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Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields,

enabling more efficient mesh independent finite element analysis. In earlier research, this method was applied to

adhesively bonded joints. The adherends were modeled as composite Euler–Bernoulli beams, and the adhesive layer

was modeled as a bed of linear shear and normal springs. The field equations were derived using the principle of

minimum potential energy, and the resulting solutions for the displacement fields were used to generate shape

functions and a stiffness matrix for a single bonded joint finite element. In this study, the capability to model large

rotations andnonlinear adhesive constitutivebehavior is developed, andprogressive failure of the adhesive ismodeled

by remeshing the joint as the adhesive fails. The results obtained using this enhanced joint element are comparedwith

experimental results.

Nomenclature

B = matrix relating adherend strains to nodal
deformations

bi;ai = width of ith adherend (subscript i)
or adhesive (subscript ai)

C1 = crack scaling constant
C2 = constant relating adhesive axial stress to strain
C3;4 = constants relating adhesive shear and peel

strain to bulk adhesive tensile strain data
c; s = cos ϕ, sin ϕ
D = material tangent stiffness matrix of the element
Eai = Young’s modulus of ith adhesive

f̂
Int;Ext

= internal and external load vector of the element
G = matrix relating adherend strains to deformations,

where subscripts i and ai may be used to refer
to the ith adherend or adhesive, respectively

G1;2 = mode 1 and 2 fracture energy release rates,
with the subscript C denoting a critical value

I = 3 × 3 identity matrix

k̂ = local stiffness matrix of the element
kmat;geo = global material and geometric stiffness matrix

of the element
l = original length of element

lprevcrack = length of a crack within an adhesive layer
of an element at the previous load step

lcurcrack = length of a crack within an adhesive layer
of an element at the current load step

l1 = deformed length of first adherend, and additional
subscript refers to x or z component

N = elemental shape functions
N = number of adherends in the joint element
q = nodal displacements
qdef = local nodal deformations of an element

qi = nodal displacements of adherend i
qijk = nodal displacement component k (where k � 1; 2, or

3 is horizontal, vertical, or rotational displacement) of
adherend i and side j (where j � l or r, meaning the
left or right side of the adherend)

qr = rigid body nodal displacements resulting from rigid
body rotation of an element

qrig = rigid body nodal displacements of an element
qt = rigid body nodal displacements resulting from rigid

body translation of an element
T1 = orthogonal transformation matrix of a point
T1;ϕ = modified transformation matrix of a point
ti = thickness of ith adherend

û = vector of adherend centerline displacements,
where subscripts i and ai may be used to refer
to the ith adherend or adhesive, respectively

ui�x̂� = local axial (x̂ direction) deformation of adherend i
V = volume of the element
WInt;Ext = internal and external work of the element
wi�x̂� = local transverse (ẑ direction) deformation of

adherend i
X = nodal position vector in the fixed global coordinate

system of the undeformed state
x = nodal position vector in the fixed global coordinate

system of the deformed state
x̂ = nodal position vector in the elemental local rotated

coordinate system of the deformed state
x̂ = derivative with respect to x̂
xir = position vector of the right node of the ith adherend

in the global coordinate system of the deformed
state

ηai = thickness of ith adhesive
νai = Poisson’s ratio of ith adhesive
σ̂, ε̂ = stress and strain vectors of the element, where

subscripts i and ai may be used to refer to
the ith adherend or adhesive, respectively

σ̂ai, ε̂ai = local peel (ẑ direction) stress and strain of adhesive i

σ̂i, ε̂i = local axial (x̂ direction) stress and strain of adherend i
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σvm;Bulk = von Mises equivalent stress and adhesive stress
obtained from bulk adhesive tensile testing

τ̂ai, γ̂ai = local shear stress and strain of adhesive i
ϕ = angle of rigid body rotation of an element
ϕ1;q = vector resulting from approximating the

variation of T
ψ i = shear to peel ratio of ith adhesive

I. Introduction

W ITH the increased use of fiber reinforced composite materials,
adhesively bonded joints become an increasingly important

topic. As bonded joints increase in popularity and use, the demand for
modeling techniques increases as well. In the past, analytical models
have been favored as the preferred method of predicting stresses and
strength [1–6], but finite element (FE) methods have emerged as the
new standard in preliminary design due to the necessity of analyzing
and designing components that contain multiple or complex joints
where analytical techniques become intractable. FE based methods
have been proven to be extremely powerful, but the small scale of the
adhesive thickness when compared with the dimensions of the
surrounding structure has kept joint FE analysis largely out of global
vehicle models. A fine mesh is needed to correctly model the
adhesive layer producing an incompatibility in simultaneously
analyzing the joint stresses accurately in conjunction with a very
coarse model of an entire vehicle. Therefore, the actual design and
sizing of joints is often put off until a later time, when small
submodels are used to investigate the details of a vehicle.
To address this problem, a bonded joint FE has been created [7–10]

wherein an entire bonded joint can bemodeled with a single element.
This joint element considers the adherends to behave like beams (or
wide panels) and the adhesive to be made up of a bed of shear and
normal nonlinear springs. The governing equations of this structural
model are found and solved to produce enhanced shape functions for
the joint element. Furthermore, the element has been generalized to
allow multiple adherend/adhesive layers and ply drops/thickness
tapers, providing the capability to model a variety of joint types with
very few elements.
This paper presents an extension of the joint element to model

progressive failure of a joint and ultimately predict the strength using
very few elements. Modern polymeric adhesives are usually highly
nonlinear, causing linear elastic analysis to be insufficient. Fur-
thermore, the eccentricity of many joint configurations results in
large rotations under moderate loading [5,11,12], necessitating the
consideration of nonlinear geometric effects.
Therefore, geometric nonlinear effects due to large rotations and

material nonlinearity are both pivotal in predicting the strength of a
joint. This paper extends the previously created joint element to
include these additional effects. Additionally, amethod of growing an
adhesive crack internally within an element during the analysis will
be presented in order to preserve the original intent of the joint
element, which is to model a joint with very few elements.
Currently, the state of the art formodeling the progressive failure of

joints involves using a dense mesh FE model (FEM) with damage
mechanicsmethods like cohesive zonemodels (CZMs) or continuum
damage mechanics [13]. Because the present joint element is merely

a tool, it will accommodate using inputs derived from either of these
philosophies to govern the stress-strain relation of the adhesive. A
method to characterize the adhesive layer using either bulk adhesive
tensile data (as someonewould dowhen using the continuumdamage
mechanics approach), or fracture mechanics inputs like mode 1
strength and fracture toughness, will also be presented. The applica-
tion of each will be demonstrated, and results will be compared with
published experimental data.

II. Formulation

The formulation of the joint element has been divided into discrete
parts, namely, the corotational formulation, material nonlinearity ef-
fects, crack growth, and adhesive constitutive modeling. Each section
presents a formulation to address a certain requirement to realize
progressive failure simulation of the joints. The corotational formu-
lation addresses large rotations in joint problems, whereas material
nonlinearities showhownonlinear constituents aremodeled.The crack
growth formulation deals with the failure of the adhesive layer. Finally,
the last section illustrates a few methods of defining the properties of
the adhesive based on several different experimental protocols.

A. A Corotational Formulation

Consider a structure consisting of N layers of thin plates under
cylindrical bending joined together by N − 1 thin layers of a much
more compliant adhesive material (see Fig. 1a). The plates are
assumed to behave as “wide” Euler Bernoulli beams (hence the
cylindrical bending assumption, which corresponds to “plane strain”
in classical elasticity). The adhesive joining the plates is modeled as a
bed of uncoupled shear and peel nonlinear springs, which means that
the displacements vary linearly in thickness direction and the shear
and peel stresses are constant through the thickness. The plates can be
isotropic, transversely isotropic, or a layered composite. The plates
and adhesive are assumed to be under proportional loading and are
modelled as nonlinear elastic materials.
A corotational formulation is used to capture large rotations and

has been primarily adapted from previous work by Belytscheko and
Hsieh [14] and Crisfield and Moita [15]. This formulation tracks the
rigid body rotation of an element through a local rotational coordinate
system and considers the rotations and deformations measured with
respect to this rotated frame of reference to be small. Themain benefit
of this formulation is that the previously implemented code for the
small rotation problem [8–10] can be used in subsequent calculations.
The element has 2N nodes located at the boundaries of the

centerline of the plates (numbered as shown in Fig. 1b), and the nodal
displacements are defined as

q � � q1 : : : qi : : : qN �T (1)

where the superscript represents the adherend or plate, and

qi � �qil1 qil2 qil3 qir1 qir2 qir3 � (2)

refers to the horizontal, vertical, and rotational displacements of the
left and right nodes in plate i, respectively.

Adherend i1
ilq

2
ilq

3
ilq 1

irq

2
irq

3
irq

( 1)
1

i lq +

( 1)
2
i lq +

( 1)
3
i lq +

( 1)
1

i rq +

( 1)
2
i rq +

( 1)
3
i rq +

Adherend i+1

Adhesive i

l

ai

ti

ti+1

x

zi

zi+1

zai

ui(x), wi(x)

ui+1(x), wi+1(x)

a) b)
Fig. 1 Overlap region of an adhesively bonded joint with multiple bonded layers: a) geometric parameters (width in the y direction is b) and b) FE
discretization.
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1. Rigid Body Displacements

The element has a local rotated coordinate system, x̂, which is
rotated and translated relative to the fixed coordinate system, x, by
angle ϕ and vector q1lt , respectively (Fig. 2). The translation and
rotation will be properly defined later. The nodal displacements of
the element in the fixed coordinate system can be decomposed into
rigid body displacements, qrig, and displacements which only cause
deformation in the body, qdef , with the relation

q � qrig � qdef (3)

The rigid body nodal displacements, qrig, can be further de-
composed into rigid body displacements resulting from rigid body
rotation, qr, and displacements resulting from rigid body translation,
qt:

qrig � qt � qr (4)

The translational rigid body displacements, qt, are defined as

qt � � q1lt : : : q1lt �T (5)

which is simplymade up of a rigid body displacement and rotation for
each node, where the rigid body displacement and rotation of each
node is defined as the horizontal and vertical displacements of the left
node of the first adherend (reference node, see Fig. 2a) and the
rotation of the left node of the first adherend:

q1t � �q1l1 q1l2 ϕ � (6)

Although the rotation is not necessarily part of the rigid body
translation, it is more convenient to insert it into the translational rigid
body displacements because each adherend will be rigidly rotated by
the angle ϕ.

To find the rigid body displacements due to the rotation of the
element about the first node, consider the right node of the ith
adherend, node ir (Fig. 3a). Initially, node ir can be located relative to
the first node by position vector xir. The position vector contains not
only an x and z component but also has a third empty component that
allows it to interact with the displacement vector of the node, which
has three degrees of freedom: two translational and one rotational.
When the element rotates about the first node by angle ϕ, its new
position relative to the first node can be expressed by an orthogonal
transformation matrix asTT1x

ir, where

T1 �

2
4 c s 0

−s c 0

0 0 1

3
5 (7)

and s and c denote the sine and cosine of the angle ϕ. Therefore,
displacement vector qirr of node ir due to rigid body rotation can be
expressed as

qirr � �TT1 − I�xir (8)

Translating this to all nodes and combining with Eq. (4), the
displacements due to rigid body rotation are

qrig � qt � �TT − I�X (9)

where

T �

2
64
T1 0

. .
.

0 T1

3
75 (10)

and vectorX is simply a collection of the initial x and z coordiantes of
the nodes and is defined explicitly as

z

x

ẑ x̂

ẑ

x̂

1
tq

a) b)

z

x

φ
ẑ x̂

ẑ

x̂

ẑ

x̂

1
tq

Fig. 2 The nodal displacements broken up into two parts: a) rigid translation and rotations and b) local deformations.

φ
irx

ir
rotq

1
T

irT x
node ir

1l

1
2
rq

1
1

rq

1
1

lq

1
2
lq

l

a) b)

1xl

1zl

l

Fig. 3 Displacements a) qirr of node ir due to a rigid body rotation of the joint element and b) initial and current lengths of the first adherend, which are
used to determine the rotation angle.
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X � �X1l X1r : : : Xil Xir : : : XNl XNr �T (11)

where the first superscript identifies the plate number and the
following letter, either l or r, refers to the left or right node, respec-
tively. The nodal coordinate vector for the ith adherend and the left
node is defined as

Xil � � xil zil 0 � (12)

whereas the coordinate vector of the right node is defined in an
identical fashion.

2. Determination of the Rotation Angle

If the rotation is not constant within the joint, the rotation angle
is an approximation. Adhering to the conventional approach for
corotational beam formulations, the rotation angle was chosen to be
the rotation of the first adherend as shown in Fig. 3a. To find the
transformation matrix of Eq. (7), the sine and cosine of the rotation
angle can be expressed as

s � sin ϕ � l1z
l1

(13)

and

c � cos ϕ � l1x
l1

(14)

which are defined in terms of the nodal displacements of the first
adherend by

l1x � l� q1r1 − q1l1 ; l1z � q1r2 − q1l2 (15)

where l is the original length of the element and l1, l1x, and l1z refer to
the current length of the first adherend and the length decomposed
into x and z components (Fig. 3b).

3. Local Coordinate System

Here, the internal force vector and stiffness matrix will be found
in the local rotating coordinate system. The stress and strain of the
adherends and adhesive are assembled together in one stress and one
strain vector as shown:

σ̂ � � σ̂1 σ̂a1 : : : σ̂i σ̂ai : : : σ̂N−1 σ̂a�N−1� σ̂N �T

(16)

and

ε̂ � � ε̂1 ε̂a1 : : : ε̂i ε̂ai : : : ε̂N−1 ε̂a�N−1� ε̂N �T (17)

where the overbar caret denotes quantities in the local rotating
coordinate system. The local stress and strain vectors for the ith
adherend, σ̂i and ε̂i, contain only the axial compenents of stress and
strain in the x direction, σ̂i and ε̂i. The local stress and strain vectors
for the ith adhesive, σ̂ai and ε̂ai, contain peel and shear compenents of
the stress, σ̂ai and τ̂ai, and the strain, ε̂ai and γ̂ai. Using beam theory
and assuming small strains in the rotated coordinate system, the
strains are related to the adherend centerline displacements, û, by the
equation

ε̂ � Gû (18)

where the adherend centerline displacements are a collection of
centerline displacement vectors for each adherend layer given as

u � �uT1 : : : uTi : : : uTN �T (19)

and the centerline displacement vector of adherend i is given as

ui � �ui�x̂� ui�x̂�;x̂ wi�x̂� wi�x̂�;x̂ wi�x̂�;x̂ x̂ wi�x̂�;x̂ x̂ x̂ �T
(20)

where u and w are x̂ and ẑ direction displacements of the adherend
centerline and subscript, x̂ denotes the derivative with respect to x̂.
Additionally, G is an assembly of the contributions of the adherend
and adhesive layers assembled in the form

G �

2
6666666666666664

�G1�
�Ga1�

. .
.

�Gi�
�Gai�

. .
.

�GN−1�
�Ga�N−1��
�GN �

3
7777777777777775

(21)

where the submatrices are defined as

Gi �
�
0 1 0 0 −ẑi 0

0 0 0 0 0 0

�
(22)

and

Gai �

2
4 0 0 1

ηai
0 0 0 0 0 −1

ηai
0 0 0

1
ηai

0 0 ti
2ηai

0 0 −1
ηai

0 0
−ti�1
2ηai

0 0

0 0 0 0 0 0 0 0 0 0 0 0

3
5
(23)

with the thicknesses ti and ηai defined in Fig. 1a. All other terms inG
are zero. Shape functions N derived for the linearly elastic case are
used [8–10], and, assuming the deflections in the local coordinate
system to be small, the local strains and displacements in the rotated
coordinate system are related by the equation

ε̂ � Bq̂ (24)

where B is defined as

B � GN (25)

The principle of virtual work of the element can be written as

δ�WInt −WExt� � 0 (26)

and the internal work can be written as the internal nodal forces
multiplied by the nodal virtual displacements:

δWInt � δq̂T f̂ Int (27)

Because the deformations are small relative to the rigid body dis-
placements, the internal virtual work can be rewritten as

δWInt �
Z
V
δq̂TBT σ̂ dV (28)

Assuming that external forces only occur as nodal forces and
moments, the external virtual work of the element becomes

δWExt � δq̂T f̂Ext (29)

Finally, using Eq. (26), and noting the fact that the virtual
displacements are arbitrary, the resulting equilibrium equation is

Z
V
BT σ̂ dV � f̂Ext (30)

Now, the local internal nodal forces are
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f̂
Int �

Z
V
BT σ̂ dV (31)

with the local stiffness matrix being given by

k̂ �
Z
V
BTDB dV (32)

where the material tangent stiffness matrix, D, is given as

D � dσ̂
dε̂

(33)

Note that for linear elastic materials a reduced equation results
requiring only integration in x, which can be carried out analytically.

4. Global Coordinate System

Now we seek to find the residual and the stiffness matrix in the
global coordinate system. Because the internal work is not dependent
on the frame of reference, one can write

δqTf Int � δq̂T f̂ Int (34)

where the nodal virtual displacements in the global frame are related
to those in the local rotated coordinate frame through the equation

δq � δqrig � Tδq̂ (35)

making Eq. (34)

δqTf Int � �δqT − δqTrig�Tf̂
Int

(36)

Because rigid body motion does not result in the generation of
internal forces,

δqTrigTf̂
Int � 0 (37)

and Eq. (36) becomes

δqTf Int � δqTTf̂ Int (38)

With the virtual displacements being arbitrary, the internal nodal
force vector in the global coordinate system becomes

f Int � Tf̂ Int (39)

To find the global tangent stiffness matrix, differentiation of Eq. (39)
gives

δf Int � δTf̂ Int � Tδf̂ Int (40)

The second term in the preceding equation can be written as

Tδf̂ Int � Tkδq̂ � Tk̂TTδq − Tk̂TTδqrig (41)

The last term vanishes, because, as before, displacements resulting in
rigid body translation and rotation do not generate any internal force.
The first term on the right side of Eq. (40) is more difficult to obtain.
The difficulty lies in the fact that T contains sines and cosines of ϕ,
which in turn contain q1 and l. However, Crisfield [16] provides an
approximation, which assumes that the extension δl is small. Based
on this assumption, the first term in Eq. (40) can be rewritten as

δTf̂ Int � T;ϕf̂
Intϕ;qδq (42)

where

T;ϕ �

2
64
T1;ϕ 0

. .
.

0 T1;ϕ

3
75 (43)

and

T1;ϕ �
"−s c 0

−c −s 0

0 0 0

#
(44)

Similarly,

ϕ;q � �ϕ1;q 0 : : : 0 � (45)

and

ϕ1;q �
1

l1
� s −c 0 −s c 0 � (46)

Combining all of these equations, the global tangent stiffness matrix
can be written as a combination of material stiffness kmat and
geometric stiffness kgeo, in the relation

k � kmat � kgeo (47)

where

kgeo � TT;ϕf̂
Intϕ;q (48)

and

kmat � Tk̂TT (49)

Both thegeometric andmaterial stiffnessmatrices are functions of the
nodal displacements, making the system of equilibrium equations
nonlinear. The Newton–Raphson method can be used to find the
solution. It was already noted that one of the benefits of thismethod is
that the formulation of the linear element, introduced previously [9],
can be used. If the materials involved are linearly elastic, the local
rotational frame stiffness is not a function of the nodal displacements.
Because numerical integration is used in finding these vectors/
matrices, the integration must only be carried out once during the
analysis. This saves a considerable amount of computational time,
especially for an element like the joint element, which requires more
refined integration for the higher order shape functions.

B. Material Nonlinearities

Because modern polymeric adhesives often display highly
nonlinear material behavior before joint failure, it is necessary to
include material nonlinearities in the joint element to estimate joint
strengths more correctly. A particularly simple nonlinear elastic
stress law was chosen:

σ̂ � σ̂�ε̂� (50)

where the stress is somegeneral function of the strain. The onlymajor
change from the previous corotational formulation is that Eq. (31)
becomes

k̂ �
Z
V
BTD�q̂�B dV (51)

where the local stiffness matrix in the rotated coordinate system is
now a function of the local displacements.
Although it would bemore correct to use an incremental flow-type

plasticity formulation that distinguishes loading and unloading
stiffness and which takes account of path dependency, the simple
nonlinear elastic relation, which assumes no permanent plastic strain,
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was chosen for several reasons. The joint element is meant to be a
design tool to give general approximations, and so it is not expected
that such a tool will be used in situations requiring unloading
capabilities. Additionally, the nature of adhesively bonded joints is
such that the highest stresses occur as concentrations near the joint
edges. Because the failing adhesive domain is eliminated in the
iteration process (to be described later) the assumption of a nonlinear
elastic-type stress-strain law before adhesive failure suffices for this
modeling process because potential regions of “unloading” are
minimal [17]. Thus, this assumption does lead to a meaningful rendi-
tion of the joint physics yet facilitates an efficient (in the computa-
tional sense) solution strategy.
One other aspect worthy of note is the integration requirements

for the nonlinear material formulation. When the adherends have
a nonlinear stress-strain relationship, Eqs. (31) and (51) must be
integrated over x̂ and ẑ at each Newton–Raphson iteration to allow a
general stress-strain relationship. This causes a considerable increase
in computational time. However, there are some cases in which this is
not necessary. If only the adhesive layers have a nonlinear stress-
strain relation, integration over ẑ can be avoided because the stress is
constant through the thickness of the adhesive layer. Additionally, if
the functions for the nonlinear stress-strain relations are known (and
simple enough), integration over ẑ can be accomplished analytically.
However, this would mean that the formulation is only good for that
specific stress-strain relation and cannot be extended to other general
relations.

C. Adhesive Crack Growth

To accommodate adhesive failure, when some user defined failure
criterion is reached in some part of the adhesive layer, that portion of
the adhesive is considered “failed” and can carry no load and has no
stiffness. Setting the stress and stiffness of that portion of the adhesive
to zero is an easy way to model the failure of the adhesive, but the
shape functions for the joint element were not originally calculated
based on a joint with failed adhesive and cannot accuratelymodel this
new situation. Therefore, as with more traditional shape function
prescribed FEs, more elements are required to accurately find the
solution. In the case of failed adhesive, a greater number of elements
may be needed, as will be illustrated later.
To increase the accuracy of the joint element after adhesive failure

and crack growth, a method of removing the adhesive and adapting
themesh to the cracked and uncracked portionswas devised. Because
the joint element is meant to be used as a user defined element in
a larger global assembly in commercially available FE software,
the mesh change would have to be strictly internal to the element so
that the surrounding model does not have to change. Therefore, a
subassembly method was devised to handle adhesive failure (Fig. 4)
and is outlined in Fig. 5.
First, when failure in the adhesive is detected, the element is

replaced by a subassembly with three elements as shown in Fig. 4b.
The length of the crack determines the lengths of the subassembly
elements. Within a Newton–Raphson-type solver, the nodal dis-
placements are prescribed (guessed) and the stiffness and internal
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2

a) Uncracked b) Partially cracked c) Fully cracked

lcrack
inner nodes
outer nodes

Fig. 4 Diagram showing a) an uncracked joint element, b) a partially cracked element, and c) a fully cracked joint element.
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Fig. 5 Flow chart showing how a cracked element subassembly is incorporated into a joint element solution procedure.
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force vector for the element are calculated. These vectors/matrices
for all of the elements in the assembly are assembled, boundary
conditions and loads are applied, and the residual (error of the initial
nodal displacement guess) is calculated. If the residual is outside
some tolerance, a new nodal displacement “guess” is calculated
based on the previous displacement, residual, and stiffness values and
the whole cycle repeats.
In the case of a joint element with failed adhesive, only the outer

nodal displacements are prescribed because the global FE assembly
is not aware of the existence of the subassembly and the inner nodes.
Therefore, the subassembly becomes a nonlinear model within
another nonlinear model and must be solved with its own Newton–
Raphson-type solution procedure. The prescribed nodal displace-
ments of the outer nodes become the boundary conditions for the
subassembly, and thewhole system is solved using a nonlinear solver.
When the desired error tolerance is reached, a stiffness matrix and
internal force vector for the subassembly has been calculated. How-
ever, these quantities still have the inner degrees of freedom con-
tained within. The force vector and stiffness matrix are then reduced
using the Guyan reduction method [18–20]. Once the internal
degrees of freedom are removed, the stiffness matrix and force vector
can be considered to be that of the equivalent joint element and can be
passed onto the global assembly.
After the global system is solved, there is a check to see if the

crack has grown or if new adhesive failure has been detected. If
this is the case, the subassembly is adjusted by changing the lengths
of the subassembly elements, and the global system is re-solved.
This is done until no new adhesive failure occurs and the crack is
in equilibrium. A crack scaling constant, C1, has been introduced to
speed up or slow down crack growth as needed and is used in the
equation

lcurcrack � lcurcrack − C1�lcurcrack − l
prev
crack� (52)

where lprevcrack is the previous crack length (before the global Newton–
Raphson procedure) and lcurcrack is the current crack length. Setting
C1 < 0 causes the crack to grow further than detected, which is useful
whenmultiple iterations are needed to find crack equilibrium. Setting
C1 > 0 causes the crack to grow less than detected, which is
necessary when crack overshoot is a concern.
The advantage of this method is that fewer elements are needed in

order to capture accurately crack growth. One can use the minimum
number of elements needed to capture accurately the material and
geometric nonlinear effects without crack growth being a factor. This
can dramatically reduce the number of elements required, especially
when there is little material nonlinearity and when strains in the joint
are small.
One of the major disadvantages of this method is the increased

computational time. A local nonlinear problemmust be solvedwithin
each iteration of the global nonlinear problem. Although the local
nonlinear problem is always limited to three elements, it can
significantly increase the runtime. Furthermore, the global load
increment is repeated if the crack grows and the subassemblies need
to be created or remeshed. Although the crack scaling parameter can
significantly help in limiting the iterations needed to find crack
equilibrium, this process can still be costly. However, the costs can be
justified if joint strength prediction is of concern. One must decide
how much fidelity versus efficiency is required for the problem at
hand and choose a model accordingly.

D. Adhesive Model Characterization

One of the most important inputs for determining the strength of a
joint is the characterized adhesive constitutive response. There have
been many methods of characterizing the adhesive material, but two
have emerged as the most common: bulk adhesive tensile test and
fracture mechanics characterization tests (double cantilever beam,
end notched flexure, etc.). Therefore, the following sections outline
methods of using both bulk adhesive tensile test data and fracture
mechanics inputs to characterize the joint adhesive. Ultimately, the

test data available and personal preferences will decide which route
to take.

1. Bulk Adhesive Tensile Characterization

One common way of characterizing adhesive materials is by
performing tensile tests on bulk adhesive specimens, such as those
depicted in Fig. 6. The joint element was originally intended for
fracture mechanics characterization with uncoupled peel and shear
components (mode 1 and 2) as will be discussed in the next section.
However, a method of uncoupling the shear and normal responses
based on bulk adhesive data has been derived and will be presented
here. This method requires more assumptions and is much more
restrictive than coupled equivalent stress and strain methods
[5,12,21], but was chosen to adapt the fracture mechanics model to
bulk adhesive datawithout additional programming. Future improve-
ments on the model will include the adoption of more accurate
adhesive models.
If the adhesive is much deeper than it is thick (bai ≫ ηai), it can be

considered to be in a state of plane strain in the z–x plane (Fig. 7), and
the stress-strain relation for plane strain can be applied. Furthermore,
if we assume that the adhesive is perfectly bonded to the adherends
and that the adherends are much stiffer than the adhesive (Eai ≪ Ei),
then it can be argued that the extensional strain in the adhesive is
much smaller than the peel and shear components �ε̂xai ≪ ε̂ai; γ̂ai�,
which is the root of the assumption

ε̂xai ≈ 0 (53)

This assumption gives rise to the common practice in adhesive
joint analysis of ignoring the extensional stress and strain in the
formulation. With the extensional strains being relatively small, the
strain energy of the adhesive layer is virtually unaffected when
the extensional strain is ignored. However, the extensional stress (in
both the x and y directions) is not insignificant, placing the adhesive
in a state of triaxial stress [22]. Using these assumptions and linear
elasticity, the extensional stress in the adhesive, σ̂xai, can bewritten in
terms of the peel strain:

σ̂xai � C2νaiε̂ai (54)

Experimental Data

Curve Fit

mm

Axial Strain

( )Bulk Bulkfσ ε=

a) b)

Axial Strain

A
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s

Fig. 6 Adhesive characterized by a) experimental bulk adhesive tensile
tests, then b) fitting a curve (in this case the tanh function) to the stress-
strain plot [17].

x̂

ˆaiz

ŷ

ai

bai

l

Fig. 7 Assuming that the adhesive is perfectly bonded to the adherends,
the adhesive here considered a constrained body under triaxial stress
[17].
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where

C2 �
Eai

�1� νai��1 − 2νai�
(55)

andwhereEai and νai are the Young’smodulus and Poisson’s ratio of
the ith adhesive layer. The axial adhesive stress can be written in
terms of the peel stress:

σ̂xai �
νai

1 − νai
σ̂ai (56)

The same relation is true for the extensional stress in the y direction,
σ̂yai. This can be used to find the extensional stress without nec-
essarily including it into the formulation. Furthermore, the peel stress
becomes a function of the peel strain only [17]:

σ̂ai �
1 − νai

�1 − 2νai��1� νai�
Eaiε̂ai (57)

This shows that the effective “resistance” to deformation in the z
direction is amplified by a factor that depends on Poisson’s ratio.
Although this relation is intended for linear elasticity, the relationwas
assumed to hold for the nonlinear stress-strain relation as well.
Therefore, the stress-strain relation was redefined as [17]

σ̂ai �
1 − νai

�1 − 2νai��1� νai�
f�ε̂ai� (58)

and the effective modulus is increased by the consideration of a
triaxial stress state.
A von Mises failure criterion was chosen for this particular

formulation, although the same formulation could easily be altered
for a different threshold criterion [23]. Applying the notation for the
adhesive layer, assuming the shear stresses in the x–y and y–z planes
to be negligible, and using Eq. (56), the vonMises equivalent stress in
terms of the shear and peel stress components is

σ2vm �
�
1 − 2νai
1 − νai

�
2

σ2ai � 3τ2ai (59)

Although the vonMises equivalent stress is normally used to find the
yield stress, in this case it will be assumed to hold for the entire
nonlinear adhesive stress/strain response. Therefore, the von Mises
equivalent stress for a certain adhesivewill be a nonlinear function of
the adhesive strain found using bulk adhesive tensile tests (Fig. 6a):

σvm � σBulk � f�εBulk� (60)

The function describing the stress can be either a functional or simply
tabular data from material testing. To use this data in the current
formulation with uncoupled peel and shear modes, the ratio of peel to
shear stress must be defined for the problem. A new variable will be
introduced, ψ i, which represents the ratio of peel to shear stress for
adhesive layer i of a particular joint configuration:

ψ i �
σ̂ai
jτ̂aij

(61)

allowing the shear stress to be defined as a function of the bulk stress:

τ̂2ai �
σ2Bulk

3� �1−2νai
1−νai
�2ψ2

i

(62)

Themethod of finding the strain was a bit more arbitrary. Others have
done this by using a von Mises strain criterion or similar methods
[5,12,21]. For the current formulation, it was assumed that the bulk
adhesive tensile specimen strain and the adhesive layer strains were
linearly related to each other through the equations

γ̂ai � C3εBulk (63)

and

ε̂ai � C4εBulk (64)

where constantsC3 andC4 are found such that the initial slopes of the
shear and peel stress-strain curves become the normal and shear
modulus, respectively.
For an actual joint, the ratio of peel to shear stress, ψ i, not only

varies across the joint but changes during loading due to nonlinear
geometric effects and nonlinearmaterial effects. Therefore, this value
will in actuality be a function of the joint geometry, loading,
materials, and location within the adhesive in question. However, to
simplify the determination of this value, it is proposed that one
assume that the ratio of peel to shear does not change significantly
during the loading event and that only the stress at ends of the joint
where the stress concentrations reside is important. The impact of this
first assumption will be assessed later. Therefore, this value can be
approximated by taking the ratio of the maximum peel to shear stress
of the linearly elastic case as illustrated in Fig. 8.
For balanced joints with the same adherend materials and geo-

metries, the maximum occurs on both ends of the adhesive and is
identical on either end. However, for unbalanced joints, the stress
concentrations at the ends of the adhesive can be of unequal mag-
nitude. Finding the peel to shear ratio based on the higher and lower of
the two stress concentrations can provide a good upper and lower
bound to the nonlinear solution.
To approximate the vonMises failure criterion for uncoupled shear

and peel, an uncoupled strain-based criterion was chosen that simply
considered the adhesive failed when

ε̂ai
εc
� 1 or

γ̂ai
γc
� 1 (65)

where εc and γc are critical peel and shear strain values. These values
are found by applying Eqs. (63) and (64) to themaximum strain of the
bulk adhesive tensile test data.
Though it might seem unusual to use a strain-based criterion to

approximate the von Mises stress, it should be kept in mind that a
von Mises yield criterion was already applied to get from the bulk
adhesive tensile test data to the peel and shear stress-strain relations.
If the peel to shear ratio, ψ i, was chosen correctly, both the shear and
peel components should be close to their respective critical values at
the same time.

2. Fracture Mechanics Characterization

The joint element adhesive model is very similar to the CZM
[11,24–27] and is inherently suited for fracture mechanics-type
inputs. One of themain differences betweenmanymainstreamCZMs
and the joint element adhesive model lies in the thickness of the
cohesive zone. Many CZMs have no thickness and lie at the interface
between continuum elements. Because it has no thickness, a traction-
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≈

Fig. 8 The peel to shear ratio for adhesive i approximated by dividing
the maximum peel stress by the maximum shear stress for the linear
elastic adhesive case.
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separation law rather than a stress-strain law is defined for the CZM.
Thus, cracks in the center of the adhesive layer can be differentiated
from cracks at the interface by placing CZM elements at different
locations within the adhesive, although this is computationally very
costly. The joint element, on the other hand, resembles a cohesive
zone with an explicit thickness. The entire adhesive layer is a single
cohesive zone, and cracks in the middle of the adhesive are not
differentiated from those at the interface. The traction-separation law
can be transferred approximately to a stress-strain law by dividing the
separation by the thickness as shown in Fig. 9. Although no examples
are presented in the present study using such characterization, this
brief discussion illustrates the procedure.
For this type of adhesive characterization, the shear and peel

responses are isolated and characterized in a series of experiments
[28]. The peel and shear responses are considered to be uncoupled
and depend solely on the vertical and horizontal separations of the
adherends, respectively. Typically, a critical stress and fracture
toughness is identified for mode 1 and mode 2. Because the joint
element model does not have continuum elements to represent the
adhesive, it is recommended that the initial slopes of the stress-strain
laws be set to the elastic modulus for peel and shear.
Finally, adhesive failure can be defined as occurring when�

G1

G1C

�
i

�
�
G2

G2C

�
j

� 1 (66)

The values of i and j can be chosen based on the preference of the
element user.

III. Results and Validation

A. Geometric Nonlinearities

To verify the corotational formulation, several example joint con-
figurations were analyzed using the joint element and compared with
two-dimensional (2-D) dense mesh FE solutions with nonlinear
geometric effects to demonstrate the joint element’s ability to capture
large rotation situations and to showhowmany elements are typically
required.
The first example was an unbalanced single overlap joint, using

the joint elements with a single adhesive layer and two adherends.
The unbalanced single lap joint illustrated in Fig. 10 was loaded in
a displacement-controlled tension. The adherends were titanium
(E � 110 GPa, ν � 0.33) and aluminum (E � 70 GPa, ν � 0.33),
with EA9394 as the adhesive layer (E � 4 GPa,G � 1.79 GPa). As
before, the shallowwidth of the joint required the use of a plane stress
joint element formulation and the use of 2-D plane stress elements for
the dense 2-D FE mesh model. The joint element model had either
one or 40 beam elements with one joint element, whereas 154,000
elements were used for the 2-D dense mesh model (Fig. 11a).
Because the joint does not fail in this analysis, the results do not
depend on the number of joint elements used. A comparison of the
load-displacement plots of the different models is shown in Fig. 11b.
The joint element model was able to replicate the response quitewell,
even with only one beam element rather than 40. The actual joint

region requires fewer elements because all of the bending takes place
outside of the overlap region. The increased flexural rigidity of the
overlap region causes it to rotate rigidly rather than bend. Therefore,
more elements are required outside the overlap regions to best capture
the nonlinear geometric effects of the joint.

B. Material Nonlinearities

The material nonlinearity examples featured in this section
highlight adherend nonlinearity and adhesive nonlinearity separately
to show the strengths andweaknesses. The limitations and abilities of
the joint element in modeling nonlinear adherends are shared by
beam elements in general, and more in-depth discussion on these
limitations and how to overcome them is dealt with extensively in
literature [29–36].
The example used to demonstrate adherend material nonlinearity

is the single lap joint shown in Fig. 10, but with elastic perfectly
plastic adherends. The yield stress for the titanium was set at
1050MPa, the aluminumwas at 300MPa, and both the joint element
and Abaqus 2-D models used the same material law. Large rotations
were considered in the analysis, and the adhesive was given linear
material properties to isolate the effect of nonlinear adherends.
Figure 12a shows the load-displacement plot for the joint element
model using different numbers of elements. As can be seen, the
predictions of all models are relatively close, but more elements are
certainly necessary for a converged solution. However, the load-
displacement plot did not resemble that of the Abaqus 2-D dense
mesh model shown in Fig. 12b. The load predicted by the 2-D dense
meshmodel drops after a peak, whereas the joint element model does
not drop, but continues to hold more load. There are two factors that
contribute to this. First, the beam model assumes that the displace-
ment and strain vary linearly in the z direction. Because this is not the
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Fig. 9 Fracturemechanics properties such as critical stress and fracture
toughness used to formanadhesive stress-strain law for the joint element.
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Fig. 10 Single lap joint used to validate joint element corotational

formulation.
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Fig. 11 Comparison of a) joint element and 2-D dense mesh FE
representation of unbalanced single lap joint and b) the resulting load vs

displacement plot.
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case after yielding, the model is inaccurate after initial yielding and
the softening is unable to localize. Second, because the stress-strain
relation for the adherend is nonlinear elastic, unloading of the
adherends is inaccurate. When the adherends first yield, the strain
increases dramatically at one point (localization) whereas the rest of
the adherend unloads. This causes inaccurate results after initial
yielding of the adherends. A plastic hinge theory could improve this
quality, as will be discussed later.
Another observation about the 2-D dense mesh FEM is that the

solution continues to changewhen the element size is reduced. This is
due to the stress singularity at the reentrant corners. As the element
size is decreased, the stress concentration rises and the adherends
yield sooner and more dramatically. Furthermore, the solution cuts
off after the peak for an element size of 0.15 and 0.1 mm. This cutoff
was due to the commercial FE analysis software, which ends the
analysis after the step size has become too small. Thismay also be due
to the stress singularity at the reentrant corners and illustrates some of
the potential difficulties of modeling joints with dense continuum
element meshes.
This example illustrates why one should avoid using the joint

element when failure of the joint is dominated by adherend yielding.
It also brings out the need of applying some of the measures adopted
for beam elements to the joint element to better capture the material
softening of the adherends.
The second example, illustrating nonlinear adhesive, is the same

joint discussed previously, except with linear adherends and a
nonlinear adhesive stress-strain relation. The adhesive had an elastic
perfectly plastic bulk adhesive tensile test stress-strain relation,
with the linear properties being that of EA 9394 (E � 4 GPa,
G � 1.5 GPa) and the bulk yield stress being 40 MPa. The pro-
cedure outlined previously was followed to find the peel and shear
yield stress, σaY and τaY . The adhesive was allowed to yield
indefinitely so that no crack would form or grow. This is an upper-
bound prediction of joint strength according to the global yielding
criterion proposed by Crocombe [37].
Because the joint was unbalanced, two peel to shear ratios were

found: one on each side of the adhesive. The left sidewas the sidewith
the greatest magnitude of adhesive stress, whereas the right sidewas a
bit lower. Because the adhesive can yield indefinitely, the maximum
loadwill not be reached until both sides of the adhesive begin to yield.
Therefore, it was expected that the peel to shear ratio of the right side,
the last side to yield, would result in the most realistic solution.
The peel to shear ratios and peel and shear yield stresses, along with
predicted joint strengths, are shown in Table 1. A comparison of the

load-displacement response using the peel to shear ratio from the left
(high ratio) and the right (low ratio) is shown in Fig. 13a. This is
expected to provide bounds for the solution.
The load-displacement plot for different element sizes using the 2-

D dense mesh model is shown in Fig. 13b, whereas the same plot for
different numbers of joint elements is shown in Fig. 13c. As with the
nonlinear adherend solution (Fig. 12), the reentrant corners caused
stress singularities, which cause the solution to be mesh dependent
for the 2-D dense mesh model. However, it appears that, for the
element sizes shown, the joint element predictions using the high and
low peel to shear ratios provide an upper and lower bound for the 2-D
dense mesh solution. For the joint element model, if there are not
enough elements the adhesive does not reach yielding along the entire
length of the adhesive. However, with enough elements, the yielding
advances properly across the adhesive.

C. Crack Growth

To illustrate the benefits of growing a crack by remeshing rather
than just setting the failed adhesive stiffness and stress to zero, a
bilayered beam joint was pulled apart as shown in Fig. 14a. The joint
was 5 mm wide, and the adherends had a stiffness of 100 GPa and
Poisson’s ratio of 0.33. The adhesive had aYoung’smodulus of 1GPa
and was linear up to failure, which occurred at 500 MPa (see
Fig. 14b). The simplistic linear-until-failure adhesive was chosen
because an analytical solution can be found and because it allows
crack growth without material nonlinearity, isolating this aspect of
the joint element.
Two different models were compared that show the benefits of

remeshing. First, rather than removing the adhesive and remeshing,
the stress and stiffness of the adhesive were simply set to zero when
the stress reached 500MPa. Second, the failed adhesivewas removed
and the element was replaced by a subassembly (i.e., remeshing) as
illustrated in Fig. 4. The results of the twomodels with different ways
of handling crack growth are shown in Fig. 15. The drawbacks to
remeshing are discussed in Sec. II.D, and the benefits are clearly
illustrated here. For the first model, the postpeak solution oscillates
around the analytical solutionwith the oscillation amplitude reducing
for more elements. The second model with the remeshing, on the
other hand, is extremely close to the analytical solution with just a
single element. There is some oscillation after the peak, but this is
suspected to be caused by crack overshoot. This effect, however, dis-
appears entirely with only four elements. This example dramatically
shows that remeshing the element to represent crack growth can
result in huge elemental savings over zeroing the adhesive stiffness.

D. Experimental Validation

Last, the joint element was validated via comparison with experi-
mental data published by Harris and Adams [12] on single lap joints.
The tests were carried out according to ASTM D1002-72 specifi-
cations. The geometric parameters are shown in Fig. 16. The adhesive
was MY750, and three different aluminum alloys served as the
adherends. The only difference between the alloys was the 0.2%
proof stress, as shown in Table 2. The adherends were modeled with
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Fig. 12 Plots showing the effect of element size on the load-displacement response of the single lap joint featured in Fig. 10 with nonlinear adherends for
the a) joint element and b) dense 2-D FE mesh.

Table 1 The peel to stress ratio for the considered unbalanced
joint, which is different on each side and produces a different

strength prediction

Side of
adhesive

Stress
concentration ψ σaY , MPa τaY , MPa

Predicted
strength, kN

Left Higher 1.63 29.0 17.1 710
Right Lower 1.04 21.3 20.5 819
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an elastic perfectly plastic stress-strain relation. The adhesive,
MY750, was characterized using bulk adhesive tensile tests, and the
bulk adhesive stress-strain relation is shown in Fig. 17a.
The method outlined previously was followed to find the adhesive

peel and shear stress-strain relations. First, the joint was analyzed
with linear material properties and small rotations, and the peel to
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Fig. 13 Load displacement plots for the joint depicted in Fig. 10 with an elastic perfectly plastic adhesive with yield stress of 40 MPa: a) basing the
constitutive properties on the peel to shear ratio of the highest stressed side and the lower side, b) elemental convergence for the 2-D densemeshmodel, and
c) joint element model.
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shear ratio, ψ , was found to be 1.4. Using this value, the Young’s
modulus, and the Poisson’s ratio, the bulk adhesive tensile data were
converted to the peel and shear stress-strain relations shown in
Fig. 17a. Using this, the joint was modeled with 20 beam elements
and one joint element and was loaded in a displacement controlled
manner until the peak load had been reached. The load-displacement
plots for the single lap joints with different aluminum alloys are
shown in Fig. 17b, and the results are comparedwith the experimental
values found by Harris and Adams [12] in Table 3.
The joint with the 2L73 adherends failed without the adherends

reaching the yield stress, whereas the BB2hh adherend joint had
small amounts of adherend yielding and theBB2s joint was dominated
by the effects of adherend yielding. Lookingback to the single lap joint
example of Sec. III.B, it can be seen that adherend yielding was not
accurately captured by the current formulation of the joint element. As
expected, the specimenwithno signsof adherendyielding, 2L73, hada
predicted strength well within the experimental error. The specimen
with slight yielding, BB2hh, had a predicted strength slightly outside
of the error range of the experiment. Finally, the BB2s adherend joint,
being totally dominated by adherend yielding, had a predicted strength
much higher than the experimental value.
However, if one again uses the single lap joint of Sec. III.B as an

example, it can be surmised that if adherend plasticity were ac-
counted for in amore accuratemanner, the predicted peak loadwould
be close to the elbowwhere the slope first drops, around 3 kN (where
the adherend first reaches yielding). This would bring the prediction
much closer to the experimental value.
If the elbow is taken to be the point of failure for the BB2s

specimens, all three predictions would be lower than the experi-
mental strength. There are several possibilities for this discrepancy.
The first is that the actual joints had quite sizeable fillets at the ends of
the adhesive. Although it has been shown that spring-type joint
models, like the joint element, predict stresses within the bond line
similar to those in joints with fillets [5], the fillet might reduce the
stress enough to increase the strength slightly. Furthermore, the peel
to shear ratio, ψ , was only approximated based on the linear elastic
joint. However, large rotations and the accompanying nonlinearities
change the peel to shear ratio, making it a function of the loading.
Figure 18 shows the value of ψ as a function of the end displacement,
Δ. It can be seen that the peel to shear ratio rapidly drops early on in
the loading. Therefore, ψ could be adjusted to yield a more accurate
answer.
This comparison showed that, as expected, the joint element is

less than accurate with regards to adherend material nonlinearity.

However, the method devised to use bulk adhesive tensile data
appears to have been successful in approximating the strength of this
single lap joint. For most advanced composite joints, the adherends
display brittle failure, so capturing adherend yielding is of secondary
importance. However, amore precisemodel could be implemented to
consider adherend damage.

IV. Conclusions

In this study, the linear elastic bonded joint element concept,
introduced earlier [9], was extended to include large rotations,
material nonlinearity [17], and adhesive failure. Large rotations,
which occur commonly in adhesively bonded joints, were handled
through a corotational formulation. This formulation separated the
displacements into rigid body displacement and local deformations
about a rotated local coordinate system. The local deformations are
assumed to be small, and so a linear formulation can still be used.
Material nonlinearities were included into the formulation [17].
However, a nonlinear-elasticmodelwas adopted for simplicity. It was
shown through examples that, although this model was sufficient for
the adhesive layers with high stress concentrations and small plastic
zones, it was not accurate for a description of the adherend materials,
especially in the postyielded state. Problems arise with excessive
adherend yielding, and it is suggested that the modeling of joints
where adherend yielding is significant with the joint element be
avoided. On a positive note, the load at which the adherend is fully
yielded can be viewed as an upper limit load, whereas the onset of
adherend yielding can be considered a lower limit.

Table 2 Material properties of the single lap joint
adherends and adhesive [12]

Material E, GPa υ 0.2% proof stress, MPa

MY750 3.44 0.4 — —

Aluminum 2L73 70 0.34 430
Aluminum BB2hh 70 0.34 220
Aluminum BB2s 70 0.34 110
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Fig. 17 Single joint element a) stress-strain relation for bulk adhesive, along with peel and shear components for a single lap joint with ψ � 1.4, and
b) corresponding load-displacement plots.

Table 3 Experimental and predicted strengths of the
single lap joint

Adherend Experimental strength, kN Predicted strength, kN

2L73 4.8� 0.57 4.46
BB2hh 5.0� 0.38 4.52
BB2s 3.5� 0.32 5.00

0.7

0.9

1.1

1.3

1.5

0 2 4 6 8 10
(mm)

Fig. 18 Peel to shear stress ratio in the adhesive layer of the single lap
joint as a function of end displacement.
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Adhesive failure and crack formation and growth were accounted
for through an internal remeshing process. The element with an
internal crackwas replaced by a subassemblywith the failed adhesive
removed. This method added to the computational steps that needed
to be taken during the analysis, but decreased the number of elements
needed to capture progressive failure.
Finally, methods of finding the nonlinear peel and shear stress-

strain curves for the adhesive based on experimental procedures were
outlined. First, using bulk adhesive tensile data, the response was
broken up into shear and peel components for a certain joint
configuration. This allowed the adhesive to be characterizedwith one
test, but limited the shear and peel characterization to be specific to a
certain joint type, geometry, and material. Next, the resemblance of
the adhesive model to CZMs made it a natural candidate for fracture
properties such as strength and fracture toughness. This was dis-
cussed in the formulation, although no examples of this kind were
presented. This method of adhesive characterization has the dis-
advantage of requiring more tests, but seems to have fewer assump-
tions involved.
The model was first compared with a dense 2-D FEM and later

compared with previously published experiments [12]. For the
examples shown, the model was able to represent large rotations
through a corotational formulation andmatched upwellwith dense 2-
D FEM models. The adhesive nonlinearities and failure were also
captured accurately with the joint element model when compared
with both experiments and the 2-D FEMmodel. An area of potential
improvement for themodelwould be to include amodified vonMises
flow theory as derived by Gali et al. [21] and used by Mortensen and
Thomsen [5] and Harris and Adams [12], so that the ratio of shear to
peel stress need not be considered constant and defined a priori. A
critical weakness that was highlighted by the examples was the
inability of themodel to accurately capture adherend yielding. Euler–
Bernoulli beam theory restricts the displacements to vary linearly in
the thickness direction, which does not allow proper localization of
yielding. Future work in this area includes applying a beam hinge
formulation [29–36]. Another major future development required to
improve the usefulness of the model is to extend the formulation to a
shell-type element. This requires a different approach to solving the
partial differential governing equations to obtain proper shape
functions, but would vastly improve the utility of the model.
Thismodel significantly reduces the number of degrees of freedom

needed to predict important values like stress, strain, and strength
when compared with traditional FE methods. Such reduced models
then facilitate the integration of joint design into larger global-scale
vehicle models without creating a significant bottleneck. This allows
vital joint design to take place early on in the design phase, when
design changes are relatively easy and inexpensive.
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