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ABSTRACT

Error-correcting codes (ECC) have been widely used for forward error correction
(FEC) in modern communication systems to dramatically reduce the signal-to-noise
ratio (SNR) needed to achieve a given bit error rate (BER). Newly invented polar
codes have attracted much interest because of their capacity-achieving potential, ef-
ficient encoder and decoder implementation, and flexible architecture design space.
This dissertation is aimed at improving the usability of polar codes by providing a
practical code design method, new approaches to improve the performance of polar
code, and a configurable hardware design that adapts to various specifications.

State-of-the-art polar codes are used to achieve extremely low error rates. In
this work, high-performance FPGA is used in prototyping polar decoders to catch
rare-case errors for error-correcting performance verification and error analysis. To
discover the polarization characteristics and error patterns of polar codes, an FPGA
emulation platform for belief-propagation (BP) decoding is built by a semi-automated
construction flow. The FPGA-based emulation achieves significant speedup in large-
scale experiments involving trillions of data frames. The platform is a key enabler of
this work.

The frozen set selection of polar codes, known as bit selection, is critical to the
error-correcting performance of polar codes. A simulation-based in-order bit selection
method is developed to evaluate the error rate of each bit using Monte Carlo simu-
lations. The frozen set is selected based on the bit reliability ranking. The resulting
code construction exhibits up to 1 dB coding gain with respect to the conventional

bit selection.

xiil



To further improve the coding gain of BP decoder for low-error-rate applications,
the decoding error mechanisms are studied and analyzed, and the errors are classi-
fied based on their distinct signatures. Error detection is enabled by low-cost CRC
concatenation, and post-processing algorithms targeting at each type of the error is
designed to mitigate the vast majority of the decoding errors. The post-processor
incurs only a small implementation overhead, but it provides more than an order of
magnitude improvement of the error-correcting performance.

The regularity of the BP decoder structure offers many hardware architecture
choices. Silicon area, power consumption, throughput and latency can be traded
to reach the optimal design points for practical use cases. A comprehensive design
space exploration reveals several practical architectures at different design points.
The scalability of each architecture is also evaluated based on the implementation
candidates.

For dynamic communication channels, such as wireless channels in the upcom-
ing 5G applications, multiple codes of different lengths and code rates are needed
to fit varying channel conditions. To minimize implementation cost, a universal de-
coder architecture is proposed to support multiple codes through hardware reuse. A
40nm length- and rate-configurable polar decoder ASIC is demonstrated to fit various

communication environments and service requirements.
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CHAPTER I

Introduction to Polar Code

1.1 Background and Motivation

Massive amounts of data are being transmitted electronically over communication
channels in our daily lives. In order to control errors induced by noise, or equivalently
to reduce the energy of transmission at an acceptable error rate, channel coding
has been widely deployed in modern digital communications. The simplified work
flow of channel coding is shown in Figure 1.1. The data sender encodes messages
into codewords, where the number of bits in the codeword is more than that in the
message, but the correspondence between the message and the codeword is one-to-
one. The codeword is then transmitted over a communication channel, where the
channel introduces noise to the transmitted codeword, possibly causing bit flips in
the received word. The receiver uses a decoder to recover the message from the
received word.

There are a few aspects to evaluate the quality of a channel code. Let us first
assume a perfect decoder that can always find the closest codeword from the received
word, so that decoding error can be corrected if the codeword and the received word
are not too far away from each other. However a perfect decoder can be too costly to
be practical, so an ideal code is one that not only offers a good error-correcting capa-

bility, but also lends itself well to an efficient decoder design. In the most demanding
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Figure 1.1: Channel coding work flow.

applications, the decoders need to provide a short decoding latency and a high data
rate.

In the recent decades, low-density parity-check (LDPC) codes and turbo codes
have been widely used in digital communication, because of their good error-correcting
performance and low complexity. They are called capacity-approaching codes because
the gap between the code performance and the Shannon limit is very small. Re-
cently, polar codes have been discovered to have even lower complexity and capacity-
achieving performance. Much research effort has been put into moving polar codes
towards practice. In this dissertation, algorithm, architecture and implementation
co-design of polar decoders will be presented to demonstrate the feasibility of polar

codes in next-generation digital communication.

1.2 Code Structure

Newly invented polar codes [1] have attracted much interest because of their
promising capacity-achieving potential and efficient encoder and decoder implemen-
tation. Compared to the state-of-the-art turbo codes and LDPC codes, the factor
graph of any length N = 2" polar code is predefined, there is no polarity check bits.

A polar code is described by an N x N generator matrix GG, where N = 2" and G

is the n-th Kronecker power of matrix [{{] [1]. The G matrix of an 8-bit polar code
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Figure 1.2: (a) H matrix of an 8-bit polar code, and (b) an 8-bit polar encoder.

is shown in Figure 1.2(a), along with the factor graph that describes the encoder in

Figure 1.2(b). In the factor graph, an encoding PE includes a “+” and a “=": the
“4+” symbol represents a modulo-2 addition, and the “=” symbol represents a pass
through.

To encode, an N-bit message u is inputed from the left hand side of the factor
graph, and an N-bit codeword x is obtained from the right hand side, i.e., x = uG.
The codeword x is modulated and sent over a communication channel and the channel
injects noise to the codeword and produces noisy codeword y. A polar decoder will
attempt to recover u from y. The decoding can be visualized using the same factor
graph shown in Figure 1.2(b), except that the input y is received from the right hand

side, and the decoded message 11 is obtained from the left hand side.

1.2.1 Channel Polarization

In a polar code of a sufficiently long block length, the bit channel that an indi-
vidual message bit passes through (the channel includes the encoder) polarizes to be
either highly reliable or highly unreliable, an effect known as channel polarization [1].

Figure 1.3 illustrates the polarization effect of a N = 64 code. To make use of channel
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Figure 1.3: Bit channel capacity of a N = 64 polar code.

polarization, the bits that correspond to the unreliable channels will be frozen, i.e.,
send a known value such as 0, and the bits that correspond to the reliable channels
will be used to send information.

The code rate of a polar code depends on the number of bits in u that are frozen.
The set of indices of the information bits is called the information set, marked as
A, and its complement A° is the frozen set. A is a subset of {0,1,..., N — 1}, such
that u; is an information bit if ¢ € A. Deciding the information set A is called bit
selection. Bit selection has a strong influence on the error-correcting performance of

polar codes.

1.2.2 Recursive Code Construction

The generator matrix G can be formulated recursively, i.e., Gy = F®" = ¥l
F = Gy ® F. More generally, G is a sub-matrix of Gy if M < N. The factor
graphs of codes with different lengths are shown in Figure 1.4. The factor graph of
N = 2 is also the basic computing node shown in Figure 1.4(a). The stage indices
and bit indices of each node are marked on Figure 1.4(a), where j € [0,n — 1] and

i=p- 2" 4 ¢, where p € [0,2"7~1 — 1] and ¢ € [0,27 — 1]. An N-bit factor graph
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Figure 1.4: Factor graphs of (a) N=2, (b) N=4 and (c¢) N=8.

consists of log N stages of nodes and each stage contains N/2 nodes. A factor graph

of length M is a subgraph of that of length NV if M < N, as shown in Figure 1.4.

1.3 Decoding Schemes

Successive cancellation (SC) and belief propagation (BP) are the two main decod-
ing algorithms of polar codes. SC has better error-correcting performance over BP [2],
however the SC algorithm decodes bit by bit in a serial manner, so the latency of SC
decoding is O(N) [3,4]. BP on the other hand, uses a flooding schedule to allow N
messages to be passed in parallel, thereby reducing the decoding latency to O(log N).
Other decoding methods are mostly derived based on these two. Much effort has
been made to improve the error-correcting performance of polar codes, such as list
SC decoding [5] that preserves a list of candidate decoding decisions, applying BP
calculation in SC scheduling [6], and concatenation with outer codes [7-9]. Implemen-
tations based on the above algorithms [10,11] have shown performance improvement

of polar codes, at the cost of hardware requirements and/or design complexity.



1.3.1 Successive Cancellation

In SC decoding, the message bits uy to uy_; are decoded successively. If ¢ € A
u; = 0; otherwise 1; is decoded by the maximum likelihood decision rule:

: P(y7ﬁ671|u1:0)
- 0 if P(y,ag ui=1) > 1

1 otherwise

where P(y, i *|u; = b) refers to the probability that the received vector is y and
the previously decoded bits being g through w; 1, given the current bit being b,
b € {0,1}. The ratio of the probability given u; = 0 over the probability given u; = 1
is the likelihood ratio (LR) of bit w; [12]. In particular, the data processing diagram

of an N = 8 SC decoding is shown in Figure 1.5, and the LR is calculated below.

J(LRjt1,i, LRj 11 4121 if B(j,i) =0
g(éj,i—2j7LRj+1,z‘—2ja LRjJrl,i) if B(J} Z) =1

LR]'J' -
where j is the stage index and 7 is the bit index, and §;; € {0, 1} is the encoded node
based on s, i.e., 819 = o @ ty; B(j,1) = [i/27] mod 2; and

1+ab
b) =
flah) =5

g(5,a,b) = a*~*b

To simplify calculation carried out by hardware, log likelihood ratio (LLR) are in-
troduced by taking logarithm of LR, so that f and ¢ functions can be simplified to

sum-product functions [12]:

f(a,b) = 2tanh™'(tanh(a/2) tanh(b/2)) (1.1)



Figure 1.5: SC decoding process of the 8-bit polar code.

f is further simplified by min-sum approximation, and f and g functions can be

reduced to:

f(a,b) ~ sign(a)sign(b) min(|al, |0]) (1.2)

b+a ifs=0
9(8,a,b) =
b—a ifs=1
Therefore, only adders are needed to implement a decoder in hardware.
The data dependency between bit ¢ and all the previous bits 0 through i—1 dictates
the order of the decoding to be serial, which limits the latency to be proportional to

N. In particular, the scheduling of a N = 8 SC decoding is shown in Table 1.1 and

the latency of decoding an N bit code is 2N — 2.



Table 1.1: SC Decoding Schedule of the 8-bit Polar Code.

Cycle 11213456789 |10(11|12|13|14
f3,0 934
stage 3 f3,1 g35
f3,2 g3.6
f3,3 g3
f2,0 92,2 f2,4 926
stage 2
f2,1 92,3 f2,5 92,7
stage 1 fl,o g1,1 f1,2 91,3 f1,4 91,5 f1,6 91,7

1.3.2 Belief Propagation

The BP algorithm decodes bits ug to uy_; in parallel. BP decoding works by
passing the frozen set information from left to right (in R propagation or simply R-
prop) and passing the channel output y from right to left (in L propagation or simply
L-prop) following the factor graph. One R-prop and one L-prop constitute a decoding
iteration. Convergence can usually be reached after a few iterations. It is customary
to permute the original factor graph in Figure 1.2(b) to the form shown in Figure 1.6
in a bit-reversal manner [13], so that the wiring between stages are kept the same to
simplify a time-multiplexed implementation.

Note that although SC and BP decoding work on the same factor graph, the major
difference between the two is that BP does not impose a sequential order of decoding,
and the messages are “flooded” across the factor graph.

Unlike SC where there is only one LLR for each node on the factor graph, there are
two LLRs representing each node in BP, namely the left-bound messages (L messages)
and right-bound messages (R messages). The basic computational node used in BP

decoding is shown in Figure 1.7 [13], where j is the stage index and 7 is the bit index.



Figure 1.6: Permuted factor graph of the 8-bit polar code.
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Figure 1.7: Basic computation node of a BP decoder.

The L messages and the R messages are calculated by

Lj; = f(Ljs12i41 + Rjisnyas Ljv12i)
Liiinie = f(Ljt2 R;;) + Ljt12i41
Rit12i = f(Ljy12i41 + Rjiiny2, R;;)

Rit10i41 = f(Ljt1.2, R;;) + Rjiiny2

where the f function is identical to the f function used in SC decoding, i.e., f(a,b) ~

sign(a)sign(b) min(|al, |b|).

Although Figure 1.7 indicates that a node computes four output messages at a time

— two L messages and two R messages, the calculation can be made uni-directional

at any given time. That is, in an R-prop, a node computes only two R messages; and
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Figure 1.8: Processing flow of iterative BP decoding.

Table 1.2: BP Decoding Schedule of the 8-bit Polar Code.

Iteration 1 . Nt
CC 11213145 ...]1]2|3|4|5
R-prop stage || 1 | 2 w1
L-prop stage 312117 .. 3121

in an L-prop, a node computes only two L messages. In addition, the calculations
in R-prop and L-prop are identical, enabling the same hardware to be used in both
R-prop and L-prop.

A decoding iteration starts with R-prop from stage 1 to stage log NV — 1 to propa-
gate frozen set information, followed by L-prop from stage log N to stage 1 to prop-
agate channel outputs, as shown in Figure 1.8. The loop of R-prop followed L-prop
is iterated n; times. The BP scheduling of N = 8 is shown in Table 1.2. At the
end of each iteration, the Ly, messages, or simply Lo, produced by stage 1 in the
L-prop are taken as the soft decisions. The signs of the soft decisions are the hard
decisions. The FER and BER improve with more iterations. The decoding latency
is ny(2log N — 1), assuming each stage being processed in parallel and n; iterations

are performed.
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1.3.3 Comparison of SC and BP

Apart from aforementioned differences of the two decoding schemes in throughput
and latency, the implementation cost and error-correcting performance are the other
two aspects of interest. To maximize SC throughput, a total number of N/2 hardware
computational nodes are required, with each node able to calculate the f and g
function. Similarly for a stage-parallel BP decoder, the same amount of arithmetic
logic is needed, except that the computational logic is fully used in BP, but partially
used in SC in most cases. Memory needs to hold the intermediate results for future
use. The maximum amount of data need to be stored by SC is N LLR, however the
requirement grows to N log N for BP. Due to the complicated scheduling of SC, the
control logic of a SC decoder is more complex than that of BP.

Recall that the polarization effect is a result of SC decoding is performed, and
SC exhibits better error-correcting performance than BP [2]. The conventional bit
selection is done based on a BEC channel for a SC decoder. Not surprisingly, the
same bit selection yields worse error-correcting performance for BP decoding in a
practical additive white Gaussian noise (AWGN) channel. In Figure 1.9, the frame
error rate (FER) and bit error rate (BER) of the (256,128) polar code using SC
and BP decoding in an AWGN channel are compared [14]. BP decoding requires an
approximately 0.3 dB higher signal-to-noise ratio (SNR) to achieve the same FER.
A better bit selection is needed to improve the error-correcting performance of BP
decoding to match SC decoding.

It is difficult to analytically derive the optimal bit selection for BP decoding,
because the flooding of messages becomes intractable after a few steps without any

approximation.
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Figure 1.9: FER and BER of a (256, 128) polar code decoded by SC and BP in an
AWGN channel.
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CHAPTER II

Design of Error-Correcting Codes using FPGA

2.1 FPGA Emulation for High-Performance ECC

FPGAs have been widely used in practice to prototype ECC decoders [13,15-23].
An FPGA can be easily reconfigured to evaluate different architecture and quantiza-
tion choices. As a hardware platform, FPGA implementation truthfully captures the
hardware resource utilization, placement and routing complexity, timing, and critical
paths. After the register-transfer level (RTL) is functionally proven on FPGA, it can
be easily translated to an application-specific integrated circuit (ASIC) implementa-
tion. For these reasons, FPGA prototyping has become a necessary step before an
ASIC chip implementation.

Another important use of FPGAs is to emulate the ECC decoder and evaluate
its BER performance. Software simulations of random test vectors together with
corner cases are often sufficient for functional verification, but a high-performance
ECC decoder needs to be verified down to very low BER levels, e.g., 107'2 or even
10715, It is the very rare events that dictate the performance of the ECC decoders,
and the nature of the rare events may not be known beforehand. Simulating ECC
decoders with as many random vectors as possible is the only way to even find out
these rare events. Software simulation of a high-performance ECC decoder can reach

a BER of 107° to 10~® within a reasonable amount of time, which is not close to what
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is needed by many practical applications. On an FPGA platform, an ECC decoder
can be parallelized to achieve near real-time operations, allowing very low BERs to

be measured.

2.1.1 Construction of the decoder emulation platform

A hardware emulation platform on FPGA is made up of four blocks, encoder,
channel model, decoder, and error collector, as shown in Figure 2.1. The emulation
flow consists of the following steps: 1) an encoder takes a block of binary inputs and
produces a codeword (also known as a frame), and the codeword bits are translated to
real values in time domain using a modulator, e.g., binary phase-shift keying (BPSK)
maps 0 to s(t) and 1 to —s(t) for transmission; 2) the channel model generates
noise to corrupt the transmitted values, and the results are the channel output; 3) a
decoder recovers the input message from the channel output; 4) the decoded message
is compared with the input message to check whether the channel output is decoded
correctly. If the channel output is decoded incorrectly, the number of wrong bits
in the frame is added to the bit error count, and the frame error count is increased
by one. The bit error count and frame error count are used to calculate the BER
and frame error rate. The encoder can also be replaced by a memory that stores
codewords, but the number of codewords that can be stored will be limited by the
memory size.

At low SNR, i.e., when the noise level is high, decoding errors will occur frequently,
and it will not take many input frames to get a sufficient number of errors for an
accurate estimate of BER and FER. However, at high SNR, the noise level is low,
and decoding errors will happen rarely. An accurate estimate of BER and FER will
take a large number of input frames and it will dictate the length of the emulation.

Low BER emulation is a bottleneck in decoder emulation.
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Figure 2.1: An ECC emulation platform.

2.1.2 Challenges of FPGA design and emulation

Despite the many advantages of FPGA prototyping of ECC decoders, it is however
not as easy as software simulation. FPGA design requires much effort into creating the
hardware architecture, RTL coding and timing verification, simulation, and iterations
of synthesis, place and route to ensure timing closure, and creating the interface for
input and output. To make it worse, the FPGA design may need to be changed many
times to evaluate architecture and quantization choices, and every redesign involves
more effort than a code change for software simulation.

In the early stages of an application design cycle, it is often not known what
ECC and decoding algorithm to use, how to quantize the decoding algorithm, and
not to mention hardware architecture and RTL design. Therefore, the FPGA design
presents a barrier to the application community who would otherwise benefit the most
from doing FPGA prototyping.

ECC decoder emulation requires test vectors to be generated on FPGA as the
inputs to the ECC decoder. The test vectors need to reflect the use case of each
application. Implementing realistic channel models on FPGA to generate test vectors
to support real-time decoding is another challenge.

With test vector generation on FPGA, BER and FER can be measured by decoder

emulation on FPGA. BER and FER serve as statistical indicators of how well an ECC
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works and how well the decoder is implemented, but they do not yield any insight
into why decoding fail in some cases, and how to fundamentally improve code and
decoder design. Trying to improve code and decoder design based on BER alone is
inefficient. It is necessary to collect more information in addition to BER and FER

to make FPGA emulation truly useful.

2.1.3 FPGA-aided ECC design

In this chapter, we demonstrate a semi-automated design flow based on param-
eterized modules to simplify the design of ECC decoder emulation on FPGA [21].
FPGA can be used to capture additional information in decoding to help uncover
rare events that determine the performance of the ECC. The additional information
enables new code and decoder designs for a significant improvement in BER.

We will use FPGA to study the construction of polar codes [1]. FPGA emulation
reveals large variations of bit channel reliabilities. Improved code construction can
be found by bit-by-bit BER measurement using FPGA emulation. Another case is
to use FPGA to study the error floor problem in LDPC codes [24]. FPGA emula-
tion uncovers rare events that underpin the error floor [18,24]. Improved decoding
algorithm can be designed to avoid the fundamental cause of the error floors for an
improved BER [25]. Detailed discussions on LDPC decoder emulation are included

in Appendix A.

2.2 Fast Emulation Platform for Polar Code

Polar code is provably capacity-achieving. However, the recent practical imple-
mentations of polar codes do not have better error-correcting performance than LDPC
codes of similar code length and rate. In order to investigate the cause of errors of
polar codes, a fast emulation on FPGA is necessary to catch rare-case events for fur-

ther analysis. In this section, mapping of a column-parallel BP decoder on FPGA is
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Figure 2.2: Data flow of a PE in (a) R-prop and (b) L-prop, and (c) table of input
and output indexing.
introduced, and the performance enhancement methods based on the FPGA platform

will be presented in Chapter III.

2.2.1 Architecture Building Blocks
2.2.1.1 Processing Element

A processing element (PE) implements the functionality of equation set (1.3).
Taking a close look at the equations, the calculation of R messages in R-prop and the
calculation of L messages in L-prop are identical, and R-prop and L-prop take place
alternately. Therefore, a PE only requires one set of hardware that is made up of
two f operators to compute compare-select and two adders. Indicated by Figure 1.8,
when calculating the R/L messages, the two R/L inputs are the results of the previous
stage, which we name fwd as they are forwarded from the previous stage, and the
other two L/R inputs are the historical results from the previous iteration, which we
name mem as they are read from the memory. The data flow of a PE is shown in
Figure 2.2, and the hardware mapping of a PE shown in Figure 2.3.

Although the math is expressed in a sign-magnitude form, a two’s complement
representation is more friendly for hardware implementation where well-design adders

can be directly employed, and therefore the datapath is in two’s complement. The
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Figure 2.4: f function block diagram.

f function computes the XOR of the signs of the two inputs, and it compares and
selects the smaller of the two input magnitudes as shown in Figure 2.4. The input
and output of the PE are in two’s complement form, so the magnitude and sign
are extracted before the compare-select operation, and the sign-magnitude form is

converted back to two’s complement form for output.

2.2.1.2 Memory

One column of the nodes in the factor graph produce N @-bit new messages,
where () is the message word length, which normally ranges from 4 to 6 bits, and the
messages are saved in memory. Accounting for both R and L propagation, the total

memory requirement is 2NQ log, N to store all the intermediate R and L messages,
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Table 2.1: BP Memory Schedule of the 8-bit Polar Code.

Cycle 1] 2 3 4 51617 8 9 10 | 11 | 12

R clm 1 W| — | R W| — | R

e m 2 WR WR
Lmem|clm 1| R W|—|R W | —
clm2|— | R W|—|—|—| R W|—|—
Share | clm 1 RL WR - RR WL — RL WR - RR WL -
clm 2 | — RL WRR WL — | — | — RL WRR WL — | —
*. Soft decision output, no storage needed —: Memory word occupied

which can dominate the area and power consumption in BP decoders.

The memory access follows a well-defined pattern, and Table 2.1 shows the mem-
ory schedule of two BP iterations, where W and R abbreviate read and write re-
spectively, and WR stands for read-after-write in the same access. Note that the
illustrated schedule assumes PEs of zero latency. In a practical implementation, the
scheduling needs to be relaxed. In R-prop, L messages are consumed, and their places
in memory can be replaced by newly produced R messages, and vice versa. As a re-
sult, the memory size can be reduced by half to NQlog, N. Note that the output
messages of the final column of L-prop are the soft decisions therefore do not need
to be saved, so the memory size is further reduced to NQ(log, N — 1). Dual-port
memories are required to share the L and R storage to support simultaneous read
and write access.

The memory can be implemented in SRAM arrays or register files. In a highly
parallel architecture, the memory is implemented in register files to support wide
parallel access by many PEs; in a less parallel architecture, the memory can be

implemented in SRAM to save area.



2.2.2 Decoder Architecture

The factor graph of a polar code Figure 1.6 can be mapped to a fully parallel
architecture with each node mapped to a processing element and edges mapped to
wires. For an N-bit polar code, a fully parallel architecture requires % log N PEs and
QN log N wires for connecting the PEs. The fully parallel architecture offers the high-
est throughput, but the large number of PEs coupled with numerous wires complicate
the design, making it less scalable. The natural way to partition the fully parallel
architecture is along the stage boundaries. Such a partition results in a stage-parallel
architecture that utilizes only one column of % PEs for a N-bit polar code. The col-
umn of PEs will be time-multiplexed between log N stages, sacrificing throughput by
a factor of log N but reducing the implementation complexity by approximately the
same factor. The reduction in complexity is an important consideration as it ensures
that a decoder for a sufficiently long code can be mapped to widely available FPGA
platforms, and a lower complexity translates to faster hardware synthesis, placement
and routing. The reduction in throughput can be recouped by using parallel hardware
modules.

In the stage-parallel architecture, the wiring pattern between stages is the same,
but switches are still needed to enable the use of the same PEs for both R-prop
and L-prop in message-passing decoding. Specifically, two sets of PE input switches
and one set of PE output switches are required implemented in N 2-to-1 MUXs to
choose between R-prop and L-prop, as shown in Figure 2.5. Appropriate PE inputs
also need to be chosen for different stages within one iteration. The inputs from
forwarding are selected by N 3-to-1 MUXs to choose among forwarding, loading test
vector L;, at the start of L-prop, and loading frozen set information R;,, at the start
of decoding. The inputs from memory are selected by N 2-to-1 MUXs to choose
between memory read and loading frozen set information at the start of decoding, as

shown in Figure 2.6.
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Figure 2.7: Input and output time table of the PEs in stage-parallel BP decoding.

Combining the processing flow in Figure 1.8 with the PE mapping in Figure 2.5,
we draw the time table of the PEs in Figure 2.7. The last timestamp of L-prop,
highlighted in dash, is unnecessary except for the last iteration, because the soft
decision Lg is not useful in the subsequent calculation. Note that although R,,_1 /L
is forwarded from the previous stage, it goes to the mem port of the PEs, indicated
by the arrows.

We use two single-port memories to implement Lmem and Rmem, and the switch-
ing between the two memories is implemented by a pair of N@Q-bit-long MUXs and
DEMUXs. To perform real-time emulation, an AWGN channel emulator and a built-
in tester are integrated with the decoder to provide test vectors and to collect de-
coding errors. Our AWGN channel emulator was based on AWGN noise generators
implemented using Box-Muller Transform. These AWGN noise generators can be
conveniently instantiated through Xilinx LogiCORE. The AWGN noise is scaled ac-
cording to the given channel SNR and added to BPSK-modulated bits in forming the
input vectors for the decoder.

The decoder takes the frozen set information as R inputs (R;y,) and the channel
outputs as L inputs (L;y, ). R;, of a bit indicates whether the bit is free or frozen. Ry, is
set to 0 if the bit is free, and R;, is set to the maximum allowed value if the bit is frozen
to 0. Lmem and Rmem entries are all initialized to 0. The datapath is implemented
in a 3-stage pipeline shown in Figure 2.8. In stage one, two L (R) messages are read

from Lmem (Rmem); in stage two, two R (L) messages are forwarded from pipeline
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Figure 2.8: PE design in a 3-stage pipeline.

registers, and the PE calculates two R (L) messages; in stage three, the two R (L)
messages are routed to the PEs for the next stage and a copy of the messages is
written to Rmem (Lmem).

In a pipelined implementation, pipeline registers are inserted after the PE as out-
put registers. The output messages of one column of nodes can be directly forwarded
to the next column of nodes in high-throughput designs. Using the stage-parallel
architecture, each decoding iteration takes 2log N — 1 clock cycles with log N — 1

stages of R-prop followed by log N stages of L-prop.

2.2.3 Design Methodology

The decoder is built using a semi-automated method using a module library and an
assembly script to facilitate its reuse. The module library is made up of the common
blocks required for a decoder, including PE, multiplexer, and memory blocks. The
blocks are parameterized to make them as general as possible to reduce the redesign
effort. If parameterization cannot be easily done for some block, different versions of
the block will be included in the library.

We use a script to automate the assembly of the blocks and set the module design
parameters. The script takes the code block length and word length as design pa-

rameter, along with other implementation details such as desired fan-outs as inputs,
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Figure 2.9: Scheduling of the BP polar decoder on FPGA.

and it instantiates PEs and memory blocks, and connects them. The script also sets
values of the parameters. The library and script method allows one to easily construct
different decoders in minutes, significantly reducing the hardware design effort. Note
that synthesis and place-and-route are still needed, but they can be done efficiently
using commercial FPGA design automation tools.

In order to support different experiments without having to redesign the hard-
ware, the decoder also incorporates run-time tunable parameters, including decoding
iterations and algorithmic knobs such as offset correction and iteration limits, and the
channel emulator can be tuned to provide different SNRs and interpretations. These
parameters are inputs of the FPGA model at run time.

The latency of the stage-parallel decoder design on FPGA is 2log N + 2 cy-
cles per iteration, and Figure 2.9 shows the cycle-by-cycle schedule of one iteration.
Two cycles are needed to fill the 3-stage pipeline and an extra cycle stall at cycle
n+1 between R-prop and L-prop removes a read-after-write hazard. Given ng, it-
erations and fur clock frequency, the throughput of the FPGA decoder design is
feaxN/(ni-(2log N +2)). For example, with fur = 100 MHz and n;, = 15, a 1024-bit
stage-parallel decoder achieves a decoding throughput of 310 Mb/s.

The FPGA resource utilization is listed in Table 2.2 for N-bit stage-parallel de-
coders (N = 256,512,1024). Even the largest design listed in the table consumes only

a small fraction of the available resources on a Xilinx Virtex-6 SX475T FPGA. There
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Table 2.2: Hardware Utilization of Stage-Parallel BP Decoders on a Xilinx Virtex-6
SX475T FPGA.

total available
N 256 | 512 | 1024
resources
Reg 13k | 20k | 36k 595k
LUT 22k | 44k | 86k 298k
Slice 6k | 15k | 35k T4k
RAMB36E1 | 78 | 122 | 216 2128
DSP48E1 12 | 18 33 2016
0S
results SOﬁV.vare outer loop
script
FPGA
inner loop
polar  [parameters
decoder i
control signals

Figure 2.10: Test setup block diagram.

is ample room to support decoders for even longer codes for practical applications,
where the block length is usually limited to a few Kb.

The frozen set is fed to FPGA as an N-bit input pattern, indicating whether each
bit is free or frozen, and the decoder circuit design is independent of the frozen set
that is used. In this work, we are interested in how each frozen set affects the error-
correcting performance of the code, the results of which guides the fine-tuning of the
emulation. Figure 2.10 shows the test setup for bit selection: the inner loop of the
BP decoding is done on FPGA, and the outer loop is done in software which samples
results from FPGA and sets run-time parameters and control signals to the decoder

on FPGA.
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2.3 Summary

In this chapter, we show how an FPGA platform can be used to design high-
performance error-correcting codes and decoding algorithms. By emulating the de-
coders on FPGA, we can achieve significant speedups to measure the BER and FER
down to very low levels, which is a necessity for high-performance error-correcting
codes. We show how the decoders can be designed using a library and script approach
to reduce the design effort and facilitate reuse. The FPGA platform will incorporate
run-time configurability to support many emulation experiments using only one piece
of hardware. The emulation hardware can be used to study rare events through a
capture-and-replay approach, and an iterative emulation loop can be used for code
and decoder design and verification.

The emulation platform is set up for BP decoding of polar codes. The application
of the platform will be discussed in Chapter III. The use cases can be expanded to
many other problems that require real-time emulation and study of rare events that

are beyond the reach of software simulations.
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CHAPTER III

Frozen Bit Selection and Tuning Knobs

3.1 Introduction to Bit Selection

When the block length of a polar code is sufficiently long, the capacity of the
effective channel that each bit passes through polarizes to either close to 1 or almost
0 [1]. High-capacity and highly reliable bits are used to carry information, and low-
capacity unreliable bits are frozen to 0 to guarantee a good error rate. The bits that
carry information are called information bits. The selection of the set of frozen (free)
bits is crucial to the error-correcting performance of polar codes. The code rate is
adjusted by the size of the frozen set, without changing the factor graph of polar
codes.

The selection of the frozen set, known as bit selection, is determined by the error
probability or erasure probability of each bit. In SC decoding, the erasure probability
of each bit can be derived for a binary erasure channel (BEC) [1]. Figure 3.1 shows
the capacities of the channel each bit passes through for a N = 1024 polar code,
with erasure rate € = 0.5 in Figure 3.1(a) and ¢ = 0.3 in Figure 3.1(b). Note that
the channel contains an encoder, and the derivation assumes SC decoding [1]. The
frozen set is chosen to be the set of bits with low-capacity channels. The frozen set is
dependent on the communication channel’s statistical characteristic. For a fixed code

rate R., the frozen sets are different for channels of different statistics, as evidenced
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Figure 3.1: Channel capacity of the 1024-bit polar code in BEC channel with erasure
rate of (a) 0.5 and (b) 0.3.

by the difference between Figure 3.1(a) and Figure 3.1(b). Moreover, the frozen set

also depends on the decoding algorithm.

Arikan used the Bhattacharyya parameter as an upper bound of the erasure prob-
ability of each bit in SC decoding [1]. In a binary erasure channel (BEC), the Bhat-
tacharyya parameter equals the erasure probability, and it can be efficiently evaluated
with linear complexity. However, for an arbitrary binary memoryless channel, the
complexity of the method becomes exponential in code length. Mori and Tanaka pro-
posed density evolution to evaluate the bit error probability [26,27], as SC decoding
of each bit can be modeled as BP decoding in a tree structure. However, Mori and

Tanaka’s method is also bottlenecked by high computational complexity due to high
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memory usage that grows exponentially with code length.

Tal and Vardy extended this method by quantization to reduce the memory re-
quirement [28]. The method obtains a lower bound and an upper bound on the bit
error probability given a specified maximum number of quantization levels. The num-
ber of quantization levels needs to be high to achieve a good accuracy. Alternatively,
Trifonov used Gaussian approximation in density evolution to reduce its computa-
tional complexity [29]. These simplified density evolution methods offer substantial
speedup and simplification of the bit error evaluation, but they also require approxi-
mations. Another drawback of these methods is that they require the channel model
to be known in advance.

In section 3.3, a simulation approach to evaluate the error probability of each
bit will be introduced as an alternative method to density evolution. Inspired by
Mori and Tanaka’s formulation that views every step of SC decoding as BP decod-
ing in a tree structure, we use Monte Carlo simulations of BP decoding to evaluate
the error probability of each bit. Each simulation is exact and does not rely on any
approximation. The simulation accounts for the finite code length, loops, numerical
quantization, etc. The simulation method will be particularly useful in handling prac-
tical channels that sometimes have no closed-form mathematical representation. The
bit error probabilities obtained from simulations account for practical non-idealities,
including decoder implementation and its numerical precision. The simulation-based
bit selection algorithm uses N sets of Monte Carlo simulations, one for each bit of an
N-bit polar code.

For an N-bit polar code, the simulation-based bit selection method is done in N
steps, where each step involves Monte Carlo simulations to measure the BER of one
bit. At the end of N steps, a ranked BER list is produced. The simulation-based bit
selection method can be easily extended to other rates. In particular, our method

produces a bit error probability ranking, and designing a different rate code is simply
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picking number of bits to freeze following the bit error probability ranking. Our
method can also be extended to other code lengths. To facilitate it, we have created
a library and script approach, which takes minimal effort to construct a decoder for
a different code length. We use the fast FPGA described in 2.2 to achieve significant
accelerations. The bit selection process requires almost no supervision, and it can be
done entirely autonomously. Compared to other published FPGA-based polar decoder
emulators [30,31], our platform is used specifically for bit selection. In addition to
accelerating polar decoding, a software loop around the FPGA accelerator was added
to set up the frozen patterns and collect the appropriate BERs. We have designed
new approaches to speed up Monte Carlo simulations to make practical bit selections
feasible. Although we use FPGA in this work, the simulation-based bit selection
method can be programmed on a GPU or CPU cluster to achieve acceleration.

As a proof-of-concept, we demonstrate the simulation-based bit selection for three
polar codes with block lengths of 256 bits, 512 bits, and 1024 bits. The results show
up to 0.9 dB improvement in SNR (E}/Ny) in BP decoding over the conventional bit

selection.

3.2 Simple Bit Selection Methods

We first develop two simple bit selection methods and discuss their weaknesses.
The simple methods are developed for BP decoding using 256-bit polar codes. The

results are applicable to codes of longer block lengths.

3.2.1 One-Time Rank-and-Freeze

The bit selection should be based on the error probability of each bit — the most
reliable bits are used as information bits, and the least reliable ones are frozen. To
measure the error probability of each bit of an N-bit polar code, we start with the

rate-1 code using the method below.
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1. Set all bits as information bits.

2. Run Monte Carlo BP decoding simulations and measure the error rate of each

bit.

3. Rank the bits based on error rate and freeze the N — K least reliable bits to

obtain the bit selection for an (N, K') polar code.

We call this bit selection method one-time rank-and-freeze. Step 2 of this al-
gorithm dominates the overall compute time, and we use FPGAs to accelerate the
Monte Carlo decoding simulations. The complexity of this bit selection method is
O(Nyc), where Ny is the number of Monte Carlo decoding simulations.

Using a 6-bit fixed-point BP decoding in an AWGN channel (at an SNR of 7 dB),
the measured BER of each bit of the (256, 256) polar code is shown in Figure 3.2(a).
The BER spreads over one order of magnitude. Based on the BER ranking, we select
a rate-0.5 (256, 128) code with 128 bits of the worst BER frozen. The BER of each
information bit of the rate-0.5 (256, 128) code spreads over two orders of magnitude,
and improves by more than three orders of magnitude over the rate-1 code, as shown
in Figure 3.2(b). The difference between Figure 3.2(a) and Figure 3.2(b) shows the
effect of freezing low-capacity bits: by freezing high-error bits, the performance of the
remaining bits can be significantly improved.

However, at a relatively high SNR of 7 dB, a BER of nearly 10~* is far from
satisfactory for a rate-0.5 code. Experiments at higher or lower SNR show no obvious
improvement. The simple one-time rank-and-freeze method does not work well be-
cause it violates the precondition of channel polarization. The derivation of channel
polarization is based on the precondition that when decoding bit ¢, all the former
bits from 0 to i — 1 are already known [1]. The one-time rank-and-freeze method
evaluates the BER of bit ¢, while allowing all the remaining bits to be free. The

flooding of messages back-and-forth over the factor graph allows low-capacity bits to
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code.
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affect the decoding of high-capacity bits. As a result, a high BER measured using
this method does not necessarily indicate a low-capacity bit; and similarly, a low BER
does not necessarily indicate a high-capacity bit either. Due to the unreliable BER

measurement, this simple bit selection method is unsatisfactory.

3.2.2 Iterative Rank-and-freeze

To account for the inter-bit dependence, the one-time rank-and-freeze method is
refined to an iterative rank-and-freeze method. The idea is that instead of ranking
all bits and freezing N — K bits at one time, a part of N — K bits are frozen at a
time. After a part is frozen, the remaining information bits are evaluated and ranked
again, based on which the next part of the frozen bits are chosen, until the desired
code rate is obtained. The method is described below, where N;; is the number of

iterations to be used.

1. Set all bits as information bits.
2. For i =1 to Ny

(a) Run Monte Carlo BP decoding simulations and measure the error rate of

each information bit.

(b) Rank the information bits based on error rate and freeze the M; least

reliable bits.

Note that the number of bits to freeze in iteration i, namely M;, is chosen such that
Zfﬁtl M; = N — K. If smaller M; values are chosen, more iterations are needed. The
complexity of the iterative rank-and-freeze algorithm is O(N;Nyc). We use FPGA
to accelerate the inner loop (Monte Carlo simulation), and the outer loop (iteration)
is done using a script that interacts with the FPGA accelerator.

For ease of illustration, the BER of each information bit of a 256-bit polar code

is sorted and displayed in a distribution shown in Figure 3.3. Figure 3.3(a) and
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Figure 3.3(b) are two examples of the outcomes of running four iterations of iterative
rank-and-freeze algorithm following slightly different procedures. In the first example
shown in Figure 3.3(a), the numbers of bits frozen in each iteration are {65, 98, 114,
122}, resulting in a (256, 191) code, a (256, 158) code, a (256, 142) code, and a (256,
134) code after the first, second, third and final iteration. In the second example
shown in Figure 3.3(b), the numbers of bits frozen in each iteration are {36, 67, 92,
112}, resulting in a (256, 220) code, a (256, 189) code, a (256, 164) code, and a
(256, 144) code. It is evident from both examples that the impact of frozen set on
BER is significant: after a few unreliable bits are frozen, the BER of the remaining
bits are enhanced. As expected, the refined method produces better bit selections.
However, the choices of the number of iterations and the number of bits to freeze in
each iteration play important roles.

A closer look at the results unveils more insights. First, the bit selection is different
depending on how the iterative procedure is carried out and how many bits are frozen
in every iteration. For example, the BER of the (256, 142) code in the first example
is higher than the BER of the (256, 144) code in the second example, although the
former is a lower rate code. Second, the BER of the bit selection does not improve
in a monotonic fashion with more iterations. For example, in Figure 3.3(a), the BER
of the (256, 158) code produced in the second iteration is not uniformly better than
the BER of the (256, 191) code produced in the first iteration, although the former
is derived from the latter by freezing some of the latter’s information bits.

The iterative rank-and-freeze method improves upon the one-time rank-and-freeze
method by freezing a portion of the bits at a time when evaluating BERs. In each
iteration, the bits of the worst BER are frozen. In the next iteration, these bits will
no longer affect decoding. Although the bits of the worst BER are not necessarily
the bits of the lowest capacity, the bits of the worst BER contain at least a portion

of the bits of the lowest capacity. This is why the iterative rank-and-freeze method
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can perform better than the one-time rank-and-freeze method. However, how well
the iterative rank-and-freeze method works depends on how many of the worst BER
bits are frozen in each iteration. Figure 3.3(a) and Figure 3.3(b) illustrate two dif-
ferent outcomes depending on the number of bits frozen in each iteration. We note
that the iterative rank-and-freeze method still violates the precondition of channel

polarization. Therefore, the iterative rank-and-freeze method is still unsatisfactory.

3.3 In-Order Bit Selection Algorithm

In deriving channel polarization, SC decoding was used to decode polar codes in
order, i.e., from ug to un_1 [1]. up is decoded first given channel outputs; next, given
ug and channel outputs, u; is decoded; next, given u (represents bits ug to u;) and
channel outputs, usy is decoded, and so on. The SC decoding of u; depends only on

the previously decoded bits uj, * and channel outputs. If uj ' is frozen, decoding of

i is guaranteed to be correct and therefore 1; depends effectively only on channel
outputs, and the capacity of u; can be accurately measured by the error probability.

Similarly in BP decoding, as an approximation of SC, if bits uj ' are frozen and
bits uf-\_[[ll are free, the error probability of u; can be accurately measured. The data
dependency under such condition in BP is the same as SC. The error probability

measurement allows us to properly rank the bits and perform bit selection. This

in-order bit selection method is elaborated below.

1. Forti=0to N —1

(a) If i« = 0, then Set all bits as information bits.

If 4 > 1, then freeze bits uf ' and set bits u' ' as information bits.

(b) Run Monte Carlo BP decoding simulations and measure the error rate of

;.
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2. Rank the bits based on error rate and freeze the N — K least reliable bits to

obtain the bit selection for an (N, K') polar code.

Unlike the previous two methods, the in-order bit selection method follows the
derivation of channel polarization. When evaluating the error probability of bit i,
all the former bits from 0 to ¢ — 1 are already frozen. In this way, the measured
error probability of each bit will be reliable, as they cannot be affected by the former
frozen low-capacity bits. Therefore, the bit selection using the in-order method is
also reliable. The complexity of the in-order bit selection algorithm is O(N Ny ).

The in-order bit selection method requires reliable measurement of error proba-
bility using Monte Carlo simulations. The number of Monte Carlo simulations, Ny;¢,
depends on error rate. The lower the error rate, the more the number of Monte
Carlo simulations is required to collect enough errors. In short, the complexity of
our method scales inversely with BER. As the code length increases, N increases and
BER decreases, which in turn increases Ny;¢. The exact complexity scaling factor
depends on how BER decreases with increasing code length. If we hold code length
constant and decrease code rate, BER decreases, which in turn increases Ny;c. The
exact complexity scaling factor depends on how BER decreases with decreasing code
rate. To speed up in-order bit selection, we use FPGA to accelerate the inner loop
(Monte Carlo simulation), and the outer loop (For ¢ = 0 to N — 1) is done using a
script that interacts with the FPGA accelerator.

The number of Monte Carlo runs Ny;¢ can be adjusted for each bit. For a reliable
bit, more Monte Carlo runs are required to collect enough errors to obtain a statis-
tically significant error probability measurement, and to differentiate the reliabilities
of different bits for ranking and bit selection. On the other hand, for an unreliable
bit, the number of Monte Carlo runs can be reduced to save time. Based on this
idea, we designed a three-pass scheme. In each pass, we run the in-order bit selection

algorithm with a higher Ny;c. The least reliable bits are identified and excluded
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Figure 3.4: FER performance of five (256, 128) polar codes designed at SNR from 1
dB to 5 dB.

in the first pass, followed by the medium reliable bits in the second pass, and the
most reliable and hard-to-distinguish bits in the third pass. Designing low rate codes

requires more passes as only a small set of the best bits are chosen.

3.3.1 Optimal SNR for Bit Selection

We use an AWGN channel in the Monte Carlo simulations. The best bit selection
is expected to vary across SNR. To confirm, we first obtain the bit selections using the
in-order method at different SNRs, and then test the performance of the bit selections.
The FER of the five (256, 128) codes with bit selections done at SNR from 1 dB to
5 dB are shown in Figure 3.4. The performance of the five codes vary widely. The
codes designed at low SNRs performs worse, especially at moderate to high SNR. The
codes designed at high SNRs exhibit much better performance throughout the SNR
range.

To understand the implication of SNR on the bit selection, we use Table 3.1 to
show the percentage of errors that are due to minimum-distance errors for six (256,
128) polar codes with different frozen sets. Each code’s performance is displayed in

one column: the bit selections of the first five codes are done using the in-order bit
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Table 3.1: Percentage of Minimum-Distance Errors of Six (256, 128) Polar Codes De-

coded by BP.
bit selection SNR conventional*
1 2 3 4 5 bit selection
dB | dB | dB | dB | dB
1dB || 30% | 20% | 0 0 0 2%
Zl2aB | 7% | 50% | 5% | 0 | 0 5%
Sl3aB |l 95% [ 95% | 20% | o 0 %
% 4dB|| 1 |9% | 8% | 0 0 30%
Z|5dB || 1 1 1| 0 | 0 30%
6dB || 1 1 1 0 0 30%

*: bit selection for BEC channel at e = 0.5

selection method at SNR from 1 dB to 5 dB, and the last column shows the results for
the bit selection for the BEC channel at e = 0.5. Not surprisingly, at a high (decoding)
SNR, the majority of the errors are due to minimum-distance errors. Therefore if the
bit selection algorithm is done at a high SNR, the resulting bit selection will reduce
the minimum-distance errors and increase the minimum distance of the code.

Comparing the results presented in Table 3.1 across the columns in one row,
the frozen set selected at a high SNR yield fewer minimum-distance errors when
simulated in the same channel condition, indicating a larger minimum distance for
these codes. Therefore it is confirmed that a bit selection done at a high SNR increases
the minimum distance of the code.

To run bit selection using the simulation-based in-order selection method, we need
the SNR to be sufficiently high, such that the minimum-distance errors dominate the
error profile. However, our method is not sensitive to SNR. The optimal design SNR
is found to be around 4 dB for an AWGN channel, and it is independent of rate or

code length of practical interest, i.e., from 256 to 4K.
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3.3.2 Speed Improvement Using Early Termination

BP decoding is iterative and more iterations tend to improve the error-correcting
performance. For the results presented so far, we have used a maximum iteration [
= 15 to limit the simulation time. To further speed up the bit selection, one effective
approach is early termination [32], since the decoding for the majority of the inputs
converges after a small number of iterations (much less than 15). However, unlike an
LDPC code, there is not a clear convergence indicator for polar codes.

We propose an approximate convergence detection by monitoring the hard deci-
sions for consecutive iterations. If each bit obtains an identical hard decision for ¢
consecutive iterations, the decoder is allowed to terminate. The cost of implementing
consecutive decision matching is relatively low, requiring only (¢t — 1) 2-input XNOR
gates per bit, and one N(t — 1)-input AND gate at the top level. To prevent mis-
detection, a second criterion is added to ensure that a minimum number of iterations
m is met. As Figure 3.5 shows, the code designed with early termination (m = 3,
t = 3 and [ = 15) has similar error-correcting performance as the code designed with-
out early termination (I = 15), but the bit selection with early termination can be

done up to 5 times faster.

3.3.3 Footprint Reduction

Part of the bit selection method is implemented on FPGA and part is implemented
in software script that interacts with the FPGA. To support the in-order bit selection,
we need to measure a bit’s error probability. So a N-to-1 MUX, done in a tree
structure, is added to the decoder on FPGA to select one of N bit decisions. To run
the bit selection, the software script sets up the the frozen set for the decoder, and
selects the appropriate bit to monitor its BER. Once the BER is properly measured,
the software script moves to the next bit.

The decoder used for bit selection can adopt a short word length to reduce its foot-
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Figure 3.5: FER performance of two (1024,512) polar codes, one designed without
early termination and one designed using early termination.
print on an FPGA and to reduce the minimum clock period. For example, comparing
a 6-bit decoder with an 8-bit decoder implemented in the identical stage-parallel ar-
chitecture on an FPGA, the 8-bit decoder costs 10% more registers, 20% more LUTS,
30% more slices and 25% more RAM, and the minimum clock period has to be re-
laxed by 40%. Figure 3.6 shows similar error-correcting performance of several bit
selections done using different decoders. In particular, bit selection A is done using
a Q6.0 (6-bit integer including a sign bit, and 0-bit fraction) decoder; bit selection
B is done using a Q6.2 decoder; and bit selection C is done using a Q8.0 decoder.
The performance of the three bit selections is simulated using a Q6.0 decoder. The
similar error-correcting performance justifies a smaller decoder design to be used to

permit a higher degree of parallelism to speed up bit selection.

3.3.4 Performance Results
3.3.4.1 Codes of Different Block Lengths

We used the in-order bit selection method to design three polar codes, a (256,
128) code, a (512, 256) code, and a (1024, 512) code. The FER and BER of the

three codes using BP decoding are compared with the bit selection for BEC channel
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Figure 3.6: FER performance of three (1024,512) polar codes that are designed using
different fixed-point quantization schemes.
at € = 0.5 and the bit selection by density evolution for AWGN channel at 4 dB [28]
in Figure 3.7. Compared to the BEC and density evolution code designs, the codes
designed by the in-order bit selection method demonstrate better coding gains at an
FER below 1073. At an FER of 1079, the (256, 128) code, the (512, 256) code, and
the (1024, 512) code designed by the in-order bit selection method achieve 0.6 dB, 0.6
dB, and 0.9 dB coding gain over the BEC codes. Compared to the codes designed by
density evolution, our (256, 128) code has similar performance; our (512, 256) code
performs slightly better at low SNR, and our (1024, 512) code shows improvement

by a fraction of a dB.

3.3.4.2 TIteration limit

With early termination, the decoder has to run for at least ¢ iterations in order to
check whether the decoding has converged, so t sets the lower bound on the number
of iterations (therefore m >= t). An upper bound, [, is set to prevent the decoder
from being trapped in a case that never converges. Figure 3.8 shows FER and BER
of a Q6.0 (1024, 512) polar code, with early termination (f = 3). The FER and

BER improve significantly when [ increases from 10 to 20, but the improvement
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is marginal when [ increases to 30. For different [ values, the average number of
iterations falls below 6 for SNR (E,/Ny) higher than 4 dB, therefore the throughput

becomes independent from [ when [ > 10.

3.3.4.3 Effectiveness on SC Decoder

The bit selection designed by our in-order method not only exhibits better error-
correcting performance in BP decoding, it also demonstrates better performance in
SC decoding as shown in Figure 3.9. The same (1024, 512) codes were used in both a
BP decoder and a SC decoder, where the iteration limit of BP decoding is set to 30
with early termination (m = 3, ¢ = 3 and [ = 30). For a SC decoder, our bit selection
provides 0.7 dB coding gain compared to the conventional bit selection at FER of
10~*. SC decoding provides a slightly better error-correcting performance than BP

decoding.

3.3.4.4 FPGA Speedup

The in-order bit selection for a 256-bit polar code requires on the order of 50k
Monte Carlo simulations per bit at 1 dB SNR, or 2M simulations per bit at 4 dB

SNR, as more simulations are necessary at a high SNR due to the lower BER. As
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Figure 3.9: Performance of (1024,512) polar codes on BP and SC decoders.

discussed previously, to obtain a good bit selection, the bit selection needs to be done
at a relatively high SNR instead of a low SNR. For a longer code, the simulation time
increases further due to the lower BER and more bits in a longer code. The number
of simulations per bit for a 1024-bit code is one order of magnitude higher than a
256-bit code.

In Table 3.2, we compare the time required for the bit selections using a compiled
C code running on an Intel Core i7-4790K processor (quad core, 8M cache, 4.40 GHz,
32GB memory) without multi-threading or SIMD extension and using a Xilinx Virtex-
6 SX475T FPGA (100MHz) to provide acceleration. The decoder is implemented in
a stage-parallel. The speedup by FPGA is significant: at 4 dB SNR, the 256-bit
code bit selection requires 1.8 days on a microprocessor but only 22 minutes with the
FPGA — a 120 times speed up. The estimated C code simulation time for the 1024-
bit code is about 1 year, making it impractical. However, with the FPGA, the bit
selection can be done in 1 day — a 360 times speedup. The comparison demonstrates
the need for acceleration in simulation-based bit selections. One can also use GPUs

with massive parallel threads to speed up simulation.
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Table 3.2: Time Required for Bit Selection in Software (C Simulation on a Micropro-

cessor) and FPGA.
256-bit code 1024-bit code

SNR || Nyc™ upP* FPGA || Nyc uP FPGA

50k | 65 min | 33 sec || 500k | 8.8 day | 38 min
200k | 4.3hr |22 min || 2M | 35day | 2.5 hr
500k | 10.8 hr | 5.5 min || 5M | 3 mon | 6.3 hr
2M | 1.8 day | 22 min || 20M 1yr 1 day
5M | 4.5day | 55 min || 50M | 2.5 yr | 2.6 day

Ul | W[ N =

*: number of Monte Carlo simulations per bit *: Microprocessor

3.4 Summary

In this chapter, we present a simulation-based bit selection method and accel-
eration to design polar codes for BP decoding. Starting with two hypothetical bit
selection methods and an analysis of their weaknesses, we present an in-order bit
selection method that bases the frozen set selection on an accurate evaluation of the
bit error probability. The simulation-based algorithm accounts for practical nonide-
alities, including finite block length, fixed-point quantization, and practical channel
models. The method is applicable for different code rates and code lengths. The
results are demonstrated in three code designs, a (256, 128) code, a (512,256) code,
and a (1024, 512) code, that outperform conventional code designs by 0.6 dB, 0.6 dB,
and 0.9 dB, respectively, in BP decoding at an FER of 107%. The code construction
also shows significant performance improvement on an SC decoder.

To improve the throughput of the decoding, early termination is used to reduce
the average latency, which also lowers error rate at moderate SNR region. At low
SNR where the magnitude of the messages is small, offset correction minimizes the
min-sum approximation error and lowers the error rate by an order of magnitude.
At high SNR, adaptive quantization provides more dynamic range with a fixed short

word length in implementation, which lowers the error rate by orders of magnitude.
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To speed up the simulation-based bit selection, we make use of a stage-parallel
BP decoder design on FPGA. The inner loop of the bit selection algorithm is done on
FPGA to cut the simulation time by orders of magnitude. To further speed up the bit
selection, we implement an early termination scheme to shorten the decoding latency
by up to 5 times. As a result, the bit selection for a 256-bit polar code takes only 22
minutes and a 1024-bit polar code takes 1 day, making it feasible for designing codes

of practical block lengths.
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CHAPTER IV

Error Patterns and Their Mitigation Methods

Polar codes are the first provably capacity-achieving error-correcting codes for
any binary-input discrete memoryless channels (B-DMC) [1], and the error-correcting
capability of polar code holds high promise. The two main decoding algorithms are
SC [1] and BP [13]. SC exhibits a better error-correcting performance than BP [2], and
list decoding [33], viewed as an enhanced SC, further improves the performance but
with an increased complexity. BP on the other hand, provides a higher throughput
and a reduced latency, but it sacrifices error-correcting performance.

BP is an iterative message passing algorithm operating on a factor graph. The
same BP decoding algorithm has been widely used in decoding low-density parity-
check (LDPC) codes. Despite the impressive performance seen in decoding LDPC
codes, BP has shown a weakness known as the error floor phenomenon [24]. Error
floors occur at moderate to high SNR levels, preventing the waterfall-like improve-
ment in error rate with increasing SNR. In the error floor region, decoding errors are
dominated by a small number of fixed patterns known as trapping sets [24].

In this work, we analyze the error patterns in the BP decoding of polar codes.
The decoding errors are classified and the factors affecting decoding, including channel
SNR, code design, decoding algorithm, and implementation, are analyzed. Based on

the insights, we provide preliminary ideas of how the decoding errors can be mitigated.
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4.1 Error Classification

To understand how decoding fails, we obtain hard decisions @ at the end of each BP
decoding iteration. Due to the lack of a definitive convergence check in polar decoding,
we use hard decisions from consecutive iterations to decide whether decoding has
converged. If hard decisions over consecutive iterations agree, we consider it has

converged.

4.1.1 Unconverged Error

If hard decisions fail to agree within a maximum allowed iteration limit, and there
is no defined pattern of error, we call it an unconverged error. Unconverged errors
are most common at a low SNR level where the channel is noisy and the decoder is
unable to resolve the errors.

Assume an all-zero codeword is transmitted using binary phase-shift keying (BPSK)
modulation; and a bit wu; is decoded correctly if the soft decision of 4; > 0 and incor-
rectly otherwise. A plot of the soft decisions of u is shown in Figure 4.1, illustrating
an unconverged error for a (256, 128) code. The decision threshold is 0. The soft
decisions keep flipping across the decision threshold, and incorrect soft decisions hover
around the decision threshold. There is no obvious pattern in the decisions, and more

iterations do not help to find correct convergence.

4.1.2 Converged Error

As SNR increases, unconverged errors start to disappear, and errors of systematic
patterns start to emerge. The majority of systematic error patterns we found are at-
tributed to converging to wrong codewords, or falling to local minima of BP decoding
operating on loopy factor graphs. The factor graphs of polar codes contain loops, so
a flooding BP decoder is not immune to local minima problems.

If hard decisions are stable and agree over consecutive iterations, but the decoded
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Figure 4.1: Soft decisions of an unconverged error in BP decoding of a (256, 128)
code.

message is incorrect, i.e., 4 # u, we call it a converged error. Converged errors are
most common at moderate to high SNR, and it usually takes only a small number of
iterations to reach a steady state, as illustrated in Figure 4.2 for a converged error in
the decoding of a (256, 128) code. In this example, within two or three iterations, the
soft decisions of a small number of bits are found to be trapped in wrong decisions,
and they cannot be recovered using more iterations.

The particular case illustrated in Figure 4.2 represents a local minimum state in
BP decoding. The few incorrect bits reinforce the wrong decisions among themselves
through loops in the factor graph, making it impossible to make any progress towards
convergence, which is similar to a trapping set found in the BP decoding of LDPC

codes.

4.1.3 Oscillation Error

Loops in the factor graph allow the propagation of incorrect messages through
BP decoding, causing oscillations. As incorrect messages travel around a loop, the
decisions also go through a round of changes.

If hard decisions are unstable and change periodically over iterations, we call it

an oscillation error. Although an oscillation error is also an unconverged error, an
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Figure 4.2: Soft decisions of a converged error in BP decoding of a (256, 128) code.
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Figure 4.3: Soft decisions of an oscillation error in BP decoding of a (256, 128) code.

oscillation error features a pronounced pattern of periodic changes. An example of
the oscillation error is shown in Figure 4.3. The illustrated error has an oscillation
period of 2 iterations. A group of bits are incorrect in iteration 12; the incorrect
bits all turn correct in iteration 13, but they turn incorrect again in iteration 14. If
decoding is terminated in iteration 13, decoding would be done correctly. However,
there is no way for the decoder to decide when to terminate in the absence of a
definitive convergence detector in polar codes. Relying on checking hard decisions
over consecutive iterations does not help terminate an oscillation error in the right

iteration.
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Figure 4.4: Error distribution for BP decoding of a (256, 128) code.

4.1.4 FError Distribution

In Figure 4.4, we show the statistical breakdown of errors at each SNR point
for the BP decoding of a (256, 128) code. At a low SNR level, unconverged errors
dominate; as SNR increases, converged errors and oscillation errors become dominant.
The error breakdown demonstrates the importance of fixing the loopy behavior of BP
decoding and of designing polar codes with a large minimum distance to improve the

error-correcting performance.

4.2 Factors Affecting Decoding

To gain an insight into decoding errors, we adjust code and decoder design pa-

rameters and analyze the corresponding changes in error rate and error breakdown.

4.2.1 Code Design

Take the rate-0.5 (256, 128) code in Figure 4.4 as reference. We increase the
rate of the 256-bit code from 0.5 to 0.53 and plot the error distribution and error
rate of the rate-0.53 code in Figure 4.5. The axes and markers of the distribution in
Figure 4.5 are identical to those in Figure 4.4, so they are omitted in Figure 4.5 for

simplicity. All the later plots follow the same convention, unless they are explicitly
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Figure 4.5: Error distribution and error rate for BP decoding of a (256, 136) code.

marked.

The error rate of a higher rate code is worse as expected. The number of con-
verged errors at a high SNR level is noticeably higher. More converged errors can
be explained by more information bits in a higher rate code resulting in more code-
words, or a more crowded codeword space, making it more likely to converge to a
wrong codeword.

As we increase the block length from 256 to 1024 while keeping the code rate
of 0.5, the error distribution and error rate of the (1024, 512) code are shown in
Figure 4.6. The error rate of the (1024, 512) code improves over the (256, 128) code,
but it suffers from an error floor at FER below 1077. Compared to the (256, 128)
code, the (1024, 512) code has fewer converged errors but more oscillation errors. The
(1024, 512) code has a stronger polarization effect, so it is expected to outperform
the (256,128) code. However, with two more stages in the factor graph, the factor
graph of the (1024, 512) code contains more loop configurations than the (256, 128)
code, resulting in more oscillation errors.

We also note that with more processing stages in a larger factor graph, numerical

saturation occurs more easily. When reliable bits are saturated, they are less effective
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Figure 4.6: Error distribution and error rate for BP decoding of a (1024, 512) code.

in preventing incorrect bits from propagating. Allocating more bits to cover a larger

numerical range is expected to alleviate the problem.

4.2.2 Decoder Implementation

The choice of fixed-point quantization affects the decoding performance [34]. In
the above simulations, the Q7.-1 (6 bits covering the range of -64 to 62 with a reso-
lution of 2) fixed-point quantization was used. Keeping the same 6-bit word length,
the Q6.0 quantization covers the range of -32 to 31 with a resolution of 1, and the
Q5.1 quantization covers the range of -16 to 15.5 with a resolution of 0.5. The quan-
tizations used in Figure 4.7, Q5.1, Q6.0, Q7.-1 and Q8.-2, all share the same 6-bit
wordlength, but they result in different error-correcting performance.

At a low SNR level, a quantization with a finer resolution improves numerical
accuracy; and at a high SNR level, a quantization with a larger range prevents clipping
and yields better performance. The comparison between the two codes in Figure 4.7
shows that a longer code requires a higher range to obtain the expected performance,
and a larger range also alleviates the error floor problem.

Min-sum approximation is often applied to simplifying the log-likelihood ratio cal-
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Figure 4.7: Error rate for BP decoding of a (256, 128) code and a (1024, 512) code
that are implemented in different quantization schemes.

culations. The associated min-sum approximation error can be compensated by offset

correction. Offset correction is especially effective at a low SNR level, as illustrated in

Figure 4.8. The number of unconverged errors is reduced, as offset correction reduces

approximation errors and improves the decoding performance.

4.3 Error Detection

As discussed above, a BP polar decoder is unaware of whether decoding has con-
verged. An iteration-by-iteration hard decision check detects unconverged errors, but
it fails to detect converged errors, which account for 20% to 90% of the errors. An
iteration-by-iteration hard decision check detects oscillation errors, but it fails to find
the right iteration to terminate decoding and stop oscillations. Therefore, we add a

low-cost error detection scheme to catch the majority of the undetected errors.

4.3.1 CRC Concatenation

The error detection scheme is based on concatenating polar code with cyclic re-

dundancy check (CRC) that consumes only a small number of parity bits but provides
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Figure 4.9: Hlustration of concatenation of polar code with CRC.

a good detection capability. A CRC codec is added outside the polar codec, illus-

trated in Figure 4.9. The CRC encoder generates parity bits for an input message.

The message bits along with the parity bits are remapped to the information bits of

the polar code. On the decoder side, the CRC decoder checks if the hard decisions

obtained by the polar decoder is a valid CRC codeword at the end of each decoding

iteration.
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Figure 4.10: Error rate for BP decoding of a (1024, 512) code before and after CRC
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4.3.2 Performance Loss

A CRC-n code generates n parity bits, which covers up to 2" — 1 —n message bits.
We employed CRC-8 in the rate-0.5 256-bit polar code and CRC-10 in the rate-0.5
1024-bit polar code. Our simulation shows that more than 99% of the previously
undetected errors are detected by CRC. Note that CRC concatenation increases the
code rate. If the overall code rate is kept the same, CRC concatenation results in a
slight performance loss.

In the 256-bit code and the 1024-bit code, CRC concatenation increases the code
rates from 0.5 to 0.53 and 0.5 to 0.51, respectively. The performances are compared
in Figure 4.5 and Figure 4.10. The coding gain of the 256-bit code is reduced by
approximately 0.3 to 0.5 dB, but the loss is much smaller in the 1024-bit code due to

the negligible number of parity bits relative to the block length.

4.3.3 CRC-Based Termination

We make use of CRC to reliably determine when to terminate decoding, i.e., if
CRC passes, the iterative decoding is terminated. The effect of CRC-based termi-
nation in the BP decoding of two polar codes is shown in Figure 4.11, where the

white space above the bars represents the percentage of errors being resolved with
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Figure 4.11: Error distribution for BP decoding of (a) a (256, 128) and (b) a (1024,
512) polar code with CRC-based termination.

the proper termination based on CRC. We observe that BP decoding is able to pro-
duce error-free messages in some iterations even if the decoding itself is not stable.
The CRC-based termination helps to lock in the correct codeword before decoding
diverges.

CRC-based termination helps resolve most of the unconverged errors and a portion
of oscillation errors. The remaining errors are dominated by converged errors and
oscillation errors. One approach to fix the remaining errors is via post-processing by
perturbation. Prior work in LDPC post-processing points out that perturbation is
especially beneficial when a BP decoder is trapped in a local minimum [25]. From
a cost standpoint, post-processing can be implemented as part of BP decoding with

biased messages.

4.4 FError Mitigation

False converged errors and oscillation errors determine the error-correcting per-
formance of BP decoding at moderate to high SNR level. A false converged error
represents a steady state that “traps” the decoder. To escape, the steady state needs
to be perturbed. Compared to a false converged error, an oscillation error provides
direct clues as to which bits are stable and unstable. The insight can be exploited to

stop oscillations by enhancing the stable bits and perturbing the unstable bits. Regu-
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lar BP decoding can be used to clean up the errors caused by perturbation. Excessive
perturbation needs to be unrolled in solving unconverged errors. These intuitive ideas
form the basis of our post-processing methods.

In BP decoding, the frozen set information is propagated from left to right of the
factor graph. The frozen set information is carried by the so-called R messages. If
a bit wu; is frozen, we set the R message of u; to the maximum positive value, which
effectively biases 1u; to 0 to overtake the effect of the extrinsic messages. If u; is free,
the R message of u; is set to zero, so that u; is unbiased and entirely determined by
the extrinsic messages. In summary, if i € A, R; = M,,4.; if i € A, R; = 0.

In post-processing, we tune the R messages of the information bits to introduce
perturbation. This could also be understood as biasing, or partially freezing the
information bits towards one direction or another: a positive R message biases an
information bit towards 0; and vice versa.

Since perturbation injects noise to the system, to quantify the effect of perturba-

tion in post-processing, we define a cost function based on the decoded soft decisions.

C(x) = \/ZZGA(J\TZT — Xi)2’

where x is the vector of soft decisions of the decoded bits and x; € [— M4z, Minaz),
and A is the set of information bits. Assume an all-zero codeword and a quantized BP
decoder, and M,,,, is the maximum magnitude of a soft decision. The cost function
is essentially a measure of the normalized average distance between the decoded soft

decisions x and the transmitted codeword.

4.4.1 Post-Process Converged Error

To fix false converged errors, we will apply a small perturbation to destabilize the

converged state. A balancing act is needed as perturbation increases the noise, and
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will likely cause errors to be made. Therefore the perturbation needs to be kept low
and below a threshold level, and perturbation should be applied discriminatingly. We
use the soft decision of a bit as an indication of the reliability of the bit’s hard decision:
if the magnitude of the soft decision is high, the hard decision is most likely correct,
and vice versa. Therefore, we enhance the reliable bits and perturb the unreliable
bits at the same time. We use regular BP decoding to clean up the errors introduced

by perturbation. The post-processing method is described in Algorithm 1.

Algorithm 1: Post-processing false converged errors

1 for iter_count = 1 to dter_limit do

2 if CRC fails && hard decisions are consistent then
3 for i € A do

4 if ‘Xz| > Mthreshold then

5 if R; == 0 then

6 ‘ R; = sign(x;) x My

7 else if |R;| < My then

8 | R = sign(x;) x |Ri| x ¢
9 else

10 L R; = —sign(R;) x M

11 else

12 if R, == 0 then

13 ‘ R; = rand(x1) x M

14 else if |R;| < M then

15 | R = —sign(x;) x |R;| x ¢
16 else

17 L R; = —sign(R;) x My

The post-processing method starts by recognizing whether a bit is reliable. If
the soft decision x; reaches a set threshold My, esnoiq, indicating the decision being
reliable, the bit is enhanced by setting R; to Mj in the same direction as the hard
decision, i.e., the sign of x;. Setting R; in the same direction as x; will amplify its
influence on neighboring bits in subsequent iterations. If a bit is unreliable because x;
is below M;p eshold, the bit is perturbed by randomly setting R; to either M, or —M,

to bias the bit towards 0 or 1, respectively. (The notation rand(£1) in the algorithm
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Figure 4.12: Error distribution after post-processing false converged errors in BP de-
coding of (a) a (256, 128) CRC-concatenated polar code and (b) a (1024,
512) CRC-concatenated polar code.

refers to randomly picking 1 or -1.) The goal of the post-processing is to push the
state out of false convergence. After the perturbation, regular BP decoding is applied
to clean up the errors introduced by the perturbation in an attempt to move towards
convergence.

The post-processing is considered successful if either CRC is satisfied, indicating
correct convergence (except for a very few number of undetected errors), or the hard
decisions no longer remain consistent from one iteration to the next, indicating the
decoding has escaped the false convergence. If one attempt of post-processing is not
successful, a second attempt using stronger enhancement and perturbation is applied
(¢ > 1in the algorithm). The post-processing attempt continues until a bias threshold
Miimi 18 Teached to prevent excessive noise injection from perturbation. In case of
Miimic being reached, the post-processing can be restarted with a small bias M, in
the opposite direction.

The error breakdown after applying post-processing to false converged errors is
shown in Figure 4.12. The post-processing resolves the majority of the false converged
errors by BP decoding following perturbation, and part of them are turned to either
unconverged errors or oscillation errors. False converged errors become negligible
following the post-processing.

The iteration-by-iteration plots of the cost function of BP decoding resulting in
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Figure 4.13: Cost functions of BP decoding with and without applying post-
processing Algorithm 1 (PP1): (a) an example of a false converged error
resolved by Algorithm 1, and (b) an example of a false converged error
that is not resolved by Algorithm 1.

false converged errors are shown in Figure 4.13. In the example illustrated in Fig-

ure 4.13(a), the cost initially descends in BP decoding, and then false convergence is

detected and post-processed at iteration 5. The cost first rises due to perturbation,
allowing the decoder to escape false convergence. Regular BP decoding follows post-
processing. It cleans up the errors due to perturbation and converges to the correct
codeword. In the example illustrated in Figure 4.13(b), false convergence is detected
and post-processed at iteration 14; and again detected and post-processed at iteration

17. Regular BP decoding follows each post-processing attempt, but the error turns

into an unconverged error that cannot be solved by Algorithm 1 alone.

4.4.2 Post-Process Oscillation Error

In post-processing false converged errors, we used the magnitude of soft decisions
to guide whether to apply enhancement or perturbation. Oscillation errors, on the
other hand, provide direct clues of which bits are reliable and which ones are not.
Unstable bits change their hard decisions periodically and are considered unreliable,
and stable ones are consistent and considered reliable. To stop oscillations, stable

bits are enhanced and unstable bits are perturbed. The post-processing method is
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described in Algorithm 2.

Algorithm 2: Post-processing oscillation errors

1 for iter_count = 1 to iter_limit do

2 if oscillation is detected (of period T ) then
3 for i € Ado

4 if sign(x;) is consistent in T iterations then
5 if R, == 0 then

6 ‘ R; = sign(x;) x My

7 else if |R;| < M then

8 L R; = sign(x;) X |R;| x ¢

9 else

10 if R, == 0 then

11 | R; = rand(£1) x M,

12 else if |R;| < M then

13 ‘ R, =—R; xc

14 else

15 L R, = —sign(R;) x M

An oscillation error is detected by checking the consistency of hard decisions over
consecutive iterations. Enhancement and perturbation are applied to the stable and
unstable bits respectively using the similar approaches in Algorithm 1, starting by
biasing the R messages by a small amount M, and letting regular BP decoding it-
erations clean up the errors. If post-processing is unsuccessful after one attempt,
another attempt is used with stronger enhancement and perturbation until a biasing
threshold of M, is reached.

The error breakdown after applying post-processing to both false converged errors
and oscillation errors is shown in Figure 4.14. The vast majority of false converged
errors and oscillation errors are resolved, and the remaining errors are almost all
unconverged errors. Note that an error can evolve from one type to another in the
post-processing procedure, so Algorithm 1 and 2 need to be employed jointly.

The plots of the cost function of BP decoding resulting in oscillation errors are

shown in Figure 4.15. Figure 4.15(a) illustrates an oscillation error. The error is
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Figure 4.14: Error distribution after post-processing oscillation errors and false con-
verged errors in BP decoding of (a) a (256, 128) CRC-concatenated polar
code and (b) a (1024, 512) CRC-concatenated polar code.
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Figure 4.15: Cost functions of BP decoding with and without applying post-
processing Algorithm 1 and 2 (PP1 and PP2): (a) an example of an
oscillation error resolved by Algorithm 2, and (b) an example of a false
converged error evolving to an oscillation error that is resolved by Algo-
rithm 1 and 2.

detected and post-processed at iteration 9 using Algorithm 2. After a few iterations of
regular BP decoding, the error is resolved. Figure 4.15(b) illustrates a false converged
error. False convergence is detected at iteration 7 and post-processed by Algorithm 1,
and again at iteration 10. Following the second post-processing attempt, the error
evolves to an oscillation error at iteration 16, and it is post-processed by Algorithm 2.
Then it turns to another false converged error at iteration 19. Finally, the error is

successfully resolved following a post-processing by Algorithm 1.
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4.4.3 Post-Process Unconverged Error

With the vast majority of the false converged errors and oscillation errors removed,
the only dominant errors left are unconverged errors. Many of the unconverged errors
are in fact due to the perturbation applied to unreliable bits during post-processing.
To resolve unconverged errors, the perturbation needs to be “unrolled” to enable
convergence.

We can select stable bits using some criteria, e.g., bits that remain consistent with
soft decisions of high magnitude, and unstable bits using the opposite characteristic.
To resolve unconverged errors, we enhance the stable bits, but weaken the pertur-
bation on the unstable bits to facilitate convergence. The post-processing method is

formulated in Algorithm 3.

Algorithm 3: Post-processing unconverged errors

1 for iter_count = 1 to iter_limit do

2 if iter_count > iter_threshold €€ no oscillation is detected then

3 for i € A do

4 if sign(x;) is consistent over iterations && |x;| > Mynreshora then
5 if R, == 0 then

6 | R = sign(x;) x My

7 else if |R;| < My then

8 L R; = sign(x;) X |R;| x ¢

9 else if sign(x;) is inconsistent over iterations then
10 R; = R;/c

11 if |R;| < Myimi then

12 L R, = —R;

An error is marked as an unconverged error if BP decoding fails to converge after
a sufficient number of BP iterations, and no oscillation is detected. In formulating the
post-processing method, we combine the strategies in Algorithm 1 and 2 to determine
stable and unstable bits. The stable bits are enhanced using the same approach as

in Algorithm 2. For the unstable bits, the perturbation is weakened by gradually
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Figure 4.16: Error distribution after post-processing unconverged errors, oscillation
errors and false converged errors in BP decoding of (a) a (256, 128)
CRC-concatenated polar code and (b) a (1024, 512) CRC-concatenated
polar code.

reducing the bias in R messages, essentially undoing the perturbation to push towards

convergence. If a bit meets neither stable nor unstable conditions, its R message

will remain untouched. Most of the unconverged errors are resolved after applying

Algorithm 3 as shown in Figure 4.16.

The plots of the cost function of BP decoding resulting in unconverged errors
are shown in Figure 4.17. Figure 4.17(a) illustrates an unconverged error, which is
post-processed by Algorithm 3 at iteration 33. The error evolves to an oscillation
error at iteration 35, and is post-processed by Algorithm 2. Finally the error turns
back to an unconverged error. After two post-processing attempts at iteration 37
and 39 by Algorithm 3, decoding converges. Figure 4.17(b) illustrates an oscillation

error, which is post-processed by Algorithm 2 at iteration 31. The error evolves to an

unconverged error and resolved after post-processing using Algorithm 2 at iteration

33.

4.5 Results

The post-processing methods presented above can be efficiently implemented in
BP decoding. Error detection is done by CRC and monitoring iteration-by-iteration
hard decisions. If the decoding of an input frame does not converge within an iteration
limit, or if the decoding converges but fails CRC, an error is detected. Post-processing

will only be applied to the detected errors.
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Figure 4.17: Cost functions of BP decoding with and without applying post-
processing Algorithm 2 and 3 (PP2 and PP3): (a) an example of an
unconverged error resolved by Algorithm 2 and 3, and (b) an example
of an oscillation error resolved by Algorithm 2 and 3.

The error-correcting results of post-processing are demonstrated in two code ex-
amples, a (256, 128) code and a (1024, 512) code, as shown in Figure 4.18. Despite
the decrease in coding gain due to CRC concatenation, post-processing easily recoup
the loss, and improve the coding gain of the (256, 128) code by 0.8 dB at FER of 108
and the coding gain of the (1024, 512) code by more than 1 dB at FER. of 105,

With post-processing, BP decoding overtakes SC decoding in performance as
shown in Figure 4.19. The decoders are implemented in the same fixed-point quan-
tization. The BP performance was obtained by FPGA emulation, while the SC
performance was obtained by simulation. Due to the long latency in SC decoding
and the slower software simulation, the SC error rate curves only extend to 10° in
Figure 4.19. In decoding the (256, 128) code and the (1024, 512) code, BP decoding
with post-processing outperforms SC decoding by 0.4 dB and 0.5 dB, respectively, at
moderate SNR.

The error-correcting results shown above are based on a low-overhead implemen-
tation, where the numerical value of the same parameter in different types of the
errors are set to be the same, i.e., My in the three algorithms have the same value,

etc. The values can be finer tuned for each error type for a better correction result
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Figure 4.18: Error rates of BP decoding with and without post-processing for (a)
a (256, 128) polar code, and (b) a (1024, 512) polar code using 6-bit
quantized decoders.
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Figure 4.19: Error rates of SC decoding and BP decoding with post-processing for
(a) a (256, 128) polar code, and (b) a (1024, 512) polar code using 6-bit
quantized decoders.
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Figure 4.20: Normalized silicon area and throughput/area ratio of different designs
based on chip synthesis in a 45nm CMOS technology.

with more hardware overhead. Although the choice of the parameter values depends

on quantization, the same choice of the values are valid for different codes as long

as their fix-point representation yields a similar relative dynamic range of the LLRs,

e.g., we use the same set of relative values for a Q5.1 (256, 128) code and a Q6.0

(1024, 512) code.

To evaluate the cost of implementing post-processing in hardware, we performed
chip synthesis in a 45nm CMOS technology, the results of which are presented in
Figure 4.20. A stage-parallel BP decoder [34] is used as the baseline. Adding a CRC
encoder and decoder adds a 1.8% area overhead, and adding post-processing costs an
additional 2.5% area overhead.

Since post-processing is conditionally invoked, it does not affect the average through-
put and latency of BP decoding. A classic SC decoder uses half of the area as a stage-
parallel BP decoder, but its throughput and latency are significantly worse than the
BP decoder. The figure of merit, in terms of throughput over area, of the BP decoder
with post-processing is an order of magnitude better than an SC decoder as shown
in Figure 4.20. The better error-correcting performance, the higher throughput and
lower latency are the key advantages of BP decoding with post-processing that make

it more competitive than SC decoding.
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4.6 Summary

In this chapter, we classify BP decoding errors into three categories: unconverged
errors, converged errors, and oscillation errors. We analyze the important factors
affecting decoding, including code design and decoder implementation. While un-
converged errors and oscillation errors are detectable by checking the hard decisions
in each iteration for consistency, converged errors are undetected. Concatenation of
polar codes with CRC enables the detection of undetected errors and the proper ter-
mination of BP decoding. CRC-based termination helps to remove a large portion of
unconverged errors and oscillation errors.

We present post-processing methods targeting converged errors, oscillation errors,
and unconverged errors that dominate the error-correcting performance of BP decod-
ing of polar codes. Post-processing is designed based on BP using modified frozen set
information. The modification is implemented by biasing the R messages based on
BP message passing results. For false converged errors, enhancement is applied to the
information bits of high reliability, and perturbation is applied to those of low reliabil-
ity by randomizing biasing of R messages to escape false convergence. For oscillation
errors, enhancement is applied to the stable bits to further strengthen these bits,
and perturbation is applied to the unstable bits to stop oscillation. For unconverged
errors, enhancement is applied to the stable bits, and perturbation on the unstable
bits is unrolled to encourage convergence. In all three cases, BP decoding is used to
clean up the errors introduced by perturbation.

Results show that post-processing of BP decoding improves the error rates by
an order of magnitude or more at moderate to high SNR level, demonstrating better
error-correcting performance than SC decoding. Post-processing can be efficiently im-
plemented on a BP decoder with negligible hardware overhead, and it does not affect
the average throughput and latency of BP decoding, thereby making BP decoding

more competitive than SC decoding for practical high-performance applications.

70



CHAPTER V

Flexible Architecture and Configurable Hardware

5.1 Family of Architectures

The architecture of a single-column stage-parallel BP polar decoder has been
discussed in section 2.2, and in this section, a wider design space of BP architecture
will be explored. Due to the regularity of polar codes, the computation logic, i.e., the
columns of PEs, can be folded or unfolded to create variations of the architecture.
Within the design space, one can trade among area, power, latency and throughput to
find a better fit of the application specifications. We will assume the same three-stage

pipelined datapath as done in the FPGA model for all architectures for comparison.

5.1.1 Fully Parallel

Direct mapping the complete factor graph of a N = 2"-bit polar decoder into
hardware results in a fully parallel design shown in Figure 5.1(a). The design is com-
posed of n PE columns each consisting of N/2 PEs, performing R-prop in one clock
cycle by reading all the L messages and buffering all the R results in the interme-
diate storage, followed by performing L-prop in a similar manner. The mux inputs
are marked based on their selection condition. The intermediate storage has to be

implemented in registers so that extremely high bandwidth can be supported.
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Figure 5.1: (a) Fully parallel design (b) with the last column saved.

We notice that column n is redundant in R-prop and is optional in L-prop unless
in the last iteration. Alternatively, the last column can be merged with the first
column, as shown in Figure 5.1(b), saving some area with the cost of 1 clock cycle to
calculate the soft decisions, when the muxes select the inputs marked as SD.

The fully parallel design provides the fastest data rate and shortest latency, with
a high area and power consumption. Each BP iteration takes 2 clock cycles, but the

clock period is proportional to log N.

5.1.2 Stage Parallel

Given that all the stages in R-prop and L-prop execute identical operations, re-
spectively, it is possible to use only a small number of PE columns to serialize the
stage operations, saving the majority of combinational logic at the cost of through-
put. We show the single-column design in Figure 5.2(a) and double-column designs
in (b) and (c¢). The mux inputs marked as L/ R are selected by the first stage of either
L-prop or R-prop.

The single-column design shown in Figure 5.2(a) follows the same connection
as the FPGA model shown in Figure 2.6, where the design contains only one PE
column, consisting of N/2 PEs, and processes one stage of BP decoding at a time.

Each iteration takes 2log N clock cycles. Ideally the critical path lies in the PE logic,
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Figure 5.2: (a) Single-column design and double-column design with (b) n being odd
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storage storage

T

but the memory access latency of intermediate storage could surpass the PE logic
latency, resulting in a longer clock period.

The double-column design contains two PE columns and processes two stages at a
time. Since both PE columns access the intermediate storage, the memory bandwidth
has to be doubled. The cycle count per iteration is reduced by half to log NV, but the
clock period is expected to be extended due to the more complex two-stage PE logic.

Different code block lengths lead to slightly different designs. The design shown
in Figure 5.2(b) corresponds to n being an odd integer, and (c) for n being even. We
draw the time table of these two cases in Figure 5.3, and highlight the SD stage in
dash and the L/R mux selections in arrows. The memory implementation in these
two cases also varies, and we list the memory access patterns in Table 5.1. When n is
odd, the two columns access the same pairs of entries in R-prop and L-prop, except
that the order of each pair is flipped. The memory can be implemented with a word
length of 2N (@, with the ability of swapping half words, and with halved depth of
(n —1)/2. When n is even, column 1 only accesses odd indexed entries and column
2 only accesses even indexed entries. The memory can be constructed by two halves,
each with a word length of N@, and with a depth of n/2 in the odd half and of

(n — 2)/2 in the even half.
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Figure 5.3: Time table of double-column design with (a) n being odd and (b) n being
even.

Table 5.1: Memory Access Patterns of Double-Column Designs

R-prop L-prop
columm1|1(3|...|n4|n-2|n-1|n3|...\ 4|2
odd n
columm2 |24 |...|n-3|n-1|n2|n4d|..|3|1
columm1|1(3|...|n3|n-1|n-1|n3|...]3|1
even n
columm 2 |2 (4| ... | n2 n-2n4j..|2

5.1.3 Sub-stage Parallel

The structure of polar codes tells us that a short code is a subsection of longer
codes. The stage-wise identical structure of BP decoding in addition to the regular
structure of polar codes allows a BP decoder to process longer codes through sub-stage
parallel architectures.

In the architectures introduced above, a stage of N-bit code is mapped to a column
of N/2 PEs, and in Figure 5.4 we show a PE column being repeated twice to construct
a 2N-bit stage or four times for a 4 N-bit stage, with the routing of the PE column
preserved. In the 2N-bit case (shown in (b) and (d)), the connections in second and
third quarter on the left hand side are swapped, with each quarter containing N/2
connections. We show the corresponding half-column architecture in Figure 5.5(a).
In the 4N-bit case (shown in (e)), the swapping is still based on groups of N/2

connections, or 1/8 with respect to the block length 4N, in the same manner as a
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Figure 5.4: (a) An 8-bit column (b) composed of two copies of a 4-bit column. (c) A
16-bit column (d) composed of two copies of an 8-bit column or (e) four
copies of a 4-bit column.

8-bit column (shown in (a)). The corresponding quarter-column architecture is shown

in Figure 5.5(b).

The sub-stage parallel designs turn out identical in Figure 5.5, and appear similar
to the single-column one in Figure 5.2(a), except that the data buses are split into
halves. The architectures are designed based on the scheduling shown in Figure 5.6.
In the notations R, j is the stage index, and p and g are the part indices, where

{p,q} € [0,3] in half-column and {p, ¢} € [0,7] in quarter-column. The scheduling

stage . stage M
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Figure 5.5: (a) Half-column design and (b) quarter-column design.
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Figure 5.6: Time table of (a) half-column design and (b) quarter-column design.

indicates that the storages require two read ports and two write ports, each with a
halved word length of N@Q/2 bits. The memory depth (of each part) is 4n in half-
column and 8(n+1) in quarter-column. An extra stage buffer is required for sub-stage
parallel designs due to the PE results not being immediately used in the next clock
cycle, as one stage of long codes takes several clock cycles to complete.

The sub-stage parallel designs save area by reducing number or PEs, while the
latency is 2571 (log N +k) cycles per iteration for a 2¥ N-bit code, and the clock period
is expected to be slightly extended compared to the single-column design due to the

addressing logic in the stage buffer.

5.1.4 Comparison

We summarize the section by plotting the normalized area and throughput of

different designs of different code length and memory implementations in Figure 5.7.
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Figure 5.7: Normalized area and throughput of different designs of 1K-bit or 4K-bit
BP decoders with register-based or SRAM-based memory.

We show the data points of all the six architectures introduced above for a 1K-bit

code, and SRAM-based memory is only applicable to the sub-stage parallel designs

where the memory depths are less shallow. For the 4K-bit code, we omit the fully

parallel designs due to their large area.

Looking at the register-based 1K-bit decoders (triangle marks, no fill), we find
the stage-parallel design the most efficient in terms of throughput per area. The
fully parallel designs do not provide much improvement on the throughput, while
demanding significant area increment. The sub-stage parallel designs sacrifice much
throughput, and they do not save any area due to the constant memory size and
additional stage buffer. SRAM-based memory provides area savings, and the savings
can be more significant for a more serial design.

The area of 4K-bit decoders scales approximately linearly with respect to the
1K-bit decoder, but the clock period is much longer due to more congested routing.
In addition, the cycle count also grows with log IV, therefore the 4K-bit designs are
lagging in throughput. Although the hardware efficiency of a long code is generally

worse than a short code, the error-correcting performance of a long code is better.
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Table 5.2: Synthesized Decoder Designs

area | frequency | power throughput energy

(mm?) | (MHz) | (mW) | (Gbit/s) itr=5 | (pJ/bit)
Single | 1.325 625 339 6.40 53.0
column | 1.404 769 442 7.87 56.2
Double | 2.033 400 359 6.83 52.6
column | 2.136 476 447 8.12 55.0
Half 1.089 556 236 2.92 80.8
column | 1.152 714 318 3.75 84.8

We show the synthesis results of a single-column, a double-column and a half-
column design of a 1K-bit BP decoder in 65nm CMOS technology, which are listed
in Table 5.2 for comparison. The architectures are designed for a () = 6 1024-bit
polar code, each of which is implemented in two designs that are presented in two
rows: a low-power (LP) design and a high-performance (HP) design. The LP design
is more compact and consumes less power, but it sacrifices performance. The HP
design uses upsizing and buffering, i.e., utilizes more area, to improve performance.
In the following, we discuss the trade-off between the three architectures based on
the LP designs. The HP designs follow the same trade-off.

The single-column LP design achieves a throughput of 6.4 Gb/s in decoding the
1024-bit polar code, consuming 53 pJ /b. The double-column LP design uses 53% more
silicon area to increase the throughput to 6.83 Gb/s, consuming a lower energy of
52.6 pJ/b. Considering the large increase in area, the gain in throughput is relatively
low, making the single-column architecture more advantageous, especially in terms of
area efficiency.

The half-column LP architecture saves only 18% of the area, but the throughput
drops to 2.92 Gb/s. The result is largely due to the constant memory size and
the extra register file and muxing. The energy increases to 80.8 pJ/b, making it

less attractive than the single-column and double-column architectures. Folding the
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architecture further is unlikely to yield any improvement due to the constant memory

size and the increased control overhead.

5.2 Multi-mode Hardware

For dynamic communication channels where the channel condition fluctuates with
time and location, such as wireless channels, multiple codes of different lengths and
code rates are needed to support variable channel quality. To keep the implementation
cost low, it is desirable to use a configurable decoder compatible with multiple codes.
However, supporting configuration in a decoder design can cost throughput, power
and significant silicon area. Peak throughputs of reported configurable LDPC and
turbo decoder chips have not reached Gb/s and the area efficiency is still below
Gb/s/mm? [35-37].

The upcoming 5G wireless systems are expected to accommodate even more het-
erogeneity in quality of channels and quality of service. Instead of handcrafting
LDPC or turbo codes and building less-efficient configurable decoders, we opt for
polar code [1] as a versatile FEC and take advantage of polar code’s regular structure
in designing a compact, multi-Gb/s, length- and rate-configurable belief propagation
(BP) decoder. The decoder learns the optimal code by selecting the most reliable
bits to transmit information through channel-adaptive training, thereby supporting
dynamic channels and heterogeneous applications. The demonstrated chip prototype
features compact area, high performance, configurability and channel-adaption that
are well suited for the upcoming 5G wireless communications.

We take advantage of the highly structured factor graphs of polar codes and
the intrinsic tunability of the frozen set to design a configurable belief propagation
polar decoder that supports different code lengths and rates. A memory remapping
technique is employed to improve the hardware efficiency and design scalability. A

low-cost channel-adaptive trainer is added on chip to select the frozen set based on the
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operating channel. Channel-adaptive codes enhance the error-correcting performance

compared to classic polar code designs.

5.2.1 Datapath

The architecture of the configurable design can be illustrated by the figure for the
quarter-column design shown in Figure 5.5(b), as the hardware structure looks similar
for single-column, half-column and quarter-column designs. The design contains a
column of 256 PEs and operates on an N = 512 code in the single-column mode.
We time-multiplex the PE column for a 2N = 1024 code in the half-column mode
and a 4N = 2048 code in the quarter-column mode, using the structures shown in
Figure 5.4 (b) and (e), respectively. The cycle count per iteration is 2**!(log N + k)
for a 2¥ N-bit code, as discussed in 5.1.3. In this ASIC, N = 512 and k € {0, 1,2}, so
the throughput degradation from a 512-bit code to a 2K-bit code is 19%.

Switching between the modes is accomplished by different addressing schedule
from/to the storages and the stage buffer. The addressing implements the dynamic
connections between the groups of N/2 PEs and the storages or the stage buffer,
where each mode requires a specific pattern of the dynamic connection as shown in
Figure 5.4 (b) and (e). The datapath of this ASIC is in a 3-stage pipeline, following
a memory read, PE process, and memory write order. The detailed scheduling in

different modes will be discussed later.

5.2.2 Memory Implementation

The memory size is determined by the longest supported code length, which is
28NQ(log N + k — 1) = 120K (message length @ = 6 in this ASIC). We consider im-
plementing the memory using SRAM due to the large size. However, as is mentioned
in Section 5.1.3 that the memory requires two read ports and two write ports in sub-

stage parallel modes, which is not available in the commercial SRAMs, so we look into
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Figure 5.8: Memory access patterns in quarter-column mode with port remap.

memory access patterns and seek more possibilities of 4-port SRAM implementation.

We summarize the memory access patterns of the quarter-column mode in Fig-
ure 5.8 based on the schedule shown in Figure 5.6(b). The virtual ports are seen
by the PEs, where read/write port0 accessing parts vy € {0,1,2,3,4,6} are seen by
the first half of the PEs, and read/write portl accessing parts v; € {1,3,4,5,6,7}
are seen by the second half of the PEs. We note that vy and v; are not exclusive,
and that is the reason why a 4-port memory is needed. Then we add selected swap-
ping of port0 and portl shown in Figure 5.8, where the real ports are seen by the
memory. With real portQ accessing parts 1o € {0,2,5,7} and portl accessing the
rest parts r € {1,3,4,6}, the memory can be split into two banks, and each can be
implemented by a dual-port SRAM with a width of NQ/2 = 1.5K and a depth of
2k(log N + k — 1) = 40.

With the virtual 4-port memory being implemented by two SRAMs for the most
complex quarter-column mode, we check the compatibility of the half-column mode
and we show the memory access patterns in Figure 5.9, based on the schedule shown
in Figure 5.6(a) . We note that PEs need to see parts {0,2} or {1, 3} at the same time
(in L-prop), but the two ports cannot access the same SRAM bank. We resolve this

conflict by remapping entry 2 to 4 and 3 to 5, so that the same port remapping used
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Figure 5.9: Memory access patterns in half-column mode with entry remap and port
remap.

in the quarter-column mode is valid for half-column mode too. The single-column

mode only accesses part {0, 1}, which is also valid. Such entry remapping and port

remapping techniques are applicable to configurable designs that support an arbitrary

level of sub-stage parallelism.

The pipelined datapath allows one cycle of worst-case read access, which is de-
manding for the SRAM. We add 3K bypass registers to mimic memory read-after-
write in this ASIC to match the pipeline. Another option is to stall the pipeline 5.9%
of the time in single-column mode, 5.3% of the time in half-column mode, and 2.4%
of the time in quarter-column mode without area overhead.

Compared with a register-based design, the SRAM-based design saves 20% area
and 31% power. The SRAM-based configurable design can be efficiently scaled up,
e.g., support even longer 4K-bit or 8K-bit codes, which only grows the area by 15%
or 45%, respectively, while the register-based design is expected to grow by 80% or

250%, respectively.

5.2.3 Stage Buffer

As is discussed in Section 5.1.3, a stage buffer is needed to temporarily hold sub-
stage results. The stage buffer is implemented in register files, because it is in the
critical path. The straightforward implementation is a 4-port register file that stores

8 words, corresponding to 8 parts of data in one stage. Writing to the register file is
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through eight 2-to-1 input muxes and reading is through two 8-to-1 output muxes.
Each input or output port of the mux has a width of 1.5Kb. The input 2-to-1 muxes
need to be expanded to 3-to-1 muxes if the register file does not have an enable input.
In the single-column decoding mode, data are passed from the inputs to the stage
buffer to the outputs of the stage buffer, requiring an extra port to be added to the
input muxes to support bypass. This straightforward implementation costs much area
and long reading latency, so we customize the design to reduce the size of the register
file and the cost of the muxes.

We begin by illustrating the data flow along with the mux configuration in the
half-column decoding mode that is explained in Figure 5.6(a). We show the cycle-
by-cycle inputs to the stage buffer (20 and 1), outputs from the stage buffer (00
and ol), contents of the stage buffer, and mux configurations in Figure 5.10. a and
b represent the data from two consecutive decoding stages, and the number 0 to 3
following a or b is the part index. For example, part 0 of stage a is a0. Recall that the
results of each decoding stage are divided into 4 parts in the half-column decoding
mode or 8 parts in the quarter-column decoding mode. In the first cycle illustrated
in Figure 5.6(a), the results from the PEs, a0 and al, are sent to the stage buffer,
followed by a2 and a3 in the second cycle. While in the second cycle, a0 and a2 are
forwarded to the PEs for the second stage processing, which produces b0 and b1 in
the third cycle. In R-prop, stage a is processed prior to b, while in L-prop, stage a is

7 means that

processed after b. The arrows indicate bypass in the same cycle. An
one mux input is removed by making use of the register file’s enable input. A 1-to-1
mux is replaced by a wire.

The simple scheduling shown in Figure 5.10(a) corresponds to the block diagram
shown in (b), where there are four parts of the register file, 0, 1, 2 and r3, and

each part stores a part of a stage. The scheduling requires one 3-to-1 mux mo0 and

three 2-to-1 muxes mol, mr0 and mrl, each with a port width of 1.5Kb. The
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schedule indicates that only half of the register file is occupied at any time, so we
merge the parts 1 with 72, and 70 with 73, as shown in (b). Merging reduces the
register file size by 3Kb, and allows the 3-to-1 mo0 to be reduced to a 2-to-1 mux.
To further reduce the cost of muxing, we allow forwarding between parts, i.e., data
in r1 is forwarded to r0 directly by connecting them together, as indicated by the
dashed arrows in Figure 5.10(c). Forwarding reduces the number of muxes by half.
The control of muxing, enable and forwarding is orchestrated by a 2-state FSM, as
illustrated in Figure 5.11, where the select signal of mux mr0 is sr0, and the select
signal of mux mol is sol, etc.

The same merging and forwarding techniques can be applied to the slightly more
complex quarter-column decoding mode. Since reading from the stage buffer is in the
critical path, we keep the output mux size by only connecting 00 and ol to 0 and
r1, respectively, as these paths are already established in the half-column decoding
mode as shown in Figure 5.10(c). The control of writing to the stage buffer is further
simplified by connecting 20 and %1 to r2 and 73, respectively, if 20 and 21 are not
directly forwarded to the outputs.

Using the schedule shown in Figure 5.6(b), we show the register arrangement in
the R-prop in Figure 5.12(a). The writing and reading paths are highlighted in dashed
ovals and rounded rectangles, respectively. Note that a4 is the input in the third cycle
and the output in the fourth cycle, so it is written directly to r1, instead of 72, and
the storage of r2 remains unchanged in the fourth cycle. The arrangement that uses
the minimum muxing is summarized in the table in Figure 5.12(a).

We show the L-prop schedule in Figure 5.12(b). The dashed arrows indicate the
additional muxing paths not covered by the setup for R-prop, and the muxes need to
be expanded as shown in the table of Figure 5.12(b). The muxing expansion can be
avoided if we swap the processing order of the second quarter and the third quarter

of each stage, i.e., processing b2 and b6 prior to bl and b5, as shown in Figure 5.12(c).
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(d)

Figure 5.10: Stage buffer scheduling of a half-column design implemented by (a) reg-
ular register file with its block diagram in (b), (¢) with 1 merged with
r2 and r1 merged with 73, and (d) with r1 to 70 propagation.
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Figure 5.11: Stage buffer controller of a half-column design implemented by a 2-state
FSM.
The control FSM is shown in Figure 5.13.
In conclusion, by merging, forwarding and selective swapping, we cut 3Kb from
the stage buffer design, and reduce the size of input and output muxes. As a result,

the clock period is shortened by 8.3%.

5.2.4 Floorplan

As introduced in 5.2.2 that the memory consists of two banks and each bank
stores 40 1.5Kb-wide words. The memory is wide and shallow. The 1.5Kb-long word
is formed by concatenating 12 128-bit segments, so one memory bank is composed
of 12 SRAMs and the entire memory consists of 24 SRAMs. The placement of the
SRAMs is shown in Figure 5.14. We put pairs of SRAMs back-to-back and let the
ports face outwards. Bank(0 and bankl of each segment is placed closely, because
they are the two inputs of the port switching mux described in 5.2.2. To balance the
length and width of the chip, we place 12 SRAMs (or two banks of 6 segments) on
the left and another 12 SRAMs on the right. The word segment indices are marked
in bold italic font.

Having the freedom of arranging the location of the 12 segments, we put the
segments close to each other if they are logically related, to ease the routing and to
reduce chip area and clock period. The connectivity of the segments can be derived
based on the input/output connectivity of a PE column. Ideally we need to find the
connectivity among every 1/12 of a column, but 12 is not a power of 2, so instead we

sketch the connectivity among every 1/8 of a column for an approximate reference
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Figure 5.12: Stage buffer scheduling of a quarter-column design (a) R-prop in regular
order (b) L-prop in regular order and (c¢) L-prop in a permuted order.
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Figure 5.13: Stage buffer controller of a quarter-column design implemented by 4-
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Figure 5.15: (a) Sub-word connections, (b) rotate to a floorplan and (c) relate to the
12 segments.

in Figure 5.15(a). The connectivity graph is rotated to arrive at (b), and the 12
segments are placed accordingly, as shown in (c). Using such an arrangement of the
segments, the standard cell density is increased by 3.6% and the clock frequency is
improved by 4.2% compared to the straightforward placement shown in Figure 5.14.

We separate the power supplies for the SRAM and the standard cells on this chip
to measure the power of each part. Because the separated power routing takes more
routing traces, the chip area grown by 8.5% to provide more available traces for signal

routing.

5.2.5 Chip Implementation

The test chip is manufactured in 40nm CMOS technology. The decoder core
consists of 256 PEs, a 120Kb virtual four-port memory that is connected to the PEs
via routers, and a 9Kb stage forward buffer to forward messages between consecutive
stages, as shown in Figure 5.16. Apart from the main datapath, a 12Kb frame
storage keeps one frame of channel inputs accessible. The hard decision is an on-chip
checker that collects error rates and helps to perform early termination introduced in
section 3.3.2. The channel adaptive trainer applies the in-order bit selection algorithm
introduced in section 3.3, as shown in Figure 5.17.

During the training phase, with cooperation of the transmitter that sends all-0
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Figure 5.16: Block diagram of the configurable BP polar decoder chip.

codewords, the decoder in the receiver evaluates BER of each bit using an empirical
method motivated by density evolution [28]. The trainer ranks the bits based on their
BER, and the optimal free (frozen) bits are learned and fed back to the transmitter.
Following the training phase, both the transmitter and receiver can agree to use the
optimal bit selection for transmission to take advantage of channel-adaptive code.
The results of channel-adaptive code is shown in Figure 5.18(a).

When implementing the f function, the original hyperbolic expression in equation
1.1 is simplified by the min-sum approximation, which leads to arithmetic inaccuracy
and degradation of error-correcting degradation. Such approximation error can be
overcame by scaling, however a multiplier is expensive in hardware, and therefore the
correction is usually implemented by offset correction.

Since the distribution of f function result can spread a wide range, a desired offset

90



Training

P gl

BER measu remem—

<
-

l Operating

Y»))message@ _

Figure 5.17: Channel-adaptive training flow.

HB%%%H

H&%%%%H

H&%%%%H

H&%%%%H
AT

10° 10°
" \ density N baseline
10" evolution 10* X o
\ code [7] with AQ
10 Y 1072 R —
channel- with AQ
3 adaptive 3N and OC
10 code 10 N
10" 10
10° 10°
10°® 10°
107 107
10°® 10°®
-9 -9 AN
05 35 4 5 6 719, 3 4 5 6 7
@ Ew/No (dB) (b) Ep/No (dB)
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tion (OC).
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Figure 5.19: Offset correction effect on a (1024, 512) code.

should also scale with the magnitude of the result, which requires a few comparators
and a subtracter before the output of each f function. Simulation has shown that
the effect of offset correction is significant in low SNR but negligible in high SNR.
Therefore to minimize the hardware overhead, the offset correction is designed only
for small magnitude, using only one comparator and subtracter. Figure 5.19 shows
that the error rates at low SNR can be lowered by more than an order of magnitude
with the help of offset correction.

In almost all decoder designs, the datapaths use a fixed number of bits to represent
the numbers, and the word length is desired to be as short as a few number of bits.
How to allocate the finite number of bits involves a trade-off between precision and
range. For example, a word with a fixed length of () = 6 can represent an integer
in the range of [—32,31] with a precision of 2°; or it can represent a smaller range
of [—8,7.75] with a fine precision of 27%; or it can also represent a larger range of
[—128,124] with a coarse precision of 22, i.e., the lower 2 bits are rounded off.

Table 5.3 shows the statistics of the priors, and Figure 5.20 shows that at a low
SNR, a fine precision leads to a better performance despite the lower range; while at

a high SNR, when the mean and variance of the messages are larger, a higher range
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Table 5.3: Prior Statistics
SNR| 0 1 2 3 4 5 6 7

1 2.00 | 252|317 | 3.99 | 5.02 | 6.32 | 7.96 | 10.02

o 2.02 226|253 | 284 |3.18 | 3.56 | 4.00 | 4.49
min | -7 -8 -8 -9 -9 | -10 | -10 | -10
max | 11 13 14 17 19 22 26 30
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Figure 5.20: Quantization effect on FER of a @ = 6 (1024, 512) code.

improves performance. With a fixed word length, it is desirable to use an adaptive
quantization depending on channel SNR.

Conditional subtraction at the f function inside PE is added to implement offset
correction, and several MUXes at the test vector generator implements the adap-
tive quantization. The results of SNR-adaptive performance tuning are shown in
Figure 5.18(b).

In addition to the polar decoder core, a few peripherals are included to test the
chip. A set of test vector generators and serial-to-parallel chains feed the core with
random streams as inputs received from the channel. A two-phase scan chain pro-
grams parameters into the core and extracts the results out from the core.

The microphotograph of the 40nm CMOS test chip is shown in Figure 5.21. The

polar decoder core occupies 1.07mm? with a 76.2% standard cell utilization. The
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Figure 5.21: chip microphotograph.

memory consists of 24 dual-port physical SRAMs with 12 SRAMs per bank. The
12 SRAMs together provide a sufficiently long word needed by 256 PEs working in
parallel. The power supply of the SRAMs is isolated from the rest of the core so that

the supply voltages can be tuned separately.

5.2.6 Chip Measurement

Figure 5.22 is the chip testing setup photo. The test chip is measured under room
temperature. The voltage and frequency measurements are shown in Figure 5.23(a),
and the throughputs are reported based on 5 decoding iterations. Peak throughputs
of 3.78Gb/s and 3.06Gb/s are achieved in decoding 512-bit polar codes and 2048-
bit polar codes, respectively, at 900mV nominal supply voltage. The power and
energy measurements in decoding 512-bit polar codes are shown in Figure 5.23(b). At
627MHz, the decoder achieves a peak throughput of 3.78Gb/s, consuming 170pJ/bit.
Voltage scaling to 530mV for the core and 480mV for the memory lowers the energy
to 39.3pJ/bit at 91.4MHz, providing a throughput of 551Mb/s.

The chip demonstrates high versatility compared to the state-of-the-art single-
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Figure 5.23: chip measurement.
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Table 5.4: Comparison to recently published configurable FEC decoders.

ISSCC 08 [51] |ASSCC *10 [52]| VLSI *10 [53] This work
P.Urard,etal. [ C.Roth, etal. |F. Naessens, etal,
Technology (nm) 65 90 65 40
Area (mm?) 6.07 1.77 10.4 1.07
Code type LDPC, BCH LDPC LDPC, Turbo Polar
Block lengths | 16200, 64800 | 648, 1248, 1944| 27678144 1505 1004 2048
23 lengths
1/4 ~ 9/10, 1/2, 1/3, 213, .
Code rates 11 rates 1/2, 2/3, 3/4, 5/6 314, 5/6 [0, 1] arbitrary
Channel adaptive No No No Yes
Frequency (MHz)| 174 135 346 306 320 627 | 914
IThroughput (Mb/s) 135 105 679 600 640 3779 | 551
Supply voltage _ N 900 530
(mv) 1200 1000 | 900 1200 900 480
Power (mW) |130~476|100~360( 107 75.6 675 644 | 21.6
Energy efficiency| 963~ | 952~
(pa/bit) 3506 | 3428 158 126 1054 170 | 393
Hardware efficiency|
(Mb/s/mm?) 22.2 17.3 384 339 61.5 3538 | 516

mode polar decoder [38]. With a maximum iteration of 30 and early termination,
a rate-0.5 512-bit channel-adaptive polar code learned by the trainer for the AWGN
channel outperforms the theoretical code design [28] by 0.3dB at FER of 107%. Increas-
ing the code length from 512 bits to 2048 bits improves the coding gain by 0.5dB at
the cost of 19% throughput. The code rate can be adjusted lower to further improve
the SNR, or higher to increase the information throughput.

Comparison to the recently published configurable FEC decoders [35-37] is shown
in Table 5.4. This chip is the first configurable FEC decoder that exceeds Gb/s in
throughput. The energy efficiency of the chip is comparable to the state-of-the-art
configurable LDPC decoder chip [36], and the area efficiency of the chip is almost an
order of magnitude higher. The chip is the first channel-adaptive configurable FEC

decoder suitable for 5G wireless communications.
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5.3 Summary

In this chapter, a family of BP polar decoder architectures for polar codes and
their gate-level implementations to demonstrate the trade-offs between area, power,
and throughput. The single-column architecture stands out as the most efficient when
considering both area and energy consumption.

A length- and rate-configurable BP polar decoder chip is presented to demonstrate
the flexibility and scalability of the architecture, so that polar code has the prospect
to serve as a universal ECC that can adapt to different communication specifications.
The virtual four-port memory implementation minimized the dominant portion of

the power and area consumption, which makes larger designs more feasible.
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CHAPTER VI

Conclusion

In this dissertation, the algorithm, architecture and implementation of polar codes
are studied and analyzed from the system level to circuit level; software simulation,
FPGA emulation and circuit integration are used to produce concrete prototypes from
concepts; and approaches of improving the usability of polar codes are discovered.

We developed an FPGA emulation platform for studying rare-case error events of
polar codes. To reduce design effort, we constructed the emulation platform by the
parameterized blocks and scripts. We propose a simulation-based bit selection that
is applicable to any physical channel. The simulation-based bit selection provides
a channel-adaptive bit selection for the optimal error-correcting performance. The
error-correcting performance is further improved by inspecting the error patterns and
fine tuning the decoding algorithm. In particular, the errors are categorized based
on their unique signatures, and targeted post-processing is applied to each type of
errors. These algorithm-level improvements boost the error-correcting performance
of polar codes, without adding any implementation complexity.

The regularity of the polar code structure enables many design choices. For a spe-
cific use case, the optimal architecture can be chosen from the design space to best
meet the specifications. The single-column architecture is found to naturally utilize

the intrinsic stage-parallelism of BP decoding, and it is shown to reach a good bal-
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ance between performance and cost. We further investigate alternative architectural
choices and the tradeoffs. A more parallel architecture offers a higher throughput if
more area can be afforded. The high memory bandwidth of a highly parallel architec-
ture requires using registers, which could introduce high cost in area and power. A
less parallel architecture saves area by less computation logic and condensed SRAM-
based memory. The architecture investigation leads to a configurable architecture,
which supports different codes using different degrees of parallelism.

With this study, we improved the error-correcting performance of polar codes and
make them a competitor to the high-performance ECCs such as LDPC and turbo
codes, and we implemented an efficient configurable polar decoder that can adapt to

the changing wireless channels for 5G communications.
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APPENDIX A

Case Study — LDPC Emulation for Error Floor

Exploration

LDPC codes are widely used for communication and storage systems, including
Ethernet [39], Wi-Fi [40], WiIMAX [41], satellite [42], as well as magnetic [43] and
solid-state storage [44]. Properly designed LDPC code is capacity-approaching [45],
referring to approaching the ultimate lowest SNR needed for a reliable transmission.
Much research has been done on LDPC codes and codec designs in the past ten years,
leading to well-known code constructions as well as efficient and high-performance
encoder and decoder designs.

The error-correcting performance of an LDPC code is often shown in a plot of
BER or FER against SNR. As SNR increases, BER and FER improve dramatically,
producing a curve that looks like a waterfall, as illustrated in Figure A.1. However,
a key problem with many LDPC codes is that they often cease to work well at low
BER, causing the waterfall curve to bend in a phenomenon called error floor [24].
The error floor presents a big problem to applications that require low error rates, as
an excessive SNR is needed to reach low error rates, costing extra power.

In this section, we show how to use FPGA to investigate the error-correcting
performance of LDPC codes, and find the root cause of error floors. The root cause

motivates an improved decoding algorithm that overcomes the error floor problem.
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Figure A.1: Waterfall curve of an LDPC code.

An FPGA is an integral part of the investigation and is heavily utilized for decoder

emulation and rare event discovery.

A.1 Introduction to LDPC code and decoder design

An LDPC code is defined by a m x n parity-check matrix H, where n is block
length of the code, or number of bits in the codeword, and m is the number of parity
checks [46,47]. An 8 x 12 H matrix example is shown in Figure A.2(a) that represent
a 12-bit codeword and 8 parity checks. For example, the first row of the H matrix
specifies that the XOR of bit 3 and bit 5 need to satisfy even parity.

The H matrix can be graphically represented using a factor graph, shown in
Figure A.2(b), where each bit in the codeword is drawn as a circle, known as variable
node (VN) and each check is drawn as a square, known as check node (CN), and an

edge connects VN j and CN i if the corresponding entry in the H matrix, H (i, j) = 1.
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Figure A.2: (a) H matrix of an LDPC code, and (b) factor graph representation of
an LDPC code.
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Table A.1: Structure of LDPC Codes used in Communication Standards
Standard z Ty my n m
IEEE 802.11ad [48] 42 16| 3,4,6,8 672 126 to 336
IEEE 802.15.3¢ [49] 21 32| 4,8,16 672 84 to 336
[EEE 802.11n [40] 27, 54, 81 24 | 4,6, 8,12 | 648 to 1944 | 108 to 972
IEEE 802.16¢ [41] || 24, 28, ..., 96 | 24 | 4, 6, 8, 12 | 576 to 2304 | 96 to 1152
IEEE 802.3an [39] 64 32 6 2048 384

A.1.1 Structured LDPC codes

Almost all the latest LDPC codes used in practical applications have adopted a
structured design, where the H matrix is constructed using permutation matrices.
Permutation matrix is a square binary matrix that has exactly one 1 in each row and
one 1 in each column and 0 in all the remaining entries. The structured H matrix
greatly simplifies the decoder design. A further simplification of the code construction
is to use identity matrix, its cyclic shifts and zero matrix to construct the H matrix.

Figure A.2(a) is a structured H matrix with m;, rows (m;, = 2) and n; columns
(ny, = 3) of z x z submatrices (2 = 4). Each submatrix is an identity matrix, a
cyclic shifted identity matrix, or a zero matrix. Table A.1 lists a number of the latest
applications that have adopted LDPC codes whose H matrices are defined this way.
Note that in most of the cases, a set of LDPC codes are defined that follow a similar
structure with a fixed ny, and a variable m;, to adjust the code rate, i.e., number of

parity checks, and a variable z to adjust the code block length.

A.1.2 LDPC decoding

An LDPC code is commonly decoded by the belief propagation (BP) algorithm [50]
following the factor graph [51] that defines the code. BP is an intrinsically parallel
algorithm. It relies on passing messages between VNs and CNs following the edges
of the factor graph. The decoding usually converges after a few iterations. A high

throughput can be achieved by a parallel decoder implementation, and FPGA is an
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ideal platform for accelerating decoding.

To start BP decoding, the noise-corrupted channel output values are used to
calculate the prior log-likelihood ratio (LLR), i.e., the probability of the bit being 1
over being 0. The VNs in the factor graph are initialized with the prior LLRs. The
VNs will then send prior LLRs to their adjacent CNs. The message passing from VNs
to CNs are usually ordered based on the H matrix using row processing followed by
column processing.

Row processing is done row by row over the H matrix. In processing row i, the
prior LLRs of all VN j’s, where H (i, j) = 1, are passed to CN i. Each CN receives the
LLR messages from the adjacent VNs and computes an extrinsic LLR for each VN.
The extrinsic LLR represents the likelihood of a bit given the LLRs from all other
bits that are part of the parity check. Row processing is done after m steps.

Column processing is done column by column over the H matrix. In processing
column j, VN j sums up the extrinsic messages from all CN i’s, where H(i,7) = 1, to
compute the posterior LLR of VN j. A hard decision is made based on the posterior
LLR. Column processing is done after n steps. Column processing can be interleaved
with row processing by saving the extrinsic messages in VNs, so that VNs can accu-
mulate the extrinsic LLRs on the fly without requiring a separate column processing
step. Similarly, row processing can also be interleaved with column processing.

One decoding iteration consists of one row processing followed by one column
processing, or one row processing with interleaved column processing. If the hard
decisions after a decoding iteration satisfy all the parity checks, decoding is complete.

A decoding iteration limit is often imposed to terminate decoding if it fails to converge.

A.2 Decoder emulation

To investigate the error-correcting performance of LDPC codes, it is necessary for

the decoder emulation to achieve a high throughput. For example, a 100 Mb/s FPGA
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decoder allows us to measure the BER down to 107! in one day (assume collecting
at least 1000 bit errors to estimate the BER reliably). To achieve a high throughput,

the decoder needs to be parallelized on FPGA.

A.2.1 Decoder architectures

For structured LDPC codes, there are a number of options to parallelize the
decoder design using row-parallel and column-parallel architectures. A row-parallel
architecture implements row processing with interleaved column processing using n;,
VN processing elements (PE) and 1 CN PE, so that n, VN PEs can pass messages to 1
CN PE at the same time. The latency of one iteration in the row-parallel architecture
is proportional to m. In a pipelined implementation, one iteration takes m clock
cycles, so the throughput of a row-parallel decoder is approximately r:Tfit’ where f
is the clock frequency and n; is the number of decoding iterations. As an example,
a row-parallel LDPC decoder for the rate-1/2 IEEE 802.11ad LDPC code [48] has a
throughput of 20 Mb/s using a 100 MHz clock frequency and 10 decoding iterations.

A column-parallel architecture implements column processing with interleaved
row processing using m;, CN PEs and 1 VN PE. Its latency is n clock cycles and the
throughput is approximately #ft The row- and column-parallel architectures can be
further parallelized by processing multiple rows or multiple columns concurrently. For
example, a z-row-parallel architecture processes z rows concurrently using zn, = n
VN PEs and z CN PEs for a latency of m; cycles per iteration. The throughput of
this architecture is approximately #j;t, which is z times faster than the row-parallel
architecture.

VN and CN PEs are implemented using 4 to 8-bit fixed-point add, subtract,
and compare, and the implementation cost is relatively low. However, for decoder

emulation, the channel model is also needed to generate the inputs to the VN PEs,

and it may become a bottleneck in highly parallel architectures.
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Figure A.3: A row-parallel LDPC decoder architecture.

A.2.2 FPGA implementation

The row-parallel architecture is shown in Figure A.3. In this design, n, VN PEs
pass messages to 1 CN PE for one row processing step. The CN computes extrinsic
messages that are passed back to each VN PE for column processing. To complete
one iteration of decoding, the m row processing steps are carried out serially. Each
VN PE acts as the one of z VNs in each step. The VN PE carries a z-entry prior LLR
memory with one entry per VN, a z-entry posterior LLR memory also with one entry
per VN, and an m-entry extrinsic LLR memory to store the LLRs from m CNs. Each
VN PE also uses an m-entry lookup table (LUT) to store the address of the extrinsic
memory to read from and write to in each row processing step. The decoder designs
are quantized to 4 to 8 bits, and both the arithmetic and the memory are quantized
to 4 to 8 bits.

The decoder emulation is controlled based on the state machine shown in Fig-
ure A.4(a). The decoder starts in the idle state. After receiving a start signal, the

state transitions to the load state, and each VN PE loads z prior LLRs over z clock
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Figure A.4: (a) Emulation control, and (b) pipeline timing of a row-parallel decoder.

cycles. After loading is complete, the decoder transitions to the run state, an itera-
tion counter counts from 1 to n;. In each iteration, an address counter counts from
1 to m that tracks the m row processing steps. Hard decisions of the VNs are made
at the end of each iteration. If all the parity checks are satisfied or if the iteration
limit is reached, a done signal is generated to terminate the run state and transition
to the load state to process the next input frame. The decoder will run continuously
between the load and the run states.

A sample pipeline chart of a row-parallel decoder is shown in Figure A.4(b). In
this design, each VN takes one cycle to read from memory and prepare LLR message
to CN. CN uses a compare-select tree of log, ny + 1 stages to compute LLR messages
to the VNs. The returned LLR messages are post-processed by the VNs in one cycle
to calculate the extrinsic LLR, and then accumulated in one cycle to calculate the
posterior LLR. In the final cycle, the posterior LLR is written back to memory. The
pipeline latency is log, ny + 5 cycles. A complete decoding iteration in a row-parallel
architecture takes m + log, np + 4 cycles.

An additive white Gaussian noise (AWGN) channel model runs continuously to

provide inputs to the decoder. The SNR is adjusted by scaling the standard deviation
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of the AWGN noise. To measure the BER and FER, a frame counter is used to track
the number of input frames, a frame error counter and a bit error counter to record
the number frame errors and bit errors, respectively. A frame count limit can be set,
so that when the frame count reaches the limit, both the frame error counter and bit
error counter will freeze to get a snapshot of the error counts.

A typical decoder emulation is done in the following sequence: 1) set the SNR and
the frame count limit; 2) reset all counters and start emulation; and 3) after reaching

the frame count limit, read the recorded bit error count and frame error count to

calculate BER and FER.

A.2.3 FPGA design flow

To lower the design barrier and facilitate reuse, the decoder emulation platform
can be parameterized to support all structured LDPC codes, such as the ones shown
in Table A.1. Using a row-parallel architecture, the parameter n, determines the
number of VN PEs and the fan-in and fan-out of the CN PE. The parameters z
and my, determine the control schedule, and the memory size (including prior LLR
memory, posterior LLR memory, and extrinsic LLR memory). The H matrix of the
code determines the address LUT. These parameters are design-time configurable.

There are additional parameters that are important for code and decoder designs,
including word length and quantization of the LLR messages, decoding iteration
limit, channel SNR, and algorithmic knobs. These parameters can be divided into
two categories: design-time configurable or run-time configurable. Word length and
quantization are design-time configurable, and decoding iteration limit and channel
SNR are run-time configurable.

In designing the emulation platform, it is important to build in the run-time
configurability so that one design can be used for many different experiments. The

design-time configurability can be facilitated by a systematic design flow.
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The design flow consists of two steps: building a module library, and assembling
the modules using a script. For example, an LDPC decoder library includes VN
PE, CN PE, channel model (AWGN noise generator), controller, and error checker.
Parameters such as z, my, address LUT entries, word length and quantization are
coded as parameters in the modules. These modules are made as generic as possible
to make it reusable.

The next step is to use a script to assemble the modules based on the target
LDPC code. The script will perform the following tasks: 1) read the H matrix, build
the address LUT, and initialize design-time configurable parameters, including z, my,
address LUT, word length, and quantization; 2) instantiate n, VN PEs, 1 CN PE,
channel model, controller, and error checker, and connect them in a complete de-
coder; 3) insert interface registers for the run-time configurable parameters, including
decoding iteration limit, channel SNR, and frame count limit, and for controlling the
emulation platform, including start of emulation and reset of frame counter and error
counter. The complete decoder is synthesized, and the bit file mapped on FPGA for
emulation.

The emulation can be further automated by a script that polls the emulation
status, frame count, error count, and sweeps the SNR and frame count limit to obtain
the BER and FER points without manual intervention.

The library and script design flow simplifies the decoder design. Run-time config-
urability is built in the modules and design-time configurability is done by scripting.
For example, to investigate a different word length and quantization, we can rerun the
script with different parameter settings without the need of changing the underlying
modules. The modules library can be used to build different LDPC decoders, e.g.,
those listed in Table A.1.
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A.3 Study of LDPC error floors using emulation

Figure A.1 is the waterfall plot of an LDPC code captured by FPGA emulation.
The code exhibits an error floor below BER of 1078. The goal of an error floor inves-
tigation is to answer three questions: 1) what is the cause of the error floor? 2) how
do quantization and word length affect the error-correcting performance (as practical
decoders are always quantized)? 3) how to lower or remove the error floor? The three

questions can be answered through experiments using FPGA decoder emulation.

A.3.1 Capture and replay of rare events

The study of the LDPC error floors requires capturing of rare events that cause
the decoder to fail. That is, if the error floor occurs at BER of 1078, we need to study
the rare events that occur with a probability of 10~® and below, which is within
reach of a fast FPGA emulator. However, one difficulty with an FPGA emulator is
that only low bandwidth outputs, e.g., bit error count and frame error count, are
directly observable. These statistical measures are meaningful but they do not yield
an in-depth understanding of the rare events that cause error floors.

A better approach is to capture the inputs that induce rare events through FPGA
emulation, and reproduce the rare events by simulating the captured events in soft-
ware. Recording the inputs on FPGA requires a large memory. For example, for a
2 Kb LDPC code, storing 6-bit soft inputs for a 2 Kb frame requires 12 Kb storage.
A modern FPGA device contains more than 1 Mb on-chip memory, enough to store
more than 100 frames of soft inputs. To capture these rare events, additional logic
is added to the emulation platform to enable storing the input frame when decoding
fails to converge after a sufficient number of iterations.

To reproduce the rare events in software, the captured inputs from FPGA emu-
lation are replayed in a bit- and cycle-accurate simulation. The simulation of error

events indicates that when an LDPC decoder fails to converge in the error floor region,

111



Incorrect
bits
Satisfied
check

Unsatisfied
check

O0o

Figure A.5: Tllustration of a (4,1) trapping set.

not all its parity checks are satisfied [24]. From the unsatisfied check nodes, a local
minimum state called trapping set [24] can be traced. A trapping set is fundamentally
caused by the cycles in the code structure. A (4, 1) trapping set in the rate-5/6 IEEE
801.11n code is shown in Figure A.5. Note that it is a subset of the factor graph of the
LDPC code. Suppose all the bits in the trapping sets are initialized to the incorrect
value, the incorrect bits will reinforce themselves in BP decoding. Once the decoder
is trapped in this state, it will be unable to make any progress towards convergence,
because the reinforcement from the incorrect bits is strong enough to overcome any
attempt to correct the bits.

The weight of a trapping set is often lower than the minimum distance of the code,
thus trapping set errors happen with a much higher probability than the minimum-
distance errors. As a result, the waterfall curve bends, causing error floor. The
weight, structure, and count of the trapping sets determine the location and slope of
the error floor.

Using the design flow outlined previously, we can build different versions of the
LDPC decoder for emulation using different word length and quantization. By com-
paring the error and trapping set profiles, it was discovered that a short word length
makes trapping sets happen more frequently [52] due to numerical saturation. When
messages saturate in BP decoding, the soft decoding degenerates to a decoding based
on majority counting, which is more easily trapped.

The capture-and-replay approach makes it possible to narrow down on the rare
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error-floor events to find out the cause of the error floors and the word length and

quantization effects on the error floors.

A.3.2 Emulation-based iterative investigation loop

New decoding algorithms can be designed to lower or remove the error floor. One
such approach is called post-processing [25,53]. The idea is to first decode using BP.
If decoding fails to converge, it is most likely that the decoder has entered a trapping
set. The trapping set can be perturbed, either by erasure [53] or noise injection [25]
to make it unstable, and then the decoder will have a chance to reconverge to the
global minimum.

The capture-and-replay method is essential in the investigation of the post-processing
algorithm. FPGA emulation can be used to capture the inputs that cause error floors,
and a software simulation is built to mimic the hardware operations and then mod-
ified to incorporate post-processing. Post-processing is then applied to the captured
inputs in software simulation. The post-processing algorithm can be iteratively im-
proved by adjusting the location and the amount of perturbation to achieve good
performance.

After the improved algorithm is proven in software simulation using captured in-
puts, the improved algorithm needs to be put back in FPGA emulation for a vigorous
test. Any residual errors will motivate another iteration of algorithm improvement
and verification by FPGA emulation.

The iterative investigation loop allows the post-processing algorithm to be incre-
mentally refined. An example of the BER and FER plot of the LDPC decoder for
the rate-5/6 IEEE 802.11n LDPC code before and after post-processing is shown in

Figure A.6 for comparison.
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