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This study describes the development of an integrated aerothermoelastic computational framework.
The framework consists of a Navier-Stokes aerodynamic solver based on the Stanford University
multiblock (SUmb) code, a finite element structural solver for moderate deflection of composite
doubly-curved shallow shell with thermal stress, and a finite element thermal solver for heat transfer
in composite shallow shells with nonlinear material properties. The solvers are coupled using a parti-
tioned scheme. An analytical approach is developed to determine the time accuracy and the so-called
energy accuracy of a loosely-coupled scheme. The energy accuracy is connected to the time accuracy
of damping of the predicted response, and thus connected to the accuracy of predicted critical flutter
point. The aeroelastic behaviors of 2D and 3D panels are investigated using the computational frame-
work. The 3D effect and Reynolds number is found to have significant influence on the critical flutter
parameter, and limit cycle amplitude.

List of Symbols

Latin Symbols

a∞ Freestream speed of sound
A Extensional stiffness matrix for composite shell
A1, A2 Metrics in orthogonal curvilinear coordinate system
a, b Panel dimensions
ai Acceleration at ith time step
B Extension-bending stiffness matrix for composite shell
[CT ] Element heat capacity matrix
[C̄] Total damping matrix
[C̄T ] Total heat capacity matrix
c Specific heat capacity of solid material
D Bending stiffness matrix for composite shell
Dxx Bending stiffness of a panel in x direction
d Structural displacements
di Displacement at ith time step
dV Differential volume
d̃i Modified displacement at ith time step in Newmark-β scheme
∆d Iterative increment for Newton-Raphson method
E1, E2 Young’s moduli
Etot The sum of kinetic energy and strain energy
F Convective flux in NS equation
{F}, {FA}, {FT } Loading vector on an element
{Fc} Vector used to apply BC to loading vector in Eq. (50)
{F̄}, {F̃} Total/Modified loading vector
f Lagrangian 1D shape functions
G Diffusive flux and source terms in NS equation
G Stiffness matrices in lamina constitutive relation
H Altitude
h Shell thickness
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hc Heat transfer coefficient
hi, hi+1 Lower and upper height of the ith lamina
I Unit inertia matrix in Eq. (45)
Iα Typical section moment of inertia
[Ic] Matrix used to apply BC to stiffness matrix in Eq. (50)
J Jacobian
K1,K2 Constants in mesh time-averaging method
Kf ,Kg Number of intermediate meshes used to compute F and G
Kh,Kα Spring constant for plunging and torsion
[K], [KL1], [KL2], [KN ] Stiffness matrix of an element, its linear and nonlinear components
[Kb] Matrix used to apply BC to thermal conductivity matrix
[KT ] Element thermal conductivity matrix
[K̄], [K̃] Total/Modified stiffness matrix
[K̄T ] Total thermal conductivity matrix
KE Kinetic energy
k = ωb

U∞
Reduced frequency

kh Thermal conductivity
[klam] Thermal conductivity tensor in reference coordinate system
L Lift of typical section
L0, L1, L2, L3, Lw, Lw1, Lw2 Matrices that transform displacements into strains in Eq. (38)
L4 Matrix that transforms discrete temperatures into continuous temperature in Eq. (80)
L5 Matrix that transforms discrete temperatures into temperature gradient in Eq. (82)
l1, l2, l3, lh Dimensions of CFD mesh
M,Mx,My,Mxy Internal moments
MT Moments due to thermal effect
M Mach number
Mea Moment about elastic axis
m Mass of typical section
[M ] Element consistent mass matrix
[M̄ ] Total consistent mass matrix
Mn Mach number normal to the surface of the structure
N, Nx, Ny, Nxy Internal in-plane forces
NT In-plane forces due to thermal effect
N Shape function
Nl Number of layers in a composite shell
O() Order of magnitude
p Pressure
Q Stiffness matrices in lamina constitutive relation
Q Magnitude of heat flux
{Q} Element thermal loading vector
{Q̄} Total thermal loading vector
{Q̄b} Vector used to apply BC to thermal loading vector in Eq. (94)
q̇ Heat flux
q̇surf Surface heat flux
Re Reynolds number
Ri Curvature in i direction
[R̄] Residue
S Transverse shear stiffness matrix
Sα Static mass moment of typical section
T The vector of unknown temperatures in HTSH element
TS, Tx, Ty Internal transverse shear forces
T Absolute temperature
Tcr =

π2h2

6α(1+ν)a2 Critical temperature for thermal buckling of a plate
T 0, T 1, Tα Variables used in Crank-Nicolson scheme
Tamb Ambient temperature
TAW Adiabatic wall temperature
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Tbc Prescribed boundary temperature
Tini Initial temperature
Tw Wall temperature
{T} Total vector of unknown temperatures
∆T Temperature increment
t Time
∆t Time step
U Total strain energy
U∞ Freestream velocity
{U} The vector of displacements of all DOFs in the discretized structure
u The vector of all DOFs in DCS9 element
u, v, w Translational displacements
uf Conservative variables in NS equation
V Cell volume
vi Velocity at ith time step
ṽi Modified velocity at ith time step in Newmark-β scheme
W External work
wb Grid velocity on fluid boundary
wf Grid velocity
x, y, z Cartesian coordinates of the shell
y+ Nondimensional wall distance for CFD mesh
Z(x, y) Shell geometry

Greek Symbols

α Thermal expansion coefficients in local lamination coordinate system
α Time dependent angle of attack
αa Amplitude of oscillation in angle of attack
ᾱ, γ̄ Coefficient for Crank-Nicolson scheme
α̃, α̃0 Coefficients of penalty method for FE models
αm Mean angle of attack
αS Geometric angle of attack
αk, βk Coefficients for mesh-averaging method
β̄ Coefficient for Newmark-β scheme
γ, γxz, γyz Transverse shear strain on the middle surface
Γq Surface where heat flux is given
ΓT Surface where temperature is prescribed
γ Heat capacity ratio
γk, ζk, ηk, θk Coefficients for interpolation in mesh-averaging method
δ Boundary layer thickness at x/a = −1, y/b = 0
δE, δES , δEF Artificial energy in loosely coupled schemes
ϵ, ϵxx, ϵyy, γxy Membrane strain of the shell
ϵ0 Total membrane strain on the middle surface
ϵl, ϵnl The linear and nonlinear components of ϵ0
ε Error tolerance
ϵ Surface emissivity for thermal radiation
ζ Damping coefficient
(η1, η2, η3) Coordinates on reference element
θ = T−TAW

Tini−TAW
Nondimensional temperature

κ Shear correction factor
κ̄ Weight averaged normal velocity of cell face in Eq. (5)
λ = γM∞a3

Dxx
Nondimensional dynamic pressure

µ = ρ∞a
ρh Mass ratio

ν Poisson’s ratio
ν̄ Weight averaged normal of cell face in Eq. (5)
ξ1, ξ2, η Orthogonal curvilinear coordinate system
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ξk Coefficients for interpolation
Π Potential energy
ρ, ρi Density of the material/ith lamina
σ Stress tensor
σ = 5.67037 ×
10−8W/m2/K4

Stefan-Boltzmann constant

τ Transverse shear stress
τ Thickness ratio
ϕ Phase angle
χ Curvature strain on the middle surface
χ Mesh for CFD solver
χ̄ Weight averaged mesh in mesh-averaging method
χ̃ Reference frame for ALE formulation of NS equation
χ
(k)
f The kth mesh for convective flux
χ
(k)
g The kth mesh for diffusive flux

Ψ,Ψ1 Coefficients for discretization error
ψx, ψy Rotational displacements
ψxi, ψyi Rotational displacements at node i
ΩT Solid domain for heat transfer
Ω̃T The set of FE nodes that belongs to ΩT
ω Frequency

Acronyms

3PBDF Three-Point Backward Difference Formular
ABAQUS A commercial finite element software
ALE Arbitrary Lagrangian-Eulerian
BC Boundary Condition
CFD Computational Fluid Dynamics
CSD Computational Structural Dynamics
DCS9 The nine-node doubly-curved shallow shell finite element
DOF Degree of Freedom
DS3 A triangular heat transfer shell elements in ABAQUS
FE Finite Element
FSDT First-order Shear Deformation Theory
FSI Fluid-Structure Interaction
FTLT First-order Thermal Lamination Theory
FTSI Fluid-Structural-Thermal Interaction
GCL Geometric Conservation Law
HTSH Heat Transfer in shallow SHell
HYPATE HYPersonic AeroThermoElasticity simulation environment
LCO Limit Cycle Oscillation
NS Navier-Stokes
PT Piston Theory
RANS Reynolds-Averaged Navier Stokes
SITPS Structurally Integrated TPS
SUmb Stanford University multi-block
TPS Thermal Protection System

Others

e□ Error from □
δ□ Variation operator
∇□ Del operator w.r.t. the variable □
□,x,□,y,□,z Derivative w.r.t. x, y, and z
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□i The ith element in a vector
□ij The element at ith row and jth column in a matrix
□∞ Quantities related to freestream
□̇, □̈ Time derivatives
□(3),□(4) Third/fourth-order time derivative
□E Quantities related to predictor/corrector
□n+1,□n, · · · Quantities at time step n+ 1, n, · · ·
□T Transpose of a matrix
□∗ Unconstrained quantities in FE formulation
□̄ Amplitude
∥x∥2 =

(∑
i x

2
i

)1/2 The l2 norm
∥f∥L2 =

(∫
f2dx

)1/2
The L2 norm

I. Introduction
Motivated by the interest in reusable launch vehicles for low-cost space exploration and rapid response to global

military threats, hypersonic flight has been an active area of research for decades [1]. There are several technical
challenges associated with hypersonic vehicles that remain unresolved. On the structural side, an important issue is
the simulation of the aerothermoelastic response over extended periods of time corresponding to the vehicle trajec-
tory. Sustained hypersonic flight causes severe aerodynamic heating and leads to degradation of material properties.
The thermal stress introduced by the temperature gradient and geometrical constraints can have a major effect on
structural integrity and may cause buckling, panel flutter, and control surface flutter. Therefore, accurate simulation
of fluid-thermal-structural interactions (FTSI) over a substantial time period is a key ingredient for analyzing perfor-
mance, stability, and reliability of hypersonic vehicles, that represents a situation where the structure, propulsion and
control system are tightly coupled. The main difficulty associated with aerothermoelastic simulations is the complex-
ity introduced by the different coupling mechanisms between and within the underlying aerothermal and aeroelastic
subsystems [2].

Such difficulties are best addressed using a partitioned approach [3] with loose-coupling [4]. In a partitioned
approach, the fluid, thermal, and structural responses are computed by separate solvers and coupling is achieved by
exchanging boundary data at the interfaces of the domains. A loosely-coupled scheme, which exchanges information
between solvers only once every time step, is computationally efficient and maintains accuracy and stability of the
multi-physics solution when carefully designed [4].

The loosely-coupled partitioned scheme has been applied to aerothermoelastic analysis with subcycling technique
[2]. The subcycling approach uses the disparity in characteristic times, by initiating two solvers simultaneously and
advancing one solver with a multiple of the time step associated with the other solver [3]. In hypersonic aerother-
moelastic problems, the characteristic time scale governing the thermal response is typically two orders of magnitude
larger than that of the structural response and four orders of magnitude larger than the aerodynamic response [5]. In
the multicycling scheme, three different time steps are used for the thermal, structural, and fluid solvers. The subcy-
cling technique is applied in the coupling between fluid and structural solvers, and the coupling between thermal and
aeroelastic solvers. In Ref. [2], the multicycling scheme has been numerically demonstrated to be second-order time
accurate and enhances the computational efficiency of the scheme.

For the aeroelastic simulation, it is shown in Ref. [6] that the energy transfer between computational fluid dynamic
(CFD) and computational structural dynamic (CSD) solvers at their interface is essential for the numerical stability
of partitioned schemes. The “artificial energy”, which is the sum of the work done on the structure by fluid and the
work done on the fluid by structure, should be zero based on physical considerations. However, due to the staggered
implementation, the artificial energy can be non-zero in partitioned schemes, thus leading to divergence. With proper
combination of estimators for aerodynamic loading and structural displacement, the order of time accuracy of artificial
energy and thus the stability of the numerical solution can be improved [6]. An estimator can be a predictor that
extrapolates existing data to next time step, or a corrector that interpolates existing data to previous time step. In
the multicycling scheme employed in [2], a predictor for aerodynamic loading is used in the aeroelastic computation.
However, by using a combination of estimators, the numerical stability of the multicycling scheme may be improved.

Aeroelastic and aerothermoelastic behavior of skin panels of high speed missiles has been studied since late 1950s,
as shown in a comprehensive review [7]. The aeroelastic computational framework based on Navier-Stokes (NS) CFD
solver for panel flutter in subsonic and supersonic flow was first developed in Ref. [8]. Recently, a fully-coupled FTSI
computational framework was used to simulate the long-time-scale behavior of skin panels in hypersonic flow [5].
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However, these studies have two limitations. First, all simulations based on NS solvers are limited to 2D flat panels,
i.e. the panel is semi-finite. Theoretical study has shown that significant differences exist in aeroelastic responses of
2D and 3D panels [9]. The panel curvature may modify aeroelastic response as well [7]. Furthermore, all CFD-based
simulations focus on the response of a flat panel that is aligned to flow direction, which may not represent actual
operating conditions. Furthermore, the direction of the flow will rarely coincide with that of the panel, and this effect
can have considerable influence on dynamical behavior of the panel, as shown in Ref. [10]. However, none of the
studies addressed the problem using a fully-coupled FTSI approach.

For hypersonic vehicles, the skin panel is combined with thermal protection system (TPS) for mitigation of the
severe aerodynamic heating. Currently, there are no operational air-breather except experimental vehicles. Therefore,
for aerothermoelastic studies, several generic skin panels have been conceived using TPS for rocket-based vehicles,
such as Refs. [11] and [12]. These generic skin panels are based on dated TPS. In current study, a new generic skin
panel based on structurally integrated TPS (SITPS) concept is employed, as shown in Fig. 1. In this example, the
SITPS is composed of a sandwich structure with corrugated core, which is filled by insulation materials [13]. The
outer and inner panels and the webs carry the airframe loads, and the sandwich core provides insulation. The outer
panel operates in elevated temperature, while the inner panel operates in insulated environment. The SITPS is expected
to be compact and has a higher structural efficiency. Since SITPS is multi-layered and may be curved due to vehicle
geometry, the generic skin panel has to be modeled as a composite shell to capture its structural deformation and
thermal response.

Figure 1. A typical configuration of SITPS [13].

In current study, the authors described an integrated Python-driven loosely-coupled computational framework
named HYPATE, HYPersonic AeroThermoElasticity simulation environment. The framework combines an in-house
developed finite element solver for structural and thermal behavior with a CFD solver based on the SUmb code [14].
An important component of the framework consists of the coupling scheme between the fluid, structure and thermal
components which relies on a carefully designed loosely-coupled scheme.

The remainder of this paper is arranged as follows: Section II details the formulation of the various components
of HYPATE, including the aerodynamic solver, the structural solver and the thermal solver. Section III details the
analysis of the coupling schemes considered. Section IV presents the verification of the computational framework and
its components. Section V presents results on the application of HYPATE to panel flutter problems. Finally, section
VI provides the concluding remarks.

II. Model Formulation
A. The Aerodynamic Solver
The CFD solver is the modified version of the Stanford University multiblock (SUmb) solver. The original version
of SUmb is a finite-volume, cell-centered multi-block solver for Euler, laminar NS, and RANS equations with steady,
unsteady, and time-periodic temporal modes [14]. In current study, the Spalart-Allmaras turbulence model and perfect
gas model are employed. The well-known three-point backward difference formula (3PBDF) is used for second-
order time-accurate unsteady simulation. In FTSI problems, the mesh representing fluid domain deforms according
to structural displacement, which requires an appropriate implementation of an Arbitrary Lagrangian-Eulerian (ALE)
formulation [15].

The central problem in ALE formulation is the implementation of the Geometric Conservation Law (GCL) con-
dition, first proposed in Ref. [16] for structured grids and finite difference schemes. The GCL states that a flow field
initialized with uniform distribution of flow states should remain unchanged during an unsteady CFD solution where
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mesh motion is present. Numerical studies have shown that violation of GCL degrades time accuracy of the CFD
solution [17]. Moreover, it is pointed out in Ref. [18] that, satisfying GCL is a necessary and sufficient condition
for a numerical scheme to preserve the stability of its fixed grid counterpart. There are two approaches for correct
implementation of GCL in an ALE formulation. In the first approach, a source term is added to the fluid equation,
so that GCL is enforced when the equation is discretized, as shown in Refs. [19] and [20]. In the second approach,
a grid velocity is computed using a carefully designed interpolation scheme, as proposed in Ref. [21]. In SUmb,
the second approach has been implemented [14]. However, the associated interpolation scheme for the grid velocity
violates the GCL and thus it is unstable [18]. In current study, the interpolation scheme is replaced by that proposed in
Ref. [21], so that the new ALE formulation in SUmb satisfies GCL, and is both stable and second-order time-accurate.
Furthermore, the mesh motion in SUmb is extended from rigid body rotation and translation to arbitrary motion that
includes mesh deformation.

1. Discretization of CFD equations in ALE form

The NS equation for dynamic mesh, i.e. the ALE formulation [15], is,

∂Juf
∂t

∣∣∣∣
χ̃

+ J∇ · [F (uf )− wfuf ] = J∇ ·R(uf ) + JS(uf ) (1)

where R is the diffusive flux, S is the source term, and

χ = χ(χ̃, t) (2)

wf =
∂χ

∂t

∣∣∣∣
χ̃

(3)

J =

∣∣∣∣∂χ∂χ̃
∣∣∣∣ (4)

The major difference between Eq. (1) and NS equations for fixed mesh is the inclusion of mesh velocity wf , which
describes the motion of mesh χ relative to the reference frame χ̃.

Using the “mesh-averaging” method in Ref. [21], Eq. (1) is discretized as,

3

2
(V uf )

n+1 − 2(V uf )
n +

1

2
(V uf )

n−1 +∆tF (un+1
f , ν̄, κ̄) = ∆tG(un+1

f , χ̄) (5)

where,

ν̄ =

Kf∑
k=1

αkφ(χ
(k)
f ) (6)

κ̄ =

Kf∑
k=1

αkw
(k)
f φ(χ

(k)
f ) (7)

χ̄ =

Kg∑
k=1

βkχ
(k)
g (8)

and

χ
(k)
f = ζn+1

k χn+1 + ζnk χ
n + ζn−1

k χn−1 (9)

χ(k)
g = ηn+1

k χn+1 + ηnkχ
n + ηn−1

k χn−1 (10)

w
(k)
f =

θn+1
k χn+1 + θnkχ

n + θn−1
k χn−1

∆t
(11)

Here φ is a function that maps the mesh cell surface to its normal.
In above equations, the kth mesh χ(k) refers to the weighted average of meshes χn+1, χn, χn−1, which are from

current and previous time steps. The convective flux term F and viscous flux and source terms G in Eq. (5) are
computed as the numerical fluxes on the weighted average of meshes. The terms F and G are calculated on different
mesh sequences due to physical considerations [22]. By definition, the GCL has to be enforced in the uniform flow
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field. Since uniform flow field is steady and gradient-free, viscous flux and source terms all vanish. Therefore only
convective flux is relevant to GCL and it requires special treatment.

A set of parameters [21] are used for the implementation of ALE formulation of SUmb based on mesh-averaging
method,

ζn+1
1 = K1, ζn1 = K2, ζn−1

1 = 0, ζn+1
2 = K2, ζn2 = K1, ζn−1

2 = 0,
ζn+1
3 = 0, ζn3 = K1, ζn−1

3 = K2, ζn+1
4 = 0, ζn4 = K2, ζn−1

4 = K1,

θn+1
1 = θn+1

2 = 1, θn1 = θn2 = −1, θn−1
1 = θn−1

2 = 0,
θn+1
3 = θn+1

4 = 0, θn3 = θn4 = 1, θn−1
3 = θn−1

4 = −1,
(12)

ηn+1
1 = 1, ηn1 = 0, ηn−1

1 = 0,
α1 = α2 = 3

4 , α3 = α4 = −1
4 , β1 = 1

where K1 = 1
2

(
1 + 1√

3

)
, and K2 = 1

2

(
1− 1√

3

)
. The ALE scheme using parameters listed in Eq. (12) is shown to

be second-order time-accurate and satisfies GCL, which means the scheme is numerically stable [21].

2. The treatment of viscous flux

Clarification of the treatment of the viscous flux is provided next. On viscous boundaries, no-slip condition has to
be enforced to match local velocity of the wall boundary. When the boundary velocities are provided externally,
such as from a structural solver, then Eq. (5) is sufficient. However, if only boundary displacements are provided,
boundary velocities have to be computed by interpolation. Then the right hand side of Eq. (5) is modified to include
the contribution of boundary mesh velocity,

3

2
(V uf )

n+1 − 2(V uf )
n +

1

2
(V uf )

n−1 +∆tF (un+1
f , ν̄, κ̄) = ∆tG(un+1

f , χ̄, w̄b) (13)

where,

w̄b =

Kg∑
k=1

γkw
(k)
b (14)

w
(k)
b =

ξn+1
k χn+1 + ξnkχ

n + ξn−1
k χn−1

∆t
(15)

Expanding g as a function of wb at n+ 1 time step,

G(un+1
f , χ̄, w̄b) = G(un+1

f , χ̄, wn+1
b ) +∇wG(u

n+1
f , χ̄, wn+1

b )(w̄b − wn+1
b ) +O(||w̄b − wn+1

b ||2) (16)

and assuming
Kg∑
k=1

γk = 1, so that,
Kg∑
k=1

γkw
n+1
b = wn+1

b (17)

yields an expression similar to Eqn. 22 in Ref. [21],

w
(k)
b −wn+1

b =
1

∆t
(ξn+1
k + ξnk + ξn−1

k )χn+1 − (ξnk + 2ξn−1
k + 1)wn+1

b +
∆t

2
(ξnk + 4ξn−1

k )ẇn+1
b +O(∆t2) (18)

then

w̄b − wn+1
b =

1

∆t

Kg∑
k=1

γk(ξ
n+1
k + ξnk + ξn−1

k )χn+1 −
Kg∑
k=1

γk(ξ
n
k + 2ξn−1

k + 1)wn+1
b

+
∆t

2

Kg∑
k=1

γk(ξ
n
k + 4ξn−1

k )ẇn+1
b +O(∆t2) (19)

If the term containing (w̄b − wn+1
b ) in right hand side of Eq. (16) vanishes, the diffusive flux with interpolated

boundary velocities is at least second-order time-accurate compared with the one with externally provided boundary
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velocities. Then the ALE scheme in the form of Eq. (13) is second-order time-accurate. This requirement is equivalent
to satisfying Eqs. (20)-(22),

Kg∑
k=1

γk(ξ
n+1
k + ξnk + ξn−1

k ) = 0 (20)

Kg∑
k=1

γk(ξ
n
k + 2ξn−1

k + 1) = 0 (21)

Kg∑
k=1

γk(ξ
n
k + 4ξn−1

k ) = 0 (22)

Since Kg = 1, due to Eq. (17), γ1 = 1. Then,

ξn+1
1 =

3

2
, ξn1 = −2, ξn−1

1 =
1

2
(23)

these are exactly the coefficients of a 3PBDF formula mentioned earlier. The form Eq. (13) and coefficients Eq.
(12) and Eq. (23) define a modified ALE scheme that only requires transfer of boundary displacements from external
solver, while maintaining the the same stability and order of time accuracy as the original scheme based on Eq. (5).
The modified form is convenient in code implementation, since only a single piece of information has to be transferred
to the CFD solver at every time step.

B. The Structural Solver
The most popular finite elements (FE) suitable for shells can be classified as follows: equation-based FE [23, 24],
degenerated-solid FE [25, 26] and faceted FE [27]. For composite shallow shells undergoing moderate deformation,
the equation-based FE is relatively simple compared to the other FE models and at the same time it has specific
advantages in terms of ease of implementation and computational efficiency. The shallow shell is suitable for modeling
the skin on the surface of a hypersonic vehicle.

The doubly-curved shallow shell equations with FSDT and von Karman strain (pp. 621-626 of [28]) is used in the
current study and the following assumptions are used:

1. The panel is thin, i.e. the thickness-to-span ratio of the panel is less than 1/20 [29], therefore first-order shear
deformation theory (FSDT) is adequate.

2. The curved structure is shallow, i.e. the span-to-radius ratio of the panel is less than 0.5 [29], therefore shallow
shell theory is applicable.

3. The panel undergoes moderate rotation with small strain thus von Karman strain is adequate for modeling the
deformation.

4. No change in thickness due to external loading, i.e. total normal strain in thickness direction is neglected.
5. Under non-uniform thermal loading, the traditional composite constitutive relation with thermal strain can be

used.
In HYPATE, the shell element is implemented using the shallow shell equations, which is referred to as the DCS9

(Doubly-Curved Shallow shell) element. The element has nine nodes, as shown in Fig. 2, four at corners, four at
midpoints and one at the center. The numbers enclosed by circles are the nodes. Every node has five DOF’s: three
displacements and two rotations. Second-order Lagrangian shape functions are used to interpolate the nodal variables.
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Figure 2. The DCS9 element in parametric coordinates.

Figure 3. Local curvilinear coordinate system (ξ1, ξ2, ζ) in doubly-
curved shallow shell of laminated composites.

1. The constitutive relation

Assuming that the shell is shallow and the curvatures are constant, the curvilinear coordinate system (ξ1, ξ2, ζ) of
the shell is the same as global coordinate system (x, y, z) and the membrane strain and the transverse shear strain by
FSDT are (pp. 621-626 of [28]),

ϵ = [ϵxx, ϵyy, γxy]
T = ϵl + ϵnl + zχ (24)

γ = [γxz, γyz]
T (25)

where,

ϵl =

u,x + w
Rx

v,y +
w
Ry

u,y + v,x

 , ϵnl =

 1
2w

2
,x

1
2w

2
,y

w,xw,y

 , χ =

 ψx,x
ψy,y

ψx,y + ψy,x

 , γ =

[
− u
Rx

+ w,x + ψx
− v
Ry

+ w,y + ψy

]
(26)

Here von Karman strain ϵnl is used to describe moderate deflection of the shell. Furthermore, ϵ0 = ϵl+ ϵnl is defined
as the total membrane strain.

Consider the ith lamina in a laminated composite shell, which extends from hi to hi+1 in the thickness direction.
The constitutive relation is,

σ = Qi(ϵ+ zχ−αi∆T ), τ = Giγ (27)

where,

σ =

σxxσyy
σxy

 , Qi =

Qi11 Qi12 Qi13
Qi12 Qi22 Qi23
Qi13 Qi23 Qi66

 , αi =

αixxαiyy
αixy

 (28)

and,

τ =

[
σyz
σxz

]
, Gi =

[
Qi44 Qi45
Qi45 Qi55

]
(29)

Assuming a known temperature distribution in the structure, integration of Eq. (27) through the thickness pro-
duces the in-plane forces N = [Nx, Ny, Nxy]

T , moments M = [Mx,My,Mxy]
T and transverse shear forces

TS = [Ty, Tx]
T .

(N,M,TS) =

∫ h/2

−h/2
(σ, zσ, τ )dz (30)

Since Qi and αi vary from layer to layer, the integration over [−h
2 ,

h
2 ] has to be performed also in a piecewise manner.

After the integration, one has, [
N
M

]
=

[
A B
B D

] [
ϵ
χ

]
−
[
NT

MT

]
TS = Sγ

(31)
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where, A,B,D are extensional, extension-bending and bending matrices, respectively, S is transverse shear stiffness
matrix, and NT ,MT are forces and moments due to thermal effect.

(A,B,D) =

Nl∑
i=1

∫ hi+1

hi

(1, z, z2)Qidz

S = κ

(
Nl∑
i=1

∫ hi+1

hi

Gidz

)

(NT ,MT ) =

Nl∑
i=1

∫ hi+1

hi

(1, z)Qiαi∆Tdz

Note that a shear correction factor κ is used in the calculation of S. The actual transverse shear stress distribution
across the thickness is non-uniform. For example, in metallic beams and plates, the distribution is parabolic. However,
in FSDT, the distribution is assumed to be constant. This discrepancy is corrected by multiplying by a factor κ to the
transverse shear strain energy predicted by FSDT so that the modified transverse shear strain energy is equal to the
actual transverse shear strain energy. In current study, κ = 5

6 (pp. 135-136 of [28]).
When evaluating NT ,MT , when the temperature is non-uniform and material properties are dependent on tem-

perature, Simpson’s rule is used to approximate the integrations in A,B,D,S,NT ,MT . For example,

A =
N∑
i=1

∫ hi+1

hi

Qidz ≈
N∑
i=1

{
hi+1 − hi

6

[
Qi(hi) + 4Qi

(
hi + hi+1

2

)
+Qi(hi+1)

]}
(32)

where Qi(z) ≡ Qi(∆T (z)).

2. Element matrices and loading vectors

For each element, the displacement field ū = [u, v, w, ψx, ψy]
T is interpolated by the shape functions Ni and nodal

values u = [u1, v1, w1, ψx1, ψy1, · · · , u9, v9, w9, ψx9, ψy9]
T ,

ū = L0u (33)

where,

L0 =

 · · ·

Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni

· · ·

 , i = 1, · · · , 9 (34)

and

Ni+3j−3 = fi(η)fj(ξ), i, j = 1, 2, 3 (35)

f1(x) =
1

2
x(x− 1)

f2(x) = 1− x2

f3(x) =
1

2
(1 + x)x

The strains are,

ϵl = L1u, ϵnl =
1

2
Lwu, χ = L2u, γ = L3u (36)
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where,

L1 =

 · · ·
Ni,x 0 Ni

Rx
0 0

0 Ni,y
Ni

Ry
0 0

Ni,y Ni,x 0 0 0

· · ·


L2 =

 · · ·
0 0 0 Ni,x 0
0 0 0 0 Ni,y
0 0 0 Ni,y Ni,x

· · ·


Lw =

 · · ·
0 0 w,xNi,x 0 0
0 0 w,yNi,y 0 0
0 0 w,yNi,x + w,xNi,y 0 0

· · ·


L3 =

[
· · ·

0 −Ni

Ry
Ni,y 0 Ni

−Ni

Rx
0 Ni,x Ni 0

· · ·

]

Using constitutive relation Eq. (31), the strain energy U of the shell is,

U =
1

2

∫
A

(
ϵT0 N+ χTM+ γTTS

)
dA (37)

which is integrated over the middle surface of the shell.
From the variation of strain energy, the stiffness matrices and thermal loading vector is obtained,

δU =

∫
A

(
δϵT0 Aϵ+ δϵT0 Bχ+ δχTBϵ0 + δχTDχ+ δγTSγ

)
dA−

∫
A

(
δϵT0 NT + δχTMT

)
dA

≡ δuT ([KL1] + [KL2] + [KN (u)])u− {FT } (38)

where,

[KL1] =

∫
A

(
LT1 AL1 + LT1 BL2 + LT2 BL1 + LT2 DL2

)
dA (39)

[KL2] =

∫
A

(
LT3 SL3

)
dA (40)

[KN (u)] =

∫
A

[
LT1 A

(
1

2
Lw

)
+ LTwAL1 + LTwA

(
1

2
Lw

)
(41)

+ LTwBL2 + LT2 B

(
1

2
Lw

)]
dA

{FT } =

∫
A

[
(LT1 + LTw)NT + LT2 MT

]
dA (42)

The term {FT } is thermal loading vector. The terms [KL1] and [KL2] correspond to the linear part of the element
stiffness matrix. Gaussian quadrature with selective reduced integration scheme is used to evaluate the integrations
associated with [KL1] and [KL2], as shown in Fig. 2. For [KL1], a set of 3×3 Gaussian quadrature points is used (“full
integration”); for [KL2], a set of 2 × 2 Gaussian quadrature points is used (“reduced integration”). This procedure
avoids the “shear locking” problem in FE analysis (pp. 327-330 of [25]). The term [KN (u)] is the nonlinear part of
the element stiffness matrix, which depends on and only on the nodal displacements of the element. Full integration
is used for its numerical evaluation. Combining the linear and nonlinear parts yields the complete stiffness matrix,

[K(u)] = [KL1] + [KL2] + [KN (u)] (43)

The consistent mass matrix required for dynamic modeling is obtained from the kinetic energy KE,

KE =

∫
A

∫ h/2

−h/2

1

2
ρ
[
(u̇+ zψ̇x)

2 + (v̇ + zψ̇y)
2 + ẇ2

]
dzdA

=
1

2

∫
A

[
I1(u̇

2 + v̇2 + ẇ2) + I2(2u̇ψ̇x + 2v̇ψ̇y) + I3(ψ̇x
2
+ ψ̇y

2
)
]
dA
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where,

Ik =
N∑
i=1

∫ hi+1

hi

ρkz
k−1 dz (44)

Using the same shape functions that were used for the stiffness matrix evaluation yields the consistent mass matrix
[M ], given by,

[M ] = LT0 IL0

I =


I1 0 0 I2 0
0 I1 0 0 I2
0 0 I1 0 0
I2 0 0 I3 0
0 I2 0 0 I3

 (45)

Finally, distributed loading p(x, y) in the z-direction is considered. The virtual work done by p(x, y) over the
element is,

δW =

∫
A

p(x, y)δw dA =

(∫
A

9∑
i=1

p(x, y)Ni dA

)
δwi (46)

and the loading vector {F} in the z-direction is,

{F} =

∫
A

LT0 [0, 0, p(x, y), 0, 0]
T dA (47)

3. Solution to the nonlinear structural problem

The stiffness and mass matrices and loading vectors of the individual elements can be assembled into the unconstrained
total stiffness matrix [K̄]∗, total mass matrix [M̄ ], and unconstrained total loading vector {F̄}∗. Then penalty method
is used to apply the boundary conditions (pp. 143-146 of [30]), which only modifies the stiffness matrix and the
loading vector. Therefore, it is sufficient to consider the static case, the potential energy of the structure is,

Π∗ =
1

2
{U}T [K̄]∗{U} − {U}T {F̄}∗ (48)

SupposeNb DOFs of the structure are constrained: the displacement of kith DOFs uki is set to be ukib , i = 1, 2, · · · , Nb.
Then define modified potential energy as,

Π =
1

2
{U}T [K̄]∗{U} − {U}T {F̄}∗ + α̃

2

∑
k∈I

(uk − ukb )
2, I = {k1, k2, · · · , kNb

} (49)

where α̃ ≫ maxi,j([K̄]∗ij). Then minimization of Π leads to uk = ukb , k ∈ I , which satisfies the constraints numeri-
cally. Taking the variation δΠ = 0 yields,

([K̄]∗ + [Ic]){U} = {F̄}∗ + {Fc} (50)

where,

[Ic]ij =

{
α̃, i = j ∈ I
0, else

{Fc}i =
{
α̃uib, i ∈ I
0, else

In practice, α̃ is set to be,
α̃ = α̃0 max

i,j
([K̄]ij) (51)

where α̃0 is set to 106 to guarantee that α̃ is much larger than the largest entry in the stiffness matrix. Define the total
stiffness matrix [K̄] and the total loading vector {F̄} as,

[K̄] = [K̄]∗ + [Ic]

{F̄} = {F̄}∗ + {Fc}

13 of 37

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

10
90

 



Applying similar procedure to dynamic case yields the governing equations of motion given by,

[M̄ ]{Ü}+ [C̄]{U̇}+ [K̄({U})]{U} = {F̄ ({U}, {U̇})} (52)

Equation 52 is solved in the time domain using the Newmark-β scheme (pp. 780-782 of [30]). Subsequently, the
Newton-Raphson method is used to solve the resulting nonlinear equation.

Let {Ü} = a, {U̇} = v, {U} = d and n for current time step and n+ 1 for the next time step, one has,

[M̄ ]an+1 + [C̄]vn+1 + [K̄(dn+1)]dn+1 = {F̄ (dn+1, vn+1)} (53)

Assuming an, vn, dn are known, then quantities at the next time step are approximated by,

vn+1 = vn + (1− γ̄)∆tan + γ̄∆tan+1 ≡ ṽn + γ̄∆tan+1

dn+1 = dn +∆tvn + (1− 2β̄)
∆t2

2
an + β̄∆t2an+1 ≡ d̃n + β̄∆t2an+1

and Eq. (53) becomes,
[K̃(dn+1)]dn+1 = {F̃ (dn+1, vn+1)} (54)

where, {
[K̃(dn+1)] =

1
β̄∆t2

[M̄ ] + γ̄
β̄∆t

[C̄] + [K̄(dn+1)]

{F̃ (dn+1, vn+1)} = {F̄ (dn+1, vn+1)}+ ( 1
β̄∆t2

[M̄ ] + γ̄
β̄∆t

[C̄])d̃n − [C̄]ṽn
(55)

When [M̄ ] = 0, [C̄] = 0, Eq. (54) is reduced to static deformation problem. For unconditional stability, let γ̄ =
1
2 , β̄ = 1

4 in the calculation (pp. 780-782 of [30]).
The Newton-Raphson method is used to solve Eq. (54). In the form of a residue, the method is expressed as,

[R̄(d)] = [K̃(d)]d− {F̃ (d)} = 0 →


∂[R̄(d)]

∂d

∣∣∣∣
di
∆d = −[R̄(di)]

di+1 = di +∆d
(56)

where d is the displacement vector at n+1 time step, i ≥ 0 is the iteration step and d0 is the initial guess for the n+1
time step. The convergence criterion is ∥∆d∥2/∥di+1∥2 ≤ ε, where ∥•∥2 is l2 norm and ε is a prescribed tolerance.

Assuming [M̄ ] and [C̄] are constant, the Jacobian of the residue is,

∂[R̄(d)]

∂d
=
∂[K̄N (d)]

∂d
d+ [K̃(d)]− ∂{F̄ (d)}

∂d
− γ̄

β̄∆t

∂{F̄ (d)}
∂v

(57)

where [K̄N (d)] is the nonlinear part of [K̄(d)].
To obtain the explicit forms that are suitable for programming, the first and the third terms in Eq. (57) need further

elaboration. Note that [K̄N (d)] and {F̄ (d)} are linear combinations of element nonlinear stiffness matrix and loading
vector, respectively. Therefore one can calculate derivatives of element nonlinear stiffness matrix and loading vector
and then assemble them to obtain ∂[K̄N (d)]

∂d d and ∂{F̄ (d)}
∂d .

For the element, only the DOF’s associated with the 9 nodes, shown in Fig. 2, are involved, and one only needs to
calculate ∂[KN (u)]

∂u u, for which the columns can be written explicitly as,

∂[KN (u)]

∂u
u =

[
∂[KN (u)]
∂u1

u ∂[KN (u)]
∂v1

u ∂[KN (u)]
∂w1

u ∂[KN (u)]
∂ψx1

u ∂[KN (u)]
∂ψy1

u · · ·
]

(58)

Nonlinear terms are only associated with wi, therefore the derivatives of KN (u) w.r.t. ui, vi, ψxi, ψyi are zero.
Derivatives of KN (u) w.r.t. wi are,

∂[KN (u)]

∂wi
u =

∫
A

∂

∂wi

[
LT1 A

(
1

2
Lw

)
+ LTwAL1 + LTwA

(
1

2
Lw

)
+ LTwBL2 + LT2 B

(
1

2
Lw

)]
u dA (59)

=

∫
A

[(
LT1 A+ LTwA+ LT2 B

)
Lw1 + LTw2N

]
dA (60)
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where,

Lw1 =
∂

∂wi
Lwu = [Ni,xw,x, Ni,yw,y, Ni,yw,x +Ni,xw,y]

T (61)

Lw2 =
∂

∂wi
Lw =

 0 0 Ni,xN1,x 0 0
0 0 Ni,yN1,y 0 0
0 0 Ni,yN1,x +Ni,xN1,y 0 0

· · ·
0 0 Ni,xN9,x 0 0
0 0 Ni,yN9,y 0 0
0 0 Ni,yN9,x +Ni,xN9,y 0 0

 (62)

The term ∂{F̄ (d)}
∂d is the Jacobian of the loading vector. For an element, the corresponding term is ∂{F (u)}

∂u . Similar
to the stiffness matrix, only the Jacobian of element loading vector is required, as given by,

∂{F (u)}
∂u

=
[

∂[F (u)]
∂u1

∂[F (u)]
∂v1

∂[F (u)]
∂w1

∂[F (u)]
∂ψx1

∂[F (u)]
∂ψy1

· · ·
]

(63)

When the loading vector is independent of displacement, for example, p(x, y) = const in Eq. (47), the Jacobian is
zero. Otherwise, the Jacobian has to be evaluated explicitly.

There are two cases of particular interest, thermal loading and aerodynamic loading based on piston theory. The
former one is essential to account for thermal stresses in the structure in aerothermoelastic simulations. The latter one
is not required in the CFD-based computational framework, however, it will be used to verify the structural solver in
section IV.

THERMAL LOADING From Eq. (42), note that only derivatives w.r.t. wi are nonzero,

∂{FT }
∂wi

=
∂

∂wi

[∫
A

(LT1 + LTw)NT + LT2 MT dA

]
=

∫
A

∂

∂wi
LTwNT dA (64)

=

∫
A

LTw2NT dA

AERODYNAMIC LOADING Using full piston theory [31], assuming cavity pressure to be the same as farfield pressure
p∞ and the flow is in x-direction, parallel to x− y plane, the loading at a point on the surface of a panel is,

p

p∞
= 1− (1 +

γ − 1

2
Mn)

2γ
γ−1 (65)

where Mn =
w,t

a∞
+M∞(w,x + Z,x).

Using Eq. (47), the aerodynamic loading vector is,

{FA} =

∫
A

LT0 [0, 0, p, 0, 0]
T dA (66)

Again only the derivatives w.r.t. wi are nonzero, which is,

∂p

∂wi
= −γp∞(1 +

γ − 1

2
Mn)

γ+1
γ−1 (

γ̄

β̄∆ta∞
Ni +M∞Ni,x) (67)

∂{FA}
∂wi

=

∫
A

LT0 [0, 0,
∂p

∂wi
, 0, 0]T dA (68)

C. The Thermal Solver
Several methods have been developed to simplify the FE modeling of heat transfer in composite shells [32]. These
methods include first-order thermal lamination theory [33, 34], layer-wise thermal lamination theory (LTLT) [35, 36],
and method of homogenization [13, 37]. The FE based on thermal lamination theory are shell elements that use ad
hoc assumptions for the temperature distribution to simplify the heat transfer problem. The method of homogenization
replaces the anisotropic thermal properties of the composite shell with effective homogeneous thermal properties, so as
to avoid modeling heat conduction layer by layer. To accurately capture the through-thickness temperature distribution
and minimize computational cost, the LTLT method is employed in current study.
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In the LTLT based shell element, the nodes are distributed over the shell middle surface. The temperatures Ti at
interfaces between the layers are unknowns at the node, as shown in Fig. 4. The through-the-thickness temperature
distribution is approximated by piecewise linear interpolation for the unknowns. In Fig. 4, the gray dashed line is the
middle surface of the shell.

In HYPATE, the LTLT based shell element is implemented using a solid element, which is referred to as the HTSH
(Heat Transfer in shallow SHell) element. As illustrated in Fig. 5, the HTSH element is an 8-noded element with
first-order Lagrangian shape function. The nodes are labelled by numbers enclosed by circles. Every node has one
unknown, namely the temperature. A series of cells are stacked in the thickness direction, each representing one layer.
In this way, the through-the-thickness temperature distribution is approximated by piecewise linear interpolation, as
required by the LTLT based shell element.

For the formulation of the HTSH element, following assumptions are made:
1. The panel is thin, i.e. the thickness-to-span ratio of the panel is less than 1/20 [29].
2. The curved structure is shallow, i.e. the span-to-radius ratio of the panel is less than 0.5 [29].
3. The panel remains shallow when it undergoes moderate deflection.

Figure 4. The LTLT based shell element using piecewise linear
interpolation. Figure 5. The HTSH element.

1. Heat transfer equation in shallow shells

The heat transfer equation is [38],

(ρc)Ṫ −∇ · ([klam] ·∇T ) = 0 in ΩT
−[klam] ·∇T = q̇surf in Γq

T = Tbc in ΓT
T |t=0 = Tini in ΩT

(69)

where,

[klam] =

k11 k12 0
k21 k22 0
0 0 k33

 (70)

is the thermal conductivity matrix.
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Figure 6. A differential volume in the ξ1ξ2ζ coordinate system.

Using Galerkin’s method [39] multiply the governing equation by an shape function N and integrate by parts,∫
V

N
[
(ρc)Ṫ −∇ · ([klam] ·∇T )

]
dV = 0∫

V

N(ρc)Ṫ dV +

∫
V

∇N · ([klam] ·∇T ) dV =

∫
Γq

N(−q̇surf ) dΓq (71)

The choice of the shape function is discussed later.
In the coordinate system ξ1ξ2ζ, as shown in Fig. 6, the gradient operator and the differential volume are, respec-

tively,

∇ =

[
1

A1

∂

∂ξ1
,
1

A2

∂

∂ξ2
,
∂

∂ζ

]
(72)

dV = A1A2dξ1dξ2dζ (73)

where,

A1 = 1 +
ζ

R1
, A2 = 1 +

ζ

R2
(74)

Since the shell is thin and shallow,
A1 ≈ 1, A2 ≈ 1 (75)

Furthermore, assume that the derivatives of temperature w.r.t. ξ1, ξ2, ζ are the same as derivatives w.r.t. x, y, z. Then
Eq. (72) and (73) are simplified as,

∇ ≈
[
∂

∂x
,
∂

∂y
,
∂

∂z

]
(76)

dV ≈ dxdydz (77)

Therefore, the terms in Eq. (71) are simplified as,∫
V

N(ρc)Ṫ dV ≈
∫
V

N(ρc)Ṫdxdydz (78)

∫
V

∇N · ([k] ·∇T ) dV ≈
∫
V

[
∂N

∂x

∂N

∂y

∂N

∂z

]
[klam]



∂T

∂x

∂T

∂y

∂N

∂z


dxdydz (79)

The analysis outlined above shows:
1. The shell curvatures have very little effect on the thermal solution, i.e. a thin shallow shell can be approximated

by a thin flat plate.

17 of 37

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

10
90

 



2. The constitutive relations in the xyz coordinate system can be approximated by those in the ξ1ξ2ζ coordinate
system.

Conclusion 1 can be extended to a more general case. Since the shell remains shallow under moderate deflection,
shell deformation has very little effect on thermal solution. Therefore, thermal solution of a moderately-deformed thin
shallow shell can be approximated by that of an undeformed thin flat plate.

2. Element matrices and loading vectors

For each element, the temperature field is interpolated by shape functions Ni, i = 1, · · · , 8 and nodal values T =
[T1, T2, · · · , T8]T ,

T (x, y, z) = L4T = [N1, N2, · · · , N8]T (80)

The shape functions are,
Ni+2j+4k−6 = fi(η1)fj(η2)fk(η3), i, j, k = 1, 2 (81)

where, f1(η) = 1
2 (1− η), f2(η) = 1

2 (1 + η).
Then the temperature gradient is, [

∂T

∂x
,
∂T

∂y
,
∂T

∂z

]T
= L5T (82)

where,

L5 =

N1,x N2,x · · · N8,x

N1,y N2,y · · · N8,y

N1,z N2,z · · · N8,z

 (83)

Using approximation provided by Eq. (78) and (79), the first and the second terms in Eq. (71) are discretized as,∫
V

N(ρc)Ṫ dV ≈
{∫

V

N(ρc)L4dxdydz

}
Ṫ (84)∫

V

∇N · ([k] ·∇T ) dV ≈
{∫

V

[
∂N

∂x

∂N

∂y

∂N

∂z

]
[klam]L5dxdydz

}
T (85)

Replacing N using Ni, i = 1, · · · , 8, the element heat capacity matrix [KT ], thermal conductivity matrix [CT ],
and the loading vector {Q} are obtained,

[KT ] =

∫
V

LT5 [klam]L5 dV (86)

[CT ] =

∫
V

LT4 (ρc)L4 dV (87)

{Q} =

∫
Ωq

LT4 (−q̇) dΩq (88)

where,

q̇ =

 Q, Constant heat flux
hc(T − TAW ), Convection
ϵσ(T 4 − T 4

amb), Radiation
(89)

The integrations in Eq. (86)-(88) are evaluated using 2× 2× 2 Gaussian quadratures.

3. Solution to the nonlinear heat transfer problem

The thermal conductivity and heat capacity matrices and loading vectors of the individual elements are assembled into
total thermal conductivity matrix [K̄T ], total heat capacity matrix [C̄T ], total loading vector {Q̄}, and total temperature
vector {T}. Note that both [K̄T ] and [C̄T ] are nonlinear when the material properties are temperature dependent.

The governing equations for heat transfer problem are,

[C̄T ({T})]{Ṫ}+ [K̄({T})]{T} = {Q̄({T})} (90)

Equation 90 is discretized in the time domain using the Crank-Nicolson scheme [40]. Then Newton-Raphson
method is used to solve the resulting nonlinear equations.
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Let T 0 = {T}n, T 1 = {T}n+1, and Tα = (1− ᾱ)T 0 + ᾱT 1,

[C̄T (T
α)]

T 1 − T 0

∆t
+ [K̄(Tα)]Tα = {Q̄(Tα)} (91)

Assuming T 0 is known, rewrite Eq. (91) as,{
1

∆t
[C̄T (T

α)] + ᾱ[K̄(Tα)]

}
T 1 = {Q̄(Tα)}+

{
1

∆t
[C̄T (T

α)]− (1− ᾱ)[K̄(Tα)]

}
T 0 (92)

To enforce the BC on ΓT , i.e. temperature is prescirbed on a set of nodes Γ̃T ,

Ti = Tbc, i ∈ Γ̃T (93)

Equation 92 is modified using the penalty method [41],{
1

∆t
[C̄T (T

α)] + ᾱ[K̄(Tα)] + [K̄b]

}
T 1 = {Q̄(Tα)}+

{
1

∆t
[C̄T (T

α)]− (1− ᾱ)[K̄(Tα)]

}
T 0 + {Q̄b} (94)

where,

[K̄b]ij =

{
α̃, i = j ∈ Γ̃T
0, else

{Q̄b}i =
{
α̃Tbc, i ∈ Γ̃T
0, else

For unconditional stability, let ᾱ = 1
2 in the calculation [40]. However, this guarantees unconditional stability in

linear systems; and in our case, numerical instability may still appear.
After adding the constraint, rewrite the nonlinear equation Eq. (94),

[C̄T (T
α)]

T 1 − T 0

∆t
+ [K̄T (T

α)]Tα + [K̄b]T
1 = {Q̄(Tα)}+ {Q̄b} (95)

The Newton-Raphson method is used to solve Eq. (95). In residue form, the method is,

[R̄(T 1)] = [C̄T (T
α)]

T 1 − T 0

∆t
+ [K̄T (T

α)]Tα + [K̄b]T
1 − {Q̄(Tα)} − {Q̄b} (96)

Noting that ∂T
α

∂T 1 {T} = ᾱ{T}, the Jacobian of the residue is,

∂[R̄(T 1)]

∂T 1
=

ᾱ

∆t

∂[C̄T (T
α)]

∂Tα
∆T̄︸ ︷︷ ︸

Term 1

+
1

∆t
[C̄T (T

α)]

+ ᾱ
∂[K̄T (T

α)]

∂Tα
Tα︸ ︷︷ ︸

Term 2

+ᾱ[K̄T (T
α)] + [K̄b]− ᾱ

∂{Q̄(Tα)}
∂Tα︸ ︷︷ ︸
Term 3

(97)

where ∆T̄ = {T}n+1 − {T}n.
To obtain the explicit forms that are suitable for programming, the three terms labeled in Eq. (97) need further

elaboration. Note that [C̄T ], [K̄T ], and {Q̄} are linear combinations of element heat capacity and thermal conductivity
matrices and loading vector, respectively. So one can calculate derivatives of element matrices and loading vector and
then assemble them to obtain the three terms in Eq. (97).

In each element,

∂[CT ]
∂Tα ∆T =

[
· · · ∂[CT ]

∂Tαi
∆T · · ·

]
, ∂[CT ]

∂Tα
i

=
∫
V
LT1

∂(ρc)
∂Tα

i
L1 dV

∂[KT ]
∂Tα Tα =

[
· · · ∂[KT ]

∂Tαi
Tα · · ·

]
, ∂[KT ]

∂Tα
i

=
∫
V
LT2

∂[klam]
∂Tα

i
L2 dV

∂Q(Tα)
∂Tα =

[
· · · ∂Q(Tα)

∂Tα
i

· · ·
]
, ∂Q(Tα)

∂Tα
i

=
∫
Ω
LT1

(
− ∂q̇
∂Tα

i

)
L1 dΩ

(98)

The derivative of q̇ depends on the type of heat flux,

∂q̇

∂Tαi
=

 0, Constant heat flux
hc, Convection
4ϵσ(Tαi )

3, Radiation
(99)
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III. Coupling Methodology
A. Coupling scheme for FTSI problems
1. Design strategy for the loosely-coupled scheme

In Ref. [4], a theoretical framework was developed to analyse order of time accuracy of a coupling scheme for Fluid-
Structure Interaction (FSI) problems. The framework is based on a three-field formulation. The formulation includes
fluid domain, solid domain, and fluid-mesh-motion domain, and a pseudo-elastodynamic method is used to deform the
mesh when solid boundaries move. Note that only the Euler CFD solver based on mesh time-averaging method was
considered in the original framework. Therefore for the current study it had to be extended for an NS CFD solver by
including the contribution of diffusive flux to the time accuracy of the coupled system.

As pointed out in section I, the numerical stability of the aeroelastic solver in the multicycling scheme can be
improved by a proper combination of estimators, i.e. predictors and correctors. The choice of predictor and corrector
is facilitated by an energy balance analysis. In Ref. [42], the difference between the aerodynamic work and the
sum of kinetic energy and strain energy Etot in an undamped system is examined by conducting numerical studies.
The difference should equal the initial total energy Etot when the artificial energy of the coupling scheme is zero.
The method can be conveniently implemented numerically. However, it cannot be used to determine the order of
time accuracy of the artificial energy. In Ref. [6], the energy balance analysis relies on the assumption of harmonic
aeroelastic response, i.e. both structural and fluid responses are harmonic. The time accuracy of the artificial energy
per period, which is defined as energy accuracy in [6], is analytically determined for the various coupling schemes.
However, the energy accuracy defined in this manner cannot be easily verified through numerical experiments, because
the validity of theoretical energy accuracy is limited to cases where the aeroelastic responses are harmonic. In current
study, a modified energy balance analysis is developed to quantify the energy accuracy. In this analysis framework,
energy accuracy is defined as the time accuracy of the artificial energy per time step. In that approach, energy accuracy
of a coupling scheme can be determined analytically and verified numerically using arbitrary aeroelastic responses.

Next, two typical loosely coupled schemes for aerothermoelastic simulation are described. Then the framework
proposed in Ref. [4] is modified to analyze the time accuracy of a loosely coupled scheme. Subsequently, an energy
balance analysis is developed to examine numerical stability of coupling schemes with different combinations of
estimators. The first scheme is adapted from the multicycling scheme [2], which will be referred to as the MN scheme.
The second scheme is similar to the MN scheme, but with a different set of estimators [6], which will be referred to as
the FH scheme. To simplify the energy balance analysis, the subcycling technique discussed in Ref. [2] is not used in
the MN and FH schemes.

2. Description of two loosely-coupled schemes

In a typical aerothermoelastic coupling scheme [2], the solvers are initiated at the same physical time t. As the
calculations commence, a series of operations are performed to advance the coupled system to next time step.

The coupling procedure of MN scheme is, as illustrated in Fig. 7,
1. Heat flux is passed from the aerodynamic solver to the thermal solver, where heat flux is extrapolated,

q̇n+1/2,E =
3

2
q̇n − 1

2
q̇n−1 (100)

2. Thermal solution is updated to time t+∆t.
3. Pass new body temperature to structural solver and extrapolate the pressure field by,

pn+1,E = 2pn − pn−1 (101)

4. Solve for new displacement dn+1 and advance the CSD solver to time t+∆t.
5. Pass new wall temperature and new displacement to aerodynamic solver by,

dn+1,E = dn+1 (102)

6. Advance aerodynamic solver to time t+∆t.
7. Above steps are repeated until end of the simulation.
The coupling procedure of FH scheme is, as illustrated in Fig. 8,
1. Heat flux is passed from the aerodynamic solver to the thermal solver, where heat flux is extrapolated,

q̇n+1/2,E =
3

2
q̇n − 1

2
q̇n−1 (103)
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2. Thermal solution is updated to time t+∆t.
3. Pass new wall temperature to aerodynamic solver and extrapolate displacements by,

dn+1,E = dn +∆t

(
3

2
ḋn − 1

2
ḋn−1

)
(104)

4. Solve for new pressure field pn+1 and advance the aerodynamic solver to time t+∆t.
5. Pass new body temperature and new pressure field to structural solver by,

pn+1,E = pn+1 (105)

6. Advance the structural solver to t+∆t.
7. Above steps are repeated until end of the simulation.
For both aeroelastic schemes, a starting procedure is needed. In current study, following procedure is employed

[43],

ḋ 1 = ḋ 0 +∆td̈ 0 (106)

d 1 = d 0 +∆tḋ 0 +
1

2
∆t2d̈ 0 (107)

Subsequently the loading at step 1 is calculated using d 1 and ḋ 1. The same starting procedure is used for both schemes
so that their time accuracy can be compared on the basis.

Figure 7. The coupling procedure for MN scheme. Figure 8. The coupling procedure for FH scheme.

3. Time accuracy analysis

In aeroelastic simulations, the structural and aerodynamic solvers constructed using second-orer time accurate schemes
may not demonstrate the same order of time accuracy in a loosely-coupled scheme [4]. Therefore, it is a question
whether the thermal, structural, and aerodynamic solvers in current study remains second-order time accurate in the
loosely-coupled scheme. In the following, the analysis approach from Ref. [4] is adapted to determine the conditions
under which the loosely-coupled scheme is second-order time accurate for aerothermoelastic simulations.

AERODYNAMIC SOLVER The discretized form of Eq. (1) when dealing with the isolated fluid domain is given in Eq.
(5). However, in the coupled system, the boundary displacements, and thus the sequences of meshes, are approximated
by a displacement estimator. Furthermore, the wall temperature is provided by a thermal solver. Therefore, the
discretized CFD solver in the coupled scheme is,

1

∆t

[
3

2
(V Euf )

n+1
i − 2(V Euf )

n
i +

1

2
(V Euf )

n−1
i

]
+ F (un+1

f , χn+1,E , χn,E , χn−1,E , Tn+1
w )

= G(un+1
f , χn+1,E , χn,E , χn−1,E , Tn+1

w ) (108)
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Next, consider the error in Eq. (108) compared with Eq. (5),

ϵCFD = ϵu + ϵF + ϵG (109)

where, ϵu, ϵF , ϵG are numerical errors from time derivative, convective flux, and diffusive flux terms, respectively,

ϵu =
1

∆t

[
3

2
(V Euf )

n+1 − 2(V Euf )
n +

1

2
(V Euf )

n−1

]
− 1

∆t

[
3

2
(V Euf )

n+1 − 2(V Euf )
n +

1

2
(V Euf )

n−1

]
= O(|χn+1,E − χn+1|) (110)

ϵF = F (un+1
f , χn+1,E , χn,E , χn−1,E , Tn+1

w )− F (un+1
f , χn+1, χn, χn−1, Tn+1

w )

=

1∑
k=−1

O(|χn+k,E − χn+k|) (111)

ϵG = G(un+1
f , χn+1,E , χn,E , χn−1,E , Tn+1

w )−G(un+1
f , χn+1, χn, χn−1, Tn+1

w )

=
1∑

k=−1

O(|χn+k,E − χn+k|) (112)

Therefore the error due to approximation of boundary displacements is,

ϵCFD =
1∑

k=−1

O(|χn+k,E − χn+k|)

=
1∑

k=−1

O(|dn+k,E − dn+k|) (113)

Since Eq. (108) is second-order time-accurate, when O(|χn+k,E − χn+k|) = O(∆t2), i.e. displacement estimator is
at least second-order time-accurate, and therefore the time accuracy of CFD solver in coupled scheme is preserved.
Note that as long as the updated wall temperature is passed to aerodynamic solver, thermal solution will not effect the
time-accuracy of the aerodynamic solution.

STRUCTURAL SOLVER From Eq. (52), the governing equation for structural domain is,

[M ]d̈n+1 + [C]ḋn+1 + [K(dn+1, Tn+1)]dn+1 = {F (pn+1, dn+1, ḋn+1, Tn+1)} (114)

Using the Newmark-β scheme for time integration yields,

dn+1 = dn + ḋn∆t+
∆t2

4
(d̈n+1 + d̈n) (115)

ḋn+1 = ḋn +
∆t

2
(d̈n+1 + d̈n) (116)

In coupled system, the loading pn+1 is provided by an estimator, such that

{F (pn+1, dn+1, ḋn+1, Tn+1)} ≈ {F (pn+1,E , dn+1, ḋn+1, Tn+1)} (117)

Then the discretization error is,
ϵCSD = ϵd + ϵf (118)

where ϵd is the error associated with Newmark-β scheme and ϵf is the error associated with loading estimation,

ϵd =
{
[M ]d̈n+1 + [C]ḋn+1 + [K(dn+1, Tn+1)]dn+1

}
−
{
[M ]d̈n+1 + [C][ḋn +

∆t

2
(d̈n+1 + d̈n)] + [K][dn + ḋn∆t+

∆t2

4
(d̈n+1 + d̈n)]

}
(119)

= O(∆t2) (120)

ϵf = {F (pn+1,E , dn+1, ḋn+1, Tn+1)} − {F (pn+1, dn+1, ḋn+1, Tn+1)}
= O(|pn+1,E − pn+1|) (121)
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The total error due to discretization in the coupled scheme is,

ϵCSD = O(|pn+1,E − pn+1|) +O(∆t2) (122)

Therefore when the pressure estimator is at least second-order time-accurate, the CSD solver in coupled scheme
remains second-order time-accurate. Similarly to the the aerodynamic solver, the temperature does not effect the
time-accuracy of the solver.

THERMAL SOLVER From Eq. (90), the governing equation for thermal domain is,

[C]Ṫn+1/2 + [K(Tn+1/2)]Tn+1/2 = q̇n+1/2 (123)

Using the Crank-Nicolson scheme for time integration yields,

Ṫn+1/2 =
Tn+1 − Tn

∆t
(124)

In coupled system, the heat flux q̇n+1/2 is provided by an estimator from the CFD solver. Then the discretization
error is,

ϵCTD = ϵT + ϵq (125)

where ϵT is the error associated with Crank-Nicolson scheme and ϵq is the error associated with heat flux estimation,

ϵT =
{
[C]Ṫn+1/2 + [K(Tn+1/2)]Tn+1/2

}
−
{
[C]

Tn+1 − Tn

∆t
+ [K(Tn+1/2)]Tn+1/2

}
= O(∆t2) (126)

ϵq = O(|q̇n+1/2,E − q̇n+1/2|)

The total error due to discretization in the coupled scheme is,

ϵCTD = O(|q̇n+1/2,E − q̇n+1/2|) +O(∆t2) (127)

Therefore as long as the heat flux estimator is at least second-order time-accurate, the CTD solver in coupled scheme
remains second-order time-accurate.

SUMMARY OF TIME ACCURACY ANALYSIS Based on above discussion, the loosely coupled scheme for aerother-
moelastic simulation is second-order time-accurate when,

1. The aerodynamic, structural, and thermal solvers are second-order time-accurate.
2. The displacement, force, and heat flux estimators are second-order time-accurate.

It is obvious that the aerothermoelastic coupling procedures using MN and FH schemes both produce second-order
time-accurate solutions.

4. The energy balance analysis

The aeroelastic schemes can be further characterized using energy balance analysis. In Ref. [6], the work done on the
structure by fluid δES in a second-order time-accurate structural solver is,

δES =
1

2
(pn+1,E + pn,E)(dn+1 − dn) (128)

and the work done on the fluid by structure δES in a second-order time-accurate fluid solver is,

δEF = −1

2
(pn+1 + pn)(dn+1,E − dn,E) (129)

The artificial energy δE over one time step is,

δE = δES + δEF (130)
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It is evident that the artificial energy is non-zero unless

pn+1,E = pn+1 (131)

dn+1,E = dn+1 (132)

However, in loosely-coupled schemes, the values of dn+1 and pn+1 are not known at the same time and either dn+1

or pn+1 is approximated. Therefore, in loosely-coupled schemes, artificial energy accumulates at each time step,
resulting in error accumulation and eventual numerical instability.

The artificial energy can be quantified by its order of time accuracy. Using the following combination of estimators
as example,

pn+1,E = 2pn − pn−1 (133)

dn+1,E = dn+1 (134)

which corresponds to the case in the MN scheme [2]. Expanding δE in Taylor series at the nth time step,

δE =
1

2
(pn +

1

2
pn−1 − 1

2
pn−2)(dn+1 − dn)− 1

2
(pn+1 + pn)(dn+1 − dn)

= −p̈nḋn∆t3 = O(∆t3) (135)

Therefore, the artificial energy in the MN scheme is third-order time-accurate. For simplicity, we refer to a scheme as
pth-order energy-accurate when its artificial energy per time step is pth-order time-accurate.

On the other hand, if the estimators indicated in [6] are used,

pn+1,E = pn+1 (136)

dn+1,E = dn +∆t

(
3

2
ḋn − 1

2
ḋn−1

)
(137)

The scheme is clearly second-order time-accurate. Furthermore, energy balance analysis shows, the scheme is fourth-
order energy-accurate with

δE =
5

12
pnu(4),n∆t4 = O(∆t4) (138)

which is one-order higher than that of the MN scheme.
It is worthwhile pointing out the relation between energy-accuracy and damping of the system. In an FSI system,

assume the structural displacements are,
d = d̄e(−ζ+iω)t = d̄ezt (139)

The sum of kinetic energy and strain energy of the structure is,

Etot =
1

2
dT [K]d+

1

2
ḋT [M ]ḋ

=
1

2
(d̄T [K]d̄+ d̄T [M ]d̄z2)e2zt

= Ētote
2zt+ϕ(z) (140)

The expressions of total energy Etot in two consecutive time steps are,

Entot = Ētote
2zt+ϕ(z) (141)

En+1
tot = Ētote

2z(t+∆t)+ϕ(z) (142)

The energy gained or lost during one time step is,

∆Etot = En+1
tot − Entot = Ētote

2zt+ϕ(z)(e2z∆t − 1)

= Ētote
2zt+ϕ(z)[2z∆t+O(∆t2)] (143)

On the other hand, in a loosely-coupled scheme with pth-order energy-accuracy, ∆Etot = O(∆tp). Therefore,

ze2zt+ϕ(z) = O(∆tp−1) (144)
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Consider the real part of Eq. (144),
ζe−2ζt+ϕ(ζ) = O(∆tp−1) (145)

If the FSI system is close to flutter point, Etot tends to be constant and thus ζ → 0. Then,

ζe−2ζt+ϕ(ζ) = ζ +O(ζ2)

ζ = O(∆tp−1) (146)

Therefore we can conclude that: When a loosely-coupled partitioned scheme is pth-order energy-accurate, the damp-
ing coefficient is (p-1)th-order time-accurate near flutter point. Therefore loosely-coupled schemes with higher-order
energy-accuracy predict the damping coefficient, and thus the flutter point, with higher time accuracy.

IV. Verification of the Framework
A. Verification of aerodynamic solver
1. The test case considered

Due to the lack of experimental data for unsteady aerodynamics in hypersonic flow, a case of pitching NACA0012
airfoil oscillating in pitching is used to verify the correctness and time accuracy of the aerodynamic solver. For the
cases of pitching airfoil used in aeroelastic research, there are several data sets available from experimental studies
and numerical simulations in the literature. One of the Computational Test (CT) cases, namely CT1, published in
AGARD report 702 [44] is selected to validate the RANS solution obtained from the CFD solver. The test conditions
are provided in Table 1. The NACA0012 airfoil oscillates in pitching about quarter-chord and the motion is given by,

α = αm + αa sin(ωt) (147)

Table 1. Setup of the test cases

αm(◦) αa(
◦) Re(×106) M k

2.77 2.34 4.8 0.6 0.0808

2. Unsteady results

For unsteady simulations, the physical time step is 0.01s. For each time step, up to 2000 subiterations in the CFD
solver are used to march the fluid in time. Six cycles of oscillation are completed to remove the effect of initial
conditions. The results from CT1 case are shown in Figs. 9-10, where CFD data from McMullen [45] and Pandya
[46] are included for comparison. The results from SUmb agree well with experimental data and other CFD results
for the time history of the lift coefficient as shown in Fig. 9. When considering the moment coefficient shown in
Fig. 10, all the CFD data agree well with each other, but are not sufficiently close to the experimental data. In the
experiment, the surface shear stress is missing, which could be the source of the disagreement between experimental
and computational data. Therefore, it was concluded that the ALE formulation in SUmb is implemented correctly.
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Figure 9. Lift coefficient as a function of instantaneous angle of
attack in CT1 case.

Figure 10. Moment coefficient as a function of instantaneous an-
gle of attack in CT1 case.

3. Time accuracy

Assuming that the CFD solver has pth order temporal accuracy and qth order spatial accuracy, and a solution u∆t,χ is
obtained at time step ∆t and a given mesh χ, the error compared to the exact solution ũ is,

ϵ∆t,χ = u∆t,χ − ũ = Ψ1∆t
q1 + ϵχ (148)

where Ψ1 is a constant dependent on the numerical scheme, and ϵχ is error from spatial discretization and assumed
to be independent of time step. Using the same mesh and generating solutions ui over a series of increasing time
steps ki∆t, e.g. ∆t, 2∆t, 4∆t, · · · and using the solution u0 of the smallest time step t as reference, the error in time
discretization can be expressed using l2 norm as,

ϵ∆t = ||ui − u0||l2 = ||Ψ1(1−
(

1

ki

)q
)||(ki∆t)q = Ψ(ki∆t)

q (149)

where q is order of accuracy. When ki is sufficiently large,

Ψ ≈ ||Ψ1|| (150)

and
log ϵ∆t = logΨ + q log(ki∆t) (151)

Therefore, in the log plot of relative error vs. time step, the slope of the line indicates the order of time accuracy of the
solutions.

The CFD solutions at t = 0.6s are obtained at a series of time steps: ∆t = 0.02s, 0.01s, 0.005s, 0.002s. Using
the solution at ∆t = 0.002s as reference, the error plot is shown in Fig. 11. The result indicates the CT1 solutions
are second-order time accurate. The mathematical formulation and code implementation in SUmb is identical for
subsonic and hypersonic flow regimes, therefore above results indicate that the aerodynamic solver is second-order
time accurate for hypersonic flow regime.
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Figure 11. The log plot of relative error v.s. time step for CT1.

B. Verification of structural solver
The structural solver is verified using several cases for panel flutter. The data for comparison are collected from the
literature (Nydick et al. [47], Dowell [48], and Gray et al. [49]). Two sets of material parameters are shown in Table 2.
The test case considered are shown in Table 3. In the last case, the temperature increments are ∆T = Tcr, 2Tcr. The
thermal loading is modelled by Eq. (64), and the aerodynamic loading is modelled by piston theory using Eq. (66).

Table 2. Nondimensionalized material properties

Set E1 E2 ν G12 G13 G23 ρ α1, 10
−6 α2, 10

−6

1 1 1 0.3 0.3846 0.3846 0.3846 1 1.2 1.2
2 1 0.6452 0.27 0.2710 0.2710 0.2710 1 3.22 10.6

Table 3. Data for the cases of panel flutter

Case Geometry Material BC Loading
Isotropic plate a = b = 240, h = 1 1 Simply supported M∞ = 10, µ = 1

Orthotropic plate a = b = 300, h = 1 2 Simply supported M∞ = 15, µ = 1.5
Heated Isotropic plate a = b = 500, h = 1 1 Simply supported M∞ = 10, µ = 5.355× 10−3

In general, the results produced by DCS9 agree well with those from literature. In the first case (Fig. 12), the
predicted flutter points are almost identical. In the second case (Fig. 12), DCS9 overpredicts the flutter point by about
1%. In both cases, the limit cycle curves agree quite well.

In the third case (Fig. 13), when ∆T = Tcr, DCS9 underpredicts the flutter point by approximately 2.9%.
However, when ∆T = 2Tcr, results from DCS9 suggest there is no flutter point. Instead, initially the panel is
thermally buckled, which is dynamically stable. When λ ≥ 200, the panel enters a chaotic region, where no regular
limit cycle can be identified. When λ ≥ 250, the panel finally reaches an limit cycle oscillation.
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Figure 12. Isotropic and orthotropic plates.
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Figure 13. Heated isotropic plate.

C. Verification of thermal solver
The thermal solver is verified by examining heat transfer in a generic skin panel exposed to aerodynamic heating.

The layers of SITPS-based generic skin panel is shown in Fig. 14. The skin panel is composed of corrugated
sandwich structure with insulated core material. The choice of material is based on Ref. [50]. A type of ceramic
matrix composite, AS/N720, is used for the outer panel (i.e. hot structure) and the web. Beryllium is used for inner
panel, i.e. cold structure. The core is filled with Saffil as insulator. The material properties at 300K are shown in Table
4. The original design of SITPS in Ref. [50] is for rocket-based vehicle, which can have a thickness of 140mm. In the
generic skin panel, total thicknesses of layers are decreased to 12mm to be applicable to a hypersonic air-breathing
vehicle.

A cylindrical shell, shown in Fig. 15, is used to demonstrate the capability of the heat transfer model. The
geometric parameters of the shell are provided in Table 5. The composite layup is shown in Table 4. The material
properties are temperature dependent, unless otherwise stated.

Figure 14. A generic skin panel. Figure 15. A cylindrical shell.

The shell is insulated on the bottom and the four sides. Heat loading is applied only to the upper surface. Initially,
the temperature of shell is uniform at T = 329.82K. Uniform convective heating and radiation are applied to the
upper surface. The heat flux is,

q̇ = hc(T − TAW ) + ϵσ(T 4 − T 4
amb) (152)

where hc = 6.03W/m2/K, TAW = 1317.02K, Tamb = 329.82K, and ϵ = 0.85. The heat load is applied for 600s.
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Table 4. Material properties for generic skin panel

ρ, kg/m3 kh, J/m/K c, J/kg/K hi, mm
AS/N720 [51] 2600 2.47 786.8 2.0

Saffil [52] 49.98 0.0258 942 7.0
Beryllium [53] 1855 173.6 1895 3.0

Table 5. Geometry parameters of the shell

a b R
508mm 508mm 2540mm

The HTSH element is compared with the DS3 element from commercial software ABAQUS, which is a three-node
triangular shell element [36]. In FE models based on the DS3 element, 7 unknown temperatures are assigned to each
layer of the shell. The unknowns at interfaces are shared by neighboring layers and thus each node has a total of 19
unknown temperatures in the thickness direction. Note that in the ABAQUS models, the geometry model of the shell
is curved and thus the effect of curvature is included. In the HTSH models, the effect of curvature is neglected.

The solutions at t = 300s and t = 600s using the HTSH and DS3 elements are shown in Fig. 16 and 17.
In Fig. 16, when material properties are temperature independent, the temperature distribution is almost piece-

wisely linear. The HTSH and DS3 solutions match very well with each other, with maximum error less than 1%.
Therefore, neglecting curvature in the HTSH element does not affect the accuracy of the thermal solution.

In Fig. 17, temperature dependence of material properties speeds up the heating of the inner panel and causes
nonlinear temperature distribution in the thickness direction. However, the distribution is still approximated well
by linear interpolation using HTSH element, producing a maximum error of 1.2%. Therefore, the HTSH element
captures the through-the-thickness temperature distribution in the presence of nonlinear heat loading and temperature-
dependent material properties.

Figure 16. Solution of Case 2 with material set 1. Figure 17. Solution of Case 2 with material set 2.

D. Verification of aeroelastic coupling scheme
1. Test case considered

The flutter of typical section consisting of a double-wedge airfoil in hypersonic flow, shown in Fig. 18. The purpose
of the test case is to examine the time accuracy and energy accuracy of the coupling schemes, which requires intensive
computational efforts associated with very fine time steps. Therefore, the Euler CFD solver is employed to speed up
the verification process.

The governing equations of the aeroelastic system are,[
m Sα
Sα Iα

] [
ḧ
α̈

]
+

[
Kh 0
0 Kα

] [
h
α

]
=

[
−L
Mea

]
(153)
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The case is adapted from [12], and the parameters are given in Table 6.

Figure 18. Case setup of the typical section flutter [12].

Table 6. Parameters of the aeroelastic system.

m Sα Iα Kh Kα b th/b αS
94.274kg 22.154kgm 30.499kgm2 668284.31N/m 1702262.79Nm/rad 1.175m 0.0336 0◦

The flight conditions are, H = 12000m,M∞ = 13, a = 0.0, and in this case, the system is close to flutter point.
The following initial conditions were used to perturb the airfoil at the start of simulation,

h0 = 0.001m,
α0 = 0.001rad,

ḣ0 = 0.0,
α̇0 = 0.0

(154)

Initially, a steady solution is generated for the 2D typical section with prescribed initial displacements. From the
steady solution, the aerodynamic loading is obtained, and the initial accelerations are computed. Then Eqs. (106) and
(107) are used for the starting procedure.

Subsequently, the best coupling schemes are used to obtain the partitioned solution using an Euler CFD solver to
verify the correctness of the coupling scheme, and compare it with the MN scheme. The flutter boundary is determined
by V-g method, where the damping coefficients are extracted from system response by autoregressive moving average
(ARMA) method [54].

Next, CFD-based solutions from schemes FH and MN are compared. The time responses for displacements and
forces are shown in Fig. 19 and 20, where a solution using piston theory (labelled “pt”) is also included for comparison.
The responses of airfoil from scheme FH and MN agree well with each other. The time-accuracy and energy-accuracy
of schemes FH and MN agree with theoretical prediction as well as numerical verifications using piston theory. Both
schemes display second-order time-accuracy in displacements and forces. The FH scheme is fourth-order energy-
accurate, while the MN scheme is third-order energy-accurate. The time accuracy of damping coefficient is one order
lower than the order of energy accuracy. This illustrates the superiority of the FH scheme over the MN scheme in
terms of accuracy and numerical stability. One can therefore speculate that the FH scheme may produce more accurate
results for long-time-scale simulations than the MN scheme.
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Figure 19. Comparison of displacements using schemes FH and
MN.

Figure 20. Comparison of forces using schemes FH and MN.

Figure 21. Relative error of displacements. Figure 22. Relative error of forces.

Figure 23. Relative error of artificial energy. Figure 24. Relative error of damping coefficient.
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V. Application to Panel Flutter
A. The computational models
The configurations considered include a semi-infinite panel, i.e. a 2D panel, and a 3D panel with aspect ratio a/b = 1.
The computational model for 2D panel is shown in Fig. 25. The panel is discretized using 50 elements in streamwise
direction with simply supported BC on its leading and trailing edges. The structural mesh is one-element wide in y
direction and symmetric BC are applied to the sides parallel to x axis, i.e.

v = 0, ψx = 0,
∂w

∂y
= 0 (155)

The fluid domain is discretized using structured mesh. The block over the panel is discretized into 128× 128 cells in
the xz plane. The dimensions l1, l2, lh are adjusted to suit Mach numbers and Reynolds numbers for different cases.
Particularly, the value of l1 is for controlling the boundary layer thickness over the panel. For example, l1 is increased
when thicker boundary layer is desired over the panel. The computational model for 3D panel is shown in Fig. 26.
The panel is discretized using a 16× 16 mesh. The four sides of the panel are simply supported. In the fluid domain,
the block over the panel is discretized into 64 cells both in streamwise and spanwise directions, and 128 cells in z
direction. In all the CFD meshes, the y+ values are kept under 0.5 for sufficient resolution of the boundary layer.

Figure 25. The computational model for 2D case.

Figure 26. The computational model for 3D case.

In the CFD solution by an NS solver, due to the effect of boundary layer, the exterior static pressure on the panel
is slightly larger than the freestream pressure p∞. To balance the effect of the pressure increase, the cavity pressure is
set to be the average of the exterior pressures at the leading and trailing edges [8]. Typical cavity pressure ranges from
1.005p∞ − 1.022p∞.
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The simulation is initialized as follows. Prior to the simulation, the panel is deformed using a small uniform load
in z direction. Then, a steady solution is generated for the deformed panel. From the steady solution, the aerodynamic
loading is obtained. Finally, at the beginning of the simulation, Eqs. (106) and (107) are used for the starting procedure.

B. Comparison with Gordnier’s case
This is a 2D case in supersonic flow treated in section 5.3.1 of Ref. [8]. The aspect ratio is a/b = 0. The 3D case is
the same as the 2D case, except that a/b = 1, i.e. a square plate. The parameters for the two cases are listed in Table
7.

The results are shown in Fig. 27. The 2D results agree well with those obtained in Ref. [8]. The predicted flutter
point is approximately 5% lower and the LCO amplitude is higher. In the 3D case, the critical flutter parameter at
bifurcation increases by a factor of 2. A similar trend was noted in Ref. [48]. The flutter parameter for a/b = 1
is approximately 1.5 times of that in 2D case. The physical reason for the increased flutter parameter is due to the
additional bending stiffness in spanwise direction of the panel, which reduces the oscillation amplitude of the panel.

Table 7. Case parameters

M Re µ h/a ν δ/a
1.2 100000 0.1 0.002 0.3 0.025

Figure 27. Effect of aspect ratio on flutter response.

C. Effect of Reynolds number
The effect of Reynolds number is explored using the 2D case to save computational time. In the modified 2D case,
all parameters except Re in Table 7 are retained. The Reynolds number is increased to 106, which is a more practical
value. In the CFD mesh, the length of the rigid wall region l1 is increased to maintain δ/a = 0.025.

The results are shown in Fig. 28. Compared with the original 2D case, the critical flutter parameter is reduced by
approximately 75%. This may be due to the fact that at higher Reynolds number, the boundary layer growth is slower.
As boundary layer over the panel becomes thinner, it reduces the value of critical flutter parameter [8].
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Figure 28. Effect of Re on flutter response.

D. A hypersonic case
The parameters for this case are listed in Table 8. The plate material is Beryllium. The case is analyzed first using
piston theory and then CFD. The results are shown in Fig. 29. The critical flutter parameter predicted using piston
theory is approximately M = 5.3. However, the critical value predicted using CFD is M = 5, which is slightly lower.
Furthermore, the LCO amplitude predicted by CFD-based solver is increased by a factor of 2. The results suggest that
piston theory can predict critical flutter parameter well, but it is not sufficient to characterize the post-flutter behavior
of a panel.

Table 8. Case parameters

a b h M H ρ ν E
1m 1m 0.0025m 4− 8 10km 1854kg/m3 0.1 290GPa

Figure 29. The LCO curve of a square panel in hypersonic flow.
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VI. Concluding Remarks
An integrated aerothermoelastic analysis framework called HYPATE was developed. The framework is based on

three components: a RANS unsteady aerodynamic solver, a FE-based structural solver, and a FE-based thermal solver.
The framework couples the individual aerodynamic, structural, and thermal solvers using a partitioned scheme. The
time accuracy of the framework is determined from the time accuracy of the loosely-coupled scheme and the so-called
energy accuracy. The framework is extensively verified by comparison with a large number of representative test
cases.

The framework is applied to the case of 2D and 3D panels by employing the aeroelastic portion of the framework
in moderate supersonic flow. It is shown that the critical flutter parameter for the 3D case is twice that in the 2D case.
The effect of the Reynolds number for the 2D case is explored by increasing it from 105 to 106, and the results show
that the effect of the Reynolds number is important and cannot be ignored. A hypersonic 3D panel flutter case is also
considered and compared to panels based on exact piston theory, and LCO amplitudes based on the CFD solution are
approximately twice larger than piston theory, indicating that CFD is essential for generating reliable results.
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