization of the 
density profile; given the difficulty of directly estimating a full, high-dimensional representation 
of the profile, a regression model will be constructed to estimate the low-dimensional parameteri-
zation from the available physical measurements. While spherical harmonics are a very widely 
used basis on which to represent these profiles, we are currently investigating the use of a basis 
derived from our training data (i.e. a set of GITM simulations) via Principal Component Analysis 
(PCA).  

 

UNCERTAINTY QUANTIFICATION 

Our goal is to compute collision probabilities that account for uncertainty at each stage of our 
modeling procedure. To be accurate, a collision probability must necessarily incorporate uncer-
tainty from observations, density modeling and forecasting, drag estimation, and other sources. In 
order to combine uncertainty across these sources, we favor Monte Carlo-based methods. 

The recent FORTE/Meteor close approach on 22 June 2013 provided an opportunity to test a 
basic Monte Carlo strategy. First, we sampled ten GITM densities from the distribution of possi-
ble densities. Next, we sampled 100 satellite state vectors from the distribution induced by obser-
vations of the two satellites made before the close approach.  These state vector samples were 
randomly paired with a sampled GITM density and the pair was propagated to close approach. At 
the time of close approach, we approximated the distribution of the positions with a simple 
Gaussian and used this to calculate the probability of collision. This method required relatively 
few simulations and incorporated two important sources of uncertainty. More uncertainty sources 
could be incorporated very easily (we calculated a best fit drag coefficient, but weren’t able to 
compute uncertainty at the time), although this would likely require a larger set of simulations.  
Figure 4 (left) shows a fit based on a similar simulated close approach. 
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Figure 4.  (left) Gaussian approximations to Monte Carlo samples for a simulated example. (mid-

dle) Mixture of Gaussian approximation to Monte Carlo sample from a simulated example. (right) 
The yellow and green points show 100 importance sampled points using the two-stage procedure. 
This small sample produced a very accurate estimate of the probability when compared to a brute 
force simulation of 9,000,000 pairs.  

A simple extension of the previous method is the use of a mixture of Gaussian model for the 
positions at close approach. This collision probability would be more accurate since the mixture 
model would be a better representation of the final position uncertainty. The calculation is a 
straightforward extension of the single Gaussian case. One drawback is that this method would 
require a larger set of simulations in order to accurately estimate the mixture model. Figure 4 
(middle) shows the mixture of Gaussian fit to the same simulation as the figure on the left. Notice 
that this fit is better at capturing the tails and the overly dense central region. 

We are also working on an importance sampling methodology for computing collision proba-
bilities with reduced simulation costs. Importance sampling is a Monte Carlo method that draws a 
biased sample that is weighted to produce the correct expectations. Particularly in the case of 
small probabilities, this technique can be used to reduce the variance of an estimate, and therefore 
the number of samples required. We developed a two-stage procedure. In the first stage a raw 
Monte Carlo sample is drawn from all of the uncertainty sources. The results of this stage are ana-
lyzed to find regions of the original distribution that produce close approaches and the second 
stage samples directly from these regions.  Figure 4 (right) shows the results of the methodology 
applied to the simulations shown in figures on the left and middle. The second stage used 100 
simulations to accurately estimate the collision probability when compared with a brute force 
simulation. 

 

MODEL INTEGRATION AND VISUALIZATIONS 

In order to coherently integrate these diverse models (Figure 5), plus alternative models to fa-
cilitate comparisons of model techniques and implementations, we have developed an integration 
tool. For this we chose the Python language for its rapid prototyping and its multilingual extensi-
bility. Our tool, as open-source, pure-Python package called sysdevel [37], handles three aspects 
of this multi-model synthesis: 

 

1. unifying potentially disparate model data in a scalable and malleable way, 
2. providing a service framework for plotting and visualizing data in a web browser, 
3. extending the Python build system to include external library dependencies, unit testing, and 

automatic documentation to ease distribution of collaborators who may use differing compute 
environments. 
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The sysdevel build system extends the built-in Python distutils package to recursively build 
sub-packages that each build one of our models with a normal 'python setup.py build' 
call. This then, for example, descends into our GITM sub-package like a recursive 'make' call. It 
locates GITM's MPI and HDF5 library dependencies and the proper Fortran compiler, fetching 
and installing them if any are missing by utilizing CMake-style configuration files in sysdevel. 
Finally it creates a native executable for use in a cluster. Those familiar with Python will recog-
nize that this is well beyond the normal distutils build process. 

 

 
Figure 5. IMPACT Flowchart illustrating the coupling between different models for atmospheric 

density, drag, propagation, observations, and uncertainty quantification. 

 

Within the IMPACT source tree, one of our sub-packages is labeled 'website' and this handles 
the user interface over the web. Sysdevel provides a Javascript and PHP framework specifically 
for simulation configuration and results viewing. Using a plumbing metaphor (through jsPlumb 
[38]), the user graphically configures the simulation processing pipeline and chooses data plots of 
interest. These interactive results plots are displayed as soon as data is available. To minimize 
computation, we store intermediate results, so data from a duplicate configuration is available 
immediately unless caching is overridden. Because the framework communicates with the simu-
lation using JSON over WebSockets, we were able to extend our UI (outside of sysdevel) to in-
clude a 3D visualization (built with Three.js [39]) of RSO tracks around the Earth, as seen in Fig-
ure 6, with relative ease. 
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By far the most interesting portion of sysdevel is its model integration facility. With this, we 
build a script that acts as a server to the web interface or a direct command-line interface. Sys-
devel combines our simulation models together using the Model-View-Controller pattern, which 
consists of data models (in our case, RSO objects), data controllers that manipulate those objects 
(our modeling processes), and data views that represent direct hooks to our plotting and visualiza-
tion. Note the conflicting semantics for the word 'model' above – in the context of this well-
known software pattern; we will substitute the word 'object'. These objects are the cores of our 
model synthesis strategy. As our development process of IMPACT iterates from 1-to-1-
conjunction analysis, expanding to all-to-all RSO collision detection is challenging but the addi-
tional complexities appear feasible. Our data object abstraction supports multiple data storage 
backends to allow for scalability of the analysis. Currently this consists of structured Hierarchical 
Data Format (HDF) files, but could also utilize a relational database. As we expand to cover more 
and more RSOs and over wider time scales, our storage performance needs grow drastically. We 
are currently considering graph databases to meet that need, and our abstraction layer makes that 
adjustment possible. 

 

We are not only concerned with scalability, but also malleability. We already have integrated 
some alternate models (such as MSIS for atmospheric density), but we want to easily include 
other alternatives throughout the pipeline without extensive integration work. To that end, 
sysdevel data objects are self-describing using built-in Python idioms. This feature allows us to 
simply alter our data object definition (by creating a new sub-class of the original Python data 
object) to also conform to the domain ontology of the new model, and the user is ready to go. 
Inside sysdevel, there is a great deal more complexity to map that change to the storage backend 
(hence our initial preference for HDF, which simplifies this mapping). 

 

Through these features of scalable and malleable data unification, simulation pipeline configu-
ration and data visualization, and a comprehensive build system, our sysdevel integration package 
not only serves the needs of our IMPACT project, but also provides a general tool for other multi-
model simulations that would otherwise require extensive effort to tie together. 
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 12 

 
Figure 6. Screen snapshot of the visualization interface of the IMPACT framework. Satellite posi-

tion is represented with a particle cloud indicating the positional uncertainty.  

 

 

SUMMARY 

The IMPACT project, funded by Los Alamos National Laboratory with internal research and 
development funding, has developed an open source and flexible research framework for analyz-
ing satellite conjunctions with modern physics-based atmospheric density models, drag coeffi-
cient analysis, a new atmospheric density reconstruction method, machine learning, and system 
based uncertainty quantification. We presented an overview of this project including some of the 
novel approaches applied to satellite conjunction analysis. We welcome future collaborations us-
ing the IMPACT framework. 
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