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For decades, numerical tool improvements enabled the optimization of complex pro-
cesses occurring during the conceptual phase. Nowadays simulators can determine numer-
ous coupled physical effects with high accuracy and allow cheap and fast virtual testing.
However, high fidelity tools require long computation times (several days of computation
using High Performance Computing solutions) and thus optimization based on these high
fidelity tools is often done at higher computational cost (gradient based). This work aims
at optimizing a complex design using costly simulation codes given a fixed computational
budget. In aeronautical engineering these codes can be coupled in space (such as Fluid
Structure Interaction) and/or in time (for transient analysis). The fixed budget implies
the use of surrogate-based method with adaptive sampling in order to promote a trade-off
between exploration and exploitation. The proposed optimization is based on a sequential
enrichment approach (typically Efficient Global Optimization), using an adaptive mixture
of kriging-based models. The strategy relies on an improvement of the kriging model that
enables the handling of a large number of design variables whilst maintaining rapidity and
accuracy. A key feature is the use of mixture of experts technique to combine local surro-
gate models to approximate both the objective function and the constraints. Our strategy
will be introduced through mathematical methods and detailed algorithms presentation.
Finally, we produce several validations on analytical test cases (supervised) and two exten-
sions such as the well-known MOPTA test case from automotive industry and aircraft wing
structural optimization. The experiments confirm that the proposed global optimization
approach minimizes the number of black box evaluations and in this sense it is well suited
for high-dimensional problems with a large number of constraints.
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Symbol Meaning

n Number of sampling points
d Dimension
x 1× d vector
xj jth element of a vector x

X n× d matrix containing sampling points
y n× 1 vector containing simulation of X

x(i) ith training point for i = 1, . . . , n (a 1× d vector)
f Objective function of the optimization problem
m Number of constraints in the optimization problem
ci ith constraint function for i = 1, . . . ,m

k(., .) Covariance function
N (0, k(., .)) Distribution of a Gaussian process with mean function 0 and covariance function k(., .)

xt Superscript t denotes the transpose operation of the vector x

x∗ Superscript ? denotes the optimal value of the variable x
ŷ Superscriptˆdenotes the approximation (regression or interpolation models) of the output y

II. Introduction

In the last decade, Onera has initiated an important methodological effort to improve the efficiency of
vehicle design processes through the development of tools and techniques in the field of multidisciplinary
optimization.1 In the frame of new aircraft configurations development (such as strut-braced wing aircraft),
the integration of more accurate data coming from high fidelity analysis earlier in the design process seems
to be compulsory.2 Indeed, some important modifications at the configuration level take place and new
methods have been investigated to optimize coupled disciplines on aircraft design as multidisciplinary and
multi-fidelity optimization. High fidelity codes such as Finite Element Method (FEM) and Computational
Fluid Dynamics (CFD) codes are used earlier in the process. Therefore, solutions have to be investigated to
optimize such complex systems (such as aero-structural wing design) at limited budget but using possibly
several costly simulation codes.

This paper proposes a novel optimization method that is based on a sequential enrichment approach
(typically based on the Efficient Global Optimization (EGO) method3), using an adaptive surrogate model
in order to control the exploration/exploitation infill criteria.4 The strategy relies on an improvement of the
kriging model that enables the handling of a large number of design variables whilst maintaining rapidity
and accuracy. A key feature is the use of a mixture of experts technique to combine local surrogate models
to approximate both the objective function and the constraints. The proposed optimization method is called
SEGOMOE and it combines the approach used by the SuperEGO5 (SEGO) algorithm with the Mixture of
Experts6 (MOE) approach based on multiple surrogate models.

First, the optimization process is presented with a focus on the improvements made on both the surro-
gate models and the EGO approach. Surrogate models, such as kriging,7,8 are widely used in engineering
problems9 to substitute time-consuming high fidelity models. To handle large number of design variables in-
volved in multidisciplinary optimization using different levels of fidelity, an evolution of the universal kriging
is used. Tuning the kriging hyper-parameters involved in the correlation function by maximum likelihood (or
cross validation), can be time consuming especially when the dimension increases. A recent technique, called
KPLS that accelerates the calculation, consists of a combination of the Partial Least Squares (PLS) method
and the kriging model.10 Partial Least Square regression (PLSR) is a well-known tool11 for high dimensional
problems by projecting the design variables in a space of smaller dimension whilst investigating correlation
between input and output variables. In this way, the PLSR gives information on any variable contribution
by exploiting the linear relationship between input and output variables. The main idea developed in 10
and 12 consists of combining this information with the hyper-parameters of kriging, the resulting approaches
are thus called KPLS and KPLS-K. Hence, the kriging spatial correlation function is replaced by a new
correlation function within variables that have a reduced dimension. Latent variables transcribe influence of
initial variables to output ones and trim the dimension to h, the number of latent variables with h up to 4

2 of 28

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
01

 



and the computation time is thus reduced. Based on kriging properties to predict both the output variable
and an estimate of variance, the Efficient Global Optimization algorithm (so called EGO and described by
Jones et al.3) relies on an Expected Improvement (EI) criterion accounting for the exploration-exploitation
trade-off. One major problem with using the EGO algorithm is that it cannot handle constraints in its
standard version while the SuperEGO algorithm and our proposed approach are designed for problems with
inequality constraints. The main features of our proposed SEGOMOE algorithm are the following:

1. The kriging model is replaced by some proposed models (KPLS and KPLS-K) to approximate both
the objective function and all the constraints.

2. A combination is also proposed in order to increase the accuracy of the approximation by replacing a
single global model by a weighted sum of local models. This technique known as mixture of experts
is based on a partition of the problem domain into several subdomains via clustering algorithms, and
this is followed by local expert training in each subdomain.

3. Different criteria are used for selecting infill sample points like the Watson and Barnes criterion (WB2,
see 5) to give slightly more merit to local search.

4. The search of the optimum is done using a derivative free optimizer (such as COBYLA for Constrained
Optimization BY Linear Approximation, see 13) capable of considering non linear constraints.

Finally, the proposed SEGOMOE algorithm is assessed on various optimization problems, ranging from
analytical tests cases in high dimensions to the well-known MOPTA test case from automotive industry14 and
an aircraft wing design optimization. For solving problems with a large number of design variables, the recent
approach developed in 15 consists of coupling an iterative optimization method (Mid-Range Approximation
Method) that makes use of trust-regions with an efficient way of computing Gradient Enhanced Kriging
(Compound Search Method). The results presented are promising in terms of number of design variables
(100+) but it requires the knowledge of both the function values and their derivatives (from adjoint method
for instance) at each sampling point. This assumption is not necessary in the method presented here.

The paper begins with a recall on the surrogate based optimization techniques with description of the
main steps from the initial design of experiments to the handling of constraints. Next, we discuss the
approach taken to implement and solve high dimensional problems with a large number of constraints by
listing all the improvements, as well as the measures taken to address them. Finally, we present some
optimization results that demonstrate the validity of the SEGOMOE approach advocated in this paper and
its potential for wing aircraft design.

III. Surrogate based optimization

Our proposed method is intended to solve the following nonlinear optimization problem, which represents
a physical optimization problem and is formulated as follows:

min
x∈Rd

f(x)

s.t.

c1(x) ≤ 0
...
cm(x) ≤ 0

(1)

where f(x) is the objective function, which is to minimized, ci(x) corresponds to the ith constraint (∀i ∈
[1, . . . ,m]) where m is the number of constraints and x ∈ Rd. The objective and the constraint functions
could be given by expensive simulators such as high-fidelity aerodynamic or aerostructural models... For
instance, in some bi-disciplinary problems, the objective function f could be given by a linear or non-linear
combination of the disciplinary outputs such as the structural weight and lift-to-drag ratio.

In order to solve this optimization problem, we first describe how to construct some accurate surrogate
models based on a few sampling points well chosen to describe the problem domain. Then, the enrichment
procedure to minimize the objective function is described in both cases without and with constraint functions.
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A. DOE

Building Design Of Experiments (DOE) is a major step for construction of surrogate models. Moreover,
DOE have a significant effects on the accuracy of the surrogate models. In particular, the Latin Hypercube
Sampling (LHS) is widely used for engineering problems since they are simple to build. In the last decades,
several researchers try to improve the space-filling properties while maintaining a low computational cost.16–18
In this study, we used the Enhanced Stochastic Evolutionary (ESE) algorithm designed by Jin et al. in 200519
for building the LHS. This algorithm improves the LHS quality by optimizing a specific criterion, based on the
computation of the distances between points. The ESE algorithm is inspired from the simulated annealing.20

B. Kriging models

The kriging model (or the more general Gaussian process21 regression) is an interpolation method where the
interpolated values are modeled by a Gaussian process with mean µ(.) governed by a prior covariance kernel
k(., .), which depends on some parameters θ to be determined. Under suitable assumptions on the priors,
the kriging model gives the best linear unbiased prediction of the intermediate values. The theoretical basis
of the method was developed by G. Matheron7 based on D.G. Krige’s work.22 The method has been then
widely used in the domain of computer simulation and machine learning.8,23,24

Let the sample data points be given by the matrix X = [x(1), . . . ,x(n)]t, with x(i) ∈ Rd for i = 1, . . . , n,
and let the expensive observed responses be given by the vector y = [y(1), . . . , y(n)]t, with y(x(i)) = y(i) for
i = 1, . . . , n. Next, we define the stochastic process Y (x) = µ(x) + Z(x) with µ(x) an unknown linear or
nonlinear function and Z(x) a realization of a stochastic Gaussian process with Z ∼ N (0, σ2). In this study,
we consider only the ordinary kriging model, which is a particular case, where µ(x) = µ is an unknown
constant, ∀x ∈ Rd. The kriging model requires a set of unknown parameters to be estimated: θ, µ and σ2.
The maximum likelihood (ML) method is well adapted to estimate them.

Let the kernel function be defined by k(x,x′) = σ2r(x,x′) = σ2rxx′ , ∀ x,x′ ∈ Rd, where rxx′ is the
correlation function between x and x′ and the vector rxX = [rxx(1) , . . . , rxx(n) ]t. In this work, we use the
following Gaussian exponential kernel:

k(x,x′) = σ2
d∏

i=1

exp
(
−θi (xi − x′i)

2
)
∀θi ∈ R+. (2)

By initially assuming that θ-parameters are known, µ and σ2 are given by a simple analytical expression

µ̂ =
(
1tR−11

)−1
1tR−1y, (3)

where 1 denotes an n-vector of ones, R = [rx(1)X, . . . , rx(n)X] is the correlation matrix and

σ̂2 =
1

n
(y − 1µ̂)

t
R−1 (y − 1µ̂) . (4)

More details on the derivation of the equations (3) and (4) can be found in 25,26.
However, the d-vector of parameters θ remains to be estimated by maximizing the log-likelihood. Un-

fortunately, there is no analytical solution for estimating the vector θ like for the parameters µ and σ2, an
optimizer is thus necessary for this step. In fact, this step is the longest and the most fragile during the
kriging building process since the dimension of the design space and the sample size are important. More-
over, high dimensionality leads to a long computation time and a very difficult parameter estimation process,
harming the global quality of the kriging model. Indeed, the likelihood function is often multimodal and
then it is inefficient to use a local optimization algorithm. A simple alternative consists of assuming that the
objective function is the isotropic (θ1 = . . . = θd) and hence, change the optimization to one-dimensional.
This significantly reduces predictive performances if isotropic assumption is not respected. In section C, we
explain how to deal with this problem.

Finally, the best linear unbiased predictor for y(x), given the observations y, is

ŷ(x) = µ̂+ rtxXR
−1 (y − 1µ̂) . (5)

Moreover, the kriging model provides an estimate of the variance of the prediction, which is given by

s2(x) = σ̂2
(
1− rtxXR−1rxX

)
. (6)

These two key equations can now be expressed in terms of the mean and variance and will be useful in the
following to predict at any point the approximated value and its associated estimation error.
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C. KPLS models for kriging in high dimension

As previously explained, the estimation of kriging parameters can be time consuming, especially for high
dimensional problems. A recently developed method that accelerates the computational process while main-
taining sufficient accuracy, consists of using the Partial Least Squares (PLS) method during the θ-estimation
process. The resulting method is called KPLS (Kriging with Partial Least Squares).

The PLS method is a well-known tool for high dimensional problems that consists of maximizing the
variance between input and output variables by the design variables in a smaller subspace, formed by the
so-called latent variables. In the other hand, the parameters θ from the kriging model represent the range in
any direction of the space. Assuming, for instance, that certain values are less significant, the corresponding
θi will have a very small value relative to the others. In this way, the PLS method gives information on
any variable contribution to the outputs and the idea developed in 10 consists of using this information to
add weights on parameters θ. Latent variables computed through PLS method transcribe influence of initial
variable to output ones and trim the dimension to h (h << d), the number of latent variables with h up
to maximum 4. Hence, the spatial correlation k(x,x′) is replaced by a correlation function (Kernel) within
which variables have a reduce dimension (h dimensions in total). Computational time is thus reduced and
correlation matrix properties (symmetry and positivity) remain. More details of this method are given in
10.

D. KPLS-K models

In section C, we have seen that the KPLS method is able to rapidly build a kriging model for high-dimensional
problems by reducing the number of θ-parameters. However, it seems in 10 that the KPLS model has some
difficulties for approximating highly multimodal problems. In order to tackle this issue, a new approach is
developed in 12, the so-called KPLS-K. It consists of adding a supplementary step during the construction
of the KPLS model. In fact, this step is performed right after the estimation of the parameters of the KPLS
model. However, an hypothesis is necessary for building the KPLS-K model which consists of assuming that
kernels used are of exponential type (all Gaussian as Eq.(2)). This hypothesis allows us to pass from the
KPLS model to the conventional kriging model. Through this transition, the dimensionality of the likelihood
function changes from h dimensions to d dimensions, with h << d. Then, we make a local optimization of
the kriging likelihood function (equivalent to the KPLS model) defined on the whole space by considering
the solution θ provided by the KPLS model as a starting point. Thus, this approach searches a solution
of the MLE (Maximum Likelihood Estimation) problem on a bigger search space and aims to improve the
solution found by KPLS model. In fact, this method could be viewed as a new approach to estimate kriging
parameters for high-dimensional problems through the KPLS method. The steps of such construction are
given in the figure 1.

1- Choosing a kernel of exponential type

2- Estimating the parameters of the
KPLS model: θ-KPLS-parameters

3- Local optimization of the θ-kriging
parameters by using the θ-KPLS-
parameters as a starting point.

Figure 1. 3 main steps for constructing KPLS-K model.

E. Efficient Global Optimization algorithm

The Efficient Global Optimization (EGO) method,3 is a bound constrained optimization method based
on sequential enrichment of a surrogate model which approximates an expensive black box function to be
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optimized. The kriging surrogate models are often used by this algorithm since they provide interesting
statistical information. Indeed, they can predict the output function and also can provide the uncertainty
of the model for any samples in the design space. Thus, it is possible to know where the output function
is not well approximated by the model and we sometimes add samples in these areas. The uncertainty of
the model on the training points is zero and the farther a point is from the training samples, the higher the
uncertainty will be. These characteristics of the kriging model are shown in figure 2.

Figure 2. The kriging uncertainty at 99% of a black box function - The black line is the black box function, the
blue line is the kriging function, the black dots are the training samples and the blue space is the uncertainty
of the model.

Global optimization algorithms are said to balance exploration and exploitation. As mentioned above,
EGO algorithm uses both the mean and the uncertainty provided by the kriging model. Indeed, the enrich-
ment process typically balances exploitation and exploration behaviors:

• Exploitation is the search in regions that are close to good solutions, it is performed when we add a
point in an area close to the current best solution xmin that corresponds to

ymin = min(y(1), . . . , y(n)).

By the way, we try to improve the accuracy of the model in the area containing xmin.

• Exploration is the search in regions that are sparsely sampled, it is performed when we add a point
where the uncertainty is high. By the way, we try improving the accuracy of the model in the areas
far from sampling points.

The most popular infill sampling criterion used by EGO algorithm is the expected improvement (EI) to be
maximized (please see 3,5 for more details of such criterion). The EI function is given by

EI(x) =

{
(ymin − ŷ(x)) Φ

(
ymin−ŷ(x)

s(x)

)
+ s(x)φ

(
ymin−ŷ(x)

s(x)

)
, ifs > 0

0, ifs = 0
(7)

where φ(.) is the probability density function and Φ(.) is the cumulative distribution function of the standard
normal distribution, ŷ is the function to minimize in this case for instance a disciplinary output approximated
by a kriging model and s2 is its associated variance (respectively given by Eq (5) and Eq (6)). The expression
of EI is a balance between seeking promising areas of design space and the uncertainty in the model. The
term relative to Φ(.) is large when ŷ is small with respect to ymin and then promotes exploitation. The term
relative to φ(.) is large when s(x) is large and then promotes exploration.

Figure 3 shows a 1-dimension example of how the EI criterion works. The maximum of EI function
locates the next sampling point, see figure 3-b.

In this study, the WB2 criterion, to be maximized and given by equation (8), is chosen.

WB2(x) = −ŷ(x) + EI(x) (8)

As for the EI criterion, the maximum of WB2 function locates the next sampling point, see figure 3-c. In
fact, M. Sasena5 advised to use the WB2 criterion after comparing several infill sampling criteria with many
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(a) 1-D function. (b) EI criterion. (c) WB2 criterion.

Figure 3. The EGO enrichment for a black box function (1D function f(x) = (6x − 2)2 sin(12x − 4), x ∈ [0, 1])
with the EI and WB2 criteria. (a) The green line is the true function, the red line the predicted kriging model
interpolating the observed data (7 blue points). (b) The EI function when only 7 points have been sampled.
(c) The WB2 function when only 7 points have been sampled seems to be smoother.

test examples. Moreover, WB2 function is more local and smoother than the EI criterion. The former
characteristic is very interesting for high dimensional problems since the uncertainty will be very high on
these cases. Thus, WB2 function is a good criterion in order to avoid too much enrichment in areas where
the uncertainty is very high. This criterion is easier to optimize than the EI one thanks to its smoother
properties as illustrated on figure 3-c. In addition, it helps the algorithm to rapidly converge to a solution,
even if it is a local solution, since the number of sampling points is generally limited.

F. SuperEGO algorithm

In section E, we have seen the EGO method, which is adapted to bound constrained optimization problems.
In order to take constraints into account, the SuperEGO (denoted by SEGO in the following) approach
was developed by M. Sasena.5 Indeed, the aircraft design optimization problems are often constrained as
explained previously. Thus, SEGO maximizes the WB2 criterion subject to the constraints thanks to an
optimizer which takes them into account. The optimizers (COBYLA, SLSQP, NSGA2) will be used to
maximize the WB2 criterion (8). The optimization problem becomes

maxx WB2(x)

s.t.

ĉ1(x) ≤ 0
...
ĉm(x) ≤ 0

(9)

where ĉi is the prediction of the constraint ci, m is the number of constraints and x ∈ Rd. The optimizer
could be selected from the libraries SciPy,27 pyOPt28 or pyOptSparse.29 The most commonly used are:

COBYLA for Constrained Optimization BY Linear Approximation is an implementation of Powell’s non-
linear derivative–free constrained optimization that uses a linear approximation approach. More details
are given in 13.

SLSQP for Sequential Least Squares Programming optimizer is a sequential least squares programming
algorithm which uses the Han–Powell quasi–Newton method. This algorithm30 based on gradient
method uses the Jacobian calculation of the objective and the constraints function.

NSGA2 for Non Sorting Genetic Algorithm II is a non-dominating sorting genetic algorithm that solves non-
convex and non-smooth single and multiobjective optimization problems. The algorithm attempts to
perform global optimization, while enforcing constraints using a tournament selection-based strategy.31

Finally, the summary of SEGO algorithm steps is given in figure 4.
In order to handle high-dimensional optimization problems with a large number of constraints, some

proposed improvements of the SEGO algorithm are described in the following. The main objective is still to
minimize the number of calls to expensive black box.
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Constructing the initial
design of experiments

Re/building
metamodels

Solving problem (9)

Computing the
enrichment point

Stopping
criterion?

Stop

Updating
the design of
experiments

Yes No

Figure 4. The summary of SEGO algorithm steps.

IV. Improvements of efficient global optimization

In order to minimize the number of calls to the expensive black box functions relative to the objective
function and the constraint functions, we aim at approximating with sufficient accuracy the behaviour of
these functions from few sampling points. Some improvements proposed concern thus the use of more
complex surrogate models able to give a accurate prediction with its associated variance. This new kind of
surrogate models will be combined in the SEGO algorithm and the resulting algorithm will be integrated in
a framework dedicated to a multi-disciplinary optimization.

A. Overview of mixture of experts

As already mentioned previously, actual strategy to reduce significantly computational time consists in
building response surfaces, called meta-model. This response surface needs to mimic accurately the objective
function for minimal simulator calls. By optimizing the meta-model instead of the objective function, it is
possible to save computational time. This remark is also valid for the constraints which can be expensive
computer codes (buckling factor for structure, drag for aerodynamic, . . . ). There exist a lot of different
ways to build a meta-model: in the case of simple dependencies, linear or polynomial models can be used
but when interactions become more complex, elaborated model as neural network, radial basis function, or
Gaussian process regression as kriging are required. Another idea consists in using multiple surrogate models
as local experts to approximate different parts of the input space and to combine them in an automatic way
in order to possibly decrease the errors. Our approach is in the framework of ensembles of locally weighted
surrogate models except that it is also based on a partitioning of the learning basis, in order to have
several surrogate models to be responsible for different parts of the input space, to enable modeling the
heterogeneous complexity in the function profile ("Divide and Conquer" principle). A general introduction
about the mixture of experts can be found in 32 and a first application with generalized linear models in 33.
More generally, mixture of local experts can be build in order to increase the accuracy of the global model
by combining automatically some of the local experts listed previously. Based on this idea and a previous
paper from the present authors,6 a python toolbox called MOE (Mixture Of Experts) has been developed
and will be explained in the following.
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This method is intended to improve the accuracy of the approximation for functions with some of the
following characteristics: heterogeneous behaviour depending on the region of the input space, flat and steep
regions, first and zero order discontinuities (as for instance buckling in structural mechanics34). It strongly
relies on the Expectation-Maximization (EM) algorithm for Gaussian mixture models (GMM). With an aim
of regression, the inputs are clustered together with their output values by means of parameter estimation of
the joint distribution. A local expert is then built (linear, quadratic, cubic, radial basis functions, or different
forms of kriging) on each cluster and all the local experts are finally combined using the Gaussian mixture
model parameters found by the EM algorithm to get a global model. In this approach, the Gaussian mixture
model is used with conjoint data both to partition the input space and to derive the mixing proportion. The
approach developed in 35 is based on two learning algorithms (an unsupervised algorithm and a supervised
one): the first one to find the clustering and the second one to compute the corresponding cluster posterior
probability, which will be used to evaluate the mixing proportions. As explained in 6, we must predict
outputs from inputs to create a model. In our case, outputs are scalars yi ∈ R and inputs are vectors
x(i) ∈ Rd. To perform the clustering, we need n inputs X = (x(i))1...n and n outputs y = (y(i))1...n. So we
can only know the cluster posterior probabilities of vectors like (x(i), y(i)) ∈ Rd+1. To predict the cluster
posterior probabilities of a sample knowing only its inputs, we must project each multivariate the Gaussian
functions k of Gaussian mixture model, trained in dimension d + 1, on the inputs hyperplane of dimension
d. Thus for each cluster k, we create a multivariate Gaussian function in dimension d with the covariance
matrix ΓX

k and the mean vector µX
k .

Γk =

(
ΓX
k νk

νTk ξk

)
, (10)

where Γk is the covariance matrix of (X,y), ΓX
k ∈ Rd is the covariance matrix of X, νk ∈ R is Cov(X,y)

and ξk ∈ R is Var(y,y)

µk =

(
µX

k

µy
k

)
, (11)

where µk is the mean vector, µX
k is the X-coordinates of the mean µk and µy

k is the y-coordinates of the
mean µk. Thanks to hyperplane projection and linear recombination, inputs cluster posterior probabilities
of each cluster can be predicted and local models can be performed. When local models fi are known, the
global model would be

f̂(x) =

K∑
i=1

P(κ = i|X = x)f̂i(x) (12)

which is the classical probability expression of mixture of experts. In this equation (12), K is the number
of Gaussian components, P(κ = i|X = x), denoted by gating network, is the probability to lie in cluster i
knowing that X = x and f̂i is the local expert built on cluster i.

Eq. (12) leads to two different approximation models depending on the computation of P(κ = i|X = x).
When choosing the Gaussian laws to compute this quantity, Eq.(12) leads to a smooth model that smoothly
recombine different local experts. If P(κ = i|X = x) is computed as characteristic functions of clusters (being
equal to 0 or 1) this leads to a discontinuous approximation model.

B. Proposed approach for mixture of experts

We improve mixture of experts in order to perform the best surrogate models. Different approaches have
been made concerning the choice of the clustering criterion, the choice of the number of clusters, the choice
of local models, the choice of the scale factor, the choice for high dimensional problems, the computation
of the Jacobian and the estimation of the error. These different points are explained in the following. In
order to assess the proposed improvements, we compare results on 1-Norm function in d dimension, which
is derivative-discontinuous function:

1-Norm = ‖x‖1 =

d∑
i=1

|xi| where d ∈ R∗, x ∈ Rd (13)
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with the following error criteria: Mean Square Error (MSE) and Lack of Fit (LOF)

MSE =
1

nv

nv∑
i=1

(yi − ŷi)2; LOF =
100 1

nv

∑nv

i=1(yi − ŷi)2

Var(y)
(14)

where nv denotes the number of validation points, y ∈ Rnv is the output vector of components yi and ŷ the
predicted ouput vector of components ŷi. The main interest of this function is that it features several and
clearly distinct linear parts, being the intersection of 2d hyperplanes. In the following tests, the validation
dataset is given by 10% of the database to compute the error criteria. In the following sections, we propose
some experiments firstly with d = 2 for illustrative purpose. Then we extend to high-dimensional problem
with d = 80. Figure 5 illustrates the 1-Norm function in 2D and its associated clusters.

(a) Experimental samples in 2D. (b) Gating network for 1-Norm d = 2 with 5 clusters.

Figure 5. 2D illustrative example for 1-Norm - samples and clustering.

1. Clustering criteria

In the initial version,6 the clustering was based on spatial location and function values (supervised approach
between the inputs X and output y). If available, some other clustering criteria could be used such as
derivative value (supervised approach between the inputs X and outputs ∂y/∂x) in order to get a better
indicator of the heterogeneity in the function profile as mentioned in 35. In the developed toolbox, the
user can provide the Jacobian or some relevant components of the Jacobian as a criterion for the clustering.
Table 1 gives the different criteria available to perform the clustering and the associated best number of
clusters which has been found following the strategy described in the next section 2.

Function Clustering Criteria Number of Clusters

1-Norm d = 2

y 5
Jacobian (∂y/∂x1, ∂y/∂x2) 4

First Jacobian Component (∂y/∂x1) 4
Second Jacobian Component (∂y/∂x2) 4

Table 1. 1-Norm (d = 2) - Variability of number of clusters with clustering criteria.

2. Choice of the number of clusters

One of the main challenges in MOE modeling is the automatic determination of the number of experts
a priori, which has been identified as a difficult problem in data clustering in general. Here, the number
of clusters is chosen through a range of potential clusters by minimizing the generalization error for the
mixture of linear (quadratic or kriging) experts. We can find the best number of clusters to improve mixture
of experts. For best results, some rules of thumb have been carried out.

• The number of clusters cannot be higher than 10% of the number of training samples.
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• For each clustering, we estimate the errors through a well-known cross-validation procedure with the
classical partition (4/5, 1/5) for learning basis and test basis. The two errors presented here are the
mean square error and the median of mean square errors of cross-validation.

Figure 6 illustrates the evolution of these both error criteria in order to determine automatically the optimal
number of clusters minimizing the errors. In this case, some quadratic models have been imposed as local
experts to compute the errors quickly, 5 clusters seems to be the optimal value here. Moreover, for each
number of clusters, errors are computed with a smooth mixture of models or with a discontinuous global
model for comparison. The algorithm chooses automatically the number of clusters that minimizes the errors.

Figure 6. 1-Norm (d = 2) - Evolution of cross validation error by models: the blue columns show that the
number of clusters is feasible, the white column shows that the number of clusters is not feasible (there are one
or several clusters which are empty) and the green column shows the best number of clusters. Some quadratic
models have been used here as local experts because they are pretty cheap in comparison for instance with
kriging.

In case there are several number of clusters that could do it, we would better choose the lowest to make the
clusters as big as possible to build an accurate local expert.

3. Choice of local models

Different local experts have been considered:

some surrogates from the Scikit-learn toolbox36 : Least Square Model (LS), Square Polynomial Re-
gression Model (PA2), Cubic Polynomial Regression Model (PA3), Ordinary Kriging (OK) model with
square exponential correlation, Radial Basis Function Model (RBF). More details on these models can
be found in 25.

some "in house" surrogate models : Multi-Fidelity Kriging (MFK),37,38 Kriging Partial Least Square
(KPLS),10 Improved KPLS models (KPLS-K).39 Concerning the MFK model, when only one DOE is
given as inputs (one fidelity is assumed in this case), the model corresponds to an ordinary kriging
model where the kernel can be chosen. The algorithm considers different correlation kernels and chooses
the one where the error (MSE) is minimized (squared exponential kernel, absolute exponential kernel,
Matérn 3

2 , Matérn 5
2 , more details on these correlation functions can be found in 21).
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From these different local experts, a smooth recombination or a discontinuous one can be performed. In
general the two computations are done and we keep the one with lowest error. In table 2, we report error
criteria for different number of clusters associated with different type of surrogate models.

Function Number of Models MSE LOF
Clusters

1-Norm d = 2

1 imposed LS imposed 1.77E-01 1.00E+02
1 imposed PA2 imposed 1.15E-02 6.51E+00
5 imposed PA2 imposed 3.76E-03 1.73E+00
5 imposed PA3 imposed 5.08E-03 2.33E+00
6 imposed LS imposed 7.60E-04 3.49E-01
6 imposed PA2 imposed 3.51E-03 1.61E+00
6 imposed PA3 imposed 4.96E-03 2.28E+00
6 imposed 3LS/MFK/KPLS-K/OK 3.50E-04 1.61E-01

5 3LS/MFK/OK 1.63E-04 7.47E-02

Table 2. 1-Norm (d = 2) - Mean Square Errors and Lack of Fits with different number of clusters (imposed
number or best number) and different models (imposed models or best local models).

Table 2 shows that the best mixture is obtained by combining the best number of clusters (5 selected
clusters) and the best local models (5 selected experts: 3 LS models, 1 MFK model and 1 OK model). On
this example, the MSE and LOF criteria are both minimized with the automatic choice given by the MOE
process. As expected with the 1-Norm function, the mixture of 6 linear experts (LS) gives a relatively small
error (7.60E-04) compared to mixture with polynomial experts of higher degree (PA2 or PA3). Moreover,
even if the local expert is very simple as LS or PA2 for instance, it could be more interesting to consider
several clusters rather a unique one as seen in table 2 when PA2 is imposed to 1, 5 or 6 clusters. These
results validate the strategy developed to choose automatically the number of clusters and the local experts.

4. Choice of the slope factor

In order to reduce the error of the smooth recombination, the gradient of the multivariate Gaussian functions
representing the clustering can be modified by a weighting factor: the covariance matrix of multivariate
Gaussian Functions is multiplying by this factor (denoted by the slope factor or the Heaviside factor) and
the slope is changing around the cluster boundary. A search of the best factor is done in the interval [0.1, 2.1].
Results show that a well-chosen slope factor can improve the mixture of experts as seen in figure 7 where
the optimal value is given by a factor equals to 0.4. On the contrary, a bad Heaviside factor increases the
mean square error (factor equals to 2 for instance on figure 7).

Figure 7. Evolution of the error as the Heaviside factor values.
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5. Choice for High Dimensional problems

In order to test our MOE in high dimension, the parameter d relative to the dimension of 1-Norm function
(13) is increased: 20, 40 and 80 dimensions are considered. To reduce the computation time corresponding
to the choice of the optimal number of clusters, a RBF surrogate model is used to test the different numbers
of clusters, this surrogate is cheaper than quadratic regression at high dimension.

Different combinations have been done to reduce the computational cost of each MOE building step.
Some examples of MSE errors are reported in table 3. These results prove that errors are to the minimum
reduced when the stage for the search of the best local models is carried out.

Dimension Number of samples Clustering Model Local models MSE

20 400 RBF Best 2.19E-02
40 800 RBF Best 4.20E-02
80 800 RBF Best 2.34E-02
20 400 RBF KPLS3 1.68E-01
40 800 RBF KPLS3 2.92E-01
80 800 RBF KPLS3 5.85E-01

Table 3. MSE for mixture of experts with RBF clustering model and different local experts (Best choice or
imposed choice with KPLS with h = 3 latent components) for 1-Norm function in dimension 20, 40 or 80.

The automatic strategy is still under development but theoretically well adapted to discontinuous func-
tions (C0 or C1).34

6. Saving some computational time

If some a priori information is known about the function to approximate in terms of complexity, regular-
ity,. . . it is also possible to impose the number of clusters and/or the type of local experts. Indeed the previous
steps described to choose the optimal parameters (number of clusters, best local experts, slope factor for the
smooth recombination, . . . ) could be time consuming and the user can impose some choices to save some
computational time. For example, the option to consider a single cluster with a given expert is the obvious
one.

7. Analytical Jacobian of the Mixture of experts

Moreover, the Jacobian of the global model can be predicted if the Jacobians of the local models are known.
Thus if a smooth recombination is chosen, we can perform a gradient optimization thanks to the smoothness
of the surrogate model. Jacobians of some local experts (linear, quadratic, cubic, and the different forms of
kriging) have been computed analytically in order to have the Jacobian of the mixture of experts for gradient
based optimizers as the one used in the following section (SLSQP optimizer for instance).

8. Error estimation for the Mixture of experts

For some models like the kriging-based models, we are able to predict the uncertainty of the predicted
values. When a smooth recombination is considered, we suppose that the uncertainties of these models
follow Gaussian functions. Thus, if all of the local models of the mixture can predict their uncertainty, the
mixture of experts can also predict its uncertainty if we assume that they are independent random variables
that are normally distributed (and therefore also jointly so). Then their sum is also normally distributed:

∑
k

αkN (ŷk, s
2
k) = N

(∑
k

αkŷk,
∑
k

α2
ks

2
k

)
. (15)

For a hard recombination, we do not have to suppose that uncertainties of models follow Gaussian functions.
Indeed, for one sample, we choose the uncertainty corresponding of its cluster. Thus, the mixture of experts
can also predict the uncertainty. This information is all the more interesting as it can be used in the
surrogate-based optimizers like EGO or SEGO.
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C. SEGOMOE

As described in section F and on figure 4, the SuperEGO problem finds the optimum of the objective function
by enriching the design of experiments. It takes into account the estimation itself and the estimation of the
variance made by the surrogate model. As the mixture of experts can provide this information when local
experts issued from kriging (OK, MFK, KPLS, KPLS-K) are used, the SEGOMOE algorithm has been
developed to combine, on the one hand, the accuracy given by the MOE and, on the other hand, the
compromise between exploration and exploitation with the SuperEGO algorithm.

Figure 8 illustrates the SEGOMOE optimization process using an XDSM (eXtended Design Structure
Matrix) diagram.40 The thin black lines and thick gray lines in the XDSM diagram represent the process flow
and the data dependencies, respectively. For more details on the XDSM diagram conventions, see Lambe
and Martins.40

Figure 8. SEGOMOE algorithm

The Algorithm in appendix A on page 25 explains in details the process of this combined optimization
method. As SEGO, the main steps are the following:

- Constructing the initial database (X,y) and build the associated MOE models relative to the objective
function and the constraint functions.

- Solve the optimization problem with the WB2 (or EI) criterion (8) to maximize under constraints
and propose the new enrichment point. The both information (ŷ(x), s(x)) required to compute these
criteria, are given by a mixture of experts from Eq. (15).

- Compute the values of the objective function and the constraint functions at the new enrichment point
and update the associated MOE models.

- If the stopping criterion is not reached, go back to the optimization problem to propose a new enrich-
ment point.

SEGOMOE iterates until the stopping criterion is met. Due to the high computational cost of actual
simulations, it is common to use the maximum number of function evaluations as the stopping criterion.
Another alternative is to set a target value for the expected improvement (or WB2 criterion). The proposed
method SEGOMOE could be compared to the method proposed in 41 based on the simultaneous use of
multiple surrogates in order to add several points per optimization cycle.

Concerning the Optimization process, more details can be added about some of these steps (the numbering
is referring to appendix A on page 25).
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• At step 0, if no point x(0) is given by the user to initialize the optimization algorithm, we create a
DOE of the number of chosen samples. In general, if dimension d is considered, an initial DOE with
d+ 1 sampling points is created.

• For the training of the MOE, we impose kriging (OK, MFK), KPLS, or KPLS-K as local experts for the
objective function in order to get the associated error estimation. Indeed, the SEGOMOE algorithm
requires to have both the mean and the uncertainty to compute the WB2 (or EI) criterion relative to
the objective function. The key point here is the use of Eq. (15) to get this both information from
the mixture of experts. As the SEGOMOE algorithm uses only the approximated value of constraint
functions (denoted by ĉi(x)), no restriction is done for the constraints and all of the available surrogates
could be used (PA2, PA3, . . . ).

• During the enrichment process, the optimal number of clusters and the best model for each cluster are
updated every κ iterations, where κ is a fixed number.

• In order to save computational time, the user can impose some choices as mentioned in 6. In particular,
when the number of outputs (objective function and constraints) is too large, the time to build all the
surrogate models (the best number of clusters, the best local experts, . . . ) is very costly and the update
every κ iterations can be skipped or κ has to be well chosen.

• The initialization (steps 4 and 15) consists of finding the best starting point in the training samples
violating the fewer constraints and minimizing the objective function f of problem (1). For this purpose,
the sum of violated constraints is computed on each sample and the one minimizing it is selected.

• The best enrichment sample is found thanks to the COBYLA, SLSQP or NSGA2 optimizer. Note that
SLSQP and COBYLA use a multistart optimization (10 different starting points). If available, the
algorithm SLSQP will use the analytical Jacobian of the mixture of experts (as described in section 7)
to compute the gradients of both the objective function (EI or WB2) and the constraints of the global
optimization problem (9).

• The main optimization loop stops when the maximum number of evaluations is reached. The best
point x? is selected among the database as the sampling point violating less constraints (by comparing
the sum of violated constraints) and minimizing the objective function f of problem (1).

D. Integration

In order to use MOE surrogate model and SEGO optimizer conveniently within a multi-disciplinary opti-
mization process, they were integrated within the OpenMDAO framework developed by the NASA Glenn
Research Center.42,43 That open-source framework written in Python aims at enabling the user to assemble
models and solve coupled derivatives efficiently44 in order to carry out multi-disciplinary optimization. A
key property of that framework is that it can be extended to integrate new numerical methods.

The integration of MOE as a surrogate model is rather straightforward in OpenMDAO as the framework
owns a dedicated SurrogateModel interface. That interface exposes typical train() and predict()methods
that map almost immediately to the native interface of the MOE module.

The SEGOMOE optimizer integration required more work but was facilitated by the usage of the common
interface introduced by the pyOpt28 framework. Indeed, pyOpt was created to standardize the programmatic
access to various optimizers in order to be able to switch them with less client code change as possible. While
pyOpt is still usable, the project web site does not seem to be active anymore (the last 1.2 version was released
mid-2014). Actually, a spin-off project, pyOptSparse29 appears to be the replacement project. It is a fairly
extensive (not backward compatible) modification of the original project pyOpt while keeping the basic
idea of a unique way of accessing multiple optimizers. OpenMDAO uses pyOptSparse now and makes the
optimizers available through a dedicated driver object implementing the framework Driver interface.

To facilitate further usage even outside OpenMDAO, SEGOMOE interface was first adapted to match
pyOptSparse conventions. Then, a dedicated driver was implemented like the pyOptSparse driver to handle
the SEGO optimizer integration within OpenMDAO as illustrated on figure 9. Further integration would
require to propose our SEGO adapter layer directly within pyOptSparse framework, allowing to remove the
specific implementation of the driver interface, SEGODriver.
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Figure 9. MOE surrogate model and SEGO optimizer integration in OpenMDAO.

V. Numerical results

This section is dedicated to validate SEGOMOE on several test cases (academic functions and MOPTA).
We also want to highlight our very first results on wing design optimization.

A. Analytical results on academic functions

In order to validate the efficiency of this optimization method, it should be assessed on reference tests cases
whose results are known. In that aim, five problems have been selected: four academical functions (described
in section B on page 26) and an automotive industrial test case. The four test cases based on the academical
functions, described by the table 4 followed the same experimental process as the one used in 39,45.

Optimum or
Function d m Domain definition best known

value39,45

PVD4 4 3 [0.1]2 × [0, 50]× [0, 240] 5804.45
g02 10 2 [0, 10]10 -0.8
g07 10 8 [−10, 10]10 24.3062
g10 8 6 [102, 104]× [103, 104]2 × [10, 103]5 7049.3307

Table 4. Academic functions tested. d is the dimension number and m is the number of constraints. Please
see appendix B for the expressions of these functions.

In order to have information about the stability of SEGOMOE, the following choices are made:

• Each test is repeated 30 times.

• A design of experiments (LHS with ESE criterion) of d+ 1 samples is made, so it is different for each
of the 30 tests.

• Some mixtures of experts are built automatically for the objective function and the associated con-
straints in order to make the best choices (number of clusters, local expert, slope factor for the smooth
recombination, . . . ).
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• 100 SEGOMOE iterations are made and the best value found is saved and kept to be reported in the
table.

• The COBYLA27 optimizer is used for the enrichment step of the MOE.

For each of these functions, the best solution, the worst solution, the median, the mean and the standard
deviation are given in table 5 and compared with the results obtained in 39,45. In fact, several optimization
algorithms are used in 45 and the best results of each case test are retained. One should note that the
SEGOKPLS algorithm, developed in 39, is a particular case of SEGOMOE: it consists in imposing a single
cluster with a single expert given by a KPLS model for each surrogate which is to be built. Considering the

Function PVD4 g02

Best known 5804 -0.80
value
Best (5804.61, 5848.66, 5807.79) (-0.44, -0.30, -0.33)

Worst (6183.52,6179.71, 7669.36) (-0.18,-0.19, -0.16)
Median (5824.27, 5959.71,6303.98) (-0.26, -0.23, -0.20)
Mean (5867.53, 5960.54, 6492.45) (-0.26, -0.23, -0.21)

Standard deviation (90.75, 75.66) (0.06, 0.04)

Function g07 g10

Best known 24.30 7049.33
value
Best (24.30, 24.30, 24.48) (7289, 8210.08, 7818.53)

Worst (24.95, 24.30, 1514.98) (17490, 11285, 13965.60)
Median (24.30, 24.30, 25.28) (12409, 9957.84, 9494.06)
Mean (24.33, 24.30, 25.35) (12372, 9702.63, 10018.33)

Standard deviation (0.12, 5.51e−6) (2872, 1647)

Table 5. Statistical results of the best points of the objectives functions tested with 30 repeats for 100
optimization iterations. Results in parenthesis represent: on the left, the results of SEGOMOE, on the
middle, the results of SEGOKPLS,39 on the right, the best results obtained by the algorithms tested by R.
Regis 45. The best results are in bold and in underlined green if they correspond to the best known value.
For standard deviation: on the left, the results of SEGOMOE, on the right: the results of SEGOKPLS.

table 5, the optimization with the SEGOMOE algorithm can reach a better solution than the SEGOKPLS
optimizer. Furthermore, it must be noticed that the means of the results of the optimization are also better
for the test case g02, g07 and PVD4. Indeed, the g10 test case shows a worst mean than the SEGOKPLS
optimization process. The optimum is difficult to reach because the function is very sensitive near the
optimum. So even with the action of the MOE surrogate model, the optimum region is difficult to model.
Regarding the standard deviation of these several test cases, it appears that the SEGOMOE optimizer
is less stable than SEGOKPLS. As explain earlier, the process build different DOEs at the beginning.
Thus, the standard deviation results show that the SEGOMOE optimizer seems more dependant of the
information which is available at the beginning of the optimization process. The different choices made
to build automatically the mixture of experts would require to be more robust in order to minimize this
deviation. These first results validate the SEGOMOE approach as a global optimizer handling constraints
up to dimension 10.

B. Results on MOPTA test case

MOPTA test case which comes from automotive industry46 and can be downloaded at http://www.
miguelanjos.com/jones-benchmark.14 This optimisation problem aims at reducing the weight with con-
straints of crash, vibration and mechanical. There are 124 inputs and 69 outputs which correspond to 1
objective function and 68 constraints. This is a kriging model based on an expensive simulation model
that can take 1 to 3 days to evaluate. The objective here is to optimize this problem with the SEGOMOE
algorithm, the known solution of this weight minimization being 222.23 kg. Instead of optimize directly the
complete problem with 124 inputs and 69 outputs, the dimension is reduced to 12. In fact, this reduction
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can be done because we already know the best optimum found by R. Regis in45 and some inputs can be
fixed to the optimum. Furthermore, two different optimizers have been included in the enrichment process:
COBYLA and SLSQP, both using a multistart optimization with 10 different starting points. As SLSQP is
a gradient based optimizer, if available the analytical derivative of the MOE will be used.

The test follows the given process:

• Each test is repeated 5 times.

• Two stopping criteria are imposed. The first one is the maximum number of iterations that the
algorithm SEGOMOE will be permitted to perform (200 iterations). As in this particular test case,
the solution is known, the second criterion concerns a relative error with a threshold of 10−6 between
the known solution and the best current value.

• A design of experiments of d+ 1 samples is made with d the dimension of the inputs. This DOE is an
optimized LHS with the ESE criterion as described previously.

• Some mixture of experts are built automatically for each of the 69 outputs (1 objective function and
68 constraints) and updated at the end of each SEGOMOE iteration.

• The number of calls to the black box is reported and in the MOPTA case one call to the simulator
yields all the values for f(x), c1(x), . . . , cm(x).

For each dimension tested for the MOPTA test case, only the number of calls of the black box function
is taken into account corresponding to the number of points for the DOE sampling and the number of
iterations to reach the convergence. Table 6 reports the maximum number of calls required to get the
reference optimum with the 5 runs. The SEGOMOE algorithm will be compared to the SEGOKPLS and
SEGOKPLS-K algorithm developed in 39. It is based on the EGO algorithm taking constraints into account.
The kriging model (KPLS or KPLS-K) used is designed to deal with high dimension problem thanks to a
partial least square approach and corresponds to the SEGOMOE approach restricted to a single cluster.
Some comparisons are alse made with a direct approach based on COBYLA algorithm without any surrogate
model. For this purpose, COBYLA through the OPTI toolbox47 that runs in Matlab has been used. In this
case, 3 runs over 5 have converged and the worst value in terms of number of simulation calls is equal to
500.

Function SEGOMOE SEGOKPLS SEGOKPLS-K COBYLA
COBYLA SLSQP COBYLA COBYLA DIRECT

MOPTA 12D 39(13+26) 40(13+27) 62(13+49) 52(13+39) > 500

Table 6. MOPTA 12D - Number of calls (worst value of the 5 runs) of the black box function to reach the
optimum (DOE samples + number of iterations) with SEGOMOE, SEGOKPLS or SEGOKPLS-K approaches.
Comparisons are made with COBYLA algorithm on a direct approach (optimization directly done on the
MOPTA code).

The results of the table 6 show that the SEGOMOE needs less calls to the black box function to reach
the optimum. So the convergence of the SEGOMOE is faster than the SEGOKPLS process. To see the
impact of the SEGOMOE optimizer on higher dimensional problem, we consider the same test case with 30
design variables. Table 7 reports the maximum number of MOPTA evaluations (worst value of the 3 runs)
to converge to the reference solution. As the dimension equals to 30, we impose in such case a mixture of
local experts based only on KPLS or KPLS-K models in order to reduce the CPU time for the choice of the
best local experts. The number of calls is still very few relative to the dimension considered.

Function SEGOMOE (KPLS or KPLS-K experts)
COBYLA SLSQP

MOPTA 30D 82(31+51) 68(31+37)

Table 7. MOPTA 30D - Number of calls (worst value of the 3 runs) of the black box function to reach the
optimum (DOE samples + number of iterations) with SEGOMOE approach (KPLS or KPLS-K are the local
experts selected for the MOE).
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The MOPTA test case with increased numbers of variables has to be considered and optimisation problems
with 50 and 124 dimensions (with the other design variables set to the known optimum) are under evaluation.

C. First results on wing design optimization

The previous test cases enable to assess the efficiency of SEGOMOE and its capacity to successfully handle
problems with a few tens of design variables. The next step is then to confront this optimisation process
to more realistic test cases, ie. optimisation problems relying on high fidelity tools such as CFD or CSM.
First, a classical optimisation test case is tackled, dedicated to an aircraft wing design. A mono-disciplinary
structural optimisation is set up with an aim of minimizing the weight of the internal structure. An extension
to bi-disciplinary optimisation test case, including aerodynamic, is also introduced. This test case is built
on open source codes for geometry modeler, structural and aerodynamic solvers (resp. OpenVSP, Calculix
and VSPaero) which are described in the next section.

1. Description of tools

NASA open-source Vehicle Sketch Pad (VSP),48 is a geometry modeling tool for conceptual aircraft design.
This software facilitates the modeling of aircraft configurations without expending the expertise required for
traditional Computer Aided Design (CAD) packages. Therefore Vehicle Sketch Pad (VSP) is able to handle
rapid evaluation of advanced design concepts. A useful parametric geometry tool must not only depict the
geometry, but it must translate the familiar description of an aircraft into a model which can be useful
for engineering purposes such as CFD or FEA analysis by providing aerodynamic and structural meshing.
OpenVSP “wing structure” sub-module can create the basic wing internal structure adding ribs, spars, skin
and theirs thickness and generate a FEM meshing. The design is simple: spars and ribs are added and
located for each section of the wing relatively to the wing geometry, maintaining parametric design. They
are defined with a reference number starting at zero and located with a normalized position relative to chord
length and/or wing span. Thickness of different components is then set up (default value 0.1) and a mesh
can be asked to be generated. Figure 10 provides an overview of the OpenVSP GUI used to design the wing
internal structure and mesh.

(a) Wing structure definition in OpenVSP (b) Wing meshing in OpenVSP

Figure 10. Overview of OpenVSP wing structure sub-module.

CalculiX49 is an open source software for Finite Element Method (FEM) solving, composed by two sub-
softwares CalculiX CrunchiX (CCX) as a solver and CalculiX GraphiX (CGX) as a pre and post processing
tool with a graphical interface. Both can be run in a batch mode.

CCX input file is the <jobname>.inp file which contains all the specified keys, essential for the solver.
Creating an input file is quite easy as it just requires to make calls to external files such as meshing def-
inition or load file, contains material properties, and uses keys for the solver outputs (e.g stress, strain,
displacement,. . . ). Therefore, as the geometry will not be created with the graphical interface, a few steps
were required to correctly define the structure for the FEM solver and to show up parameters in order to
implement the tool within the OpenMDAO framework.
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Figure 11. OpenVSP to Calculix
process.

The link between OpenVSP and CalculiX has already been studied
and implemented by the University of Texas through VSP SAM50,51 ex-
ecutable. VSP SAM stands for Structural Analysis Module and is a java
script with a user-friendly GUI that sets up the CCX input file and man-
ages a mass optimization. A similar approach was followed to imple-
ment OpenVSP and CalculiX. The process was entirely written in Python
scripts that allow an easy connection between the different tools: the main
steps of the implementation are identified on figure 11. Moreover, some
specific developments have been made in order to increase the fidelity
of the wing structure such as the definition of panels as sections or the
implementation of local buckling factors.

VSPAERO52 is a fast, linear, vortex lattice solver which also integrates
actuator disks for aero-propulsive analysis. VSPAERO is closely linked
to OpenVSP which produces an adequate degenerated geometry. This
geometry is then used to calculate the pressure distribution, and thus
forces, such as drag and lift. The skin friction drag of each component in
a model can also be provided, through the use of flat-plate drag model.
This solver will be used to provide the loads to the structural solver.

2. Wing design optimization

The implementation of CalculiX in the OpenMDAO framework requires
to set this module as a Component, allowing OpenMDAO to recognize it
as an object containing inputs and outputs. The CalculiX component is included in a Group and a function
is implemented around it to use it as a black box. The entries of this black box, which are the design variables
of our optimization problem, are the thicknesses of the 8 ribs, the 2 spars and the upper and lower skins.
The wing’s structure is subjected to a set of loads which have previously been computed by VSPaero.

The outputs are the wing mass which is our objective function, the deflections and twists of each section,
the global and local buckling factors, and the stresses of the ribs, spars and skins. However, to simplify the
problem, the outputs on which we are going to impose some constraints in our optimization problem are the
spars, ribs and skins stresses.

The optimization problem is the following:

minWing mass
w.r.t.

spars thickness ∈ [0.2, 0.4]

skins thickness ∈ [0.08, 0.15]

ribs thickness ∈ [0.045, 0.125]

s.t.

max( spars stresses ) ≤ 1.7 106

max( skins stresses ) ≤ 1.7 106

(16)

with a total of 12 design variables and 2 stress constraints.
This test case, mapped on figure 12 is a good opportunity to test SEGOMOE with COBYLA and SLSQP

because it is relatively fast in both cases (about one hour to converge), it does not need too much calls to
the objective function to approach the solution (about 30), and the solution point reaches some constraints
in the design space while others are not active, thus allowing to test the behaviors of the methods facing
both scenarii. The indicators of performance to assess the algorithms performances are their accuracy,
convergence time and robustness with respect to the initial DOE. Because of the Latin Hypercube Sampling
which produces different results when applied several times to the same problem and the initial point chosen
by COBYLA which can vary, it is necessary to evaluate the mean values and dispersion over these indicators.
For this purpose, table 8 compiles the results of about 50 optimizations, testing each algorithm with 3 different
sizes of DOE and performing 8 runs for each of these choices. As the size of the design space is equal to 12,
we consider 5, 13 and 24 sampling points for the initial DOE.

The table 8 demonstrates that both algorithms are quite sensitive to the intial DOE. The obtained
results tend to prove that SLSQP needs less evaluations than COBYLA to converge for all initial DOE sizes.

20 of 28

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
01

 

http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4001&iName=master.img-018.jpg&w=139&h=205


Figure 12. Mono-disciplinary optimization.

COBYLA SLSQP SLSQP
Size of the initial DOE 5 13 24 5 13 24 direct

Relative Error
Mean 4.91E-06 4.66E-04 1.21E-09 2.02E-03 1.55E-03 2.53E-03 5.7E-04

Standard deviation 1.18E-05 1.32E-03 1.42E-10 1.69E-03 1.38E-03 1.47E-03 (1 run)
Number of Evaluations

Mean 19.4 20.7 27.2 16.6 18.8 26.3 250 iter
Standard deviation 4.44 5.03 1.47 2.24 4.78 1.25 (1 run)

Table 8. Mean values and standard deviations of the relative error between the best found solution and the
best known solution (in %) and the number of evaluations required to converge. For each case, a total of 8 runs
were used to compute these values. The convergence criterion is satisfied when the relative error is smaller
than 0.5%, but the relative error in the table is the one after exactly 40 iterations. Note that these values
compile the results of the runs which converged before the 40th iteration. The results for a direct optimization
with SLSQP are those of one run, which took 250 iterations to converge around the best known solution.

Nevertheless this behaviour is closely linked to the selected convergence criteria. Actually, at convergence,
the SLSQP solution always exhibits a mean relative error higher than for COBYLA (up to 6 orders of
magnitude). Therefore, a smaller convergence criterion would lead to a better performance of COBYLA
algorithm. Another interesting point, is that, in both cases, a small initial DOE is sufficient to achieve a
converged solution at minimal evaluations cost. In fact, starting from a relatively big DOE will lead to a
quicker convergence but at a higher overall evaluation cost (due to the initial database). The results are
compared with a direct optimization where SLSQP is launched on CalculiX without surrogate model. In
this case, 250 iterations are required to converge.

Figure 13 shows typical convergence histories of the problem with SEGOMOE COBYLA and SEGOMOE
SLSQP. The first part of the plots illustrates the search for a point that does not violate the constraints which
is complex as only a subdomain of the design space verifies these properties. During this phase, the violation
of the constraints can only decrease as this is the only criterion defining the consecutive best points. Then,
as soon as a feasible solution is found, the criterion for the consecutive best points is to be an acceptable
point with a lower objective function. During this phase, the violation of the constraints is zero and the
objective function can only decrease.

The figure 14 shows that after an initial DOE (same size), SLSQP seems to explore more the design
space than COBYLA. COBYLA tends to focus around the global optimum and find a better optimum than
SLSQP. COBYLA or SLSQP are here compared using a multistart of 10 different points. With COBYLA,
most of these optimizations focus around the same point (which happens to be the best solution) while
SLSQP gets stuck in different areas. Nevertheless, SLSQP leads to a greater space exploration, but it would
be wrong to conclude that SLSQP is better for finding global optima, as the phenomenon we observe here
is more a downside of SLSQP than a strength.
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(a) COBYLA (b) SLSQP

Figure 13. Example of convergence history with the two algorithms for SEGOMOE, after a DOE of 5 points.
The consecutive best points are displayed in green, the sum of the constraints violations is displayed in red (0
as soon as a valid solution is found). Before the first acceptable solution is found, the best consecutive points
are the one for which the sum of the constraints violation is smaller than the previous one.

3. Extension to aero-structural optimization

The next challenge is to couple an aerodynamic solver (VSPaero) with a structural solver (CalculiX) in order
to reach the aero-elastic equilibrium. VSPaero is implemented as a Component in OpenMDAO in order to
expose inputs and outputs. For any flight case, a fixed point iterator solver is set up in order to connect
the wing deformation with the aerodynamic load and iterate on these values until the tolerance threshold
between target values and ingoing ones is reached. In order to perform an aero-structural optimisation of the
wing, the proposed approach is to create a package containing n-flight cases (or load cases), corresponding to
n different fixed point iterator modules, possibly running in parallel, becoming a component for SEGOMOE
method as illustrated on figure 15. Variables are still the material thicknesses and an MOE is created with
a single mass as an output (the mass being only dependent of thicknesses, it will be identical for all flight
case) and all constraints from the different flight cases as others outputs. In this way, a mass optimization
is being set up corresponding to any structural sizing flight case authorizing less violating constraints and
giving the minimum mass. This approach is under implementation within OpenMDAO framework and will
provide a more realistic test case to assess the SEGOMOE algorithm.

VI. Conclusion

For a new aircraft configurations development, we need to integrate more accurate data coming from
high fidelity analyses earlier in the design process. New methods have been investigated to obtain opti-
mized configuration at reasonable computational cost. This paper presented a solution to tackle this kind
of optimization process of complex design problem, through the use of enrichment strategy approach. The
paper focused on the improvements made on: Mixture of Experts (kriging-based surrogates) and Enrichment
process for optimization under constraints at high dimensions. SEGOMOE is a very promising algorithm
for expensive black-box optimization under constraints in high-dimensions that extend the applicability of
kriging-based methods. Based on the kriging properties, we are able to predict both the output variable
(mean) and an estimate of the variance. The Efficient Global Optimization algorithm relies on an Expected
Improvement criterion accounting for the exploration-exploitation trade-off. Maximizing the expected im-
provement balances exploration and exploitation because the expected improvement can be high because of
large uncertainty in sparsely sampled region, or it can be high because of low kriging predictions. EGO was
developed with kriging, even though it is applicable to any surrogate with a variance estimation. In order
to handle high-dimensional design optimization problems with a large number of constraints, some improve-
ments based on SEGO have been proposed in this paper. They rely on some combination of kriging-based
models well adapted for high-dimensions (KPLS and KPLS-K models). These mixture of kriging-based
models are used in an adaptive process SEGOMOE to select infill sample points in areas close to a mini-
mum point. The final step was to implement this process within the OpenMDAO framework. The analytic
and industrial test cases confirm that the proposed SEGOMOE algorithm was successful to minimize the
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(a) Initial DOE with 5 points for COBYLA (b) 35 enrichment Points with COBYLA. The chronological
order of the calculations is given by plotting the points from
black to red, and the best known solution in blue.

(c) Initial DOE with 5 points for SLSQP (d) 35 enrichment Points with SLSQP. The chronological order
of the calculations is given by plotting the points from black
to red, and the best known solution in blue.

Figure 14. Radar chart for displaying domain exploration with COBYLA (top) or SLSQP (bottom). Each
direction of the chart represents one of the 12 design variables, with the inner and outer radii limiting the
design space.

number of black box evaluations. Nevertheless, the SEGOMOE still have to be confronted to more complex
optimization problems, either through the increase of variables space dimension or to more realistic aircraft
design problems. In addition some improvements are already foreseen on some steps of the algorithm. First,
the enrichment process could be improved by changing the optimizers in the search of the maximum of the
EI or WB2 criteria. Indeed, we could also use some genetic algorithm optimizers such as NBSGAII31 or
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(a) Fixed point (b) Objective function

Figure 15. The next step towards a more industrial-like problem. This model would capture the subtilities of
the aero-structural trade offs that the aircraft designer needs to resolve, while taking care of creating a solution
that suits the aircraft’s mission as a whole. Each flight case has the structure of the fixed point presented here.

other gradient based optimizers like SNOPT53 developed at Standford University. Another point could be
investigation about the enrichment criterion such as the Stepwise Uncertainty Reliability strategy proposed
in 54 for constrained global optimization. In parallel, as this process tends to enrich in areas where the
number of samples is already high, the covariance matrix of the kriging model could become singular and
so could not be inverted. Some algebraic techniques are already investigating to handle this limit. None of
these drawbacks seems to be a limit to consider more complex design problems in aeronautical engineering.
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Appendix

A. SEGOMOE algorithm

Algorithm 1 SuperEGO with Mixture Of Experts (SEGOMOE)

Input: Initial design of experiments (DOE) or initial database of design points x(0)

Output: Optimal variables x∗, objective function f∗, and constraint values c?i ∀i = 1 . . .m
0: Initiate design of experiments (DOE) to generate design points
for each DOE point do
for each discipline i do
1: Evaluate discipline analysis
2: Compute discipline i output yi ∀i

end for
end for
for each discipline i do
3: Build discipline surrogate model (MOEi)

end for
4: Initiate enrichment optimization iteration
repeat
for each discipline i do
5: Evaluate discipline surrogate model i at the current point x
6: Compute metamodel mean ŷi and variance ŝi

end for
7: Recombination of the metamodels ŷi to compute approximations of the objective f̂ and constraint
functions ĉi of the physical optimization problem (1)
8: Compute mean and variance for the objective (f̂ , ŝ) and all constraints (ĉi, ŝi) ∀i = 1 . . .m, determine
the fmin in the latest database
9: Evaluate the enrichment criteria (EI or WB2) and the associated constraint functions of the SEGO-
MOE problem
10: Compute objective and contraints of the SEGOMOE problem

until 10→ 4: enrichment optimization has converged
11: Initiate main SEGOMOE iteration
repeat
for each discipline i do

12: Evaluate discipline analysis at the newest design point
13: Compute discipline i output yi
14: Update discipline surrogate model with newest design point

end for
15: Initiate enrichment optimization iteration
repeat
for each discipline i do
16: Evaluate discipline surrogate model i at the current point x
17: Compute metamodel mean ŷi and variance ŝi

end for
18: Recombination of the metamodels ŷi to compute approximations of the objective f̂ and constraint
functions ĉi of the physical optimization problem (1) at the newest design point
19: Compute mean and variance for the objective (f̂ , ŝ) and all constraints (ĉi, ŝi) ∀i = 1 . . .m,
determine the fmin in the latest database
20: Evaluate the enrichment criteria (EI or WB2) and the associated constraint functions of the
SEGOMOE problem
21: Compute objective and contraints of the SEGOMOE problem

until 21→ 15: enrichment optimization has converged
until 22→ 11: SEGOMOE optimization has converged
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B. Definition of the academic test cases for constrained optimization

Let define first the plog transformation used in some of the constraints by

plog(x) =

{
log(1 + x) if 0 ≤ x
−log(1− x) if x ≤ 0.

(17)

where log is the natural logarithm. This transformation is applied without changing the feasible region (for
more details, please see.55)

Pressure Vessel Design (PVD4)56

min 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3

s.t.
g1 = −x1 + 0.0193x3 ≤ 0

g2 = −x2 + 0.00954x3 ≤ 0

g3 = plog(−πx23x4 − 4
3πx

3
3 + 1296000) ≤ 0

0 ≤ x1, x2 ≤ 1, 0 ≤ x3 ≤ 50, 0 ≤ x4 ≤ 240.

(18)

g02
57 

min−
∣∣∣∣∑d

i=1 cos4(xi)−2
∏d

i=1 cos2(xi)√∑d
i=1 ix2

i

∣∣∣∣
s.t.

g1 =
plog(−

∏d
i=1 xi+0.75)

plog(10d)
≤ 0

g2 =
∑d

i=1 xi−7.5d
2.5d ≤ 0

0 ≤ xi ≤ 10, i = 1, · · · , d.

(19)

g07
57



minx21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

s.t.
g1 = 4x1+5x2−3x7+9x8−105

105 ≤ 0

g2 = 10x1−8x2−17x7+2x8

370 ≤ 0

g3 = −8x1+2x2+5x9−2x10−12
158 ≤ 0

g4 =
3(x1−2)2+4(x2−3)2+2x2

3−7x4−120
1258 ≤ 0

g5 =
5x2

1+8x2+(x3−6)2−2x4−40
816 ≤ 0

g6 =
0.5(x1−8)2+2(x2−4)2+3x2

5−x6−30
834 ≤ 0

g7 =
x2
1+2(x2−2)2−2x1x2+14x5−6x6

788 ≤ 0

g8 = −3x1+6x2+12(x9−8)2−7x10

4048 ≤ 0

−10 ≤ xi ≤ 10, i = 1, · · · , 10.

(20)

g10
57 

minx1 + x2 + x3

s.c.
g1 = −1 + 0.0025(x4 + x6) ≤ 0

g2 = −1 + 0.0025(−x4 + x5 + x7) ≤ 0

g3 = −1 + 0.01(−x5 + x8) ≤ 0

g4 = plog(100x1 − x1x6 + 833.33252x4 − 83333.333) ≤ 0

g5 = plog(x2x4 − x2x7 − 1250x4 + 1250x5) ≤ 0

g6 = plog(x3x5 − x3x8 − 2500x5 + 1250000) ≤ 0

102 ≤ x1 ≤ 104, 103 ≤ x2, x3 ≤ 104,

10 ≤ xi ≤ 103, i = 4, 5, 6, 7, 8.

(21)

26 of 28

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
01

 



VII. Acknowledgments

The authors would like to thank Dimitri Bettebghor for providing IMAGE,6 the MOE Matlab Code,
Rémi Vauclin for his work on DOE and multifidelity kriging,37 Joaquim R.R.A. Martins and Rhea P. Liem
for their support and their help during comparisons with their MOE code.35

References
1RTO Applied Vehicle Technology Panel (AVT) Workshop, Towards multi-level, multi-fidelity, multi-disciplinary opti-

mization at ONERA, May 2011.
2Carrier, G., Atinault, O., Dequand, S., Hantrais-Gervois, J., Liauzun, C., Paluch, B., Rodde, A., and Toussaint, C.,

“Investigation of a strut-braced wing configuration for future commercial transport,” 28th Congress of the International Council
of the Aeronautical Sciences (Brisbane, Australia), 2012.

3Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient global optimization of expensive black-box functions,” Journal
of Global optimization, Vol. 13, No. 4, 1998, pp. 455–492.

4Haftka, R. T., Villanueva, D., and Chaudhuri, A., “Parallel surrogate-assisted global optimization with expensive functions
– a survey,” Structural and Multidisciplinary Optimization, 2016, pp. 1–11.

5Sasena, M., Flexibility and efficiency enhancements for constrained global design optimization with Kriging approxima-
tions, Ph.D. thesis, University of Michigan, 2002.

6Bettebghor, D., Bartoli, N., Grihon, S., Morlier, J., and Samuelides, M., “Surrogate modeling approximation using
a mixture of experts based on EM joint estimation,” Structural and Multidisciplinary Optimization, Vol. 43, No. 2, 2011,
pp. 243–259, 10.1007/s00158-010-0554-2.

7Matheron, G., “Principles of geostatistics,” Economic geology, Vol. 58, No. 8, 1963, pp. 1246–1266.
8Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design and analysis of computer experiments,” Statistical

science, 1989, pp. 409–423.
9Forrester, A. I., Sóbester, A., and Keane, A. J., “Multi-fidelity optimization via surrogate modelling,” Proceedings of the

royal society A: mathematical, physical and engineering science, Vol. 463, No. 2088, 2007, pp. 3251–3269.
10Bouhlel, M. A., Bartoli, N., Otsmane, A., and Morlier, J., “Improving kriging surrogates of high-dimensional design

models by Partial Least Squares dimension reduction,” Structural and Multidisciplinary Optimization, Vol. 53, No. 5, 2016,
pp. 935–952.

11Wold, H., “Soft modeling by latent variables: the nonlinear iterative partial least squares approach,” Perspectives in
probability and statistics, papers in honour of MS Bartlett , 1975, pp. 520–540.

12Bouhlel, M. A., Bartoli, N., Otsmane, A., and Morlier, J., “Kriging and principal components for simulation with many
inputs,” Mathematical Problems in Engineering, 2016, accepted for publication.

13Powell, M. J., “A direct search optimization method that models the objective and constraint functions by linear inter-
polation,” Advances in optimization and numerical analysis, Springer, 1994, pp. 51–67.

14Anjos, M. F. and Jones, D. R., “MOPTA 2008 Benchmark,” 2009, http://www.miguelanjos.com/jones-benchmark.
15Mortished, C., Ollar, J., Jones, R., Benzie, P., Toropov, V., and Sienz, J., “Aircraft Wing Optimisation based on

Computationally Efficient Gradient-Enhanced Kriging,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference San Diego, California, USA, 2016.

16Morris, M. D. and Mitchell, T. J., “Exploratory designs for computational experiments,” Journal of Statistical Planning
and Inference, Vol. 43, No. 3, 1995, pp. 381 – 402.

17Johnson, M. E., Moore, L. M., and Ylvisaker, D., “Minimax and maximin distance designs,” Journal of Statistical
Planning and Inference, Vol. 26, No. 2, Oct. 1990, pp. 131–148.

18Park, J.-S., “Optimal Latin-hypercube designs for computer experiments,” Journal of Statistical Planning and Inference,
Vol. 39, No. 1, April 1994, pp. 95–111.

19Jin, R., Chen, W., and Sudjianto, A., “An efficient algorithm for constructing optimal design of computer experiments,”
Journal of Statistical Planning and Inference, Vol. 134, No. 1, 2005, pp. 268–287.

20Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by simulated annealing,” SCIENCE , Vol. 220, No. 4598,
1983, pp. 671–680.

21Rasmussen, C. E., “Gaussian processes for machine learning,” 2006.
22Krige, D. G., A statistical approach to some mine evaluations and allied problems at the witwatersrand , Master’s thesis,

University of Witwatersrand, 1951.
23Sacks, J., Schiller, S., and Welch, W., “Design for computer experiments,” Technometrics, Vol. 31, No. 1, 1989, pp. 41–47.
24Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and Morris, M. D., “Screening, Predicting, and

Computer Experiments,” Technometrics, Vol. 34, No. 1, 1992, pp. 15–25.
25Forrester, A., Sobester, A., and Keane, A., Engineering design via surrogate modelling: a practical guide, John Wiley &

Sons, 2008.
26Kleijnen, J. P., Design and analysis of simulation experiments, Vol. 230, Springer, 2015.
27Jones, E., Oliphant, T., Peterson, P., et al., “SciPy: Open source scientific tools for Python,” 2001–, [Online; accessed

2016-04-27].
28Perez, R. E., Jansen, P. W., and Martins, J. R. R. A., “pyOpt: A Python-Based Object-Oriented Framework for Nonlinear

Constrained Optimization,” Structures and Multidisciplinary Optimization, Vol. 45, No. 1, 2012, pp. 101–118.
29Kenway, G. K. W., “pyOptSparse - PYthon OPTimization (Sparse) Framework,” 2014, https://bitbucket.org/mdolab/

pyoptsparse.

27 of 28

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
01

 

http://www.miguelanjos.com/jones-benchmark
https://bitbucket.org/mdolab/pyoptsparse
https://bitbucket.org/mdolab/pyoptsparse
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1016%2Fj.jspi.2004.02.014&citationId=p_19
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1080%2F00401706.1989.10488474&citationId=p_23
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1098%2Frspa.2007.1900&citationId=p_9
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1016%2F0378-3758%2894%2900035-T&citationId=p_16
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1126%2Fscience.220.4598.671&citationId=p_20
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.2307%2F1269548&citationId=p_24
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2Fs00158-010-0554-2&citationId=p_6
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2F978-94-015-8330-5_4&citationId=p_13
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2Fs00158-011-0666-3&citationId=p_28
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1016%2F0378-3758%2890%2990122-B&citationId=p_17
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1023%2FA%3A1008306431147&citationId=p_3
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2F978-3-540-28650-9_4&citationId=p_21
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2Fs00158-015-1395-9&citationId=p_10
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1002%2F9780470770801&citationId=p_25
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.2113%2Fgsecongeo.58.8.1246&citationId=p_7
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1016%2F0378-3758%2894%2990115-5&citationId=p_18
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2Fs00158-016-1491-5&citationId=p_4
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2F978-3-319-18087-8&citationId=p_26
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1214%2Fss%2F1177012413&citationId=p_8


30Kraft, D. et al., A software package for sequential quadratic programming, DFVLR Obersfaffeuhofen, Germany, 1988.
31Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II,”

Evolutionary Computation, IEEE Transactions on, Vol. 6, No. 2, 2002, pp. 182–197.
32Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J., “The elements of statistical learning: data mining, inference

and prediction,” The Mathematical Intelligencer , Vol. 27, No. 2, 2005, pp. 83–85.
33Jordan, M. I. and Jacobs, R. A., “Hierarchical mixtures of experts and the EM algorithm,” Neural computation, Vol. 6,

No. 2, 1994, pp. 181–214.
34Bettebghor, D. and Bartoli, N., “Approximation of the critical buckling factor for composite panels,” Structural and

Multidisciplinary Optimization, Vol. 46, No. 4, 2012, pp. 561–584.
35Liem, R. P., Mader, C. A., and Martins, J. R. R. A., “Surrogate Models and Mixtures of Experts in Aerodynamic

Performance Prediction for Mission Analysis,” Aerospace Science and Technology, Vol. 43, 2015, pp. 126–151.
36Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,

Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., “Scikit-learn: Machine
Learning in Python,” Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–2830.

37Vauclin, R., “Développement de modèles réduits multi-fidélité en vue de l’optimisation de structures aéronautiques,” Tech.
rep., ISAE-SUPAERO, July 2014.

38Le Gratiet, L. and Garnier, J., “Recursive co-kriging model for Design of Computer experiments with multiple levels of
fidelity,” International Journal for Uncertainty Quantification, 2014, pp. 365–386.

39Bouhlel, M.-A., Optimisation auto-adaptative en environnement d’analyse multi-disciplinaire via les modèles de Krigeage
combinés à la méthode PLS , Ph.D. thesis, ISAE-SUPAERO, 2016, https://hal.archives-ouvertes.fr/tel-01293319.

40Lambe, A. B. and Martins, J. R., “Extensions to the design structure matrix for the description of multidisciplinary
design, analysis, and optimization processes,” Structural and Multidisciplinary Optimization, Vol. 46, No. 2, 2012, pp. 273–284.

41Viana, F. A., Haftka, R. T., and Watson, L. T., “Why not run the efficient global optimization algorithm with multiple sur-
rogates,” Proceedings of the 51th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference,
AIAA, Orlando, FL, USA. AIAA–2010–3090 , 2010.

42Heath, C. M. and Gray, J. S., “OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization
Methods,” 8th AIAA Multidisciplinary Design Optimization Specialist Conference (MDO), Honolulu, Hawaii, 2012, pp. 1–13.

43Gray, J., Moore, K. T., Hearn, T. A., and Naylor, B. A., “Standard Platform for Benchmarking Multidisciplinary Design
Analysis and Optimization Architectures,” AIAA Journal , Vol. 51, No. 10, Oct 2013, pp. 2380–2394.

44Martins, J. R. R. A. and Hwang, J. T., “Review and Unification of Methods for Computing Derivatives of Multidisciplinary
Computational Models,” AIAA Journal , Vol. 51, 2013, pp. 2582–2599.

45Regis, R. G., “Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box
problems with infeasible initial points,” Engineering Optimization, Vol. 46, No. 2, 2014, pp. 218–243.

46Jones, D., “Large-scale multi-disciplinary mass optimization in the auto industry,” MOPTA 2008 Conference (20 August
2008), 2008.

47Currie, J. and Wilson, D. I., “OPTI: lowering the barrier between open source optimizers and the industrial MATLAB
user,” Foundations of computer-aided process operations, Savannah, Georgia, USA, 2012, pp. 8–11.

48NASA Open Government Plan, “OpenVSP,” http://www.openvsp.org/.
49Dhondt, G. and Wittig, K., “CalculiX,” http://www.calculix.de/.
50Chaput, A. J. and Rizo-Patron, S., “Vehicle Sketch Pad Structural Analysis Module Enhancements for Wing Design,”

Proceedings of the 50th AIAA Aerospace Sciences Meeting, Nashville, TN , 2012.
51Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, “VSP SAM, Vehicle Sketch Pad

Structure Analysis Module,” http://http://vspsam.ae.utexas.edu/.
52NASA Open Government Plan, “VSPaero,” http://www.openvsp.org/wiki/doku.php?id=vspaerotutorial.
53Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained optimization,”

SIAM review , Vol. 47, No. 1, 2005, pp. 99–131.
54Picheny, V., “A Stepwise uncertainty reduction approach to constrained global optimization.” AISTATS , 2014, pp. 787–

795.
55Regis, R. G. and Shoemaker, C. A., “A quasi-multistart framework for global optimization of expensive functions using

response surface models,” Journal of Global Optimization, Vol. 56, No. 4, 2013, pp. 1719–1753.
56Carlos, A. C. and Efrén, M., “Constraint-handling in genetic algorithms through the use of dominance-based tournament

selection,” Advanced Engineering Informatics, Vol. 16, 2002, pp. 2002.
57Michalewicz, Z. and Schoenauer, M., “Evolutionary Algorithms for Constrained Parameter Optimization Problems,”

Evolutionary Computation, Vol. 4, 1996, pp. 1–32.

28 of 28

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
01

 

http://www.openvsp.org/
http://www.calculix.de/
http://http://vspsam.ae.utexas.edu/
http://www.openvsp.org/wiki/doku.php?id=vspaerotutorial
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1080%2F0305215X.2013.765000&citationId=p_45
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2Fs00158-012-0784-6&citationId=p_34
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1137%2FS0036144504446096&citationId=p_53
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1615%2FInt.J.UncertaintyQuantification.2014006914&citationId=p_38
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&system=10.2514%2F6.2012-1673&citationId=p_42
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1109%2F4235.996017&citationId=p_31
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1162%2Fevco.1996.4.1.1&citationId=p_57
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&system=10.2514%2F6.2012-546&citationId=p_50
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1016%2Fj.ast.2015.02.019&citationId=p_35
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&system=10.2514%2F1.J052160&citationId=p_43
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2FBF02985802&citationId=p_32
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2Fs00158-012-0763-y&citationId=p_40
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1007%2Fs10898-012-9940-1&citationId=p_55
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&system=10.2514%2F1.J052184&citationId=p_44
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&crossref=10.1162%2Fneco.1994.6.2.181&citationId=p_33
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2016-4001&system=10.2514%2F6.2010-3090&citationId=p_41


This article has been cited by:

1. Nathalie Bartoli, Thierry Lefebvre, Sylvain Dubreuil, Romain Olivanti, Nicolas Bons, Joaquim Martins, Mohamed-Amine
Bouhlel, Joseph Morlier. An adaptive optimization strategy based on mixture of experts for wing aerodynamic design optimization .
[Citation] [PDF] [PDF Plus]

2. Peter Schmollgruber, Nathalie Bartoli, Judicaël Bedouet, Sebastien Defoort, Yves Gourinat, Emmanuel Benard, Rémi Lafage,
Alessandro Sgueglia. Use of a Certification Constraints Module for Aircraft Design Activities . [Citation] [PDF] [PDF Plus]

3. Thierry Lefebvre, Nathalie Bartoli, Sylvain Dubreuil, Marco Panzeri, Riccardo Lombardi, Roberto D'Ippolito, Pierluigi Della
Vecchia, Fabrizio Nicolosi, Pier Davide Ciampa. Methodological enhancements in MDO process investigated in the AGILE
European project . [Citation] [PDF] [PDF Plus]

4. Daniel L. Clark, Admir Makas, Ramana V. Grandhi. Status of Multifidelity Model Management Strategies in Aircraft Design .
[Citation] [PDF] [PDF Plus]

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

40
01

 

https://doi.org/10.2514/6.2017-4433
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-4433
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-4433
https://doi.org/10.2514/6.2017-3762
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-3762
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-3762
https://doi.org/10.2514/6.2017-4140
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-4140
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-4140
https://doi.org/10.2514/6.2017-4431
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-4431
http://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-4431

	Symbols and notations
	Introduction
	Surrogate based optimization
	DOE
	Kriging models
	KPLS models for kriging in high dimension
	KPLS-K models
	Efficient Global Optimization algorithm
	SuperEGO algorithm

	Improvements of efficient global optimization
	Overview of mixture of experts
	Proposed approach for mixture of experts
	Clustering criteria
	Choice of the number of clusters
	Choice of local models
	Choice of the slope factor
	Choice for High Dimensional problems
	Saving some computational time
	Analytical Jacobian of the Mixture of experts
	Error estimation for the Mixture of experts

	SEGOMOE
	Integration

	Numerical results
	Analytical results on academic functions
	Results on MOPTA test case
	First results on wing design optimization
	Description of tools
	Wing design optimization
	Extension to aero-structural optimization


	Conclusion
	SEGOMOE algorithm
	Definition of the academic test cases for constrained optimization

	Acknowledgments

