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The sensitivity of xenon ionization rates to collision cross-sections is studied within the
framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based
on the Drawin form is proposed and is shown to better reproduce the measured cross-
sections at high electron energies, with differences in the integrated rate coefficients being
on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit
is implemented into HPHall and the updated model is used to simulate NASA’s HiVHAc
EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating
points, the revised cross-sections result in an increase in the predicted thrust and anode
efficiency, reducing the error relative to experimental performance measurements. Electron
temperature and ionization reaction rates are shown to follow the trends expected based on
the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The
predicted thruster performance is found to have little or no dependence on the presence
of triply-charged ions. The fraction of ion current carried by triply-charged ions is found
to be on the order of 1% and increases slightly with increasing discharge voltage. The
reaction rates for the 0→III, I→III, and II→III ionization reactions are found to be of
similar order of magnitude and are about one order of magnitude smaller than the rate of
0→II ionization in the discharge channel.

Nomenclature

EDU2 Engineering development unit 2
EEDF Electron energy distribution function
GRC Glenn Research Center
HiVHAc High Voltage Hall Accelerator
PIC Particle-in-cell
αa Bohm coefficient for region a
βk kth fitting coefficient for Drawin curve fit
εe Electron energy eV
εi Ionization energy for a given reaction eV
εHi Ionization energy of hydrogen eV
ηa Thrust-derived anode efficiency
λ Magnetic stream function T·m2
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µe,⊥ Electron cross-field mobility m2/V·s
νe Total effective electron collision frequency s−1

νb Anomalous Bohm collision frequency s−1

νei Electron-ion collision frequency s−1

νen Electron-neutral collision frequency s−1

νw Effective wall collision frequency for electrons s−1

Ωe Electron Hall parameter
φ, φ∗ Local and thermalized plasma potential V
σi Collision cross-section for a given ionization reaction m2

ξ Number of equivalent electrons in valence subshell
ζ Reaction rate coefficient m3/s
a0 Bohr radius m
B Magnetic field T
e Elementary charge C
fe Electron energy distribution function eV−1

Fth Thrust force N
Ib Total ion beam current A
IZ+
b Current carried by ions of charge state Z A
Id Discharge current A
Isp Anode specific impulse s
kB Boltzmann constant J/eV
ṁa Anode mass flow rate kg/s
me Electron mass kg
ne, ne,0 Local and reference electron density m−3

ni Total ion number density m−3

nn Neutral atom number density m−3

nZ+
i Number density of ions with charge state Z m−3

pc Operating chamber pressure measured at thruster location, corrected for xenon Torr
∆te,∆ti Electron and ion time steps s
Te Electron temperature eV
Vd Discharge voltage V

I. Introduction

Hall effect thrusters (HETs) are an attractive technology for in-space propulsion due to their relatively
high specific-impulse and ratio of thrust-to-power. However, there are many physical processes in Hall

thrusters that are still poorly understood, such as the rate of sputter erosion of the discharge channel walls
and the unexpectedly high mobility of electrons across magnetic field lines. Experimental insight into these
problems has been limited due to a lack of adequate measurement techniques, and the coupled nature of the
governing equations makes analytical approaches intractable. This leaves numerical models as a vital tool
for answering many of these lingering questions about Hall thruster physics.

One of the numerical techniques most frequently used to model Hall thruster plasmas is the hybrid-
PIC method, in which ions and neutrals are treated using the particle-in-cell (PIC) method and electrons
are assumed to behave as a quasi-1D fluid. The first such model, called HPHall,1 has been the focus of
considerable development effort over the past decade. Modifications to the code over this time include
the addition and application of an erosion submodel,2–4 improvements to the wall boundary conditions,5–8

adjustments to the time-integration and cell-weighting of ions and neutrals,9 refinement of the electron cross-
field mobility model,6,7, 10 and addition of anisotropic differential cross-sections for charge- and momentum-
exchange collisions.11 These efforts resulted in the present version of the code, called HPHall-3.

Despite all these years of development, the collision cross-sections for electron impact ionization — with
the exception of single ionization of Xe+12 — have remained more-or-less unchanged since the code’s initial
development. Any inaccuracies in the cross-sections for single and double ionization of neutral xenon may
result in significant errors in both thruster performance and internal plasma properties. There is also a
growing need to include higher charge states such as Xe3+ in these numerical models in order to account
for the increased quantities of these species at high discharge voltages and in magnetically-shielded thruster
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configurations.13 Hence, the goal of this work consists of two parts: (1) to update the cross-sections for
single and double ionization of neutral xenon in HPHall in order to better represent experimental data and
(2) to add triply-charged xenon, henceforth referred to as “triple ions” or “triples” for convenience, to the
model in order to account for the increased prevalence of this species under modern Hall thruster conditions.

The remainder of this paper is organized as follows: In Section II the technical approach of this work
is outlined, including some details of the numerical model and the measurements used for validation. In
Section III, simulation results are compared to past work and to experimental measurements. Finally, in
Section IV, the findings of this work are summarized and ideas for further development are explored.

II. Technical approach

A. Numerical model overview

HPHall1 is a numerical model that simulates a Hall thruster discharge using an axisymmetric hybrid-PIC
technique. In hybrid-PIC models, the heavy ions and neutrals are treated as macroparticles moving freely
within a mesh as with the basic PIC method, whereas electrons are treated as a continuum whose motion is
separated into components parallel and perpendicular to magnetic field lines. The plasma is assumed to be
quasi-neutral throughout the simulation domain, and the plasma density is computed from the total charge
density of ions in the PIC submodel. The plasma potential is computed in the electron submodel using
the well-known thermalized potential approximation, found by considering momentum conservation along
magnetic field lines:

φ∗ (λ) = φ− kBTe (λ)

e
ln

(
ne
ne,0

)
(1)

where φ∗ and Te are constant along magnetic field lines. The thermalized potential φ∗ is found by momentum
conservation across magnetic field lines and the electron temperature Te is computed via energy conservation
across field lines (details in Ref. 1). The magnetic field induced by the plasma is assumed to be negligible
compared to the field imposed by the magnetic circuit, which is included as an input to the model. Integration
of the governing equations for the electrons and for the heavy species is performed on separate time scales
for each, with the electron time step being many times smaller than the ion and neutral time step.

B. Electron mobility

A principal characteristic of HPHall and other hybrid-PIC models is the treatment of electron mobility
across magnetic field lines. In a collisionless plasma, the motion of charges along magnetic field lines is
unrestricted, whereas motion across field lines is constrained to circular trajectories centered about those
lines. In a collisional plasma, the occasional collisions between two particles or between particles and surfaces
can cause the guiding center of a charged particle’s gyromotion to shift in space, effectively moving the charge
across magnetic field lines. However, such a classical analysis of the cross-field mobility of electrons fails
to account for the large electron currents observed in Hall thrusters, often called the anomalous electron
current or anomalous electron drift. To account for the anomalous electron current, HPHall relies on a
semi-empirical correction to the electron collision frequency. In general, the cross-field mobility of electrons
can be evaluated as:

µe,⊥ =
e

meνe

1

1 + Ω2
e

≈ meνe
eB2

(2)

for large values of Ωe, as is the case in Hall thrusters. The total effective collision frequency νe can be written
as:

νe = νei + νen + νw + νb (3)

where the effects of electron–electron scattering collisions are neglected. The anomalous Bohm collision
frequency νb is given by
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νb = α
1

16

eB

me
. (4)

Here, α is a user-defined coefficient that determines the degree to which the anomalous diffusion term
influences electron motion. Setting α = 0 results in classical cross-field diffusion. In HPHall-3, the Bohm
diffusion coefficient α is defined independently in three regions of the thruster discharge:10 the near-anode
or discharge channel region, denoted by the letter c; the thruster exit region, denoted by the letter e; and
the plume region, denoted by the letter p. At the boundary between Bohm regions is a buffer zone in which
the value of α is interpolated linearly between the values in the neighboring Bohm regions.

As with the α values themselves, the exact location of each Bohm region is defined by the user. Since
there are no a priori means of determining the regions’ appropriate locations or the correct values of the
Bohm coefficients, the user must adjust these variables until the simulation results reach an acceptable
level of agreement with experimental data. In a previous work on using HPHall to model NASA’s HiVHAc
EDU2 thruster,14 this was accomplished by first setting the α values to those found for the H6 6 kW Hall
thruster.10 Then, the location of each of the three discharge regions was adjusted to roughly match the
measured discharge current for the thruster operating point being simulated. The plume coefficient αp was
then fixed at 10 and the other two α values were adjusted to better match the discharge current to within
a few percent. As a continuation of that work, this work uses the α values and discharge region locations
found previously.

C. Ionization collisions

In Hall thrusters, the plasma discharge is ignited and sustained by electron impact ionization of the injected
propellant atoms. If the propellant is xenon and only singly- and doubly-charged ions (sometimes referred
to as “singles” and “doubles”) exist in the plasma, then there are three electron impact ionization reactions
to consider:

e− + Xe→ 2e− + Xe+, e− + Xe→ 3e− + Xe2+, e− + Xe+ → 2e− + Xe2+. (5)

These reactions are also referred to as 0→I, 0→II, and I→II ionization, respectively. From classical kinetic
theory, the production rate of single and double ions due to these reactions can be written as

ṅ+i = nennζ
0→I,

ṅ2+i = nennζ
0→II + nen

+
i ζ

I→II. (6)

Since electrons typically have much greater velocities than the heavy species, the rate coefficient ζ for a given
reaction can be computed as

ζ =

∫ ∞
εi

(
2εe
me

)1/2

σi (εe) fe (εe) dεe. (7)

Finally, if the electrons follow a Maxwell-Boltzmann energy distribution, then ζ = ζ (Te). Collision cross-
sections can be measured experimentally and a curve fit can then be applied to those data, allowing Eq. (7)
to be integrated numerically. In the first version of HPHall, the collision cross-sections for 0→I and 0 →II
ionization reactions were based on Drawin curve fits15 to the data of Mathur and Badrinathan.16 The Drawin
form is given by

σi (u) = 2.66πa20ξβ1

(
εHi
εi

)2
u− 1

u2
ln (1.25β2u) , u =

εe
εi

(8)

where β1 and β2 are fitting coefficients. Substituting this and a Maxwellian EEDF into Eq. (7) gives

ζ (Te) = Qβ1θ
−3/2

∫ ∞
1

exp
(
−u
θ

)(u− 1

u

)
ln (1.25β2u) du, θ =

kBTe
εi

(9)
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Figure 1: Existing ionization cross-sections in HPHall compared to experimental data for (a)
0→I and (b) 0→II reactions.

where Q is a constant given by

Q = 10.64a20

(
πkBεi
2me

)1/2(
εHi
εi

)2

ξ. (10)

In a work by Katz et al.12 the cross-sections for I→II reactions were changed to follow a different form,
so this reaction is not considered further here. As reported in Ref. 1, values of β1 = 1.0 and β2 = 0.8
were used for the 0→I and 0→II ionization reactions in the first version of HPHall. Q0→I is reported as
4.13 × 10−13 m3/s, corresonding to εi = 12.1 eV and ξ = 6. The value for Q0→II is not explicitly given,
although it is suggested that Q0→II be computed using εi = 33.3 eV and ξ = 3. However, as of the start of
this work a value of Q0→II = 1.11× 10−13 m3/s, which corresponds to εi = 33.3 eV and ξ = 7.37, is included
in the source code. This value for ξ0→II makes little physical sense and is inconsistent with the information
given in Ref. 1, so the authors suspect that Q0→II was changed in a later version of HPHall in order to better
represent the experimental data.

Figure 1 shows the 0→I and 0→II ionization cross-sections implemented in HPHall as of the start of
this work alongside experimental measurements from Mathur and Badrinathan,16 Stephan and Mark,17 and
Wetzel et al.18 Here it is seen that the cross-sections used for 0→I ionization tend to underestimate the
measured cross-sections for electron energies greater than 60 eV. The cross-sections for double ionization
follow Mathur’s measurements reasonably well over the range of those data, but are much greater than
the other measurements at high electron energies. In the interest of improving the code’s accuracy at
the high electron temperatures associated with high discharge voltages and magnetically-shielded thruster
configurations, it is necessary to modify these cross-sections to better recreate the existing experimental
data.

As a first step towards revising the existing ionization cross-sections, the Drawin curve fits to the ex-
perimental data are recomputed. Rather than considering only the data of Mathur and Badrinathan, these
curves are fit to all three data sets given in Fig. 1. All curve fits are calculated using a commercial nonlinear
least-squares solver. The recomputed cross-sections are shown in Fig. 2 alongside the experimental data and
another set of curve fits using a revised Drawin form:

σi (u) = 2.66πa20ξβ1

(
εHi
εi

)2
u− 1

uβ3
ln (1.25β2u) , u =

εe
εi

. (11)

The coefficients for both the Drawin and revised Drawin fits are given in Table 1. It should be noted that
Q0→II is computed using ξ = 6. Setting β3 = 2 in the revised Drawin form recovers Drawin’s original function.
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Figure 2: Drawin and revised Drawin fits to experimentally-measured collision cross-sections
for (a) 0→I and (b) 0→II reactions.

Table 1: Drawin and revised Drawin fit coefficients for 0→I and 0→II ionization.

Fit Q, m3/s β1 β2 β3

0→I
Drawin 4.13× 10−13 1.22 0.8 -

Revised 4.13× 10−13 0.66 1.04 1.74

0→II
Drawin 9.04× 10−14 0.62 1.28 -

Revised 9.04× 10−14 1.42 0.87 2.41

The revised Drawin form is motivated by the behavior of the Drawin fits in Fig. 2 at high electron energies. In
the case of 0→I ionization, the best-fit Drawin curve seems to decay at a slightly higher rate with increasing
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R
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o
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Revised Drawin, 0 to I

Fife, 0 to II

Revised Drawin, 0 to II

Figure 3: Integrated rate coefficients for 0→I
and 0→II ionization reactions.

electron energy compared to the experimental data,
whereas the cross-section for 0→II ionization ap-
pears to decay too slowly. The exponent β3 controls
the decay rate in the revised Drawin form, allowing
the fitted cross-sections to better capture the high-
energy behavior of the experimental data. As a re-
sult of this change, the RMS difference between the
curve fits and the experimental data increased from
17% to 33% for 0→I ionization and decreased from
180% to 24% for 0→II ionization. The increase in
the RMS difference for 0→I ionization results from
large differences between the fitted and measured
cross-sections at near-threshold energies, where the
cross-sections are very small. If cross-sections for
electron energies less than 1.1 times the ionization
energy are excluded, then the RMS difference is
about 13% for both curve fits. Since near-threshold
electrons only contribute significantly to ionization
at very low electron temperatures (Te < 5 eV), the
error in the cross-sections at those energies is con-
sidered acceptable.
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Figure 4: Fitted cross-sections (a) and integrated rate coefficients (b) for 0→III, I→III, and
II→III ionization reactions.

Although the revised Drawin form seems to improve the accuracy of the collision cross-sections, it is the
integrated rate coefficients that are actually used to compute ionization rates in HPHall-3. The integrated
rate coefficients are shown in Fig. 3. For 0→I ionization, the revised Drawin form results in a rate coefficient
that is generally greater than that resulting from the existing cross-sections in HPHall. At an electron
temperature of 20 eV the rate coefficient is 14% greater, and at 30 eV it is 17% greater. Conversely, for
0→II ionization, the revised fit generally results in a lower rate coefficient, with differences of 13% and 20%
at electron temperatures of 20 eV and 30 eV, respectively. However, at an electron temperature of 5 eV,
the updated rate coefficient for 0→II ionization is 8% greater than the existing rate coefficient. Hence,
an increased rate of double ionization should be expected in low-temperature regions such as the plume,
but since the rate of ionization in the plume is already very small this increase should have no effect on
performance.

The differences between the existing Drawin ionization rate coefficients and those computed using the
revised Drawin fit are only on the order of 10%, but it is expected that they will have a noticeable impact on
the Hall thruster simulations. Particularly, since the rate coefficient for single ionization has increased and
that for double ionization has decreased, the thruster efficiency predicted by the simulations should increase
compared to simulations using the old cross-sections. This is because the momentum carried by an ion of
charge state Z is proportional to Z1/2, whereas the current carried by the same ion is proportional to Z3/2.
Hence, increasing the rate of 0→I ionization while decreasing the rate of 0→II ionization should increase the
ratio F 2

th/Id, thus increasing the anode efficiency for a given operating point.

D. Triply-charged xenon

Past versions of HPHall have included only single and double ions of xenon. Although triply-charged ions
make up no more than a few percent of the total ion current in typical Hall thrusters, the presence of triple
ions and even higher-order species becomes more important as discharge voltage increases. There is also
evidence to suggest that such high charge states are prevalent in magnetically-shielded Hall thrusters.13

Hence, modeling high-voltage and magnetically-shielded thrusters using HPHall-3 mandates the addition of
these higher charge states, beginning with Xe3+. The three ionization reactions that can result in Xe3+ are:

e− + Xe→ 4e− + Xe3+, e− + Xe+ → 3e− + Xe3+, e− + Xe2+ → 2e− + Xe3+. (12)

Of the many changes to the source code required to include triple ions, by far the most significant is the
addition of these three ionization reactions. As with the reactions that produce single and double ions,
these reactions are modeled using revised Drawin fits to experimentally-measured collision cross-sections.
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Table 2: Revised Drawin fit coefficients for 0→III, I→III,
and II→III ionization reactions.

Fit εi, eV ξ Q, m3/s β1 β2 β3

0→III 65.4 6 3.28× 10−14 1.94 0.8 2.48

I→III 53.3 5 3.72× 10−14 5.57 0.8 2.85

II→III 32.1 4 6.37× 10−14 0.56 1096.5 2.21

The cross-sections for 0→III ionization
are based on the data of Mathur,16

Stephan,17 and Wetzel.18 The cross-
sections for I→III and II→III ionization
are based on the data of Achenbach et
al.19,20

The revised Drawin parameters for
the three ionization reactions described
above are given in Table 2. The cross-
sections and the integrated rate coeffi-
cients are shown in Fig. 4. As one might expect, the reaction with the highest activation energy (0→III) has
the smallest cross-section, whereas the reaction with the lowest activation energy (II→III) has the largest
cross-section. This trend translates directly to the rate coefficients, where there is between one and two
orders of magnitude difference between the 0→III and II→III reactions. However, since nn ≈ 10n+i and
n+i ≈ 10n2+i in Hall thrusters, each of these reactions may contribute significantly to the population of triple
ions.

E. Model validation and simulation setup

Table 3: HiVHAc EDU2 performance as measured in VF-5
for several operating points.

Vd, V ṁa, mg/s Id, A Ib, A Fth, mN ηa pc, Torr

300.3 10.21 9.96 7.38 186 56.6% 2.7× 10−6

400.8 8.29 8.00 6.40 173 56.3% 2.2× 10−6

500.0 7.13 6.97 5.58 169 57.5% 1.7× 10−6

The Hall thruster modeled in this
work is NASA’s HiVHAc EDU2,
a product of the High Voltage
Hall Accelerator project jointly con-
ducted by NASA Glenn Research
Center (GRC) and Aerojet Rocket-
dyne.21,22 The goal of the HiVHAc
project is to produce a flight-
qualified, long-life Hall thruster for
use on NASA Discovery-class mis-
sions. The EDU2 thruster has
demonstrated operation at discharge voltages up to 650 V and discharge powers in excess of 4 kW.23 The
thruster is also highly throttlable, with high-voltage modes approaching 2700 s of Isp and low-voltage modes
achieving thrust-to-power ratios competitive with other state-of-the-art Hall thrusters.

All performance and plume measurements used for validation were taken in Vacuum Facility 5 (VF-5) at
GRC in April–May of 2013. VF-5 is a 18.3 m long, 4.6 m diameter cylindrical vacuum chamber capable of
sustaining a no-load background pressure of 1 × 10−7 Torr. The test diagnostics included a Faraday probe
swept downstream of the thruster and an inverted pendulum thrust stand. Table 3 summarizes the thruster
performance at the three operating points simulated in this work.

In a previous work,14 HPHall-3 was used to simulate the HiVHAc EDU2 at the operating points given
in Table 3. The simulations were performed with a base time step of 5 × 10−8 s and an electron timestep
1000 times smaller. The mesh consisted of 70 × 30 cells and was generated using a commercial elliptic
mesh generator. Simulations on a finer mesh produced similar results, suggesting that the solutions were
mesh-independent. The position of the cathode magnetic field line was moved downstream over the course
of several simulations until the predicted thrust became constant. Single and double ions and the effects of
the background gas were included. Charge exchange collisions were neglected. For each simulation, 20,000

Table 4: HiVHAc EDU2 performance predicted by HPHall-3.

Vd, V αc αe αp Id, A Ib, A I2+b , A
Fth, mN ηa

1 2 3

300.3 0.18 0.02 10.0 9.85 7.79 1.31 182 175 179 54.8%

400.8 0.2 0.018 10.0 7.99 6.36 1.12 171 164 168 55.1%

500.0 0.09 0.02 10.0 6.94 5.48 1.05 165 157 162 54.8%
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iterations were run without plasma to populate the domain with neutrals. Then, 50,000 iterations were run
with the plasma turned on. All data were taken over the last 40,000 iterations to exclude startup oscillations.

The predicted performance parameters from Ref. 14 are reproduced in Table 4. Note that there are
three values for thrust. The thrust values reported in Ref. 14 are labeled as (Fth)1 in Table 4. (Fth)1 is
computed in HPHall-3 as the sum of forces on ions and neutrals plus the electron momentum flux across
the cathode magnetic field line. (Fth)2 is computed as the sum of the neutral, ion, and electron momentum
fluxes across the cathode field line, averaged over the course of the simulation. (Fth)3 is computed as the
average momentum flux of ions and neutrals past the downstream mesh boundary. The given efficiency is
computed using (Fth)1.

For all three operating points, the discharge current, ion current, and thrust predicted by HPHall-3
agree with the experimental measurements to within 6%, suggesting that HPHall-3 is capable of accurately
simulating HiVHAc EDU2 at voltages of up to 500 V. However, it is expected that the revised cross-sections
and the inclusion of triple ions will allow the code to accurately simulate the thruster at even higher discharge
voltages.

In this work, simulations are run using the same mesh and base time step as the previous work. However,
the ratio ∆ti/∆te is increased from 1000 to 1200 to improve the simulation stability. For simulations
including triple ions, the number of ion macroparticles is increased in order to improve stability in the
ionization algorithms. Simulations run with twice as many macroparticles overall yield the same results as
the baseline simulations, indicating that the results are independent of macroparticle count. Finally, for
the purposes of comparing plasma properties, the simulations from the previous work are rerun with one
key change: whereas the past work imposed a minimum plasma potential of zero throughout the simulation
domain, no such limit is imposed in this work, allowing the minimum plasma potential to arise naturally
from the governing equations. This change does not have a significant effect on the computed performance.

III. Results

A. Revised single and double ionization cross-sections

Table 5: HiVHAc EDU2 performance predicted by
HPHall-3 with revised cross-sections for 0→I and 0→II
ionization.

Vd, V Id, A Ib, A I2+b , A
Fth, mN ηa

1 2 3

300.3 9.81 7.82 1.24 184 176 181 56.3%

400.8 8.00 6.35 1.05 173 166 171 56.2%

500.0 7.02 5.50 0.99 168 159 165 56.3%

The performance parameters for HiVHAc
EDU2 computed using the updated
cross-sections are shown in Table 5.
The computed efficiencies are based on
(Fth)1. As expected, the predicted ef-
ficiency at each operating point is in-
creased as a consequence of the updated
cross-sections. The increase in efficiency
is associated with an increase in thrust
at each operating point with almost no
change in the ion current. However, the
current carried by double ions decreases
relative to the previous work at all three
operating points, suggesting the current carried by single ions increases. This is a direct consequence of the
rate coefficients shown in Fig. 3. Like the ion current, the discharge current also appears to be unaffected
by the change in ionization cross-sections except at 500 V, where it increases by about 1%. Since the ion
current is more or less the same at this operating point, the additional discharge current must be carried by
electrons.

Figure 5 shows contours of average electron temperature for the 300 V and 500 V operating points with
both the old and new ionization cross-sections. For both operating points, the peak electron temperature
decreases slightly when the new cross-sections are introduced. At 300 V the peak temperature falls from
22.4 eV to 22.1 eV, and at 500 V it falls from 38.4 eV to 37.5 eV. This suggests that electron energy loss rates
are increased in the acceleration zone, where the electron temperature reaches its peak. In the plume, the
electron temperature contours appear very similar. This is to be expected since the revised cross-sections
are, for the most part, very similar to the old cross-sections at low electron energies.

Figure 6 shows contours of the production rate of single ions, ṅi
+. Close investigation of the region of

greatest ionization rate shows that the updated cross-sections result in an increased rate of 0→I ionization
in that region. This increased rate of 0→I ionization inside the discharge channel is responsible for the
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(d) 500 V, new σi

Figure 5: Contours of electron temperature from HPHall-3 simulations of HiVHAc.
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Figure 6: Contours of 0→I ionization rate from HPHall-3 simulations of HiVHAc.
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Figure 7: Contours of 0→II ionization rate from HPHall-3 simulations of HiVHAc.
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reduction in the peak electron temperature. In the plume, however, there is no apparent change in the
production rate of single ions, which is consistent with the observed trends in the updated cross-sections at
low electron energies.

Figure 7 shows the production rate of double ions due to 0→II ionization reactions. There is a clear
decrease in the rate of the 0→II reaction in the ionization region of the discharge channel when the new
cross-sections are introduced. The reaction rate in the plume, on the other hand, is increased slightly. This
is a consequence of the increase in the 0→II rate coefficient at low electron temperatures. However, since
the reaction rate in the plume is very small to begin with, these changes do not seem to affect the predicted
thruster performance significantly.

Overall, the introduction of the revised ionization cross-sections appears to have the expected effects on
HPHall-3 simulation results. The computed thruster efficiency increases, as predicted, bringing the com-
puted thrust more in line with experimental measurements. The reaction rates and electron temperature
follow the expected trends based on the integrated rate coefficients and electron governing equations. Given
these observations and the fact that the revised Drawin cross-sections better represent experimental measure-
ments at high electron energies, it can be confidently said that these cross-sections result in an incremental
improvement to the accuracy of HPHall-3, especially when high-temperature conditions are present.

B. Triply-charged ions

Table 6 shows the thruster performance computed by HPHall-3 with the addition of triple ions. Note that
all simulations are run with revised Drawin cross-sections for all ionization reactions. The thrust increases
slightly at 400 V and 500 V due to the additional momentum carried by the triple ions. The discharge current
and ion current also tend to increase. This is a consequence of the Z3/2 dependence of the current carried
by an individual particle. Indeed, at 400 V and 500 V in particular, the increase in ion current seems to
correspond very well to the current carried by triple ions. There is a slight reduction in the current carried
by double ions at all operating points, most likely as a consequence of II→III reactions. The fraction of
current carried by triple ions tends to increase with discharge voltage, which is expected given that electron
temperature also tends to increase with discharge voltage. The anode efficiency increases slightly at 400 V
and 500 V operation, which is unexpected given the arguments outlined in Section II. However, since anode
efficiency is a derived quantity and is extremely sensitive to other performance parameters, this change is
not considered to be significant.

Table 6: HiVHAc EDU2 performance predicted by HPHall-3 including triple ions.

Vd, V Id, A Ib, A I2+b , A I3+b , A I3+b /Ib, A
Fth, mN ηa

1 2 3

300.3 9.81 7.84 1.21 0.07 0.8% 184 176 181 56.3%

400.8 8.05 6.40 1.03 0.07 1.0% 174 166 171 56.5%

500.0 7.06 5.57 0.98 0.09 1.6% 169 159 166 56.6%

Based on the performance results, it is unlikely that the electron temperature is significantly affected by
the addition of triples. Indeed, as Fig. 8 shows, the electron temperature is virtually unchanged. Since the
reaction rates for 0→III, I→III, and II→III tend to be very small, they do not contribute significantly to
electron energy losses.

In Section II, it was noted that the production rates of Xe3+ due to each of the three associated reactions
might be of a similar order of magnitude. In Fig. 9, the triple production rate for each reaction is plotted
for 300 V and 500 V operation. Overall, the rate of each of these reactions is at least one order of magnitude
smaller than the rate of 0→II ionization, as one might expect. In the discharge channel, it appears as
though the rate of each reaction is of similar magnitude, with a reaction rate on the order of 1021 m−3s−1

being typical. In the plume, however, II→III ionization clearly dominates over the other two reactions. The
ionization energy for the II→III reaction is much less than that of the other two reactions, and since the
electron temperature in the plume is much smaller than in the discharge chamber, there are few electrons
that are energetic enough to initiate 0→III or I→III ionization events.

Overall, the trends observed in the simulation results above are consistent with expectations based on the
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(d) 500 V, with triples

Figure 8: Contours of electron temperature from HPHall-3 simulations of HiVHAc after
addition of triply-charged ions.
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Figure 9: Contours of production rate of Xe3+ in HiVHAc computed by HPHall-3.
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plasma properties found in previous simulations of the HiVHAc thruster using HPHall-3. The effects of triple
ions on the simulation results are subtle for the thruster operating points tested herein, but it is expected
that triple ions will play a much greater role at higher discharge voltages and in magnetically-shielded Hall
thruster configurations, where electron temperatures are typically greater.

IV. Conclusions and future work

In this work, the existing ionization cross-sections in the hybrid-PIC model HPHall-3 have been examined.
The existing cross-sections for 0→I and 0→II ionization were found to agree poorly with the experimental
data at high electron energies. A revised curve fit based on the Drawin form was proposed and fit to the
experimental data, resulting in much better representation of the cross-sections at high electron energies.
HPHall-3 simulations of NASA’s HiVHAc EDU2 Hall thruster using the revised cross-sections showed an
increase in the computed thrust and efficiency, improving the agreement with measured values. The internal
plasma properties, namely electron temperature and ionization rates, follow the expected trends based on
the changes in the integrated rate coefficients.

The effects of triple ions on HPHall-3 were also investigated. Using the revised Drawin form, curve fits
to experimental measurements of 0→III, I→III, and II→III ionization cross-sections were implemented into
HPHall-3. Other aspects of the code were updated to include triply-charged ions in the calculations. The
simulations of the HiVHAc thruster were repeated with triple ions included, and the predicted thruster
performance was shown to change only slightly with the introduction of triples at discharge voltages up to
500 V. Electron temperature contours also appeared to be insensitive to the presence of triple ions. The
current fraction carried by triple ions was shown to increase with discharge voltage, as anticipated. The
reaction rates for all three triple-producing reactions were found to be of similar order of magnitude in
the thruster discharge channel and were all at least one order of magnitude smaller than the rate of 0→II
ionization in the previous simulations.

Although the improvements to HPHall-3 presented in this work appear incremental at the operating
points examined, it is likely that simulations at other operating points and thruster configurations will show
much greater benefit from these changes. For instance, higher discharge voltages tend to result in higher
electron temperatures, and hence larger populations of high-energy electrons. State-of-the-art magnetically-
shielded Hall thrusters also exhibit increased electron temperatures compared to unshielded configurations,
largely as a result of decreased energy losses to the channel walls. Correctly modeling ionization rates due
to such high-energy electrons for all relevant ionization reactions is thus critical for modeling high-voltage
thrusters. Testing the updated code under such high-temperature conditions is the next step for this work.
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