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Abstract 
 

 Computational chemistry is routinely applied to ground state molecular systems to 

provide chemical insights. Accurate excited state calculations, however, still typically 

require carefully tailored calculations and sizeable computational resources. This work 

focuses on the development of methods and strategies that enable the calculation of excited 

state properties with more accuracy and on larger systems than ever before. The first two 

Chapters focus on the spin-flip configuration interaction family of methods. Chapter 2 

introduces us to the quantities one can obtain with excited state methods, with a 

challenging example being the electronic structure of a possible intramolecular singlet 

fission system, a quinoidal bithiophene. The study assigns an experimentally observed 

long-lived exciton to a long-lived singlet multiexciton state with a combination of energetic 

and transition dipole moment quantities. The spin-flip methodology is extended in Chapter 

3 to provide more insight into the energetic orderings of the multiexciton states of a 

tetracene dimer, a model singlet fission system, showing that triplet decoupling should 

occur spontaneously upon population of the intermediate multiexciton state, 1(TT). 

However, this extension enlarged the configuration spaces to the point that they became a 

limiting factor in the calculation of larger systems.  

Therefore, the latter two Chapters focus on investigating new strategies for 

identifying and eliminating unneeded configurations. Chapter 4 presents iterative 

submatrix diagonalization, a procedure for converging the Davidson diagonalization 

procedure with a reduced set of active orbitals. This is accomplished by generating a 

systematic series of submatrix approximations to the full configuration space and solving 

for eigenpairs within the series until convergence of eigenpairs is achieved. The method 

shows promise, converging eigenvalues with a considerable reduction in orbitals and total 

computational time. Chapter 5 applies heat-bath configuration interaction towards 



 xv

obtaining exact excitation energies and examines various ways in which convergence is 

signified. A new convergence metric based on the magnitude of the perturbative correction 

is developed and converged excitation energies are obtained for systems as large as 

hexatriene. These results involved treating configuration spaces with as many as 1038 

configurations, a full 29 orders of magnitude over what is achievable with conventional 

configuration interaction methods and 10 orders beyond results reported by other recent 

state-of-art solvers. While there is still a great deal of work to be done before excited state 

computational chemistry will be routinely applicable to a wide variety of systems, the 

various methods investigated and extended here show significant promise, especially those 

presented in the latter Chapters as these are generally applicable to any configuration 

interaction method. 
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Chapter 1: Introduction 
 

1.1 Exploring Excited States with Computational Chemistry 

The great appeal of computational chemistry lies in its promise of being able to 

accurately predict chemical properties of interest. To do so, quantum chemists endeavor to 

obtain state descriptions, or wave functions, that exactly solve the Schrödinger equation. 

However, computational chemistry is still far from being able to compute exact wave 

functions, from which the properties of a system are derived, in all but the smallest 

systems. This is due in large part to the correlated movement of electrons, where each 

electron’s movement simultaneously affects the movement of all other electrons. Exactly 

accounting for this effect is difficult, limiting the routine application of exact treatments to 

diatomic systems. Nevertheless, quantum chemists have made considerable progress in 

generating approximate wave functions that are accurate enough for use in predicting and 

explaining chemical phenomena. A variety of electronic structure methods have been 

developed, mostly falling under the categories of configuration interaction (CI), 

perturbation theory (PT), coupled-cluster (CC), and density functional theory (DFT). This 

work expands the limits of CI methods, allowing computation of more accurate wave 

functions on larger systems, with an explicit focus on excited states. 

 In CI methods, wave functions are described using electron configurations, which 

are distributions of electrons in molecular orbitals. The application of CI methods to 

ground state phenomena can be routinely accomplished on a wide variety of systems, in 

large part because ground states are typically well described by a single electron 

configuration. This allows truncated CI methods to obtain qualitatively correct wave 

functions. Excited state calculations, however, are still a specialized endeavor, requiring 

tailored calculations, hefty computing resources, or both.  This is because it is common for 

an excited state to be multi-reference in nature, requiring multiple configurations for a 
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qualitatively correct description. Treating ground and excited states together with 

truncated CI methods then runs the risk of describing the states unequally, resulting in 

qualitatively incorrect excitation energies. A straightforward way to overcome different 

state natures is to obtain the exact wave function with an untruncated CI calculation, i.e. full 

configuration interaction (FCI). Unfortunately, this is not routinely possible because 

traditional FCI is very expensive, generally limited to systems about the size of a diatomic. 

Another, less computationally intensive strategy is to tailor calculations to the states of 

interest. Both strategies impede the routine application of excited state computational 

chemistry, requiring either specialized facilities or experienced quantum chemists. Method 

development in computational chemistry thus generally revolves around making methods 

less costly as well as more automated, reducing the need for manual setup. 

 This work focuses on exploring and expanding the capabilities of CI type methods, 

one of the earliest branches of electronic structure theory. Specifically, the first half of this 

dissertation involves the application and extension of spin-flip CI methods to the 

multiexciton states of singlet fission systems. The latter projects investigate optimizations 

of the algorithms that underlie all CI methods, pursuing strategies that any CI based 

method could use to become more efficient. We begin with a brief overview of current CI 

methodology and terminology in Section 1.2. 

 

1.2 Theoretical Background 

 Here is provided a brief overview of the key equations and nomenclature that will 

most aid the reader in understanding the CI methodology employed in this dissertation. 

Much of the presented material is a summary of concepts spelled out in greater detail in 

References [1–3]. The interested reader is encouraged to seek out these texts if a deeper 

understanding is desired. 

 

1.2.1 Schrödinger’s Equation, Operators, and Wave functions 

 The aim of CI methods is to represent the wave function found in Schrödinger’s 

equation (Eq. 1.1) as a linear combination of configurations. Schrödinger’s equation defines 

a relation between the Hamiltonian operator, ܪ෡, and the wave function, |ߖ〉, stating that 
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application of the Hamiltonian operator to the wave function returns the wave function 

times a constant, the energy of the system. This is exactly the form of an eigenvalue 

equation, for which practical strategies for finding the eigenvectors/values, i.e. wave 

functions and energies, are available from the field of linear algebra. 

 

〈ߖ|෡ܪ =   〈ߖ|ܧ

Equation 1.1 Schrödinger equation 

 
Put simply, an operator is a set of mathematical operations that have been grouped 

into a single symbol. The Hamiltonian operator is a set of operations that describes all 

interactions of a given system of atoms. The Hamiltonian operator (Eq. 1.2) is 
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Equation 1.2 Hamiltonian operator 

 
where i, j refer to electrons and A, B to nuclei. The Hamiltonian includes five terms: nuclear 

kinetic energy, electronic kinetic energy, nuclear-nuclear repulsion, electron-electron 

repulsion, and nuclear-electron attraction. Typically, one simplifies this by taking the Born-

Oppenheimer Approximation (BOA). The BOA treats the nuclei as stationary objects 

because the mass difference between nuclei and electrons causes the electrons to move at 

many times the speed of the nuclei. Thus, both purely nuclear terms in Equation 1.2 

become constants and can be ignored. Equation 1.3 shows the BOA form of the Hamiltonian 

operator that is used in the quantum chemistry calculations described in this work. 
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Equation 1.3 Born-Oppenheimer Approximation form of Hamiltonian operator 

 
The wave function is a spatial function that describes the position of electrons in a 

system, whose square gives the electronic probability density. For single electron systems, 
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such as a Hydrogen atom, wave functions have analytical solutions. Unfortunately, many-

electron systems do not have analytical solutions since one must account for correlated 

electronic movements arising from the second term of the BOA Hamiltonian in Equation 

1.3. CI methods treat correlation in an approximate manner by building up wave functions 

as linear combinations of electron configurations, which are distributions of electrons in 

molecular orbitals. Configurations are formally known as Slater determinants, which write 

electron configurations in a form that obeys the anti-symmetry rule required of fermionic 

(an electron is a type of fermion) wave functions. From here on, the terms “configuration” 

and “determinant” are used interchangeably. A central component of configurations are the 

molecular orbitals that electrons occupy, which are generated through a Hartree-Fock 

calculation. 

 

1.2.2 Hartree-Fock, Basis Functions, and Molecular Orbitals 

As a starting point for treating electron correlation, one may simplify the physical 

picture. Instead of having each electron interact simultaneously with all other electrons, 

the mean-field approximation assumes each electron interacts only with the mean 

electronic field generated by the other electrons in the system, leading to a single 

configuration picture of the wave function. The field is generated by the spatial locations of 

each electron, defined by a molecular orbital (MO). MO’s themselves are composed of a 

linear combination of spatial functions termed basis functions provided by a given basis 

set. We can also take advantage of the variational principle, which guarantees that any 

approximate wave function’s energy will be higher than the true energy. Thus, one can 

optimize MOs to give the best single configuration approximation to the true wave function 

by minimizing the single configuration’s energy. This procedure is called Hartree-Fock 

(HF), and the optimization is accomplished with a self-consistent field (SCF) algorithm. HF 

calculations use basis sets with many more basis functions than are occupied by electrons 

to increase the flexibility of the MOs, allowing for more accurate single configuration 

approximations to the true wave function. HF is a key starting point for many higher-level 

methods, providing a set of one-particle basis functions (MOs) that can be used to expand 
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the many-particle wave function. An illustration of the HF configuration showing electron 

occupations is shown in Figure 1.1.  

 

 
Figure 1.1 Illustration of HF determinant composed of five MOs (generated from five basis functions) and 
four electrons. 

 
1.2.3 Configuration Interaction (CI) and Matrices in Quantum Chemistry 

 CI methods write the wave function as a linear combination of multiple 

configurations as in Equation 1.4 and illustrated in Figure 1.2. The extra configurations  

 

〈ߖ| = ܿுி߶ுி + ܿଵ߶ଵ + ܿଶ߶ଶ + ⋯ 

Equation 1.4 Configuration interaction representation of a wave function 

 

 
Figure 1.2 Pictorial depiction of a CI wave function composed of a linear combination of multiple 
determinants. 

 
allow CI to explicitly take into account other possible electron positions, positions that 

were only treated in an average sense by HF. CI is a formally exact theory, meaning that if 

one had a complete basis set that spanned all space, and if one included all possible 

configurations in the wave function, one would have the exact wave function as a linear 

combination of configurations. Unfortunately, spanning all space is impossible given 

limited computational resources, and so we utilize finite basis sets, whose size is denoted 

as single-zeta (SZ), double-zeta (DZ), triple-zeta (TZ), etc. But even with finite basis sets, 

including all possible configurations in the CI space, i.e. Full Configuration Interaction (FCI), 

is very expensive. FCI scales exponentially with system size, limiting routine application to 
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small systems such as diatomics. Alternative methods that produce FCI-quality energies at 

vastly reduced costs are an active area of research, and recent developments have allowed 

systems as large as hexatriene to be tackled, as will be discussed in Chapter 5. Of course, 

chemical space involves molecules many times larger than hexatriene, and so many 

truncated CI methods exist that limit their CI space by excitation level (CIS = CI + Single 

excitations, CISD = CI + Single + Double excitations, etc.) or other schemes in order to 

accomplish calculations on larger systems. However, truncation causes the loss of size-

extensivity, in which absolute energies scale properly with system size. Figure 1.3 

illustrates the hierarchy of CI methods as one approaches the true wave function. 

 

 
Figure 1.3 CI hierarchy of methods. CI methods become more exact as one raises the excitation levels 
included in the CI space and as one increases the basis set size, as indicated by the colors. The colors are 
included for illustrative purposes only, and should not be mistaken as indicating that HF is always a poor 
method of choice. In fact, HF methods give impressively accurate answers given the large approximations 
used in the method. 

 
 In CI methods, one solves the Schrödinger equation within a chosen CI space, which 

reduces to a matrix eigenvalue problem. This type of problem is well known in the field of 

linear algebra, and is solved by constructing and diagonalizing the Hamiltonian matrix. 

However, the straightforward diagonalization procedure becomes expensive, both in 

computer time and storage space, as one increases the dimension of the CI space - and 

Hamiltonians with dimensions greater than 108 are routinely encountered. The need for an 

efficient alternative diagonalization algorithm led to the development of the Davidson 

algorithm,4–7 which takes advantage of the structure of the Hamiltonian – a sparse, 

symmetric, diagonally dominant matrix. The Davidson algorithm solves for the lowest few 
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eigenvalues by iteratively expanding a subspace of the Hamiltonian until convergence is 

achieved. The Davidson algorithm, whose usefulness has made it ubiquitous throughout 

quantum chemistry methods, can still be improved upon with various strategies, as will be 

seen in Chapter 4. 

 

1.2.4 CI for Excited States, FCI Approximations, and Spin-Flip Methodology  

 So far, we have neglected to explicitly discuss excited states in the context of HF and 

CI methods, as the focus has been on a basic understanding of the concepts and 

terminology. HF is a ground state method, focused on finding the MOs optimized for 

describing the ground state configuration that places all electrons in the lowest energy 

orbitals, also known as the HF configuration. CI’s extra determinants both improve the 

description of the ground state and allow excited state wave functions to be obtained as 

higher roots in the matrix eigenvalue problem, with exact wave functions (within a given 

basis set) obtained with FCI. However, difficulties arise in getting accurate excitation 

energies with truncated CI methods due to the use of HF as the starting point, i.e. the use of 

an HF reference. The HF procedure only optimizes the occupied orbitals, meaning that the 

virtual orbitals occupied in excited states, are not explicitly optimized – they are merely 

byproducts of the optimization of the occupied orbitals. Thus, the MOs are biased towards 

providing a good description of the ground state. This leads to unbalanced treatments of 

the ground and excited states and poor excitation energies at lower levels of CI theory. This 

imbalance can be addressed in a number of ways. 

 The most straightforward approach, and the focus of Chapters 4 and 5, is to negate 

the effect of the unbalanced starting point by capturing all states to a high degree of 

accuracy with FCI-level wave functions. As traditional FCI is too expensive for routine 

application, methods that obtain FCI quality wave functions at a reduced cost have been 

extensively investigated. Some of the most promising developments are the incremental 

FCI (iFCI),8–10 density matrix renormalization group (DMRG),11–13 and FCI quantum Monte 

Carlo (FCIQMC) methods,14–16 which take advantage of Hamiltonian structure and 

stochastic sampling to expand the system sizes that can be treated at the FCI level. DMRG13 

and FCIQMC16 have been applied to butadiene in various basis sets, treating FCI spaces of 
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1025 and 1029 respectively. iFCI10 is even more impressive, treating the FCI space of 

hexatriene, which contains 1038 configurations. This work investigates the capabilities of 

another method, heat-bath CI,17,18 which is shown to be more flexible than any of these 

methods, obtaining accurate energy gaps for low-lying valence states for systems as large 

as hexatriene. However, there are many chemical systems of interest larger than 

hexatriene, requiring that other strategies for negating the unbalanced starting point of HF 

be utilized. 

One such strategy is to utilize a different set of reference configurations. One may 

optimize MOs with respect to multiple configurations or choose a different reference 

configuration. Multi-configuration SCF (MCSCF) chooses to utilize multiple reference 

configurations. MCSCF is limited however by uncertainties in choosing the “correct” 

reference configurations and the increasing complexity of the orbital optimization 

procedure with more configurations. Another, simpler strategy is found in spin-flip (SF) CI 

methods, which utilize a single high-spin configuration as the reference.19–24 The singly 

occupied frontier orbitals of high-spin references result in low-lying virtual orbitals being 

optimized for occupation. SF-CI methods therefore result in MOs that are well suited for 

multi-reference states which have significant contributions from occupation of frontier 

orbitals, such as in the description of bond-breaking (Figure 1.4) or certain low-lying 

excited states. The balanced reference allows accurate energy gaps to be obtained for 

certain states, allowing SF-CI methods to provide physical insights into systems much 

larger than hexatriene, such as a pentacene dimer.25 
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Figure 1.4 Depiction of the suitability of a high-spin reference for describing bond-breaking in an H2 system. 
As the H2 bond breaks homolytically, the frontier orbitals become degenerate, contributing equally to the 
ground-state wave function. An HF reference is imbalanced because it favors a single doubly occupied orbital. 
A triplet reference treats both orbitals equally, at all distances, resulting in a physically correct description 
when the bond breaks. 

 
 The main concepts and terminology of the CI methodology, and the challenges 

related to excited state calculations, have been reviewed. Following a brief outline of the 

rest of this dissertation, Chapters representing investigations into extending CI 

methodology towards more accurate results in ever larger CI spaces will be presented.  

 

1.3 Dissertation Outline 

 In Chapter 1, a brief overview of computational chemistry was presented, with a 

focus on the difficulties one encounters in excited state calculations. A theoretical 

background of CI methodology was also presented as all of the methods improved upon in 

this dissertation are of the CI branch of electronic structure methods.  

 Chapter 2 presents a case study of the photodynamics and electronic structure of a 

quinoidal bithiophene using existing electronic structure methods.26 The RAS(h,p)-SF 

method is used to characterize the electronic structure of a multiexciton dark state and the 

implementation and calculation of transition dipole moments provides evidence of a long 

lived singlet multiexciton state. This study provides a clear example of how computational 

studies can complement the results of experimental investigations.27  
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 Chapter 3 presents an extension of the RAS(h,p)-SF method focused on increasing 

its accuracy for single-exciton states in an economical fashion. The extended method, 

RAS(2h,2p,S)-SF,24 is applied towards a variety of systems with multi-reference states to 

quantify the effects of the extension. Most notably, the energetics of singlet, triplet, and 

quintet multiexciton states in a tetracene dimer are parsed and transition dipole moment 

calculations used to verify recent experimental results. This method is limited to systems 

about the size of tetracene dimers due to large CI spaces. As the size of the CI space is the 

bottleneck, strategies in eliminating insignificant determinants within CI spaces are 

explored in Chapters 4 and 5. 

 Chapter 4 introduces Iterative Submatrix Diagonalization (ISD), a method that cuts 

the cost of Davidson diagonalization by limiting the number of active orbitals used in 

generating the CI space. This scheme uses natural orbitals to order orbitals by estimated 

importance and then iteratively diagonalizes larger and larger orbital spaces until the wave 

functions are converged with respect to unfrozen orbitals. It is found that Davidson can 

converge wave functions with substantially smaller spaces and reduced timings. 

Furthermore, a well-behaved error control scheme is introduced to signal convergence. 

 Chapter 5 investigates the promise of another strategy for eliminating insignificant 

determinants with the recently introduced CI method, heat-bath CI (HCI). HCI is applied 

towards obtaining FCI-quality vertical excitation energies. HCI selects the important 

determinants from a large space based on their coupling to the primary determinants of a 

wave function, vastly reducing the determinants one must consider. HCI is applied to the 

FCI problem in the polyene series for systems up to hexatriene, with a FCI space of 1038. A 

new metric is introduced and used to assess the accuracy of HCI energy gaps.  

 Chapter 6 includes Final Remarks, in which the findings of the prior Chapters are 

reviewed, and possible future projects laid out. There have been a great many 

improvements in CI methodology in the past couple of years. But the generation of novel 

strategies to cope with the large CI spaces that one routinely encounters in larger systems 

is most impactful, as these are strategies that can be implemented in almost all CI 

methodologies. 
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Chapter 2: Structure and Dynamics of the 1(TT) State in a Quinoidal 

Bithiophene, Characterizing a Promising Intramolecular Singlet Fission 

Candidate 

 

This Chapter largely based upon published work:  
Reproduced with permission from A.D. Chien, A.R. Molina, N. Abeyasinghe, O.P. Varnavski, 
T. Goodson, and P.M. Zimmerman, J. Phys. Chem. C 119, 28258 (2015). 
 

2.1 Abstract 

 Singlet fission is a photophysical process of interest for increasing the efficiency of 

next-generation solar cells. Tetracyanoquinodimethane bithiophene (QOT2) has a long-

lived (57 μs) photo-induced excited state that may correspond to triplets resulting from 

intramolecular singlet fission. Since singlet fission usually occurs through intermolecular 

processes, a detailed description of the excited states involved and their evolution is 

needed to verify this hypothesis. The photo response of QOT2 is investigated using high-

level electronic structure methods and quantum dynamics simulations, which show 

ultrafast passage through a conical intersection from the bright 11Bu state to the dark 21Ag 

surface. Characterization of QOT2’s 21Ag wave function found it to be composed of two 

strongly coupled triplets, leading to the first detailed electronic structure description of an 

intramolecular 1(TT) state. The population of such a state upon excitation of QOT2 raises 

the possibility of singlet fission through conformational changes that decouple the triplets. 

However, reaching an appropriate geometry for decoupled triplets appears unlikely given 

an energy cost of 1.76 eV. Consequently, the hypothesis that the long-lived excited state 

corresponds to 21Ag, a spin singlet, strongly interacting double triplet was explored. 

Transition moment calculations to assign excited-state absorption signals and 

investigations into internal conversion and intersystem crossing decay pathways indicate 
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that a long-lived 21Ag with 1(TT) character is consistent with the available experimental 

data. 

 

2.2 Introduction 

Understanding photophysical processes, such as singlet fission, that may be used in 

next-generation photovoltaic cells is one possible application of excited state 

computational chemistry that has significant relevance today, with burgeoning populations 

straining conventional energy sources. Singlet fission is a promising avenue for the 

improvement of photovoltaic cells as a means to surpass the conventional solar cell 

efficiency limit of 32%.1 The singlet fission process downconverts high energy excitons by 

splitting the initial excited state into two lower energy excitons. By efficiently extracting 

these charge carriers, the maximum theoretical efficiency can be raised to 45% in cells 

which combine regular and singlet fission chromophores.2,3 Some of the authors recently 

reported a study on tetracyanoquinodimethane bithiophene4 (QOT2, Figure 2.1) that 

provided evidence towards intramolecular singlet fission, whereas most singlet fission 

processes are intermolecular.5,6 Specifically, a long-lived (57 μs) exciton distinct from the 

native QOT2 triplet was observed along with a magnetic field dependence of emission. This 

system is of special interest due to the estimated 176% triplet yield,4 which might be 

harnessed in next-generation solar cells.  

 

 

Figure 2.1 a) QOT2 chromophore. b) Model of QOT2 with β, β’ substituents removed 

 
 The possibility of singlet fission in QOT2 has been suggested by ground and excited 

state characterization. First, the QOT2 ground state has biradicaloid character,7–11 a 

a) 

b) 
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property that helps satisfy the energy matching principle 2E(T1)≤E(S1) for singlet fission.12–

14 Studies of QOT2 excited states also suggest the existence of a dark state that can act as a 

singlet-coupled double triplet species, 1(TT), populated from the initially excited bright 

state.15,16 Kobayashi et al. conducted a transient absorption study on QOT2 and observed 

ultrafast passage (200 fs) to a low-lying dark state from the initially excited state.15 A 

theoretical study on a related species, diphenoquinone bithiophene, showed multi-exciton 

character in its low-lying excited states.16 This study then drew parallels between these 

states and polyenic doubly excited states, which have been described as two triplets 

coupled into an overall singlet,17,18 similar to the 1(TT) intermediate of singlet fission. 

These indications of QOT2 singlet fission were the driving force behind a recent QOT2 

study which found evidence for intramolecular singlet fission.4 

Much interest in singlet fission has focused on the mechanism for formation of the 

multiexcitonic 1(TT) state from a bright singlet excited state. Analysis of model 

Hamiltonians led to the suggestion of indirect mechanisms that make use of an 

intermediate state characterized by charge-resonance configurations.5,19 This mechanism is 

not immediately applicable to the intramolecular case as it involves coupling between at 

least two monomers. Furthermore, these model Hamiltonians include just four orbitals and 

can only provide a qualitative description of the states involved in singlet fission.20 

Quantitative descriptions require correlated many-electron wave functions for which one 

can develop further analyses.21–23 One such method combines active space and spin-flip 

methodology, as reviewed in Chapter 1, Restricted Active Space Spin-Flip (RAS-SF).24 RAS-

SF is particularly well-suited for analyzing singlet fission systems, and has been used in the 

past to uncover an intermolecular singlet fission mechanism in which the ultrafast 

formation of a dark multi-exciton state is facilitated by vibronic coupling with the bright 

excited state.25–28 This mechanism is especially relevant for QOT2, since passage through 

conical intersections may be able to explain both inter- and intra-molecular types of singlet 

fission.  

In the previous study,4 static electronic structure computations showed the initially 

excited 11Bu may relax to a lower-lying 21Ag state, consistent with the vibronic coupling 

mechanism. Further simulation indicated that 21Ag could transform via simultaneous 
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rotation of the peripheral dicyanomethylene groups, but independent triplet formation 

would have a high cost of ~1.6 eV. Nonetheless, it was suggested that an unknown, lower 

cost path to an uncorrelated triplet pair involving dicyanomethylene distortions may exist 

– thereby explaining the experimentally observed long-lived spectroscopic signals.4 

Further investigations are required to substantiate how and to what extent 

intramolecular singlet fission occurs in QOT2. High-level computational methods are herein 

used to provide insight into QOT2 photo physics by characterizing electronic states and 

ultrafast wave packet dynamics. Extended multi-state CAS second-order perturbation 

theory (XMS-CASPT2) calculations suggest an excited-state relaxation pathway through the 

conical intersection region between the bright 11Bu state and dark multi-excitonic 21Ag 

state. This pathway was shown to be viable using exact quantum dynamics in a four-mode, 

linear vibronic coupling Hamiltonian model (coupled to an Ohmic bath) that was created 

directly from ab initio calculations. The possibility of singlet fission was then investigated 

by characterizing the 21Ag state. Decomposition of 21Ag using a CAS(4,4) wave function 

reveals it to be composed of two strongly coupled triplets which are incompletely localized 

to either half of QOT2. Being composed of two triplets, QOT2’s 21Ag bears similarities to the 

commonly invoked intermolecular 1(TT) state in singlet fission systems, but it will be 

shown below that it differs by having strong electronic coupling between the triplets. Other 

possible decay channels for the 21Ag state, such as internal conversion to the ground state 

and intersystem crossing to triplet states, were evaluated. These investigations indicate 

that the rapidly generated dark 21Ag exciton may be long lived due to inhibition of internal 

conversion and intersystem crossing by the rigid QOT2 geometric structure. Finally, ab 

initio calculations provide assignment of experimental absorption signals to the 21Ag state 

and suggest that complete electronic decoupling of the 1(TT) triplets within a QOT2 

monomer is likely infeasible.  

 

2.3 Methods 

2.3.1 Computational Details 

 Unless otherwise mentioned, all calculations were performed on the model 

molecule (Figure 2.1b) which omits the β, β’ substituents on the thiophene rings. These 
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bis(butoxymethyl)cyclopentene substituents were initially introduced for their solubilizing 

properties.29, 30 The neutral character of these moieties and their lack of conjugation with 

the π-backbone suggests that they play a negligible part in the low-lying π-π* states of 

interest. This view is supported by density functional theory studies which showed that 

inclusion of the β, β’ substituents had a negligible effect on ground state geometries and 

HOMO/LUMOs in various members of the QOTn series.7,9 The model molecule retains the 

C2h symmetry of QOT2. 

 All geometries were optimized using the XMS-CASPT231 method with a 6-31G* basis 

set as implemented in Molpro.32 XMS-CASPT2 provides more accurate energetics than 

standard CASPT2 near conical intersections or avoided crossings.15 C2h symmetry was 

employed and an active space of 10 electrons in 8 π orbitals was used. For all calculation 

parameters and rationalization of active space, see section A.1.1 of Appendix A. 

The ultrafast relaxation dynamics between the 11Bu and 21Ag states were 

investigated using the Multi-Configurational Time-Dependent Hartree (MCTDH) 

package.33,34,35 The wave packet is propagated on a two-state four-dimensional linear 

vibronic coupling Hamiltonian (LVCH) with a weakly coupled heat bath of 20 harmonic 

oscillators. Three of the modes were symmetric modes that tuned the energy gap. The 

fourth, asymmetric, mode introduced coupling between the two states of interest by 

lowering the symmetry of QOT2. To obtain the LVCH parameters, one-dimensional scans 

along all four vibrational modes were generated using the RAS-SF method24 with 6 

electrons in 6 π-orbitals, a septet high spin reference, and the 6-31G* basis. The parameters 

were then obtained by minimizing the residual squared error via gradient descent. An 

Ohmic bath of harmonic oscillators is used to model energy dissipation from interaction 

with the environment. Dynamics calculation details are found in Appendix A, section A.1.2  

Transition dipole moment (TDM) calculations were used to assign experimental 

absorption signals to specific state transitions. XMS-CASPT2 TDMs are not implemented in 

MOLPRO and CASSCF TDMs showed considerable deviations with minor active space 

variations (Figure A.2), so neither method could be reliably used to assign absorption 

strengths. CASSCF TDMs are likely unreliable because simulations have shown that 

inclusion of σ-π dynamic correlation increases the accuracy of TDM calculations in 
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polyenes,36 which would require a large active space. Given the polyenic character of 

quinoidal oligothiophenes16 and the larger amount of dynamic correlation in RAS-SF versus 

CASSCF, RAS-SF TDMs were implemented in a development version of the Q-Chem 4.037 

software package for this study and found to be much more consistent than CASSCF TDMs.  

For complete details on the other computations discussed below (spin-orbit 

coupling, localized orbitals, constrained DFT, and classical dynamics), see Appendix A and 

the Supporting Information (SI) of published work.38 

 

2.3.2 Experimental Details 

 The computational investigations were supported by a variety of spectroscopic 

data.4 A microsecond transient absorption spectrum of QOT2 using a flash photolysis setup 

detected the long-lived (57 μs) species of interest. A two-color pump-probe (445nm pump, 

890nm probe) transmission experiment, in which attenuation of the probe beam was 

measured at various pump powers, demonstrated strong absorption to low-lying excited 

states. The effect of magnetic fields on the time-resolved fluorescence signal was also 

measured and shown to be significant. Finally, a time-correlated single photon counting 

setup was used to detect delayed fluorescence of an excited QOT2 sample. Additional 

synthetic and experimental details can be found in previously published works.4,38 

 

2.4 Results and Discussion 

2.4.1 Immediate Evolution of the Bright 11Bu Exciton  

The first step in investigating the photo dynamics of QOT2 is to determine the fate of 

the initially excited bright 11Bu exciton. Previously reported femtosecond pump-probe 

experiments show complete depopulation of 11Bu to a longer-lived dark state within 1 ps.4 

Kobayashi et al. used a high time-resolution experiment to assign a decay time of 200 fs to 

the same transition.15 The ultrafast nature of 11Bu depopulation suggests passage through a 

conical intersection, although the dark state remains unidentifiable by these data alone. To 

help identify possible conical intersections, the states neighboring 11Bu need to be 

identified.  
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For the key low-lying states of QOT2, XMS-CASPT2 was used to map the 

surrounding energetic landscape (Figure 2.2). XMS-CASPT2 is particularly well-suited for 

this system because it is more accurate than standard CASPT2 near conical intersections, 

and both methods are able to capture single- and multi-excitonic states.31 These results 

allow us to determine that the accessible states following photo excitation of QOT2 are 

11Ag, 21Ag, 11Bu and 13Bu. The photo response of QOT2 begins with excitation of the ground 

state, 11Ag, which leads to population of the optically allowed bright singlet, 11Bu.  

 

 

Figure 2.2 Energy landscape from XMS-CASPT2 (10,8) geometries and corresponding vertical excitation 
energies. Important features to note are the near degeneracy between 11Bu and 21Ag at the 11Ag geometry and 
the increasing energy gaps at the 11Bu and 21Ag geometries. Arrows indicate possible light-driven transitions. 

 
At the vertical excitation geometry, the proximity of the dark 21Ag state suggests that 11Bu’s 

evolution is critically influenced by a nearby conical intersection, which will be discussed in 

more detail below. The calculated n1Bu and mono-triplet states are not immediately 

accessible but are useful for assigning the excited state absorption signals that will be 

discussed later. A vertical energy gap of 2.69 eV was found for the 11Ag to 11Bu excitation. 

This gap correlates well with the band maximum of 2.25 eV obtained from UV-vis spectra.4 

In general, band maxima are not expected to be equivalent to vertical excitations, but the 

proximity of the two values indicates a good description of the initial photo excitation of 

QOT2. The adiabatic energy gap between 11Ag and T1, 13Bu, is 0.94 eV, in agreement with 
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singlet oxygen sensitization experiments that place an upper bound of 0.98 eV on the 

triplet energy.4 In addition to the agreement with experimental measurement, these values 

are qualitatively similar to existing electronic structure calculations on QOT2.4 

Figure 2.2 implies a possible pathway for depopulation of the bright 11Bu state. The 

separation of only 0.06 eV between 11Bu and 21Ag upon vertical excitation suggests the 

presence of a nearby conical intersection.4,15,25–27 Indeed, RAS-SF scans (Figure A1) show 

that the states cross along specific symmetric modes. At 11Bu and 21Ag relaxed geometries, 

the 21Ag state is considerably lower in energy than the 11Bu state. This indicates that 

population transfer may be rapidly downhill and that return to the 11Bu surface will be less 

favorable after transition to the dark 21Ag surface.  

The role of the conical intersection in ultrafast conversion from the bright 11Bu to a 

dark state was examined with quantum dynamics simulations using MCTDH.33,34,35 A two-

electronic-state LVC Hamiltonian (see Computational Details) incorporating one 

asymmetric coupling mode and three symmetric tuning modes (Figure 2.3) was employed 

to capture the key electronic and vibrational degrees of freedom in the system. The 

inclusion of an Ohmic bath accounted for dissipative interactions with the solvent. The 

tuning modes adjust the energy gap between the two states and are Condon-active, 

symmetric vibrations that preserve C2h symmetry. The asymmetric coupling mode, chosen 

because it coincides with the non-adiabatic coupling vector as calculated at the 

CASSCF(4,4) level, captures the coupling between 11Bu and 21Ag. 
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Figure 2.3 Major movements of the four modes involved in the initial photo dynamics. Note the asymmetry 
present in the coupling mode, breaking symmetry and allowing coupling between the 21Ag and 11Bu surfaces. 

 

RAS-SF(6,6) scans along the tuning modes span the symmetry-allowed conical 

intersection region (Figure A1). The asymmetric coupling mode introduces interaction 

between the two electronic states and drives population transfer. Motion along this mode is 

critical because there is no coupling between the 11Bu and 21Ag until asymmetric 

vibrational motion breaks the electronic state symmetry. Overall, MCTDH allows exact 

dynamics simulations within the given LVC Hamiltonian model, giving a meaningful 

quantum mechanical picture for this ultrafast process. 

The quantum dynamics simulations (Figure 2.4) indicate rapid population transfer 

to the dark 21Ag state with a 76 fs decay time, in reasonable agreement with the 200 fs 

decay time obtained by Kobayashi et al.15 Population transfer is largely driven by motion in 

modes 48 and 50, which can be understood by the shape of their potential energy surfaces 

(Figure A.1). Starting on the 11Bu surface, motion along these modes passes through the 

conical intersection, resulting in the accumulation of kinetic energy, 0.45 eV and 0.7 eV for 

modes 48 and 50, respectively. This corresponds to roughly six additional vibrational 

quanta in modes 48 and 50 after the initial transfer to the dark 21Ag (Figure A.3). The extra 

energy may allow QOT2 to re-access the conical intersection for a period of time before 

energy dissipation occurs through bath interactions. This simulation establishes that 

ultrafast depopulation of the bright 11Bu exciton4,15 occurs due to passage through a conical 
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intersection to the dark 21Ag surface. Having demonstrated that 21Ag is populated within 

the first picosecond after excitation, we now examine properties of the 21Ag excited state at 

later timescales. 

 

 
Figure 2.4 Two electronic state quantum dynamics using four vibrational modes, three tuning and one 
coupling, to model population transfer between the 11Bu and 21Ag surfaces in the presence of an Ohmic bath. 

 
2.4.2 Nature and Transformations of the 21Ag Excited State 

Microsecond transient absorption spectra probing excited state transitions to high-

lying states show a signal corresponding to a photo induced state with a 57 μs lifetime.4 

Since population transfer from 11Bu to 21Ag occurs on the order of femtoseconds, this long-

lived state is likely evolved from the 21Ag state. Unfortunately, XMS-CASPT2 assignments of 

high-lying QOT2 states are difficult due to the need to account for many states in the 

calculations. Thus, for guidance on the evolution of 21Ag, we examine a nanosecond pump-

probe (445 nm pump, 890 nm probe) transmission experiment that probes excited state 

transitions to low-lying states.38 Simulation of these low-lying transitions involves fewer 

states and thus can be readily accomplished by XMS-CASPT2 calculations.  

Absorption of the low-energy probe (890 nm, 1.39 eV) is energetically consistent 

with transitions corresponding to two distinct possibilities. The first option, suggested by 
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the observation of an emission increase when a magnetic field is applied38 is the formation 

of a triplet-like species. The T1T2 transition at 1.74 eV (Figure 2.2) is near the probe 

energy of 1.39 eV and in principle could be the source of this signal. Alternatively, the 

21Agn1Bu transitions, which range from 0.37 eV to 1.44 eV, could also be the source of 

probe absorption, indicating a persistent, long-lived 21Ag exciton. However, excited singlet 

lifetimes are usually far shorter than the observed microsecond lifetime and there is yet no 

explanation for the observed magnetic dependence on emission. Previous investigations 

that observed a lack of solvent polarity and viscosity dependence indicates that the 

detected species is not the result of intermolecular processes or a charge-transfer species.4 

Thus, intersystem crossing from 21Ag to the triplet manifold is first considered, where there 

exists precedent for microsecond lifetimes and magnetic field effects.  

 

2.4.2.1 Intersystem Crossing from 21Ag 

The sulfur in oligothiophenes can introduce significant spin-orbit coupling (SOC) 

and increased efficiency of intersystem crossing (ISC).39–41 Studies on ISC in 

oligothiophenes42–44 and other aromatic systems45 have found that non-planar 

conformations contribute the most to ISC. In QOT2, however, non-planar conformations 

will be diminished due to its quinoidal nature, which increases the rigidity of the 

conjugated backbone.  

QOT2 ISC is most likely to occur from 21Ag since the bright 11Bu quickly converts to 

21Ag by passing through a conical intersection, as demonstrated above. To identify possible 

ISC products, both SOC and energy gaps must be considered. Given that ISC is starting from 

21Ag, a π-π* singlet, the El-Sayed rules46 predict that σ-π* triplets will have significant 

SOC’s. To locate low-lying σ-π* triplets, TDDFT calculations at the 21Ag geometry were run 

since the XMS-CASPT2 calculations only targeted π-π* states. However, it was found that all 

low-lying triplets are of π-π* character, with the nearest σ-π* triplet located 2 eV above 

11Bu. This large energy gap indicates that σ-π* states will play an insignificant role in ISC 

from 21Ag. Possible products of QOT2 ISC are thus restricted to the energetically nearby π-

π* triplets, 13Bu and 13Ag.  
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Transitions from 21Ag to 13Bu are forbidden by symmetry selection rules,42,47,48 

suggesting that the direct crossing to 13Bu is unlikely. For the 21Ag to 13Ag transition, the 

SOC was computed to be 0.0043 cm-1 at the planar 21Ag geometry. The relaxed 13Ag lies 

0.14 eV above 21Ag, so minimal ISC between these states is expected. A Marcus49 theory 

prediction of the rate gives an ISC time constant of 18.9 ms (Appendix A.2) The smallest 

time constant possible at this value of SOC—when the reorganization energy exactly 

cancels out the energy change—would be 81.2 μs. These values indicate that ISC from 21Ag 

will play an insignificant role in QOT2 dynamics from the planar 21Ag geometry. 

Although non-planar conformations are expected to play a minimal role due to the 

rigid quinoidal backbone, central C=C bond twists will increase SOC values compared to the 

planar 21Ag geometry. These increases, however, were not large enough to yield significant 

changes in ISC rates (Table A.2). Furthermore, the estimated 176% triplet yield in QOT24 

suggests ISC to be inoperative since it can generate only one triplet per excited QOT2.  

 

2.4.2.2 Intramolecular Double Triplet, 1(TT), States and 21Ag 

To date, the rationale behind efficient intramolecular singlet fission systems has 

been centered around structures which allow the 1(TT) state to spatially separate, and thus 

electronically decouple, into two independent triplets. The first design of covalently 

tethered tetracenes generated triplet yields of only around 3%,50 but recent efforts show 

higher yields. For instance, triplet quantum yields of 156% in covalently tethered 

pentacene dimers51 and 173% in a benzodithiophene – thiophene-1,1-dioxide block 

copolymer52 were recently observed. The above systems differ from QOT2 in that spatial 

separation of the two triplets generated by singlet fission is highly plausible. Specifically, 

the pentacene dimer can localize one triplet to each pentacene fragment, and the block 

copolymer can separate triplets along the polymer chain. While there are reports of 

carotenoids undergoing intramolecular singlet fission when bound to light-harvesting 

complexes,53,54 singlet fission does not occur as separated monomers in solution.53 The 

structure of QOT2 is not amenable to similar mechanisms of triplet separation due to 

strong coupling along the conjugated backbone. It is thus possible that singlet fission in 

QOT2 may occur through a novel intramolecular mechanism.  
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 The energy matching condition for singlet fission, E(S1)≥2E(T1),5,6 is fulfilled in 

QOT2. Experimentally, E(S1) = 2.25eV and E(T1) < 0.98eV from UV-Vis spectra and oxygen 

singlet sensitization, respectively,4 satisfy the condition. XMS-CASPT2 energies (Figure 2.2) 

indicate that 11Bu and 21Ag states also fulfill the condition. This is consistent with previous 

studies that noted the biradicaloid character of the QOTn series7–11 and predicted the 

ability of biradicaloid species to satisfy the energy matching criteria.12–14  

Multiexcitonic 1(TT) states, which are double triplets spin-recoupled into an overall 

singlet, can have a range of electronic coupling strengths between the two triplets. In 

intermolecular singlet fission systems, these 1(TT) states eventually evolve into spatially 

separated, electronically decoupled, independent triplets – at which point the 1(TT) state 

becomes degenerate with a 5(TT) state. Studies of pentacene show that vibronic coupling 

can generate these multi-excitonic 1(TT) states.25–27 Where a quintet (i.e. 5(TT)) has four 

singly occupied orbitals, 1(TT) is expected to have slightly changed occupancies when the 

triplets are proximate to one another. Correlations among the four electrons are 

responsible for this effect, so the singly occupied limit will be observed only in spatially 

separated singlet-coupled triplets. To illustrate the electronic coupling in 1(TT) states, RAS-

SF natural orbital (NO) occupancies of a quintet are compared to the dark 1(TT) state of a 

pentacene dimer embedded in the crystal environment26 (Appendix A.3) and 21Ag of QOT2 

in Table 2.1. In the embedded pentacene dimer and QOT2’s 21Ag state, the deviation from 

the unit occupation of orbitals seen in a quintet indicates the presence of electronic 

coupling between the two triplets. 

 

Table 2.1 Natural orbital occupancies for various multi-exciton systems demonstrating the deviation from 
quintet single occupations. 

  
QOT2a 

Quintet 
QOT2a 

21Ag 
Pentaceneb 
Dimer 5(TT) 

Pentaceneb 
Dimer 1(TT) 

LUNO+1 1.00 0.34 1.00 0.74 
LUNO 1.00 1.11 1.00 0.99 
HONO 1.00 0.95 1.00 1.01 
HONO-1 1.00 1.61 1.00 1.26 

a Obtained with RAS-SF(10,8). 
b Obtained with RAS-SF(4,4). 
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In order to quantify the strength of triplet coupling in QOT2’s 21Ag state, localized 

orbitals (LOs) were created. Specifically, four key frontier orbitals (Appendix A.4), HOMO-1 

through LUMO+1, were localized to obtain their LO analogues, HOLO-1 through LULO+1, 

for use in a Spin-Flip CAS-CI(4,4) calculation. Figure 2.5 shows that the LOs are not fully 

localized to either half of QOT2, i.e. the four singly occupied orbitals cannot be fully 

spatially disentangled. This indicates the inability of the triplets to completely decouple 

from one another at the 21Ag geometry, as the spatial overlap allows for direct coupling 

through exchange interactions. These LOs allow diabatization of 21Ag into independent, 

decoupled triplet (T+T) and triplet coupling (TC) contributions. In this local orbital basis, 

the quintet state has four orbital occupancies of 1.00, meaning that the (T+T) component 

represents 100% of the wave function. In 21Ag these configurations make up 74.6% of the 

wave function, indicating a large independent triplet character (Figure 2.5). The remaining 

electronic configurations make up the TC diabat, which is dominated (77% of its 25.4% 

fraction) by four configurations involving interaction between the spatially overlapping 

LULO and LULO+1 orbitals. TC therefore describes the most significant electron 

correlations that are responsible for the non-unit occupations of Table 2.1. The diabatic 

Hamiltonian reveals that the off-diagonals between the T+T and TC components are of the 

same magnitude as the energy difference between the two (Figure 2.5c). This mixing allows 

us to determine that QOT2’s 21Ag is a 1(TT) state with significant electronic coupling 

present between the triplets, Ψ2Ag ≈ 0.864 (T+T) + 0.504 (TC). 

 

 
Figure 2.5 a) Localized frontier orbitals in QOT2.  b) Decomposition of 21Ag into (T+T) and TC components in 
the localized orbital basis in a (4,4) active space. The spatial orbitals are HOLO-1, HOLO, LULO, LULO+1 from 
top to bottom in the determinants. c) Diabatic Hamiltonian of the 21Ag wave function demonstrating the 
strong mixing between two configurations. Values shown are in eV. 
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The 1(TT) state described above is not the expected final form of triplets in singlet 

fission, which is often considered complete when the coupled triplets in 1(TT) have evolved 

into spatially separated, electronically decoupled triplets. Although spatially separated, the 

triplets can be spin-entangled and interact with one another to create observable 

phenomena such as quantum beats in delayed fluorescence spectra.55 These beats are 

difficult to observe even in known singlet fission systems, so the fact that no such beats are 

observed in QOT2’s delayed fluorescence does not directly indicate a lack of singlet fission. 

Decoupling the triplets in the 21Ag wave function would require complete spatial 

separation of the LOs. This could be accomplished by creating perpendicular π-systems 

through rotation of QOT2’s C-C bonds. To determine if 21Ag can evolve from strongly 

coupled to decoupled triplets on a single QOT2, we searched for QOT2 geometries 

consistent with two independent triplets. 

To obtain a decoupled triplet structure, a constrained Hartree-Fock geometry 

optimization was performed in which an α triplet was localized to one half of the model 

molecule and a β triplet to the other half. The resulting geometry exhibited separated π-

systems resulting from rotation of both cyano groups to positions perpendicular to the 

thiophene rings (Figure 2.6a). RAS-SF calculations at this twisted geometry (Figure 2.6b) 

lead to 21Ag natural orbitals with four singly occupied orbitals and a near-degeneracy 

between 21Ag and 15Ag, indicating that 21Ag becomes composed of independent triplets. 

Travelling to this decoupled triplet geometry along the 21Ag surface has an energetic cost of 

1.76 eV, similar to that found in a previous investigation (1.6 eV).4 Thus, evolution of the 

21Ag into two independent triplets through a simultaneous twist of the terminal 

dicyanomethylene groups is an activated process with a high barrier, and therefore 

unlikely.  

Further evidence against triplet decoupling comes from the difference between the 

twisted, decoupled triplet geometry and the planar, mono-triplet geometry. These two 

geometries have different π orbital structures, indicating that the separated triplet T1T2 

transition will most likely have different energetics compared to the mono-triplet T1T2. 

However, the transient absorption maximum lies close to that of the triplet-sensitized 

absorption spectra, being red-shifted by only 30nm.4 This coincident position suggests that 
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a twisted decoupled triplet geometry is not responsible for the signal, indicating that this 

geometry is not reached in QOT2. 

 

 
Figure 2.6 a) Electronically decoupled 1(TT) structure with two cyano groups out of plane by 90 degrees. b) 
Energies resulting from RAS-SF(10,8) calculations at the 21Ag minimum and the independent triplet 
geometry. 

 
2.4.3 The Possibility of Long-Lived 21Ag  

Having obtained evidence against ISC and geometric distortions leading to a 1(TT) 

state with electronically decoupled triplets, the intriguing possibility remains that excited 

state absorptions seen in the microsecond transient absorption spectra38 arise from 

transitions from a long-lived 21Ag singlet state. This viewpoint would need to be consistent 

with the strong nanosecond pump-probe transmission drop and the experimental magnetic 

field dependence previously published.38 

The magnetic effect can be qualitatively explained via the large (T+T) nature of 21Ag. 

In states composed of pairs of triplets, specific triplet pair states under zero-field 

interaction will have singlet character. The amount of singlet character affects the singlet 

fission rate, and thus the number of singlets that undergo fluorescence. The application of a 

magnetic field affects the number and degree of triplet pair states with singlet character, 

resulting in changes in the rates of fission and fusion. This leads to modulations in the 

amount of generated fluorescence on the timescale of the fission and fusion events.5,55,56 

The large (T+T) character of 21Ag means that a magnetic field effect on the time-resolved 

fluorescence signal is plausible, but further analysis is outside the scope of this article. 

The consistency of a long-lived 21Ag with the strong nanosecond pump-probe 

transmission drop is now examined.38 This requires evidence that long-lived 21Ag states 
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can produce the same magnitude of absorption as required by the reported 176% singlet 

fission yield.4 Of the two cases, singlet fission will produce more excitons due to the 

creation of two independent triplets per photon absorption. Therefore, a long-lived 21Ag 

will require a stronger molar absorptivity to produce the same absorbance. By 

approximating the transition of singlet fission generated excitons by a T1T2 transition, 

and using experimental parameters combined with Beer’s Law, a long-lived 21Ag would 

need a molar absorptivity of 16,600 M-1cm-1 compared to the 9,500 M-1cm-1 for a T1T2 

transition.4 Thus, the 21Agn1Bu transition requires a molar absorptivity 1.75 times, or 

equivalently a transition dipole moment (TDM) 1.32 times that of the T1T2 transition to 

attain the same magnitude of absorption (SI of ref. 38). Using RAS-SF TDMs (Table 2.2), we 

see that 21Bu and 31Bu have TDM ratios of 1.17 and 0.51 respectively. Furthermore, these 

two states are energetically near one another, being separated by only 0.2 eV (Figure 2.2). 

Assuming both states are nearly resonant with the probe pulse, we calculate a 21Agn1Bu 

to T1T2 ratio of 1.27 (SI of ref. 38). This ratio is large enough for a 21Agn1Bu transition 

to account for the observed transmission drop, indicating that the transmission drop is 

consistent with absorption in the 21Ag state.  

 

Table 2.2 Transition moment dipoles, computed at RAS-SF(10,8) with a quintet reference, and their ratios 
with the T1T2 transition. 

  21Ag  11Bu 21Ag  21Bu 21Ag  31Bu T1 T2 
TDM (debye) 2.06 2.96 1.29 2.54 
Ratio with T1T2 
transition 

0.81 1.17 0.51 1.00 

Transition Energy (eV) 0.37 1.24 1.44 1.74 
 
2.4.3.1 Internal Conversion from 21Ag11Ag 

Having demonstrated the consistency of a long-lived 21Ag with experimental 

magnetic field effects and pump-probe transmission results, we examine the longevity of a 

21Ag exciton. An excited singlet’s population can decay through fluorescence, intersystem 

crossing, or internal conversion. Fluorescence from 21Ag to 11Ag is symmetry forbidden, 

(though activated delayed fluorescence from 21Ag to 11Bu is possible) and we have shown 

that ISC is negligible due to the calculated low spin-orbit coupling. This leaves internal 

conversion as the only decay pathway yet uncharacterized as inactive. This is difficult to 
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unequivocally establish without sampling all possible degrees of freedom accessible over 

microsecond timescales. The rigid structure of QOT2, however, can be shown to hinder 

internal conversion pathways for 21Ag. 

To this point, there are currently no studies on the internal conversion dynamics of 

QOT2. Given QOT2’s polyene-like structure, studies on 1,3,5,7-trans-octatetraene can 

provide some insight into possible QOT2 internal conversion pathways. In octatetraene and 

QOT2, absorption results in a 11Bu exciton that rapidly transitions to a 21Ag surface.57–59 

Both systems also display longer excited state lifetimes than expected. Early studies on 

octatetraene, which were unable to detect the weak 21Ag fluorescence, used absorption 

spectra to calculate a radiative lifetime of 1-2 ns.60,61 Later studies measured lifetimes of 

225 ns at 10 K due to the symmetry-forbidden nature of the 21Ag to 11Ag transition.62 

Islampour et al. used time- and frequency-domain approaches beyond the Condon 

approximation to simulate that internal conversion from 21Ag to 11Ag would occur on a 2 μs 

time scale for an octatetraene molecule in a vacuum, although inclusion of bath interactions 

would significantly reduce this value.63 Other experimental and computational studies 

suggested a non-adiabatic transcis isomerization as the main non-radiative decay 

channel through which octatetraene returns to the ground state.64,65 The isomerization is 

initiated by a rotation of the octatetraene backbone, a general method of reaching conical 

intersections in linear polyenes.66 These studies indicate that rotations along the QOT2 

backbone may induce internal conversion.  

Due to the rigidity of the thiophene rings, rotations along the QOT2 backbone will 

most likely occur along either the central C=C or the terminal C=C’s at the dicyano termini. 

The central C=C cis-trans isomerization coordinate is considered first. A RAS-SF(4,4) scan 

(Figure 2.7) shows that this motion will be resisted, costing a non-negligible 1.20 eV to 

rotate 90 degrees. Furthermore, neither the 11Ag nor the 15Ag surfaces come significantly 

close to contacting the 21Ag surface, maintaining a separation of at least 1.25 eV and 2.40 eV 

respectively. Thus, cistrans isomerization along the central C=C does not seem to be a 

viable pathway for either internal conversion or electronically decoupled 1(TT) formation 

in QOT2.  
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Figure 2.7 RAS-SF(4,4) scan of rotation about the central C=C bond. Salient features include the continuously 
large 21Ag-11Ag gap and the 0.75 eV activation barrier to transcis isomerization 

 

The second class of bonds potentially susceptible to rotations are the C=C bonds 

connecting the dicyano groups to thiophene rings. Since there are two of these bonds, 

rotations may occur singly or simultaneously. Simultaneous rotation was investigated 

earlier in pursuit of an independent triplet geometry (Figure 2.6b). Similar to rotation 

about the central C=C, it was found that this motion results in a significant energy gap of 

1.98 eV between 11Ag and 21Ag, indicating a non-operative internal conversion pathway. 

Rotation of a single dicyano group (Figure 2.8) also results in a sizeable energy gap of at 

least 1.6 eV at all points. Thus, an accessible conical intersection along twists of cyano 

groups appears unlikely. 

 

 

 

 

 

 

 

Figure 2.8 a) Geometries of the RAS-SF scanning coordinate. One cyano group is twisted while all else 
remains frozen.   b) RAS-SF(4,4) scan of the rotation of one cyano group starting from the 21Ag minimum. 
Salient features include the consistently large 11Ag-21Ag gap and the degeneracy between 11Bu and 21Ag at 90 
degrees rotation 
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The potential energy scans of Figures 2.7 and 2.8 suggest that out-of-plane 

rotational pathways are inoperative in QOT2 as internal conversion pathways. They also 

indicate that efficient QOT2 internal conversion, if it occurs, will need to undergo more 

complicated movements to do so. In sum, the 21Ag state is likely long-lived, which is 

consistent with three central pieces of experimental data (microsecond transient 

absorption spectra, magnetic dependence, and two-color transmission).38 We now seek to 

ascertain whether this remains true for delayed fluorescence measurements.  

 

2.4.3.2 Delayed Fluorescence and Comparison of Singlet Fission Mechanisms 

The detection of delayed fluorescence (DF) up to 30 ns at 580nm (2.14 eV), separate 

from the prompt fluorescence at 470nm (2.64 eV),38 can be qualitatively explained by a 

long-lived 21Ag. As discussed earlier, passage through the conical intersection results in 

vibrationally excited 21Ag excitons. At early times following excitation, this extra energy 

will assist a return to the conical intersection and repopulation of the 11Bu surface from 

which delayed fluorescence can occur (Figure 2.9). The difference in energy between 

prompt and delayed fluorescence results from the differing vibrational populations in the 

bright 11Bu state. Prompt fluorescence occurs from higher 11Bu levels due to absorption of 

pump photons (420 nm, 2.95 eV) with energy in excess of the 11Ag-11Bu gap (2.69 eV, 

Figure 2.2). The lower DF energy is a result of the uphill cost of returning to 11Bu from 21Ag 

(0.37 eV, Figure 2.2), which results in repopulation of only the lowest 11Bu vibrational 

levels. The decay of the signal is due to dissipation of energy from 21Ag vibrational modes 

over time, rendering them unable to reach the conical intersection. The high DF energy 

(2.14 eV) means that phosphorescence from T1 (0.94 eV) cannot account for this signal, 

providing further evidence against ISC.  
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Figure 2.9 Rationalization of experimental DF from the viewpoint of a long-lived 21Ag. The leftmost picture 
depicts the situation after absorption of the pump pulse. The higher vibrational levels of 11Bu are populated, 
and prompt fluorescence occurs from these levels. Population of excited vibrational levels of 21Ag occurs via a 
conical intersection as well.  Subsequently, as depicted by the central picture, repopulation of the lower 11Bu 
vibrational levels occurs, leading to DF of a lower energy than the prompt fluorescence. Over time, the 21Ag 
excitons lose vibrational energy via bath interactions, depicted by the rightmost picture. Fluorescence 
occurring at this stage will be activated, and is expected to be minimal. 

 
The DF signal, while suggestive of the 21Ag exciton, is not a direct observation of 

such a state. Overall, the available experimental data does not continuously track the 

existence of a 21Ag exciton from its formation all the way to the microsecond time range. 

Specifically, femtosecond pump-probe experiments4,15 observe the ultrafast formation of a 

consistent dark state from 1 to 30 ps, and microsecond transient absorption38 observes the 

decay of a species from 1 to 57 μs. To link the two timescales, DF measurements38 are 

available reaching up to 30 ns. Lacking explicit signals from 30 to 1,000 ns opens the 

possibility that 21Ag evolves into another state before being detected in the microseconds. 

However, the above investigations of transformations such as ISC and internal conversion 

give no indication that these changes are favorable. 

Finally, we discuss the possibility of alternative singlet fission pathways. Musser et 

al. have found indications that polyene-like systems can bypass 21Ag when undergoing 

singlet fission.67,68 For instance, in a poly(thineylene-vinylene), activated intramolecular 

singlet fission was suggested to occur via internal conversion from a hot 11Bu to a n1Ag 

state lying above 21Ag.67 This mechanism is unlikely in QOT2 given the two-color 

transmission experiment’s pump energy (445 nm, 2.78 eV) and calculations that place the 

31Ag state 1.3 eV above 11Bu’s 2.69 eV. Another alternative singlet fission path was noted in 

carotenoid aggregates, where it was proposed that the shape of the aggregate PES causes 

the exciton to access a conical intersection other than the 11Bu-21Ag conical intersection.68 
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This mechanism is also unlikely in QOT2 due to a lack of detected concentration 

dependence for the steady state spectra, indicating negligible aggregate formation.4  

The inapplicability of these alternative singlet fission mechanisms indicates that for 

triplet decoupling to occur in QOT2’s 1(TT) state, a geometrical deformation is required. 

However, the motion determined above—simultaneous twist of the two dicyano groups—

is energetically unfavorable. In fact, investigations into a number of rotational motions 

showed that, generally speaking, triplet decoupling in 1(TT) would not occur through 

rotations of the QOT2 backbone. The singlet fission process in QOT2 is therefore likely to 

end without full triplet decoupling, but with significant biexcitonic character arising from 

the large (T+T) component of 1(TT) shown in Figure 2.5. 

 

2.5 Conclusion 

 The presented computational studies provide detailed information on the character 

and time evolution of QOT2 excited states. Quantum dynamics simulations suggest that 

ultrafast decay, mediated by a few key vibrations, occurs from the bright 11Bu state to the 

dark 21Ag state through a conical intersection located near the Franck-Condon region. This 

result agrees with experimental observation of ultrafast (<1 ps) decay of the bright 11Bu, 

and shows that 21Ag is rapidly populated following photo excitation.  

Two main avenues of 21Ag evolution were considered in the course of this work, with 

the first being intramolecular singlet fission. This investigation resulted in the first detailed 

characterization of the QOT2 21Ag state, which showed that planar 21Ag is a strongly 

coupled 1(TT) state where the two triplets incompletely localize to each half of the 

molecule. Completion of singlet fission by spatially separating and electronically 

decoupling the two triplets in 21Ag is unlikely due to a large cost of 1.76 eV for reaching a 

twisted geometry capable of hosting two independent triplets. A second possibility, that the 

observed long-lived excited state is the multiexcitonic 21Ag state, is supported by TDM 

calculations that show sufficient oscillator strength around the necessary absorption 

region to account for the observed transitions. The longevity of the 21Ag exciton is further 

supported by the computed low spin-orbit coupling to the triplet manifold and low activity 

of various internal conversion pathways. While the presented evidence does not allow for a 
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conclusive assignment of the µs transient absorption signal to a long-lived 21Ag, explicitly 

tracking the 21Ag exciton from its formation through the microsecond time scale would 

resolve this question.  These investigations into intramolecular singlet fission and a long-

lived 21Ag are summarized in Table 2.3.  

 

Table 2.3 Summary of investigations of intramolecular singlet fission and a long-lived 21Ag. 

Intramolecular singlet fission Long-Lived 21Ag 
 21Ag rapidly generated by conical 

intersection (Section 2.4.1) 
 21Ag characterized as a 1(TT) state 

(Section 2.4.2.2) 
 Geometry suitable for separated triplets 

found by constrained HF (Section 
2.4.2.2) 

 Large barrier (1.76 eV) for reaching 
separated triplet geometry (Section 
2.4.2.2) 

 Rotational scans and decoupled triplet 
optimization find no other geometries 
for triplet separation (Section 2.4.3.1) 

 
 

 21Ag rapidly generated by conical 
intersection (Section 2.4.1) 

 Low spin-orbit coupling indicates 
negligible ISC (Section 2.4.2.1) 

 Magnetic dependence of emission 
accounted for by 21Ag 1(TT) character 
(Section 2.4.3)  

 Transient absorption signals accounted 
for by TDM calculations on 21Ag 
(Section 2.4.3) 

 Sampling of internal conversion 
pathways found to be inactive due to 
rigid QOT2 structure (Section 2.4.3.1) 

 No experimental confirmation this state 
exists in µs timescale (Section 2.4.3.2) 

 
 

The large barrier for triplet separation in QOT2 indicates that 1(TT) decoupling may 

be a significant challenge in intramolecular singlet fission systems composed of fully 

connected, conjugated fragments. It remains to be seen if strongly coupled 1(TT) states can 

be efficiently extracted as multiple charge carriers, negating the need for full triplet 

separation. In contrast, systems with distinct electronic subunits, such as covalently linked 

acene dimers,50,51 likely will not experience this same challenge. Whether intramolecular 

singlet fission chromophores require structural motifs that allow facile pathways for 

efficient triplet separation therefore will depend on the efficacy of multi-charge extraction.  

In sum, this contribution provides the first physical description of the dark, highly 

coupled, double triplet 1(TT) state in QOT2, revealing that the coupling results from 

spatially overlapping localized orbitals. Intriguingly, this state has an excited state 

absorption signature similar to that of two triplets, despite the strong coupling and spatial 
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inseparability of the excitons. Ultrafast formation of the 1(TT) state mediated by key 

vibrational modes suggests that multiexcitonic states can be rapidly and efficiently 

generated through conical intersections in monomeric systems. 

While this Chapter shows that RAS-SF methods can provide key insights on the 

relative energies of multi-excitonic states, it sidesteps one of the weaknesses of current 

RAS-SF implementations. RAS(h,p)-SF has a poor treatment of dynamic correlation due to 

the small amount of excitations that are included outside of the active space, resulting in 

poor energetics for excitonic states. This problem is avoided here by utilizing XMS-CASPT2 

calculations for these states. Chapter 3 endeavors to increase the general applicability of 

RAS-SF methods by increasing the number of excitations outside of the active space. 
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Chapter 3: Recovering Dynamic Correlation in Spin Flip Configuration 

Interaction through a Difference Dedicated Approach 

 

This Chapter largely based upon published work:  
Reproduced with permission from Chien, A. D. & Zimmerman, P. M. J. Chem. Phys. 146, 
14103 (2017). 
 

3.1 Abstract 

This Chapter introduces the restricted-active-space n-spin flip configuration 

interaction models, RAS(S)-SF and RAS(S,2h,2p)-SF, which extends the RAS(h,p)-SF method 

used in the prior Chapter. This extension aims to provide highly correlated, yet low cost, 

approaches for treating polyradical systems by adding electronic degrees of freedom 

beyond those of previous spin flip approaches in order to achieve accurate ground and 

excited state energetics. The effects of additional dynamic correlation were investigated by 

comparing these two techniques to the prior RAS(h,p)-SF method on a variety of test 

systems, including multiple electronic states of methylene, tetramethyleneethane, three 

binuclear transition metal complexes, and a tetracene dimer. RAS(S,2h,2p)-SF significantly 

improves state descriptions in all cases and provides high accuracy even when using a 

minimal number of spin flips. Furthermore, this correlated level of theory is shown to be 

extensible to the large systems involved in singlet fission, where the multi-excitonic states 

in tetracene dimers are difficult to simulate with standard methods and therefore are still a 

matter of debate. Using a triple-zeta basis, the double triplet state, 1(TT), is predicted to be 

unbound. This result contradicts lower levels of theory and provides important insight into 

tetracene’s ability to undergo efficient singlet fission. 
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3.2 Introduction 

 Accurate electronic structure simulations on systems that are well described by a 

single electron configuration are routinely possible because the complexities associated 

with treating strong electron correlation are avoided. Situations that contain strong 

correlations among multiple electronic configurations, including bond breakage, radicals, 

and excited states, usually require multi-reference techniques such as the widely used 

complete active space self-consistent field (CASSCF) method.1,2 CASSCF, however, is not 

always suited to routine use, as it usually demands prior knowledge of important electron 

configurations and scales exponentially with increasing active space size. Recently, new 

approaches have appeared that reduce the cost of CAS calculations, enabling the 

computation of larger active spaces. Notable examples include the density matrix 

renormalization group (DMRG)3,4 and various stochastic approaches,5–7 which greatly 

reduce computational cost prefactors for CAS and full configuration interaction (FCI). 

Select CI approaches have also been recently re-introduced,8–12 which also greatly reduce 

the overall cost of electronic structure simulations of strongly correlated systems. 

Another alternative is the spin flip (SF) methodology, first introduced by Krylov, 

which is able to capture strong correlations with a single-reference ansatz based on a high-

spin reference.13–15 By performing spin-flipping excitations on this reference, low-spin 

electronic configurations are generated to construct CI wave functions. The high-spin 

restricted open-shell Hartree Fock (ROHF) solution is a natural reference for common 

multi-reference situations such as bond-breaking or multi-radicals since target states are 

reasonably well described by a small set of unit-occupied orbitals. For example, the triplet 

ROHF solution has two unit-occupied frontier orbitals, and therefore acts as a good 

approximation to a broken single bond or a singlet biradical state. This concept extends to 

higher order bond-breakages and multi-radicals where higher-spin references such as 

quintets, septets, and so on are utilized.  

The SF methodology therefore can describe strong correlation while avoiding issues 

that trouble multi-reference methods. For instance, the use of a single ROHF reference 

eliminates the expense of multiconfigurational orbital optimization, as well as 

complications arising from the nonlinear nature of this optimization problem.16 
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Furthermore, multi-reference results are typically heavily dependent on the chosen active 

space, requiring one to approach these calculations with either prior knowledge of the 

states of interest or careful examination of their active space dependencies. SF methods 

bypass these issues since the active space is chosen as the unit-occupied orbitals of the 

high-spin reference. 

SF methods also greatly benefit from the balanced nature of the high-spin reference, 

in that ground and excited state descriptions are treated on a similar footing. To 

understand this effect, consider that while a RHF reference is a reasonable description of a 

closed-shell ground state, it is poorly suited for describing excited states.  Thus, at any 

truncated level of CI, an imbalance exists between descriptions of the ground and excited 

states, and excitation energies are typically overestimated (e.g. CISD17–19). ROHF 

references, on the other hand, offset this imbalance by providing an improved description 

of low-lying excited states at the expense of the ground state. This results in a balanced 

handling of ground and excited states at a given CI excitation level, resulting in more 

accurate relative energies.  

These advantages have led to the continual development of SF configuration 

interaction methods beyond the original technique, spin flip configuration interaction 

singles (SF-CIS).14 Within the CI framework, SF-CIS was extended to spin-complete spin flip 

CIS (SC-SF-CIS), which eliminated spin impurities by adding in spin-complementing 

configurations.20 Spin flip extended CIS (SF-XCIS) then added in excitations whose absences 

resulted in an imbalanced treatment of HOMO and LUMO orbitals.21 SF-XCIS allows the 

configuration basis to be viewed as a restricted active space (RAS)1,22,23 method involving 

all possible configurations in the active space as well as  single excitations into and out of 

the active space. The most recent SF-CI methods, RAS(h,p)-2SF and RAS(h,p)-nSF, extended 

the SF-CI family to multiple spin flips,24–26 enabling the low-cost, balanced treatment of 

ground and excited states with multi-radical character in large systems.  

SF-CI energy gaps for single exciton states, despite the balanced starting point, are 

semiquantitative due to the low level of included dynamic correlation. Accordingly, 

dynamically correlated perturbative27,28 and coupled-cluster13,29,30,32 SF variants have been 

developed. Treating dynamic correlation to a higher level may also be accomplished by 

adding doubles excitations to RAS(h,p)-SF. Doing so has the advantage of guaranteeing 
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spin-purity and being independent of empirical level-shifts, in contrast to coupled-cluster 

and perturbative methods, respectively. The resulting rise in cost, however, requires that 

doubles excitations be added with care.  

A new SF-CI level of theory that features increased accuracies while preserving 

modest costs can be obtained by adding only a specific subset of doubles excitations to 

RAS(h,p)-SF. This idea first gained traction in difference-dedicated configuration 

interaction methods (DDCI),32,33 where perturbation theory was used to demonstrate that a 

certain subset of doubles excitations do not contribute to the energy gaps between states. 

These doubles are therefore a priori removed from the configuration basis. Moreover, the 

excluded doubles excitations are the largest subset of doubles, allowing DDCI methods to 

recover dynamic correlation with only a modest increase in computational cost. Adding 

doubles via DDCI to RAS(h,p)-SF is expected to lead to more quantitative results, especially 

when dynamic correlation plays a large role in accurate state descriptions.  

 Herein, the RAS(S,2h,2p)-SF method, which inherits the positive aspects of the 

RAS(h,p)-SF method while recovering a significant portion of dynamic correlation, is 

introduced. RAS(S)-SF is also introduced, which includes singles excitations otherwise 

missing from RAS(h,p)-SF. Benchmarks on a variety of systems at RAS(h,p)-SF, RAS(S)-SF, 

and RAS(S,2h,2p)-SF levels were performed to determine when dynamic correlation affects 

energy gaps. As the first examples, methylene (CH2) and tetramethyleneethane (TME) are 

investigated as challenging systems with substantial biradical character. Calculations of 

magnetic coupling in a series of transition metal complexes were also performed to 

demonstrate applicability to higher levels of radicals. Finally, investigation of a tetracene 

dimer provides the most sophisticated calculations on a model tetracene singlet fission 

system to date, demonstrating that dynamic correlation is vital to describe the triplet 

separation process. 

 

3.3 Theoretical Background of Proposed Spin-Flip Extensions 

 All of the methods central to this work (DDCI, RAS(h,p)-SF, RAS(S)-SF, and 

RAS(S,2h,2p)-SF) utilize the RAS framework to define their configuration basis. In the RAS 

framework, non-frozen orbitals are split into three subsets: RAS2, an active space 
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comprised of both occupied and virtual orbitals; RAS1, the occupied orbitals below RAS2; 

and RAS3, the virtual orbitals above RAS2. Excitations are classified by the number of holes 

(empty spaces in RAS1) and particles (electrons in RAS3) generated – i.e. h-p excitations 

create one hole and one particle, 2h creates two holes, 2p creates two particles, etc. A brief 

review of the RAS(h,p)-SF and DDCI methods is given before detailing the new RAS(S)-SF 

and RAS(S,2h,2p)-SF methods.  

 

3.3.1 RAS(h,p)-SF  

RAS(h,p)-SF combines a high-spin reference with the configuration basis selection 

scheme of RAS-CI.22,23 RAS(h,p)-SF wave functions are expressed by Eq. 3.1, where it can be 

seen that there are three classes of determinants in the configuration basis. First, any 

arrangement of the N electrons in the M orbitals of RAS2 is allowed, i.e. CAS(N,M)-CI. 

 

Ψோ஺ௌ(௛,௣)ିௌி = ෍ ܿ௠߶௠ + ෍ ෍ ܿ௠
௛ ߶௠

௛ + ෍ ෍ ܿ௠
௣ ߶௠

௣

௠∈஼஺ௌ
(ேିଵ,ெ)

௣∈ோ஺ௌଷ௠∈஼஺ௌ
(ேାଵ,ெ)

௛∈ோ஺ௌଵ௠∈஼஺ௌ
(ே,ெ)

 

Equation 3.1 RAS(h,p)-SF wave function 

 

Second, single h excitations from RAS1RAS2 are allowed, in conjunction with any 

arrangement of (N+1) electrons in the M orbitals of RAS2. Finally, single p excitations from 

RAS2RAS3 are allowed, in conjunction with any arrangement of (N-1) electrons in the 

RAS2 orbitals. RAS(h,p)-SF has a number of desirable properties including low-cost, 

multistate calculations, and spin-pure, variational wave functions. Size-consistency is 

achieved provided the active space is localized on a single fragment. Additionally, provided 

the active space stays constant, the configuration basis dimension increases only linearly 

with system size. The main shortcoming of RAS(h,p)-SF is its inability to quantitatively 

describe excitation energies of certain classes of excited states due to lack of dynamic 

correlation.  
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3.3.2 DDCI  

DDCI is another form of RAS-CI that includes CAS-CI within RAS2 space as well as up 

to doubles excitations into, out of, and around RAS2.32–37 To maintain low cost, DDCI 

excludes the 2h-2p set of excitations from the configuration basis. This choice originates 

from examination of second-order quasi-degenerate perturbation theory corrections to the 

active space Hamiltonian, where it is seen that 2h-2p excitations shift the total energies for 

all active space states by the same amount and thus do not alter the energy gaps.  

DDCI is well-suited for vertical energy gaps, but adiabatic excitation energies are 

influenced by differences in the discarded doubles excitations between geometries. To 

account for this, the difference in correlation energy between geometries can be obtained 

at the level of second-order Moller-Plesset perturbation theory and then applied to the 

vertical energy gaps.32,33 

 

3.3.3 RAS(S)-SF and RAS(S,2h,2p)-SF 

Treating dynamic correlation in RAS-SF methods at the DDCI level allows for the 

following excitations beyond the active space configurations: h, p, h-p, 2h, 2p, 2h-p, and h-

2p. As stated earlier, RAS(h,p)-SF adds h and p excitations to the configurations obtained by 

CAS-CI in RAS2. By adding h-p excitations to RAS(h,p)-SF, RAS(S)-SF is obtained and 

designated with an “S” since at this point all single excitations into, out of, or around RAS2 

have been included. Note that, for spin-completeness, h-p excitations include both single 

excitations from RAS1RAS3 as well as the formally double (RAS1RAS2 + RAS2RAS3) 

excitations. With RAS(S,2h,2p)-SF, 2h and 2p excitations into and out of the active space are 

included on top of the “S” set of excitations. RAS(S)-SF and RAS(S,2h,2p)-SF wave functions 

are expressed as in Eq. 3.2 and 3.3, using the same notation as in Eq. 3.1. The configuration 

basis of all the RAS-SF methods is also graphically depicted in Figure 3.1. 

 

Ψோ஺ௌ(ௌ)ିௌி = Ψோ஺ௌ(௛,௣)ିௌி + ෍ ෍ ෍ ܿ௠
௛௣߶௠

௛௣

௠∈஼஺ௌ
(ே,ெ)

௣∈ோ஺ௌଷ௛∈ோ஺ௌଵ

 

Equation 3.2 RAS(S)-SF wave function 
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Ψோ஺ௌ(ௌ,ଶ௛,ଶ௣)ିௌி = Ψோ஺ௌ(ௌ)ିௌி + ෍ ෍ ܿ௠
௛భ௛మ߶௠

௛భ௛మ + ෍ ෍ ܿ௠
௣భ௣మ߶௠

௣భ௣మ

௠∈஼஺ௌ
(ேିଶ,ெ)

௣భ,௣మ∈ோ஺ௌଷ

  
௠∈஼஺ௌ

(ேାଶ,ெ)
௛భ,௛మ∈ோ஺ௌଵ

 

Equation 3.3 RAS(S,2h,2p)-SF wave function 

 

A method including 2h-p and h-2p excitations was not implemented, but represents 

the next set of excitations that could improve the accuracy of the RAS-SF family of methods. 

RAS(S,2h,2p)-SF already provides substantial improvements over RAS(h,p)-SF, providing 

some numerical evidence that higher excitation levels may not be necessary in many cases.  

 

 
Figure 3.1 Schematic illustrating the RAS-SF methods. The blue singles excitations involve either α or β 
electrons. Similarly, the green doubles excitations span three combinations of electron spins (two α, two β, or 
one α and one β). The red doubles are the set discarded by DDCI theory. 

 
3.3.3.1 Size-Extensivity/Intensivity 

Size-extensivity is attained when the ground state energy of two non-interacting 

fragments equals the sum of each individual fragment’s energy (EAB = EA + EB). Size-

consistency is a special case of size-extensivity that implies a correct description of 

chemical reactions such as bond dissociation.38 Previous analyses of RAS(h,p)-SF showed it 

to be size-extensive and consistent, provided that the active space was localized on a single 

fragment.14,24,25 RAS(S,2h,2p)-SF retains this property as none of the newly added 

excitations (h-p, 2h, 2p) are able to relax the ground states of non-interacting fragments.  
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A similar concept exists for excitation energies, when the addition of a non-

interacting fragment B does not affect the excitation energies of the fragment of interest A, 

termed size-intensivity.38 Following the analysis of Krylov,14 it is clear that RAS(S,2h,2p)-SF 

is size-intensive given an active space localized to fragment A. The newly added single h-p 

excitations produce size-intensive excitation energies at the configuration interaction 

singles level on the non-interacting fragment B as well. 

 

3.3.3.2 General Properties 

Like most CI methods, RAS(S,2h,2p)-SF is invariant to orbital rotations in specific 

subspaces. Specifically, RAS(S,2h,2p)-SF is invariant to orbital rotations within the RAS1, 

RAS2, and RAS3 spaces, but variant to interspace rotations. RAS(S,2h,2p)-SF computations 

solve for multiple, variational, spin-pure states in a single calculation. Spin-purity is not 

guaranteed in the coupled-cluster family of spin flip methods,13,30,31 so RAS(S,2h,2p)-SF is 

the only SF method correlated to the level of doubles that is spin-pure. 

 

3.3.3.3 Implementation 

The RAS(S,2h,2p)-SF implementation follows RAS(h,p)-SF,25 where the 

configuration basis is composed of Slater determinants, as in the work of Handy.39,40 Each 

determinant is uniquely defined by its RAS2 occupations, explicitly stored as α and β 

occupation strings, and hole/particle indices as necessary. Hamiltonian matrix construction 

utilizes the fact that determinants more than two excitations away from each other do not 

contribute to the Hamiltonian matrix, as stated by Slater’s rules.41 This allows the 

Hamiltonian to be constructed by finding all connections of a certain type - either none 

(e.g., the diagonal elements), α, β, αα, ββ, or αβ excitations - and computing their 

contribution to the Hamiltonian matrix. In this way, recognizing that certain RAS(S,2h,2p)-

SF determinants cannot be connected by certain types of excitations significantly lowers 

the computational cost.  

Storing and diagonalizing the entire Hamiltonian becomes prohibitively expensive 

for larger systems. Therefore, determination of the lowest roots of the Hamiltonian uses 

the Davidson algorithm,42,43 a subspace iterative diagonalization method. This algorithm 



 49

requires only the storage of σ vectors, which are contractions of the Hamiltonian with CI 

vectors, as opposed to the full Hamiltonian. The Davidson algorithm requires a starting 

guess for the eigenvectors of interest, which is supplied by explicit diagonalization of a 

guess Hamiltonian that has more frozen RAS1 and RAS3 orbitals, but the same RAS2 space. 

As the majority of work in Davidson is in the formation of the σ vectors, this step is 

parallelized via a shared memory scheme with OpenMP.44 Finally, two-electron integrals 

are calculated, in parallel, using the resolution of the identity (RI) approximation and are 

stored in memory for the duration of the calculation.45 

 

3.3.3.4 Wave Function Properties  

A variety of analyses are implemented for the RAS wave functions, with the first 

being the spin-expectation value, 〈ܵଶ〉. The one-electron reduced density matrix (1eRDM) 

and the transition density matrix (TDM) are also calculated, from which natural orbitals, 

dipole moments, and transition moments are obtained. Finally, a restart functionality was 

developed in which the current guess for each state is saved at the end of each iteration. 

This is especially useful for long calculations that may be interrupted or for running a 

newly developed analysis on a converged wave function from a previous calculation. 

 

3.4 Computational Details 

RAS-SF was implemented in C++ in a developer’s version of the Q-Chem 4.0 

software package. All other calculations are run with an unmodified Q-Chem 4.0 install. The 

frozen core approximation is used for all calculations. 

Methylene computations were performed for comparison with a prior FCI study, 

utilizing the same geometries.46 The same basis (TZ2P), geometries, and frozen orbitals 

(one occupied, one virtual) are used. RAS-SF calculations applied a triplet ROHF reference 

with a (2,2) active space. As TZ2P is a triple-zeta Dunning basis set augmented specifically 

for the FCI study, there is no corresponding auxiliary basis. Therefore, the large rimp2-cc-

pVQZ auxiliary basis was used to ensure accurate computation of the two-electron 

integrals. Adiabatic corrections to RAS(S,2h,2p)-SF values are minimal and do not change 

conclusions. See Appendix B.1 for discussion. 
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Tetramethyleneethane (TME) calculations were set up for comparison to the results 

of Jordan et al.,47 and utilize the same geometries. Two sets of RAS-SF calculations were 

run, one with a triplet reference and (2,2) active space, and one with a septet reference and 

(6,6) active space. A cc-pVTZ/rimp2-cc-pVTZ basis was used with no frozen virtuals for 

both sets. As in methylene, adiabatic corrections are not considered for TME. See Appendix 

B.2 for discussion.  

Binuclear transition metal complex calculations utilized the same geometries as in a 

previous SF study.28 All calculations utilized Ahlrich’s VTZ basis48 and the corresponding 

auxiliary basis.49 Active spaces and references were selected based on the total number of 

valence electrons on the transition metal centers - leading to a triplet reference with (2,2) 

active space for Complex 1 and a septet reference with a (6,6) active space for Complexes 2 

and 3. No virtuals were frozen. 

Tetracene calculations were performed on both a monomer and a dimer. The 

monomer geometry was optimized with ωB97X-D/cc-pVTZ. Single point energies were 

obtained with RI-EOM-CCSD and RAS-SF and a cc-pVTZ/rimp2-cc-pVTZ basis. RAS-SF 

calculations utilized a triplet reference and a (2,2) active space. No virtuals were frozen in 

any monomer calculation. For the dimer, the one most relevant to singlet fission was 

chosen, found in the ab plane and defined by the [a b] translation vector [-½ ½].50 The 

dimer geometry was obtained by optimizing the C-H bonds of the crystal structure51 at the 

ωB97x-D/cc-pVTZ level. RAS-SF calculations utilized a quintet reference and a (4,4) active 

space. The basis was chosen to balance cost and accuracy (Table B.5) due to the large 

system size, settling on cc-pVTZ minus f functions for carbons and cc-pVDZ for hydrogens 

(C:cc-pVTZ-f/H:cc-pVDZ) along with rimp2-cc-pVTZ. 300 virtuals were frozen, the point at 

which the energy gaps for the six lowest singlet states were converged to 0.001 eV for 

RAS(S)-SF calculations (Table B.6). A set of dimer calculations utilizing 6-31G* and 200 

frozen virtuals was also done to estimate transition dipole moments.  
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Figure 3.2 Benchmark molecules used in evaluating RAS(S,2h,2p)-SF 

 

3.5 Results and Discussion 

3.5.1 Methylene 

 Methylene is an important test system for excited state electronic structure 

methods.52 Its small size enables benchmark-level calculations,46,53–58 yet its low-lying 

excited states provide a challenging test case due to varying mixtures of static and dynamic 

correlation. The four lowest electronic states have been benchmarked at the FCI level with 

a TZ2P basis by Sherrill et al.46 The ground ( ෨ܺ 13B1) and second excited state ( ෨ܾ 11B1) are 

well described by a single electronic configuration, (1a1)2(2a1)2(1b2)2(3a1)1(1b1)1, with 

different spin couplings. Difficulties arise when tackling the first (ã 11A1) and third (ܿ̃ 21A1) 

excited states, which have significant static correlations due to contributions from 

(1a1)2(2a1)2(1b2)2(3a1)2 and (1a1)2(2a1)2(1b2)2(1b1)2 configurations. A series of RAS-SF 

computations with minimal and enlarged active spaces are herein compared to the FCI 

results (Table 3.1). Errors are reported with respect to the FCI energies, with absolute 

energies provided in the Table B1.  

 

 

 

 

 

Tetramethyleneethane (TME) 

Tetracene 

Methylene 
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Table 3.1 Errors in RAS-SF methylene calculations compared to the FCI results of Sherrill et al.  

Errors  

(2,2)   (4,4) 

RAS(h,p)-SF RAS(S)-SF RAS(S,2h,2p)-SF RAS(S,2h,2p)-SF 

Absolute Energies 
vs. FCI (mHa)a   

 ෨ܺ 134 117 109 55 
 ã 139 117 111 57 
 ෨ܾ 139 124 109 55 
 ܿ̃ 154 153 110 54 

  
Adiabatic Gap 
vs. FCI (eV)a   

෨ܺ  ã 0.138 0.010 0.063 0.062 
෨ܺ  ෨ܾ 0.151 0.189 0.002 0.010 
෨ܺ  ܿ̃ 0.552 0.996 0.024 0.027 

a FCI results from Sherrill et al46 
 

As seen in the upper part of Table 3.1, enlarging the configuration space provides a 

variational pathway to FCI total energies, but sizable differences in absolute energies are 

still observed. This is expected given the excitations and active space sizes of the RAS-SF 

methods, which generate CI spaces much smaller than that of FCI. RAS-SF methods are 

expected to obtain much lower errors for relative energy levels, i.e. the energy gaps, even 

with their small configuration spaces. Indeed, adiabatic gap errors are much lower for all 

SF methods, with RAS(S,2h,2p)-SF performing the best with an order of magnitude 

reduction in error compared to RAS(h,p)-SF. The effect of enlarging the active space to 

(4,4) at the RAS(S,2h,2p)-SF level was also investigated, but negligible changes in adiabatic 

gap errors were found. The triplet reference minimal active space is therefore adequate for 

accurately capturing the adiabatic energy gaps. 

The variance in the ෨ܺ  ܿ̃ (i.e. ground to 3rd excited state) gap at different levels of 

theory deserves further discussion. Table 3.1 shows that RAS(S)-SF almost doubles the 

error (to roughly 1 eV) with respect to RAS(h,p)-SF. RAS(S,2h,2p)-SF reduces the error to a 

respectable 0.024 eV. Closer inspection of each excitation levels’ contributions to the wave 

functions sheds some light on this peculiar behavior.  

The additional h-p excitations of RAS(S)-SF significantly stabilize ෨ܺ, contributing 

1.4% to its wave function, but only marginally stabilize ܿ̃, contributing only 0.07% to its 
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wave function. The ෨ܺ  ܿ̃ gap therefore grows larger in comparison to RAS(h,p)-SF. Moving 

to RAS(S,2h,2p)-SF, the doubles excitations contribute only 0.42% to ෨ܺ, but significantly 

stabilize ܿ̃ with a contribution of 2.87% to its wave function. Thus, h-p excitations stabilize 

෨ܺ  while doubles excitations stabilize ܿ̃ , requiring RAS(S,2h,2p)-SF for a balanced 

description of the ෨ܺ  ܿ̃ gap. This demonstrates that doubles excitations can be vital to the 

accurate description of gaps between low-lying states, especially when those states have 

diverse electronic character. 

 

3.5.2 Tetramethyleneethane (TME) 

 TME is another important benchmark system and the simplest disjoint biradical. 

Disjoint biradicals exist when the lowest singlet and triplet states are close in energy due to 

minimal interaction between the two radical electrons. Determination of the ground state 

of TME is further complicated by the fact that the molecule easily twists around the 

bridging C-C bond, necessitating scans along this twisting coordinate to determine the 

lowest energy geometry and state. 

 A recent study by Jordan et al.47 utilized diffusion Monte Carlo (DMC) and a 

truncated cc-pV5Z basis coupled with a pseudopotential to create a torsional potential for 

TME. This potential scan showed the singlet to be the ground state at all angles, with a 

slight maximum in the singlet potential at 45o. The study also reported torsional potentials 

with CASPT2/cc-pVTZ, finding that a (6,6) active space was necessary to generate 

potentials qualitatively similar to DMC. The DMC and CASPT2(6,6) potentials are 

reproduced here for comparison (Figure 3.3a). Using these previous findings as a guide, SF 

calculations with (2,2) and (6,6), active spaces, with triplet and septet references 

respectively, were run.  

 The results show that RAS(S,2h,2p)-SF provides a qualitatively improved picture 

over RAS(h,p)-SF with the minimal (2,2) active space. Specifically, RAS(h,p)-SF has the 

singlet and triplet surfaces crossing at roughly 45o torsion (Figure 3.3b), which is 

qualitatively incorrect compared to DMC results (Figure 3.3a). Including higher excitations 

at either the RAS(S)-SF or RAS(S,2h,2p)-SF levels corrects the qualitative picture (Figure 

3.3b), removing the state crossing. These RAS(S,2h,2p)-SF (2,2) potentials qualitatively 
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match those of a prior DDCI study using a CAS(2,2) active space,59 although a direct 

comparison cannot be made due to the use of different geometries.  

Moving to the enlarged (6,6) active space improves the qualitative RAS(h,p)-SF 

potential significantly. The incorrect state crossing is removed and it is missing only the 

singlet maximum at 45o. The effect of the (6,6) space on RAS(S,2h,2p)-SF’s potential is more 

nuanced. The singlet maximum at 45o is recovered, but the triplet surface becomes too high 

in energy at angles past about 60o. This discrepancy with the benchmark potentials is most 

likely due to a basis set superposition error, as there is more overlap at the planar 

geometry versus twisted ones, and the RAS-SF calculations use a triple-zeta basis 

compared to Jordan’s pentuple-zeta basis. Finally, the quantitative errors at critical 

torsions in Table 3.2 reveal that an enlarged active space noticeably increases the accuracy 

of RAS(h,p)-SF calculations, while its effect on RAS(S,2h,2p)-SF values is much reduced. 
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b) 

 

c)  

 
Figure 3.3 Torsional potentials of TME. Each level of theory has two potentials, with the lower one at 0o 
always belonging to the singlet. All potentials are zeroed to their triplet energy at 0o. a) Torsional potentials 
from Jordan et al.,47 created at the DMC and CASPT2(6,6) levels with cc-pV5Z and cc-pVQZ basis sets 
respectively. b) Torsional potentials from RAS-SF (2,2) calculations. c) Torsional potentials from RAS-SF (6,6) 
calculations. 

 

Table 3.2 Singlet-triplet energy gaps at critical torsional points of 0, 45 and 90 degrees for 
tetramethyleneethane 

ΔES0T1 
(eV) DMCa 

(2,2) (6,6) 

RAS(h,p)-SF 
RAS(S)-

SF 
RAS(S,2h,2p)-

SF 
RAS(h,p)-

SF 
RAS(S)-

SF 
RAS(S,2h,2p)-

SF 
0o -0.171 -0.111 -0.141 -0.164 -0.180 -0.184 -0.182 

45o -0.023 0.004 -0.036 -0.038 -0.057 -0.050 -0.043 
90o -0.094 -0.115 -0.122 -0.149 -0.106 -0.132 -0.139 

a  Values from Jordan et al.47 
 

The TME results show that RAS(S,2h,2p)-SF improves upon RAS(h,p)-SF, even 

correcting qualitative inaccuracies when minimal active spaces are used. Furthermore, the 
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negligible improvement in values with enlarged active spaces indicates that RAS(S,2h,2p)-

SF can provide very accurate potential energy surfaces even with a minimal active space, 

which is important for computational tractability in larger systems. 

 

3.5.3 Exchange Coupling in Binuclear Transition Metal Complexes 

 Single molecule magnetic complexes have interesting applications in spintronics 

and quantum computing. These are often composed of multiple metal atoms held together 

by a ligand framework, such that the magnetic properties result from exchange interactions 

between the neighboring spins of the metal centers. These properties can be modeled by 

the magnetic exchange coupling, J, which can be obtained experimentally or 

computationally. Computationally, J is a parameter in the Heisenberg-Dirac-Van Vleck 

(HDVV) Hamiltonian,60 which takes the form of Eq. 3.4.  Here, J is the exchange coupling 

between magnetic sites i and j, and Si / Sj are spin operators for sites i / j. As J is the only 

interaction term in the HDVV Hamiltonian, gaps between spin states are dependent only on 

J, which allows one to deduce J from electronic structure calculations and the Landé 

interval rule61 (Eq. 3.5). 

 

෡ு஽௏௏ܪ = −2 ෍ ௜௝ܬ ௝ݏ௜̂ݏ̂

௜௝

 

Equation 3.4 Heisenberg-Dirac-Van Vleck Hamiltonian operator 

 

(ܵ)ܧ − ܵ)ܧ − 1) =  ܬ2ܵ− 

Equation 3.5 Magnetic exchange coupling for systems described by HDVV Hamiltonian 

 

 Two dichromium complexes, for which existing experimental values were available, 

have been studied for their magnetic properties.26 At the RAS(h,p)-SF level of the theory, 

computed J’s were of qualitative accuracy and captured the correct sign, but their 

magnitudes were much lower than experimental values. Increasing the active space led to 

minor improvements, and it was posited that inclusion of more dynamic correlation would 

correct the coupling even further. Indeed, SF-CAS(S)n calculations by Mayhall et al.28, where 
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all single excitations are perturbatively included, on these same complexes gave rise to J 

values markedly closer to experimental values (Table 3.3). The inclusion of double’s 

excitations may further increase the accuracy of J values determined by SF calculations. The 

difference in values between perturbative and explicit inclusion of single excitations is also 

of interest. A divanadium complex was also examined since prior RAS(h,p)-SF calculations 

gave a qualitatively incorrect J.28 

 

 
Figure 3.4 Three transition metal complexes for which J values were calculated. Complex 1 has one unpaired 
electron on each V. Since there are two V atoms, SF calculations were run with a (2,2) active space and a 
triplet reference. Complexes 2 and 3 have three electrons on each Cr, leading to a (6,6)/septet SF calculation. 

 
For RAS(S,2h,2p)-SF calculations, the high-spin references and active spaces were 

selected based on the total number of valence electrons of the transition metal centers. This 

lead to assignments of Complex 1: (2,2)/triplet, Complex 2: (6,6)/septet, and Complex 3: 

(6,6)/septet. The results are compared to experiment as well as the SF-CAS(S)n calculations 

of Mayhall et al.28 in Table 3.3. Ahlrich’s VTZ basis48,49 and the same geometries as in 

Mayhall et al. were used to allow direct comparison.  

 

Table 3.3 J’s (cm-1) determined by SF calculations for a variety of transition metal complexes. 

 J in cm-1 Complex 1 Complex 2 Complex 3 
SF-CAS(S)1a,b -40.9 -150.1 -9.4 
SF-CAS(S)a -22.5 -115.8 -7.7 
RAS(h,p)-SFa 1.1 -63.6 -3.8 
RAS(S)-SF -30.1 -124.7 -8.1 
RAS(S,2h,2p)-
SF -33.9 -134.1 -8.2 
  
Exp. -107c -225d -15.8e 
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 a from Mayhall et al.28 
b SF-CAS(S)1 values utilize the 500 mH level shift recommended in Mayhall et al.28  
c Reference 93 
d Reference 94 
e Reference 95 
 

The results in Table 3.3 indicate that the missing singles excitations (h-p), included 

either perturbatively or explicitly, correct the J value the most. Although SF-CAS(S)1 

performs better than RAS(S)-SF for all complexes, it should be noted that SF-CAS(S)1 

results are dependent on an empirical level-shift parameter. SF-CAS(S), utilizing no 

empirical level-shift, performs slightly worse than RAS(S)-SF for all complexes. Thus, 

among the methods that include only up to h-p excitations, RAS(S)-SF provides the most 

accurate J values without the use of empirical parameters. Adding further excitations in the 

RAS(S,2h,2p)-SF method provides minimal corrections.  

Although RAS(S)-SF and RAS(S,2h,2p)-SF J values are markedly improved over 

RAS(h,p)-SF’s with errors ranging from 8 to 100 cm-1, there is still a rather large error 

relative to experimental J values, from 33 to 50%. This behavior is due to the missing 2h-p 

and h-2p excitations, which provide a non-negligible contribution to the magnetic exchange 

value in both antiferromagnetic and ferromagnetic complexes.62,63 Thus, RAS(S)-SF and 

RAS(S,2h,2p)-SF are shown to provide J values that are improved over RAS(h,p)-SF but 

remain only semiquantitative. 

 

3.5.4 Tetracene Singlet Fission 

Next-generation organic solar cells may be able to use singlet fission, a multi-exciton 

generation process,64,65 to increase their maximum solar conversion efficiency from 33% to 

45%.66,67 RAS(h,p)-SF is well suited to study singlet fission due to its ability to tackle large 

systems and describe the quadruple radicaloid 1(TT) state that represents singlet 

recoupling of two triplet excitons. Indeed, RAS(h,p)-SF has been used to highlight the 

importance of vibronic coupling in pentacene and tetracene singlet fission,68–70 estimate 

non-adiabatic couplings,71–73 and develop models for the dynamics of fission.74 One 

possible deficiency of these studies is that RAS(h,p)-SF only qualitatively describes the S1 

and T1 states. These errors result from RAS(h,p)-SF’s limited treatment of dynamic 

correlation, and are typically corrected for with an energy shift to match experimental 
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values. Below, the effect of correlation on excitonic and multi-excitonic states in RAS-SF 

computations on the tetracene singlet fission system is investigated and shown to be 

important for the description of these states.  

 

Table 3.4 Tetracene monomer and dimer calculations. For dimer results, S1 and S2 refer to the first and 
second excited singlets that are not the 1(TT) state. 

Tetracene Monomer 
ΔES0X (eV) EOM-CCSD SOS-CIS(D) RAS(h,p)-SF RAS(S)-SF RAS(S,2h,2p)-SF 

S1 3.336 3.086 4.022 3.702 3.506 
T1 1.662 1.726 1.935 1.858 2.033 

Tetracene Dimer 
ΔES0X (eV) EOM-CCSDb SOS-CIS(D) RAS(h,p)-SF RAS(S)-SF RAS(S,2h,2p)-SF 

1(TT) - -a 3.714 3.821 4.122 
S1 - 2.953 4.038 3.773 3.624 
S2 - 3.064 4.162 3.921 3.761 
T1 - 1.619 1.787 1.861 1.982 

5(TT) = Q - -a 3.741 3.844 4.085 
a SOS-CIS(D) can only compute single electron excited states. 
b EOM-CCSD calculations on the tetracene dimer with the selected C:cc-pVTZ-f/H:cc-pVDZ  basis are not 
tractable 
 

3.5.4.1 Tetracene State Energies 

 The key intermediate of fission, consisting of two triplets coupled into a singlet 

1(TT) state, requires a tetracene dimer as a minimal model system. Previous RAS-SF studies 

have suggested that the energy difference between 5(TT) and 1(TT) can be used to estimate 

the rate of 1(TT)2T1 evolution, and thus the overall rate of singlet fission.71,74,75 This 

splitting can be quite small, a few tens of meV in tetracene dimers,74–76 and so the effect of 

dynamic correlation on this quantity could be significant. To obtain quantitative results, the 

triple-zeta, polarized, cc-pVTZ basis (minus f functions) for carbon and double-zeta, 

polarized cc-pVDZ for hydrogen (C:cc-pVTZ-f/H:cc-pVDZ) were chosen based on a series of 

monomer calculations (Table B.5). These monomer computations showed improved 

excitation energies for S1 and minor degradations in the T1 excitation energies as 

correlation was added when compared to EOM-CCSD77 level calculations (Table 3.4). The 

dimer exciton energies, compared to SOS-CIS(D),78  similarly improve with increased 

correlation. SOS-CIS(D) values are used as dimer benchmarks because the large size of the 

tetracene dimer precludes the use of higher level methods. Neither EOM-CCSD or CIS(D) 



 60

methods are suitable for describing multi-exciton states and so are not useful for 

describing the 1(TT) state.  

 RAS-SF methods are able to describe multi-exciton states, so the computed 1(TT)-

5(TT) splitting can be used as an estimate of the 1(TT)-2T1 energy gap (monoexcitonic T1 

energies, unfortunately, are semiquantitative (Table 3.4)). This estimate is justified as long 

as the 1(TT)-5(TT) splitting is accurately calculated and 5(TT) represents independent 

triplets. The first condition is met because the ROHF quintet reference of RAS-SF provides 

an excellent description of TT states, and the state similarities allow for significant error 

cancellations. For the second condition, 5(TT) is a good approximation to 2T1 due to its 

multi-excitonic nature, which is clearly indicated by unit frontier natural orbital 

occupations. The use of 1(TT)-5(TT) splitting to approximate the 1(TT)-2T1 energy gap has 

also been validated by Krylov et al., who demonstrated that a kinetic model utilizing the 

1(TT)-5(TT) splitting is able to capture trends of measured singlet fission yields.74 To 

illustrate that this estimate remains suitable at the RAS(S,2h,2p)-SF level, as well as to 

rationalize changes in the 1(TT)-5(TT) splitting, the TT states of the tetracene dimer are 

examined at various levels of sophistication.  

Starting with a separated tetracene dimer, pure multi-exciton states are constructed 

solely from the doubly-excited configurations of a (4,4) active space. The constraint to 

doubly-excited configurations prevents interaction with single-exciton states, resulting in 

pure 1(TT) and 5(TT) wave functions. With separated, non-interacting monomers, pure 

1(TT) and 5(TT) are degenerate and are exactly equal in energy to two independent T1 

excitons. When the monomers interact in the crystalline dimer geometry, 5(TT) drops 

below 1(TT) by 0.006 eV (Table 3.5) due to exchange interactions.64,76  

 

Table 3.5 Absolute energies (in eV) of pure multi-exciton states at separated and crystalline tetracene dimer 
geometries. Zero energy is the energy of the degenerate TT states at the separated geometry. Pure multi-
exciton states were obtained by restricting the basis to the doubly excited configurations of a (4,4) active 
space.  

Dimer Orientation Pure 1(TT) Pure 5(TT) 
Separated 0.000 0.000 
Crystalline 0.179 0.173 
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Extending the level of correlation to RAS(h,p)-SF allows the pure 1(TT) to interact 

with nearby single-exciton states. This mixing leads to the loss of 1(TT)’s pure multi-

excitonic character,71,73 and overall lowers 1(TT)’s total energy. 1(TT) remains 

predominantly multi-excitonic, however, and is still identifiable via the natural orbital 

occupations (Table 3.6), which indicate multi-electron excitation character. The ground 

quintet, 5(TT), described by the ROHF quintet reference, cannot be further improved by h 

or p configurations, and thus remains purely multi-excitonic. These two factors result in 

E(1(TT)) < E(5(TT)) at the RAS(h,p)-SF level (Table 3.4 and Figure 3.5).  

 

Table 3.6 Natural orbital occupancies of the 1(TT) and 5(TT) states of the tetracene dimer. A pure multi-
exciton state will have perfectly unit occupancies, as is the case for 5(TT) in RAS(h,p)-SF. 

 RAS(h,p)-SF RAS(S,2h,2p)-SF 
Natural 
Orbitals 

1(TT) 5(TT) 1(TT) 5(TT) 

LUNO+1 0.774 1.000 0.420 0.965 
LUNO 0.991 1.000 0.948 0.968 
HONO 1.009 1.000 1.038 1.032 
HONO-1 1.226 1.000 1.593 1.036 

 

Moving to the RAS(S,2h,2p)-SF level incorporates dynamic correlation into TT state 

descriptions. This results in a more accurate description of 1(TT)’s interaction with nearby 

singlets, and also correlates 5(TT) past the HF level. At this level, deviations of 5(TT) from a 

purely double T1 state may occur due to dynamic correlation and mixing of 5(TT) with 

higher quintets. The latter, however, is expected to be a small effect since 5(TT) is the 

ground quintet and is well-separated from excited quintets (the next quintet is 3.0 eV away 

in the tetracene dimer geometry). Consequently, changes in 5(TT) are due primarily to the 

addition of dynamic correlation beyond the HF level.  

RAS(S,2h,2p)-SF computations noticeably alter the characters of the TT states 

compared to RAS(h,p)-SF (Table 3.6). 1(TT) shows a further reduction in multi-exciton 

character, indicating strong mixing of 1(TT) with nearby mono-excited singlet states. On the 

other hand, 5(TT) natural orbital occupancies change only slightly (less than 0.05 e-) under 

the effect of dynamic correlation. Therefore, the 1(TT)-5(TT) approximation remains a 

useful metric at the RAS(S,2h,2p)-SF level. 
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Computations at the RAS(h,p)-SF level predict an energy barrier for singlet fission’s 

1(TT)2T1 process, placing the 1(TT) state below 5(TT) by 0.1-0.3 eV (Table 3.4 and 

previous computations74–76). The addition of doubles excitations at the RAS(S,2h,2p)-SF 

level, however, provides more correlation energy to 5(TT) than 1(TT) and reverses the state 

ordering. With this additional correlation, 1(TT) lies above 5(TT) by 0.037 eV (Figure 3.5). 

When viewing the 5(TT) energy as a proxy for E(2T1), this result indicates that the 1(TT) 

state is unbound, meaning it has a driving force instead of a barrier towards evolution into 

two independent triplets.  

 

 
Figure 3.5 1(TT) and 5(TT) state ordering in crystalline tetracene dimer calculations at varying levels of 
theory. State characters are represented pictorially by electron occupations of the first four frontier orbitals.  

 

The 1(TT)-5(TT) energy difference also impacts the likelihood of 5(TT) population. 

Specifically, the small splitting computed in this work and by Krylov et al.75 raises as a 

possibility via 1(TT)-5(TT) mixing. Indeed, a recent electron spin resonance (ESR) study 

unambiguously identified a 5(TT) signal in a covalent dimer of pentacene, where the 1(TT)-

5(TT) splitting was estimated to be 80 μeV.79 The small 1(TT)-5(TT) splitting and downhill 

location of 5(TT) relative to 1(TT) computed by RAS(S,2h,2p)-SF suggests that 5(TT) will 

also be populated in tetracene crystals. The possibility of 5(TT) population, and its 

influence on singlet fission dynamics should therefore be carefully evaluated in future 

studies. 

The above RAS(S,2h,2p)-SF results also offer insight into the ability of tetracene to 

produce free triplets via singlet fission despite apparently disobeying the energy gap rule, 

E(S1) ≥ 2E(T1).64,74,80,81 The strong mixing of 1(TT) with nearby singlets means that 1(TT) 

takes on the delocalized nature of singlet excitons.69,82 Previous studies showing that 
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entropic considerations make tetracene singlet fission exoergic (ΔG < 0)74,81 assumed 1(TT) 

to be localized to neighboring monomers. Replacing this assumption with the more 

delocalized 1(TT) predicted by RAS(S,2h,2p)-SF results in a greater free energy difference 

for the 1(TT)2T1 step, as the entropic contribution to the free energy grows due to an 

increase in sites on which the two independent triplets may be generated.74 Furthermore, 

the picture of a delocalized 1(TT) agrees well with experiments showing cooperative singlet 

and triplet diffusion in tetracene,83 which would be expected as 1(TT) and S1 species 

rapidly interconvert. The increased free energy difference combined with the unbound 

nature of the 1(TT) state estimated by the 1(TT)-5(TT) splitting suggests that 1(TT), once 

populated, will readily evolve into two independent triplets.  

 

3.5.4.2 Dimer Transition Dipole Moments 

The 1(TT) spectrum has never before been simulated using electronic structure 

methods, making it an interesting target for correlated RAS-SF approaches. Experimentally, 

tetracene solids have been probed with transient absorption (TA) for evidence of the 

formation of 1(TT) and independent triplets.84–86 It is generally difficult, however, to 

directly monitor the 1(TT) state due to overlapping S1Sn, T1Tn, ground state bleach, and 

stimulated emission signals. Though difficult, these assignments have been made for a few 

systems based on comparisons between short and long time-delayed spectra.75,87,88 For the 

present study, transition dipole moments (TDM) have been implemented in the RAS-SF 

family of methods, enabling examination of the multi-excitonic 1(TT) state spectrum. These 

excited state absorption signatures are herein compared to S1 and T1 TDMs to help identify 

peaks in the tetracene spectrum. The wide span of transition energies in experimental TA 

spectrums, 400-800 nm or 1.5-3.0 eV, necessitates calculating a large number of states, so 

the modest 6-31G* basis is used for RAS(S,2h,2p)-SF TDM computations. Table 3.7 

tabulates the strongest transitions, with a more complete tabulation found in the 

publication corresponding to this Chapter.89 
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Table 3.7 The strongest transitions calculated from the tetracene dimer for the states of interest. 

S1 1(TT) T1 
Oscillator 
Strength 

Transition 
(eV/nm) 

Oscillator 
Strength 

Transition 
(eV/nm) 

Oscillator 
Strength 

Transition 
(eV/nm) 

0.07 1.16/1069 0.10 2.62/473 0.08 2.05/605 
0.15 2.98/416 0.22 2.86/434 0.07 2.18/569 

0.18 2.96/419 
  

 According to RAS(S,2h,2p)-SF, the strongest transitions from S1, 1(TT) and T1 take 

place in the congested 400-550 nm spectral region. This mimics experimental results, 

where signal overlap in this region has been frequently observed.84–86 Clearer indications 

of features correlated with S1 and T1 population dynamics have been experimentally 

identified at longer wavelengths for S1 (680 nm) and T1 (~800 nm) states.83,85,86 These 

features, however, are broad with low intensities86 and so it may be difficult to find a single 

transition that correlates with them. Indeed, while RAS(S,2h,2p)-SF results89 do show 

transitions near these lower energies, none particularly stand out in transition strength, 

making a clear assignment difficult. Overall, RAS(S,2h,2p)-SF qualitatively describes the TA 

spectra of tetracene when the overall oscillator strengths and absorption wave lengths are 

considered. 

 

Table 3.8 Components along the crystallographic axes of the TDMs for the transitions probed by polarized 
transient absorption experiments (S0S1, S1Sn, T1T2) and the strongest transitions 

  
TDM Components (Debye) 

a b c 
S0  S1 at 3.84 eV -0.05 -0.44 -0.05 
T1  T2 at  2.05 eV 0.34 -0.35 0.00 
S1  Sn at 2.98 eV 0.21 0.36 -0.27 
1(TT)  Sn at 2.62 eV -0.29 0.40 0.00 
1(TT)  Sn at 2.86 eV -0.42 0.53 -0.04 
T1  Tn at 2.96 eV -0.42 0.41 0.00 

 

 Further insight into the signature of the 1(TT) state can be obtained by examining 

individual TDM components. In general, there is some dispute as to whether TA signals of 

the 1(TT) state will resemble T1 signals or not, with either view having some experimental 

support.75,87,88 RAS(S,2h,2p)-SF results (vide supra) suggest that mixing of the pure, multi-
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excitonic 1(TT) with singly excited configurations could significantly affect the triplet pair 

structure of the resulting state. Computed TDM orientations (Table 3.8) match well with 

polarized TA experiments which show that the S0S1 TDM is strongly aligned along the b 

axis85,90 and that T1T2 TDMs have a larger component along the a-axis than S1Sn 

TDMs.83,91 More interestingly, the components of the strongest transitions of each state 

show a strong resemblance between the 1(TT) and T1 TDMs, which have strong a and b 

components and a negligible c component, in contrast to S1Sn’s sizeable c-component. 

These signals cannot be fully separated in polarized TA spectra, however, as all the excited 

state transitions have considerable a and b components. The similarity of 1(TT) and T1 

TDMs indicate that TA features corresponding to 1(TT) in tetracene, if observed, should be 

similar to T1 absorption features, in agreement with recent TA studies of concentrated 

TIPS-tetracene solutions87 and pentacene aggregates.88 

 

3.5.5 Timings 

One of the main advantages of RAS(h,p)-SF is its relatively low cost, which enables it 

to tackle large systems such as a tetracene dimer. Therefore, timings of representative 

calculations are given in Table 3.9 to assess the impact of adding doubles excitations to the 

RAS-SF family of methods. These timings relate solely to the RAS-SF portion of the 

computations, and do not include the SCF or integral calculations that are required as a 

preliminary step for any correlated method.  

 

Table 3.9 Representative timings of RAS-SF calculations. 

System Method 
Active Space/ 
# of States Determinants Cores 

Wall Time 
(min)a 

TME (0o 
geometry) 

RAS(h,p) (2,2)/4 1 140 4 1 
RAS(S) (2,2)/4 41 490 4 3 
RAS(S,2h,2p) (2,2)/4 114 076 4 44 

TM 
Complex 2 

RAS(h,p) (6,6)/3 182 800 20 19 
RAS(S) (6,6)/3 16 562 800 20 1 301 
RAS(S,2h,2p) (6,6)/3 39 368 080 20 6 859 

Tc Dimer 

RAS(h,p) (4,4)/3 31 620 20 4 
RAS(S) (4,4)/3 4 943 748 20 849 
RAS(S,2h,2p) (4,4)/3 12 386 800 20 5 509 
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a Calculations are parallelized over the active space, making larger active spaces more efficient when enough 
cores are available. This effect is seen in the comparison of TM Complex 2 and Tc Dimer wall times. 

 

Though RAS(S,2h,2p) computational times become relatively long compared to 

RAS(h,p), no other multi-reference method, such as DMRG or stochastic CASSCF, have yet 

been applied to systems are large and asymmetric as a tetracene dimer. Although DMRG 

has been applied to the polyacene series,92 a tetracene dimer loses the quasi-one-

dimensionality found in the linear polyacene monomers, making DMRG not obviously 

applicable. Alternatively, stochastic CASSCF requires many processors to achieve fast 

speeds.7 In contrast, the reported computations utilized modest computational resources, 

with each calculation run on a single node. Finally, the RAS(S)-SF and RAS(S,2h,2p)-SF 

methods have yet to be fully optimized, so there is room for further improvement in these 

timings. 

 

3.6 Conclusion 

 In this work, RAS(S,2h,2p)-SF, a correlated spin flip approach including up to 

doubles excitations, was introduced, implemented, and tested. RAS(S)-SF, which added a 

missing class of singles excitations to RAS(h,p)-SF, was also developed. By comparing these 

three methods in a series of benchmarks, the effect of adding dynamic correlation to SF 

methods has been revealed. The variety of systems, including small, strongly correlated 

systems, larger transition metal complexes, and a model tetracene singlet fission system, 

indicated that adding correlation beyond the level of singles provides a systematic 

improvement over previous spin flip methods at modest increased cost. 

 RAS(S,2h,2p)-SF calculations on small systems with strongly correlated electronic 

states showed a significant improvement over RAS(h,p)-SF, obtaining quantitative results 

even with minimal active spaces. Investigations of three binuclear transition metal 

complexes produced more quantitative spin couplings with increasing correlation, with the 

majority of the correction obtained at the RAS(S)-SF level. Finally, RAS(S,2h,2p)-SF was 

applied to tetracene dimers, whose large size makes correlated calculations difficult to 

achieve with standard methods. RAS(S,2h,2p)-SF significantly corrected the energies of 

single-exciton states, though quantitative accuracy was not reached with a minimal active 
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space. Overall, the additional electronic configurations included in RAS(S,2h,2p)-SF lead to 

more quantitative descriptions of a variety of difficult to simulate excited states. 

The tetracene dimer calculations additionally provided new insights into this classic 

singlet fission system. Correlation of the 5(TT) state at the RAS(S,2h,2p)-SF level reversed 

the typical 1(TT) < 5(TT) state ordering seen in previous RAS(h,p)-SF calculations, resulting 

in the interpretation of 1(TT) as being relatively mobile, and not easily localized to a 

tetracene dimer. Furthermore, the first transition dipole moment calculations of a multi-

exciton state in a tetracene dimer are reported. The TDMs qualitatively described 

experimental tetracene transient absorption spectra and predicted a strong similarity 

between the TDMs of the strongest 1(TT) and T1 transitions. 

 The above findings indicate that the addition of dynamic correlation is important to 

capturing key details that may otherwise be missed in lower levels of theory. 

Unfortunately, the findings also highlight the cost of including dynamic correlation with an 

enlarged CI space. Even excluding certain determinants as in DDCI, calculations on the 

tetracene dimer had to be carefully set up to enable calculations to be run on current 

computational resources. Instead of including entire classes of determinants, in which 

there are sure to be determinants that affect the energy insignificantly, one may instead 

endeavor to enlarge the CI space with only the significant configurations. Strategies for 

intelligently expanding the CI space and reducing diagonalization costs are explored in the 

following Chapters. 
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Chapter 4: Iterative Submatrix Diagonalization for Large Configuration 

Interaction Problems 

 

This Chapter largely based upon published work:  
Reproduced with permission from Chien, A. D. & Zimmerman, P. M. Mol. Phys. 8976, (2017) 

 

4.1 Abstract 

The Davidson method has been highly successful for solving for eigenpairs of 

the large matrices that are common in quantum chemical simulations. Electronic 

structure simulations, however, can still easily generate matrices that are too large 

for current computational resources to handle. Therefore, many strategies have 

arisen to obtain eigenpairs of sufficient accuracy without considering the full 

Hamiltonian matrix. This Chapter introduces one such strategy by creating a 

systematic series of submatrix approximations to the full matrix using natural 

orbitals. By solving for eigenpairs in this series, the eigenvalue accuracy can be 

gradually increased until a convergence threshold is reached. Importantly, this allows 

the series to terminate without ever reaching the full matrix, resulting in lower 

computational costs and reduced memory demands. Application of the method to the 

full configuration interaction problem for ground states, excited states, and potential 

energy scans of various systems shows that the iterative submatrix diagonalization 

method can systematically control eigenvalue errors and provide substantial cost-

savings. This method is therefore expected to be highly useful for large-scale 

diagonalization problems in electronic structure theory. 
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4.2 Introduction 

One of the main steps in a CI calculation is the diagonalization of a Hamiltonian with 

dimension the size of the chosen CI space. As seen in Chapter 3, CI spaces in approximate 

methods can easily reach dimensions of 107 or larger, pushing the limits of current 

computational hardware. Tackling even matrices of this size would be impossible if not for 

the innovative diagonalization algorithms termed Davidson and Davidson-Liu (hereafter, 

“Davidson” is used to refer to both algorithms).1,2,3 By explicitly focusing on the lowest few 

eigenpairs, the Davidson algorithm enables treatment of relatively large Hamiltonians, 

especially when combined with use of matrix-vector products, called σ vectors, which can 

be stored instead of the full Hamiltonian 4-11. The great success of this algorithm can be 

traced to its ability to quickly converge when matrices are diagonally dominant, which is a 

common feature of quantum chemical Hamiltonians. This structural characteristic, 

however, is not the only feature that may be exploited for systematic, yet rapid 

convergence. By rearranging the Hamiltonian using transformations that do not affect the 

eigenvalues, faster convergence and reduced costs may be achieved. One can also focus on 

reducing the amount of necessary matrix-vector products, called σ vectors, which are the 

most computationally expensive step of the procedure. Successful elimination of any 

number of large matrix σ-vector formation steps may significantly reduce the overall cost 

of Davidson diagonalization. Such strategies will be highly useful in alleviating the rapidly 

increasing cost of electronic structure simulations with increasing level of theory and 

system size. 

One recent method that utilizes these strategies is incremental full configuration 

interaction (iFCI), which splits up the FCI problem into n-body correlation terms, enabling 

calculation of FCI quality energies for systems as large as divinylhexatriene.12,13,14 iFCI is 

able to tackle such large systems due to convergence of the n-body correlation terms at low 

n, which is facilitated by the use of localized occupied orbitals. Even at low n, however, 

there are a significant number of challenging diagonalization problems to be solved. 

Therefore, cutting costs for each n-body Hamiltonian is still important, and this is handled 

in iFCI by the method described in this article.  
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In CI electronic structure theories, freezing orbitals is a common cost-saving 

strategy that places determinants in the Hamiltonian from a subspace of the full molecular 

orbital set, reducing the effective dimensionality.15 For instance, the frozen core 

approximation freezes electrons in core orbitals with respect to the excitation operators of 

the Hamiltonian. Similarly, a frozen virtual approximation can be used. However, frozen 

virtuals result in eigenvalue errors that are uncontrolled when canonical molecular orbitals 

(CMOs) are used, as there is no guarantee that higher-lying orbitals are less important to 

states of interest. Instead, one can use approximate natural orbitals (NOs), where freezing 

the low occupancy orbitals results in errors that grow with the magnitude of the occupancy 

cutoff.16-27 Freezing NOs with an occupancy cutoff, however, does not necessarily provide 

systematic control over the eigenvalue errors because the cutoff parameter introduces a 

geometry-dependent error.26,27 To obtain robust control over eigenvalue errors with frozen 

virtuals, one must turn to new strategies. 

In this work, we investigate the error control and cost-savings properties of a new 

method, first appearing in iFCI, for determining CI wave functions to within a specified 

eigenvalue accuracy. The method exploits the underlying structure of the CI Hamiltonian 

when expressed in the basis of NOs, which divide up the full matrix into a systematically 

convergent series of submatrices. The method will therefore be called Iterative Submatrix 

Diagonalization (ISD), which can also be used alongside perturbation theory28-31 as ISD+PT. 

Importantly, the method requires no new parameters, and a standard energy threshold is 

reached at convergence. Tests on diagonalization of large Hamiltonians from FCI7-11, 32-35 

with more than 1026 elements, will serve to compare ISD to the standard Davidson 

algorithm. These tests will show that ISD is particularly effective at computing accurate 

ground state energies, potentials along multiple-bond dissociation coordinates, and singlet-

triplet gaps at a fraction of the cost of FCI and with error control. 

 The article is organized as follows: the Background section describes the Davidson 

algorithm, natural orbital, and perturbation theory procedures in the context of CI. The 

Theory section introduces the ISD and ISD+PT algorithms, which is benchmarked in the 

Results section for ground and excited states as well as potential energy scans. 
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4.3 Background 

4.3.1 Davidson Algorithm 

 In CI computations the Hamiltonian can easily contain 107 or more rows and 

columns, making storage and full diagonalization of this matrix infeasible.15 The Davidson 

and Davidson-Liu algorithms, which solve for single and multiple eigenpairs of a 

Hamiltonian respectively, can be used without explicit construction of the matrix. To see 

how this works, consider the Hamiltonian expressed in a basis of determinants Φ௣, Eq. 4.1, 

where the eigenvectors of this matrix are wave functions. The energy is as in Equation 4.3 

for any vector of normalized CI coefficients, c. Only one or a few of the lowest eigenvalues 

are required in typical situations. This eigenvalue structure suggests that matrix-vector 

products of the form of Eq. 4.4 can be constructed and stored (compactly) as vectors, so E 

can be rewritten as in Eq. 4.5. 

 

௣௤ܪ = ൻΦ௣หܪหΦ௤ൿ 

Equation 4.1 Hamiltonian matrix elements in the basis of determinants 

 

Ψ = ෍ ܿ௣Φ௣

௣

 

Equation 4.2 Eigenvectors of Hamiltonian matrix 

 

ܧ = ෍ ܿ௣ܪ௣௤ܿ௤

௣,௤

 

Equation 4.3 Energy of wave function 

 
 

௣ߪ = ෍ ௣௤ܿ௤ܪ

௤

 

Equation 4.4 Sigma vector 
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ܧ = ෍ ܿ௣ߪ௣

௣

 

Equation 4.5 Energy written with sigma vectors 

 
 Modern, direct CI implementations of the Davidson algorithm1,2 take advantage of 

equations 4.4 and 4.5 to enable diagonalization of large matrices without requiring storage 

of the full Hamiltonian. In the Davidson procedure, correction vectors to the current best 

approximate eigenvector, ܿ′, are constructed via 

 

ߜ = ܪ)− − ′ߪ)ଵି(ܧ −  (′ܿܧ

Equation 4.6 Davidson correction vector 

 

which is orthogonalized against existing vectors ܿ௜ to form a new vector ܿ௜ାଵ. Constructing 

new ߪ௜  and ܿ௜ vectors in each iteration expands the subspace within which eigenpairs are 

solved for, continuing until the residual, ݎ = ′ߪ‖ − ‖′ܿܧ < ߳.  

Iterative diagonalization is feasible because H is diagonally dominant. Specifically, 

the correction vector ߜ can be formed by approximating the matrix inversion (ܪ −  ଵ asି(ܧ

ௗܪ) − ଵି(ܧ , where ܪௗ  are the diagonal elements of the Hamiltonian. Using this 

substitution, inversion of (ܪௗ −  ଵ is trivial and yet still a reasonably accurate estimateି(ܧ

of (ܪ −  ߪ ,ଵ. In this modern, direct strategy for performing Davidson diagonalizationି(ܧ

vector formation remains the most computationally demanding step. As such, there is 

continuous interest in speeding up this step in various methods. For instance, recent 

papers accomplish this for TD-DFT.5,6 

 

4.3.2 Initial Vectors 

 An initial vector ܿ଴ is required for initiation of the Davidson algorithm. While any 

choice that approximates the true eigenvector will usually result in convergence after 

several iterations, more accurate initial vectors will speed up the process. For instance, a 

closed-shell ground state can be approximated as a single Hartree-Fock determinant, which 

can represent, for example, 80% or more of the exact wave function. Better initial guesses 

can be constructed by fully diagonalizing a small, explicitly formed submatrix of the full 
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Hamiltonian.36 These initial guesses are especially useful when the Hartree-Fock 

determinant does not dominate the true eigenvector (i.e., in excited states or other 

radicals).  

 Complete guess matrix diagonalization is computationally restricted to a 

dimensionality of 103 - 104 determinants, which represents only a small fraction of the 

complete Hamiltonian. An efficient method will be suggested below to create accurate 

initial vectors for large dimension matrices. 

 

4.3.3 Natural Orbital Configuration Interaction 

 Because the CI Hamiltonian grows rapidly with excitation level and system size, 

methods to reduce this dimensionality are worth examining. Neglecting a subset of virtual 

orbitals reduces the size of the CI by eliminating determinants where those orbitals would 

be occupied. NOs form an excellent basis for selecting determinants to be removed from 

the CI space, performing much better than CMOs in this respect.16,17,18 

 NOs can be formed at low cost by diagonalizing the one-electron density matrix 

from perturbation theory or lower-level CI computations. The NO occupancies are given by 

the density matrix eigenvalues, which represent the degree to which each NO contributes 

to the electron density of the approximate wave function. When virtual-space NOs are 

formed and eliminated, this method is known as the frozen virtual NO (FVNO) 

approximation. Unfortunately, FVNOs require a cutoff parameter to control which orbitals 

are frozen, which leads to geometry-dependent variations in eigenvalue errors.27 This 

parameter, however, might be systematically selected by the electronic structure 

algorithm, as will be described shortly. Because CI techniques are invariant to orbital 

rotations within the virtual set, using NOs or CMOs results in the same eigenvalues when all 

orbitals are unfrozen. 

 

4.3.4 Configuration Interaction plus Perturbation Theory 

 An alternative approach to reduce the size of the CI Hamiltonian is to divide the 

determinant space into primary and secondary regions. For instance, the CIPSI method 

(configuration interaction by perturbatively selecting iteratively) and its recent re-
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envisionings use perturbation theory (PT) to select the most important determinants.37-43 

This strategy places the dominant determinants into the Hamiltonian for diagonalization, 

and then uses PT to correct for the missing, smaller contributions to the eigenvalues. 

Symmetry-Adapted-Cluster CI (SAC-CI) uses a similar technique to compute excited state 

energies.44 This strategy of determinant selection by PT criteria has found its most recent 

success in heat-bath CI (HCI), which utilizes a lower cost selection criterion while retaining 

similar accuracies.45,46 Furthermore, popular methods such as CASPT2 (complete-active-

space second order perturbation theory) also divide determinant spaces into primary and 

secondary regions, where FCI in an active space is chosen as the primary determinant 

space.47,48,49 While all such methods cannot be reviewed in this article, CIPSI, SAC-CI, HCI, 

and CASPT2 are mentioned as representative methods that utilize determinant partitioning 

schemes to great effect.  

 In the limit that the primary determinant space dominates the wave function, PT 

works well to recover the neglected degrees of freedom. Two common PT techniques are 

the Møller-Plesset (MP)30 and Epstein-Nesbet (EN)28,29 corrections. The MP perturbation 

for a single determinant, utilizes Fock diagonal elements, ܨ௫௫ , of occupied orbitals i, j, 

unoccupied orbitals a, b, and two-electron integrals to correct for missing correlations. The 

EN correction is performed based on the CI wave function, and uses the variational CI 

energy, E, to help estimate the contributions from the neglected determinants, Φ௤. MP PT is 

applied in the CASPT2 method,47,48,49 while EN PT is used in CIPSI methods.37-40 Both 

corrections are subject to large, uncontrolled errors whenever the dominators are small. 

These errors can possibly be avoided by ensuring that the most important determinants 

are in the primary CI space. 

 

ெ௉ܧ = −
1
4

෍
ଶ݆ۧ݅||ܾܽۦ

௔௔ܨ + ௕௕ܨ − ௜௜ܨ − ௝௝௜,௝,௔,௕ܨ

 

Equation 4.7 Second-order Møller-Plesset energy correction 

ாேܧ = − ෍
ൻΨหܪหΦ௤ൿ

ଶ

௤௤ܪ − ܧ
௤

 

Equation 4.8 Second-order Epstein-Nesbet energy correction 
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 EN and MP theories are typically, but not exclusively, used in CI wave functions 

expressed in a basis of CMOs. In the next section, compact expansions of the CI wave 

function using NO partitioning will provide an alternative means to select the primary CI 

determinants and their complementary PT space. 

 

4.4 Theory 

4.4.1 Iterative Submatrix Diagonalization Method 

 Specific considerations from the discussion on CI, NOs, and PT will lead to the 

proposed method. Because state descriptions are dominated by a minority of 

determinants,50 being able to select these prior to the CI computation is desirable and will 

be a central element in this approach. When using FVNOs the CI space is reduced in 

dimension and accuracy, but importantly, the accuracy is systematically improvable with 

decreasing NO occupancy cutoff, ߟ. PT corrections to CI are expected to perform well for 

small ߟ, as low-occupancy NOs result in small contributions to the (truncated) CI wave 

function. 

 These ideas now allow us to formulate a systematic series of approximations to a 

given CI level of theory. While FCI will be used as a prototypical example, being exact in a 

given orbital basis, this strategy is trivially applicable to lower excitation level CI. Figure 4.1 

outlines the overall procedure.  
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Figure 4.1 Outline of Iterative Submatrix Diagonalization (ISD) algorithm 

 

First, natural orbitals are formed at a low level of theory, CI with singles and doubles 

substitutions (CISD) from the Hartree-Fock initial determinant (this choice is not unique, 

and could be substituted by another level of theory).26,27 After NO formation, occupancy 

cutoffs, ߟ(௜), are applied to partition the Hamiltonian into submatrices, H(i), containing only 

the active NOs for each level of cutoff (see right side of Figure 4.1). At the first iteration, the 

Davidson algorithm is applied to solve for the eigenpairs of the FVNO FCI submatrix for 

cutoff ߟ(଴), denoted H(0). At subsequent iterations, the submatrix of Hfull matrix is enlarged 

such that ߟ(௜ାଵ) <  and the Davidson algorithm is repeated. The eigenpairs of each (௜)ߟ

submatrix therefore represent an approximate solution to the untruncated CI wave 

function, which is systematically improved by increasing i.  

 In this formulation of the CI problem, the exact eigenpairs are recovered as ߟ(௜) → 0. 

Exact CI eigenvalues are not typically required, however, but only eigenvalues accurate to 

within a specified threshold, ߳ (e.g. 1.6 mHa, which is 1 kcal/mol). This allows ߟ(௜) to 

decrease with iteration i steps until หܧ൫ߟ(௜ାଵ)൯ − ൯ห(௜)ߟ൫ܧ < ߳. The Davidson algorithm, in 
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any case, would only be converged to accuracy ߳, so no new parameter is introduced to 

reach the desired convergence threshold. This fact distinguishes this method from typical 

FVNO implementations, all of which require specification of a cutoff parameter. 

  

൯(௜ାଵ)ߟ൫ܧ <  ൯(௜)ߟ൫ܧ

Equation 4.9 Desired ISD property 1 

 

ቤ
൯(௜ାଶ)ߟ൫ܧ − ൯(௜ାଵ)ߟ൫ܧ

((௜ାଵ)ߟ)ܧ − ((௜)ߟ)ܧ
ቤ < 1 

Equation 4.10 Desired ISD property 2 

 
Due to this convergence strategy, the proposed method is most useful when Eq. 4.9 

and 4.10 are satisfied, which will result in smooth convergence over the series i, i+1, i+2… 

when ߟ(௜) is chosen to be monotonically decreasing. The NO ordering of orbitals and their 

occupancies is expected to induce property 4.10 onto the CI. This property, however, will 

be checked numerically in the results section. Due to the variational nature of CI, equation 

4.9 is guaranteed because the Hamiltonian dimension increases with decreasing ߟ(௜). 

Since diagonalization is performed on increasing size submatrices of the same full 

Hamiltonian, each submatrix Davidson procedure can be initiated with the eigenvector of 

the previous iteration. Therefore, highly accurate guess vectors are available at every 

iteration, even for large (108 or greater) dimension submatrices. Overall, this strategy 

reduces the number of required Davidson iterations for diagonalizing each submatrix. 

Importantly, the expensive Hfull diagonalization step should take fewer iterations.  

 The new method for finding CI eigenvalues will be denoted the Iterative Submatrix 

Diagonalization (ISD). One extension of ISD is to perform PT to incorporate effects of the 

neglected determinants at each iteration.28,29,30 ISD+PT therefore adds PT corrections at 

each threshold ߟ(௜), and could converge at smaller i than ISD alone. In the current 

implementation, the final CI total energy is corrected by doubles excitations out of the 

primary space via EN PT as described in equation 4.8. While variationality of the wave 

function is formally lost in ISD+PT, the PT corrections can be small due to the NO 
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partitioning of the CI space, and the energies therefore nearly variational for tight cutoffs, 

(௜)ߟ ≪ 1.  

  

4.4.2 Properties of the Submatrix Davidson Method 

 Two distinguishing features of ISD and ISD+PT separate it from other methods in 

this area. First, the CI space is selected via NOs, which inherently capture (and order) the 

most important orbitals in the wave function. In contrast to FVNO CI and CC,22-27 which 

require input of a cutoff parameter (which introduces additional errors), ISD scans over the 

cutoff value to reach convergence to a standard energy threshold. This scanning strategy 

also leads to an internal metric that gives control over eigenvalue errors. Methods such as 

CIPSI37-40 and CASPT247,48,49 select determinants via PT or an active space, and therefore 

have fundamentally different modes of capturing the key CI determinants. Second, the NO 

selection of virtual orbitals gives a useful ordering of the CI space, which can be 

diagonalized in a doubly iterative fashion. By iterating over submatrices of the full problem, 

each can be diagonalized by the iterative Davidson procedure.  

 Because ISD and ISD+PT are converged to an energy threshold, ߳ , no new 

parameters are required. This property is different than methods like CIPSI, which require 

explicit additional parameters (or implicit parameters, like active space choice in CASPT2). 

Due to this structure, as ߳ → 0, ISD and ISD+PT result in the exact eigenpairs of the full 

Hamiltonian. When ߳ is relatively large, diagonalization of the largest matrix (or matrices) 

may be avoided entirely due to convergence being reached early. In the latter limit, ISD will 

have low computational cost. 

Finally, ISD is deterministic, variational, and systematically improvable. While 

ISD+PT loses variationality, it is still improvable by tightening the energy convergence 

threshold, ߳. ISD and ISD+PT are applicable to any excitation level of CI,15 and any 

diagonalization problem where the Hamiltonian can be written as a function of NOs or NO-

like quantities. Importantly, any Davidson-driven CI code capable of handling FVNOs can be 

modified to perform ISD, without extensive rewriting. 
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4.5 Computational Details 

 ISD, ISD+PT, and HCI codes were implemented in C++ in a development version of 

the Q-Chem 4.3 software package.51 The CI step of ISD uses a determinant-based, α and β 

string indexed FCI where c and σ vectors are stored in memory. For all ISD computations, 

the correlation consistent, polarized cc-pVXZ basis sets were used, where X = D, T.52 

Davidson diagonalization was considered converged when the residual is less than 

0.000002 Ha (errors of ~1 µHa are expected). Two electron integrals are computed using 

the resolution-of-the-identity approximation and the RIMP2-cc-pVTZ basis set.53 Point 

group symmetry is not invoked in any ISD or ISD+PT computation. ORCA 4.054 was used to 

perform CIPSI computations via ICE-CI and obtain timings on the OH cation, with energies 

converged to 1 mHa. The geometry of OH was optimized using closed-shell MP2 with the 

cc-pVQZ basis set (1.0226 Å). The FCI-quality geometries of methylene were taken from 

Sherrill et al.55 

 

4.6 Results and Discussion 

4.6.1 Convergence of ISD and ISD+PT 

 To show how ISD and ISD+PT behave in practice, the convergence of these methods 

is now benchmarked. Specifically, the errors in ISD total energies of the ground state, 

triplet OH cation in the cc-pVDZ and cc-pVTZ basis sets will be compared to FCI with a 

range of increasingly tight NO cutoffs. This test case contains 6 active and 2 frozen core 

electrons, making the dimension of the FCI space 665,856 determinants for cc-pVDZ, and 

152 million for cc-pVTZ. Figures 4.2 and 4.3 show the errors in energy for CI and CI+PT 

using the ISD partitioning of the Hamiltonian. The sequence of cutoff values was selected as  

(௜)ߟ = 10ି(ହା௜)/ଶ 

such that the first NO cutoff at ݅ = 1 is 10-3=0.001, the second at ݅ = 2 is 10-3.5=0.00032, and 

so on until all NOs are included. This sequence was chosen because at 13 ,10-3= ߟ of 43 

orbitals are active in the CI, but only 5 orbitals would be active at 10-2= ߟ. Therefore, the 

cutoff at iteration 1 was sufficiently loose to produce a computationally inexpensive, but 

nontrivial starting point for the series of submatrix computations. 



 85

As the submatrix expands with each iteration of ISD the change in energy compared 

to the previous iteration, Eq. 4.11, can provide an estimate of the total error, Eq. 4.12. 

Importantly, if ΔE(௜) is used as a metric for convergence, we require Eq. 4.13 be obeyed. 

Figure 4.2 shows that Eq. 4.13 holds for the OH cation, and later results show that Eq. 4.13 

holds for all other presented test cases as well. This is also demonstrated in Table 4.1, 

where the ratio of the total error to ΔE is less than ½ at iteration 3 and later, for both DZ 

and TZ basis sets. The same convergence metric holds for ISD+PT (Figure 4.3).  

 

ΔE(௜) = หܧ൫ߟ(௜)൯ −  ൯ห(௜ିଵ)ߟ൫ܧ

Equation 4.11 Change in energy between ISD iterations 

 

หܧ൫ߟ(ஶ)൯ −  ൯ห(௜)ߟ൫ܧ

Equation 4.12 Total error within an ISD iteration 

 
ΔE(௜) > หE൫ߟ(ஶ)൯ −  ൯ห(௜)ߟ൫ܧ

Equation 4.13 Desired ISD property 3 

 

 Equation 4.13 is not guaranteed to be satisfied, and would be difficult to check for 

larger systems where FCI-level results cannot be obtained. Depending on the NO occupancy 

distribution, it is possible that Eq. 4.13 could be violated and, if ΔE(௜) is small enough, lead 

to premature convergence of ISD. In practice, however, we have not seen this occur when 

good NOs are available. The sequence of ߟ(௜) values is fixed and has sufficiently large gaps 

(i.e. half-orders of magnitude) such that ΔE(௜) tend to decrease monotonically, and thus the 

procedure is expected to be transferable.  
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Figure 4.2 Convergence of the ISD energy as a function of iteration number for the OH cation in its ground 
triplet state. Delta is the absolute change in energy from iteration i-1 to i. For ݅ = 4 (DZ) and ݅ = 7 (TZ), the 
errors are zero and not shown. 
 

 
Figure 4.3 Convergence of the ISD+PT energy as a function of iteration number for the OH cation in its 
ground triplet state. Delta is the absolute change in energy from iteration i-1 to i. For ݅ = 4 (DZ) and ݅ = 7 
(TZ), the errors are zero and not shown. 
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Table 4.1 Convergence of CI energies as a function of ISD iteration. Energies and errors are in units of Ha. 

cc-pVDZ 

Iteration -log η E(CI) Error ΔE(i) |Error/ΔE| 

1 3 -75.10352 0.00699 
  

2 3.5 -75.10778 0.00274 -0.00426 0.64 

3 4 -75.11041 0.00010 -0.00263 0.04 

4 5.5(∞) -75.11052 0.00000 -0.00010 0.00 

cc-pVTZ 

Iteration -log η E(CI) Error ΔE(i) |Error/ΔE| 

1 3 -75.13170 0.03782 
  

2 3.5 -75.15282 0.01669 -0.02113 0.79 

3 4 -75.16471 0.00480 -0.01189 0.40 

4 4.5 -75.16864 0.00088 -0.00392 0.22 

5 5 -75.16934 0.00018 -0.00070 0.25 

6 5.5 -75.16950 0.00002 -0.00016 0.12 

7 6(∞) -75.16951 0.00000 -0.00002 0.00 

 

 The results of Figure 4.2, 4.3, and Table 4.1 suggest that ISD provides a well-behaved 

series of submatrix approximations to the total energy. Importantly, ISD at iteration 5 for 

cc-pVTZ (iteration 3 for cc-pVDZ) is converged to within 0.7 mHa, or 0.4 kcal/mol, 

according to the ΔE(௜) metric. This means iterations 6 and 7 do not need to be performed to 

reach chemical accuracy, saving considerable computational cost. In this case, iteration 6 

requires the diagonalization of a matrix with 132 million determinants, and iteration 7 

(which is equivalent to FCI) requires diagonalization of a 152 determinant expansion. In 

contrast, iteration 5’s submatrix, H(5), has 71 million determinants, less than ½ that of the 

FCI dimension.  

 ISD+PT’s performance is improved compared to that of ISD without PT. For the 

triplet OH cation, the inclusion of PT corrections results in smaller errors and maintains 

good convergence of the energy. ISD+PT is, however, not necessarily variational, so the 

remainder of this article will concentrate on standard ISD.  
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4.6.2 Computational Cost of ISD Convergence 

 ISD provides a means to converge the eigenvalue to within a specified energy 

tolerance, ߳, using submatrix representations of the full Hamiltonian. This property leads to 

reduced computational effort compared to the standard direct CI Davidson algorithm. This 

subsection examines the number of Davidson iterations required to diagonalize a given 

submatrix in order to provide a useful metric for overall computational effort. These 

iterations are, of course, dominated in cost by the σ-vector generation step, which may also 

be made faster through efficient algorithms. This aspect is not considered here, and new σ-

vector algorithms are discussed elsewhere.11 

 To provide a measure of computational effort, Table 4.2 shows the wall times and 

number of Davidson iterations required for diagonalization of the submatrices and full 

matrix Hamiltonian for the OH cation triplet in the cc-pVTZ basis. For the smaller matrices, 

ISD requires approximately the same number of iterations compared to standard Davidson. 

For larger matrices, in this case i>3, ISD requires fewer Davidson iterations to converge.  

The enhanced convergence for submatrix H(i) is due to the high-quality initial 

vectors provided by the H(i-1) diagonalization. This point is reflected by the initial residuals 

for the larger matrices. For instance, at ݅ = 6, ISD has an initial residual of 0.0014 Ha, while 

standard Davidson starts at 0.6980 and reaches a residual of less than 0.0014 only after 5 

iterations. Therefore, the large matrix initial guess of ISD is an orders-of-magnitude better 

approximation to the true eigenvalue. Overall, the reduced number of Davidson iterations 

required for large matrix diagonalization reduces the late-stage computational effort of ISD 

as well as the memory requirements for storage of the c and ߪ vectors. For full matrix 

diagonalization, preliminary tests indicate that the ISD total computational time (including 

all iterations) is approximately the same as standard Davidson for the full matrix, but this 

may be improvable in the future. Despite this indication, ISD does provide a significant 

improvement in computational cost over standard direct CI Davidson whenever it 

converges before reaching the final Hamiltonian iteration. 
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Table 4.2 Dimensions of CI and cost comparison between standard and ISD Davidson algorithms for OH 
cation in the cc-pVTZ basis. 

ISD  
Iteration 

Frozen  
Virtuals 

Active  
Orbitals 

Dimension  
of CI 

Davidson 
Diagonalization 

Iterations 

Davidson Wall 
Times (sec)a ISD Error 

(Ha) 
Standard ISD Standard ISDb 

1 30 13 81,796 6 6 2.9 2.2 0.037819 

2 23 20 1,299,600 7 7 20.5 13.5 0.016691 

3 16 27 8,555,625 8 7 174.3 155.3 0.004804 

4 10 33 29,767,936 9 7 1198.4 912.5 0.000880 

5 5 38 71,166,096 10 6 4209.3 2772.2 0.000176 

6 1 42 131,790,400 11 5 11172.1 5485.0 0.000019 

7 0 43 152,300,281 11 4 16355.8 6723.6 0.000000 
a All wall times come from calculations utilizing 28 cores. 
b ISD timings are per iteration, not cumulative. 
 

When the eigenvalue convergence tolerance, ߳, has a moderate value, ISD terminates 

before reaching the full matrix diagonalization step. As noted above, in the case that ߳ = 1.6 

mHa, or chemical accuracy, the computational benefits of ISD become apparent. For the OH 

cation triplet in the cc-pVTZ basis, the largest CI matrix that needs to be diagonalized has 

dimension of only 71 million, and requires only 6 Davidson iterations at this step to 

converge (compared to 11 iterations with matrix dimension 152 million for standard 

Davidson). This ISD result therefore represents a substantial computational savings over 

standard diagonalization of the full matrix. Comparison with other methods that 

systematically cut down the size of the Hamiltonian, such as CIPSI37-40 and HCI,45,46 on the 

OH cation, cc-PVTZ basis (Table C.1) show that ISD performs better than CIPSI, but worse 

than HCI. 

 

4.6.3 Error Control for ISD 

ISD can also give estimates of energy profiles with controlled error. The example 

system is chosen to be diatomic nitrogen dissociation, which is a common test problem for 

methods that handle combinations of dynamic and static correlation. The cc-pVTZ basis 
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with 2 frozen core orbitals was used, resulting in a FCI space of 2.1x1013 determinants. To 

obtain FCI-level energies with this determinant space, HCI45, 46 was used as a CI solver in 

place of conventional FCI (with ε1 = 0.5 mHa and ε2 = 25 μHa). With this large determinant 

space, ߟ(௜) = 10ି(଺ା௜)/ଶ was found to be most appropriate because convergence at 10ିଷ was 

quite poor. The N2 dissociation profile shown in Figure 4.4 compares ISD iterations 2 and 3 

for interatomic distances of 0.9 to 2.6 Å in steps of 0.1 Å.  

 

 
Figure 4.4 Error with respect to FCI-level calculations in diatomic nitrogen dissociation curves with the cc-
pVTZ basis for ISD iterations 2 and 3 are shown. Open data points are the estimated errors, while closed one 
are true errors with respect to FCI-quality energies. 
 

 In Figure 4.4, the estimated errors and the true errors with respect to FCI-level 

energies are shown for ISD at ݅ = 2 and ݅ = 3, corresponding to FVNO cutoffs ߟ(ଶ) =

10ିସ.଴ and ߟ(ଷ) = 10ିସ.ହ. As in the OH cation, the errors demonstrate good behavior, 

monotonically decreasing as η decreases and obeying Eq. 4.13. At ݅ = 3, only 38% of the 

FCI space of determinants are present in H(3) at 1.1 Å. The error estimate, ΔE(ଷ), is less than 

5 mHa for all interatomic distances (the error bars are all negative because ISD is 

variational), and the energy surface is smooth and asymptotically correct through the 

range of interatomic distances, as supported by the non-parallelism errors of 2.8 and 0.7 
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mHa for iterations 2 and 3 respectively. For ݅ = 2, however, significant errors are 

estimated. ΔE(ଶ) ranges from 15 to 30 mHa, generally increasing as one moves away from 

the equilibrium well. ΔE(௜) therefore can differentiate between regions of the potential scan 

that are accurate, and which are most in need of additional convergence. In standard FVNO 

approximations a constant NO cutoff would result in errors that vary with geometry, 

making the error estimate of ISD particularly useful for potential energy scans. With ISD, ݅ 

can be iterated to ݅ + 1 whenever necessary to systematically decrease the error and its 

estimate, ΔE.  

 

4.6.4 Singlet-Triplet Gap of Methylene via ISD 

 The ISD method can be used for any electronic states where a reasonable set of NOs 

is available. Interestingly, ISD may also be able to exploit differential correlation, where 

cancellation of systematic errors in two different states may result in high-quality relative 

energies. ISD is thus tested here for the CH2 triplet-to-singlet adiabatic transition, which are 

the lowest two electronic states of this fragment. Two state-specific computations are 

performed, one using CISD NOs for the singlet, and the other with CISD NOs for the triplet. 

The series ߟ(௜) = 10ି(ହା௜)/ଶ  from the OH cation benchmarks was also used here. 

Methylene’s six valence electrons were correlated, its 1s core orbital kept frozen, and the 

cc-pVTZ basis was utilized. 
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Figure 4.5 Convergence of the triplet-singlet gap in CH2 as a function of ISD iteration. The estimated 
maximum error (Est. Max. Error) is ΔE(௜)(S) + ΔE(௜)(T). 

 
Figure 4.5 shows the adiabatic energy gap in methylene as a function of ISD 

iteration. Excitingly, all ISD steps provide gaps within 0.1 eV of the benchmark value (i.e. 

FCI for the cc-pVTZ basis). At iterations 4 through 6, ISD is within 0.01 eV of the exact gap, 

which is 0.430 eV in this basis set (FCI/cc-pVTZ therefore comes near the experimental 

value is 0.406 eV.52,56 The actual errors can be compared to the error from the ISD 

convergence metric, ΔE(௜). Specifically, ΔE(௜)(S) + ΔE(௜)(T) provides an estimate of how far 

the sum of the two ISD energies are from convergence as a function of iteration.  

The estimated maximum error is plotted in Figure 4.5, and is much larger than the 

realized error. Such a rapid convergence of the realized error can only occur if the 

correlation contributions from low-occupancy virtual NOs in the two states are similar. In 

other words, the neglected correlation energy for each cutoff ߟ(௜), while it may be 

substantial, is similar in magnitude for the two states. These contributions tend to cancel, 

leading to fast convergence of the ISD excitation energy with respect to iteration number. 

As in the previous examples, ΔE(௜) decreases monotonically with decreasing η, 

demonstrating a useful degree of error control for relative energies. The FVNO cutoffs, ߟ(௜), 

are therefore seen to be systematic means of incrementally adding correlating orbitals for 

the two electronic states. 
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These results suggest that ISD can be used to rapidly compute relative energies to 

high accuracy. In the case of methylene, the first three iterations’ submatrices, H(i) (݅ =

1,2,3), contain order 105, 106, and 107 determinants, yet provide relative energies within 

0.1 eV of FCI which has nearly 109 determinants (more precisely, 8.56x108 determinants). 

This means 0.1 eV accuracy is reached at less than 1% of the FCI computational cost. 

Furthermore, ݅ = 4 is within 0.01 eV of FCI, yet requires less than 20% of FCI’s dimension, 

around 1.5 x 108 determinants. In summary, a converged FCI energy of the triplet-singlet 

gap in methylene can be computed with dramatically reduced effort using ISD. 

 

4.6.5 Multistate ISD Methylene Calculations 

 So far, ISD calculations focused on ground state computations with particular spin 

symmetries, but the description of multiple excited states is also pertinent to many 

chemical processes. Therefore, a series of multistate ISD calculations were applied to the 

vertical spectrum of methylene’s three lowest singlet states at the ground state (triplet) 

geometry. These multistate calculations utilize a set of average virtual NOs instead of the 

state-specific virtual NOs used in previous ISD calculations. The same truncation scheme, 

frozen core orbitals, and basis set as in the previous, state-specific methylene calculations 

are used. 

 Figure 4.6 plots the results of multistate ISD calculations for the S0-S2 gaps, also 

presenting the same error metrics as in Figure 4.5. ISD provides accurate relative energies, 

with all iterations obtaining vertical gaps within 0.1 eV of FCI/cc-pVTZ benchmark values, 

and gaps within 0.01 eV being recovered by iteration 3. Estimated errors are again well-

behaved with respect to ߟ, and comparisons of the realized error versus the estimated 

error again show that accurate gaps can be obtained, even at iterations where the 

neglected correlation energy is substantial.  These calculations provide evidence that the 

use of state-averaged virtual NOs in ISD’s truncation scheme is a viable method for 

accomplishing multistate ISD calculations.  
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a) 

 

b) 

 
Figure 4.6 Convergence of singlet state gaps in CH2 as a function of ISD iteration. a) S0-S1 gap. b) S0-S2 gap. 

 

4.7 Conclusions 
 The proposed iterative submatrix diagonalization method is a promising new tool 

for diagonalizing the large Hamiltonian matrices of electronic structure theory. ISD 

converges to a desired energy threshold with control over eigenvalue errors and without 

using any additional parameters. The method is capable of handling ground and excited 

states, and can be used whenever natural orbitals are available. Therefore, ISD may be 

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

E 
(e

V
)

ISD Iteration

Methylene S0-S1 Gap

E(S1)-E(S0)
Est. Max. Error
Abs. Error

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

E 
(e

V
)

ISD Iteration

Methylene S0-S2 Gap

E(S2)-E(S0)
Est. Max. Error
Abs. Error



 95

generally useful in other highly correlated electronic structure simulations, and likely can 

be extended for use with anharmonic vibrational structure methods.57,58,59 

 ISD has a reduced computational cost compared to the standard Davidson algorithm 

when converged to moderate thresholds (i.e. ~1 mHa for better than chemical accuracy) 

for ground states, and greatly reduced costs for gaps between electronic states. While 

additional studies are clearly needed to test the extensibility of ISD, the results presented 

herein and its performance in iFCI12,13,14 are highly promising for application to the CI 

eigenvalue problem. The recent renewed interest in finding eigenvalues of large matrices, 

such as in FCI10,11,29,32-35 suggests that new strategies such as ISD may prove useful. The 

next Chapter further explores strategies for treating large CI spaces with the heat-bath CI 

method, which focuses on selecting only those determinants which contribute significantly 

to the wave functions of interest. 
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Chapter 5: Excited States of Methylene, Polyenes, and Ozone from 

Heat-Bath Configuration Interaction 

 

5.1 Abstract 

 The electronically excited states of methylene, ethylene, butadiene, hexatriene, and ozone 

have long proven challenging due to their complex mixtures of strong and weak correlations. To 

provide accurate benchmark energies for these states, semistochastic heat-bath configuration 

interaction is herein used to approximate full configuration interaction (FCI) energies. A new 

metric, the fraction of correlation energy obtained by the perturbative correction ( ௉்݂), is shown 

to be a good indicator of convergence. The presented butadiene/ANO-L-pVTZ and 

hexatriene/ANO-L-pVDZ computations are the largest FCI-level simulations to date, with FCI 

dimensions exceeding 1035 and 1038 determinants. The best heat-bath estimates of the vertical 

excitation energies in butadiene/ANO-L-pVTZ are 6.73 eV for 21Ag, and 6.37 eV for 11Bu (6.74 

and 6.57 eV with ANO-L-pVDZ). The same gaps in hexatriene/ANO-L-pVDZ are estimated to 

be 5.73 and 5.61 eV, respectively. 

 

5.2 Introduction 

Full configuration interaction (FCI) provides the theoretically exact electronic 

energy in a given one-particle basis set, making FCI calculations the benchmarks against 

which other quantum chemistry methods are evaluated.1–7 The exponential increase in 

Hamiltonian dimension with increasing system size, however, means that traditional FCI 

benchmarks are not easily achievable for molecular systems larger than diatomics The ISD 

algorithm presented in Chapter 4 managed to reduce the CI spaces and time necessary to 

obtain FCI-quality wave functions by about one order of magnitude. However, to 

dramatically increase the size of molecules that can be treated at the FCI level, more drastic 

reductions in CI space will be required. Alternatives to ISD have seen impressive progress 
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in recent years, producing FCI-quality energies for much larger systems with such 

algorithms as incremental FCI (iFCI),8–10 density matrix renormalization group (DMRG),11–

15 and FCI quantum Monte Carlo (FCIQMC).16,17  

These advances have also led to a revival of interest in the concept of select CI (SCI). 

SCI iteratively builds a subspace Hamiltonian18 composed of the most important 

determinants of the wave function, which are generally selected based on perturbative 

coefficients. Usually, perturbative energy corrections to the lowest energy eigenvectors are 

used to correct for deficiencies in the variational subspace, leading to SCI+PT levels of 

theory. SCI+PT methods were first popularized by the CIPSI method, configuration 

interaction by perturbatively selecting iteratively.19–24 CIPSI becomes prohibitively 

expensive once the variational space grows large enough, as the algorithm generates and 

evaluates all determinants connected to this space. The first major improvement over CIPSI 

was adaptive sampling CI (ASCI),25 a deterministic variant of FCIQMC that truncates the 

sum in the perturbative coefficient expression, reducing the cost of evaluating a 

determinant’s importance. Despite this improvement, the requirement to generate and 

evaluate all connected determinants remained a bottleneck. Heat-bath CI (HCI)26 was 

designed to eliminate this problem by only considering determinants which pass its new, 

more simple importance measure. HCI was further improved by stochastic evaluation of 

the PT energy in semistochastic HCI (SHCI),27 which eliminated the need to store a long list 

of perturbative determinants in memory.  

Because FCI is a benchmark-level method with extreme cost, results from FCI are 

typically most useful in evaluating other electronic structure methods. Unfortunately, 

benchmarks for polyatomics have largely been unavailable, and thus the subtle effects of 

correlations amongst numerous electrons have not been accurately quantified. With SHCI, 

however, systems of substantial size—at least compared to prior algorithms—can now be 

treated at the FCI level. We utilize the code of Umrigar et al.27 to push SHCI to its limits, 

both by maturing the code through rigorous testing as well as applying it to large systems. 

Specifically, our aim is to provide highly accurate benchmarks for electronically excited 

states of the challenging polyatomics in Figure 5.1. In this work, methylene is presented as 

the first test case due to its small size yet challenging electronic structure.28 Ozone is also 

investigated as a chemically relevant case due to its role in upper atmosphere chemistry.29 
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Finally, ethylene, butadiene, and hexatriene are examined to provide benchmarks for the 

first few members of the polyene series, long studied for their role as prototypical organic 

conducting polymers. The low-lying valence excited states, 21Ag and 11Bu,30–38 are 

especially challenging to characterize and have long been a target of accurate electronic 

structure theories. With 1035 and 1038 determinants in the FCI space of butadiene/ANO-L-

pVTZ and hexatriene/ANO-L-pVDZ, respectively, FCI-level computations are incredibly 

challenging, and will push SHCI towards its limit.  

 

 
Figure 5.1 Molecules investigated with SHCI. 

 

This article is organized as follows. In Sections 5.3 and 5.4, the SHCI methodology 

for excited state and error estimation strategies are laid out. Computational Details are laid 

out in Section 5.5 and Section 5.6 presents SHCI results for methylene, ozone, ethylene, 

butadiene, and hexatriene. Small systems in which benchmark values can be obtained 

(methylene, ethylene, and ozone/cc-pVDZ) are first examined to obtain insights into the 

convergence behavior of SHCI. These observations are then used to estimate the 

convergence level of ozone/cc-pVTZ, butadiene, and hexatriene results. Section 5.7 

provides conclusions and an outlook on the SHCI method for excitation energy 

benchmarking. 

 

5.3 Semistochastic Heat-Bath Configuration Interaction 

As the HCI and SHCI algorithms have been described in detail,26,27 only a brief 

overview will be given here. The HCI algorithm can be divided into variational and 

perturbational stages, each of which selects determinants through threshold values, ߳௩௔௥ 

and ߳௉், respectively. The variational space (V) contains the determinants included in the 
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current subspace, and the connected space (C) contains all determinants connected by 

single or double excitations to V. 

The variational stage iteratively adds determinants to V by 

1. Adding all determinants connected to the current V that pass the importance 

criterion |ܪ௔௜max(|ܿ௜|)| >  ߳௩௔௥ , where max(|ܿ௜|) is the largest coefficient 

currently associated with determinant i for the states of interest.  

2. Constructing the Hamiltonian and solving for the roots of interest, in the 

basis of all determinants in the newly expanded V. 

3. Repeating 1-2 until convergence. 

The HCI importance measure is much easier to evaluate than the full first-order 

perturbative estimate of a determinant’s wave function coefficient, ܿ௔
(ଵ) = ቚ

∑ ுೌ೔௖೔೔

ாିுೌೌ
ቚ, used in 

other SCI+PT methods such as CIPSI19 and ASCI.25 This simplification is possible because 

ܿ௔
(ଵ)  is dominated by a few terms due to large variations in ܪ௔௜  and ܿ௜ , which span multiple 

orders of magnitude, whereas ܧ − ௔௔ܪ  varies by less than 1 order of magnitude.26 Using the 

HCI importance measure, doubles excitations can be sorted by the magnitude of their 

Hamiltonian coupling elements, and excitations with small ܪ௔௜  values can be bypassed 

entirely. 

After convergence of V, signified by few additional determinants or small variational 

energy changes, a second-order perturbative energy correction for the variational energy E 

is calculated by  

(ଶ)ܧ∆ = ෍
(∑ ௞௜ܿ௜௜ܪ )ଶ

ܧ − ௞௞௞ܪ

 

where k runs over all determinants in C, and i ranges over all determinants in V. Similar to 

the variational stage, the perturbation only considers the determinants connected to the 

final V space that have an importance measure greater than a parameter ߳௉், which is 

typically much smaller than ߳௩௔௥ . The storage of the entire space of determinants used in 

 becomes a memory bottleneck for larger systems. This memory bottleneck can be (ଶ)ܧ∆

sidestepped by calculating the second-order perturbation correction semistochastically, as 

in the SHCI algorithm.27 In SHCI, a deterministic energy correction is first calculated with a 

߳௉்
ௗ > ߳௉், and the error from using the larger ߳௉்

ௗ  is then calculated stochastically by taking 
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the difference of the second-order corrections done with ߳௉்
ௗ  and ߳௉்.27 Samples are taken 

until the statistical error falls below a specified threshold.  

 

5.4 Error Analysis 

The target accuracy for absolute or relative energies is typically chosen to be either 

within 1 mHa or 1.6 mHa (1 kcal/mol, representing chemical accuracy) of the FCI limit. A 

major obstacle in examining systems as large as hexatriene (FCI dimension 1038) is 

accurately determining the extent of convergence relative to the FCI limit. Straightforward 

strategies, such as examining changes in energy between increasingly accurate runs or 

extrapolating energies to the FCI limit, can be unreliable unless one is extremely close to 

the FCI limit. For instance, varying ߳ by a small amount may produce a small change in total 

energy, but this does not necessarily indicate convergence to the true FCI energy. 

Furthermore, extrapolation procedures can result in significantly different energies 

depending on the available data and the chosen fitting equation. As neither of these 

measures is a certain signal for convergence in the larger systems for which we cannot 

closely approach the FCI limit (ozone/cc-pVTZ, butadiene, and hexatriene), this work 

utilizes a new convergence metric, the fraction of correlation energy obtained by the 

perturbative correction ( ௉்݂), to support the observed convergence of SHCI results. 

௉்݂  can be used as a convergence metric because the error in total energy arises 

only from the perturbative correction, since the variational treatment is exact. Therefore, if 

the perturbative correction is less than 1 mHa, the variational energy itself is converged to 

within 1 mHa (we assume small ߳௉்  such that the perturbative correction itself is 

converged). Such small perturbative corrections are often unobtainable, however, so an 

alternative accuracy measure is required for general application. For this alternative, we 

use ௉்݂ , which utilizes the distribution of the recovered correlation energy between 

variational and perturbative contributions, to indicate closeness to the FCI limit. As ௉்݂  

falls, so too should the error, and there may be a fraction at which total or relative energies 

are generally converged to the FCI limit. This claim is examined and shown to be 

empirically true for relative energies in the smaller systems for which benchmark values 

can be obtained. 
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To use ௉்݂  for excited states, which are not well described by single electronic 

configurations, a slightly different definition of correlation energy is required. Instead of 

taking the correlation energy as the energy difference between Hartree-Fock and FCI, we 

utilize a minimal complete active space (CAS) wave function in place of Hartree-Fock, 

resulting in ܧ௖௢௥௥ = ி஼ூܧ − ஼஺ௌ. This leads to a well-defined ௉்݂ܧ  for all states, with ௉்݂  

values for relative energies defined as the average ௉்݂  of the two involved states.  

 

5.5 Computational Details 

SHCI is implemented in Fortran90, parallelized using MPI, and makes use of 

symmetry.27 Convergence of the variational space is signaled when the number of new 

determinants added is less than 0.001%, of the current variational space, or when the 

change in energy is less than 1 ⋅ 10ିହ Ha. The ANO-L-pVXZ basis sets39 are used for 

ethylene, butadiene, and hexatriene. For methylene, the aug-cc-pVQZ40,41 basis is used. For 

ozone, cc-pVDZ and cc-pVTZ40 basis sets are used to examine ௉்݂  and facilitate direct 

comparisons with benchmark values.29 ߳௩௔௥ is varied for each system to show convergence 

of energies or energy gaps with the series ߳௩௔௥ ={7 ⋅ 10ି௑ , 5 ⋅ 10ି௑, 3 ⋅ 10ି௑ , 1 ⋅ 10ି௑}, 

where X={2, 3, 4, 5, 6}. The range varies by system due to computational resources and 

convergence behavior, and these details are presented below. For all calculations, ߳௉் is set 

to 10ି଻ Ha, which provides converged perturbation corrections.26,27 The statistical error of 

the stochastic perturbative correction is generally set to 0.05 mHa, with the larger 

hexatriene/ANO-L-pVDZ and butadiene/ANO-L-pVTZ calculations set to 0.1 mHa. All 

calculations use the frozen-core approximation and state-specific natural orbitals derived 

from variational HCI calculations for each system at tight ߳௩௔ . In butadiene, hexatriene, 

and ozone, the HCI-generated natural orbitals for the two Ag/1 symmetry states are state-

averaged with equal weighting. Methylene’s geometries are FCI/TZVP quality, taken from 

Sherrill et al.28 Ethylene, butadiene, and hexatriene geometries are optimized at the RI-

MP2/cc-pVQZ level. Ozone’s geometries are CASSCF(18,12)/cc-pVQZ quality, taken from 

Theis et al.29 For comparisons to coupled cluster theories, the same geometries and basis 

sets are used with Q-Chem 4.0’s42 implementation43 of CR-EOM-CC(2,3)D.44 Active spaces 

for minimal CAS-CI computations (used in ௉்݂) were chosen based on the coefficients of the 
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most accurate calculations for each system. Methylene used a CAS(2,4), ozone a CAS(6,4), 

and the polyenes the full π-systems. 

 

5.6 Results 

 SHCI was used to investigate the low-lying valence states of methylene, ethylene, 

ozone, butadiene, and hexatriene. These systems contain 6, 12, 18, 22, and 32 valence 

electrons, all of which will be correlated with the full virtual orbital space. With no 

restriction on the CI excitation level, the massive combinatorial spaces of CI determinants 

make it difficult to guarantee convergence in systems with over 20 valence electrons. 

Therefore, the variational energies (ܧ௩௔௥), perturbative corrections (ܧ௉்), and total (ܧௌு஼ூ) 

energies from a progression of ߳௩௔௥ calculations down to benchmark levels will first be 

examined to determine meaningful convergence metrics for the larger molecules. 

 

5.6.1 Estimating Chemical Accuracy from ࢀࡼࢌ 

SHCI can obtain benchmark energies fully converged to the FCI limit for the smaller 

test systems: methylene with aug-cc-pVQZ basis, ethylene with ANO-L-pVDZ and ANO-L–

pVTZ bases, and ozone with cc-pVDZ. The accuracy of these benchmarks is confirmed via 

either sub-mHa perturbative corrections, or consistent extrapolations to the FCI limit. For 

methylene with aug-cc-pVQZ and ethylene with ANO-L-pVDZ, perturbative corrections are 

sub-mHa. For ethylene with ANO-L-pVTZ and ozone with cc-pVDZ, perturbative corrections 

are 1.4 – 2.6 mHa, allowing accurate extrapolations to FCI. The small ܧ௉்  indicates 

closeness to the FCI limit, which minimizes errors in extrapolation, allowing consistent 

energies to be returned with various fitting equations and data points. This is indeed the 

case (Appendix D.2 and D.3), with all extrapolated energies being within 0.4 mHa of the 

most accurate obtained ܧௌு஼ூ .  

Methylene’s convergence progression is well behaved due to having only six valence 

electrons (Appendix D.1). For ethylene, the relationship between ௉்݂  and absolute error is 

presented in Figure 5.2 for ANO-L-pVTZ, while ANO-L-pVDZ results show similar trends, as 

seen in the Appendex D.2 and Table 5.1. Ethylene’s absolute energies require an average 

௉்݂  of 14.0% and 12.1% to become within 1.6 and 1 mHa of the converged SHCI limit, 
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respectively, whereas relative energies reach errors of 1.6 and 1 mHa with average ௉்݂  

values of 14.8% and 10.9%. The relative energies require slightly lower ௉்݂  (i.e. tighter 

߳௩௔௥) to converge to sub-mHa accuracies. This is somewhat surprising as one expects 

energy gaps to converge faster than absolute energies due to cancellation of errors. Closer 

examination shows that this behavior is due to the non-variational character of the 

perturbative corrections, which allow ܧௌு஼ூ  to converge to the FCI limit from below or 

above. This situation occurs for ethylene’s 13B1u and 11Ag states, which converge to their 

FCI limits from above and below respectively, leading to slower convergence of the relative 

energies.  

 

Table 5.1 Values of ௉்݂ where errors for absolute and relative energies have fallen below 1.6 or 1 mHa. 

Required ௉்݂for Convergence (%) 

Energy Type Absolute Relative 

Error Threshold (mHa) 1.6 1 1.6 1 

Methylene/aug-cc-pVQZ 10.0 6.6 12.4 8.2 

Ethylene 
ANO-L-pVDZ 12.9 10.3 17.1 10.4 

ANO-L-pVTZ 14.0 12.1 13.8 10.9 

Ozone/cc-pVDZ 4.4 2.8 21.3 13.8 

Average 10.3 8.0 16.4 10.8 
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Figure 5.2 The relationship between ௉்݂  and absolute error for relative and absolute energies in 
ethylene/ANO-L-pVTZ. 
 

Ozone in the cc-pVDZ basis and at its ground-state geometry is the next benchmark 

system. The most accurate run was accomplished with ߳௩௔௥ = 7 ⋅ 10ି଺ Ha, giving a 21A1-11A1 

gap of 4.10 eV. With SHCI, the gap is converged to within 1 mHa when treating only 104 

determinants out of the 1016 in the FCI space. Figure 5.3 graphs the relationship between ௉்݂ and 

errors as in ethylene, where it can be seen that a small ௉்݂ of 2.8% is necessary to converge 

absolute energies to sub-mHa errors. The relative energies, however, converge more quickly, 

with ௉்݂ values of 21.3% and 13.8% needed to obtain errors under 1.6 and 1 mHa, respectively.  
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Figure 5.3 The relationship between ௉்݂ and absolute error for both relative and absolute energies in 
ozone/cc-pVDZ at the equilibrium geometry. 

 

The values of ௉்݂ that indicate convergence of ܧௌு஼ூ  are compiled in Table 5.1. Absolute 

energy errors are inconsistently estimated by ௉்݂, as seen by the large difference in ௉்݂ values for 

ozone compared to methylene and ethylene. The relationship between ௉்݂ and relative energies 

is better behaved, with only minor variations in the ௉்݂ quantities signaling tight convergence. 

Relative energies are consistently converged to within 1 mHa with an average ௉்݂ = 10.8% and 

to within 1.6 mHa with an average ௉்݂ = 16.4%. The required ௉்݂ for convergence appears to 

rise as the number of correlated electrons increases. Thus, it is possible that in the larger 

molecules, relative energies will converge at slightly higher ௉்݂ than needed for the benchmark 

systems. Regardless, this work will utilize conservative values of ௉்݂ to signal convergence, with 

௉்݂ values below 10% and 15% taken to signal errors in relative energies below 1 and 1.6 mHa 

respectively.  

 

5.6.2 Methylene 

 Methylene is a prototypical test case for advanced electronic structure methods, 

being small enough to be amenable to canonical FCI benchmarks, yet still requiring 

accurate treatment of dynamic and static correlations for correct excitation energies.45–51 
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11B1, and 21A1. With only six valence electrons, SHCI can be used with the large aug-cc-

pVQZ basis. With ߳௩௔௥ = 1 ⋅ 10ିହ Ha, perturbative corrections were less than 0.01 mHa, 

indicating strict convergence of the SHCI values to the FCI limit. The Appendix D.1 shows 

methylene’s adiabatic energy gaps are converged to sub-mHa accuracy at ߳௩௔௥ = 3 ⋅

10ିଷ Ha, so ߳௩௔௥ = 1 ⋅ 10ିହ Ha represents tighter convergence than needed to reach 1 mHa 

accuracy. Table 5.2 shows the most accurate SHCI adiabatic energy gaps differ from 

experiment by about 0.01 eV.28 Comparing canonical FCI in the TZ2P basis with SHCI in the 

larger aug-cc-pVQZ basis shows differences of up to 0.144 eV, suggesting that large basis 

sets are necessary to fully describe correlation in methylene. This was first hinted at by 

diffusion Monte Carlo (DMC) results, 48 which are less sensitive to basis set, that agree with 

SHCI to within about 0.02 eV. CR-EOMCC(2,3)D relative energies are also converged to 

within 1 mHa of the benchmark SHCI values, indicating that high-level coupled cluster 

calculations can correlate six electrons sufficiently to obtain FCI-quality energy gaps. 

 

Table 5.2 Methylene total and relative energies. 

State SHCIa (Ha)    
13B1 -39.08849(1)    
11A1 -39.07404(1)    

11B1 -39.03711(1)    
21A1 -38.99603(1)    

Gaps SHCIa (eV) 
CR-EOMCC(2,3)D 

(eV) FCI (eV)b DMC (eV)c Exp (eV) 
11A1-13B1 0.393 0.415 0.482 0.406 0.400d 
11B1-13B1 1.398 1.422 1.542 1.416 1.411e 
21A1-13B1 2.516 2.499 2.674 2.524 - 

a ܧௌு஼ூ  at ߳௩௔௥ = 1 ⋅ 10ିହ 
c FCI/TZ2P results from reference 28 

c Diffusion Monte Carlo results from reference 48 
d References 28, 52 
e References 28, 53 
 

5.6.3 Ethylene 

 Ethylene is a prototypical benchmark system for electronic excitations, including a 

difficult-to-characterize 11Bu state. Although the 11Bu state is qualitatively well described by a π-

π* excitation, a quantitative description requires a thorough accounting of dynamic correlation 

between π and σ electrons.54–56 Here, SHCI is applied to the low-lying valence states, 11Ag, 11B1u 
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and 13B1u, in the ANO-L-pVTZ basis. Table 5.3 shows that SHCI total and relative energies 

compare favorably with previous FCIQMC57 and iFCI9 results (Appendix D.2 gives results in the 

smaller ANO-L-pVDZ basis). Table 5.3 also indicates that coupled cluster methods must account 

for more than triples excitations in order to accurately correlate this system, as CR-

EOMCC(2,3)D relative energies show errors greater than 1.6 mHa with respect to the SHCI 

benchmark values. With SHCI, absolute energies within 1 mHa of the FCI limit were obtained at 

߳௩௔௥ = 1 ⋅ 10ିଷ Ha, where only 105 variational determinants were considered out of a FCI space 

of 1018. These results suggest that polyatomics with up to 12 valence electrons and triple-zeta 

basis sets can now be considered unchallenging for FCI-level approximation. SHCI benchmarks 

agree with prior simulations which indicate the 11B1u vertical excitation does not correspond to 

experimental band maxima.58  

 

Table 5.3 SHCI ethylene/ANO-L-pVTZ energies compared to literature values. 

State SHCIa (Ha)  FCIQMC  (Ha)b   
11Ag -78.4381(1)  -78.4370(2)  
11B1u -78.1424(1)  -78.1407(3)  
13B1u -78.2693(1)  -  

Gap SHCIa (eV) 
CR-EOMCC(2,3)D 

(eV) FCIQMC  (eV)b iFCI (eV) Exp (eV) 
11B1u-11Ag 8.05 8.25 8.06 b - 7.66d 
13B1u-11Ag 4.59 4.76 - 4.64 c 4.3-4.6e 

a ܧௌு஼ூ  at ߳௩௔௥ = 1 ⋅ 10ିହ 
b FCIQMC/ANO-L-pVTZ results from reference 57 
c iFCI/cc-pVTZ results from reference 9 
d Experimental band maximum from reference 58 
e Experimental band maxima from references 59–61 
 

5.6.4 Ozone 

 Ozone’s potential energy surfaces have held great interest due to its role in atmospheric 

chemistry.62 An interesting feature of these surfaces predicted by computational studies is the 

existence of a metastable ring geometry on the ground state surface.63 A lack of experimental 

evidence for such a species has fueled multiple studies of the pathway leading to the ring species 

over the years.64–69 The most recent such study by Ruedenberg et al. utilizes multi-reference CI 

with up to quadruple excitations,29 expending considerable effort on selecting and justifying an 

active space. To provide an accurate picture at critical points along the theorized pathway with 
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even treatment of all valence electrons, SHCI is applied to ozone’s 21A1-11A1 gap with cc-pVTZ 

at the three geometries of interest shown in Figure 5.4: the equilibrium geometry (termed the 

open ring minimum (OM)), the hypothetical ring minimum (RM), and the transition state (TS) 

between these two.  

 

 
Figure 5.4 Ozone geometries. OM is the open minimum, ground state equilibrium geometry. RM is the ring 
minimum, a metastable geometry predicted by theory. TS is the transition state between OM and RM. 
. 
 

Ozone in the cc-pVTZ basis is too large to reach sub-mHa perturbative corrections, as 

computations with the necessary ߳௩௔௥ would exceed available memory. The ܧ௉் corrections for 

the best available SHCI calculation, at ߳௩௔௥ = 3 ⋅ 10ିହ Ha, range from 15.8-25.8 mHa, and the 

extrapolated energies differ by up to 2.6 mHa from the best SHCI values (Appendix D.3), 

indicating that sub-mHa accuracy in total energies was not obtained. ௉்݂  values of 2.8% and 

under, however, are recovered for all geometries at ߳௩௔௥ = 3 ⋅ 10ିହ Ha, which is well below the 

metric established for chemical accuracy of relative energies (15%). Furthermore, graphing the 

energy gaps at various ߳௩௔௥ (Figure 5.5) shows little variance as the tightest convergence limit is 

approached. The RM data set in Figure 5.5 is truncated above ߳௩௔௥ = 5 ⋅ 10ିସ (i.e. −log ߳ ௩௔௥ =

3.3) because the 21A1 wave function is qualitatively different at looser ߳௩௔௥ , leading to large 

changes in the 21A1-11A1 energy gap. This serves as a cautionary case, demonstrating that 

qualitatively correct wave functions are not guaranteed at loose ߳௩௔௥ , as important groups of 

determinants may be left out. This issue was only seen with a relatively large number of 

electrons correlated in a moderately large basis. In these cases, we recommend ߳௩௔௥ ≤ 1 ⋅ 10ିସ 

to ensure reasonable convergence. 

In Table 5.4, the SHCI energy gaps are compared to Ruedenberg et al’s MRCI results.29 

SHCI results mostly resemble MRCI estimates, except for the RM geometry, where the gaps 
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differ by more than 1 eV. Due to the relatively tight convergence, these SHCI results should be 

taken as the current best 21A1-11A1 vertical excitation energies at the OM, RM, and TS 

geometries. SHCI therefore also allows some insight into the nature of the RM species. Along 

the 11A1 potential surface, the RM and TS geometries lie 1.30 eV and 2.40 eV, respectively, 

above the OM geometry. This large barrier suggests that electronic excitations in ozone are 

likely required to reach RM, but the RM species should be relatively stable with a 1.10 eV 

barrier to return to the OM geometry. To obtain these results, 108 variational determinants out of 

1023 in the FCI space were required, but no active space selection was needed. 

 

Table 5.4 SHCI ozone/cc-pVTZ 21A1-11A1 gaps compared with Ruedenberg et al. All values in eV. 

Geometry SHCIa MRCI (SDTQ)b 
OM 4.13 3.54-4.63 
RM 6.16 7.35-8.44 
TS 0.04 0.05-0.16 

a ܧௌு஼ூ  at ߳௩௔௥ = 3 ⋅ 10ିହ Ha 
b From reference 29 
 

 
Figure 5.5 21A1-11A1 energy gaps versus -log ߳௩௔௥  for ozone/ANO-L-pVTZ at OM, RM, and TS geometries. 
 

5.6.5 Shorter Polyenes: Butadiene and Hexatriene 

 Butadiene and hexatriene are part of the polyene series, long studied for their role as 

prototypical organic conducting polymers. The spacing of the low-lying valence excited states 

-0.01

0.00

0.01

0.02

0.03

0.04

2.0 2.5 3.0 3.5 4.0 4.5

En
er

gy
 (H

a)

-log ߳ݎܽݒ

Ozone 21A1-11A1

OM RM TS

Shifted by 0.2 Ha

Shifted by 0.14 Ha



 113

has proven especially challenging to electronic structure methods.30–38 In butadiene and 

hexatriene, SHCI is thus applied to the 11Ag, 11B1u, 13B1u, and 21Ag states to provide accurate 

benchmarks. Butadiene and hexatriene are of special interest because their 11B1u and 21Ag states 

are nearly degenerate, resulting in conflicting reports of state ordering at lower levels of theory. 

These systems are too large for the routine application of FCI-level methods, although limited 

FCIQMC57 and DMRG15 studies have been performed on butadiene. 

 

5.6.5.1 Butadiene 

Butadiene (C4H6) has FCI spaces of 1026 and 1035 determinants in the ANO-L-pVDZ and 

pVTZ basis sets, respectively, putting it at the edge of accessibility for modern FCI-quality 

approximations.15,57 In the triple-zeta basis at ߳௩௔௥ = 3 ⋅ 10ିହ Ha, the resulting variational space 

of 108 determinants leads to the perturbative corrections of ~60 mHa and ௉்݂ < 10% (Table 

5.5). In butadiene, all states approach the FCI limit from above, allowing cancellation of errors to 

produce accurate energy gaps for ௉்݂ above the recommended 10%. Figure 5.6 provides further 

evidence that the energy gaps are converged, as they vary by less than 1 mHa as the tightest 

convergence level (߳௩௔௥ = 3 ⋅ 10ିହ) is approached.  

For the 11Ag ground state in an ANO-L-pVDZ basis, SHCI results can be compared in 

more detail to related FCI-level approximations in the literature. ANO-L-pVDZ’s 11Ag state 

energy of -155.5528 is within 4 mHa of the most accurate estimates, a DMRG result of -

155.557215 and an iFCI value of -155.5567 Ha.10 Linear extrapolation of the energies slightly 

overshoots these targets, producing -155.5592 Ha (Appendix D.4). These results affirm that the 

absolute energy errors are not well predicted by the ௉்݂ metric (c.f. Table 5.1), which is 6.3% at 

the tightest ߳௩௔௥ (3 ⋅ 10ିହ). 
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Figure 5.6 Energy gaps versus -log ߳௩௔௥  for butadiene with ANO-L-pVDZ and ANO-L-pVTZ basis sets. The 
energy gaps are well converged by ߳௩௔௥ = 1 ⋅ 10ିସ Ha. 
 

 Table 5.5 shows that SHCI butadiene energy gaps are similar to previous high-level 

theoretical calculations. For ANO-L-pVTZ, the calculated 13Bu-11Ag gap at is just 0.03 eV away 

from that computed by iFCI, and the 11Bu-11Ag gap is within 0.01 eV of FCIQMC. Since the 

21Ag-11Ag energy gap does not currently have other FCI-level benchmarks, the SHCI values 

represent the current best theoretical estimate for the 21Ag-11Ag energy gap in butadiene, 6.73 

eV. The small gap between the 21Ag and 11Bu states is consistent with recent theoretical70 and 
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experimental71 investigations demonstrating ultrafast population transfer from 11Bu to 21Ag, 

which implies close proximity of the two states. SHCI’s relative ordering of the 21Ag / 11Bu 

states agrees qualitatively with EOM-CC results,72 but the 21Ag-11Ag gaps differ by 0.36 eV, 

indicating that the doubly-excited character of 21Ag was treated inadequately in the EOM-CC 

approach. As in ethylene, the 11Bu-11Ag gap differs from experiment by 0.45 eV, agreeing with 

prior indications that experimental band maxima of butadiene do not correspond to the vertical 

excitation energy.72 

 

Table 5.5 Comparison of SHCI butadiene energy gaps with literature values. All values in eV. 

Basis 
Set 

Gap ௉்݂ 
(%) 

Best 
SHCIa 

EOM-
CCSDTQ/MBEb FCIQMC iFCI Exp 

ANO-L-
pVDZ 

21Ag-11Ag 7.6 6.74 - - - - 

11Bu-11Ag 6.6 6.57 - 6.53c - 5.92f 

13Bu-11Ag 6.9 3.5 - 3.45d 3.45e 3.22g 

ANO-L-
pVTZ 

21Ag-11Ag 8.1 6.73 6.39 - - - 

11Bu-11Ag 7.9 6.37 6.21 6.38d - 5.92f 

13Bu-11Ag 7.8 3.47  - - 3.44e 3.22g 
a ܧௌு஼ூ  at ߳௩௔௥ = 3 ⋅ 10ିହ Ha for both ANO-L-pVDZ/TZ basis sets 
b EOM-CC results from reference 72 
c FCIQMC/ANO-L-pVDZ result from reference 57 
d FCIQMC/truncated ANO-L-pVTZ result from reference 57 
e iFCI 6-31G* and cc-pVTZ results from reference 9 
f  Experimental band maxima from references 73–75 
g  Electron impact band maximum from reference 76 
 

5.6.5.2 Hexatriene 

Hexatriene is at the current frontier of FCI-level computations, with a demanding FCI 

space of 1038 in a double-zeta basis. Only one other algorithm, iFCI,9 has approached FCI 

energies for such a large polyatomic. iFCI has estimated the singlet-triplet gap for hexatriene, but 

is not immediately applicable to singlet excited states. The current highest level computational 

estimates of valence energy gaps in hexatriene are therefore presented here. Hexatriene’s relative 

energies have ௉்݂  values under 14.9%, obtained by treating 108 determinants variationally at 

߳௩௔௥ = 5 ⋅ 10ିହ Ha. This value is close to the ௉்݂  threshold of 15% for chemical accuracy, but 

since all energies all converge to the FCI limit from above, improved cancellation of errors is 

expected. Indeed, the hexatriene energy gaps shown in Figure 5.7 indicate tight convergence, 
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with sub-mHa variations among relative energies for the tightest heat-bath tolerances. In 

hexatriene, the 11Bu state qualitatively changes at ߳௩௔௥ = 7 ⋅ 10ିସ, but the 11Bu-11Ag gap is well-

behaved after this point. As in butadiene, investigations of hexatriene photo dynamics77–80 place 

11Bu close in energy to 21Ag. At the vertical excitation geometry, SHCI places 21Ag above 11Bu 

with a small gap of only 0.08 eV. For the triplet state, the SHCI 13Bu-11Ag gap agrees well with 

iFCI at the slightly smaller 6-31G* basis, differing by 0.05 eV (Table 5.6). Once again, the SHCI 

11Bu-11Ag gap differs significantly from experiment,81 indicating that experimental band maxima 

do not correspond to vertical excitation energies in hexatriene. 

 

 
Figure 5.7 Energy gaps versus -log ߳௩௔௥  for hexatriene/ANO-L-pVDZ. 21Ag-11Ag and 11Bu-11Ag values are 
shifted by 0.1 Ha. Fluctuations in energy gaps settle under 1 mHa by -log ߳௩௔௥  =4.0, ߳௩௔௥ = 1 ⋅ 10ିସ Ha. 
 

Table 5.6 Comparison of SHCI hexatriene/ANO-L-pVDZ energy gaps with literature values. All values in eV. 

Gap ௉்݂(%) SHCIa CC iFCI Exp 
21Ag-11Ag 14.9 5.73 5.72b 5.21e 
11Bu-11Ag 14.6 5.61 5.30b 4.95,f 5.13f 
13Bu-11Ag 14.7 2.86 2.80c 2.81d 2.61f 

a ܧௌு஼ூ  at ߳௩௔௥ = 5 ⋅ 10ିହ Ha  
b CR-EOMCC(2,3)D/TZVP from reference 38 
c CCSD(T)/6-31G* from reference 9 

d iFCI/6-31G* result from reference 9 
e Raman scattering results from reference 82 
f Electron impact band maximum from reference 81 
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5.7 Conclusion 

 SHCI represents an important step forward for SCI+PT methods, enabling computations 

of FCI-quality energies in some of the largest systems to date. In order to determine convergence 

for these polyatomics, a new metric for evaluating SCI+PT energies was introduced. This metric, 

௉்݂, was empirically shown to be a reliable indicator of convergence in energy gaps, but not 

absolute energies. SHCI therefore can reach systems as large as butadiene and hexatriene, where 

CI spaces of 107-108 determinants were used to represent FCI spaces of 1035 and 1038, 

respectively, and still produce excitation energies to chemical accuracy.  

SHCI achieves this success by treating all valence electrons on an equal footing, and 

recovering most of the correlation energy in a deterministic fashion. These properties give it 

advantages over DMRG, which relies on structuring the correlation into an effectively 1-

dimensional problem, and over FCIQMC, which relies heavily on stochastic sampling. While the 

computational scaling of SHCI is still exponential, its ability to systematically reach FCI-level 

energies (with decreasing ߳௩௔௥) means that ground states and excited states in polyatomics with 

up to ~32 electrons can now be studied with sub-mHa accuracy. 
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Chapter 6: Final Remarks 
 

By harnessing light, researchers gain access to a wide regime of photochemical 

transformations and processes that can be used in technologies that benefit human 

civilization. The development and optimization of these technologies requires an in-depth 

understanding of excited state dynamics, which can be provided by computational 

chemistry methods. However, the widespread adoption of computational chemistry is 

currently obstructed by two major hurdles. First, the wide variety of state characters are 

difficult to treat equally within a single truncated CI method, which can lead to excited state 

energy gaps that are qualitatively incorrect. Second, CI methods that treat all states equally 

are typically very expensive, utilizing vast amounts of computational resources and 

necessitating specialized “clusters” of computers. The efficient treatment of both of these 

problems are the main areas to which this dissertation has contributed. 

The initial Chapters focused on treating states of disparate character equally with 

SF-CI methods, which utilize a high-spin reference instead of the typical HF reference, and 

are particularly well-suited for the multiexciton TT states in singlet fission. Chapter 2’s 

investigation of a quinoidal bithiophene with RAS(h,p)-SF determined that generation of 

independent triplets was unfeasible given experimental conditions, leading to the 

hypothesis of a long-lived 21Ag state. The single exciton states of the quinoidal bithiophene 

were only qualitatively treated by RAS(h,p)-SF, necessitating the use of XMS-CASPT2 

methods to obtain a holistic energetic picture of the excited state dynamics. Extensions to 

RAS(h,p)-SF were developed in Chapter 3 in an effort to increase the range of states that 

RAS-SF methods could be quantitatively applied to. The resulting method, RAS(S,2h,2p)-SF, 

demonstrated the importance of extended descriptions of the 5(TT) state, placing 5(TT) 

below 1(TT) in a tetracene dimer, in direct opposition to predictions obtained with the 

lower RAS(h,p)-SF method. However, single exciton states remained qualitatively 

described.  
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These results illuminate the difficulties inherent in solving the problem of 

unbalanced references. While SF-CI methods treat excited and ground states on a more 

balanced footing, it still fails to treat all states equally, returning only qualitative single 

exciton wave functions. Straightforward treatment of this problem by expanding the CI 

space with various classes of excitations, as in RAS(S,2h,2p)-SF, was unable to obtain 

quantitative energies. Alternatives, such as MCSCF, require one to tailor chosen reference 

configurations to the states and systems of interest. An open question in the field then, is 

how one can generate balanced references in an automated manner that is not too costly? If 

such a method existed, quantitative energy gaps for states of many different characters 

could be obtained at truncated CI levels, greatly increasing the system sizes to which CI 

could be applied for excited state studies.  

In lieu of balanced references, one can develop strategies for improving the 

efficiency of FCI, which does not depend on the reference choice. The ISD algorithm 

presented in Chapter 4 took advantage of natural orbitals to divide the Hamiltonian into a 

series of increasingly accurate submatrices to be solved iteratively. A well-behaved error 

metric, the energy difference between iterations, allowed one to stop iterating once errors 

fell below chemical accuracy, resulting in about an order of magnitude reduction in CI 

space. However, much larger reductions are necessary to reach a broader range of 

molecules. Chapter 5 applied the SHCI algorithm towards excited states, reducing the CI 

space by many orders of magnitude, treating a FCI space of 1038 with only 108 

determinants. This allowed the calculation of valence energy gaps on butadiene and 

hexatriene, two systems typically thought of as outside of the reach of FCI-level methods.  

To push FCI-level calculations to ever larger systems, attributes of the various 

methods that approximate FCI will likely need to be combined. For instance, SHCI already 

combines CI, PT, and stochastic methodology to great effect. The ISD and SHCI strategies 

are some of the more flexible FCI approximations, being applicable to excited states while 

avoiding strong dependencies on inherent Hamiltonian structure (as in DMRG) or 

stochastic sampling (as in FCIQMC). However, there are some properties that SHCI could 

benefit from, such as the low basis set dependence of the DMC methodology. Especially 

important to enlarging future FCI-level calculations will be reducing the exponential scaling 

of FCI. So far, only iFCI has managed to reduce the FCI problem to polynomial scaling, 
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although it is currently only applicable to ground states. Although SHCI has proven very 

powerful already, implementing the advantages inherent in other FCI approximations 

would increase its flexibility and enable it to be applied towards much larger systems.  

There are a number of ways in which once could combine or refine the methods 

discussed in this dissertation. For instance, the generally applicable strategies of Chapters 4 

and 5 could be applied to the RAS-SF methodology, to reduce the cost of including more 

excitation classes. This would allow for studies of singlet fission systems that go beyond 

minimal model systems, which only approximate the true physical picture. The ISD strategy 

could also be refined with a dynamic ߟ(௜) series that changes with the system, as different 

systems may have different natural orbital occupation distributions. Variants of HCI that 

focus on energy differences, as in RAS(S,2h,2p)-SF and DDCI, could be developed, further 

reducing the necessary CI space for quantitative excitation energies. Further investigation 

into the stability of the ௉்݂  metric is also warranted, as only a few test cases were used to 

establish its practicality.  

This dissertation has extended the reach of CI methods for excited state quantities. 

However, much work remains to be done in the development of perfectly balanced 

references and FCI approximations. RAS(S,2h,2p)-SF enables one to deeply inspect the TT 

states of singlet fission, but shows indications that the high-spin references are unbalanced 

with respect to ground and single exciton states. With SHCI, FCI benchmarks are now 

possible for systems with about 32 electrons. Future developments of more balanced 

references or more efficient FCI approximations are greatly anticipated, as either would 

pave the way for computational chemistry to play a commanding role in the development 

of excited state chemistries.  
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Appendix A: Supporting Data for Chapter 2 

 

A.1 Computational Details/Data 

A.1.1 XMS-CASPT2 Geometries and Single Points 

 The first step in these calculations is to define an active space, as a CASSCF wave 

function and orbitals are necessary inputs for the XMS-CASPT2 computation. We chose an 

active space of 10 electrons in 8 π-orbitals, (10,8), in part due to the findings of the 

previous study.1 Analysis of the singlet wave functions indicated that the HOMO-4 π orbital 

had significant contributions to the 1Bu states, which come into play in the transition dipole 

moment calculations. Orbitals are discussed in terms of the irreducible representations of 

the C2h symmetry in the following order as in MOLPRO - (Ag, Au, Bu, Bg). 

We targeted five states, two 1Ag and three 1Bu, based on which states were available 

in the range of the experimental pump and probe energies (2.8 eV and 1.4 eV). All states 

were evenly weighted in the state-averaged CASSCF calculations. For the triplet manifold, 

we targeted only two states: one 3Bu and one 3Ag. XMS-CASPT2 computations utilized 

MOLPRO’s RS2 module. A level shift of 0.2 au was used to avoid the effect of intruder states.  

 

A.1.2 MCTDH Details 

 The quantum dynamics simulations were conducted using the Multiconfigurational 

Time Dependent Hartree-Fock (MCTDH) method, an efficient algorithm for solving the 

time-dependent Schrodinger equation. The vibronic coupling Hamiltonian was truncated at 

linear expansion, as shown in Equation A1, for four modes (three symmetric tuning modes 

and one asymmetric coupling mode). We generate the quasi-diabatic representation for the 

11Bu and 21Ag states by minimizing the squared error between the eigenvalues of the 2x2 

diabatic potential energy matrix and the state energies from RAS-SF(6,6) calculations 

(Figure A.1).  
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The three tuning modes were chosen as Condon-active symmetrical modes 

modulating the energy gap between 11Bu and 21Ag. The asymmetric coupling mode was 

chosen because it corresponded with the non-adiabatic coupling vector between 11Bu and 

21Ag as calculated at the CASSCF(4,4) level. Thus, the model Hamiltonian incorporates a 

quantitative measure of the coupling between the two states of interest through 

diabatization along the asymmetric coupling mode. 

We note that, along the symmetrical tuning modes, there should be no coupling 

between the states due to symmetry. Thus, along the tuning modes, a fit is being made to 

the adiabatic RAS-SF(6,6) potentials. The asymmetrical coupling mode however, breaks 

symmetry and induces coupling between 11Bu and 21Ag. Thus, along the coupling mode, 

diabatization is occurring.  

 

 
Equation A.1 Form of the linear vibronic coupling Hamiltonian. T(q) represents the kinetic energy operator 
while , , a, and b, are fit using the RAS-SF data. 

 

The resulting LVCH shows no interstate coupling for the three symmetric, tuning, 

modes (9, 48, 50) as expected from symmetry.  Parameters for the fit are reported in Table 

A.1.  For each vibrational mode, the residual sum of squares was less than 0.5 eV. 

 

Table A.1 Fitted parameters for the MCTDH simulations. All values are in Hartree. 

Mode 
Linear Coupling Parameters Ground 

State 
Frequency 

Excited State 
Frequency 

(w) 

MSE for 
fit a(1) a(2) b 

9 4.61E-03 1.45E-03 4.52E-04 1.10E-03 3.38E-03 1.21E-05 

48 
-1.39E-

02 
-3.18E-

03 0.00E+00 7.43E-03 5.61E-03 1.13E-04 
50 1.06E-02 5.52E-03 0.00E+00 7.50E-03 2.20E-03 2.96E-04 
51 0.00E+00 0.00E+00 1.82E-03 7.60E-03 7.60E-03 2.40E-04 

epsilon1 = epsilon2 =  6.90E-03 Ave. MSE: 0.000165 
Bath maximum frequency =  1.80E-02 
bath coupling strength = 4.05E-04 
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To account for energy dissipation in this system, a weakly interacting Ohmic bath of 

20 harmonic oscillators was included in the model.  The cutoff frequency ߱௙ of the bath 

was chosen to be ~2.2 times the largest frequency in the four-mode subsystem in order to 

avoid resonance with the system modes while maintaining a sufficiently long recurrence 

times (Table A.1). 

 

We also include plots of the expectation values for the vibrational quantum number, <n>, of 

each mode as a function of time (fs) (Figure A.1).   

 

 
Figure A.1 Expectation values of vibrational quantum number in each mode over time. 

 

A.2 Spin-Orbit Coupling 

The spin-orbit couplings (SOC’s) between the 21Ag and T2 (13Ag) states of QOT2 

were computed using CASSCF(10,8) wave functions at the XMS-CASPT2 21Ag geometry 

using MOLPRO. Three states were targeted: two 1Ag and one 3Ag state, with the two 1Ag 
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states weighted as 0 and 1, to obtain an accurate description of the two states of interest 

(13Ag and 21Ag). MOLPRO provides both mean-field and Breit-Pauli spin operators. The 

value quoted in the paper, 0.0043 cm-1, is from the Breit-Pauli operator. The Breit-Pauli 

operator was chosen because includes both one and two-electron operators as opposed to 

the mean field – which approximates the two electron terms.2 The mean-field operator 

gives 0.00043 cm-1. We then calculated a Marcus rate for ISC in the high-temperature limit 

as described by Beljonne et al.3 This calculation is detailed below. 

The golden rule expression for radiationless transitions, shown below, requires the 

Franck-Condon weighted density of states (FCWD).  

݇ூௌ஼
ூி =

ߨ2
ℏ

〈 Ψூ
ଵ |ௌைܪ| Ψி

ଷ 〉ଶ ∙  ܦܹܥܨ

 

By taking the high-temperature limit, we can write FCWD as, 

ܦܹܥܨ =
1

ܴܶߣߨ4√
exp ቈ−

(Δܧ + ଶ(ߣ

ܴܶߣ4
቉ 

 

where λ is the Marcus reorganization energy, R the gas constant, T the temperature (298K), 

and ΔE the energy difference between the final and initial states. We were unable to obtain 

the 13Ag geometry at the XMS-CAPT2 (10,8) level due to poor convergence of the optimizer. 

Examining the 13Ag wave function indicates small contributions from the highest and 

lowest LUMO and HOMO in the (10,8) space. So, we instead use an active space of (8,6) to 

optimize the 13Ag geometry, which converged satisfactorily. The resulting values for ISC 

from 21Ag to 13Ag are  

 

ߣ = 0.15 eV,  ܧ߂ = 0.14 eV, ܴܶ = 0.0257 eV, with ℏ = 6.582 ∙ 10ିଵ଺eV∙s 

 

Utilizing 0.0043 cm-1 = 5.33x10-7 eV, we obtain a rate constant of 

 

݇ூௌ஼
ூி =

ߨ2
ℏ

(5.33 ∙ 10ି଻)ଶ ∙
1

ߨ4√ ∙ 0.150 ∙ 0.0257
exp ቈ−

(0.290)ଶ

4 ∙ 0.150 ∙ 0.0257
቉ = 52.73 sିଵ 
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This is equivalent to a time constant of 18.9 ms. 

While QOT2’s optimized structure is planar in the electronic states of interest, 

vibrational motion breaks this planarity. To approximate the effect of twisting on the 

degree of spin-orbit coupling, we calculated SOC’s at 15, 30, 45, and 60 degrees rotation 

about the central C=C bond. These SOC calculations were set up slightly different because of 

the loss of symmetry due to the C=C twist. We used the same (10,8) active space, using 

visual inspection to insure that all π orbitals were chosen for the active space. Four states 

were targeted: the two lowest singlets and the two lowest triplets. Weighting for the 

CASSCF procedure was set to 0,1 for both singlets and triplets, making it so that we 

targeted only the second highest state in both the singlet and triplet manifolds, which 

corresponds to the 21Ag and 13Ag states of interest. The resulting SOC’s are tabulated in 

Table A.2. They all stay quite low, indicating that ISC will play a negligible role in the 

dynamics of the 21Ag exciton, even with twisting.  

 

Table A.2 Computed SOC for twisted QOT2. The main row to note is the bottom one, which square-roots the 
sum of the squares of the X , Y, and Z components and indicates that the overall SOC is small. This means the 
rate will also be small due to the 〈 Ψூ

ଵ |ௌைܪ| Ψி
ଷ 〉ଶ factor in the rate equation above. 

 Twist (degrees) 15 30 
Operator Mean-Field Breit-Pauli Mean-Field Breit-Pauli 
HSO,x (cm-1) 1.71E-06 1.26E-04 2.25E-04 4.49E-04 
HSO,y (cm-1) -3.87E-05 -4.54E-04 -7.19E-04 -1.47E-03 
HSO,z (cm-1) -3.34E-04 -4.99E-03 -4.02E-03 -8.15E-03 
sqrt(sum2) (cm-1) 3.36E-04 5.02E-03 4.09E-03 8.29E-03 
sqrt(sum2) (eV) 4.17E-08 6.22E-07 5.07E-07 1.03E-06 

  45 60 
Operator Mean-Field Breit-Pauli Mean-Field Breit-Pauli 
HSO,x (cm-1) 2.14E-03 2.39E-03 5.14E-03 5.27E-03 
HSO,y (cm-1) -1.94E-03 -2.78E-03 -1.77E-02 -1.77E-02 
HSO,z (cm-1) -1.31E-02 -1.60E-02 -4.48E-02 -4.58E-02 
sqrt(sum2) (cm-1) 1.34E-02 1.65E-02 4.84E-02 4.94E-02 
sqrt(sum2) (eV) 1.66E-06 2.04E-06 6.00E-06 6.12E-06 
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A.3 Pentacene Dimer Natural Orbitals 

A publication by Zimmerman et al.4 calculated the geometry of an embedded 

pentacene dimer and found that the excimer relaxes along an inter-pentacence C-C 

coordinate from 5.6 Å to 5.3 Å separation. Thus, the occupancy numbers and natural 

orbitals of the 1(TT) state were calculated at the 5.3 Å geometry. RAS-SF(4,4) with a quintet 

reference and 6-31G* was used. 

 

A.4 Localized Orbitals 

 Localized orbitals were obtained via Pipek-Mezey localization5 of the four frontier  

(HOMO-1 to LUMO+1) ROHF quintet molecular orbitals.  

 

A.5 Constrained Hartree-Fock 

We used constrained HF in Q-Chem to calculate an approximate geometry for two 

separated triplets in the 6-31G* basis. An αα triplet was placed on the left half of QOT2 and 

a ββ triplet on the right.  
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A.6 TDM Stability 

 
Figure A.2 TDM calculations for CASSCF and RAS-SF methods. These preliminary TDM calculations were run 
at geometries obtained at the CASSCF(10,8) and RAS-SF(10,8) levels . Although the major variation in CASSCF 
TDMs occurs at the lower active spaces, the RAS-SF TDMs have greater overall stability due to inclusion of 
increased σ-π dynamic correlation. Analysis of the wave functions indicate that the HOMO-4 orbital is integral 
to describing the 2 and 31Bu states suggesting the (10,8) active space is most appropriate for TDM 
calculations. 

 

A.7 31Ag Energy Estimate  

 The energy of the 31Ag state was estimated using a XMS-CASPT2 calculation at the 

11Ag geometry with the (10,8) active space. Six states were computed: three 1Ag and three 

1Bu. Single points at this geometry showed that the 31Ag is located 1.26 eV above 11Bu. 11Bu 
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itself is located is located 2.69 eV above 11Ag. Given the pump beam’s energy (445 nm, 2.78 

eV), it is therefore unlikely that the 31Ag surface is accessible. 
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Appendix B: Supporting Data for Chapter 3 

 

B.1 Methylene 

Table B.1 Methylene absolute energies and excitation energy gaps without adiabatic corrections. 

  

(2,2) 
RAS(S,2h,2p) 

-SF (4,4) FCI 
RAS(h,p)-

SF RAS(S)-SF 
RAS(S,2h,2p)-

SF 
Absolute 
Energies 
(H) 

෨ܺ -38.932976 -38.950117 -38.957880 -39.012221 -39.066738 
 ã -38.910178 -38.932022 -38.937837 -38.992231 -39.048984 
 ෨ܾ -38.870739 -38.886496 -38.901123 -38.955164 -39.010059 
 ܿ̃ -38.814431 -38.815252 -38.858711 -38.914948 -38.968471 

Adiabatic 
Gap (eV) 

෨ܺ  ã 0.620 0.492 0.545 0.544 0.482 
෨ܺ  ෨ܾ 1.693 1.731 1.544 1.552 1.542 
෨ܺ  ܿ̃ 3.226 3.670 2.698 2.647 2.674 

 

 Adiabatic corrections were neglected for the reported RAS(S,2h,2p)-SF calculations 

on methylene (Table 3.1) so that comparisons between RAS-SF methods would be fair, 

since RAS(h,p)-SF and RAS(S)-SF do not have corresponding corrections. Correlation 

energy contributions from 2h-2p excitations are given in Table B.2. The corrected 

RAS(S,2h,2p)-SF values in Table B.3 are derived from the difference between the two states 

of interest. For instance, the correction for the (2,2) ෨ܺ  ã gap would be (-1.396- -1.340) = 

-0.056 eV. The corrections slightly improve RAS(S,2h,2p)-SF values compared to FCI 

results. 
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Table B.2 Correlation energy contributions (in eV) from 2h-2p excitations in methylene. 

(2,2) (4,4) 
෨ܺ -1.340 -0.270 
ã -1.396 -0.290 
෨ܾ -1.331 -0.264 
ܿ̃ -1.298 -0.242 

 

Table B.3 Adiabatic gaps with corrected RAS(S,2h,2p)-SF values. RAS(h,p)/(S)-SF and FCI values are 
reproduced for comparison purposes only and are the same as in Table B.1. 

Adiabatic 
Gap (eV) 

(2,2) Corrected 
RAS(S,2h,2p)-SF 

(4,4) FCI 
RAS(h,p)-

SF 
RAS(S)-

SF 
Corrected 

RAS(S,2h,2p)-SF 
෨ܺ  ã 0.620 0.492 0.489 0.524 0.482 
෨ܺ  ෨ܾ 1.693 1.731 1.553 1.558 1.542 
෨ܺ  ܿ̃ 3.226 3.670 2.740 2.675 2.674 

 

B.2 Trimethyleneethane (TME) 

 Adiabatic corrections were neglected for the reported RAS(S,2h,2p)-SF calculations 

on TME (Table 3.2 and Figure 3.3). This was done so that comparisons between RAS-SF 

methods would be fair, since RAS(h,p)-SF and RAS(S)-SF do not have corresponding 

corrections. The corrections are tabulated in Table B.4. The (2,2) calculations have a 

maximum correction of 0.02 eV, while the (6,6) corrections have a maximum of 0.005 eV. 

The corrections do not change the conclusions reached by examination of (2,2) and (6,6) 

potentials. 

 

Table B.4 TME correlation energy from excluded 2h-2p excitations and resulting adiabatic corrections. 

  (2,2)  (6,6)  
Correlation Energy 

(eV) 
Correction 

(eV) 

Correlation Energy 
(eV) 

Correction 
(eV) 

Torsion 
(degrees) S0 T1 S0 T1 

0 -21.1609 -21.1411 0.0199 -14.3712 -14.3714 -0.0003 
10 -21.1509 -21.1321 0.0188 -14.3614 -14.3603 0.0011 
20 -21.1101 -21.0940 0.0161 -14.3189 -14.3181 0.0008 
30 -21.0529 -21.0390 0.0139 -14.2596 -14.2615 -0.0019 
40 -20.9928 -20.9830 0.0098 -14.2014 -14.2052 -0.0038 
45 -20.9765 -20.9669 0.0095 -14.1750 -14.1790 -0.0041 
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50 -20.9726 -20.9634 0.0093 -14.1513 -14.1556 -0.0044 
60 -20.9623 -20.9555 0.0068 -14.1116 -14.1162 -0.0046 
70 -20.9473 -20.9435 0.0038 -14.0822 -14.0873 -0.0052 
80 -20.9000 -20.9005 -0.0005 -14.0637 -14.0691 -0.0054 
90 -20.9133 -20.9141 -0.0008 -14.0560 -14.0615 -0.0054 

 

B.3 Tetracene 

B.3.1 Monomer 

To select the basis for use in dimer calculations, a series of monomer calculations 

were run with differing basis sets (Table B.5). The basis that best balances cost versus 

accuracy, cc-pVTZ with f functions removed for carbon, and cc-pVDZ for hydrogen (C:cc-

pVTZ-f/H:cc-pVDZ), was chosen for dimer calculations. 

 

Table B.5 RAS-SF (2,2) calculations on a tetracene monomer with varying basis sets. The S0 values are 
absolute energies in Hartree, whereas the S1, S2, T1, and T2 values are vertical excitation energies, in eV. The 
first two columns use cc-pVTZ/pVDZ basis for all atoms. The following columns use shorthand to designate 
basis choice for Carbon and Hydrogen, where tz = cc-pVTZ, dz = cc-pVDZ, tz-f = cc-pVTZ minus f functions, etc. 

  
RAS(h,p)-SF 

cc-pVTZ cc-pVDZ C:tz/H:dz C:tz-f/H:dz C:tz-f/H:tz C:tz-f/H:tz-d 

S0 (H) 
-

688.85183 -688.69038 -688.83359 -688.80396 -688.82153 -688.81935 
S1 (eV) 4.022 4.113 4.022 4.025 4.023 4.025 
S2 (eV) 4.893 4.942 4.895 4.890 4.888 4.888 
T1 (eV) 1.935 1.948 1.936 1.932 1.931 1.931 
T2 (eV) 3.563 3.574 3.565 3.559 3.557 3.557 

 
RAS(S)-SF 

cc-pVTZ cc-pVDZ C:tz/H:dz C:tz-f/H:dz C:tz-f/H:tz C:tz-f/H:tz-d 

S0 (H) 
-

688.90533 -688.74349 -688.88710 -688.85752 -688.87510 -688.87293 
S1 (eV) 3.702 3.797 3.703 3.712 3.710 3.712 
S2 (eV) 4.649 4.674 4.649 4.639 - - 
T1 (eV) 1.858 1.881 1.858 1.857 1.856 1.856 
T2 (eV) 3.956 3.965 3.957 3.951 3.950 3.950 

 
RAS(S,2h,2p)-SF 

cc-pVTZ cc-pVDZ C:tz/H:dz C:tz-f/H:dz C:tz-f/H:tz C:tz-f/H:tz-d 

S0 (H) 
-

688.91303 -688.75091 -688.89479 -688.86512 -688.88271 -688.88054 
S1 (eV) 3.506 3.603 3.506 3.516 3.514 3.516 
S2 (eV) 4.790 4.825 4.803 4.791 4.784 4.784 
T1 (eV) 2.033 2.049 2.032 2.028 2.028 2.028 
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T2 (eV) 4.135 4.136 4.134 4.127 4.126 4.126 
# basis 
fxns 

708 312 600 474 582 522 

 

B.3.2 Dimer 

 All dimer calculations utilize the C:cc-pVTZ-f/H:cc-pVDZ basis chosen via inspection 

of Table B7. A number of virtual orbitals were also frozen. The number of virtual orbitals 

was chosen based on when RAS(S)-SF vertical gaps were converged to 0.001 eV for the first 

five singlet states (Table B.6) – which was at 300 frozen virtuals out of 826 total virtual 

orbitals.  

 

Table B.6 RAS(S)-SF tetracene dimer energies with varying frozen virtual orbitals. 

  RAS(S)-SF 
# frozen 
virtuals 700 500 400 300 250 

S0 (H) -1377.67552 -1377.69067 -1377.69274 -1377.69324 -1377.69361 
S1 (eV) 3.698 3.773 3.772 3.773 3.773 
S2 (eV) 3.899 3.819 3.821 3.821 3.820 
S3 (eV) 4.033 3.928 3.920 3.921 3.922 
S4 (eV) 4.254 4.190 4.189 4.189 4.190 
S5 (eV) 4.958 4.905 4.904 4.905 4.905 
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Appendix C: Supporting Data for Chapter 4 

 

C.1 Comparison with Other Selected CI Methods 

Here is a comparison of ISD to two other selected CI methods, CIPSI and HCI, which 

endeavor to obtain FCI quality energies. Comparisons between calculations converging energies 

to within 1 mHa of the FCI energy are presented in Table C.1, which shows that ISD’s timings 

are better than CIPSI, while HCI is much quicker than either. The combination of ISD+HCI 

surprisingly performs slightly worse than plain HCI. Looking closer, one sees that the final 

ISD+HCI iteration, which considered all orbitals, only took 15.4 sec, significantly quicker than 

the plain HCI calculation considering all orbitals. However, the cumulative cost of getting to the 

final iteration abolishes the savings of the final iteration. We see that ISD+HCI timings are the 

result of an interplay between the cost of earlier iterations and the savings garnered in later ones. 

The true advantage of combining HCI and ISD lies in its ability to overcome the memory 

bottlenecks that come with larger systems, as in the N2 dissociation in Chapter 4.  

 

Table C.1 Cost comparison between ISD, CIPSI, and HCI calculations (28 cores) converged to within 1 mHa of 
the FCI energy for OH cation in the cc-pVTZ basis.  

 ISD CIPSIa HCI ISD+HCI 
Timing (sec) 912.5 1609.8 24.3 37.3 

     
a Timings from ORCA 4.0’s CIPSI algorithm 
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Appendix D: Supporting Data for Chapter 5 

 

D.1 Methylene 

For methylene/aug-cc-pVQZ, steps of 0.05 ⋅ 10ିଷ Ha were used from ߳௩௔௥ = 7 ⋅ 10ିଷ 

to 1 ⋅ 10ିଷ Ha to allow for accurate estimates of ௉்݂ ’s necessary for convergence. Figure D.1 

shows ௉்݂  behavior as ߳௩௔௥ decreases. As reported in Table 5.1, the relative energies are 

converged to chemical accuracy with an average ௉்݂  = 12.4% and to sub-mHa with an 

average ௉்݂  = 8.2%. For absolute energies, chemical accuracy is obtained with an average 

௉்݂  = 10.0% and sub-mHa errors with an average ௉்݂  = 6.6%.  
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Figure D.1 The relationship between ௉்݂ and absolute error for both absolute and relative energies in 
methylene. 

 

D.2 Ethylene 

D.2.1 ANO-L-pVDZ Data 

For ethylene/ANO-L-pVDZ, steps of 0.1 ⋅ 10ିଷ Ha were used from ߳௩௔௥ = 1 ⋅ 10ିଶ to 

1 ⋅ 10ିସ Ha to allow for accurate estimates of ௉்݂ ’s necessary for convergence. Figure D.2 

shows ௉்݂  behavior as ߳௩௔௥ decreases. As reported in Table 5.1, relative energies are 

converged to chemical accuracy with an average ௉்݂  = 17.1% and to sub-mHa with an 

average ௉்݂  = 10.4%. For absolute energies, chemical accuracy is obtained with an average 

௉்݂  = 12.9% and sub-mHa errors with an average ௉்݂  = 10.3%.  
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Figure D.2 The relationship between ௉்݂ and absolute error for both absolute and relative energies in 
ethylene/ANO-L-pVDZ. 

 

 Table D.1 shows that ethylene/ANO-L-pVDZ energies agree well with past high-level 

calculations. The absolute energies are within a mHa of FCIQMC calculations with the same 

basis, and relative energies agree to within a mHa for FCIQMC, and is close to those 

computed with iFCI/6-31G*. CR-EOMCC(2,3)D results again show that more than triples 

excitations need to be accounted for coupled-cluster to accurately correlate 12 electrons, as 

was the case for ethylene/ANO-L-pVTZ. 
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Table D.1 Comparison of SHCI ethylene/ANO-L-pVDZ energies to literature values. 

State SHCIa (Ha)  FCIQMC  (Ha)b   
11Ag -78.3603(1)  -78.3599(1)  
11B1u -78.0536(1)  -78.0538(2)  
13B1u -78.1915(1)  -  

Gap SHCIa (eV) 
CR-EOMCC(2,3)D 

(eV) FCIQMC  (Ha)b iFCI (eV) Exp (eV) 
11B1u-11Ag 8.35 8.01 8.33 b - 7.66d 
13B1u-11Ag 4.60 4.70 - 4.66 c 4.3-4.6e 

a Perturbative energy at ߳௩௔௥ = 1 ⋅ 10ିହ 
b FCIQMC/ANO-L-pVDZ results from reference 1. 
c iFCI/6-31G* results from reference 2. 
d Reference 3. 
e References 4–6.  
 

D.2.2 ANO-L-pVTZ Extrapolations 

Extrapolations are accomplished by fitting a line to the graph of the variational 

energies versus perturbative corrections. Table D.2 reports extrapolated energies obtained 

by fitting with different data sets (߳௩௔௥ = [1 ⋅ 10ିଷ, 1 ⋅ 10ିହ] and [1 ⋅ 10ିସ, 1 ⋅ 10ିହ]) and 

fitting equations (linear and quadratic). Specifically, we report the differences of these 

extrapolated energies with our most accurate SHCI calculation at ߳௩௔௥ = 1 ⋅ 10ିହ. The 

extrapolated energies are extremely consistent, being at most 0.2 mHa away from the best 

SHCI value, indicating SHCI convergence. 

 

Table D.2 Differences in ethylene/ANOL-pVTZ extrapolated energies with the best ܧௌு஼ூ  at ߳௩௔௥ = 1 ⋅ 10ିହ. 
All values in Ha. 

߳௩௔௥ Range 
Fitting 

Equation 11Ag 11Bu 13Bu 

1 ⋅ 10ିଷ  to 
1 ⋅ 10ିହ 

Linear -0.0001 -0.0001 -0.0002 

Quadratic -0.0001 -0.0001 -0.0001 

1 ⋅ 10ିସ  to 
1 ⋅ 10ିହ 

Linear 0.0000 0.0000 -0.0001 

Quadratic 0.0001 0.0002 0.0001 

Best SHCI (߳௩௔௥ = 1 ⋅ 10ିହ) -78.4381 -78.1424 -78.2693 
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D.3 Ozone 

D.3.1 cc-pVDZ Extrapolations 

Extrapolations are accomplished by fitting a line to the graph of the variational 

energies versus perturbative corrections. Table D.3 reports extrapolated energies obtained 

by fitting with different data sets (߳௩௔௥ = [1 ⋅ 10ିଷ, 7 ⋅ 10ି଺] and [1 ⋅ 10ିସ, 7 ⋅ 10ି଺]) and 

fitting equations (linear and quadratic). Specifically, we report the differences of these 

extrapolated energies with our most accurate SHCI calculation at ߳௩௔௥ = 7 ⋅ 10ି଺. The 

extrapolated energies are very consistent, being at most 0.4 mHa away from the best SHCI 

value, indicating SHCI convergence. 

 

Table D.3. Differences in ozone/cc-pVDZ extrapolated energies with the best ܧௌு஼ூ  at ߳௩௔௥ = 7 ⋅ 10ି଺. All 
values in Ha. 

߳௩௔௥ Range 
Fitting 

Equation 11A1 21A1 

1 ⋅ 10ିଷ  to 
7 ⋅ 10ି଺ 

Linear -0.0003 -0.0002 

Quadratic -0.0004 -0.0003 

1 ⋅ 10ିସ  to 
7 ⋅ 10ି଺ 

Linear -0.0002 -0.0002 

Quadratic 0.0000 0.0000 

Best SHCI (߳௩௔௥ = 7 ⋅ 10ି଺) -224.9162 -224.7654 
 

D.3.2 cc-pVTZ Extrapolations 

Ozone/cc-pVTZ is the first system for which benchmark energies cannot be 

obtained with current computational resources, with the most accurate SHCI calculation at 

߳௩௔௥ = 3 ⋅ 10ିହ  leading to ܧ௉்  values of 15.8-25.8 mHa. Furthermore, Table D.4 shows that 

extrapolated energies are significantly different from the SHCI values, differing by up to 2.6 

mHa. This indicates that the SHCI energies are not converged to FCI limit.  
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Table D.4 Differences in ozone/cc-pVTZ extrapolated energies with the best ܧௌு஼ூ  at ߳௩௔௥ = 3 ⋅ 10ିହ. All 
values in Ha. 

Geometry ߳௩௔௥ Range Fitting Equation 11A1 21A1 

OM 

1 ⋅ 10ିଷ to 
3 ⋅ 10ିହ 

Linear -0.0009 -0.0009 

Quadratic -0.0012 -0.0014 

1 ⋅ 10ିସ to 
3 ⋅ 10ିହ 

Linear -0.0006 -0.0007 

Quadratic -0.0002 0.0004 

Best SHCI (߳௩௔௥ = 3 ⋅ 10ିହ) -225.1379 -224.9858 

RM 

1 ⋅ 10ିଷ to 
3 ⋅ 10ିହ 

Linear -0.0009 -0.0016 

Quadratic -0.0005 -0.0013 

1 ⋅ 10ିସ to 
3 ⋅ 10ିହ 

Linear -0.0005 -0.0014 

Quadratic 0.0006 -0.0004 

Best SHCI (߳௩௔௥ = 3 ⋅ 10ିହ) -225.0901 -224.8638 

TS 

1 ⋅ 10ିଷ to 
3 ⋅ 10ିହ 

Linear -0.0018 -0.0016 

Quadratic -0.0022 -0.0006 

1 ⋅ 10ିସ to 
3 ⋅ 10ିହ 

Linear -0.0019 -0.0003 
Quadratic 0.0026 -0.0011 

Best SHCI (߳௩௔௥ = 3 ⋅ 10ିହ) -225.0496 -225.0482 
 

D.4 Butadiene 

 
Figure D.3 Linear extrapolation of SHCI butadiene 11Ag energies. 
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