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A novel shell element for textile composite structural 
analysis 

Wu Xu1 and Anthony M.Waas2 
University of Michigan, Ann Arbor, Michigan,48109 

A shell element for analysis of textile composite structures is proposed in this paper. 
Based on the embedded element method and solid shell concept, the architecture, geometry 
and material properties of a Repeat Unit Cell (RUC) of textile composite are embedded in a 
single shell element. Flat and curved textile composite structures are used to apply and 
verify the present shell element. It is shown that the proposed shell element is efficienct, 
simple and reliable. 

 

Nomenclature 
C    = kinematic relation between host element and embedded element, Eq.(5a) 
D     =  elastic stiffness  
E               =  Young’s module  
G               = shear module 
h                = plate thinness  
K               = global stiffness matrix 
k                = shear factor 
Ka              = kinematic relation between plate element and solid element 
N(ζ, η, ξ)   = shape function  
P               = effective node force given in Eqs.(6d), (12c) and  (16b) 
p               = pressure acting at a element surface or edge 
T               = transfer matrix 
ui, vi, wi     = transversely displacement of the ith  node 
α               = a very small value used in Eqs.(13) 
ε                = strain vector  
θix , θiy       = rotational degree of freedoms of the ith  node 
п                = potential energy 
v                = Poisson’s ratio 

I. Introduction 
extile composites are widely used as structural materials in aerospace and automotive industrial applications. 
Numerical methods, especially the Finite Element Method (FEM), are increasingly used to analyze structural 

components made with textile composites. There are several difficulties involved in the application of traditional 
FEM for textile composites. In the traditional FEM1,2, the material properties within an element are assumed to be 
constant, based on averaged properties. This assumption can lead to error when one solid element is used for a 
Repeat Unit Cell (RUC) of textile composite, where material property discontinuities are observed. In order to apply 
the traditional FEM, thousands of elements with constant material properties have been used to model the tows and 
matrix in a RUC3. It is costly, to analyze a textile composite structural component by modeling the entire structure 
as a collection of RUCs. In order to reduce the computational demand, homogenized methods have been proposed to 
determine the properties of a RUC. Once the homogenized material properties are obtained from the RUC, they 
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areused as constant for the whole composite structure. This method can dramatically reduce the degrees of freedom 
of a real composite structure. However the modeling of a RUC can be formidable depending on the extent of details 
to be incoportaed especially , due to the complex geometric architecture of textile RUCs. Various mesh methods and 
special mesh generators were designed to create finite element models for the complex geometric architecture of 
textile composites in Refs. [4-6]. In addition, periodic boundary conditions are usually required to obtain the elastic 
homogenized properties, which makes the meshing and subsequent modeling to be constrained. 

This paper is concerned with the development of a shell element for analyzing thin-walled textile composite 
structural components. The method  introduced is novel and based on the embedded element method and the general 
solid shell concept7, with additional necessary features needed to reduce computational complexity while 
maintaining the required fidelity. The advantage of the embedded element method is that the tow and matrix of a 
textile composite RUC can be meshed independently, which reduces the modeling efforts and total elements 
significantly. Flat and curved thin structures made of textile composites are used to apply and verify the present shell 
element. The displacements obtained by using the present shell element are compared well with those obtained from 
three dimensional finite element analysis by using ABAQUS. The present method is demonstrated to be simple, 
efficient, accurate and reliable. 
 

II. The embedded element method 
For simplicity, a truss element embedded in a plane element shown in Fig.1a is used to illustrate the idea of the 

embedded element method. The plane is modeled by one element, for example by a four node bilinear plane stress 
element and the truss is meshed by a truss element. The total potential energy for the system shown in Fig.1a is  

p tΠ = Π + Π                                                                              (1) 
where  

1 d d
2

T T
p p p p p

S L

D s u p lε ε∏ = ⋅ − ⋅ ⋅∫ ∫                                                       (2a) 

1 d
2

T
t t t t

L

D A lε εΠ = ⋅∫                                                                  (2b) 

Following the finite element method, the displacement fields in the plane and truss element are interpolated as 
follows. 

( )
4

1
,p p

i i
i

u N uξ η
=

= ⋅∑                                                                    (3a) 

( )
2

1

t t
j j

i
u N uξ

=

= ⋅∑                                                                       (3b) 

The subscript and superscript p and t in Eqs.(2-3) are used to represent the plane element and truss element, 
respectively. ui is the displacement at the ith nodes. N (ξ) and N (ξ,η) are the shape function for the two node truss 
element and four noded plane element, respectively. 
 For the considered example, the displacements at node 1(x1, y1) and 2 (x2, y2) of the truss element should equal 
those at the same location of the plane element, which leads to  

[ ]1 1 2 2 1 1 2 2 3 3 4 4, , , , , , , , , ,
T Tt t t t p p p p p p p pu v u v C u v u v u v u v⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦                                 (4) 

where  

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

a a a a
a a a a

C
b b b b

b b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                          (5a) 

( )1 1,i ia N x y= , ( )2 2,i ib N x y= ,   i=1,2,3,4                                         (5b) 
Substituting Eqs.(2-5) into Eq.(1) and using the principle of minmum potential engery leads to 
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[ ]{ } { }K u P=                                                                              (6a) 
where,  

p emK K K= +                                                                              (6b) 
em T tK C K C= ⋅ ⋅                                                                          (6c) 

( ) ( ) d
L

P N p lξ ξ= ⋅ ⋅∫                                                                    (6d) 

{ } 1 1 2 2 3 3 4 4, , , , , , ,
Tp p p p p p p pu u v u v u v u v⎡ ⎤= ⎣ ⎦                                                       (6e) 

The kinematic relation matrix C is given in Eq.(5). The stiffness matrix of the plane (Kp) and truss (Kt ) elements 
and load vector P are the same as those obtained by using the regular finite element method. 

It is noteworthy that 1)  The total Degrees of Freedom  (DoF) of the system is equal to that of the plane element 
and 2) the contribution of the embedded truss is included in the global stiffness matrix through the kinematic 
relation matrix C given in Eq.(5). As a result, the advantage of this method is its reduction of global DoF. This 
advantage is very attractive for global-local or multi-scale analysis. Another advantage of this method is that the 
embedded elements (the truss element) do not require common nodes with the host element (plane element in this 
case). This means that the embedded element and host element can be separately meshed. This advantage is very 
appealing for complex textile architectures such as angle interlock weaves. 

 

 
 

Figure 1. Embedded elements examples: (a) A truss element embedded in a plane element; 
 and (b) A solid element embedded in another solid. 

 
The embedded element method can be easily extended to analyze a three dimensional case. A solid element A 

embedded in a large solid element B is shown in Fig.1b. However, the volume effect of the solid A should be well 
considered. In practice, the material properties of the host element B is unchanged, while equivalent elastic stiffness 
D given in Eq.(7) for the embedded solid A are used for applying this method. 

{ } [ ]{ } [ ] [ ]( ) { }A BD D Dσ ε ε= = − ⋅                                                         (7) 

where, DA and DB represent the elastic stiffness of the solids A and B, respectively.  
The single-field macro-element presented in Ref.[8] and the domain superposition technique given in Ref.[9] and 

the present embedded element method share many similarities. However, to the knowledge of the authors, there is 
no literature using the embedded element method to design shell elements for structural analysis of textile composite 
structures. 

III. Derivation of plate element from solid element 
Derivation of shell element from solid element was originally proposed by Ahmad et al.7. Subsequently, various 

“solid” shell elements were proposed. This idea is implemented in this paper. For simplicity, an eight noded solid 
element shown in Fig.2a is used to illustrate the derivation of the shell element. The potential energy of the solid 
element shown in Fig.2a is 
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1 d d
2

T

S

D V p u sε ε
Ω

Π = ⋅ − ⋅ ⋅∫ ∫                                                             (8) 

Using shape functions, the displacement field in the solid element is 

( )
8

1
, ,i i

i

u N uξ η ζ
=

= ⋅∑                                                                 (9a) 

( )
8

1
, ,i i

i
v N vξ η ζ

=

= ⋅∑                                                                 (9b) 

( )
8

1
, ,i i

i
w N wξ η ζ

=

= ⋅∑                                                               (9c) 

where N (ξ, η, ζ) are the shape function for an eight node solid element, and ui, vi and wi are the displacement 
components of the ith node. 
 

1 1 1

1 1 1

1 1

2

2

......

m y

m x

m

u u h

v v h
w w

θ

θ

= − ⋅⎧
⎪

= − ⋅⎪
⎨

=⎪
⎪⎩

 
Figure 2. Derivation of plate element from solid element: (a) an eight node solid element;  

and (b) a four node plate element.  
 

Plate element can be used to model the same problem shown in Fig.2a as well. The differences between the solid 
element and the Mindlin plate element are the kinematic assumption and stress assumption. The Mindlin plate 
assumes that plane sections initially normal to the neutral surface remain plane after deformation and stress normal 
to the neutral surface is zero. These two types of element are always designed separately. In this section, the plate 
element will be derived from the solid element. 

According to the kinematic assumption of the plate, the displacement relationship between the solid and plate 
element shown in Fig.2 is given as follows. 

{ } { } { }

1

1

1

1

2

2

2

2

e e e
s a m m

K
K

K
K

u K u u
K

K
K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                            (10a) 

1

1 0 0 0 2
0 1 0 2 0
0 0 1 0 0

h
K h

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

    2

1 0 0 0 2
0 1 0 2 0
0 0 1 0 0

h
K h

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

                        (10b) 
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{ } [ ]1 1 1 2 2 2 8 8 8, , , , , ,...., , , Te
su u v w u v w u v w=                                           (10c) 

                             { } 1 1 1 1 1 4 4 4 4 4, , , , ,..., , , , ,
Te

m m m m x y m m m x yu u v w u v wθ θ θ θ⎡ ⎤= ⎣ ⎦                               (10d) 

where uim, vim and wim are the transversely displacements, and θix and θiy are the rotational degree of freedoms of the 
ith node of the plate element. The plate thickness is denoted by h. Substituting Eqs.(10) and the shape function Ni (ξ, 
η, ζ) for the eight noded solid element into Eqs.(9), leads to the following relations 

( ) ( )
4 4

1 1
, ,

2i im i iy
i i

hu N u Nζξ η ξ η θ
= =

= ⋅ + ⋅∑ ∑                                             (11a)               

  ( ) ( )
4 4

1 1
, ,

2i im i ix
i i

hv N v Nζξ η ξ η θ
= =

= ⋅ − ⋅∑ ∑                                             (11b) 

( )
4

1
,i im

i
w N wξ η

=

= ⋅∑                                                                      (11c) 

where N(ξ, η) is the shape function of four noded plane element. It is found that the displacement field given in 
Eq.(11) is exactly the same as that derived directly from the Mindlin plate. Substituting Eqs.(9) and Eqs.(10) into 
Eq.(8) and using degenerated constitutive material law which was based on zero stress component in the normal 
direction, the resulting potential energy is the same as that of the classical Mindlin plate element. Using the 
minimum potential energy principle, the following relationship is obtained.  

[ ] { } { }e
m mK u P⋅ =                                                                       (12a) 

where  
T

m a s aK K K K= ⋅ ⋅                                                                     (12b) 

T
a sP K P= ⋅                                                                             (12c) 

Km is the stiffness matrix for the plate element, Ks is the stiffness obtained by using the regular finite element method 
for solid element. P and Ps are the load vector at the element node of the plate and solid element. It should be noted 
that in calculating Ks, all the procedure are the same as the regular finite element method excepting the elastic 
stiffness. Degenerated elastic stiffness should be used for Ks. For isotropic material, the degenerated elastic stiffness 
is 

2 2

2 2

0
1 1

0
1 1

0 0

E vE
v v

vE E
v v

D

G
kG

kG

α

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                     (13) 

where α is a small positive value to extend the matrix size, and k is a shear factor, which for a rectangular cross-
section equals 5/6. 

For anisotropic material, the elastic stiffness properties are firstly transfer to the thickness direction by using 
Eq.(14a). Based on zero stress component in the thickness direction, the material properties are further degenerated 
by using Eq.(14b). The elastic stiffness Ds given by Eq.(14b) is used to obtain Ks for the solid element. 

[ ] [ ] [ ]T
mD T D T= ⋅ ⋅                                                                     (14a) 
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3 3

33

; , 3

; or 3

i js
ij ij

s
ij

D D
D D i j

D

D i jα

⋅⎧
= − ≠⎪

⎨
⎪ = ≠⎩

                                                     (14b) 

In Eq.(14a), Dm is the elastic stiffness given in the material coordinate. And the matrix T can be obtained by using 
the equation given in Ref.[10]. 

It is found that the displacement field of the solid element obtained by using the present method is exactly the 
same as that of a four noded Mindlin plate element. The problem in the design of Mindlin plate element is shear 
locking. Various methods were proposed to avoid shear locking. Among these methods, the selective reduced 
integration method was widely used to remedy shear locking2. Since this method is simple and efficient, it is applied 
here to determine the stiffness for Ks.  

It is observed that the derivation of the plate element from the solid element is more complicated than that 
directly based on the Mindlin plate theory. However, the strength of this method is its ability to analyze complex 
textile composite microstructures, which will be demonstrated in the following. 

IV. Derivation of shell element for textile composite structure 
In this section, the methods described in the previous sections are used to design plate and shell elements for textile 
composite structures. 

A.  Plate element for textile composite 

Figure 3 shows a RUC of waving textile composite. The matrix is not shown in this figure. The undulating tow 
follows a sinusoidal path given by, 1.0sin(π/8) mm. The major and minor axes of the elliptical cross-section of the 
tow are 6.0 mm and 1.5 mm, respectively. The width and thickness of the square RUC are 16 mm and 3.8 mm.  

            
Figure 3.  A Representative Unit Cell of waving textile composite:  (a) geometrical dimension; 

and (b) mesh of the RUC. 

Combination of the methods described in sections 2 and 3, results in a plate element for the RUC. An eight 
noded plate element is used to demonstrate the process shown in Fig.4. Detailed interpretation of the procedure is 
given as follows; 

1) Element definition; Like doing finite element analysis by using commercial software, the finite element node 
location, element type and element connectivity are defined based on the geometrical information from a given 
problem. The difference in the present study are that: 1) the matrix is assumed to fully occupy the RUC 
(16mm×16mm×3.8mm) volume; and 2) the tow and matrix are separately meshed, which means that these is 
no requirement for common nodes between the tow and matrix. Figure 3b shows the mesh of the tow and 
matrix, where the matrix is model by a twenty noded  solid element, while hundreds of twenty noded solid 
elements are used for the tows. In the practical application of the present method (section 5), sixteen elements 
(4×4×1) are used for the matrix.  

2) Material properties; The matrix is always assumed to be an isotropic solid, while the tow made up of fiber and 
matrix are frequently modeled as transversely isotropic solid. As a result, a coordinate system for the tow is 
required to define the material properties variation as the tow undulates. In order to apply the present method, 
equivalent material properties are required to consider the volume effect (the matrix is assumed to be full of the 
RUC) by using Eq.(7). Then, the elastic stiffness of matrix and tow are further degenerated by using Eq.(13) 
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and (14), respectively. It is noteworthy that for the present tows, Dm in Eq.(14) is the equivalent property given 
by Eq.(7).  

3) Stiffness matrix determination for the tow and matrix; Using the regular finite element method, the element 
information in step (1) and material properties obtained in step (2), the stiffness matrix for each element of the 
tow and matrix can be obtained. In order to remedy shear locking, selective reduced integration method is used 
to obtain the element stiffness for the matrix. Due to the coupling between shear and normal strain, it is 
difficult to distinguish the shear strain energy between bending and tension energy for the tow. As a result, 
reduced integration is used to obtain the element stiffness for tows. Usually, the rank deficiency introduced by 
the reduced integration method can be remedied by using many finite elements. In the examples presented in 
section 5, rank deficiency is not observed. 

4) Determination of C matrix; The shape function for a sixteen noded solid element can be obtained by using the 
method given in Ref.[2]. Once the shape function is obtained, the C matrix and the embedded stiffness matrix 
Kem can be determined. The stiffness of the sixteen noded solid element Ks, shown in Fig.4b, is obtained by 
summing all of Kem.  

5) Determination of the stiffness of plate element; Using Eq.(10a) to obtain the kinematical relationship matrix Ka 
and Ks obtained in step (4), the stiffness of the corresponding eight noded plate element is finally obtained by 
using Eq.(12b). 

(b) Host solid element
5

6

7

8

1 2

34

Isotropic matrix with degenerated 
material properties, Eq.(13) 

Tow with degenerated material 
properties given in Eqs.(7) and (14) 

(c) Plate element

T
em matrixK C K C= ⋅ ⋅

T
em towK C K C= ⋅ ⋅

T
m a s aK K K K= ⋅ ⋅

1 2

34

5 6

78

9

10
11

12 13

14

15

16

(a) 
em

sK K= ∑

 
 

Figure 4.  Procedures for the design of plate element for textile composites. 

B.  Shell elements for textile composite 
Shell structures are frequently analyzed as an assembly of flat plate elements11. Besides the five degrees of 

freedom at each node, a drilling rotation θz is included to extend the plate element to analyze curved structures. This 
means the size of  the  element stiffness matrix is extended from 5n×5n to 6n×6n, where n is the number of element 
nodes. The zero stiffness matrix corresponding to θz results in the singularity in the global stiffness matrix. To deal 
with this difficulty, the simple approach given in Ref.[11] is adopted here. An arbitrary small stiffness coefficient 
Kθz at the additional degree of freedom θz is added in the extended element stiffness matrix.  
 The element stiffness and load vector for the plate element are determined in terms of a local coordinate system 
that has x and y axes along the mid-plane and z axis normal to the plane. In order to assemble these matrix and 
vectors into the global stiffness matrix and load vector, the nodal degree of freedom in terms of the local coordinates 
must be transformed into those in terms of the global coordinate system. At each node, the relation between the local 
and global degree of freedom is 

 { } [ ]{ }global local
lu T u=                                                                     (15) 

Tl  is the transform matrix, which consists of the direction cosines between the global axis and the corresponding 
local axis. The element stiffness matrix K and load vector P in the global coordinates are given as follows. 
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T e
g gK T K T= ⋅ ⋅                                                                      (16a) 

{ } { }T e
gP T P⎡ ⎤= ⋅⎣ ⎦                                                                    (16b) 

where  

l

l
g

l

T
T

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                                 (16c) 

The size of gT  is dependent on the node number of element. There are eight lT  for eight noded shell shown in 
Fig.4c.  

V. Applications and verifications 
Three test examples shown in Fig.5 are used to apply and verify the present method. The first one shown in 

Fig.5a is a square plate made of isotropic material. It is used to apply and verify the method introduced in section 3, 
which is the derivation of plate element from solid element. The next two examples are flat and curved sheets made 
of textile composite. They are used to demonstrate and verify the present plate and shell element for textile 
composite structures. Some of the matrix shown in Fig.5b and c are removed to show the architecture of the tows. 

 

                         
Figure 5.  Test examples: (a) An isotropic plate; (b) a flat textile composite sheet;  

and (c) a curved textile composite sheet 

A. Isotropic square plate 
A square aluminum plate subjected to uniform pressure p (p=1) and clamped boundary conditions is analyzed by 

using the present plate element. The material properties are elastic modulus, E=70Gpa, Poisson’ ratio v=0.3. The 
width and thickness of the plate are 128mm and 3.8mm, respectively. Due to the symmetry, one quarter of this plate 
shown in Fig.5a is modeled and analyzed. In order to obtain the reference solution to this problem, higher order 
solid elements and shell elements given in ABAQUS® are used. The out of plane displacement at the plate center 
(x=64mm, y=0mm, z=0mm shown in Fig.5a) is found to converge to -0.98mm. The analytical result based on 
Kirchhoff–Love assumption is -0.96mm12. Since the transverse displacement caused by shear strain is considered by 
ABAQUS®, the displacement is slightly larger than that of the analytical result (-0.96mm).  

Having obtained the reference solution to the problem shown in Fig.5a, the method described in section 2 is used 
to design a plate element to solve this problem. Sixty elements are uniformly meshed for one quarter of the plate. 
Firstly, an eight noded solid element is used to derive a four noded shell element, degenerated material properties 
given in Eq.(13) are used. Reduced integration method for the shear strain energy is used to obtain the stiffness 
matrix of the solid element (Ks) to avoid shear locking. The stiffness of the plate element is then determined by 
using the kinematical relationship given in Eq.(10a) and (12b). Once the stiffness of the plate element is determined, 
the deformation of the problem shown in Fig.5a can be solved by following the regular finite element method. The 
out of plane displacement obtained by the present plate element S4S is given in Table 1. It is observed that the 
present result agrees very well with that obtained from ABAQUS. If the reduced integration method is used for all 
the strain energy, the result is also presented in Table 1, see the S4R column. The result from S4R is more flexible 
than that from the S4S element.  

 

(b) (c) 
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Table 1 Displacement results for an isotropic plate, material properties are degenerated 

Element types S4R S4S S8S S8R ABAQUS 
Results -1.17 -0.98 -0.98 -0.98 -0.98 

 

A sixteen noded solid element is also used to derive an eight noded  plate element. Reduced  integration  method 
and degenerated material properties are used. Two types of eight noded plate elements are used. The difference 
between these two elements is the integration method for calculating the stiffness of solid. Selective reduced 
integration method is used only for the shear strain energy for S8S; while for S8R, reduced integration method is 
used for all the strain energy. The corresponding results are given in Table 1 as well. It is observed that the results 
from the two types of elements compare very well with the ABAQUS results.  

B. 5.2 Flat textile composite plate  
Figure 5b shows a textile composite plate. The tow and matrix are respectively assumed to be transversely 

isotropic and isotropic solids. The dimension, boundary and loading conditions of the textile plate are the same as 
that of the isotropic aluminum plate shown in Fig.5a. The textile plate shown in Fig.5b is made up of sixteen RUCs. 
The geometrical architecture of a RUC is the same as that shown in Fig.3a. The mechanical properties of the tow 
and matrix are given in Table 2. The elastic modulus of the matrix is assumed to be a spurious large value to verify 
whether the volume effect is adequately captured using (Eq. 7).  

 
       Table 2 Material properties for the tow and matrix 

Transversely isotropic tow Isotropic matrix 
E1 E2 G12 G23 v12 E v 

180Gpa 60Gpa 64Gpa 23Gpa 0.4 40Gpa 0.3 
       

The stiffness and load vector of an eight noded plate element S8 for the RUC shown in Fig.3a is obtained by 
following the method introduced in Section 4.1. Subsequently, sixteen (4×4) plate elements are used to analyze the 
textile composite plate. The out of plane displacement at (x=64mm, y=0mm, z=0mm) is -1.16mm given in Table 3. 
In order to verify the present method, a full three dimensional finite element analysis is carried out by using 
ABAQUS®. Since the architecture of the textile plate is very complex, the C3D10 element is used and the out of 
plane displacement at the plate center has a converged value of -1.28mm. 

 
Table 3 Results from different types of elements, 4×4 shell elements 

Element type S8R S9R S12R S16R S25R Full 3D (C3D10) 
displacement -1.16 -1.17 -1.18 -1.21 -1.25 -1.28 

 
There are two ways to improve the accuracy. These are, (a)  using high order finite elements,  and (b) making the 

mesh finer. Since the displacement field in a RUC is very complex, higher order plate finite elements are required to 
improve the accuracy. The element type and mesh size of the tow and matrix are the same as that of S8 (as shown in 
Fig.3b). Higher order plate elements for textile plates can be achieved by increasing the node number of the host 
solid element shown in Fig.5b. Four types of  higher order solid elements with eighteen, twenty-four, thirty-two, and 
fifty nodes are used to design a  higher order plate element.  By following the method described in section 4.1, the 
corresponding plate elements S9, S12, S16 and S25 are designed and applied to solve the textile plate transverse 
loading problem. The out of displacement obtained by using the four types of elements are shown in Fig.6. The solid 
line shown in this figure is the result obtained from full three dimensional analysis. For comparison, the out of 
displacements at (x=64mm, y=0mm,z=0mm) are given in Table 3.  It is observed that the results obtained from plate 
elements converge to the reference values as the element order increases. 
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Figure 6. Comparison of the deformation in the thickness direction along x, y=0 between plate element and 

three dimensional analysis by using C3D10, the plate is uniform meshed by 4×4 elements.  

C. Curved textile composite structure  
A curved structure made of a woven textile composite is shown in Figs.7 and 5c. It consists of sixteen RUCs. A 

three dimensional architecture of the curved shell structure is shown in Fig.5c. The major and minor axes of the 
elliptical cross-section of the tow are 2.4 mm and 0.6 mm, respectively. The axes of the tow and matrix follow the 
paths shown in Fig.7c. The boundary conditions are: Fixed boundary displacement is applied along the edge AB 
shown in Fig.7b; and the top surface of the curved shell is subjected to uniform pressure p=0.1Mpa, Fig.7a. The tow 
is made up of carbon fiber and epoxy matrix, the corresponding properties and volume fraction vf  are given in Table 
413. Using micro-mechanics method and the Concentric Cylinder Model described in Refs.[13-16], the properties of 
the tow is calculated by using the equations given in Ref.[16] and given in Table 5. 

Table 4 The mechanical properties of carbon fiber and epoxy material 

Transversely isotropic carbon fiber Isotropic epoxy matrix 
E1(Gpa) E2(Gpa) G12(Gpa) G23(Gpa) ν12 vf E(Gpa) ν vm 

231.0 15.0 24.0 5.01 0.14 0.6 3.0 0.36 0.4 
 

Table 5 Calculated mechanical properties of the tow by using CCM 

E1(Gpa) E2(Gpa) G12(Gpa) G23(Gpa) ν12 
139.84 6.40 3.77 2.36 0.22 

 
The problem in Fig.7a is modeled by 4×4 shell elements shown in Fig.7b. A shell element with 25 nodes is 

designed following the method introduced in section 4. Once the stiffness and load vector of the shell element are 
obtained, the displacement can be obtained by following the procedure of the regular finite element method. The 
square symbol shown in Figure 8 indicates the variation of the displacement in the  z direction with respect to the 
angle θ . In order to verify the present results, the corresponding results from a full three dimensional analysis with 
more than 220,000, C3D10 elements are also given in Fig.8. The difference between these two results is within 6%. 

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

01
62

 



 

 
American Institute of Aeronautics and Astronautics 

 
 

11

However, the present shell element is much more efficient than the traditional full three dimensional finite element 
analysis.   
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Figure 7.  A curved shell made of waving textile composite subjected to uniform pressure and fixed 

displacement at one edge. 
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Figure 8. Variation of the displacement component in z direction with angle θ . 
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It is observed that the present example is a multi-scale analysis of textile composite structure. The inputs are the 
material properties and volume fractions of the fiber and matrix (micro-scale), the architecture of the tow (meso-
scale), geometrical and loading conditions of the textile composite structure (macro-scale). The output is the 
deformation response of the structure.  The strength of the present method is that once the inputs are available, the 
deformation of a real textile composite structure can be quickly obtained without sacrificing accuracy. 

VI. Conclusions  
 

In this paper, new shell elements are derived for analysis of textile composite structures. The architecture, 
geometries and material properties of a RUC are embedded in a single shell element. The present plate and shell 
elements are validated by flat and curved structures made of textile composites. Compared to the traditional finite 
element method for textile composites, the present shell element has the following characteristics; 

1) Modeling efficiency. The tow and matrix in a RUC are meshed independently. It results  in fewer elements in 
a RUC and free of needs associated with special mesh generation  

2) Computational efficiency. Once a shell element is designed, it can significantly reduce the total number of 
degrees of freedom of a composite structure, analyzed using a standard FEM 

3) Simple. The design of the shell element is quite simple. It is mainly based on the shape function and kinematic 
relationship matrix. No new knowledge of the finite element method is required.   

4) Reliable. Like the traditional FEM, the displacement results obtained from the present shell element converge 
to the exact value with an increase in element order. 
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