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ABSTRACT

A wealth of literature studies user behaviors in online communities, e.g., how users

respond to information that are spreading over social networks. One way to study

user responses is to analyze user-generated text, by identifying attitude towards target

topics. Another way is to analyze the information diffusion networks over involved

users. Conventional methods require manual encoding of world knowledge, which is

ineffective in many cases. Therefore, to push research forward, we design end-to-end

deep learning algorithms that learn high-level representations directly from data and

optimize for particular tasks, relieving humans from hard coding features or rules,

while achieving better performance. Specifically, I study attitude identification in the

text mining domain, and important prediction tasks in the network domain. The key

roles of text and networks in understanding user behaviors in online communities are

not the only reason that we study them together. Compared with other types of data

(e.g., image and speech), text and networks are both discrete and thus may share

similar challenges and solutions.

Attitude identification is conventionally decomposed into two separate subtasks:

target detection that identifies whether a given target is mentioned in the text, and

polarity classification that classifies the exact sentiment polarity. However, this de-

composition fails to capture interactions between subtasks. To remedy the issue,

we developed an end-to-end deep learning architecture, with the two subtasks inter-

leaved by a memory network. Moreover, as the learned representations may share the

same semantics for some targets, but vary for others, our model also incorporates the

ix



interactions among entities.

For information networks, we aim to learn the representation of network struc-

tures in order to solve many valuable prediction tasks in the network community. An

example of prediction tasks is network growth prediction, which assists decision mak-

ers in optimizing strategies. Instead of handcrafting features that could lead to severe

loss of structural information, we propose to learn graph representations through a

deep end-to-end prediction model. By finding “signatures” for graphs, we convert

graphs into matrices, where convolutional neural networks could be applied.

In additional to topology, information networks are often associated with different

sources of information. We specifically consider the task of cascade prediction, where

global context, text content on both nodes, and diffusion graphs play important roles

for prediction. Conventional methods require manual specification of the interactions

among different information sources, which is easy to miss key information. We

present a novel, end-to-end deep learning architecture named DeepCas, which first

represents a cascade graph as a set of cascade paths that are sampled through random

walks. Such a representation not only allows incorporation of the global context, but

also bounds the loss of structural information.

After modeling the information of global context, we equip DeepCas with the

ability to jointly model text and network in a unified framework. We present a gating

mechanism to dynamically fuse the structural and textual representations of nodes

based on their respective properties. To incorporate the text information associated

with both diffusion items and nodes, attention mechanisms are employed over node

text based on their interactions with item text.
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CHAPTER I

Introduction

In today’s online communities and social media, text and networks have become

the most important data sources for researchers to study users and understand a

variety of phenomena. Facebook users post daily life events and make new friends

by connecting to other users. Every day, a large number of tweets are retweeted on

Twitter, discussing popular products like the latest iPhone and political issues like

elections. Researchers make innovations based on findings from other people, citing

their work when publishing papers. Modeling text and networks for various tasks

have become increasingly important for people from different fields, including social

scientists, online marketers, government officers, scientific researchers, and daily users.

Studying user behavior is an important research direction in online communities and

social media. Researchers have studied for years, both from text and networks, as to

how users respond to different kinds of topics that are spreading over social networks,

such as rumors, political issues, and commercial products. From the text perspective,

text documents, such as user posts and tweets, are analyzed by performing techniques

like sentiment and attitude analysis towards topics of interest. In this way, people’s

stances could be understood from both the individual level and population level if

aggregated. Another perspective is to analyze the network composed of users who

are involved in this topic, which exhibits the development and signals the future
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popularity of the topics to be studied. Therefore, to push research forward in this

direction, I study attitude identification in the text mining domain, and valuable

prediction tasks in the network domain.

On the other hand, compared with data types that are continuous (e.g., vision,

speech, and time series), text and networks are both discrete. This discrete property

leads to potentially shared challenges between the two data types. Thus, technologies

developed for text might inspire innovations in the field of network mining, which also

holds the other way round. This commonality from another perspective motivates

the study of text and network mining tasks at the same time.

Despite the importance of tasks for mining text and network data, conventional

methods sometimes fall short of resolving the challenges rooted in these tasks. For

example, in network mining tasks, various handcrafted features are developed to char-

acterize the network structure, which are then fed to a classic machine-learning algo-

rithm, like logistic regression. The performance of logistic regression heavily depends

on features designed by experts, who find it hard to encode every piece of necessary

knowledge for a particular task. As another example, in attitude identification, we

usually want to track the attitude towards a set of entities. Traditional methods train

a separate model for each individual entity, failing to consider the interactions among

entities and between the different subtasks. Consequently, information in different

components is not shared, leading to inefficiency in learning. An example to show

the necessity of considering subtask interaction is as follows. The positive sentiment

in “the new Keynote is user friendly” provides good evidence that “Keynote” is a

software (the target) instead of a speech (not the target).

To resolve these issues, I focus my dissertation research on designing end-to-end

deep learning algorithms for text and information network mining. Deep learning has

emerged as a technique that allows computer programs to learn from data and expe-

rience by using deeply layered, hierarchical concepts, with complicated concepts built

2



upon simpler ones. By directly gathering knowledge from raw data with its ability

to accommodate data at large scale, and automatically learning the nonlinear map-

ping from input to output in an end-to-end manner, this technique relieves humans

from the burden of hard coding world knowledge by, e.g., designing features or rules.

With a carefully designed multi-layer neuron network, learning errors backpropagate

from upper layers to lower layers and from subtasks to subtasks, which enables deep

interactions between the learning of multi-grained representations of the data and

multiple subtasks, solving tasks that are hard for humans to manually design fea-

tures, and alleviate the burdens to provide manual annotation for each subtask. The

end-to-end nature of deep learning brings in new possibilities of resolving the issues

emerged in current approaches to attitude identification and network prediction tasks,

with examples mentioned above. Therefore, I focus on developing end-to-end deep

learning algorithms for the two tasks, tackling issues that are unable to be fixed by

conventional methods.

Attitude identification aims to identify people’s attitudes towards a given set of

entities. Examples include companies who want to know customers’ opinions about

their products, governments who are concerned with public reactions about policy

changes, and financial analysts who identify daily news that could potentially influ-

ence the prices of securities. In a more general case, attitudes towards all entities in

a knowledge base may be tracked over time for various in-depth analyses.

In attitude identification, there are conventionally three key components that fail

to receive end-to-end treatment. First, the task is decomposed into two separate

subtasks. A first model is trained for target detection, which identifies whether an

entity is mentioned in the text, either explicitly or implicitly. A second model that

is completely independent of the first one is then trained for polarity classification,

which classifies the exact sentiment towards an identified entity (the target), usually

into three categories: positive, negative, and neutral. This decomposition neglects
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intrinsic interactions between the two subtasks. Indeed, features identified in the

first subtask – both the words that refer to the target and the positions of these

words, could provide useful signals for the polarity of sentiments. On the other hand,

sentimental expressions identified in the second subtask and their positions could, in

turn, provide feedback to the first task and signal the existence of the target. Secondly,

existing methods tend to ignore interactions between targets by training a separate

model for each target [73, 42], ignoring that certain targets and their sentiments may

share some important semantic dimensions with each other while differing on other

dimensions. For example, two targets, food and service, may share many sentimental

expressions, but the sentence “we have been waiting for food for one hour” is clearly

about the service instead of the food. Lastly, various handcrafted features such as

sentiment, syntactic information, and topics are extracted from text [73, 42, 104] to

approach the task. Powerful and predictive as these features are, it is hard for humans

to enumerate and capture all important pieces of knowledge and their interactions.

To resolve these issues, we propose an end-to-end machine learning architecture,

where the two subtasks are interleaved by a deep memory network that directly learns

from the raw text input [60]. The proposed model also considers target interactions,

by allowing targets to share a common semantic space and simultaneously keep their

own space, making it possible for all targets to be learned in a unified model. The

proposed deep memory network outperforms models that do not consider the subtask

or target interactions, including conventional supervised learning methods and state-

of-the-art deep learning models.

A less explored area in deep learning is how to learn a good representation for

information networks. In the modern society, it is hard to find an isolated object,

and almost everything is connected, forming networks: when we are interacting with

our friends on Facebook, all our friends and their connections form a friendship net-

work; when a paper accumulates citations, all papers citing this paper form a citation

4



network; when an interesting tweet is posted on Twitter and is passed from person

to person, all these paths form an information diffusion network. Extracting knowl-

edge from these networks is very valuable for many data mining tasks, with one of

them being making many important predictions so that actions could be taken in ad-

vance to encourage good outcomes while avoiding bad ones. For example, predicting

the popularity of research communities helps scientists to identify promising research

directions; predicting the growth of social groups helps social network vendors opti-

mize their marketing strategies; predicting the influence of the diffusion of a rumor

helps analysts to estimate its potential damage and apply interventions early when

necessary.

Several challenges have to be resolved in order to learn representations of informa-

tion networks. The first challenge is to learn the representation of the graph structure,

or topology that makes up the skeleton of information networks. Figure 1.1 shows

some diffusion networks at different time stages. It might be easy to manually encode

the diffusion patterns in the beginning. However, as the diffusion expands and affects

more users, it becomes more difficult for humans to fully describe the network shape

and single out important patterns. In the social network literature, researchers strive

to design structural features based on theoretical and empirical findings. For exam-

ple, open triads with two strong ties are likely to form a closed triangle in the near

future [29]; dense communities are resistant to novel information from outside and

thus grow slower [40]; nodes spanning structural holes are likely to gain social capital

and prestige [14]. Features such as network density, clustering coefficients, triadic

profiles, and structural holes are, therefore, designed to implement these intuitions

and represent the graph structure.

Despite the informativeness of these handcrafted features, there are some issues.

Some features, such as network density, only describe a global property of the network;

some of them, such as triads, provide a fine-grained description of local structures but
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Figure 1.1: Examples of diffusion networks. The first four are the diffusions of Face-
book posts at their early stages [19], while the last two are Weibo retweets at later
stages.

fail to capture global information. None of these features are able to fully represent

both the local and the global structure of a graph and the complex interaction between

them. On the other hand, these features usually have a limited characterization power

for networks, as many different networks may share the same feature representation.

To remedy these issues, we introduce a graph descriptor that is based on the Heat

Kernel Signature (HKS) [100], which serves as a universal low-level representation of

the topological structures of networks [59]. HKS has been successfully employed in

representing the surface of 3D objects [31, 121]. By modeling the amount of heat flow

over the nodes of a network over time, HKS successfully stores both the global and

the local structural information of the entire network, and networks with the same

topological structure can be mapped to a unique representation of the little loss of

structural information. However, unlike 3D objects that are composed of polygon

meshes, the structures of networks vary in shape, size, and complex local structures.

To address this issue, some computations of HKS need to be approximated carefully.

Inspired by the semantics of the HKS-based graph descriptors, we propose a multicol-

umn, multiresolution neural network that learns latent hierarchical representations of

graphs on top of the HKS-based graph descriptor. The proposed deep neural network,

named DeepGraph, predicts network growth in an end-to-end process.

We conduct extensive experiments to evaluate the effectiveness of DeepGraph.

Different growing properties are predicted for four genres of real-world networks.

Empirical results show that our method outperforms baseline approaches that use

alternative graph representations, handcrafted features, or existing deep learning ar-
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chitectures.

After addressing the challenge of learning graph structures, we then turn to the

second challenge of jointly learning different information sources that reside in infor-

mation networks, including the global network context and text content. Taking a

cascade of retweets on Twitter as an example, each cascade only occurs within a sub-

set of Twitter users, forming its cascade network. The global Twitter network, each

user’s tweets and retweets in the past, and the current tweet being retweeted are all

important signals to predict the future popularity of the retweet cascade. To address

this challenge, we specifically consider the task of learning a network representation

for cascade prediction, whose objective is to predict the future size of a cascade net-

work. Existing studies mostly take a feature-based approach [118, 19, 23, 47]. Many

of these features are specific to the particular platform or the specific type of network,

and the performance of the resulting algorithm hinges on the researcher’s knowledge

and familiarity with particular sources of information. For example, whether a photo

was posted with a caption is shown to be predictive of how widely it spreads on

Facebook [19]; mentioning Twitter users in Tweets is shown to help them gain more

retweets [103]. These features are indicative, but cannot be generalized to other plat-

forms or other types of networks. In addition, it is hard for humans to specify the

interaction between different sources of information.

Our first step towards learning network representation with consideration of ad-

ditional information is to take into account the context of the global network struc-

ture. We present a novel, end-to-end deep learning architecture named the DeepCas,

which first represents a cascade graph as a set of cascade paths that are sampled

through multiple random walk processes [61]. Such a representation not only takes

into account the global context, but also bounds the loss of structural information.

Analogically, cascade graphs are represented as documents, with nodes as words and

paths as sentences. The challenge is how to sample the paths from a graph to as-
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semble the “document,” which is also automatically learned through the end-to-end

model to optimize the prediction of cascade growth. We evaluate the performance of

the proposed method using real world information cascades in two different domains,

Tweets, and scientific papers. DeepCas is compared with multiple strong baselines, in-

cluding feature-based methods, node-embedding methods, and graph kernel methods.

DeepCas significantly improves the prediction accuracy over these baselines, which

provides interesting implications for the understanding of information cascades.

After modeling global context, the next problem is how to incorporate the rich

text information into our cascade prediction model. A diffusion item can be described

by text message – tweets, posts, and scientific papers are themselves written in text.

On the contrary, users who are propagating these items also have text associated

with them. For example, Twitter users have a history of tweets and retweets, while

researchers have a list of publications.

Text greatly complements structural information, especially when node members

of cascades rarely participate in previous diffusions, causing lack of structural infor-

mation. In the extreme case, new nodes that are absent in the training stage could

appear in the test stage. If the graph representation is only learned from the struc-

tural relationships between nodes, which is exactly what DeepCas does, embedding

vectors learned from the structure will not be available for these new nodes. Text

could help in these cases, based on the intuition that nodes with similar text content

might be close to each other in the embedding space. This motivates us to jointly

model text and network so that we can effectively embed all nodes into the hidden

space, which forms the basis of learning a good representation of graphs.

To better utilize the structural and textual information of nodes, a gating mech-

anism is designed to dynamically fuse the node representations from two sources,

based on how well each representation is learned. To incorporate the text informa-

tion from both diffusion items and nodes, an attention mechanism is employed over
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node text, which is conditioned on their interactions with item text. Empirical evalua-

tions demonstrate that incorporating text information benefits the cascade prediction

task, and that the proposed gating mechanism is superior to alternatives, including

a simple combination of text and structure information, and standard multimodal

learning.
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CHAPTER II

Related Work

To facilitate the reading of the following chapters, this chapter gives a brief in-

troduction of existing algorithms and concepts related to representation learning and

deep learning, including word embeddings, convolutional neural networks [57], recur-

rent neural networks [89], memory networks [99], attention mechanisms, and node

embedding methods like deepwalk [81]. Readers who are already familiar with these

methods or concepts can safely skip reading this chapter.

2.1 Word embeddings

Conventionally, natural language processing systems treat words discretely, by

encoding each word using a unique id. These encodings are arbitrary, providing no

information about the relationships between words. Furthermore, such representa-

tion leads to data sparsity, demanding more data to successfully train a model. To

overcome these issues, researchers proposed to use vector representations, or embed-

dings, to encode words. The intuition is that words could be embedded in a hidden

space, where distance between words indicates some form of semantic closeness. For

example, in this space the vector of cat could be very close to that of dog.

Among the vector based methods, word2vec [69] is an efficient and well-performed

predictive model for learning word embeddings. These embeddings are learned in an
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unsupervised manner, such that each word in a sentence is trained to predict its

surrounding words, or vice versa. To overcome the problem of large-sized vocabulary,

word2vec employs techniques like negative sampling. Readers who are interested

could refer to the original paper [69].

2.2 Convolutional neural networks

Convolutional neural networks (CNNs) [57], are neural networks with layers that

use a mathematical operation called convolution. Convolutional layers make CNNs

good at processing any form of locally connected data, e.g., images. Suppose a con-

volutional layer takes as input a 2-dimensional image, or matrix, with size 3× 4. To

explain the convolution operation, we can imagine that there is a flashlight that is

sliding across the image from left to right, top to bottom, each time shining over a

2×2 area. In the terminology of deep learning, this flashlight is called a filter. An ex-

ample from [37] well explains how exactly the convolution computation is performed,

which is illustrated in Figure 2.1.

a b c d 

e f g h 

i j k l 

w x 

y z 

Input 
Filter 

aw+bx
+ey+fz 

bw+cx
+fy+gz 

cw+dx
+gy+hz 

ew+fx
+iy+jz 

fw+gx
+jy+kz 

gw+hx
+ky+lz 

Output 

Figure 2.1: An example to compute convolution. The boxes with arrows indicate how
the upper-left element of the output matrix is formed by applying the filter to the
corresponding upper-left region of the input matrix.

The output of a convolutional layer can again be treated as an image, serving as
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the input to another convolutional layer. In this way, multiple convolutional layers

could be stacked, learning more and more abstract features.

2.3 Recurrent neural networks

Recurrent neural networks or RNNs [89] are a family of neural networks specialized

for sequential data. They are called recurrent due to the presence of loops in their

structures. Below we first introduce RNNs in their simplest form, followed by their

variants.

2.3.1 Standard RNNs

As Figure 2.2 (a) shows, a recurrent neural network module, N , takes xt as input

at time step t, and maintains a hidden state vector ht, which is fed as an input to N

in the next step t + 1. The input xt could be the vector representation of the t-th

word in a sentence. In the simplest case, the vector could be a one-hot vector, such

that the i-th word in the vocabulary will have a single 1 in the i-th entry of its vector

and all the others 0. The learned representation ht summarizes, with certain loss,

the past sequence of inputs (x0, x1, ..., xt) up to time step t. Mathematically, ht is

computed as

ht = f(Uxt +Wht−1), (2.1)

where f is a nonlinear function such as tanh or sigmoid. U and W are parameters to

be learned.

As Figure 2.2 (b) shows, we could unroll the loop in the structure. This will

lead to a network that looks very similar to a normal neural network with multiple

layers. A major difference is that in RNN, all unrolled modules share the same set of

parameters as module N , while in a normal neural network, parameters in different

layers are typically independent.
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Figure 2.2: (a) A recurrent neural network. (b) An unrolled recurrent neural network.

The problem with RNNs is related to the modeling of long-term dependencies.

Consider predicting the underscored word in the text “They offer cakes or bread

for breakfast. Though bread is great, I prefer cakes.” In order to find the relevant

information to predict the word cakes, we need to go back until we reach the third

word from the beginning of the sentence. Theoretically, RNNs are able to handle

such long-term dependencies. Unfortunately in practice, RNNs seem to be unable to

do so. Explanations for this phenomenon are explored in [8].

2.3.2 Variants of RNNs

Two variants of RNNs are widely used in the literature – Long Short Term Memory

networks (LSTMs) [44] and Gated Recurrent Units (GRUs) [20]. They are capable of

learning long-term dependencies by including structures called gates, which regulate

the amount of information to go through from previous steps. Here we introduce

GRUs in details, as they are simpler in structure than LSTMs, thus being more

computationally efficient, while keeping similar performance.

Similar to standard RNNs, GRUs also compute the updated hidden state ht based

on current input xt and previous state ht−1. The difference lies in how the computation

is performed. Specifically, GRUs first compute an update gate:

ut = σ(W (u)xt + U (u)ht−1), (2.2)
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followed by a reset gate computed similarly but with different weights:

rt = σ(W (r)xt + U (r)ht−1), (2.3)

where σ(.) is the sigmoid function. W (u), W (r), U (u), and U (r) are parameters. The

new hidden state could then be computed:

ĥt = tanh(Wxt + rt · Uht−1), (2.4)

where · represents an element-wise product. We can see that if the reset gate unit rt

is close to zero, it tends to ignore previous information summarized by ht−1, and only

stores the new information from input xt. The final hidden state is a combination of

current and previous time steps:

ht = ut · ĥt−1 + (1− ut) · ht−1. (2.5)

If the update gate ut is close to one, we can copy information from previous states

through many time steps, allowing the modeling of long-term dependencies.

2.4 Memory networks

There are many tasks that require the access to a long-term memory component

so that reasoning could be made based on the accessed information. Consider a task

where a story is told, after which a list of relevant questions have to be answered. A

simple example is shown as follows:

Example II.1. Consider the following story:

1. Jim moved to garden.

2. Jim went to kitchen.
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3. Jim drops apple there.

Question: where is Jim?

Answer: kitchen.

In this example, the second sentence Jim went to kitchen provides the most impor-

tant supporting factor to produce the answer. In theory, RNNs are able to accomplish

such tasks by compressing the learned representation of the story in hidden states,

which can be regarded as the memory of RNNs. However, their memory is typically

too small, and the compression of knowledge might lead to forgetting of facts from

the past.

Memory networks (MemNNs) [119, 99] are introduced to rectify this issue. They

are a class of models that combine large memory with learning component to access

it, and reasoning are incorporated by applying attention mechanisms over memory.

Input question 

Where is Jim? 

Story 

Memory Module 

C
ontroller 

 

kitchen Answer 

Dot product + softmax 

Weighted Sum 

2: Jim went  
to kitchen 

1: Jim moved 
 to garden 

3: Jim drops 
 apple there 

Memory vectors 

{p1 = 0.1, p2 = 0.7, p3 = 0.2}

{m1,m2,m3}

u1

u2
o = 0.1m1 + 0.7m2 + 0.2m3

Figure 2.3: An end-to-end memory network model.

Figure 2.3 shows a one-layer structure of end-to-end memory networks [99], to-

gether with how the example story is processed to produce the final answer. In this

example, words are converted to their embedding vectors, based on which sentence

representations are obtained. The representation of i-th sentence in the story is stored
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in memory cell as vector mi, while the sentence of the input question is represented

as u1.

In order to retrieve the most important memory cells with respect to the question,

an attention mechanism is employed. Attention mechanisms in neural networks

are inspired by the visual attention mechanism of humans. This visual mechanism

enables humans to focus on particular areas of their visual inputs while perceiving

the rest in “low resolution”. The attended areas could then be adjusted over time to

process more information. Here for memory networks, attention is implemented as

the match between u1 and each memory mi by taking the dot product followed by a

softmax:

pi = Softmax(uT1 mi), (2.6)

where Softmax(zi) = ezi/
∑

j e
zj . In this way, pi can be viewed as the probability

that each memory cell is attended. In the example story, we want to train our

memory network in a way such that the second sentence Jim went to kitchen, where

the answer could be found, scores the highest attention. That is, the network will

learn to assign p2 the highest score given the story and the question. The output

memory representation o can then be computed as the sum over the memory vectors

mi, weighted by the probability vector p.

o =
∑
i

pimi. (2.7)

Based on some transformation of u1 and o, the final output representation u2 could

be computed. The transformation could be as simple as u2 = W (u1 + o), where W

is a parameter to be learned. The representation u2 is then used to generate the

prediction word kitchen.

There are many extensions to make the memory networks more powerful. For

example, the layer of memory network could be stacked multiple times, so that a
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more complex and non-linear representation could be learned; temporal encoding

could be incorporated so that we could account for the order of the memory cells.

2.4.1 Node embeddings

Networks are traditionally represented as affiliation matrices or discrete sets of

nodes and edges. For example, we can have a matrix with Aij = 1 if there is an edge

from node i to node j. Modern representation learning methods attempt to represent

nodes as high-dimensional vectors in a continuous space (a.k.a., node embeddings) so

that nodes with similar embedding vectors share similar structural properties (e.g.,

[81, 107, 38]).

Much of this work is inspired by the huge success of representation learning applied

to various domains such as text [7] and image [54]. One of the earliest approaches,

DeepWalk [81], makes an analogy between the nodes in networks and the words in

natural language. By doing random walks on graphs, sequences of nodes are sampled

from graphs, which are analogous to textual sentences. In this way, node embeddings

could be learned in the same way as we learn word embeddings from sentences, simply

by feeding the sampled node sequences to the word2vec algorithm [69].
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CHAPTER III

Deep Memory Networks for Attitude Identification

We consider the task of identifying attitudes towards a given set of entities from

text. Conventionally, this task is decomposed into two separate subtasks: target

detection that identifies whether each entity is mentioned in the text, either explicitly

or implicitly, and polarity classification that classifies the exact sentiment towards an

identified entity (the target) into positive, negative, or neutral.

Instead, we show that attitude identification can be solved with an end-to-end

machine learning architecture, in which the two subtasks are interleaved by a deep

memory network. In this way, signals produced in target detection provide clues

for polarity classification, and reversely, the predicted polarity provides feedback to

the identification of targets. Moreover, the treatments for the set of targets also

influence each other – the learned representations may share the same semantics for

some targets but vary for others. The proposed deep memory network outperforms

methods that do not consider the interactions between the subtasks or those among

the targets, including conventional machine learning methods and the state-of-the-art

deep learning models.
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3.1 Introduction

In many scenarios, it is critical to identify people’s attitudes 1 towards a set of

entities. Examples include companies who want to know customers’ opinions about

their products, governments who are concerned with public reactions about policy

changes, and financial analysts who identify daily news that could potentially influ-

ence the prices of securities. In a more general case, attitudes towards all entities in

a knowledge base may be tracked over time for various in-depth analyses.

Different from a sentiment which might not have a target (e.g., “I feel happy”) or

an opinion which might not have a polarity (e.g., “we should do more exercise”), an

attitude can be roughly considered as a sentiment polarity towards a particular target

(e.g., “WSDM is a great conference”). Therefore, the task of attitude identification

has been conventionally decomposed into two separate subtasks: target detection that

identifies whether an entity is mentioned in the text, either explicitly or implicitly,

and polarity classification that classifies the exact sentiment towards an identified

target, usually into three categories: positive, negative, and neutral.

Solving the two subtasks back-to-back is by no means unreasonable, but it may

not be optimal. Specifically, intrinsic interactions between the two subtasks may be

neglected in such a modularized pipeline. Indeed, signals identified in the first sub-

task – both the words that refer to the target and the positions of these words, could

provide useful information for the polarity of sentiments. For example, the identi-

fied target in the sentence “this Tiramisu cake is ” indicates a high probability that

a sentimental word would appear in the blank and is highly likely to be related to

flavor or price. On the other hand, sentimental expressions identified in the second

subtask and their positions could in turn provide feedback to the first task and signal

the existence of the target. For example, the phrase “user friendly” signaling pos-

1 “The way you think and feel about someone or something,” as defined by Merriam-Webster.
http://www.merriam-webster.com/dictionary/attitude
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itive sentiment in “the new Keynote is user friendly ” provides good evidence that

“Keynote” is a software (the target) instead of a speech (not the target). In addition,

models learned for certain targets and their sentiments may share some important

dimensions with each other while differing on other dimensions. For example, two

targets food and service may share many sentimental expressions, but the sentence

“we have been waiting for food for one hour” is clearly about the service instead of

the food. Failure to utilize these interactions (both between tasks and among targets)

may compromise the performance of both subtasks.

Recent developments of deep learning has provided the opportunity of an alter-

native to modularized pipelines, in which machine learning and natural language

processing tasks can be solved in an end-to-end manner. With a carefully designed

multi-layer neural network, learning errors backpropagate from upper layers to lower

layers, which enables deep interactions between the learning of multi-grained repre-

sentations of the data or multiple subtasks. Indeed, deep learning has recently been

applied to target-specific sentiment analysis (mostly the second subtask of attitude

identification) and achieved promising performance, where a given target is assumed

to have appeared exactly once in a piece of text and the task is to determine the

polarity of this text [112, 130, 104]. A deep network structure learns the dependency

between the words in the context and the target word. In another related topic known

as multi-aspect sentiment analysis, where the goal is to learn the fine-grained senti-

ments on different aspects of a target, some methods have attempted to model aspects

and sentiments jointly. Aspects are often assumed to be mentioned explicitly in text,

so that the related entities can be extracted through supervised sequence labeling

methods [66, 62, 132]; aspects mentioned implicitly can be extracted as fuzzy repre-

sentations through unsupervised methods such as topic models [68, 115, 91]. While

unsupervised methods suffer from low accuracy, it is usually difficult for supervised

methods, like support vector machines (SVMs) [52], to interleave aspect extraction
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and sentiment classification.

In this paper, we show that the accuracy of attitude identification can be sig-

nificantly improved through effectively modeling the interactions between subtasks

and among targets. The problem can be solved with an end-to-end machine learning

architecture, where the two subtasks are interleaved by a deep memory network. The

proposed model also allows different targets to interact with each other, by sharing

a common semantic space and simultaneously keeping their own space, making it

possible for all targets to be learned in a unified model. The proposed deep memory

network outperforms models that do not consider the subtask or target interactions,

including conventional supervised learning methods and state-of-the-art deep learning

models.

The rest of the paper is organized as follows. Section 3.2 summarizes the related

literature. In Section 3.3, we describe how the deep neural network is designed to

incorporate the interaction both between subtasks and among targets. We present

the design and the results of empirical experiments in Section 3.4 and Section 3.5,

and then conclude the paper in Section 3.6.

3.2 Related work

Sentiment analysis has been a very active area of research [80, 84]. While senti-

ment in general does not need to have a specific target, the notion of attitude is usually

concerned with a sentiment towards a target entity (someone or something). As one

category of sentiment analysis, there is much existing work related to attitude identifi-

cation, which generally takes place in three domains: multi-aspect sentiment analysis

in product reviews, stance classification in online debates, and target-dependent sen-

timent classification in social media posts. Below we categorize existing work by the

problem settings, e.g., whether the target is required to be explicitly mentioned.

Explicitly tagged targets. There has been a body of work that classifies the
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sentiment towards a particular target that is explicitly mentioned and tagged in text,

mostly applied to social media text such as Tweets. Due to the short length of

Tweets, many models assume that targets appear exactly once in every post. Jiang

et al. [48] developed seven rule-based target-dependent features, which are fed to an

SVM classifier. Dong et al. [27] proposed an adaptive recursive neural network that

propagates sentiment signals from sentiment-baring words to specific targets on a

dependence tree. Vo et al. [112] split a Tweet into a left context and a right context

according to a given target, and used pre-trained word embeddings and neural pooling

functions to extract features. Zhang et al. [130] extended this idea by using gated

recursive neural networks. The paper most relevant to ours is Tang et al. [104], who

applied Memory Networks [99] to the task of multi-aspect sentiment analysis. Aspects

are given as inputs, assuming that the aspect has already been annotated in the text.

Their memory network beat all LSTM-based networks but did not outperform SVM

with hand-crafted features.

Model structures for target-dependent sentiment classification heavily rely on the

assumption that the target appears in the text explicitly, and exactly once. These

models could degenerate when a target is implicitly mentioned or mentioned multi-

ple times. Additionally, they do not consider the interactions between the subtasks

(target detection and sentiment classification) or targets.

Given target, one per instance. In the problem of stance classification, the

target, mentioned explicitly or implicitly, is given but not tagged in a piece of text.

The task is only to classify the sentiment polarity towards that target. Most methods

train a specific classifier for each target and report performance separately per target.

Many researchers focus on the domain of online debates. They utilized various fea-

tures based on n-grams, part of speech, syntactic rules, and dialogic relations between

posts [114, 42, 32, 85]. The workshop SemEval-2016 presented a task on detecting

stance from tweets [72], where an additional category is added for the given target,
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indicating the absence of sentiment towards the target. Mohammad et al. [73] beat

all teams by building an SVM classifier for each target.

As stance classification deals with only one given target per instance, it fails to

consider the interaction between target detection and sentiment classification. Fur-

thermore, the interplay between targets is ignored by training a separate model per

target.

Explicit targets, not tagged. In the domain of product reviews, a specific

aspect of a product could be considered as a target of attitudes. When the targets

appear in a review but are not explicitly tagged, they need to be extracted first.

Most work focuses on extracting explicitly mentioned aspects. Hu et al. [45] ex-

tracted product aspects via association mining, and expanded seed opinion terms by

using synonyms and antonyms in WordNet. When supervised learning approaches

are taken, both tasks of aspect extraction and polarity classification can be cast as

a binary classification problem [52], or as a sequence labeling task and solved using

sequence learning models such as conditional random fields (CRFs) [66, 62] or hidden

Markov models (HMMs) [132].

Implicit targets. There are studies that attempt to address the situation when

aspects could be implicitly mentioned. Unsupervised learning approaches like topic

modeling treat aspects as topics, so that topics and sentiment polarity can be jointly

modeled [68, 115, 91]. The workshop of SemEval-2015 announced a task of aspect

based sentiment analysis [82], which separates aspect identification and polarity clas-

sification into two subtasks. For aspect identification, top teams cast aspect category

extraction as a multi-class classification problem with features based on n-grams,

parse trees, and word clusters.

Although aspect identification and polarity classification are modeled jointly here,

it is hard to train unsupervised methods in an end-to-end way and directly optimize

the task performance.
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Deep learning for sentiment analysis. In the general domain of sentiment

analysis, there has been an increasing amount of attention on deep learning ap-

proaches. In particular, Bespalov et al. [9] used Latent Semantic Analysis to ini-

tialize the word embedding, representing each document as the linear combination of

n-gram vectors. Glorot et al. [36] applied Denoising Autoencoders for domain adap-

tation in sentiment classification. A set of models have been proposed to learn the

compositionality of phrases based on the representation of children in the syntactic

tree [95, 96, 43]. These methods require parse trees as input for each document.

However, parsing does not work well on user generated contents, e.g., tweets [35]. Liu

et al. [63] used recurrent neural networks to extract explicit aspects in reviews.

Compared to the existing approaches, our work develops a novel deep learning

architecture that emphasizes the interplay between target detection and polarity clas-

sification, and the interaction among multiple targets. These targets can be explicitly

or implicitly mentioned in a piece text and do not need to be tagged a priori.

3.3 AttNet for Attitude Identification

We propose an end-to-end neural network model to interleave the target detection

task and the polarity classification task. The target detection task is to determine

whether a specific target occurs in a given context either explicitly or implicitly. The

polarity classification task is to decide the attitude of the given context towards the

specific target if the target occurs in the context. Formally, a target detection clas-

sifier is a function mapping pairs of targets and contexts into binary labels, (context,

target)→ {present, absent}. A polarity classifier is a function mapping pairs of tar-

gets and contexts into three attitude labels, (context, target) → {positive, negative,

neutral}. For example, given a context, green is the way forward!, and a target,

climate change is a real concern., the correct label is present for the target detection

and positive for the polarity classification.
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Our model builds on the insight that the target detection task and the polarity

classification task are deeply coupled in several ways.

• The polarity classification depends on the target detection because the polarity

is meaningful only if the target occurs in the context. Conversely, the polarity

classification task provides indirect supervision signals for the target detection

task. For example, if the attitude label negative is provided for a context-target

pair, the target must have occurred in the context following the definition. Such

indirect supervision signals are useful especially when the target only occurs in

the context implicitly, as in the example we have been waiting for food for one

hour, where service is the target.

• The signal words in the target detection and the polarity classification task are

usually position-related: the signal words to determine the polarity are usually

the surrounding words of the signal words to detect the target. Moreover, when

a context has multiple targets, the signal words usually cluster for different

targets [45, 84].

• Different targets interact in both the target detection task and the polarity clas-

sification task. Intuitively, some context words could have the same meaning for

many targets, while the meaning of other context words could vary for different

targets. This point has been illustrated by our service and food example.

Specifically, our model introduces several techniques building on the interaction

between the target detection task and the polarity classification task accordingly.

• The output of the target detection is concatenated as part of the input of

the polarity classification task to allow the polarity classification condition on

target detection. Polarity classification labels are also used to train the target

detection classifier by back-propagating the errors of the polarity classification

to the target detection end-to-end.
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• The attention of polarity classification over context words are preconditioned by

the attention of target detection. The polarity classification task benefits from

such precondition especially when there are multiple targets in the context.

• Target-specific projection matrices are introduced to allow some context words

to have similar representations among targets and other context words to have

distinct representations. These matrices are all learned in an end-to-end fashion.

We propose a deep memory network model implementing the above motivation

and ideas. In the rest of this section, we describe a single layer version of our model

following a brief introduction to the idea of the memory network model. Then we

extend the expressiveness and capability of the model by stacking multiple layers.

3.3.1 Background: Memory Networks

As recently proposed models, end-to-end memory networks [99] have been success-

fully applied to language modeling, question answering, and aspect-level sentiment

analysis [104], which generates superior performance over alternative deep learning

methods, e.g., LSTM.

Given a context (or document, e.g., “we have been waiting for food for one hour”)

and a target (e.g., service ), a memory network layer converts the context into a

vector representation by computing a weighted sum of context word representations.

The weight is a score that measures the relevance between the context word and

the target (e.g., a higher score between the words waiting and service), based on

their vector representations, or embeddings. The vector representation of the con-

text is then passed to a classifier for target detection or polarity classification. An

attractive property is that all parameters, including the target embeddings, context

word embeddings and scores, are end-to-end learnable without additional supervision

signals.
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Figure 3.1: A single layer version of our model. Key submodules are numbered and
correspondingly detailed in the text.

Our model improves the original memory network models for attitude identifica-

tion by (1) interleaving the target detection and polarity classification subtasks and

(2) introducing target-specific projection matrices in representation learning, without

violating the end-to-end trainablity.

3.3.2 Single Layer Model

We begin by describing our model in the single layer case, shown in Figure 3.1.

Hereafter for simplicity, we refer to the task of target detection as TD, and polarity

classification as PC.

(1) Target Embedding Each query target is represented as a one-hot vector, q ∈

RNtarget , where Ntarget is the number of targets. All targets share a target embedding

matrix B ∈ Rd×Ntarget , where d is the embedding dimensionality. The matrix B

converts a target into its embedding vector u = Bq, which is used as the input for

the TD task.
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(2) Input Representation and Attention for TD We compute match scores

between the context (or document) and the target for content-based addressing. The

context is first converted into a sequence of one-hot vectors, {xi ∈ RNvoc} , where

xi is the one-hot vector for the i-th word in the context and Nvoc is the number of

words in the dictionary. The entire set of {xi} are then embedded into a set of input

representation vectors {mt
i} by:

mt
i = Vt

qA
txi

where At ∈ Rd×Nvoc is the word embedding matrix shared across targets, superscript

t stands for the TD task, and Vt
q ∈ Rd×d is a target-specific projection matrix for

target q, which allows context words xi to share some semantic dimensions for some

targets while vary for others.

In the embedding space, we compute the match scores between the target in-

put representation u and each context word representation mt
i by taking the in-

ner product followed by a softmax, ati = SoftMax(uᵀmt
i), where SoftMax(wi) =

exp(wi)/
∑

j exp(wj). In this way, at is a soft attention (or probability) vector defined

over the context words.

(3) Output Representation for TD A different embedding matrix, Ct ∈ Rd×Nvoc ,

is introduced for flexibility in computing the output representation of context words

by:

cti = Vt
qC

txi

The response output vector ot is then a sum over the outputs cti, weighted by the

attention vector from the input: ot =
∑

i a
t
ic
t
i.

(4) Interleaving TD and PC In the single layer case, the sum of the output vector

ot and the target query embedding u is then passed to the PC task, z = ot + u.
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(5) Input Representation and Attention for PC Similar to the TD task, we

convert the entire set of {xi} into input representation vectors {mp
i } by:

mp
i = Vp

qA
pxi

where Ap ∈ Rd×Nvoc is the input embedding matrix for PC. We use separate embed-

ding matrices At,Ap for TD and PC, as the words could have different semantics

in the two tasks. For similar reasons, we use different projection matrices Vt
q,V

p
q for

the two tasks.

Given the polarity input representation {mp
i }, we also compute the soft attention

over the context words for polarity identification, api = SoftMax(zᵀmp
i ).

(6) Output Representation for PC There is also one corresponding output

vector cpi in PC for each xi:

cpi = Vp
qC

pxi

where Cp ∈ Rd×Nvoc is the polarity output embedding matrix. It has been observed

that sentiment-bearing words are often close to the target [45, 84]. Based on this

observation, attentions, or positions of important words that identify the target in

the first module, could provide prior knowledge to learn the attention of the second

module. Therefore we compute the final attention vector as a function of original

attentions of both tasks:

bp = ap + λf(at) (3.1)

where λ > 0 controls the importance of the second term, and f is a moving aver-

age function which shifts attentions from words of high values to their surrounding

neighbors. The output vector is op =
∑

i b
p
i c
p
i .
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(7) Prediction for TD and PC To predict whether a target presents, the sum of

the output vector of target classification ot and the target query vector u is passed

through a weight matrix Wt ∈ R2×d (2 is the number of classes: present, absent)

and a softmax operator to produce the predicted label, a vector of class probabilities:

yt = SoftMax(Wt(ot + u)).

Similarly, the sum of the output vectors op of PC and its input vector z is then

passed through a weight matrix Wp ∈ R3×d and a softmax operator to produce the

predicted attitude label vector, yp = SoftMax(Wp(op + z)).

3.3.3 Multiple Layer Model

input 𝑢1

𝑊

target detection polarity classification

projection 𝑉𝑞
𝑡

context {𝑥𝑖}
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𝑝

σ

σ

σ
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nonlinearity

nonlinearity

nonlinearity

nonlinearity

Figure 3.2: A three layer version of our model. Both the TD and PC modules have
three stacked layers.

We now extend our model to stacked multiple layer case. Figure 3.2 shows a three

layer version of our model. The layers are stacked in the following way:

Functionality of Each Layer For TD, the input to the (k+1)-th layer is the

sum of the output otk and the input uk from the k-th layer, followed by a sigmoid

nonlinearity: uk+1 = σ(Htuk + otk), where σ(x) = 1/(1 + exp(x)) is the sigmoid
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function and Ht is a learnable linear mapping matrix shared across layers. For the

PC task, the input to the first layer is the transformed sum from the last layer of

the TD module, z1 = σ(HtuKt + otKt
), where Kt is the number of stacked layers in

the TD task. Thus the prediction of polarity would depend on the output of the

TD task and conversely the TD task would benefit from indirect supervision from

the PC task by backward propagation of errors. Similarly for PC, the input to the

(k+1)-th layer is the sum of the output opk and the input zk from the k-th layer,

followed by a sigmoid nonlinearity: zk+1 = σ(Hpzk + opk).

Attention for PC In the single layer case, the attention for PC is based on that

of the TD module. When layers are stacked, all layers of the first module collectively

identify important attention words to detect the target. Therefore we compute the av-

eraged attention vector across all layers in the TD module āt = 1
Kt

∑Kt

k=1 atk. Accord-

ingly for k-th layer of the PC module, the final attention vector is bpk = apk + λf(āt),

and the output vector is opk =
∑

i b
p
kic

p
ki.

Embedding and Projection Matrix Tying. The embedding matrices and pro-

jection matrices are constrained to ease training and reduce the number of parameters

following [99]. The embedding matrices and the projection matrices are shared for

different layers. Specifically, using subscription (k) denote the parameters in the

k-th layer, for any layer k, we have At(1) ≡ At(k), Ct(1) ≡ Ct(k), Ap(1) ≡ Ap(2),

Cp(1) ≡ Cp(k), V
t(1)
q ≡ V

t(k)
q and V

p(1)
q ≡ V

p(k)
q .

Predictions for TD and PC. The prediction stage is similar to the single-layer

case, with the prediction based on the output of the last layer Kt (For TD) and

Kp (For PC). For the TD task, yt = SoftMax(Wtσ(HtuKt + otKt
)), while for PC,

yp = SoftMax(Wp σ(HpzKp + opKp
)).
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3.3.4 End-to-End Multi-Task Training

We use cross entropy loss to train our model end-to-end given a set of training

data {cti, qj, gtij, g
p
ij}, where cti is the i-th context (or document), qj is the j-th target,

gtij, g
p
ij are the ground-truth label for the TD and PC tasks respectively. The training

is to minimize the objective function:

L = −
∑
i

∑
j

(
log(ytij(g

t
ij)) + 1gtij log(ypij(g

p
ij))
)

where ytij is a vector of predicted probability for each class of TD, ytij(s) selects the

s-th element of ytij, 1gtij equals to 1 if gtij equals to class present and 0 otherwise. Note

that when a target does not exist, the polarity term plays no role in the objective

because the value of 1gtij is zero.

3.4 Experiment Setup

In the experiments, we compare our model to conventional approaches and al-

ternative deep learning approaches on three real world data sets, and we show the

superior performance of our model. We also experiment with variants of our models

as credit assignments for the key components in our model.

3.4.1 Data Sets

We examine our models on three domains that are related to attitude classifica-

tion: online debates (Debates), multi-aspect sentiment analysis on product review

(Review), and stance in tweets (Tweets).

Debates. This data set is from the Internet Argument Corpus version 22. The

data set consists of political debates on three Internet forums3 . On these forums, a

2https://nlds.soe.ucsc.edu/iac2.
34forums(http://www.4forums.com/political/),

ConvinceMe(http://www.convinceme.net/) and
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person can initiate a debate by posting a topic and providing sides such as favor vs.

against. Examples of topics are gun control, death penalty and abortion. Other users

participate in the debate by posting their arguments for one of the sides.

Tweets. This data set comes from a task of the workshop SemEval-2016 on

detecting stance from tweets [72]. Targets are mostly related to ideology, e.g., atheism

and feminist movement4.

Review. This data set includes reviews of restaurants and laptops from SemEval

2014 [83] and 2015 [82], where subtasks of identifying aspects and classifying sentiment

are provided. We merge two years’ data to enlarge the data set, and only include

aspects that are annotated in both years.

To guarantee enough training and test instances, for all the data sets we filter out

targets mentioned in less than 100 documents. The original train-test split is used if

provided, otherwise we randomly sample 10% data into test set. We further randomly

sample 10% training data for validation. Text pre-processing includes stopword re-

moval and tokenization by the CMU Twitter NLP tool [35]. The details of the data

sets are shown in Table 3.1.

3.4.2 Metrics

For our problem, each data set has multiple targets, and each target can be classi-

fied into one of the outcomes: absent (do not exist), neutral, positive, and negative. If

we treat each outcome of each target as one category, we can adopt common metrics

for multi-class classification. Since most targets do not appear in most instances, we

have a highly skewed class distribution, where measures like accuracy are not good

choices [17].

Apart from precision, recall and AUC, we also use the macro-average F-measure [127].

CreateDebate(http://www.createdebate.com/)
4Since there is less than 10 tweets with neutral stance, we only consider positive and negative

attitude by discarding these neutral tweets.
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Table 3.1: Statistics of each data set.

Data set Set #docs #pos #neg #neutral #absent #targets

Debates
train 24352 13891 10711 0 0 10
val 2706 1530 1203 0 0 10
test 3064 1740 1371 0 0 10

Tweets
train 2614 682 1253 0 679 5
val 291 71 142 0 78 5
test 1249 304 715 0 230 5

Review
train 5485 2184 1222 210 2336 9
val 610 260 121 17 277 9
test 1446 496 455 60 634 9

#pos means the number of documents with positive sentiment for each target. If one
document contains positive sentiment towards two targets, it will be counted twice. #absent
counts the number of documents without any attitude towards any target. #targets is the
total number of targets appeared in one data set.

Let ρi and πi be recall and precision respectively for a particular category i, ρi =

TPi

TPi+FNi
, πi = TPi

TPi+FPi
, where TPi,FPi,FNi are the number of true positive, false

positive, and false negative for category i. Given ρi and πi, F-score of category i

is computed as Fi = 2πiρi
πi+ρi

. The macro-average F-score is obtained by taking the

average over all categories. The final precision and recall are also averaged over in-

dividual categories. There is another micro-averaged F-measure, which is equivalent

to accuracy. Therefore, we do not include it.

3.4.3 Baselines

We compare baseline methods from two large categories: conventional methods

and alternative deep learning methods.

Each baseline method has various configurations, based on whether: (1) it trains

a single model or two separate models for the TD and PC subtasks, and (2) it trains

one universal model for all targets or separated models for different targets. To

distinguish different configurations, we append -sgl when using a single model for the

two subtasks, and -sep when using separate models for each subtask. Taking SVM
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as an example, SVM-sgl directly classify targets into four classes: absent, neutral,

positive, and negative. In contrast, SVM-sep first classifies each target into two classes:

absent, present, and use a second model to classify polarity: neutral, positive, and

negative. Moreover, we append -ind when individual targets are trained on separate

models, or -all when one model for all targets.

3.4.3.1 Conventional baselines

SVM+features. SVM using a set of hand-crafted features has achieved the

state-of-the-art performance in stance classification of SemEval 2016 task [73], online

debates [42], and aspect-based sentiment analysis [104]. SVM has also demonstrated

superior performance in document-level sentiment analysis compared with Condi-

tional Random Field methods [116]. Therefore we include all features from these

methods that are general across domains, and use a linear kernel SVM implemented

by LIBSVM [15] for classification. We list the set of features:

Document info: basic counting features of a document, including the number of

characters, the number of words, the average words per document and the average

word length.

N-grams : word unigrams, bigrams, and trigrams. We insert symbols that repre-

sent the start and end of a document to capture cue words.

Sentiment : the number of positive and negative words counted from NRC Emotion

Lexicon [74], Hu and Liu Lexicon [45], and MPQA Subjectivity Lexicon [120].

Target : presence of the target phrase in the text. Furthermore, if the target is

present, we generate a set of target dependent features according to [48]. To get a

sense of these features, for the target iPhone in text I love iPhone, a feature love arg

could be generated.

POS : the number of occurrences of each part-of-speech tag (POS).

Syntactic dependency : a set of triples obtained by Stanford dependency parser [24].
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More specifically, the triple is of the form (rel, wi, wj), where rel represents the gram-

matical relation between word wi and wj, e.g., subject of.

Generalized dependency : the first word of the dependency triple is “backed off”

to its part-of-speech tag [113]. Additionally, words that appear in sentiment lexicons

are replaced by positive or negative polarity equivalents [113].

Embedding : the element-wise averages of the word vectors for all the words in a

document. We use three types of word embeddings. Two of them are from stud-

ies on target-dependent sentiment classification [112, 130], which are the skip-gram

embeddings of Mikilov et al. [70] and the sentiment-driven embeddings of Tang et

al. [105]. The first type of embedding is trained on 5 million unlabeled tweets that

contain emoticons, which guarantees that more sentiment related tweets are included.

The second type of embedding is of 50 dimensions, which is publicly available5. The

third type of embedding is also 50-dimensional, released by Collobert et al. [22] and

trained on English Wikipedia6.

Word cluster : the number of occurrences of word clusters for all words in text.

We perform K-means clustering on the word vectors.

Apart from two standard SVM model configurations, SVM-sep-ind and SVM-sgl-

ind, we also compare with a hybrid model SVM-cmb-ind, whose prediction is absent

if SVM-sep-ind says so, and otherwise it follows the decisions of SVM-sgl-ind.7

3.4.3.2 Deep Learning Baselines

BiLSTM, MultiBiLSTM and Memnet. We also compare to the bidirectional

LSTM (BiLSTM) model, the state-of-the-art on target-dependent sentiment classi-

fication [130]. Their variant of BiLSTM model assumes that the given target always

appears exactly once, and can be tagged in text by starting and ending offsets. When

5http://ir.hit.edu.cn/~dytang/
6http://ronan.collobert.com/senna/
7SVM-sgl-all and SVM-sep-all have performance degeneration due to the interference of different

targets. We do not include their results for simplicity.
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such assumption fails, their model is equivalent to standard BiLSTM. We include

the standard multi-layered bidirectional LSTM (MultiBiLSTM) [46] as an exten-

sion. Recently, Tang et al. [104] applied memory networks (Memnet) to multi-aspect

sentiment analysis. Their results show memory network performs comparably with

feature based SVM and outperforms all LSTM-related methods in their tasks.

CNN and ParaVec. We include related deep learning techniques beyond the

sentiment analysis domain, such as the convolutional neural networks (CNN) [50]

and ParaVec [56]. ParaVec require a huge amount of training data to reach decent

performance. We enhance the performance of the ParaVec model by training over the

merged training set of all data sets, plus the 5 million unlabeled tweets mentioned

above.

Parser-dependent deep learning methods have also been applied to sentiment anal-

ysis [95, 96, 43]. These models are limited in our attitude identification problem for

two reasons. First, they often work well with phrase-level sentiment labels, but only

document-level sentiment labels are provided in our problems. Second, their parsers

do not extend to user generated content, such as Tweets and Debates [35]. Our

preliminary results show these methods work poorly on our problems and we do no

include their results for simplicity.

For all deep learning methods, we report their -sep-all and -sgl-all version. Unlike

SVM, deep methods perform quite well when using a single model for all targets, by

casting the problem as a multi-task multi-class classification. Though not scalable, for

the strongest baselines (BiLSTM and MultiBiLSTM), we in addition train a separate

model for each target. Since -sep-ind works better than -sgl-ind, we only report the

former one. The variants of memory networks are detailed below.
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3.4.4 Variants of Proposed Model

To assign the credit of key components in our model, we construct a competing

model AttNet. Unlike our proposed model, for AttNet the target-specific projection

matrices Vp
q and Vt

q are replaced by the identity matrix and fixed during training.

Thus the AttNet model interleave the target detection and polarity classification

subtasks, but do not consider the interactions among targets. We refer our proposed

model as AttNet+, which allows the projection matrices to be learned during training,

and thus word semantics could vary for targets.

For AttNet, we report two settings in our experiments: AttNet-ind and AttNet-all.

The former makes all targets share the same embedding, while the latter separates

the embedding space completely for each target, i.e., targets are trained on separate

models.

Table 3.2: Hyper-parameters for our method AttNet+.

Hyper-parameters Tweets Review Debates

L1 coeff 1e-6 1e-4 1e-6

L2 coeff 1e-4 1e-8 1e-8

init learning rate 0.05 0.01 0.005

#layers(target) 4 4 3

#layers(sentiment) 4 8 6

prior attention λ 0.5 0.1 0.5

The embedding size is set to 100 for all data sets. The sliding window size of the moving
average function in Equation 3.1 is set to 3. #layers(target) is the number of memory
layers for target detection, and #layers(sentiment) is the number for sentiment
classification. prior attention λ is the weight for prior attention in Equation 3.1.

3.4.5 Training Details

All hyper-parameters are tuned to obtain the best performance of F-score on

validation set. The candidate embedding size set is {50, 100, 200, 300} for LSTM-

related methods, SVM and CNN. The candidate number of clusters for K-means is
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{50, 100, 150}. The candidate relaxing parameter C for SVM model is {27, 26, ..., 2−3}.

The CNN model has three convolutional filter sizes and their filter size candidates are

{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {2, 4, 6}}, and the candidate number of filters is {50, 100,

200, 300}. For ParaVec, we experiment with both skip-gram model or bag-of-words

model, and select the hidden layer size from {26, 27, ..., 210}.

We explored three weight initialization methods of word embeddings for LSTM-

related and CNN baselines: (1) sampling weights from a zero-mean Gaussian with

0.1 standard deviation; (2) initializing from the pre-trained embedding matrix, and

(3) using a fixed pre-trained embedding matrix.

Memory network models, including our model, are initialized by sampling weights

from a zero-mean Gaussian with unit standard deviation. The candidate number

of memory layers is {2, 3, ..., 9}. The prior attention parameter λ of our model is

selected from {0, 0.1, 0.5, 0.9, 1}. The capacity of memory, which has limited impact

on the performance, is restricted to 100 words without further tuning. A null symbol

was used to pad all documents to this fixed size. To reduce the model complexity, the

projection matrices are initialized in the way that each column is a one-hot vector.

Deep learning models are optimized by Adam [51]. The initial learning rate is

selected from {0.1, 0.05, 0.01, 0.005, 0.001}, and L1-coefficient and L2-coefficient of

regularizers are selected from {10−2, 10−4, ..., 10−10}. The hyper-parameters of our

model AttNet+ for different data sets are listed in Table 3.2.

3.5 Experiment results

3.5.1 Overall Performance

The overall performance of all competing methods over data sets are shown in

Table 3.38. Evaluating with F-score and AUC, we make the following observations.

8The performance of all methods on the Review data set is lower than the other two because
Review data set handles three polarities while the others only need to handle two polarities as shown
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Our method AttNet+ outperforms all competing methods significantly. This empir-

ically confirms that interleaving target detection and polarity classification subtasks

combined with target-specific representations could benefit attitude identification.

The variants of our model, AttNet-all and AttNet-ind, have already gained signif-

icant improvement over the strongest baselines on all data sets. More importantly,

the two methods significantly outperforms the Memnet-sep-all and Memnet-sep-all

baselines, which do not interleave the subtasks. Such empirical finding cast light

on that interleaving the subtasks indeed improves the attitude identification perfor-

mance. In contrast, separating the two subtasks of attitude identification could lead

to performance degeneration.

Our model AttNet+ also outperforms its variants, AttNet-all and AttNet-ind, on

all data sets. The performance advantage of our model comes from the adoption

of target-specific projection matrices in representation learning since the projection

matrices are the only differences between these two methods. Even though the im-

provement from adopting target-specific projection matrices is not as tremendous as

the techniques in interleaving the subtasks, the improvement is still significant. This

results confirm that attitude identification could benefit from the learned representa-

tions that share the same semantics for many targets but vary for some targets.

By examining the precision and recall results, we find that the superior perfor-

mance of our model is mainly from the significant improvement in recall, though both

precision and recall are improved significantly on the Debates data set.

3.5.2 Performance on Subtasks

We have established that our model outperforms competing methods on all data

sets. In order to further assign the credits of the improvement of our methods, we

evaluate our models on the two subtasks: target detection and polarity classification,

in Table 3.1.
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with results given in Table 3.4 and 3.5 respectively. Since different configurations of

the same method work similarly, we only present the results where separate models

are trained for each task. It can be seen from Table 3.4 that the target detection

task is relatively easy, as all methods can achieve quite high scores. This also means

that it is hard to improve any further on this task. In terms of precision and recall,

SVM perform quite well on the precision metric, especially for the Review data set.

While most deep learning methods focus more on enhancing recall. When considering

both precision and recall, most deep learning methods are still better, as the F-score

shows.

The second task is only evaluated on documents with ground-truth sentiments

towards particular targets, with F-scores averaged over all targets and three sentiment

classes: positive, negative, and neutral. We make several notes for this evaluation. (1)

In order to achieve a high score in the second task, it is still important to classify

correctly the presence of a target. (2) In general the scores for all methods in the

second task are low, due to that the classifier might predict a target as absent, even

though the ground-truth class can only be drawn from three sentiment classes. (3)

It is possible for a method to outperform SVM on both tasks, while still obtain

close results when two tasks are evaluated together. This results from our method of

evaluation on the second task, where a document is included only when it expresses

sentiment towards a particular target.

Based on the results from Table 3.5, we can see that the percentage of improvement

over SVM is much higher than that of the first task. Intuitively, the sentiment task

requires better modeling of the non-linear interaction between the target and the

context, while for the target detection task, presence of certain signal words might be

enough.
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3.5.3 Training Time Analysis

In order to measure the training speed of each model, we train all deep learning

methods on a server with a single TITAN X GPU. For SVM, it is trained on the same

server with a 2.40 GHz CPU and 120 G RAM. All methods are trained sequentially

without parallelization.

SVM can finish training in less than one hour, but its required training time

increase linearly as the number of targets increases.

For all deep learning methods, the number of epochs required for training is in

general very close, which is around 20 epochs averaged over all data sets.

Comparing the training time per epoch, ParaVec and CNN are much faster than

other methods (less than 5 seconds / epoch). Despite the training efficiency, their

effectiveness is a problem. When all targets share a single model, LSTM has a speed

of 200 seconds/epoch, while standard memory networks have a speed of 150 sec-

onds/epoch. Memory networks in many tasks, e.g., language modeling, are much

faster than LSTM, due to the expensive recursive operation of LSTM. However in

our problem setting, each target has to be forwarded one by one for every document,

lowering the efficiency of memory networks. When individual targets are trained on

separate LSTMs, LSTMs require far more training time (1000 seconds/epoch).

AttNet+ consumes 200 seconds per epoch. Comparing to standard memory net-

works, AttNet+ produces some additional overhead by introducing the interaction

between subtasks, and by adding a projection matrix. But this overhead is accept-

able.

The efficiency of deep learning methods could be improved by parallelization.

Since there are already many studies on this topic, which could increase the speed

without sacrificing effectiveness, we do not go further into this direction.

Summary: empirical experiments demonstrated that the proposed deep memory
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networks, AttNet+ and its variants outperforms conventional supervised learning

methods. This is promising but perhaps not surprising given the success of deep

learning in general. It is encouraging to notice that AttNets also improves the state-

of-the-art deep learning architectures. This improvement is statistically significant,

and can be observed for both subtasks and for attitude identification as a whole. The

improvement of effectiveness does not compromise learning efficiency.

3.5.4 Visualization of attention

In order to better understand the behavior of our models, we compare the attention

weights given by our model AttNets+ and the competing method Memnet.

1. It is admittedly to have them for policy . if
everyone have guns there would be just mess
. (Truth: gun control+. Predict + given gun
control.)

2. Highly impressed from the decor to the food to
the great night ! (Truth: service+, ambience+,
food+. Predict + given ambience.)

3. When we inquired about ports - the waitress
listed off several but did not know taste
variations or cost . (Truth: service-. Predict
absent given drink.)

(a) Attention given by AttNets+.
1. It is admittedly to have them for policy . if

everyone have guns there would be just mess
. (Predict - given gun control.)

2. Highly impressed from the decor to the food to
the great night ! (Predict absent given
ambience.)

3. When we inquired about ports - the waitress
listed off several but did not know taste
variations or cost . (Predict - given drink.)

(b) Attention given by Memnet.

Figure 3.3: Visualization of learned attention. Red patches highlighting the top half
of the text indicate model’s attention weight in the target detection task, while green
ones highlighting the bottom half show attention in the polarity classification task.
Darker colors indicate higher attentions. Truth: service+ means that the ground-
truth sentiment towards service is positive, while Predict + given ambience gives the
predicted positive sentiment given the query target ambience.

Figure 3.3 (a) and (b) list some examples of word attentions generated by different
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models for the same set of sentences in the test set. In the first sentence, both them

and guns are found as targets by AttNets+, while words like mess, and policy are

found as sentiment words. Though Memnet correctly identifies the existence of the

attitude towards gun control, it fails to find important words to classify the polarity

of sentiment. This suggests the importance of interleaving the two tasks – successfully

identifying mentioned targets could offer clues about the finding of sentiment words

for the second task.

The second sentence is from a review of a restaurant, when ambience is used as

the query target. We can see that the target detection module of AttNets+ captures

the word decor, which signals the presence of the target ambience. The polarity

classification module then focuses on extracting sentiment words associated with the

target. However for the baseline Memnet, it captures both decor and food in the

first task, mistakenly considering all sentiments are only describing food other than

the ambience. Consequently, it judges that there is no sentiment towards ambience.

This example shows us the benefit of using the projection matrices to consider the

interaction and distinction between targets. Otherwise the model might easily confuse

to which entity the sentiments are expressed.

From the third sentence, we can see how our model AttNets+ determines that

the query target drink does not exist. The first module highlights words like ports

(wine name), waitress, and the second module extracts negative sentiments but not

know, which is usually used to describe people, rather than drink. Memnet almost

has the same attention distribution as AttNets+, but still fails to produce the correct

prediction. Similar to the second case, projection matrices are important for models

to figure out the common phrases used to describe different set of entities.
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3.6 Conclusion

Attitude identification, a key problem of modern natural language processing, is

concerned with detecting one or more target entities from text and then classifying

the sentiment polarity towards them. This problem is conventionally approached by

separately solving the two subtasks and usually separately treating each target, which

fails to leverage the interplay between the two subtasks and the interaction among the

target entities. Our study demonstrates that modeling these interactions in a carefully

designed, end-to-end deep memory network significantly improves the accuracy of the

two subtasks, target detection and polarity classification, and attitude identification

as a whole. Empirical experiments prove that this novel model outperforms models

that do not consider the interactions between the two subtasks or among the targets,

including conventional methods and the state-of-the-art deep learning models.

This work opens the exploration of interactions among subtasks and among con-

texts (in our case, targets) for sentiment analysis using an end-to-end deep learning

architecture. Such an approach can be easily extended to handle other related prob-

lems in this domain, such as opinion summarization, multi-aspect sentiment analysis,

and emotion classification. Designing specific network architecture to model deeper

dependencies among targets is another intriguing future direction.
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Table 3.3: Performance of competing methods: AttNets significantly improves exist-
ing methods; AttNet+ achieves top performance.

(a) Tweets

Method F-score AUC Precision Recall

SVM-sep-ind 59.93 69.20 68.70 55.69

SVM-sgl-ind 57.44∗∗∗ 66.64∗∗∗ 69.87 52.45∗∗∗

SVM-cmb-ind 57.09∗∗∗ 66.46∗∗∗ 69.84 52.25∗∗∗

ParaVec-sep-all 53.17∗∗∗ 62.88∗∗∗ 56.75∗∗∗ 48.29∗∗∗

ParaVec-sgl-all 54.15∗∗∗ 63.41∗∗∗ 57.52∗∗∗ 48.76∗∗∗

CNN-sep-all 58.05∗ 70.10 62.43∗∗∗ 56.19

CNN-sgl-all 58.69 70.71∗ 61.83∗∗∗ 56.64

BiLSTM-sep-all 61.16 71.26∗∗ 63.45∗ 59.87∗∗∗

BiLSTM-sgl-all 60.86 71.02∗∗ 62.58∗ 59.61∗∗∗

BiLSTM-sep-ind 59.49 71.92∗∗ 61.44∗∗∗ 57.86

MultiBiLSTM-sep-all 60.53 71.51∗∗ 64.81∗ 57.76

MultiBiLSTM-sgl-all 60.59 71.32∗∗ 64.27∗ 57.97

MultiBiLSTM-sep-ind 59.71 71.16∗∗ 63.72∗ 57.94

Memnet-sep-all 59.44 71.68∗∗ 63.22∗ 59.80∗∗∗

Memnet-sgl-all 60.69 71.80∗∗ 63.48∗ 59.97∗∗∗

Proposed methods

AttNet-all 63.42∗∗��� 72.94∗∗∗� 68.78��� 60.57∗∗∗

AttNet-ind 63.09∗∗��� 72.73∗∗∗ 68.33��� 59.68∗∗

AttNet+ 64.62∗∗∗
O 74.76∗∗∗

OO 68.40 62.09∗∗∗
OO

(b) Review

Method F-score AUC Precision Recall

SVM-sep-ind 38.43 57.99 51.22 36.83

SVM-sgl-ind 36.06∗∗ 56.84∗∗ 50.79 34.07∗∗

SVM-cmb-ind 35.71∗∗∗ 56.61∗∗∗ 50.73 33.78∗∗∗

ParaVec-sep-all 34.02∗∗∗ 55.26∗∗∗ 38.04∗∗∗ 30.47∗∗∗

ParaVec-sgl-all 34.26∗∗∗ 55.31∗∗∗ 38.26∗∗∗ 30.89∗∗∗

CNN-sep-all 57.55 43.73∗∗∗ 33.24∗∗ 57.38

CNN-sgl-all 35.45∗∗∗ 56.29∗ 44.65∗∗∗ 32.83∗∗

BiLSTM-sep-all 40.78∗ 61.01∗∗∗ 42.54∗∗∗ 39.01∗∗

BiLSTM-sgl-all 39.68 60.84∗∗ 41.88∗∗∗ 38.81∗

BiLSTM-sep-ind 40.42 62.25∗∗∗ 42.68∗∗∗ 39.78∗∗

MultiBiLSTM-sep-all 40.47 60.71∗∗ 44.89∗∗∗ 37.67∗

MultiBiLSTM-sgl-all 39.38 59.68∗ 43.22∗∗∗ 37.92∗

MultiBiLSTM-sep-ind 40.81 61.27∗∗ 44.76∗∗∗ 38.02∗

Memnet-sep-all 41.75∗∗ 61.82∗∗∗ 45.61∗∗∗ 39.25∗∗

Memnet-sgl-all 41.65∗∗ 61.53∗∗∗ 45.23∗∗∗ 39.13∗∗

Proposed methods

AttNet-all 63.18∗∗∗�� 47.89∗∗�� 42.77∗∗∗�� 64.23∗∗∗���
AttNet-ind 44.15∗∗∗�� 63.53∗∗∗�� 50.02��� 40.58∗∗

AttNet+ 45.93∗∗∗
O 65.58∗∗∗

OO 50.34 44.95∗∗∗
OO

(c) Debates

Method F-score AUC Precision Recall

SVM-sep-ind 58.30 72.10 64.48 57.81

SVM-sgl-ind 59.75 72.25 66.39 57.67

SVM-cmb-ind 59.86 71.68 66.28 56.48

ParaVec-sep-all 56.32∗∗ 68.12∗∗∗ 59.09∗∗∗ 49.41∗∗∗

ParaVec-sgl-all 55.35∗∗∗ 67.48∗∗∗ 59.46∗∗∗ 49.82∗∗∗

CNN-sep-all 57.38 70.70∗∗ 61.81∗∗ 52.94∗∗∗

CNN-sgl-all 56.23∗∗ 69.92∗∗ 60.75∗∗ 52.29∗∗∗

BiLSTM-sep-all 59.83∗ 71.91 65.94∗ 57.65

BiLSTM-sgl-all 58.66 72.01 64.87 57.89

BiLSTM-sep-ind 58.75 72.83 64.73 57.95

MultiBiLSTM-sep-all 59.24∗ 72.24 64.75 58.43

MultiBiLSTM-sgl-all 58.98 71.18 63.46 57.26

MultiBiLSTM-sep-ind 58.36 72.93 64.15 57.14

Memnet-sep-all 60.42∗∗ 73.84∗ 65.37 58.92∗

Memnet-sgl-all 59.67∗ 73.31∗∗ 64.27 58.83

Proposed methods

AttNet-all 64.23∗∗∗��� 76.13∗∗∗�� 67.19∗∗�� 62.17∗∗���
AttNet-ind 65.01∗∗∗��� 76.35∗∗∗�� 70.08∗∗∗��� 60.70∗�
AttNet+ 67.68∗∗∗

OO 78.48∗∗∗
OOO 74.55∗∗∗

OOO 66.31∗∗∗
OO

*(**,***) indicate that one method is statistically significantly better or worse than
SVM-sep-ind (which is in general the best configuration among all SVM models)
according to t-test [127] at the significance level of 0.05(0.01,0.001). ��(���) indicate AttNet
outperforms the better one between Memnet-sep-all and Memnet-sgl-all at the
significance level of 0.01(0.001). OO(OOO) indicate AttNet+ outperforms the better one
between AttNet-all and AttNet-ind at the significance level of 0.01(0.001).
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Table 3.4: Performance on target detection for -sep models.

Tweets Review Debates

SVM
79.74 67.84 84.59

89.12,75.00 84.13,63.52 91.47,81.00

ParaVec
75.63∗∗ 63.74∗∗∗ 76.16∗∗∗

82.67∗∗∗,71.76∗∗∗ 67.41∗∗∗,57.03∗∗∗ 80.32∗∗∗,71.80∗∗∗

CNN
80.62 65.34∗∗ 80.21∗∗

87.57∗∗,77.41∗ 73.23∗∗∗,59.16∗∗ 93.26∗,73.48∗∗

BiLSTM
81.50∗∗ 70.41∗∗ 85.05

86.48∗,81.68∗∗ 76.39∗∗∗,69.11∗∗∗ 92.03,82.05

MultiBiLSTM
81.53∗∗ 69.26∗∗ 85.33

87.69,78.82∗∗ 75.38∗∗∗,68.40∗∗∗ 92.82,83.77∗

Memnet
81.29∗∗ 70.71∗∗ 86.29∗

87.82,79.36∗∗ 75.52∗∗∗,68.59∗∗∗ 92.31,83.26

AttNet-all
82.58∗∗ 71.84∗∗∗ 89.02∗∗∗��

88.78,79.05∗∗ 75.85∗∗∗,69.99∗∗∗ 92.24,86.47∗∗∗��

AttNet-ind
82.74∗∗� 71.95∗∗∗ 88.89∗∗��

88.29, 79.82∗∗ 82.67���, 66.19∗∗ 92.35, 82.22

AttNet+
84.89∗∗∗

OO 72.59∗∗∗ 89.35∗∗∗

88.76,82.24∗∗∗
OO 76.38∗∗∗,71.09∗∗∗

O 92.05,87.12∗∗∗

The first row of each method shows F-score, followed by precision and recall on the second row.

Table 3.5: Performance on polarity classification for -sep models.

Tweets Review Debates

SVM
44.45 21.37 42.52

64.50,34.28 53.25,14.66 57.37,38.29

ParaVec
39.20∗∗∗ 17.69∗∗∗ 30.59∗∗∗

56.91∗∗,26.46∗∗∗ 31.05∗∗∗,9.25∗∗∗ 56.15,20.88∗∗∗

CNN
42.95 19.42∗ 35.15∗∗∗

58.20∗∗,35.71 39.91∗∗,11.34∗∗ 49.82∗∗,25.40∗∗∗

BiLSTM
46.18∗∗ 25.25∗∗ 42.69

61.35∗,41.79∗∗∗ 41.06∗∗∗,19.40∗∗ 54.58,35.59

MultiBiLSTM
46.26∗∗ 24.06∗∗ 41.87

60.56∗∗,39.36∗∗ 47.15∗∗,17.52∗∗ 49.69∗,37.26

Memnet
47.81∗∗ 25.47∗∗ 44.61

61.20∗∗,40.52∗∗ 46.34∗∗,19.81∗∗ 54.40∗,38.14

AttNet-all
50.91∗∗∗�� 32.43∗∗∗��� 50.46∗∗∗���

66.39��� ,42.00∗∗∗� 55.92���,24.43
∗∗∗
�� 60.72∗���,44.02

∗∗
��

AttNet-ind
49.16∗∗� 32.79∗∗∗��� 51.88∗∗∗���

64.01��, 41.74∗∗∗ 56.15∗∗��, 23.17∗∗∗�� 62.70∗∗���, 40.52

AttNet+
52.23∗∗∗

OO 35.34∗∗∗
OO 55.93∗∗∗

OOO
65.54,44.57∗∗∗

OO 59.99∗∗∗
OO ,27.32∗∗∗

OO 71.53∗∗
OO,50.25∗∗∗

OO

The first row of each method shows F-score, followed by precision and recall on the second row.
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CHAPTER IV

DeepGraph: Graph Structure Predicts Egonet

Growth

The topological (or graph) structure of one’s ego network is known to be predictive

of multiple dynamic properties of the ego center. For instance, a researcher’s collabo-

ration network is predictive of her future h-index. Conventionally, a graph structure

is represented using an adjacency matrix or a set of hand-crafted structural features.

These representations either fail to highlight local and global properties of the graph

or suffer from a severe loss of structural information. There lacks an effective graph

representation, on which hinges the realization of the predictive power of network

structures.

In this study, we propose to learn the representation of the topological structure

of a egonet through a deep learning model. This end-to-end prediction model, named

DeepGraph, takes as input the raw adjacency matrix of an egonet and outputs a

prediction of the growth of the network, e.g., the size of the network. The adja-

cency matrix is first represented using a graph descriptor based on the heat kernel

signature, which is then passed through a multi-column, multi-resolution convolu-

tional neural network. Extensive experiments on four large collections of real-world

networks demonstrate that the proposed prediction model significantly improves the

effectiveness of existing methods, including linear or nonlinear regressors that use
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hand-crafted features, graph kernels, and competing deep learning methods.

4.1 Introduction

Today we are surrounded by real-world networks of people, information, and tech-

nology. These heterogeneous, large scale, and fast evolving networks have provided

a new perspective of scientific research, which has resulted in a rapid development of

new theories, algorithms, and applications.

How to model and predict the dynamic properties of social or information networks

has received considerable attention recently [102, 125, 1, 88, 55, 108, 19]. In the

present work, we focus specifically on k-hop egonets, which are composed of a “ego”

node, and its k-hop neighbors. Many interesting properties could be studied from

these ego networks, including the size of the network, metrics of individual nodes or

structures (e.g., degree or diameter), or even external properties that are not directly

observed from the network structure (e.g., prestige, productivity or revenue of the ego

center). All these properties change over time, and their dynamics can be generally

referred to as the growth of a ego network1. Indeed, the prestige of an individual

node grows with the size of its egonet. Accurate prediction of network growth has

many valuable applications. For example, predicting the growth of paper’s citation

networks helps scientists to identify promising research directions; predicting the

growth of Facebook user’s friendship networks helps social network vendors optimize

their marketing strategies.

Taking a typical data mining perspective, most existing methods extract features

from both the network itself and any external information sources available. A func-

tion is learned that takes these features as input and outputs a predicted value of

the network property in the future [1]. From many explorations on different genres

1The growth refers to both the increment and decrement of the dynamic properties of the ego
networks, i.e., positive or negative growth.
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of networks, there has been a consensus in literature that features extracted from the

topological structure of the network (a.k.a., the graph) are generally very informa-

tive in these prediction tasks [1, 19]. As a comparison, other types of information,

e.g., content or demographics, are only useful in certain scenarios. For example, the

content of a hashtag is predictive to its diffusion [126] and homophily (e.g., similar

demongraphics) is predictive to the growth of friendship networks [18], but these ef-

fects are not generalizable to other networks and other dynamic properties. In this

study, we focus on investigating the predictive power of the graph structure of a ego

network on its growth.

Existing structural features are typically hand-crafted based on theoretical and

empirical findings in the social network literature. For example, open triads with

two strong ties are likely to be closed in the near future [29]; dense communities are

resistant to novel information and they grow slower than others [40]; nodes spanning

structural holes are likely to gain social capital and experience a rapid growth of

its prestige and other properties [14]. Features such as network density, clustering

coefficients, triadic profiles, and structural holes are therefore designed to implement

these intuitions and represent the graph structure.

Despite the success in predicting network growth, there are observable issues of

representing the topological structure of a network using these hand-crafted features.

Some of them only describe a global property of the network, such as network density

or degree distribution; some of them provide a fine-grained description of local struc-

tures but fail to capture global information, such as triads and other substructures;

others lie between the two extremes, such as structural holes. None of these features

is able to fully represent both the local and the global structure of a graph and the

complex interaction between local and global properties. On the other hand, these

heuristic features usually have a limited characterization power for networks, as many

networks may share the same feature representation. For example, most real-world
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networks at scale may have a similar (power-law) degree distribution, and two very

different networks may happen to have the same ratio of closed triangles. Taking a

machine-learning point of view, we are intrigued by the following questions: what is a

suitable representation of network structure and how effective is such a representation

when used to predict network growth?

Our answers to the two questions are inspired by the recent developments in deep

learning and graph representation. We introduce a graph descriptor that is based

on the Heat Kernel Signature (HKS) [100], which serves as a universal low-level

representation of the topological structures of networks. HKS has been successfully

employed in representing the surface of 3D objects [31, 121]. By modeling the amount

of heat flow over nodes of a network over time, HKS successfully stores both the global

and the local structural information of the entire network. Using a histogram to

describe the probability distribution of heat values at a series of time points [31, 121],

isomorphic networks (networks with the same topological structure) can be mapped

to a unique representation at little loss of structural information. However, unlike 3D

objects which are composed of polygon meshes, the structures of networks vary in

shape, size, and complex local structures. To address this issue, some computations of

HKS need to be approximated carefully. Inspired by the semantics of the HKS-based

graph descriptors, we propose a multicolumn, multiresolution neural network that

learns latent hierarchical representations of graphs on top of the HKS-based graph

descriptor. The proposed deep neural network, named DeepGraph, predicts network

growth in an end-to-end process.

We conduct extensive experiments to evaluate the effectiveness of DeepGraph.

Different growing properties are predicted for four genres of real-world ego networks.

Empirical results show that our method outperforms baseline approaches that use

alternative graph representations, hand-crafted features, or existing deep learning ar-

chitectures. High-level representations learned by DeepGraph well connect to existing
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findings in the social network literature.

4.2 Related work

Predicting the growth of networks or the evolution of certain properties of networks

has been widely studied. People attempt to predict the dynamics of various network

metrics or aggregated activities in a network, e.g., the number of up-votes on Digg

stories [102], the number of newly infected nodes in diffusion [125], the growth of a

community [1, 88], or the dynamics of a cascade [55, 108, 19]. In these studies, a

set of problem-specific features are usually manually designed based on the network

structure, textual content, user demographics, historical statistics, and other sources

of information. Among them, the features extracted from the network structure are

both effective in individual tasks and robust across different tasks. In this work, we

limit our focus on information purely from the network structure.

Finding a suitable representation of the topological structure of a network has

always been a critical preliminary step of network analysis. Conventionally, a net-

work is represented as an adjacency matrix or a sparse list of edges. However, these

lossless representations do not effectively present the structural characteristics of the

network. Moreover, they are sensitive to the manipulation of node orders, making

networks with the same topological structure mapped to different representations.

Other approaches represent the network structure with a series of network metrics

and/or a set of structural patterns (e.g., triads [53], quads [110], or meta-paths [101]).

Arbitrary higher-order substructures can be included, such as communities and struc-

tural holes. These bag-of-substructures better capture local patterns of the network

structure.The major problem of this approach is that it is computationally infeasible

to enumerate high-order substructures, and low-level substructures have limited rep-

resentation power of the global structure of the network. As a result, many different

networks may share the same or similar bag-of-substructures.
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In graph classification, a myriad of graph kernel methods are proposed which com-

pute pairwise similarities between graphs [49, 2, 94, 93]. For example, graphlets [93,

109] computes the graph similarity based on the distribution of induced, non-isomorphic

sub-graphs. Some other graph kernels integrate frequent graph mining into the model

training process [90, 86]. Graph kernels provide an indirect representation of networks

so that similar structured networks yield a high value through the graph kernel func-

tion. The burden of graph kernels is the design of effective kernels. In the paper, we

compare existing graph kernels to highlight the flexibility of our model.

Recently, researchers have started to apply deep learning to network structure

representation learning. Several proposals have been made to learn a low-dimensional

vector representation of individual nodes by considering their neighborhood [106, 81,

38]. Deep learning techniques have also improved graph kernels for graph structure

learning[122, 123, 75]. Recently, Niepert et al. [78] applied convolution over receptive

fields constructed by sequence of neighboring nodes. These methods focus only on the

local structure of a graph and graph kernels require expensive pairwise comparisons.

In the paper, we compare our model to these alternative deep learning approaches

and show the performance advantage of our model.

Heat kernels have been studied for the task of graph clustering [3], graph partition-

ing [30], and modeling social network marketing processes [65]. These applications

rely on the raw output of heat kernels for a variety of tasks, rather than developing

a signature, nor do they abstract graph representations base on heat kernels. In the

community of computer vision, Heat kernel signature has been successfully used to

model 3D objects [100, 31, 121], whose surfaces are defined by polygon meshes, a

network composed of simple convex polygons. In contrast, real-world networks are

consist of various shapes, sizes, and local structures. How to represent arbitary net-

works with heat kernel signatures and how to predict network growth using such a

signature remain a challenging question to be studied.

53



4.3 DeepGraph for Network Growth Prediction

We propose a unified predictive neural network model to learn graph structure rep-

resentation for network growth prediction problem. The proposed predictive model,

named DeepGraph, combines heat kernel signature and deep neural networks. Be-

low we describe the two key components of our model, (1) a heat kernel signature

based graph descriptor and (2) a deep multi-column, multi-resolution convolutional

neural network, in turn, following a brief definition of the network growth prediction

problem.

4.3.1 Problem Formulation and Notations

Given a real-world network snapshot at time t, denote its graph structure as

G(t) = (V,E), with a set of nodes V and a set of edges E. A node i ∈ V represents

an entity (e.g., an actor in a social network or a paper in a citation network), an edge

(i, j) ∈ E represents a relationship (e.g., friendship, citation, or influence) between

node i and node j. An adjacency matrix W ∈ R|V |×|V | encodes the topological

structure of the graph G. In this work, we consider the binary adjacency matrix. Its

element wij is 1 if and only if (i, j) ∈ E and 0 otherwise.

A network property is a function that maps a graph structure G(t) to a property

value y(t) ∈ R. For example, a network property could be the number of friends given

a user’s Facebook ego-network. A network growth predictor is a function that maps a

graph structure G(t) to a property value y(t′) at time t′, satisfying t′ > t. For example,

a network growth predictor could map a user’s Facebook ego-network of this year to

the number of friends next year.

The network growth prediction can be naturally formulated as a supervised learn-

ing problem. Specifically, the problem is to derive a network growth predictor f given

a training set of tuples {(G(ti)
i , y

(t′i)
i )}Mi=1 to minimize the prediction error over a test

set of tuples {(G(tj)
j , y

(t′j)

j )}Nj=1 satisfying ∀i t′i > ti, ∀j t′j > tj, minj(tj) > maxi(ti),
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and minj(t
′
j) > maxi(t

′
i). The time ordering constraints highlights the practical mo-

tivation that we are interested in using historical data to predict future properties

of current networks.2 To apply a machine learning algorithm, it is critical to first

represent the graph G(t) computationally, such as using a vector of features.

4.3.2 Heat Kernel Signature based Graph Descriptors

The motivation in adopting Heat Kernel Signature (HKS) is its theoretical proven

properties in representing graphs: HKS is an intrinsic and informative represen-

tation for graphs [100]. Intrinsicness means that isomorphic graphs map to the

same HKS representation, and informativeness means if two graphs have the same

HKS representation, then they must be isomorphic graphs. Our HKS-based graph

descriptor builds on the theoretical properties of HKS and further provides universal

representations for graph with different sizes in network growth prediction.

Heat kernel function. Formally, the heat kernel hz(i, j), a function of two nodes i,

j at any given diffusion step z, denotes the amount of aggregated heat flow through all

edges among two nodes after diffusion step z3. In computer vision, graphs are stored

as meshed networks and heat kernels are computed by finding eigenfunctions of the

Laplace-Beltrami operator [100]. However, most real-world networks are not meshed

networks. Instead, we use eigenfunction expansion of a graph Laplacian [100, 3] to

compute the heat kernel for information networks. Given a graph G = (V,E,W ), the

graph Laplacian is defined as: L = D−W, where D is a diagonal degree matrix with

diagonal entries being the summation of rows of W : Dii =
∑

j wij. The normalized

Laplacian of the graph is given by LN = D−
1
2 LD−

1
2 .

2In practice, researchers focus on a specially case of the network growth prediction problem with
the equal interval increment constraint, t′j − tj = t′i − ti = C > 0 [55, 108].

3The diffusion is simulated for a given graph snapshot. The heat kernel computation does not
require graph snapshot at other timestamps. The diffusion step z should not be confused with the
network timestamp t.
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The heat kernel is then defined as

hz(i, j) =

|V |∑
k=1

e−λkzφk(i)φk(j) (4.1)

where λk is the k-th eigenvalue of the normalized Laplacian LN and φk is the k-th

eigenfunction s.t.
∑

i |φk(i)|2 = 1. Note that the eigenvalues might be unreal in the

case of directed graphs. There has been studies on how to tackle this problem [21]. In

this work, for simplicity, we convert directed graphs to undirected ones by applying

W = (W + Wᵀ)/2.

Heat kernel signature. Heat kernel signature was introduced to mitigate the com-

putation bottleneck of using heat kernel functions in representing graphs. Both heat

kernel and heat kernel signature are proven to be intrinsic and stable against noises.

However, the computation complexity of using heat kernel as a point signature is

overwhelming since the point signature, {kt(v, .)}t>0 , is defined on the product of

temporal and spatial domain. Heat kernel signature simplifies the computation by

considering only a subset of product of temporal and spatial domain while keeping

as much information as possible. Specifically, heat kernel signature reduces the com-

putation complexity by only requiring hz(v, v) over a finite set of N diffusion steps

z ∈ {z1, z2, ..., zN} for ∀v ∈ V without losing the intrinsic and informative properties.

Formally, a heat kernel signature (HKS) is a matrix H ∈ R|V |×N satisfying

Hij = hzj(i, i) (4.2)

These time points are sampled with equal difference after logarithm [100], such that

log zn − log zn−1 = log zn+1 − log zn.

Graph descriptor. Some graphs might have thousands of nodes, causing difficulties

for deep neural networks when they are fed with input that is dependent on |V |.

Therefore, the practical issues in combining HKS and deep neural networks are that
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(a) (b) (c) (d)

Figure 4.1: Examples of HKS-based graph descriptors. The first row shows our
graph descriptors for graphs in the second row. Figure (a) and (b) are subnet-
works from Facebook [111]. Figure (c) and (d) are some authors’ collaboration
networks built from ACL Anthology [28].

we need a global vertex indexing to guarantee the uniqueness and that the represen-

tation is independent of |V |. To this end, we further process heat kernel signature

H into a universal representation independent of |V | using a histogram conversion.

Specifically, we use histograms to estimate the distribution of HKS values in each

column4. By denoting NB the number of bins used in the histogram, we obtain a

universal descriptor S ∈ RNB×N . Specifically, Sbj counts the number of nodes falling

into b-th bin at j-th diffusion step. Unlike HKS, the new descriptor is independent of

vertex ordering and vertex number. We call this final matrix graph descriptor, S(G),

as it is adapted to describe information networks. Figure 4.1 shows four examples of

our graph descriptors for real world graph structures.

Graph descriptor vs. adjacency matrix. We have described the process in con-

verting an adjacency matrix into our graph descriptor, which is then passed through

a deep neural network for further feature extraction. All computation in this pro-

cess is to obtain a more effective low-level representation of the topological structure

information than the original adjacency matrix.

First, isometric graphs could be represented by many different adjacency matrices,

4The bin ranges are aligned column-wise on the training data.
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while our graph descriptor would provide a unique representation for those isomet-

ric graphs. The unique representation simplifies the neural network structures for

network growth prediction.

Second, our graph descriptor provides similar representations for graphs with sim-

ilar structures. The similarity of graphs is less preserved in adjacency matrix repre-

sentation. Such information loss could cause great burden for deep neural networks

in growth prediction tasks.

Third, our graph descriptor is a universal graph structure representation which

does not depend on vertex ordering or the number of vertexes, while the adjacency

matrix is not.

Time complexity. The major overhead of computing graph descriptors lies in

the calculation of eigenvectors. The time complexity of computing eigenvectors is

O(K|V |2) where K is the number of eigenvectors. Our graph descriptors finish in

acceptable time frame for real world network data. The data description and time

complexity analysis are in Section 4.4.

Semantics of graph descriptor. The rows and columns in our graph descriptor

reflect the network topology from different perspectives. The rows express the heat

density dynamics over diffusion steps, and the columns capture the static heat density

patterns for a given diffusion step. Successive rows or columns express higher-order

properties of the topology structure information. Such representational properties

motivate the adoption of row-wise and column-wise convolution networks for feature

learning.

4.3.3 Deep Graph Descriptor

As information abounds in the raw representation extracted by the HKS-based

graph descriptor, applying a simple regressor, e.g., linear regression, could fail to fully

extract useful information from it. In contrast, deep neural networks (DNN) have
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Figure 4.2: (a) An example of the multiresolution convolution unit with two kernel
sizes. (b) An example of the multicolumn, multiresolution deep neural network model
for network growth prediction with two convolution layers.

achieved tremendous success in learning latent representations from raw inputs in a

compositional hierarchy. Combining DNN and HKS-based graph descriptor together

thus offers an opportunity to address the graph structure representation challenges

in predicting network growth. Inspired by the semantics of the graph descriptors, we

propose a deep multicolumn, multiresolution convolutional neural networks for the

network growth prediction task.

Multiresolution convolutions. Our model builds on the multiresolution 1-D con-

volution (MrConv) which maps an input matrix into a feature map matrix. Specifi-

cally, let xi ∈ Rk denote the i-th row of the input matrix. The input is then repre-

sented as x1:n = ⊕ni=1xi where ⊕ is the concatenation operator and n is the number of

rows. The 1-D convolution with a filter size m apply a filter w ∈ Rmk to each possible

window of m rows to produce a new feature vector c = [c1, c2, ..., cn−m+1]. The feature

ci is generated from a window of m rows xi:i+m−1 by ci = g(wᵀxi:i+m−1 +b), where b ∈

R is a bias term and g is a non-linear function such as a hyperbolic tangent function

or a rectified non-linearity function.

We have described the process by which one feature vector c is extracted from

one filter. Our multiresolution convolution (MrConv) layer uses multiple filters with

varying filter sizes to obtain multiple resolution features. Specifically, one MrConv

layer has l different convolution filter sizes {m1,m2, ...,ml}. The filter of size m
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generates a corresponding feature vector c(m). Feature vectors generated by different

filter sizes are then concatenated into one vector c∗ = ⊕li=1c
(mi). Moreover, we extend

each filter size to have d different filters, where d is a hyperparameter. The final output

feature map is a matrix O where each column is a feature vector c∗ and there are d

columns: O =
(
c∗1, c∗2, ..., c∗d

)
.

An example of our MrConv is shown in Figure 4.2(a). The example MrConv layer

has two different filter sizes {1, 2}. Each filter size has three different filters, whose fea-

ture vectors form different columns in the final feature map. Multiple multiresolution

convolution layers are stacked to form our model.

Multicolumn model. Inspired by the different semantics of rows and columns in the

HKS-based graph descriptor, our model deploys a two network-column structure, as

shown in Figure 4.2(b). One column uses multiresolution 1-D convolution (MrConv)

operations over the graph descriptor bins and the other one uses MrConv over diffusion

times. The two columns extract different features from the graph descriptors at

multiple resolution scales. Intuitively, the first column extracts statistical features

of the density dynamics in diffusion. The second column extracts features on static

density pattern for different diffusion steps. Both kinds of features reflect the topology

of the underlying graph structure, but explain the structure topology from different

perspectives. A single column convolutional neural network can hardly extract such

two kinds of features successfully.

The feature maps from the two columns are then concatenated and passed through

multiple dense (i.e. fully-connected) layers with non-linear activation functions. The

output from the multiple dense layers are then passed through a final linear fully-

connected layer with only one output unit. The output unit ŷ is thus the network

growth prediction of our model.
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4.3.4 End-to-End Training

Let McMrConv(., θ) denote the multicolumn multiresolution convolutional neu-

ral network with parameters θ. The final output of our neural network given a

graph Gk is represented as: ŷk = McMrConv(S(Gk), θ). Given a training data set

{(Gk, yk)}Kk=1, the deep neural network is trained to minimize the average squared er-

ror: L(θ) = 1
K

∑K
k=1

(
McMrConv(S(Gk), θ)− yk

)2

. The HKS-based graph descriptor

and the deep neural network assembles DeepGraph, an end-to-end deep architecture

to predict network growth based on graph structure.

4.4 Experiment setup

We compare our model with existing approaches on the network growth prediction

problem. We then evaluate variants of our model for credit assignment.

4.4.1 Data sets

When selecting real-world data sets for evaluation, we consider both popularity

and diversity of the application scenarios. The four data sets we choose include

ego networks extracted from social networks, scientific collaboration networks, and

entertainment networks. The statistics of these data sets are presented in Table 4.1.

Please note that due to the diverse nature of the data sets and the various precision

of timestamps available, it is hard to apply an unified time frame for all data sets.

Viewed from another perspective, this helps us evaluate the flexibility and generality

of our methods, verifying whether it can be applied to any length and granularity of

time frames.

We follow the procedure described in [122] to construct ego-nets. The Facebook

data set is collected from the New Orleans networks [111], where nodes are Facebook

users and edges are friendships. We derive the snapshot of ego-networks for each user
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Table 4.1: Statistics of the data sets.

Dataset Facebook YouTube AAN IMDB

train 12990 15258 8426 12500
# graphs val 890 1283 713 1017

test 2092 3273 1722 2407

train 399.9 147.6 271.4 197.3
Avg. nodes val 397.5 167.3 302.4 208

test 436 165.8 402.4 216

train 6800.8 1439.2 2079.8 7801.5
Avg. edges val 6764.4 1626.1 2327.2 7847.7

test 7499.2 1620.9 3321.8 7964.5

train 3.6 9 1.2 1.3
Avg. growth val 3.8 10.8 1.2 1.3

test 3.4 9.3 1.2 1.3

train 1.7 2.4 0.9 1
Avg. scaled val 1.8 2.2 0.9 1

growth1 test 1.6 2.1 0.9 0.9

train 2007.6 2007.2 2009 2000
Graph time2 val 2007.7 2007.3 2010 2001

test 2007.8 2007.4 2011 2002

train 2007.10 2007.4 2010 2001
Growth time3 val 2007.11 2007.5 2011 2002

test 2007.12 2007.6 2012 2003

k-hop ego-net4 all 2 2 3 2

1. Avg. scaled growth scales label y to log2(y + 1) [55, 108].
2. Graph time of 2007.6 means the graph is built by taking the snapshot of Jun. 1, 2007.
3. Growth time of 2007.10 means the growth is computed between its corresponding graph
time to Oct. 1, 2007. Graphs in train/val/test set do not overlap.
4. k-hop ego-net for AAN is set to 3, due to its small size when k = 2.

according to the timestamps listed in Table 4.1, which is used to predict the number

of new friends this user made in the next four months.

As the YouTube [71] data set also describes user friendships, it follows the same

setting as Facebook.

The AAN data set [28] is built upon scientific publications from the ACL Anthol-

ogy5, where nodes are authors and edges are collaboration. Each author’s ego-nets

are extracted to predict her h-index in the next year.

5http://aclweb.org/anthology/
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IMDB is a movie co-star data set6, where nodes are actors or actresses, and an

edge is formed if they appear in the same movie. The ego-nets of each actor/actress

is used to predict the number of new movies the actor/actress produced in the next

year.

To examine whether we can truly predict future growth, we make sure of two

important points: (1) the period to compute growth for test set is always later than

that for training set; (2) one graph can only appear in one of the training, validation

and test set. To this end, for each node in the global network, they are randomly

assigned to the training/validation/test set with probability of 0.8/0.05/0.15. Based

on which set they are in, their ego-nets and growth are computed according to the

time listed in Table 4.1. If a node has not yet been created for the given time, it is

simply removed.

We notice that the growth of all the ego networks in general follows a power-

law distribution, where a large number of networks did not grow at all. Therefore we

downsampled 50% graphs of each train/val/test set with zero growth (to the numbers

shown in Table 4.1) and applied a logarithm transformation of the outcome variable

(network growth), following [55, 108]. The network growth are scaled logarithmically

for two reasons. First, baseline methods with linear regression are sensitive to ex-

tremely large outcomes. Second, when a network grows to a considerably large scale,

we care more about its scale rather than the exact number.

4.4.2 Evaluation Metric

We use mean squared error (MSE) as our evaluation metric, which is a common

choice for regression tasks. Specifically, denote ŷ a prediction value, and y the ground

truth value, then MSE = 1
n

∑n
i=1(ŷi − yi)2. As noted before, y in above equation is a

scaled version of the original value yo, that is y = log2(yo + 1).

6http://www.imdb.com/
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4.4.3 Baseline methods

We compare DeepGraph with methods from two categories: feature-based meth-

ods used for network prediction tasks, and alternative graph representation methods.

Feature based. Many structural features have been designed for various network

prediction tasks [1, 88, 108, 19]. We select from them those that could be generalized

across data sets, including:

Frequencies of k-node substructures (k ≤ 4)[110]. This counts the number of nodes

(k = 1), edges (k = 2), triads (e.g., the number of closed and open triangles) and

quads.

Other network properties : average degree, the length of the shortest path, edge

density, the number of leaf nodes (nodes with degree 1), the number of leaf edges,

the average closeness of all nodes, clustering coefficient, diameter, and the number of

communities obtained by a community detection algorithm [11].

Graph kernels. Following [78], we compare with four state-of-the-art graph

kernels: the shortest-path kernel (SP) [12], the random walk kernel (RW) [34], the

graphlet count kernel (GK) [93], and the Weisfeiler-Lehman subtree kernel (WL)

[94]. In our experiment, the RW kernel does not finish after 10 days for a single data

set, so we exclude it for comparison. This exclusion is also observed for the same

reason in [78, 123].

-linear and -deep. Feature based methods and graph kernels are usually trained

on SVMs. We report linear regression instead, as SVM empirically generates poor

results for our regression tasks. We append -linear to each method to indicate usage

of linear regression. To obtain even stronger baselines, we apply deep learning to

both feature vectors and graph kernels, indicated by -deep.

Smoothed graph kernels. Yanardag et al. [123] apply smoothing to graph ker-

nels, which extends their method of deep graph kernels [122] by considering structural

similarity between sub-structures. We report smoothed results only on deep neural
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networks as it outperforms alternatives empirically.

PSCN, which applies convolutional neural networks (CNN) to locally connected

regions from graphs [78], achieving better results over graph kernels on some of the

classification data sets.

Hyper-parameters. All hyper-parameters are tuned to obtain the best results

on validation set. For linear regression, we chose the L2-coefficient from {100, 10−1,

..., 10−7}. For neural network regression, the initial learning rate is selected from {0.1,

0.05, 0.01, ..., 10−4}, the number of hidden layers from {1, 2, ..., 4}, and the hidden

layer size from {32, 64, ..., 1024}. The size of the graphlets for GK is chosen from

{3, 4} (higher than 4 is extremely slow), the height parameter of WL from {2, 3, 4},

the discount parameter for smoothed graph kernels from {1, 0.8, ..., 0}. Following [78]

for PSCN, the width is set to the average number of nodes, and the receptive field

size is chosen between 5 and 10.

Notes. Please notice that in our experiments we are not identifying the nodes

in the networks or using the information of the nodes outside the network itself. Of

course, knowing the president of United States is in the network provides more confi-

dence on its growth. We choose not to identify nodes because (1) this study focuses

on investigating the predictive power of the topological structure of networks, and

(2) in practice information about individual nodes may not be available for privacy

reasons. For the same reasons, we do not include any information other than the

network structure (e.g., content of tweets, or historical metrics of the network) in the

prediction task, even though including more information may improve the prediction

accuracy.

4.4.4 DeepGraph Model Parameters

Parameters included in HKS are set to default values across all data sets without

further tuning. In Equation 4.2, we set t1 = 0.1, tN = 25, and N = 64. Number of
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bins NB is set to 64. To compute histograms, HKS values above +1.2 and below −1.2

standard deviation are respectively put to the first and last bins. Values in between

are assigned to the remaining equally divided 62 bins.

We perform standard normalization for the histograms of graphs. Each histogram

is preprocessed by pixel-wise normalization. We compute the mean and standard

deviation for each pixel over the training data set. Then each pixel is normalized by

subtracting the corresponding mean value and being divided by sd7 .

We initialize the parameters of the neural networks using a Gaussian distribution

with zero mean and unit standard deviation. An adaptive optimizer, Adam, is used to

optimize the parameters of the neural networks. Default hyper-parameters of Adam

are used [51].

Structure related hyper-parameters of DeepGraph is set to be the same across

datasets. There are two multiresolution convolution layers for each network column,

with number of filters 32 and 16. For each convolution layer, we apply three sizes

of filters, which are 2, 4, and 6. TanH is used as the activation function. There are

two fully connected layers both of size 256. Dropout is applied to the last two dense

layers with probability of 0.5. Other learning parameters are listed in Table 4.2.

Table 4.2: Setup of hyper-parameters for DeepGraph.

Facebook YouTube AAN IMDB

L2-coefficient 1e-5 1e-5 0.005 1e-5

Init learning rate 0.005 0.01 5e-4 0.005

4.4.5 Variants of DeepGraph

To assign the credit of each key component in our DeepGraph model, we also

experiment with some of its variants, by feeding our graph descriptor (GD) to a

7ε = 10−8 is added to the denominator to avoid numeric issues.
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linear regressor (GD-linear), a standard convolutional neural network (GD-CNN),

and a multilayer perceptron (GD-MLP). Hyper-parameters for these models are

tuned similarly as baselines.

4.5 Experiment results

4.5.1 Overall performance

Table 4.3: Performance measured by MSE (the lower the better), where original label
y is scaled to log2(y + 1).

Dataset Facebook YouTube AAN IMDB

Feature-deep 1.107 2.623 0.421 0.527
Feature-linear 1.116 2.633 0.439 0.525

GK-smooth 1.313∗∗∗ 2.675∗∗∗ 0.480∗∗∗ 0.561∗∗

GK-deep 1.315∗∗∗ 2.671∗∗∗ 0.492∗∗∗ 0.565∗∗

GK-linear 1.335∗∗∗ 2.736∗∗∗ 0.519∗∗ 0.576∗∗∗

WL-smooth 1.158∗∗∗ 2.659 0.434 0.536
WL-deep 1.165∗∗ 2.654 0.437 0.532
WL-linear 1.331∗∗∗ 2.702∗∗∗ 0.445 0.596∗∗∗

SP-smooth 1.138 2.615 0.422 0.530
SP-deep 1.155∗∗ 2.607 0.428 0.531
SP-linear 1.179∗∗∗ 2.613 0.432 0.535

PSCN 1.117 2.534∗∗∗ 0.425 0.528

Proposed methods

GD-linear 1.174∗∗∗ 2.750∗∗∗ 0.587∗∗∗ 0.583∗∗∗

GD-MLP 1.082∗ 2.427∗∗∗ 0.394∗∗∗ 0.513∗

GD-CNN 1.087 2.429∗∗∗ 0.391∗∗∗ 0.512∗

DeepGraph 1.068∗∗O 2.409∗∗∗OO 0.379∗∗∗ 0.508∗∗∗O

“***(**)” means the result is significantly better or worse over Features-dp according to
paired t-test test at level 0.01(0.1). “O” means DeepGraph-multi is better than the better
one between GD-MLP and GD-CNN.

The overall performance of all competing methods across data sets are displayed

in 4.3. We make the following observations. First, integrating graph descriptor with

deep learning, our method DeepGraph outperforms all competing methods signifi-

cantly. This empirically confirms that graph descriptor could preserve more informa-
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tion of the network structure than bag-of-substructures, both globally and locally. In

contrast, utilizing manually designed features could lead to loss of information.

GD-MLP and GD-CNN have already gain improvement over the strongest baseline

on most of the data sets, while DeepGraph can further improve the performance by

utilizing the semantics of HKS-based graph descriptor. This shows that we can indeed

extract more useful features by applying column-wise and row-wise convolution over

graph descriptors.

Comparing with GD-linear, which applies linear regression on top of the HKS-

based graph descriptor, DeepGraph, GD-MLP, and GD-CNN performs significantly

better. This indicates that the effectiveness of the HKS-based graph descriptor has

to be utlized by a “deeper” model which explores the convolutions and non-linear

transformations of the low-level representation.

Comparing feature based methods with other baselines, the former exhibit strong

prediction power. Incorporating both local and global information, the hand-crafted

features are very indicative of network growth, which is hard for automatic methods

to compete.

When trained on deep networks, the performance of graph kernels could be im-

proved over their linear version. Smoothing kernels can further bring in some im-

provement. By applying convolution over locally connected regions of the graphs,

PSCN can beat many graph kernels on most data sets. These results are consistent

with previous studies [78, 123].

4.5.2 Computational Cost of DeepGraph

Training of DeepGraph is very fast. The models are converged in less than 10

minutes on a Titan X GPU. The major overhead of DeepGraph is the computation

of the HKS-based graph descriptors. We empirically measure the computation time

for all data sets on a server with 2.40 GHz CPU and 120G RAM. The graphs in our
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data sets have size as large as 5,000 nodes and 200,000 edges, which is enough for

most network prediction problems [55, 88, 125]. The generation of graph descriptors

takes an average of 0.86 hour per data set. In contrast, the strongest baseline, feature

based method, takes 7.9 hours on average to generate all features. While the strongest

graph kernel, SP, takes nearly 5 days.

4.5.3 Feature Analysis

It has been shown empirically that DeepGraph could well abstract high-level fea-

tures to represent graphs. It is intriguing to know whether these learned features

correspond to well-known structural patterns in network literature. To this end,

we select some of the network properties manually computed for the feature based

method. Note that we work only on test set, as we care more about the prediction

performance. These properties characterize either global or local aspects of networks,

and are listed in Figure 4.3.

In order to examine whether the high-level representations learned by DeepGraph

have captured these properties, we need a way to visualize the high-level represen-

tations and the above network properties. To do so, the feature vectors output by

the last hidden layer of DeepGraph are fed to t-SNE [11], a dimensionality reduction

algorithm for visualizing high-dimensional data sets. The t-SNE algorithm projects

feature vectors into a 2-dimensional space, where similar vectors are projected closely.

The visualizations of data set AAN are displayed in Figure 4.3. We obtain similar

results on other data sets, which are omitted to conserve space.

To connect the hand-crafted structural properties with the learned high-level fea-

tures, we color individual graphs by the values of these properties (e.g., network

density). Patterns on the distribution of colors could suggest a connection between

learned features and the network property.

Some observations can be made from Figure 4.3. First, as the number of open and
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(a) # open triangles. (b) # closed triangles.

High

Low

(c) Edge density. (d) Growth (h-index).

Figure 4.3: Feature visualization from Data set AAN. One point is a graph in test
set. The layout is produced from high-level representations of DeepGraph, colored
using structural, hand-crafted network properties, which are presented under each
subfigures. Red (blue) color indicates high (low) property values.

closed triangles are actually features of graphlets [93, 109], we can see that DeepGraph

has automatically learned these useful features without human input. Second, since

edge density is a function of the number of edges and nodes, DeepGraph not only

learns the number of edges and nodes (we do not show the edge and node property

in Figure 4.3, but this is true), but also their none-linear relationship that involves

division.

4.5.4 Error Analysis

Graphs in our data sets typically have hundreds of nodes, which is hard for humans

to directly generalize useful information from a set of graphs. As a compromise, we

characterize graphs by a set of simple network properties, e.g., the number of nodes,

edges, and edge density.

We first want to investigate graphs for which DeepGraph makes more mistakes

than baseline, and also the other way around. Here we use the strongest baseline,

feature-based method as our reference. The procedure is as follows: among graphs

where DeepGraph has smaller MSE than the baseline, we select the top 100 with the
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largest MSE differences between the two methods. For these top graphs, we compute

the average of the properties mentioned above. Similar procedure is also applied to

the baseline.

The statistics of graphs where either DeepGraph or the baseline significantly out-

performs the other are higher than the average statistics of each data set. This could

result form the skewed distribution of the data set – a large number of graphs are of

smaller size, leading to more training instances of small graphs. We also observe that

both methods perform reasonably well on denser networks.

On the other hand, graphs on which DeepGraph performed better have relatively

larger sizes than those where the baseline performed better. This indicates that the

HKS representation has an advantage on larger graphs, the structures of which are

more difficult to be represented by a bag of local substructures.

4.6 Conclusion

We present a novel neural network model that predicts the growth of egonet prop-

erties based on its graph structure. This model, DeepGraph, computes a new rep-

resentation of the graph structure based on heat kernel signatures. A multi-column,

multi-resolution convolution neural network is designed to further learn the high-level

representations and predict the network growth in an end-to-end fashion. Experi-

ments on large collections of real-world networks prove that DeepGraph significantly

outperforms methods based on hand-crafted features, graph kernels, and compet-

ing deep learning methods. The higher-level representations learned by DeepGraph

well correlate with findings and theories in social network literature, showing that a

deep learning model can automatically discover meaningful and predictive structural

patterns in networks.

Our study reassures the predictive power of network structures and suggests a way

to effectively utilize this power. A meaningful future direction is to integrate network
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structure with other types of information, such as the content of information cascades

in the network. A joint representation of multi-modal information may maximize the

performance of particular prediction tasks.

Despite that DeepGraph is outperforming competing methods, the prediction er-

rors are still not negligible in their absolute sense. However, the improvement is still

beneficial in many practical scenarios, e.g., when ranking information is more impor-

tant than the absolute scale. Consider a scenario where a research can only afford

time to read three papers per day. In this case, our DeepGraph is able to assist her

to identify the top three most influential papers.
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CHAPTER V

DeepCas: an End-to-end Predictor of Information

Cascades

Information cascades, effectively facilitated by most social network platforms, are

recognized as a major factor in almost every social success and disaster in these net-

works. Can cascades be predicted? While many believe that they are inherently un-

predictable, recent work has shown that some key properties of information cascades,

such as size, growth, and shape, can be predicted by a machine learning algorithm

that combines many features. These predictors all depend on a bag of hand-crafting

features to represent the cascade network and the global network structure. Such fea-

tures, always carefully and sometimes mysteriously designed, are not easy to extend

or to generalize to a different platform or domain.

Inspired by the recent successes of deep learning in multiple data mining tasks,

we investigate whether an end-to-end deep learning approach could effectively predict

the future size of cascades. Such a method automatically learns the representation

of individual cascade graphs in the context of the global network structure, without

hand-crafted features and heuristics. We find that node embeddings fall short on

predictive power, and it is critical to learn the representation of a cascade graph

as a whole. We present algorithms that learn the representation of cascade graphs

in an end-to-end manner, which significantly improve the performance of cascade
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prediction over strong baselines that include feature based methods, node embedding

methods, and graph kernel methods. Our results also provide interesting implications

for cascade prediction in general.

5.1 Introduction

Most modern social network platforms are designed to facilitate fast diffusion of

information. Information cascades are identified to be a major factor in almost every

plausible or disastrous social network phenomenon, ranging from viral marketing,

diffusion of innovation, crowdsourcing, rumor spread, cyber violence, and various

types of persuasion campaigns.

If cascades can be predicted, one can make wiser decisions in all these scenarios.

For example, understanding which types of Tweets will go viral helps marketing

specialists to design their strategies; predicting the potential influence of a rumor

enables administrators to make early interventions to avoid serious consequences.

A prediction of cascade size benefits business owners, investors, journalists, policy

makers, national security, and many others.

Can cascades be predicted? While many believe that cascades are inherently

unpredictable, recent work has shown that some key properties of information cas-

cades, such as size, growth, and shape, can be predicted through a mixture of signals

[19]. Indeed, cascades of microblogs/Tweets [129, 118, 131, 47, 23, 39], photos [19],

videos [5] and academic papers [92] are proved to be predictable to some extent. In

most of these studies, cascade prediction is cast as classification or regression prob-

lems and be solved with machine learning techniques that incorporate many features

[118, 19, 23, 47]. On one hand, many of these features are specific to the particular

platform or the particular type of information being diffused. For example, whether a

photo was posted with a caption is shown to be predictive of how widely it spread on

Facebook [19]; specific wording on Tweets is shown to help them gain more retweets
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[103]. These features are indicative but cannot be generalized to other platforms or to

other types of cascades. On the other hand, a common set of features, those extracted

from the network structure of the cascade, are reported to be predictive by multiple

studies [19, 129, 118].

Many of these features are carefully designed based on the prior knowledge from

network theory and empirical analyses, such as centrality of nodes, community struc-

tures, tie strength, and structural holes. There are also ad hoc features that appear

very predictive, but their success is intriguing and sometimes magical. For example,

Cheng et al. [19] found that one of the most indicative feature to the growth of a

cascade is whether any of the first a few reshares are not directly connected to the

root of the diffusion.

We consider this as a major deficiency of these machine learning approaches: their

performance heavily depends on the feature representations, yet there is no common

principle of how to design and measure the features. Is degree the correct measure

of centrality? Which algorithm should we use to extract communities, out of the

hundreds available? How accurately can we detect and measure structural holes?

How do we systematically design those “magical” features, and how do we know we

are not missing anything important? Chances are whichever decisions we make we’ll

be losing information and making mistakes, and these mistakes will be accumulated

and carried through to the prediction.

Can one overcome this deficiency? The recent success of deep learning in different

fields inspires us to investigate an end-to-end learning system for cascade prediction,

a system that pipes all the way through the network structures to the final predic-

tions without making arbitrary decisions about feature design. Such a deep learning

pipeline is expected to automatically learn the representations of the input data (cas-

cade graphs in our case) that are the most predictive of the output (cascade growth),

from a finer-granularity to increasingly more abstract representations, and allow the
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lower-level representations to update based on the feedback from the higher levels. A

deep neural network is particularly good at learning a nonlinear function that maps

these representations to the prediction, in our case the future size of a cascade. While

deep learning models have shown their great power of dealing with image, text, and

speech data, how to design a suitable architecture to learn the representations of

graphs remains a major challenge. In the context of cascade prediction, the particu-

lar barrier is how to go from representations of nodes to representing a cascade graph

as a whole.

We present a novel, end-to-end deep learning architecture named the DeepCas,

which first represents a snapshot of a cascade graph as a set of cascade paths that are

sampled through multiple random walks processes. Such a representation not only

preserves node identities but also bounds the loss of structural information. Analog-

ically, cascade graphs are represented as documents, with nodes as words and paths

as sentences. The challenge is how to sample the paths from a graph to assemble

the “document,” which is also automatically learned through the end-to-end model

to optimize the prediction of cascade growth. Once we have such a “document” as-

sembled, deep learning techniques for text data could be applied in a similar way

here. We evaluate the performance of the proposed method using real world infor-

mation cascades in two different domains, Tweets and scientific papers. DeepCas

is compared with multiple strong baselines, including feature based methods, node

embedding methods, and graph kernel methods. DeepCas significantly improves the

prediction accuracy over these baselines, which provides interesting implications to

the understanding of information cascades.

5.2 Related work

In a networked environment, people tend to be influenced by their neighbors’ be-

havior and decisions [29]. Opinions, product advertisements, or political propaganda
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could spread over the network through a chain reaction of such influence, a process

known as the information cascade [117, 10, 4]. We present the first deep learning

method to predict the future size of information cascades.

5.2.1 Cascade Prediction

Cascades of particular types of information are empirically proved to be pre-

dictable to some extent, including Tweets/microblogs [129, 118, 47, 23, 39, 131],

photos [19], videos [5] and academic papers [92]. In literature, cascade prediction

is mainly formulated in two ways. One treats cascade prediction as a classification

problem [118, 47, 19, 23], which predicts whether or not a piece of information will

become popular and wide-spread (above a certain threshold). The other formulates

cascade prediction as a regression problem, which predicts the numerical properties

(e.g., size) of a cascade in the future [118, 108]. This line of work can be further

categorized by whether it outputs the final size of a cascade [131] or the size as a

function of time (i.e., the growth of the cascade) [129]. Either way, most of the meth-

ods identified temporal properties, topological structure of the cascade at the early

stage, root and early adopters of the information, and the content being spread as

the most predictive factors.

These factors are utilized for cascade prediction in two fashions. The first mainly

designs generative models of the cascade process based on temporal or structural

features, which can be as simple as certain macroscopic distributions (e.g., of cascade

size over time) [58, 6], or stochastic processes that explain the microscopic actions

of passing along the information [129]. These generative models make various strong

assumptions and oversimplify the reality. As a result, they generally underperform

in real prediction tasks.

Alternatively, these factors may be represented through handcrafted features,

which are extracted from the data, combined, and weighted by discriminative ma-
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chine learning algorithms to perform the classification or the regression tasks [118,

19, 47, 23]. Most work in this fashion uses standard supervised learning models (e.g.

logistic regression, SVM, or random forests), the performance of which heavily rely

on the quality of the features. In general, there is not a principled and systematic

way to design these features. Some of the most predictive features are tied to par-

ticular platforms or particular cascades and are hard to be generalized, such as the

ones mentioned in the Section 5.1. Some features are closely related to the structural

properties of the social network, such as degree[19, 118], density[19, 39], and com-

munity structures [118]. These features could generalize over domains and platforms,

but many may still involve arbitrary and hard decisions in computation, such as what

to choose from hundreds of community detection algorithms available [33] and how to

detect structural holes [128]. Besides, there are also heuristic features that perform

very well in particular scenarios but it is hard to explain why they are designed as is.

Our work differs from this literature as we take an end-to-end view of cascade

prediction and directly learn the representations of a cascade without arbitary feature

design. We focus on the structures (including node identities) of cascades as temporal

and content information is not always available. In fact, content features are reported

to be much weaker predictors than structural features [19]. Using temporal signals

to predict future trend is a standard problem in time series, which is less interesting

in this scope.

5.2.2 Learning the Representation of Graphs

Our work is also related to the literature of representation learning for graphs. Net-

works are traditionally represented as affiliation matrices or discrete sets of nodes and

edges. Modern representation learning methods attempt to represent nodes as high-

dimensional vectors in a continuous space (a.k.a., node embeddings) so that nodes

with similar embedding vectors share similar structural properties (e.g., [81, 107, 38]).
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Rather than learning the representation of each node, recent work also attempts to

learn the representation of subgraph structures [78, 76, 122, 123]. Much of this work

is inspired by the huge success of representation learning and deep learning applied to

various domains such as text [7] and image [54]. For example, DeepWalk [81] makes

an analogy between the nodes in networks and the words in natural language and

uses fixed-length random walk paths to stimulate the “context” of a node so that

node representations can be learned using the same method of learning word repre-

sentations [69]. The representation of a graph can then be calculated by averaging

the embeddings of all nodes.

Another line of related work comes from the domain of graph kernels, which com-

putes pairwise similarities between graphs [12, 34, 94]. For example, the Weisfeiler-

Lehman subtree kernel (WL) [94] computes the graph similarity based on the sub-

trees in each graph. Some studies have applied deep learning techniques to improve

graph kernels [122, 75]. Though graph kernels are good at extracting structural in-

formation from a graph, it is hard for them to incorporate node identity information.

Another analogy connects graph structures to images. Motivated by representa-

tion learning of images, the topological structures of networks are first represented

using locally connected regions [78], spectral methods [26], and heat kernel signatures

[59], which could be passed through convolutional neural networks. These approaches

are insensitive to orders of nodes and have an advantage of generating the same rep-

resentation for isomorphic graphs. This nice property however comes at a price that

it is hard to incorporate the identities of nodes.

Starting in next section, we present a novel end-to-end architecture that learns the

representation of cascade graphs to optimize the prediction accuracy of their future

sizes.
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5.3 Method

In reality, we observe snapshots of the social network but may or may not observe

the exact time when nodes and edges are introduced. Similarly, we may observe

snapshots of a cascade but not its complete history. In other words, at a given time

we know who have adopted the information but not when or through whom the

information was passed through [19] (e.g., we know who cited a paper but not when

and where she found the paper). Below we define the problem so that it is closely

tied to the reality.

5.3.1 Problem Definition

Given a snapshot of a social network at time t0, denote it as G = (V,E) where

V is the set of nodes and E ⊂ V × V is the set of edges. A node i ∈ V represents

an actor (e.g., a user in Twitter or an author in the academic paper network) and

an edge (i, j) ∈ E represents a relationship tie (e.g., retweeting or citation) between

node i and j up to t0.

Let C be the set of cascades which start in G after time t0. A snapshot of cascade

c ∈ C with a duration t after its origination is characterized by a cascade graph

gtc = (V t
c , E

t
c), where V t

c is a subset of nodes in V that have adopted the cascade c

within duration t after its origination and Et
c = E ∩ (V t

c × V t
c ), which is the set of

edges in E with both ends inside V t
c . These are the edges that are potentially used

for information diffusion, as the cascade graph does not capture which edges were

actually used for diffusion.

We consider the problem of predicting the increment of the size of cascade c

after a given time interval ∆t, which is denoted as ∆sc = |V t+∆t
c |− |V t

c |. The cascade

prediction can then be formulated as, given G, t, ∆t, and {(gtc,∆sc)}c∈C , finding an

optimal mapping function f that minimizes the following objective
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O =
1

|C|
∑
c

(f(gtc)−∆sc)
2 (5.1)

In the definition, t indicates the earliness of the prediction and ∆t indicates the

horizon of the prediction. When t is smaller, we are making predictions at the early

stage of a cascade; when ∆t is larger, we are predicting the size of cascade that is

closer to its final status. These scenarios are particularly valuable but inherently

harder in reality. It is worth noting that we consider the social network structure G

as static in the prediction task. While in reality the global network does change over

time, we are doing this to control for the effect of cascades on the network structure

in this study - new edges may form due to a particular information cascade.

5.3.2 DeepCas: the End-to-End Pipeline

We propose an end-to-end neural network framework that takes as input the

cascade graph gc and predicts the increment of cascade size ∆sc. The framework

(shown in figure 5.1) first samples node sequences from a cascade graph and then feeds

the sequences into a gated recurrent neural network, where attention mechanisms are

specifically designed to learn how to assemble sequences into a “document”, so that

the future cascade size could be predicted.
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Figure 5.1: The end-to-end pipeline of DeepCas.
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5.3.3 Cascade Graph as Random Walk Paths

Given a cascade graph gc, the first component in DeepCas generates an initial

representation of gc using a set of node sequences.

Naturally, the future size of a cascade highly depends on who the information

“propagators” are, which are the nodes in the current cascade graph. Therefore, a

straightforward way to represent a graph is to treat it as a bag of nodes. However,

this method apparently ignores both local and global structural information in gc,

which have been proven to be critical in the prediction of diffusions [19]. To remedy

this issue, we sample from each graph a set of paths, instead of individual nodes. If

we make a analogy between nodes and words, paths would be analogous to sentences,

cascade graphs to documents, and a set of graphs to a document collection.

Similar to DeepWalk, the sampling process could be generalized as performing

a random walk over a cascade graph gc, the Markov chain of which is shown in

Figure 5.2. At each step there is a current node and a state for the random walk

of each diffusion graph. The starting state is S and the starting node is randomly

sampled. State S is always followed by state N , with the node becoming a randomly

selected neighbor of the current node. In state N , with probability 1 − pj, it stays

in state N and the node transitions to a randomly selected neighbor of the current

node. With probability pj, it moves to a jump state J . With continue probability po,

it jumps to a node randomly selected from the entire cascade graph, thus going back

to state N . With probability 1− po, it goes to the terminal state T , terminating the

entire random walk process.

Suppose the walker is at state N in the Markov chain and is currently visiting a

node v, it follows a transition probability p(u ∈ Nc(v)|v) to go to one of its outgoing

neighbor u ∈ Nc(v), where Nc(v) denotes the set of v’s outgoing neighbors in diffusion

graph gc. There are multiple strategies for setting transition probabilities. Given a

specific choice of scoring function sct(u) to transit to node u, the neighbor u could be
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Figure 5.2: The Markov chain of random walk.

sampled in proportion to its score:

p(u ∈ Nc(v)|v) =
sct(u) + α∑

s∈Nc(v)(sct(s) + α)
(5.2)

where α is a smoother. The scoring function sct(u) could be instantiated by but not

limited to (1) degc(u), the out-degree of node u in gc, (2) degG(u), the degree of u in

the global graph G, or (3) weight(v, u), the weight of the edge between the current

node v and its neighbor u. Likewise, when the walker is at state J and is to select a

node to jump to, the scoring function scj(u) could be set correspondingly.

p(u) =
sct(u) + α∑

s∈Vc(sct(s) + α)
(5.3)

where Vc is the node set of gc, and sct(u) could be (1) degc(u), (2) degG(u), or (3)∑
s∈Nc(u) weight(u, s).

5.3.4 Sampling sequences from a graph

The probability po of whether to perform another random jump or go to the

terminal state essentially determines the expected number of sampled sequences, while

the probability pj of whether to perform a random jump or transit to neighbors

corresponds to the sequence length. The two factors play a key role in determining

the representations of cascade graphs.

Naturally, different cascade graphs may require different parameters po and pj,
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as some are intrinsically more complex than others. Instead of fixing or manually

tuning these two hyper-parameters, we propose to learn the two probabilities in an

end-to-end manner by incorporating them to our deep learning framework. To do

this, as Figure 5.1 (b) shows, we sample long enough sequences and sufficient number

of sequences for all diffusion graphs. Denote T the sampled sequence length, K the

sampled number of sequences, where T and K are the same for all diffusion graphs,

we want to learn the actual length tc and the actual number of sequences kc we needed

for each graph gc, essentially a different parameterization of po and pj. If a sampled

sequence is shorter than the predefined length T , we pad this sequence with null

nodes in the end till length T .

Note that existing work of using random walk paths to represent graphs such

as DeepWalk and Node2Vec use fixed, predefined T and K. Automatically learning

graph-specific path counts and lengths is a major technical contribution. We leave

the learning of tc and kc to the next subsection.

5.3.5 Neural Network Models

Once we have sampled K sequences with T nodes for each diffusion graph, any

effective neural networks for sequences could be applied to the random walk paths in

a similar way as to text documents. The output of the neural network gives us the

hidden representation of individual sequences. Unlike documents whose sentences are

already written, we have to learn how to “assemble” these individual sequences into

a “document,” so that it can best represent the graph and predict its growth.

Node Embedding Each node in a sequence is represented as a one-hot vector,

q ∈ RNnode , where Nnode is the number of nodes in G. All nodes share an embedding

matrix A ∈ RH×Nnode , which converts a node into its embedding vector x = Aq, x ∈

RH .
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GRU-based Sequence Encoding The sampled sequences represent the flow of in-

formation of a specific diffusion item. To capture this information flow, we use a Gated

Recurrent Unite (GRU) [20], a specific type of recurrent neural network (RNN). When

applying GRU recursively to a sequence from left to right, the sequence representa-

tion will be more and more enriched by information from later nodes in this sequence,

with the gating mechanism deciding the amount of new information to be added and

the amount of history to be preserved, which simulates the process of information

flow during a diffusion. Specifically, denote step i the i-th node in a sequence, for

each step i with input node embedding xi ∈ RH and previous hidden state hi−1 ∈ RH

as inputs, GRU computes the updated hidden state hi = GRU(xi, hi−1), hi ∈ RH .

For now we have read the sequence from left to right. We could also read the

sequence from right to left, so that earlier nodes in the sequence could be informed

by which nodes have been affected by a cascading item passed from them. To this

end, we adopt the bi-directional GRU, which applies a forward GRU that reads the

sequence from left to right, and a backward GRU from right to left. We denote the

forward GRU as GRUfwd and backward as GRUbwd. As Figure 5.1 (c) shows, the

representation of the i-th node in k-th sequence,
←→
h k
i ∈ R2H , is computed as the

concatenation of the forward and backward hidden vectors.
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Figure 5.3: Attention to assemble the representation of the graph.
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From sequence to graph representation Given a collection of sequence repre-

sentations, where the k-th sequence with length T is represented as [
←→
h k

1, ...,
←→
h k
i , ...

,
←→
h k
T ], as displayed in Figure 5.1 (d), we attempt to learn the representation of the

cascade graph as a whole, so that it best predicts its future size. Analogically, we

are assembling a document (graph) from a large number of very long sentences. We

do this by learning the number of sentences and length of sentences per document,

through an attention mechanism in deep learning.

In particular, the random walk on a graph terminates with probability 1 − po.

From the learning perspective, we could learn the value of po by examining whether

the sampled number of sequences could represent the graph well, which in turn decides

whether the prediction task is well performed. Intuitively, we could partition the

sampledK sequences into “mini-batches.” We want to read in more mini-batches until

we could learn the graph well, simulating the action of jumping to the terminal state

in the random walk. To implement this intuition, we assume a geometric distribution

of attentions over mini-batches. If sequences in the first mini-batch of cascade gc

share attention weight pcgeo, the next mini-batch will have attention (1 − pcgeo)p
c
geo,

so on and so forth as Figure 5.3 shows. In theory, if we sample infinite number of

sequences with the geometric distribution so that K → ∞, the number of expected

mini-batches to learn will be 1/pcgeo. With this expectation, learning the parameter

pcgeo could help us decide how many sequences to read in. Note that the degree of

freedom is too high if we fit a free parameter pcgeo per cascade. Instead, we rely on

an observation that the number of sequences we need to represent a cascade graph is

correlated with its size. Therefore, we condition pcgeo on the size of graph sz(gc), more

specifically blog2(sz(gc) + 1)c. As a result, pcgeo is replaced with p
blog2(sz(gc)+1)c
geo .

We could apply similar procedure to learn sequence length. In practice, we found

that the standard multinomial distribution of attentions already work well. So we

simply assume multinomial distribution λ1, ..., λT over T nodes so that
∑

i(λi) = 1,
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where {λi} are shared across all cascade graphs.

To sum up and to give a mathematical representation, suppose the mini-batch

size is B sequences, then the k-th sequence will fall into (bk/Bc + 1)-th mini-batch,

the attention mechanism then outputs the representation for graph gc, a vector of

length 2H:

h(gc) =
K∑
k=1

T∑
i=1

(
(1− ac)bk/Bcac

)
λi
←→
h t
i, (5.4)

where the first term corresponds to the attention over sequences with geometric distri-

bution, and ac = p
blog2(sz(gc)+1)c
geo . Both ac and λi are learned through the deep learning

process.

Output module Our output module consists of a fully connected layer with one

final output unit: f(gc) = MLP(h(gc)), where MLP stands for a multi-layer percep-

tron.

5.4 Experiment setup

We present comprehensive empirical experiments using real world data sets to

evaluate the performance of DeepCas.

5.4.1 Data Sets

Most existing work evaluates their methods of predicting diffusions on a single

social network data set (e.g., [19, 23, 41]. We add another completely different,

publicly available data set to demonstrate the effectiveness and generalizability of

DeepCas and to allow readers to reproduce our results.

One of the scenario is the cascade of Tweets on Twitter. Following the practice in

existing work [87], we collect the Twitter data set which contains the cascades of
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Tweets (i.e., through retweeting) in June, 2016 from the official Decahose API (10%

sample of the entire Tweet stream). All original English tweets that are published

from June 1 to June 15 and retweeted at least once in 10 days are used for training.

Those with only one retweets are downsampled to 5%. Cascades originated on June

16 are used for validation, and cascades originated from June 17 to June 20 are used

for testing. A cascade contains the authors of the original Tweet and its retweets.

Following [13, 23], we only consider users that appear in training stage, and they form

the node set V .

We construct the global social network G using the same Tweet stream in April

and May 2016. As the follower/followee relations are not available in the data and

Twitter does not disclose the retweet paths, we follow existing work [87] and draw an

edge from Twitter user A to B if either B retweeted a message of A or A mentioned

B in a Tweet. Comparing to a follower/followee network, this network structure

accumulates all information cascades and reflects the truly active connections between

Twitter users. We weigh an edge based on the number of retweeting/mentioning

events between the two users. To construct cascade graphs, we choose t, the duration

of cascade since the original Tweet was posted, from a range of t = 1, 3, 5 days. We

compute the increment of cascade size after t for the next ∆t days, where ∆t = 1, 3, 5

days. The combination of t and ∆t yields a total of 3× 3 = 9 configurations.

In the second scenario, we evaluate the prediction of the cascades of scientific

papers. We collect the AMiner data set using the DBLP citation network released

by ArnetMiner 1. We construct the global network G based on citations between

1992 and 2002. That is, an edge draws from node A to B if author A is ever cited

by B (which indicates that B might have found a reference from reading A’s papers).

A cascade of a given paper thus involves all authors who have written or cited that

paper. Papers published between 2003 and 2007 are included in the training set.

1https://aminer.org/citation, DBLP-Citation-network V8, retrieved in August 2016.
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Papers published in 2008 and 2009 are used for validation and testing, respectively.

For the earliness and horizon of predictions, we set t = 1, 2, 3 years and ∆t = 1, 2, 3

years respectively.

In both scenarios, we notice that the growth of all the cascades follows a power-law

distribution, where a large number of cascades did not grow at all after t. Therefore

we downsample 50% graphs with zero growth (to the numbers shown in Table 5.1)

and apply a logarithm transformation of the outcome variable (increment of cascade

size), following existing literature [55, 108].

Table 5.1: Statistics of the data sets.

Set Twitter AMiner

# nodes in G All 354,634 131,415

# edges in G All 27,929,863 842,542

t 1 day 3 days 5 days 1 year 2 years 3 years

train 25,720 26,621 26,871 3,044 17,023 34,347
# cascades val 1,540 1,563 1,574 509 3,665 7,428

test 6,574 6,656 6,663 517 3,512 7,337

train 26.2 34.9 39.1 16.4 16.8 19.7
Avg. nodes val 46.1 62.1 69.7 10.6 13.6 17.2

per gc test 50.8 65.8 72.8 8.8 12.6 16.2

train 99.0 153.8 188.3 56.8 54.9 68.5
Avg. edges val 167.0 241.4 296.5 29.5 40.9 55.3

per gc test 162.3 242.2 289.0 22.6 32.9 44.5

5.4.2 Evaluation Metric

We use the mean squared error (MSE) to evaluate the accuracy of predictions,

which is a common choice for regression tasks and used in previous work of cascade

prediction [108, 129, 55]. As noted in Section 5.3.1, we predict a scaled version of the

actual increment of the cascade size, i.e., yi = log2(∆si + 1).
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5.4.3 Baseline methods

We compare DeepCas with a set of strong baselines, including feature-based meth-

ods used for cascade prediction, methods based on nodes embeddings, and alternative

deep learning methods to learn graph representations.

Features-. We include all structural features that could be generalized across

data sets from recent studies of cascade prediction [19, 41, 23, 110]. These features

include:

Centrality and Density. Degree of nodes in the cascade graph g and the global

network G, average and 90th percentile of the local and global degrees of nodes in g,

number of leaf nodes in g, edge density of g, and the number of nodes and edges in

the frontier graph of the cascade, which is composed of nodes that are not in g but

are neighbors of nodes in g.

Node Identity. The presence of node ids in g is used as features.

Communities. From both the cascade graph and the frontier graph, we compute

the number of communities [11], the overlap of communities, and Gini impurity of

communities [41].

Substructures. We count the frequency of k-node substructures (k ≤ 4) [110].

These include nodes (k = 1), edges (k = 2), triads (e.g., the number of closed and

open triangles) and quads from both the cascade graph and the frontier graph.

-linear and -deep. Once the cascade is represented as a set of features above,

they are blended together using linear regression (denoted as Features-linear) with

L2 regularization, as other linear regressors such as SVR empirically perform worth

on our task. To obtain an even stronger baseline, we feed the feature vectors to MLP

(denoted as Features-deep).

OSLOR selects important nodes as sensors, and predict the outbreaks based on

the cascading behaviors of these sensors [23].

Node2vec [38] is selected as a representative of node embedding methods. As a
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generalization of DeepWalk [81], node2vec is reported to be outperforming alternative

methods such as DeepWalk and LINE [107]. We generate walks from two sources: (1)

the set of cascade graphs {g} (2) the global network G. The two sources lead to two

embedding vectors per node, which are concatenated to form the final embedding of

each node. The average of embeddings of all nodes in a cascade graph is fed through

MLP to make the prediction.

Embedded-IC [13] represents nodes by two types of embeddings: as a sender

or as a receiver. For prediction, the original paper used Monte-Carlo simulations

to estimate infections probabilities of each individual user. To predict cascade size,

we experiment with two settings: (1) learn a linear mapping function between the

number of infected users and the cascade size; (2) follow the setting of Node2Vec by

using the average of embeddings of all nodes in the cascade graph, which is then piped

through MLP. We find that the second setting empirically performs better than the

first one. We therefore report the performance of the latter.

PSCN applies convolutional neural networks (CNN) to locally connected regions

from graphs [78]. We apply PSCN to both the diffusion graphs and the frontier

graphs. The last hidden layer of the cascade graph and that of the frontier graph are

concatenated to make the final prediction.

Graph kernels. There are a set of state-of-the-art graph kernels [78]: the

shortest-path kernel (SP) [12], the random walk kernel (RW) [34], and the Weisfeiler-

Lehman subtree kernel (WL) [94]. The RW kernel and the SP kernel are too compu-

tationally inefficient, which did not complete after 10 days for a single data set in our

experiment. We therefore exclude them from the comparison, a decision also made

by in [78, 123]. For the WL kernel, we experiment with two settings: WL-degree,

where node degree is used as the node attribute to build subgraphs for each cascade

and frontier graph; WL-id, where node id is used as the attribute. The second set-

ting is to test whether node identity information could be incorporated into graph
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kernel methods.

Hyper-parameters. All together we have 8 baselines. All their hyper-parameters

are tuned to obtain the best results on validation set for each configuration (9 in total)

of each data set. For linear regression, we chose the L2-coefficient from {1, 0.5, 0.1,

0.05, ..., 10−8}. For neural network regression, the initial learning rate is selected from

{0.1, 0.05, 0.01, ..., 10−4}, the number of hidden layers from {1, 2, ..., 4}, the hidden

layer size from {32, 64, ..., 1024}, and L1- and L2-coefficient both from {1, 0.5, 0.1,

0.05, ..., 10−8}. Following [78] for PSCN, the width is set to the average number of

nodes, and the receptive field size is chosen between 5 and 10. The height parameter

of WL is chosen from {2, 3, 4}. The candidate embedding size set is selected from

{50, 100, 200, 300} for all methods that learn embeddings for nodes. For node2vec,

we follow [38], p, q are selected from {0.25, 0.50, 1, 2, 4}, the length of walk is chosen

from {10, 25, 50, 75, 100}, and the number of walks per node is chosen from {5, 10,

15, 20}.

5.4.4 DeepCas and the Variants

We compare a few variants of DeepCas with the 8 baselines. We sample K =

200 paths each with length T = 10 from the cascade graph without tuning the

parameters. As described in Section 5.3.4 and 5.3.5, the attention mechanism will

automatically decide when and where to stop using the sequences. The mini-batch size

is set to 5. The smoother α is set to 0.01. The embedding sizes for the Twitter and

AMiner data set are set to 150 and 50 respectively. The embeddings are initialized

by concatenating embedding learned by Node2Vec from both all diffusion graphs {g}

in training set and the global network G. The node2vec hyper-parameters p and q

are simply set to 1.

We use DeepCas-edge, DeepCas-deg, and DeepCas-DEG to denote three

version of DeepCas, which randomly walk with transition probabilities proportional
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to edge weights, node degree in the cascade graph, and node degree in the global

network. For comparison, we also include three simplified versions of DeepCas:

GRU-bag represents a cascade graph as a bag of nodes and feeds them through

our GRU model. This is similar to setting the length of random walk paths to 1,

which examines whether sequential information is important for cascade prediction.

GRU-fixed uses a fixed path length t and a fixed number of sequences k, without

using the attention mechanism to learn them adaptively. Hyper-parameters t and k

are tuned to optimal on the validation sets, the values of which are selected from

{2, 3, 5, 7, 10} and from {50, 100, 150, 200}, respectively.

GRU-root uses the attention mechanism, but starts sampling a random walk

path only from roots, which are nodes who started the diffusion. If there are multiple

roots, we take turns to sample from them. This examines whether it is important to

perform random jumps in the walks over the graph.

5.5 Experiment results

In this section, we present the results of the experiments as designed in Section

5.4.

5.5.1 Overall performance

The overall performance of all competing methods across data sets are displayed

in Table 5.2. The last three rows of each table show the performance of the complete

versions of our methods, which outperform all eight baseline methods with a statis-

tically significant drop of MSE. Please note that the numbers in Table 5.2 are errors

of log-transformed outcomes. If we translate them back to raw sizes, the numerical

differences between the methods would look larger.

The difference between Features-deep and Features-linear is intriguing, which

shows that deep learning does not always perform better than linear methods if we
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Table 5.2: Performance measured by MSE (the lower the better), where original label
∆s is scaled to y = log2(∆s+ 1).

(a) Twitter

t 1 day 3 days 5 days
∆t 1 day 3 days 5 days 1 day 3 days 5 days 1 day 3 days 5 days

Features-deep 1.644 2.253 2.432 1.116 1.687 2.133 0.884 1.406 1.492
Features-linear 1.665∗∗ 2.256 2.464∗∗ 1.123 1.706∗ 2.137 0.885 1.425∗ 1.505

OSLOR 1.791∗∗∗ 2.485∗∗∗ 2.606∗∗∗ 1.179∗∗∗ 1.875∗∗∗ 2.181∗∗∗ 0.990∗∗∗ 1.539∗∗∗ 1.778∗∗∗

node2vec 1.759∗∗∗ 2.384∗∗∗ 2.562∗∗∗ 1.145∗∗ 1.760∗∗∗ 2.143 0.895 1.460∗∗∗ 1.544∗∗∗

Embedded-IC 2.079∗∗∗ 2.706∗∗∗ 2.944∗∗∗ 1.277∗∗∗ 2.072∗∗∗ 2.316∗∗∗ 1.012∗∗∗ 1.743∗∗∗ 1.955∗∗∗

PSCN 1.735∗∗∗ 2.862∗∗∗ 2.911∗∗∗ 1.134∗ 1.784∗∗∗ 2.411∗∗∗ 0.893 1.461∗∗∗ 1.566∗∗∗

WL-degree 1.778∗∗∗ 2.568∗∗∗ 2.691∗∗∗ 1.177∗∗∗ 1.890∗∗∗ 2.205∗∗∗ 0.939∗∗∗ 1.568∗∗∗ 1.825∗∗∗

WL-id 1.805∗∗∗ 2.611∗∗∗ 2.745∗∗∗ 1.357∗∗∗ 1.967∗∗∗ 2.197∗∗∗ 0.945∗∗∗ 1.602∗∗∗ 1.853∗∗∗

Proposed methods

GRU-bag 1.769∗∗∗ 2.374∗∗∗ 2.565∗∗∗ 1.172∗∗∗ 1.822∗∗∗ 2.159 0.932∗∗∗ 1.472∗∗∗ 1.594∗∗∗

GRU-fixed 1.606∗∗ 2.149∗∗∗ 2.286∗∗∗ 1.132∗ 1.675 1.825∗∗∗ 0.891 1.376∗∗∗ 1.513∗

GRU-root 1.572∗∗∗ 2.202∗∗ 2.147∗∗∗ 1.097 1.726∗∗∗ 1.762∗∗∗ 0.874 1.406 1.489
DeepCas-edge 1.480∗∗∗ 1.997∗∗∗ 2.074∗∗∗ 1.013∗∗∗ 1.567∗∗∗ 1.735∗∗∗ 0.854∗∗∗ 1.322∗∗∗ 1.422∗∗∗

DeepCas-deg 1.492∗∗∗ 1.933∗∗∗ 2.033∗∗∗ 1.039∗∗∗ 1.597∗∗∗ 1.707∗∗∗ 0.854∗∗∗ 1.330∗∗∗ 1.412∗∗∗

DeepCas-DEG 1.487∗∗∗ 2.124∗∗∗ 2.081∗∗∗ 1.012∗∗∗ 1.644∗∗∗ 1.724∗∗∗ 0.849∗∗∗ 1.409 1.457∗∗∗

(b) AMiner

t 1 year 2 years 3 years
∆t 1 year 2 years 3 years 1 year 2 years 3 years 1 year 2 years 3 years

Features-deep 1.748 2.148 2.199 1.686 1.876 1.954 1.504 1.617 1.686
Features-linear 1.737 2.145 2.205 1.690 1.887 1.964 1.529∗∗ 1.626 1.697

OSLOR 1.768 2.173 2.225 1.897∗∗∗ 1.964∗∗∗ 2.057∗∗∗ 1.706∗∗∗ 1.738∗∗∗ 1.871∗∗∗

node2vec 1.743 2.153 2.209 1.702 1.921∗∗∗ 1.999∗∗∗ 1.563∗∗∗ 1.708∗∗∗ 1.816∗∗∗

Embedded-IC 2.117∗∗∗ 2.576∗∗∗ 2.751∗∗∗ 2.113∗∗∗ 2.429∗∗∗ 2.551∗∗∗ 1.947∗∗∗ 2.183∗∗∗ 2.285∗∗∗

PSCN 1.880∗∗ 2.332∗∗∗ 2.424∗∗∗ 1.853∗∗∗ 2.164∗∗∗ 2.092∗∗∗ 1.770∗∗∗ 1.822∗∗∗ 1.857∗∗∗

WL-degree 1.742 2.234∗ 2.350∗∗ 1.780 2.037∗∗∗ 2.079∗∗∗ 1.586∗∗∗ 1.762∗∗∗ 1.864∗∗∗

WL-id 2.566∗∗∗ 2.779∗∗∗ 2.900∗∗∗ 2.100∗∗∗ 2.259∗∗∗ 2.297∗∗∗ 2.029∗∗∗ 2.076∗∗∗ 2.086∗∗∗

Proposed methods

GRU-bag 1.783 2.217 2.242 1.712∗ 1.982∗∗∗ 1.988∗∗ 1.614∗∗∗ 1.743∗∗∗ 1.856∗∗∗

GRU-fixed 1.703 2.064 2.151 1.569∗∗∗ 1.735∗∗∗ 1.805∗∗∗ 1.430∗∗∗ 1.537∗∗∗ 1.564∗∗∗

GRU-root 1.816∗ 2.222∗ 2.331∗∗ 1.890∗∗∗ 1.972∗∗∗ 2.146∗∗∗ 1.660∗∗∗ 1.778∗∗∗ 1.813∗∗∗

DeepCas-edge 1.668∗ 2.016∗∗ 2.084∗ 1.545∗∗∗ 1.693∗∗∗ 1.799∗∗∗ 1.402∗∗∗ 1.477∗∗∗ 1.548∗∗∗

DeepCas-deg 1.684∗ 2.043∗ 2.113∗ 1.544∗∗∗ 1.716∗∗∗ 1.792∗∗∗ 1.407∗∗∗ 1.469∗∗∗ 1.545∗∗∗

DeepCas-DEG 1.685∗ 2.036∗ 2.107∗ 1.540∗∗∗ 1.700∗∗∗ 1.788∗∗∗ 1.404∗∗∗ 1.480∗∗∗ 1.527∗∗∗

“***(**)” means the result is significantly better or worse over Features-deep according to paired t-test test at level
0.01(0.1).

have already found a set of good features. It is more important to learn end-to-end

from the data.

Node2Vec and Embedded-IC do not perform well in cascade prediction. Taking

the average of node embeddings as the graph representation is not as informative as

representing the graph as a set of paths, even if the node embeddings are also fed

into a deep neural net to make predictions. By comparing WL-degree and WL-id,

we can see that it is hard for graph kernels to incorporate node identities. Simply

using identities as node labels degenerates performance. This is because graph kernels

rely on node labels to compute similarity between graphs. Using node id to measure
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similarity could cause serious sparsity problem.

The three simplified versions of DeepCas, GRU-bag, GRU-fixed, and GRU-root

all lead to certain degradation of performance, comparing to the three DeepCas mod-

els. This empirically proves the effectiveness of the three important components of

DeepCas. First, sampling a set of paths to represent a graph instead of averaging

the representations of nodes is critical, as it facilitates the learning of structural in-

formation. Second, learning the random walks by adaptively deciding when to stop

sampling from a particular path and when to stop sampling more paths is more effec-

tive than using a fixed number of fixed-length paths (which is what DeepWalk does).

The suitable numbers and lengths might be associated with the complexity and the

influence power of a cascade graph. If a cascade graph is more complex and more

“influential,” it needs more paths and longer paths to represent its power. Third,

sampling paths only from the root is not adequate (which is what most generative

models do). Randomly jumping to other nodes could make the graph representation

carry more information of the cascade structure and handle missing data. In a way,

this is related to the “mysterious” feature used in Cheng et al. [19], i.e., whether

some early adopters are not directly connected to the root.

Comparing the performance of using different t and ∆t, we see a general pattern

that can be applied to all methods: the larger the snapshot time t is, the easier to

make a good prediction. This is because longer t makes more information available.

While for ∆t, it is the opposite, as it is always harder to make long-term predictions.

Training DeepCas is quite efficient. On a machine with 2.40 GHz CPU, 120G

RAM and a single Titan X GPU, it takes less than 20 minutes to generate random

walk paths for a complete data set and less than 10 minutes to train the deep neural

network.

We also investigate cascades for which DeepCas makes more mistakes than the

baselines, and also the other way around. DeepCas tend to perform better on larger
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and denser graphs. These structures are more complex and harder to be represented

as a bag of hand-crafted features. An end-to-end predictor without explicit feature

design works very well in these cases. For the sake of space, we omit the detailed

statistics here.

5.5.2 Interpreting the Representations

We have empirically shown that DeepCas could learn the representation of cascade

graphs that incorporates both structures and node identities. Qualitatively, we have

not assessed what the learned representation actually captures from these information.

Indeed, one concern of applying deep learning to particular domains is that the models

are black-boxes and not easy to interpret. For us, it is intriguing to know whether the

learned representation corresponds to well-known network properties and structural

patterns in literature.

To do this, we select a few hand-crafted features which are computed for the

feature based baselines. These features characterize either global or local network

properties, and are listed in Figure 5.4. In each subfigure, we layout the cascade

graphs as data points in the test set to a 2-D space by feeding their vector repre-

sentations output by the last hidden layer of DeepCas to t-SNE [11], a commonly

used visualization algorithm. Cascade graphs with similar vector representations are

placed closely. To connect the hand-crafted features with the learned representations,

we color each cascade graph (a point in the 2-D visualization) by the values of each

feature (e.g., network density). If we eyeball a pattern of the distribution of colors in

this 2-D layout, it suggests a connection between the learned representation and that

network property. We also color the layout by the ground-truth labels (increment of

cascade size). If the color distribution of labels looks somewhat correlated with the

color distribution of a network property, we know this property attributes to cascade

prediction, although not through a hand-crafted feature.

96



As we observe, DeepCas could capture structural properties like the number of

open, closed triangles, and the number of communities. For example, in the Fig-

ure 5.4 (e), the points (cascade graphs) clustered to the bottom right have the fewest

communities, while graphs in the top left have the most. Cascade graph with a

larger number of communities implies that many early adopters may lie in between

bigger communities, which are likely to be structural holes in the global network.

In literature [14], nodes spanning structural holes are likely to gain social capital,

promoting the growth of its ego-net. Indeed, when we compare the color scheme of

5.4(g) with 5.4(i), we can see that the number of communities in a cascade graph is

indeed positively correlated with its growth.

Figure 5.4 (f) plots the average global degree of nodes in each cascade graph.

The pattern suggests that DeepCas not only captures the structural information

from individual cascade graphs, but also incorporates the global information into

the graph representation. How did this happen? Although we did not explicitly

represent the global network G (or the frontier graphs), DeepCas is likely to learn

useful global network information from the many cascade graphs in training (similar to

a model that captures collection-level information from the input of many individual

documents), and incorporate it into the high-level representation of a cascade graph.

Some additional observations can be made from Figure 5.4. First, as the number

of open and closed triangles are actually important features used for graph prediction

tasks [110], we can see that DeepCas has automatically learned these useful features

without human input. Second, since edge density is a function of the number of

edges and nodes, DeepCas learns not only the number of edges and nodes (we do

not show the node property in Figure 5.4, but this is true), but also their none-linear

relationship that involves division.
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5.6 Discussion and Conclusion

We present the first end-to-end, deep learning based predictor of information cas-

cades. A cascade graph is first represented as a set of random walk paths, which

are piped through a carefully designed GRU neural network structure and an atten-

tion mechanism to predict the future size of the cascade. The end-to-end predictor,

DeepCas, outperforms feature-based machine learning methods and alternative node

embedding and graph embedding methods.

While the study adds another evidence to the recent successes of deep learning

in a new application, social networks, we do wish to point the readers to a few more

interesting implications. First, we find that linearly combined, hand-crafted features

perform reasonably well in cascade prediction, which outperform a series of node

embedding, graph embedding, and suboptimal deep learning methods. Comparing to

other data mining domains, social network is a field where there exists rich theoretical

and empirical domain knowledge. Carefully designed features inherited from the

literature are already very powerful in capturing the critical properties of networks.

The benefit of deep learning in this case really comes from the end-to-end procedure,

which is likely to have learned high-level features that just better represent these

network properties. Comparing to deep learning methods, feature-based methods do

have their advantages (if the right features are identified), as both the results and

the importance of features are easier to interpret. For social network researchers, it

is perhaps a good idea to interpret DeepCas as a way to test the potential room to

improve cascade prediction, instead of as a complete overturn of the existing practice.

Indeed, it is intriguing to pursue how to design better measurements of the classical

network concepts (e.g., communities and centrality), based on the results of DeepCas.

Another interesting finding is that different random walk strategies perform better

and worth in different scenarios, and all better than bag of node embeddings. This

is where prior knowledge in social networks literature may kick in, by incorporating
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various contagion/diffusion processes to generate initial representations of cascade

networks. How to choose from multiple cascading processes itself is an interesting

question of reinforcement learning.

Finally, to make our conclusion clean and generalizable, we only utilized the net-

work structure and node identities in the prediction. It is interesting to incorporate

DeepCas with other types of information when they are available, e.g., content and

time series, to optimize the prediction accuracy on a particular domain.

99



(a) # closed triangles. (b) # open triangles.

High

Low

(c) # communities. (d) # communities.

(e) Edge density. (f) Avg. degree in G.

(g) # leaf nodes. (h) # edges.

(i) Increment of
diffusion size on

Twitter.

(j) Increment of
diffusion size on

AMiner.

Figure 5.4: Feature visualization. Every point is a cascade graph in test set. Every
layout is colored (red: high, blue: low) using hand-crafted network properties or the
ground-truth, labeled under each subfigures. The left column displays graphs from
Twitter, while the right column shows AMiner.
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CHAPTER VI

Joint Modeling of Text and Networks for Cascade

Prediction

The DeepCas model takes into account the global network structure for the rep-

resentation learning of cascade graphs. In addition to the global context, another

important source of information that resides in cascade graphs is text. A diffusion

item can be described by a text message, and nodes participating diffusions are also

associated with text. Text provides valuable information for the learning of graphs,

especially when nodes of incoming cascades rarely participate in previous diffusions,

leading to a lack of structural information. In the extreme case, new nodes that

are absent in the training stage has no structural information available in the test

stage. Under these circumstances, text information could be leveraged to learn the

representation of nodes, which assembles the graph representation. We introduce a

new end-to-end learning method that joint models of text and networks for cascade

prediction. A gating mechanism is introduced to dynamically fuse the structural and

textual representations of nodes based on their respective properties. To incorporate

the text information associated with both the item being diffused and the nodes in

the cascade, attentions are employed over the nodes’ content based on their interac-

tions with the item’s content. Empirical evaluations demonstrate that incorporating

text information benefits the cascade prediction task significantly, and that our pro-
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posed model outperforms alternative methods that combines structural information

and text information.

6.1 Introduction

DeepCas introduced in Chapter V has successfully approached the problem of

learning network representation in the context of the global network structure. What

has been left out is the content of the cascade. Indeed, textual content is an important

source of information that often presents in a cascade. The item being diffused is

usually in the form of a text message or can be described by text – Tweets, posts,

and scientific papers. On the other hand, users who are passing these items along are

also associated with rich text information, which often indicates their preferences or

interests. For example, a Twitter user has a history of Tweets and retweets; every

researcher has a list of publications.

In a machine learning perspective, text could greatly complement structures, es-

pecially when the nodes of a cascade (a test example) have rarely participated in

previous cascades (training examples), causing a lack of structural information for

these nodes. In the extreme case, incoming cascades may introduce new nodes that

are absent from the history (training cascades). If the representation of a cascade is

only learned from the structural relationships of nodes, which is exactly what Deep-

Cas does, the learned embedding vectors will not be available for the new nodes. Text

information helps in these cases, based on the intuition that nodes with similar text

content are likely to be close to each other in the embedding space and nodes with

similar content to the diffused item are likely to adopt the item. This motivates us

to jointly model text and networks, so that we can effectively embed all nodes into

the hidden space, which forms the basis of learning good representations of graphs.

In this work, we extend DeepCas by equipping it with the capability to handle text.

In literature, researchers have explored various approaches to incorporating text
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content into the learning of node representations [124, 79]. How to go beyond node

to learn representation for the entire graph with the presence of text content is not

well studied. There is another line of research called multimodal learning, which

learns from multiple modalities (e.g., text, images, and audio). Common approaches

of multimodal learning aim to learn a shared representation from different modalities

[77, 98]. In our context, however, simply treating graph structure as one modality

and the aggregated text content from graph nodes as another leads to significant loss

of information. This is due to the complexity of information networks – text isn’t

present as a single document for a cascade, but resides in individual nodes, and a

cascade is a complex system of nodes and edges. Moreover, independent from the

graph structure is the item being diffused, which is also associated with a piece of

text. To better handle the cascade prediction task, a model considering the special

nature of information networks is needed.

To utilize the structural and textual information of nodes in a better way, we

introduce a gating mechanism to dynamically fuse the node representations from two

sources, based on how well each representation is learned. To incorporate the text

information from both the item being diffused and the nodes involved in the cascade,

an attention mechanism is employed over the content of nodes, which is conditioned

on their interactions with the content of the item. Empirical evaluations demonstrate

that incorporating text information benefits the cascade prediction task significantly,

and that our proposed model outperforms alternative combination methods, methods

that use manually designed features, methods that use standard concatenation of text

and structure information, and methods using multimodal learning.

6.2 Related work

A considerable amount of attention has been devoted to joint modeling of text

and networks, especially for the area of topic modeling. Mei et al. [67] propose to
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regularize topic models based on network structure. Following this line, various topic

models considering both factors are developed [64, 16].

More recently, researchers begin to explore the possibility of incorporating text

contents to learn node representations. Yang et al. [124] propose text-associated

DeepWalk [81] to incorporate text features into the matrix factorization framework.

TriDNR proposed in [79] captures the relationships between node and its words by

maximizing the co-occurrence of word sequences given this node. These studies focus

on learning node representations. How to learn representation for the entire graph

with the presence of text information is still not well studied.

A general line of research related to our work is multimodal deep learning, which

focuses on learning from different modalities (e.g., text, images and audio). Instead

of concatenating representations learned from different sources, common approaches

of multimodal learning aim to learn a shared representation from different modalities

[77, 98]. This practice incorporates correlations across the modalities, and is robust

to situations where some modalities are absent. To improve model’s ability to predict

missing modalities, Sohn et al. [97] proposed to minimize the information distance

between data modalities. Our problem setting is more complicated than the general

setting of multimodal deep learning. If we simply treat graph structure as one modal-

ity and aggregated text content from all graph nodes as another modality, there will

be a significant loss of information. A model specific to the task has to be designed

to account for the fact that text resides in each node, while nodes and edges consist

of the graph, and there is text on the graph level – diffusion items can be described

by text.

6.3 Method

In this section, we will first describe notations in addition to the ones used in

DeepCas, followed by the proposed method.
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6.3.1 Notations for Text Content

We have given the problem definition of cascade prediction in Section 5.3.1, which

remains the same in this chapter. Here we introduce additional notations for text

information on both nodes and diffusion items. Specifically, each node v ∈ V at time

t0 is associated with a text document dt0v = {w1, w2, ..., w|dt0v |}, where wk is k-th word

tokens in document dt0v . For example, a Twitter user can have a document that is

a concatenation of all her history tweets. If a node has no text information at time

t0, this list will simply be empty. Without confusion, we will omit t0, and simply

use dv in the following discussion. For each cascade c ∈ C, there is a text document

dc = {w1, w2, ..., w|dc|}.

Originally, a cascade graph gtc is characterized by V t
c and Et

c, where V t
c are

nodes that have adopted the cascade c within duration t after its origination and

Et
c denotes edges. When text is considered, a cascade graph can be represented as

gtc = (V t
c , E

t
c, {dtv, v ∈ V t

c }, dc), where {dtv, v ∈ V t
c } is a set of text documents of the

cascade adopters.

6.3.2 The pipeline to jointly model structure and text

The proposed framework to model structure and text jointly is shown in Figure

6.1. It takes as input the cascade graph gc and predicts the increment of cascade

size ∆sc. The first two steps of the framework is the same as DeepCas, which first

samples node sequences from cascade graphs and then feeds the sequences into a

gated recurrent neural network. Figure 6.1 (c) shows the major difference, where a

gating mechanism is employed to fuse the structural and textural representation of

nodes. After that, the same attention mechanism is used to assemble sequences into

graph representation, so that the future cascade size could be predicted.
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Figure 6.1: The end-to-end pipeline to jointly model structure and text.

6.3.3 Modeling structure

The structural representation of nodes could be directly obtained from the original

DeepCas model. In Figure 6.1 (c), the representation of node v output by GRU is

←→
hv ∈ R2H , where H is the size of embedding vectors. This representation, calculated

based on its relationships to neighboring nodes, captures the structural information

of each node. Therefore,
←→
hv could be treated as the structural representation of node

v.

6.3.4 Modeling text

Text representation of nodes can be simply computed as mv = φ(dv), where dv is

the text document of node v. The function φ(·), which could be any one like CNN or

RNN, abstracts the representation of text.

Modeling node text in this way does not account for its interaction with the item

being diffused. Consider an example of a researcher who is an expert in natural

language processing. This researcher might have a big influence when propagating a

machine translation paper, but probably not an image recognition paper. In other

words, the text representation of nodes could change dynamically with respect to the

cascade text dc, and thus need to be calculated as mv = φ(dv, dc).

To account for this dynamism, we apply an attention mechanism over the node
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text. By conditioning attention on the cascade text, different parts of the node text

could be attended given the cascade text. The structure of the attention mechanism

could be implemented by a memory network [99], where each memory cell stores one

word of node text, and cascade text is the input question.

6.3.5 Fusing structure and text representation

Jointly learning the representation of nodes could be as simple as a concatenation

of its structural and textual representation. However, this concatenation learns to

assign a global weight of importance to each source, failing to consider the uniqueness

of nodes. On one hand, some nodes appear so frequently in cascades that structural

embedding is already sufficient to represent the node. On the other hand, some

nodes have rich text information to be utilized. Finally, there are nodes with scarce

information from both sources.

In order to take into account specific properties of each node, we design a gating

mechanism to dynamically fuse the structural and textual representations of nodes.

The gates control how information flows by measuring the informativeness of each

source. The informativeness of structural information, i
(s)
v , can be simply measured

by fq(v), the frequency of node v occurred in the training set, scaled by logarithm:

i(s)v = log(fq(v + 1)). (6.1)

To measure the informativeness of text, we compute the match between the node

text and the cascade text, as users who are constantly promoting certain topics are

likely to have larger influence in those topics. One thing to be noted is that there are

also some general topics that match well with a large population of users. To account

for this factor, we are actually measuring how much better the node text matches the

cascade text than average. Similar to negative sampling [69], the match of average
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nodes can be approximately computed by randomly sampling a node set Vs ⊆ V . In

this way, the informativeness of text i
(t)
v is calculated as:

i(t)v = ψ(dv)
Tψ(dc)−

1

|Vs|
∑
v′∈Vs

ψ(dv′)
Tψ(dc), (6.2)

where ψ(·) computes the document representation simply by taking the average of

word embeddings.

Given the two measures i
(s)
v and i

(t)
v , we can now use two gates g

(1)
v and g

(2)
v to

distinguish the three cases mentioned above:

g(1)
v = σ(W (1)[i(s)v ; i(t)v ]) (6.3)

g(2)
v = σ(W (2)[i(s)v ; i(t)v ]) (6.4)

rv = (1− g(1)
v ) ·

(
(1− g(2)

v ) ·
←→
hv + g(2)

v ·mv

)
+ g(1)

v · e, (6.5)

where σ(x) = 1/(1 + exp(x)) is the sigmoid function, · represents an element-wise

product, and e is an embedding vector learned globally that represents nodes with

neither rich structural nor textual information. If gate g
(1)
v is close to one, it chooses

information more from the global embedding e. If g
(2)
v is close to one, it allows more

information from text, rather than structure, to flow through.

6.3.6 From sequence to graph representation

The rest of the framework basically follows DeepCas, except that the formation

of the final graph representation is based on the fused representation rv, rather than

the structural representation
←→
hv .
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6.3.7 Multi-task learning

So we have had a workable pipeline to joint model structure and text. As an

addition, we explore here whether additional training signals could help for the task

of cascade prediction. We do this in an unsupervised manner, without requiring

additional ground-truth labels.

Remember that when we compute the informativeness of text i
(t)
v , we are com-

paring the match score of nodes in the cascade with a random set of nodes. This

could be further formulated as a pairwise ranking task, based on the intuition that

the text of cascade adopters is likely to have a better match with the cascade text

than random nodes. Specifically, denote scv = ψ(dv)
Tψ(dc) the score of node v, and

scVs =
1

|Vs|
∑

v′∈Vs ψ(dv′)
Tψ(dc) the average score of node set Vs. Given a pair of

scores (scv, scVs), we train our model in a way that it could rank scv higher than scVs .

To this end, for half of the nodes v ∈ Vc in cascade, we generate (data, label) tuples

as ((scv, scVs), 1); for the rest nodes, both the score pair and the label are reversed:

((scVs , scv),−1).

We train this ranking task together with the main task of cascade prediction.

6.4 Experiment setup

6.4.1 Data Sets

Following Section 5.4, we continue to use Twitter and AMiner as our data sets.

To avoid using future information, we only use a piece of text of a node if the text

is generated before training time. Specifically for Twitter, we collect user tweets

and retweets in April and May 2016. All tweets of a user in this period is considered

as the node text. For AMiner, we gather all titles of each author’s publications

between 1992 and 2002.

In previous work [61, 23], new nodes that only appear in test stage are not in-
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cluded. This time these new nodes are added back, which is more like the real setting.

6.4.2 Baseline methods

Apart from strong baselines in Chapter V, we additionally compare with node

embedding methods that model text content of nodes, and variants of DeepCas that

combine textual information.

Features-deep. In additional to features used in Chapter V, we include text

based features, including ngrams (n = 1, 2, 3), the average of word embeddings, and

topic distribution of text, which is found by Latent Semantic Analysis (LSA) [25],

from both nodes and cascades. The features are fed to a deep MLP network.

Node2vec [38]. We concatenate the average of node embeddings and word em-

beddings of both node and cascade text, which is fed through MLP to make the

prediction.

TriDNR [79]. TriDNR is a node embedding method that captures the relation-

ships between node and its words by maximizing the co-occurrence of word sequences

given this node. Its original objective function includes three components: network

structure, text, and node labels. Since we do not have node labels, we only optimize

for the first two components. As node text is already incorporated into the node

embedding, we only use the average of node embedding and embedding of cascade

text for prediction.

DeepCas proposed in Chapter V, which does not consider text information. Since

the three versions of DeepCas, DeepCas-edge, DeepCas-deg, and DeepCas-DEG, per-

form similarly, we simply choose DeepCas-edge for comparison. All the newly pro-

posed methods will be based on DeepCas-edge, which is shortened as DeepCas for

simplicity.

Hyper-parameters. Following Chapter V, the hyper-parameters of baselines

are tuned to obtain the best results on validation set for each configuration of each
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data set. For neural network regression, the initial learning rate is selected from

{0.1, 0.05, 0.01, ..., 10−4}, the number of hidden layers from {1, 2, ..., 4}, the hidden

layer size from {32, 64, ..., 1024}, and L1- and L2-coefficient both from {1, 0.5, 0.1,

0.05, ..., 10−8}. The candidate embedding size set is selected from {50, 100, 200} for

all methods that learn embeddings for nodes and text. For node2vec, we follow [38],

p, q are selected from {0.25, 0.50, 1, 2, 4}, the length of walk is chosen from {10, 25, 50,

75, 100}, and the number of walks per node is chosen from {5, 10, 15, 20}.

6.4.3 The proposed methods

We compare a few variants of DeepCas with the baselines. The same setting

as Chapter V is used. We sample K = 200 paths each with length T = 10 from

the cascade graph without tuning the parameters. The mini-batch size is set to 5.

The smoother α is set to 0.01. The node embedding sizes for the Twitter and

AMiner data set are set to 100 and 50 respectively. The embeddings are initialized

by concatenating embedding learned by Node2Vec from both all diffusion graphs {g}

in training set and the global network G. The node2vec hyper-parameters p and q

are simply set to 1. All text embeddings are set to size of 50, and are initialized by

training all the text documents of each data set using word2vec. The number of hops

of memory networks is chosen from 1, 2, 3.

DeepCas-cat. Instead of using gates to fuse structural and textual representation

of nodes as proposed in Section 6.3.5, they are simply concatenated to form the node

representation.

DeepCas-multimodal. This is another approach to combine structural and

textual representation of nodes, based on multimodal deep learning. We employ a

classical multimodal learning method developed by Srivastava et al. [98] to learn a

shared representation for structure and text.

DeepCas-gate. The gating mechanism introduced in Section 6.3.5 is used to fuse
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structural and textual representation of nodes.

DeepCas-multitask. Based on DeepCas-gate, we form a multitask setting by

including additional training signals, as proposed in Section 6.3.7.

6.5 Experiment results

We present the results of the experiments as designed in Section 6.4.

6.5.1 Overall performance

Table 6.1: Performance measured by MSE (the lower the better), where original label
∆s is scaled to y = log2(∆s+ 1).

(a) Twitter

t 1 day 3 days 5 days
∆t 1 day 3 days 5 days 1 day 3 days 5 days 1 day 3 days 5 days

Features-Deep 2.894∗∗∗ 3.514∗∗∗ 3.501∗∗∗ 2.113∗∗∗ 3.026∗∗∗ 3.109∗∗∗ 0.956∗∗∗ 1.542∗∗∗ 1.723∗∗∗

node2vec 2.387∗∗∗ 2.936∗∗∗ 2.930∗∗∗ 1.980∗∗∗ 2.731∗∗∗ 2.706∗∗∗ 1.053∗∗∗ 1.687∗∗∗ 1.855∗∗∗

TriDNR 2.678∗∗∗ 3.439∗∗∗ 3.510∗∗∗ 2.131∗∗∗ 3.062∗∗∗ 3.143∗∗∗ 1.109∗∗∗ 1.887∗∗∗ 2.161∗∗∗

DeepCas 2.102 2.758 2.772 1.465 2.004 2.020 0.907 1.410 1.494
Proposed methods

DeepCas-cat 1.990∗∗∗ 2.415∗∗∗ 2.454∗∗∗ 1.430∗∗∗ 1.907∗∗∗ 1.960∗∗∗ 0.925 1.372∗∗∗ 1.468∗∗

DeepCas-multimodal 1.982∗∗∗ 2.433∗∗∗ 2.493∗∗∗ 1.432∗∗∗ 1.931∗∗∗ 1.968∗∗∗ 0.942∗ 1.391∗∗ 1.475∗∗

DeepCas-gate 1.945∗∗∗
OOO 2.144∗∗∗

OOO 2.397∗∗∗
OOO 1.371∗∗∗

OOO 1.862∗∗∗
OOO 1.871∗∗∗

OOO 0.890∗∗∗
OOO 1.312∗∗∗

OOO 1.392∗∗∗
OOO

DeepCas-multitask 1.942∗∗∗ 2.139∗∗∗ 2.402∗∗∗ 1.375∗∗∗ 1.855∗∗∗ 1.842∗∗∗
�� 0.885∗∗∗ 1.314∗∗∗ 1.377∗∗∗

�

(b) AMiner

t 1 year 2 years 3 years
∆t 1 year 2 years 3 years 1 year 2 years 3 years 1 year 2 years 3 years

Features-Deep 2.678∗ 2.902∗∗ 2.922∗∗∗ 1.908∗∗∗ 1.990∗∗∗ 2.032∗∗∗ 1.608∗∗ 1.683∗∗∗ 1.748∗∗∗

node2vec 2.466 2.663∗ 2.706∗∗ 1.902∗∗∗ 2.046∗∗∗ 2.073∗∗∗ 1.697∗∗∗ 1.786∗∗∗ 1.832∗∗∗

TriDNR 2.586∗ 2.821∗∗ 2.866∗∗ 1.971∗∗∗ 2.110∗∗∗ 2.130∗∗∗ 1.678∗∗∗ 1.763∗∗∗ 1.806∗∗∗

DeepCas 2.425 2.556 2.576 1.826 1.898 1.914 1.575 1.607 1.643
Proposed methods

DeepCas-cat 2.327∗ 2.439∗∗ 2.488∗ 1.811 1.861∗∗ 1.865∗∗∗ 1.531∗∗∗ 1.568∗ 1.563∗∗∗

DeepCas-multimodal 2.395 2.513 2.529 1.805 1.867∗∗ 1.891∗ 1.552∗ 1.592 1.622∗∗

DeepCas-gate 2.301∗∗
O 2.412∗∗ 2.494∗ 1.742∗∗∗

OOO 1.818∗∗∗
OOO 1.820∗∗∗

OOO 1.482∗∗∗
OOO 1.529∗∗∗

OOO 1.502∗∗∗
OOO

DeepCas-multitask 2.293∗∗ 2.414∗∗ 2.479∗ 1.729∗∗∗
� 1.816∗∗∗ 1.823∗∗∗ 1.477∗∗∗ 1.524∗∗∗ 1.508∗∗∗

“***(**, *)” means the result is significantly better or worse over DeepCas according to paired t-test test at level 0.01(0.05,
0.1). “O” means DeepCas-gate is significantly better over DeepCas-cat, and “�” means DeepCas-multitask is significantly

better over DeepCas-gate.

The overall performance of all competing methods across data sets are displayed

in Table 6.1. The last row of each table shows the performance of the complete

version of our methods, which outperform all baseline methods, including DeepCas,

with a statistically significant drop of MSE. Please note that the numbers in Table 6.1
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are errors of log-transformed outcomes. If we translate them back to raw sizes, the

numerical differences between the methods would look larger.

Unlike the results presented in Table 5.2 of the previous Chapter, where Features-

Deep is mostly the strongest baseline, both node2vec and TriDNR could now out-

perform feature-based method in some of the configurations. This could result from

the lack of end-to-end learning procedure, while a large number of designed features,

including the newly incorporated text-based features, are used as input.

Node2vec and TriDNR underperform DeepCas, which does not consider any text

input. This confirms that taking the average of embeddings, both structural and

textual, as the graph representation is not as informative as representing the graph

as a set of paths.

DeepCas-cat, which simply concatenates structural and textual representations,

can already beat DeepCas. This shows the benefits of incorporating text information,

which helps when the structural information of nodes are hard to come by. In this

case, text provides supplementary information to embed nodes into the hidden space.

DeepCas-cat and DeepCas-multimodal do not perform better than DeepCas-gate.

The problem of DeepCas-cat might be that simple concatenation fails to learn the

importance of structural and textual information for each node individually. For

DeepCas-multimodal, it tries to learn a shared representation over structure and text.

Due to the large amount of text, the shared representation might be overwhelmed

by text, and consequently the knowledge from structure is not well represented. By

considering specific properties of each node, DeepCas-gate, which applies the proposed

gating mechanism, could learn to adjust the information flow from each source more

dynamically and smartly.

DeepCas-multitask performs comparable to DeepCas-gate, and outperforms it in

two configurations. This suggests that adding additional training signals does no

harm to cascade prediction, and can bring benefits in some of the cases.
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6.5.2 Error analysis

To analyze how text information could help with the prediction task, we com-

pare the behavior of DeepCas and DeepCas-gate for networks of different properties.

Specifically, we use two properties to examine whether text could really benefit graphs

with more new nodes, nodes that only occur in test stage: the average of node occur-

rences in training stage (avg node freq), and the percentage of old nodes that appear

in training stage (old node pct).

For each property, we sort networks by its value, and take 100 networks with the

largest/smallest values. Based on these networks with extreme property values, we

evaluate the performance of both methods, which is averaged across all configurations.

Table 6.2: MSE for 100 networks with extreme property values.

Property smallest avg node freq smallest old node pct largest avg node freq largest old node pct

Twitter
DeepCas 2.045 2.132 3.334 2.485

DeepCas-gate 1.494 1.540 3.358 2.495

AMiner
DeepCas 2.451 2.792 1.698 1.828

DeepCas-gate 1.891 2.109 1.721 1.747

From Table 6.2, we see that DeepCas-gate outperforms DeepCas by a large margin

for networks with the smallest values of the two properties avg node freq and old

node pct, while performs similar for networks with the largest values. When the two

properties are small, the networks consist of many nodes that appear rarely, lacking

enough information to learn these nodes from structure. Therefore, this confirms our

assumption that text could provide supplementary information when we are faced

with scarce structural information.

6.5.3 Relationship between text content and prediction difficulty

To further analyze the role of text content, we study whether cascades of some text

topics are much easier to predict than others. To this end, we apply LSA to produce

the topic distribution of each cascade in the test set. Based on the distribution,
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cascades are assigned to the topic with the highest probability score. In this way,

each topic is associated with a list of cascades. To quantify the prediction difficulty,

we calculate the average of errors for cascades belonging to each topic.

Table 6.3: Topics with highest/lowest average errors.

Twitter

Lowest err.

day having tryna beach today night favorite smiling hope enjoying

pokemon catch rare game playing play feelings catching bio spot

thing seen video way realest prettiest realize laugh funniest trying

good morning night friends times looking sounds things giveaway work

Highest err.

heart way mind breaks eyes win broken feel hurts scene

hate things signs miss used drama publicly privately etah lot

girl baby ask boy wants picture needs gets favorite date

retweet vote free following win follows friends follow star timeline

AMiner

Lowest err.

graph mining patterns multiple matching problems graphs pattern object frequent

models topic process probabilistic business language unsupervised document joint latent

fuzzy adaptive clustering sets selection method decision type rough making

mobile phones devices location services ad hoc interaction application adaptive

Highest err.

web services content ranking automatic integration clustering extraction composition pages

semantic ontology discovery role syntactic similarity latent parsing annotation matching

recognition face activity human expression facial object representation entity named

classification selection support feature vector text machines machine method pattern

Table 6.3 displays topics either with highest or lowest average errors. On Twitter,

it seems like cascade prediction is easier when the content is about sharing enjoyable

moments or items, or recent popular games. In the field of computer science, the

topics of graph mining, topic modeling, fuzzy methods, and mobile computing can

be predicted with less errors.

6.6 Conclusion

In this chapter, we explored how to model structure and text jointly for cascade

prediction. Text is present at different levels of the cascade graphs. A diffusion

item can be described by text message, and nodes participating diffusions are also

associated with text. Text provides valuable information for the learning of graphs,

especially when their node members rarely participate in diffusions, leading to difficul-

ties in learning from structure. In these cases, text could come to rescue by providing

supplementary information. This motivates the joint modeling of text and networks

for cascade prediction. To this end, a gating mechanism is introduced to dynamically
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fuse the structural and textual representations of nodes based on their respective prop-

erties. To incorporate the text information associated with both diffusion items and

nodes, attentions are employed over node text based on their interactions with item

text. Empirical evaluations demonstrate that incorporating text information benefits

the cascade prediction task, and that the proposed gating mechanism is superior to

alternatives, including a simple combination of text and structure information, and

standard multimodal learning.
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CHAPTER VII

Conclusions

In this thesis, we presented approaches to mining text and network data in an

end-to-end manner. In this chapter, we conclude this thesis and discuss potential

future directions.

7.1 Summary

Text and networks convey a large amount of information in today’s online com-

munities and social media, and are thus vital data sources for researchers to study

users and understand a variety of phenomena. Modeling text and networks for various

tasks has become increasingly important for people from different fields, including so-

cial scientists, online marketers, government officers, scientific researchers, and daily

users.

Studying user behavior is an important research direction in online communities

and social media. We address it by mining both text and network data. More

specifically, we study attitude identification in the text mining domain, and network

growth prediction in the network domain. The advantage of studying both text and

networks can also be viewed from the perspective of data types. Unlike images and

time series, text and networks are both discrete, thus sharing similar challenges and

solutions. Indeed, our DeepCas model, which learns to predict cascade growth, is
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inspired by the learning of document representations.

Conventional methods could easily fall short of resolving the challenges rooted

in the tasks of text and network mining. The performance of these methods hinges

on features designed by experts, who find it hard to encode every piece of necessary

knowledge for a particular task. On the other hand, the existence of subtasks poses

more challenges for conventional methods, which train a separate model for each sub-

task. In this case, the interactions among subtasks are ignored, and the information

is not well shared.

To resolve these issues, we focus on designing end-to-end learning algorithms for

text and information network mining. We employ deep learning techniques to directly

learn from raw data, by using deeply layered, hierarchical concepts, with complicated

concepts built upon simpler ones. With the ability to learn the nonlinear mapping

from input to output in an end-to-end manner, deep learning relieves humans from the

burden of hard coding world knowledge by, e.g., designing features or rules. The power

of deep learning enables us to design effective and efficient end-to-end algorithms for

both attitude identification and network prediction tasks.

Attitude identification aims to identify people’s attitudes towards a given set of

entities. Conventionally, the task is decomposed into two separate subtasks: target

detection and polarity classification, which neglects intrinsic interactions between the

two subtasks. Apart from subtask interaction, interactions among targets exist –

certain targets and their sentiments may share some important semantic dimensions

with each other while differing on other dimensions. To resolve these issues, we

propose an end-to-end machine learning architecture, where the two subtasks are

interleaved by a deep memory network that directly learns from the raw text input.

The proposed model also allows different targets to interact with each other, which

share a common semantic space and simultaneously keep their own space, making it

possible for all targets to be learned in a unified model. The proposed deep memory
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network markedly outperforms models that do not consider the subtask or target

interactions, including conventional supervised learning methods and state-of-the-art

deep learning models.

In the domain of network mining, a major challenge is to find good representa-

tions of graph structures, which form the basis for all downstream tasks. In the social

network literature, graphs are represented by a bag of manually designed structural

features, e.g., network density, clustering coefficients, and triadic profiles. However,

it is hard for these features to fully represent both the local and the global structure

of a graph and the complex interaction between them. On the other hand, these

features usually have a limited characterization power of networks, as many different

networks may share the same feature representation. To remedy these issues, we in-

troduce a graph descriptor that is based on the Heat Kernel Signature (HKS) [100],

which serves as a universal low-level representation of the topological structures of

networks. By modeling the amount of heat flow over the nodes of a network over

time, HKS successfully stores both the global and the local structural information of

the entire network, and networks with the same topological structure can be mapped

to a unique representation of the little loss of structural information. However, unlike

3D objects that are composed of polygon meshes, the structures of networks vary in

shape, size, and complex local structures. To address this issue, some computations of

HKS need to be approximated carefully. Inspired by the semantics of the HKS-based

graph descriptors, we propose a multicolumn, multiresolution neural network that

learns latent hierarchical representations of graphs on top of the HKS-based graph

descriptor. The proposed deep neural network, named DeepGraph, predicts network

growth in an end-to-end process. We conduct extensive experiments to evaluate the

effectiveness of DeepGraph. Different growing properties are predicted for four genres

of real-world networks. Empirical results show that our method significantly outper-

forms baseline approaches that use alternative graph representations, handcrafted
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features, or existing deep learning architectures.

DeepGraph has successfully resolved the challenge of learning graph structures.

We then turn to the challenge of jointly learning different information sources that

reside in information networks, including the global network context, and text con-

tent. To address this challenge, we specifically consider the task of learning network

representation for cascade prediction, whose objective is to predict the future size

of a cascade network. In order to take into account the context of the global net-

work structure, we present a novel, end-to-end deep learning architecture named the

DeepCas, which first represents a cascade graph as a set of cascade paths that are

sampled through multiple random walk processes. Such a representation not only

preserves node identities, but also bounds the loss of structural information. Analog-

ically, cascade graphs are represented as documents, with nodes as words and paths

as sentences. The challenge is how to sample the paths from a graph to assemble the

“document,” which is also automatically learned through the end-to-end model to

optimize the prediction of cascade growth. We evaluate the performance of the pro-

posed method using real-world information cascades in two different domains, Tweets,

and scientific papers. DeepCas is compared with multiple strong baselines, includ-

ing feature-based methods, node-embedding methods, and graph kernel methods.

DeepCas significantly improves the prediction accuracy over these baselines, which

provides interesting implications for the understanding of information cascades.

After modeling global context, we approach the problem of joint modeling text

and networks. Text could greatly complement structural information, especially when

node members of cascades rarely participate in previous diffusions, causing lack of

structural information. In the extreme case, new nodes that are absent in the training

stage could appear in the test stage. If the graph representation is only learned from

the structural relationships between nodes, which is exactly what DeepCas does,

embedding vectors learned from the structure will not be available for these new
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nodes.

Text could help in these cases, based on the intuition that nodes with similar text

content might be close to each other in the embedding space. To better utilize both

the structural and textual information of nodes, a gating mechanism is designed to

dynamically fuse the node representations from two sources, based on how well each

representation is learned. To incorporate the text information from both diffusion

items and nodes, an attention mechanism is employed over node text, which is condi-

tioned on their interactions with item text. Empirical evaluations demonstrate that

incorporating text information benefits the cascade prediction task and that the pro-

posed gating mechanism outperforms other combination methods, including a simple

combination of text and structure information, and standard multimodal learning.

This thesis demonstrates the effectiveness of end-to-end learning for mining text

and network data. We show that end-to-end learning techniques can be more power-

fully employed when we are able to first construct a good, low-level representation of

the raw format of the discrete data, and when the interactions among subtasks are

correctly identified and considered. These findings are not domain-specific and can

be applied more generally. Of course, many challenges remain to be solved, which

will be discussed below.

7.2 Future directions

Our approaches to end-to-end learning for mining text and network data open up

new opportunities for many directions of future research, including:

Scalability: There are, at least, two directions worth exploration. The first di-

rection is how to efficiently and effectively represent the topology of a graph when

the size of the graph is large. How to efficiently compute HKS when the graph size

is large? Are there any approximation methods? Will the approximation lead to
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significant loss of information? Successfully solving these issues could help us apply

DeepGraph to more general domains with more efficiency. The second direction is

how to employ DeepCas when there are a large number of nodes in the global context.

Currently, we are learning a vector representation for each node, which might cause

out of memory issues when there are billions of nodes. How to tackle this problem is

an interesting direction to explore.

Modeling temporal properties of graphs: Many networks change dynamically.

New nodes join a network from time to time, and new relationships are formed, while

old nodes and edges might disappear. Incorporating these dynamics into the learning

of graph representation could help us understand the networks better, and can greatly

benefit many valuable mining tasks.

Incorporate network information for text mining tasks: Chapter VI tackles

the problem of joint modeling text and networks for cascade prediction, which is

a network-mining task. In fact, the paradigm of joint modeling text and networks

can also be applied to many text-mining tasks. For example, in the task of attitude

identification, neighboring users might share similar attitudes towards certain entities.

How to incorporate network information for these text-mining tasks is intriguing.

Incorporating domain knowledge: End-to-end learning does not mean that it

excludes the incorporation of domain knowledge. End-to-end helps when it is hard

for humans to encode world knowledge. Conversely, domain knowledge could also

contribute to learning in many scenarios. How to better utilize existing knowledge

from domain experts is critical in that it might help our learning systems learn more

efficiently and effectively with less training data, while enjoying better generalization

capability.
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