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Aircraft design and trajectory optimization are typically performed sequentially, which can lead to
suboptimal results. To address this, we develop a new mission analysis and trajectory optimization
tool that is efficient, robust, and modular. This enables large-scale optimization in problems involving
trajectory and other disciplines. The most important feature that sets this tool apart from existing
mission analysis software is the use of a computational framework to provide benefits in efficiency and
modularity. Through different test cases, we are able to demonstrate the efficiency and the robustness
of the developed approach. The generated mission analysis results match well with data from other
tools. Runge oscillations are evident in trajectory optimization cases with insufficient number of
altitude design variables. Therefore, we provide a relation between the minimum number of altitude
design variables needed and the range of the mission for avoiding these oscillations efficiently.

I. Introduction
Commercial aviation is an integral part of the global economy, and a catalyst of world trade. However, its impact

on the environment is significant and cannot be neglected. Currently, commercial aviation is responsible for around
2% of the total global carbon dioxide production, and the industry has collectively realized the need to reduce its share
of carbon emissions. In 2010, the International Civil Aviation Organization (ICAO) formulated industry-wide goals
for reducing carbon emissions. These goals can be summarized by two main objectives: to establish carbon-neutral
growth beyond the year 2020, and to further reduce carbon emissions to half of the current levels by the year 2050.

One way of reducing the overall carbon emissions of the industry is by changing the operation of an aircraft. For
example, many commercial operators have adopted the policy of single-engine taxiing, where the carbon emissions
from these aircraft are reduced for the duration of their taxi and wait time on the ground. However, since taxiing
represents only a small fraction of the total operating time of any particular aircraft, it would be beneficial if the fuel
burn for other segments of a particular flight can be similarly reduced. The flight management system of current
aircraft already provides a feature for the crew to enter a “cost index”, which relates the time-cost of a specific airline
to the current cost of fuel, and outputs the optimal cruise Mach number for the aircraft. This system works within
the confines of the current Air Traffic Control (ATC) rules, and provides only the optimal cruise speed. However,
with the advent of the Next Generation Air Transportation System (NextGen), more fuel-efficient, and therefore more
environmentally-friendly trajectories may be flown by future commercial aircraft. As a result, determining the optimal
trajectory for commercial aircraft is important for reducing the total environment impact of the industry.

The design and configuration choice of a new aircraft also affect the overall carbon emissions of the industry. As a
result, this particular topic has received much attention from researchers and aeronautical engineers seeking to apply
the methods of numerical optimization. Their efforts primarily focus on optimizing the aerodynamic properties of the
aircraft, as well as the sizing of structural components. Lyu et al. [1] have performed aerodynamic shape optimization
on a conventional aircraft configuration using the Common Research Model (CRM) as the initial design. Aerodynamic
shape optimization has also been performed on unconventional configurations such as a flying wing [2]. Similarly,
Lyu and Martins have applied such optimization methods to the blended-wing-body configuration [3]. Despite the
success of these purely aerodynamic optimization demonstrations, aeronautical engineers must consider a fully cou-
pled aerostructural model and optimize the aerodynamic properties, as well as the sizing of structural components of
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an aircraft simultaneously to obtain a realistic optimal design. This has been performed by Kenway and Martins [4]
with the CRM configuration.

However, some of these design cases are single-point optimization problems, meaning that the design is only
optimized about a single flight condition. Single-point optimization is known to inflate the benefits of numerical opti-
mization, since the optimizer may seek to improve only specified point at the cost of heavy penalties at other potentially
significant flight conditions. To address this, Lyu and Martins formulated and applied a multi-point optimization prob-
lem with the blended-wing-body configuration to increase the robustness of the optimized design [3]. Kenway and
Martins have also performed multi-point optimization on the CRM configuration using different with varying set of
optimized points [5]. The choice of these flight conditions remains arbitrary, and may not reflect what is significant
during the actual operation of the aircraft. Liem et al. took the approach of using the actual flight data of a certain type
of aircraft over one year, and representing the total overall usage with a smaller subset of missions and corresponding
numerical weights [6]. Ultimately, the goal of aeronautical engineers is to optimize the design of an aircraft based on
its total expected usage, and to optimize this usage by altering the flown trajectories.

In addition to optimizing individual trajectories for a particular aircraft, we also wish to simultaneously optimize
the allocation of a particular aircraft given a network of routes. Coupling the ability to solve this optimization problem
with the aircraft design optimization problem provides the ability for the aircraft manufacturers to come up with the
ultimate optimal aircraft design given the existing network of routes flown by the airlines. The solution of these three
coupled problems will yield a design with the biggest impact in reducing carbon emissions across the entire sector.
However, several challenges prevent the solution of these coupled problems. The first is the need for an efficient,
modular mission analysis tool that can be used to analyze a variety of trajectories for a particular aircraft model, and
provide accurate estimates for the fuel burn. Therefore, the goal of this paper is to present a tool capable of performing
mission analysis and optimization efficiently and robustly in conjunction with other disciplines. In the following
section, a comparison of currently available tools for mission analysis is presented, and a brief description for each is
provided.

II. Literature Survey
Tools for the analysis and optimization of flight trajectories have been successfully implemented in the past. A

brief survey is provided on the prevalent mission analysis tools currently available.
McCullers [7] implemented the Flight Optimization System (FLOPS), which uses a modular approach to allow the

user to select the appropriate modules for a given mission. The aerodynamic results are provided by data generated
using the empirical drag estimation technique, with modifications to improve accuracy [8]. The Sommer and Short
T’ method is implemented in the aerodynamic module to account for skin friction drag [9]. The aerodynamic module
also allows the user to input aerodynamic data in drag-polar forms, which are corrected by scaling factors to address
changes in wing area and engine sizing during optimization. A step integration technique is used within the mission
performance module to calculate the state variables, which are: amount of fuel consumed, elapsed time, distance
covered, and changes in speed and altitude. The primary mission can be composed of any combination of the built-in
flight segment types. FLOPS allows for the use of a number of numerical optimization schemes including: Davidon–
Fletcher–Powell, Broyden–Fletcher–Goldfarb–Shano, and a Quadratic Extended Interior Penalty method. However,
the gradients required for these schemes are computed using a finite-difference method, which is inefficient for large
numbers of variables and is subject to round-off errors.

Another widely-used tool for trajectory analysis and optimization is the Transport Aircraft System Optimization
(TASOPT) by Drela [10]. Unlike FLOPS, TASOPT performs most predictions using low-order models derived from
physics-based models rather than historical correlations. This ensures that the optimized design is realizable, and
not an artifact of extrapolated data fits. The aerodynamic model relies on 2D viscous and inviscid CFD results for
a range of CL and Mach numbers. The standard trajectory equations are integrated over a parameterized mission
profile to obtain the weight of the fuel required, and the flight equilibrium equations are then enforced at the profile
points. The design space is filled with regions of feasibility and infeasibility created by the stability and the sizing
constraints. The regions of infeasibility are exacerbated by the lack of robustness for some of the design modules,
which result in the lack of convergence. Therefore, the gradient and Hessian information is not always available from
design computations, which necessitates genetic algorithms with initial designs chosen using uniform Monte Carlo
sampling of the design space to perform design optimization.

The pyACDT aircraft conceptual design toolkit developed by Perez and Martins [11] takes an object-oriented ap-
proach to modeling and analyzing design concepts. However, the mission analysis component of the tool is computed
based on fuel fractions obtained empirically for each of the flight segments. The fuel fractions combined with the
Breguet range equation are used to determine the amount of fuel consumed over each of the segments.
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Another approach presented by Liem et al. [12] uses fuel fractions only for the startup, taxi, takeoff, and landing
segments of the mission. The fuel burn for the climb, cruise, and descent segments are derived from the range equation
and the flight equilibrium equations at each control point. Finally, the segments are linked together to form residual
equations by enforcing that the fuel weights at the end points of two adjacent segments must be equal. The nonlinear
residuals are solved using Newton’s method stabilized by a line search, where the Jacobian required for the Newton
iteration is formed by the use of finite differences.

A simpler approach to the mission analysis problem is presented by Koko [13], who utilizes the midpoint rule such
that the values at the midpoint of each discretized flight interval is used to represent all position, speed, time, rate of
climb, thrust, and fuel consumption associated with that particular flight interval. The flight equilibrium equations,
as well as the fuel burn equations are only enforced at this midpoint. The only exception is that the aircraft mass is
defined at the beginning of the flight interval, and is assumed to be constant until the start of the next flight interval,
where it is subtracted by the fuel consumption computed at the midpoint of the interval. The derivatives required for
the optimization of flight trajectories are provided by the complex step method [14].

The popular tool PIANO developed by Lissys Ltd [15] is another option for performing aircraft conceptual designs.
The exact methods utilized to obtain the fuel consumption values as well as to satisfy the flight equilibrium equations
are not known. The trajectory optimization is performed by the Nelder–Mead Sequential Simplex algorithm, which is
a gradient-free heuristic method.

Finally, the Stanford University Aerospace Vehicle Environment (SUave) was recently developed [16], and is
designed to be a modular architecture for the mission analysis of aerospace vehicles. SUave uses a pseudo-spectral
approach in discretizing control points within each flight segment. The flight (or space) equilibrium equations are
enforced at these control points, and the fuel consumption is obtained by integrating over the segments. SUave utilizes
the OpenMDAO framework [17] to drive the trajectory optimization problem, and provides the derivatives required
for gradient-based schemes though the use of algorithmic differentiation.

The brief survey of the popular mission analysis tools highlights several features that we propose to improve upon.
The first and the most crucial requirement is the need for an efficient mission analysis tool that is able to generate
solutions and the total derivatives required for gradient-based optimization algorithms, while guaranteeing robustness.
This requirement ensures that the large-scale optimization problem featuring the simultaneous consideration of air-
craft design, airline allocation, and mission trajectory remain computationally tractable. The second requirement is
a modular approach to the mission analysis problem. This requires us to separate the aerodynamic relations from
the flight equilibrium equations to allow for the interchangeable use between high-fidelity aerodynamic solvers and
an aerodynamic surrogate. Furthermore, the modularity requirement allows us to experiment with different solution
strategies, yielding improvements in both efficiency and robustness.

For these reasons, we chose a direct transcription with collocation approach similar to the one presented by Betts
and Cramer [18] and implemented this method within a prototype framework. In addition, we also implemented a
cubic B-spline interpolant for the necessary aerodynamic data, as suggested by Betts and Cramer. The computational
framework formulates the entire mission analysis problem as a nonlinear mathematical system, and hierarchically
decomposes the problem to enable the effective use of block Gauss–Seidel type methods. Furthermore, the framework
automates the computation of the desired total derivatives required for gradient-based optimization by applying the
adjoint method. Other approaches for the trajectory optimization problem can be found in Betts’ comprehensive survey
of the different methods [19].

III. Methodology
In this section, we first formulate the equations governing the trajectory of an aircraft in the Theory subsection.

We then provide the numerical background of the prototype framework in the Numerical Framework subsection,
and describe the implementation of the proposed nonlinear system of equations within the framework. Much of
the core of the prototype framework developed by Hwang and Martins [20] has been implemented in the NASA
OpenMDAO framework. The mission analysis tool has been incorporated into the OpenMDAO framework upon
successful development and implementation within our prototype framework.

A. Theory
We start with the altitude and Mach number profiles specified by the user. In the case of trajectory optimization, these
profiles would be chosen by the optimizer as design variables. From these specified profiles, we generate B-spline
interpolants to ensure the accuracy of the collocation approach. We are then able to compute the flight conditions,
such as temperature, density, and true airspeed at each of the discrete collocation points generated from the B-spline
interpolants. The U.S. Standard Atmosphere is used to explicitly calculate temperature, density, and pressure for
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altitudes up to 20 km. However, one modification is made to the temperature change near the tropopause at 11 km
altitude. Instead of an abrupt change from a negative slope to a zero slope, a cubic function is fitted to the region to
smoothly vary temperature as altitude is increased from 10.5 km to 11.5 km. The continuity in slope is desirable for
gradient-based optimization, as discontinuities may cause the optimization process to be stuck in a loop. The equation
of the cubic fit is determined to be the following:

T (h) = (2.00× 10−11)h3 + (2.59× 10−6)h2 − (6.75× 10−2)h+ 6.20× 10−2 (1)

for
10500 ≤ h ≤ 11500 (2)

Having determined the altitude airspeed and flight conditions, we can now enforce the flight equilibrium equations
at these points, and compute the state of the aircraft. We start by writing out the full flight equilibrium equations:

L+ (We +Wp +Wf ) cos γ − T sinα+
We +Wp +Wf

g
v2 cos γ

dγ

dx
= 0 (3)

T cosα+D + (We +Wp +Wf ) sin γ +
We +Wp +Wf

g
v cos γ

dv

dx
= 0 (4)

M − I
(
d2γ

dx2
(v cos γ)2 +

dγ

dx

dv

dx
v(cos γ)2

)
= 0 (5)

where We represents the operating empty weight of the aircraft, Wp represents the weight of the payload carried by
the aircraft, and Wf represents the weight of the fuel carried at a particular time instance. The direction of forces
and the flight angles are shown on Figure 1. As shown on the figure, the flight path angle is represented by γ, and
the angle of attack is represented by α. φT represents the angle at which the engines are mounted with respect to the
horizon. It is assumed to be small, therefore neglected in our formulation. From these equations, we assume each
of the collocation points to be in a steady flight condition. Although this assumption may not necessarily be valid,
the high-fidelity solvers and the aerodynamic surrogate models used have already made the steady flight assumption,
resulting in the loss of unsteady aerodynamic effects. Therefore, even by including the unsteady terms in the flight
equilibrium equations, we are still not able to model the dynamics accurately. In addition to neglecting the unsteady
terms, we have also substituted in the target values for the lift, drag, and moment coefficients: C̃L, C̃D, C̃M in the
following equations:

Figure 1: Free body diagram of flight equilibrium.

1

2
ρv2SC̃L + (We +Wp +Wf ) cos γ −

1

2
ρv2SC̃T sinα = 0 (6)

1

2
ρv2SC̃T cosα+

1

2
ρv2SCD + (We +Wp +Wf ) sin γ = 0 (7)

C̃M = 0 (8)
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These target values represent the values required to satisfy the equilibrium equations at the prescribed flight con-
ditions with the current weight estimate. The target values for the three coefficients allow us to solve for the angle of
attack α, throttle setting τ , and tail rotation η implicitly with the following relations:

C̃L − CL(h,M,α, η) = 0 (9)

C̃T − CT (h,M, t) = 0 (10)

C̃M − CM (h,M,α, η) = 0 (11)

The functions CL, CT , and CM represent the lift, thrust, and pitching moment coefficients, respectively, as cal-
culated by the specified model given the current state of the other variables. By forcing these to be equal to their
respective target values computed from the equilibrium equations, we effectively compute the angle of attack, throttle
setting, and tail rotation angle needed to satisfy the equilibrium equations in a modular manner. A direct approach
would substitute these relations into the equilibrium equations, and utilize callbacks when evaluating and solving
the coupled system, but this would compromise our modularity requirement, and would prevent us from swapping
between aerodynamic solvers and surrogate models easily.

Currently, the aerodynamic relations are solved using a surrogate model with data points generated by a panel
code, Tripan [21]. A kriging model is built with the panel code outputs, which is then interpolated by B-splines for
efficiency [22]. The additional layer of interpolation reduces the evaluation time of the model by an order of magnitude
while incurring a small penalty in accuracy. A similar B-spline approach for interpolating aerodynamic models is used
by Betts and Cramer [19].

The last of the coupled equations is the rate of fuel burn equation:

dWf

dx
=

SFC 1
2ρv

2SCT

v cos γ
(12)

This ODE must be solved to compute the total weight of the aircraft at each of the collocation points. We have
converted the rate of fuel burn in time to the rate of fuel burn in horizontal distance through the relations provided by
airspeed and flight path angle. Since the amount of fuel carried at the end of the mission is known, and can be chosen
a priori, we can use this as the initial condition for solving the ODE. The approach here is to apply the explicit Euler
scheme starting from the end of the mission, and march backwards in distance to the start of the mission.

B. Numerical Framework
The most important contribution that sets this mission analysis tool apart from existing methods is the idea of utilizing
a computational framework to provide benefits in terms of efficiency and modularity. The use of a computational
framework allows us to uniquely tailor the solution strategy of the overall problem by selectively using different
nonlinear and linear solvers for different blocks within the problem. The framework also automates the computation
of total derivatives required for gradient-based optimization. The overall problem can be expressed as a system of
nonlinear algebraic equations:

R(u) = 0 (13)

Here, the vector u represents all variables within the system, andR(u) represents the algebraic system of equations
that is the unified formulation of any numerical model. The vector u∗ which solvesR(u) = 0 is defined as the solution
of the overall problem.

The computation of total derivatives can be done efficiently by utilizing the unifying chain rule [23], as shown in
the following equation:

∂R

∂u

du

dr
= I =

∂R

∂u

T du

dr

T

(14)

where r represents the vector of outputs provided by the system of equations with some input vector u.

r = R(u) (15)

The unifying chain rule equation is presented by Martins and Hwang [23]. From this equation, the total derivatives
can be computed using either the direct method or the adjoint method. The computational cost of the adjoint method

5 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

01
36

 



is dependent on the number of quantities of interest rather than the number of variables. Therefore, for gradient-based
optimization problems with large numbers of design variables, computing total derivatives using the adjoint method is
advantageous. Both direct and adjoint methods have been implemented in a prototype of the computational framework,
and the total derivatives are automatically calculated with the specification of the partial derivatives.

The other important feature of the prototype framework is the ability to hierarchically decompose the problem,
which enables the implementation of different solution strategies. For example, block Gauss–Seidel solvers can be
used on certain parts of the problem while Newton–Krylov solvers are used to solve other parts monolithically. For
large systems, Newton’s method is the only tractable solution method. The lack of robustness of Newton’s method
can be addressed by implementing a line search or trust region method for selecting the sizes of the Newton steps.
Gauss–Seidel methods can be useful by acting as preconditioners, as well as for solving a series of explicit systems.

The basic component of the framework is a mathematical system. A system is defined as a compound system if it
contains subsystems, or an elementary system otherwise. Compound systems can be further classified into serial and
parallel systems. For the mission analysis problem, only serial systems are used, since the problem size is generally
not large enough to possess obvious advantages for parallel computing. Elementary systems can be distinguished
between independent systems, explicit systems, and implicit systems. Independent systems consist of variables that are
not dependent on other variables. Explicit systems include variables that can be determined exactly by an expression
involving only variables from other systems. Implicit systems depend on both variables from within the system as well
as variables from other systems.

The objective here, as motivated by previous sections, is to develop a modular mission analysis tool capable
of performing the proposed simultaneous optimization of aircraft design, airline allocation and flight trajectories.
Therefore, the three driving goals for the development of this tool are: efficiency, robustness, and modularity. Due
to the anticipated large size of the overall problem, a gradient-based optimization scheme must be used to keep the
problem tractable, which results in the need for total derivatives [23]. Many existing tools utilize finite-difference or
complex-step methods to compute such derivatives, but with the anticipated size of the overall coupled optimization
problem, the adjoint method must be used.

Mission

Nonlin: GS
Linear: GS

Flight conditionsB-splines Coupled analysis

Nonlin: Newton
Linear: Krylov

Inputs Outputs

PropulsionHor. equilibriumAerodynamicsVert. equilibrium Fuel weight

W → L L → D D → T T → Ẇ Ẇ → W

Legend

CompoundSystem

IndependentSystem

ImplicitSystem

ExplicitSystem

Symbols

W

L

D

T

aircraft weight

lift

drag

thrust

Figure 2: Hierarchical decomposition of the mission problem in the prototype framework.

The hierarchical structure of the mission analysis problem will now be explained. As shown in Figure 2, the overall
problem is contained within a serial system named mission. Mission contains 5 separate subsystems, and solves them
in sequence using one Gauss–Seidel iteration. The first subsystem is composed of input variables such as altitude
and Mach number control points. These are implemented as independent systems, and are initialized with a single
block Gauss–Seidel iteration. The second subsystem uses these inputs to generate B-spline interpolants, which allow
us to reduce the number of input variables (which are design variables during optimization) while maintaining the
accuracy of the collocation method. The B-spline implementation is similar to the approach taken by Hwang et al.
for a small satellite design optimization problem [20]. The third subsystem takes the parameterized input profiles,
and computes the corresponding flight conditions at each collocation point explicitly. This is done by solving explicit
systems sequentially once using the block Gauss–Seidel solver.

The fourth subsystem contains the nonlinear coupled system of equilibrium equations, as well as the aerodynamic
relations, and the fuel-burn equation. The ordering of subsystems within the coupled analysis block is determined in
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a logical way to ensure the convergence of block Gauss–Seidel methods. Although the Newton solver is chosen to
solve the coupled analysis system in a monolithic way, the ordering is still important for the linear block Gauss–Seidel
preconditioner, which speeds up the Krylov subspace solver for smaller problems. The final subsystem within the
mission system contains the output variables necessary for optimization, which are the objective function (total fuel
burn of the mission), and the constraints. The constraints used for trajectory optimization will be discussed further in
the Results section.

C. Implementation
The hierarchical structure of the problem described in the previous subsection is implemented in a prototype compu-
tational framework during the development of the proposed mission analysis tool. The main advantage provided by
the prototype framework is the ability to rapidly change solution methods for solving the mathematical system and
rapidly add components as well as compute derivatives. For example, we were able to explore the effects of solving
different parts of the problem with Newton–Krylov and block Gauss–Seidel methods. Additionally, we were able to
utilize the linear block Gauss-Seidel method as a preconditioner for the Krylov subspace solver. However, the usage
of the Gauss–Seidel preconditioner slows down the solution process for problems of non-trivial size. Furthermore,
we have experimented with a globalized solver in which the nonlinear block Gauss–Seidel solver is used prior to the
Newton–Krylov solver. The strategy was to improve the condition of a problem by using a partially-solved state as
the initial starting point for the Newton solver. However, this approach is also detrimental to the performance of the
solution process.

The core of the prototype framework presented here has been implemented in NASA’s OpenMDAO framework
along with the proposed mission analysis tool. The results generated from this implementation will be presented in
the following section.

IV. Results
In this section, we will present verification results for mission analysis, followed by optimization results for a

range of different missions. As mentioned in the previous section, the results presented here were generated using the
OpenMDAO framework. For verification purposes, a benchmark mission is analyzed, and the results are compared
with known data from PASS, TASOPT, and SUave. The test entails a 2950-nautical mile mission flown with a Boeing
737-800 aircraft at a cruise Mach number of 0.78. The altitude and Mach profiles are approximated with linear
variation of the B-spline control points for climb and descent segments, and a constant cruise segment. The profiles
are specified by 100 B-spline control points, which span the length of the mission using a cosine distribution. These
100 B-spline control points are used to generate 501 collocation points. It is noted here that an aerodynamic surrogate
model for this aircraft was not available, resulting in the need to express the aerodynamic relations with a simple drag
polar using estimated coefficients. The engine model uses available information of thrust and SFC for the CFM56-
7B27 gas turbine engine. The results of this analysis is presented on Figure 3.

This particular benchmark mission was chosen due to the existence of data from the currently available tools
produced by the SUave team [24]. Table 1 shows a comparison of the results obtained with our proposed mission
analysis tool with the others. The time taken for the evaluation of this mission was 0.37 seconds on a single processor,
which satisfies our efficiency requirements.

Parameter PASS TASOPT SUave pyMission

Cruise Mach 0.78 0.78 0.78 0.78
Cruise altitude (ft) 35 000 35 000 35 000 35 000
Mission range (nmi) 2 950 2 950 2 950 2 950
Payload (lb) 36 540 36 540 36 540 36 540
Block fuel (lb) 38 180 41 238 39 556 38 687

Time taken (s) 0.37

Table 1: Mission analysis verification results [24].
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Figure 3: Boeing 737-800 mission analysis verification results.

The trajectory optimization problem is formulated with the fuel burn of the mission as the objective function. The
design variables are the N altitude control points used to control the B-spline interpolant, resulting in M collocation
points for the altitude profile. The first constraint for the optimization problem is that the initial and final altitude
points must be at sea level. The second constraint ensures that the throttle remains between 0% and 100%. Due
to the robustness requirement, the mission analysis tool allows the throttle setting to go beyond the physical limits.
Therefore, constraints must be established during optimization to prevent unrealistic results. These constraints are
implemented using the Kreisselmeier–Steinhauser (KS) function, which aggregates the M constraints into a single
constraint function. Lastly, linear constraints are established between neighboring collocation points which limit the
maximum and minimum path angles. This prevents the optimizer from taking large steps in altitude beyond normal
operation limits, which slows down the analysis and the optimization considerably. The mathematical formulation of
the optimization problem can be summarized by the relations below.

minimize fuel burn =Wf0

with respect to hj ≥ 0 for j = 0, ..., N

subject to h0 = 0
hN = 0
0 ≤ τk ≤ 1 for k = 0, ...,M
|γk| ≤ γmax for k = 0, ...,M
TASk = TASfixed for k = 0, ...,M
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Figure 4: Visible Runge oscillations on optimized trajectories resulting from insufficient number of B-spline control
points.
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Figure 5: Optimization history with varying number of B-spline control points.
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Number of Control Points

102
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Figure 6: Time taken for each optimization problem.

In the case of altitude and airspeed optimization, Mach number control points used to control the B-spline inter-
polant for the airspeed profile are added to the list of design variables. Furthermore, the takeoff and landing speed
constraints are added. Lastly, due to inaccuracies within our surrogate model, an upper bound for the Mach number
control points must be specified also. This results from errors within the surrogate model where the wave drag appears
to be absent when the angle of attack is small. Therefore, optimization performed without a realistic upper bound
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yields inaccurate fuel burn estimates as well as unrealistic block times. The following is the optimization problem
with Mach profile added as design variables:

minimize fuel burn =Wf0

with respect to hj ≥ 0 for j = 0, ..., N
0 ≤ Machj ≤ Machmax for j = 0, ..., N

subject to h0 = 0
hN = 0
0 ≤ τk ≤ 1 for k = 0, ...,M
|γk| ≤ γmax for k = 0, ...,M
Mach0 = Machtakeoff
MachN = Machlanding

We first conduct a refinement study on a 9000-nautical mile mission to establish a balance between obtaining
accurate results and doing so in a timely manner. Furthermore, a refinement study can provide us with insights about
the optimization process, as well as ways to improve its efficiency. Runge oscillations can be observed on the optimized
trajectories when the number of B-spline control point is insufficient for the length of the mission, as demonstrated
by Figure 4. The optimization history for each of the cases is presented in Figure 5, with the red line highlighting
the tolerances set for optimality and feasibility. The time taken is shown in Figure 6 with the same color scheme as
Figures 4 and 5 for the different resolutions. The number of B-spline control points varies linearly from 50 to 350,
and the number of collocation points for these corresponding cases range from 251 to 1751. From the results, we can
conclude that around 250 B-spline control points are needed for the optimization of a 9000-nautical mile mission. A
similar study conducted for a 100-nautical mile mission shows that only 10 B-spline control points are needed. Based
on these two numbers, we are now able to estimate the number of B-spline control points needed to avoid Runge
oscillations for missions of any length. This useful relation is expressed by the following equation:

cp =
12

445
range +

650

89
(16)

It is worth noting that the optimizer appears to struggle with the larger problems. This can be seen with the 350
control point example on Figure 5. The optimality parameter appears to be stuck on a plateau, while the feasibility
parameter is consistently below the specified tolerance. One possible solution for improving the efficiency of larger
problems is to apply a ”grid-sequencing” approach, where the same problem is first solved with a small number of
control points, yielding a inaccurate ”optimum”. This state is then used as the starting point of the higher-resolution
problem. This approach was tested during development with simplified aerodynamic models, and was found to yield
no benefit in terms of efficiency. However, with the implementation of more sophisticated aerodynamic models, the
approach may be worthwhile.

One of the crucial requirements for the proposed tool is the need for robustness. In order for the combined airline
allocation and trajectory optimization problem to be solved successfully, the proposed tool must be able to optimize
the trajectory for a given aircraft for any reasonable combination of range and payload. Therefore, we perform a test
which sweeps the range and the payload of the missions, and the results are visualized with a carpet plot. These tests
are applied to an altitude-only optimization, in which the Mach number of the entire mission is fixed. Although this
fixed airspeed case is unrealistic, it represents a stepping stone for the altitude and airspeed optimization case. The
results are shown on Figure 7 and Figure 9. Figure 7 shows the optimized results for missions ranging from 100 to
9000 nautical miles, where the color scheme varies from dark blue to light green as the mission length is increased. The
number of B-spline control points and collocation points are chosen according to the findings of the refinement studies
done previously. The ranges are normalized for visualization purposes. The optimization history for these missions is
shown on Figure 8 with a color scheme that corresponds to the one used for the carpet plot. As expected, the shorter
missions require less time, as the number of control points needed to accurately generate results is comparably small.
Figure 9 shows the optimized trajectories for a 100-nautical mile mission with the weight of the aircraft varying from
operating empty weight (OEW), represented by the dark blue line, to maximum take-off weight (MTOW), represented
by the light green line. The lighter aircraft is able to fly a higher trajectory and consume less fuel relative to the heavier
aircraft.
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Figure 7: Optimized trajectories for missions ranging from 100 to 9000 nautical miles with constant Mach number.
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Figure 8: The optimization history of missions with different ranges. The red line indicates the tolerances for optimal-
ity and feasibility.
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Figure 9: Optimized trajectories for aircraft weight varying from OEW to MTOW on a 100-nautical mile mission with
constant Mach number.

Finally, optimization is performed by varying altitude and Mach number control points. Due to the low takeoff
and landing speeds, we have had to modify the aerodynamic model to include the effects of high-lift devices when the
aircraft is below a certain airspeed. Without these considerations, the angle of attack of the aircraft would increase to
12 degrees during takeoff and landing, since the aerodynamic surrogate does not model stall effects. For this particular
mission, the optimizer has determined that the most fuel efficient method of flying a distance of 1000 nautical miles
for the CRM aircraft is to cruise at just under 25000 ft with a Mach number of around 0.6. The resulting plot from a
case with 30 B-spline control points and 151 collocation points is shown on Figure 10.

The low cruise Mach number chosen by the optimizer for this mission is not surprising. It is well known that
the optimal cruise Mach number for modern airliners is around Mach 0.6, which is situated just prior to the wave
drag rise. However, operators often have significant costs associated with the flight time of the aircraft, therefore an
altitude-Mach optimization with a known cost-index relating the cost of fuel and time is proposed for the immediate
future.

The results we generated are similar to what we expect to be optimal trajectories. All the profiles exhibit a high-
power climb segment to reach the low-density altitudes quickly, a cruise-climb segment in which altitude increases as
the aircraft loses weight from fuel burn, and a very low-power descent segment where the aircraft essentially glides
to the destination. Therefore, our current effort involves attempting to parameterize these optimal trajectory curves
accurately, and generating an effective surrogate model for the entire trajectory optimization problem. This would
eliminate the majority of the computation time required for optimizing trajectory within our simultaneous optimization
problem involving multiple disciplines. Additionally, by parameterizing these curves accurately, we can eliminate the
need for performing trajectory optimization for all future applications.
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Figure 10: Altitude and Mach Number optimization for a 1000-nautical mile mission.

V. Conclusion
In this study, we have proposed a new mission analysis and trajectory optimization tool. The robustness of the

tool is demonstrated by successfully optimizing missions with ranges varying from 100 to 9000 nautical miles, and
aircraft weights varying from OEW to MTOW. The combination of the proposed tool and the use of a framework
allows for efficient computation of total derivatives required for gradient-based optimization schemes. The mission
analysis results generated using this tool match well with results generated by existing software. Altitude and Mach
profile optimization was demonstrated. A relation between the number of B-spline control points required for an
oscillation-free solution and the range of the mission is also presented. The progress of the proposed tool thus far has
demonstrated its suitability for the eventual use in a simultaneous multidisciplinary optimization problem.
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