
Some Advances on Modeling High-Dimensional Data with
Complex Structures

by

Cheng Qian

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in the University of Michigan
2017

Doctoral Committee:

Professor Ji Zhu, Chair
Professor Judy Jin
Professor Elizaveta Levina
Professor Kerby A. Shedden

©Cheng Qian

qianche@umich.edu
ORCID iD: 0000-0002-9909-2130

2017

ACKNOWLEDGMENTS

First I wish to express my great appreciation to my advisor, Prof. Ji Zhu. Without his
encouragement and guidance, this dissertation could not have been completed. I am also
very grateful to my friends and classmates at Michigan, especially to Tianxi Li and Jiahe
Lin, for their constant help and incomparable friendship during my graduate studies. I
would also like to thank the dissertation committee members, Prof. Jionghua Jin, Prof.
Liza Levina, and Prof. Kerby Shedden, for their time to serve on the committee and their
useful comments on my research. Finally, I would like to thank my parents for their love
and confidence in me. My parents’ support is a big part of everything that I accomplish.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . v

List of Tables . vii

List of Appendices . viii

Abstract . ix

Chapter

1 Introduction . 1

1.1 Regularized least squares regression . 1
1.2 Gaussian graphical model . 3
1.3 Outline of the thesis . 4

2 Gaussian Graphical Models on Network-linked Data 6

2.1 Introduction . 6
2.2 Gaussian graphical model with network cohesion 9

2.2.1 Model estimation . 11
2.2.2 Model selection . 12

2.3 Theoretical properties . 13
2.3.1 Cohesive assumptions on the observation network 13
2.3.2 Mean estimation error bounds 16
2.3.3 Inverse covariance estimation error bounds 17
2.3.4 Oracle mean estimation and sufficiency of two-stage estimation . 20

2.4 Simulation studies . 23
2.4.1 Performance under different Gaussian graphs 23
2.4.2 Comparison with other methods under different cohesion settings 24

2.5 Data example: learning associations between statistical terms 27
2.6 Conclusion . 32

3 A Two-Step Approach for Estimating Directed Acyclic Graphs 33

3.1 Introduction . 33
3.2 The proposed two-step methodology . 34

3.2.1 Some useful theoretical results 35
3.2.2 Step 1: estimating the moral graph 38

iii

3.2.3 Step 2: reconstructing the DAG on the restricted space 39
3.3 Simulation studies . 43
3.4 Data example . 46
3.5 Summary . 48

4 Estimating Cointegrated Vectors with Structured Sparsity 49

4.1 Introduction . 49
4.2 Problem formulation and the proposed method 51

4.2.1 Estimation . 52
4.2.2 Tuning parameter selection. 56

4.3 Simulation studies . 57
4.4 Data examples . 61

4.4.1 Financial sector stock data . 62
4.4.2 Treasury yield data . 65

4.5 Summary. 67

5 Sparse Rank Support Vector Machines . 68

5.1 Introduction . 68
5.2 Sparse rank support vector machines . 70

5.2.1 Algorithm . 71
5.2.2 Tuning parameter selection . 74

5.3 Simulation studies . 75
5.3.1 Effects of n and m . 76
5.3.2 Effects of p and signal-to-noise ratio 79

5.4 Data example . 81
5.5 Summary . 86

6 Future Work . 88

Bibliography . 89

Appendices . 95

iv

LIST OF FIGURES

2.1 n = 400, p = 500, varying sparsisty, 200 replications 25
2.2 n = 400, sparsity is 0.01, varying p, 200 replications 25
2.3 Nontrivial cohesion in mean, n = 400, p = 500 26
2.4 Trivial cohesion in mean (constant), n = 400, p = 500. 26
2.5 The coauthorship network of 635 statisticians based on four statistical jour-

nals. Both the size and the color of each node indicate the degree of the node
(number of connections), with larger and darker nodes being statisticians with
more coauthors in the network. 29

2.6 Partial correlation graphs estimated using Glasso 31
2.7 Partial correlation graphs estimated using GNC-lasso 31

3.1 ROC curves for Θ̂ in identifying edges in the moral graph of A. Solid red
curves correspond to the weighted graphical lasso, and the dashed black curves
correspond to the standard graphical lasso. 45

3.2 ROC curves for Θ̂ when using A as the baseline. n = 100, p =30, 50, 100, 200. 45
3.3 Estimated dependence structures among 10 stocks using the one-step (left) and

two-step (right) methods . 47

4.1 Estimated cointegrated series 1 for financial stocks 64
4.2 Estimated cointegrated series 2 for financial stocks 64
4.3 Treasury yields of different maturities over time 66
4.4 Estimated cointegrated series for treasury yields 67

5.1 Cumulative return curves when long top 100 stocks and short bottom 100
stocks using individual features (features 1-6). 82

5.2 Cumulative return curves when long top 100 stocks and short bottom 100
stocks using individual features (features 7-12). 83

5.3 Cumulative return curves when long top 100 stocks and short bottom 100
stocks using individual features (features 13-18). 84

5.4 Cumulative return curves when long top 100 stocks and short bottom 100
stocks using individual features (features 19-21). 85

5.5 Correlations between 21 features’ daily returns when the long-short strategy is
used for each individual feature . 86

5.6 Cumulative return curves when long top 100 stocks and short bottom 100
stocks using the fitted model to rank stocks. The two vertical lines indicate
the separation of training, validation and testing sets. 87

v

A.1 The 20× 20 grid network in simulation studies. The size of the node indicates
the corresponding mean value in the nontrivial cohesion setting. 107

vi

LIST OF TABLES

3.1 Simulation results based on 50 replications 46

4.1 Simulation results for S1 with p = 100, r = 20 over 50 replications 61
4.2 Simulation results for S2 with p = 20, r = 5, ‖β·,j‖0 = 6, over 50 replications . 61
4.3 Simulation results for S2 with p = 30, r = 5, ‖β·,j‖0 = 4, over 50 replications . 61
4.4 Correlation matrix for log-returns of financial sector stocks 63
4.5 p-value from the ADF test on identified cointegrated series 63
4.6 Estimated cointegrating vectors for financial sector stocks 63
4.7 Estimated cointegrating vector for treasury yields with constant maturity . . . 66

5.1 Simulation results under 3 correlation structures. We set p = 100 and σ2’s
are set such that the signal-to-noise ratio is equal to 1. Three methods are
compared, the standard rank SVM, the `1-norm rank SVM and the elastic-net
rank SVM. All results are averages over 50 replications. 78

5.2 Simulation result under 3 correlation structures. We fix n = 100,m = 100.
Three methods are compared, the standard rank SVM, the `1-norm rank SVM
and the elastic-net rank SVM. All results are averages over 50 replications. . . 80

5.3 Cumulative returns and Sharpe ratios (SR) of the three methods in training,
validation and testing periods . 86

vii

LIST OF APPENDICES

A Proofs of the Main Results in Chapter 2 . 95

B Proofs of the Main Results in Chapter 4 . 108

viii

ABSTRACT

Recent advances in technology have created an abundance of high-dimensional data and

made its analysis possible (gene arrays, stock prices, text retrieval, recommender systems,

and many others). These data require new, computationally efficient methodology and

new kind of asymptotic analysis. This thesis consists of four projects that deal with high-

dimensional data with complex structures.

The first project focuses on the graph estimation problem for Gaussian graphical mod-

els. Graphical models are commonly used in representing conditional independence be-

tween random variables, and learning the conditional independence structure from data

has attracted much attention in recent years. However, almost all commonly used graph

learning methods rely on the assumption that the observations share the same mean vec-

tor. In the first project, we extend the Gaussian graphical model to the setting where the

observations are connected by a network and the mean vector can be different for differ-

ent observations. We propose an efficient estimation method for the model, and under the

assumption of network cohesion, we show that our method can accurately estimate the

inverse covariance matrix as well as the corresponding graph structure, both from the the-

oretical perspective and using numerical studies. To further demonstrate the effectiveness

of the proposed method, we also analyze a statisticians’ coauthorship network data to learn

the term dependency based on statistics publications.

The second project addresses the directed acyclic graph (DAG) estimation problem.

DAG is a commonly used tool to encode causal relationships between random variables.

Estimation of the DAG structure is often a challenging problem as the computational com-

ix

plexity scales exponentially in the graph size when the total ordering of the DAG is un-

known. To reduce the computational cost, and also with the aim of improving the estima-

tion accuracy via the bias-variance trade-off, we propose a two-step approach for estimating

the DAG, when data are generated from a linear structural equation model. In the first step,

we infer the moral graph of the DAG via estimation of the inverse covariance matrix, which

reduces the parameter space that one would search for the DAG. In the second step, we ap-

ply a penalized likelihood method for estimating the DAG restricted in the reduced space.

Numerical studies indicate that the proposed method compares favorably with the one-step

method in terms of both computational cost and estimation accuracy.

The third and fourth projects investigate supervised learning problems. Specifically,

in the third project, we study the cointegration problem for multivariate time series data

and propose a method for identifying cointegrating vectors with simultaneously group and

elementwise sparse structures. Such a sparsity structure enables the elimination of cer-

tain coordinates of the original multivariate series from all cointegrated series, leading to

parsimonious and potentially more interpretable cointegrating vectors. Specifically, we

formulate an optimization problem based on the profile likelihood and propose an iterative

algorithm for solving the optimization problem. The proposed method has been evaluated

on synthetic data and also applied to two real world data examples involving daily prices

of financial sector stocks and monthly treasury yields of different maturities. In the fourth

project, we focus on the learning to rank problem with sparse feature selection. In particu-

lar, we extend the rank support vector machine method to the sparse setting, by applying the

lasso and elastic-net penalties. We also employ the bundle method and the order statistic

tree data structure to reduce the computational complexity. Numerical results indicate that

the proposed method works well in both simulation studies and a real world stock selection

problem.

x

CHAPTER 1

Introduction

Recent advances in technology have created an abundance of high-dimensional data (gene
arrays, stock prices, text retrieval, recommender systems, and many others) and posed both
computational and theoretical challenges that traditional statistical methods do not address.
This thesis consists of four projects that deal with high-dimensional data with complex
structures.

Before delving into specific individual projects, we first briefly summarize some of the
existing methods for high-dimensional data that are directly relevant to our developments.

1.1 Regularized least squares regression

In standard regression problems, we are given a set of training data (x1, y1), (x2, y2), . . . , (xn, yn),
where the input (prediction variables) xi ∈ Rp and the output (response variable) yi ∈ R.
The aim is to find a model f̂(x) from the training data, so that when given a new input x,
we can make a prediction for the output.

Consider the linear model
yi = β0 + xTi β + εi, (1.1)

where εi’s are i.i.d. N(0, σ2). The standard least squares estimate for β is given by

β̂ols = argmin
β

n∑
i=1

(yi − β0 − xTi β)2. (1.2)

It is well-known that when two or more of the prediction variables are highly correlated, the
ordinary least squares estimate tends to be unstable, and hence the prediction accuracy is
jeopardized due to the bias-variance trade-off. To address this multi-collinearity problem,
Hoerl and Kennard (1970) proposed the ridge regression, which penalizes the `2-norm of

1

the regression coefficient vector, i.e.

β̂ridge = argmin
β

n∑
i=1

(yi − β0 − xTi β)2 + λ||β||22, (1.3)

where λ is a tuning parameter that controls the bias-variance trade-off. When λ is 0, we
gain back the ordinary least squares estimate, which has the smallest bias but potentially
large variance, while when λ goes to ∞, we have β̂ridge → 0, which has zero variance
but large bias. One can show that there always exists a λ such that the mean squared error
(MSE) of β̂ridge is less that of β̂ols.

Tibshirani (1997) proposed another regularized variation of the least squares regression,
i.e. lasso, by penalizing the `1-norm of the regression coefficient vector:

β̂lasso = argmin
β

n∑
i=1

(yi − β0 − xTi β)2 + λ||β||1, (1.4)

where ||β||1 = |β1|+ · · ·+ |βp|. Note that the absolute value function is non-differentiable
at 0, and when λ is large enough, this non-differentiability renders some of the estimated β̂j
to be exact zero, which implies that lasso can do automatic variable selection (i.e. offering a
sparse model), in addition to improving the prediction accuracy via the bias-variance trade-
off. For that reason, lasso is often preferred over the ridge regression in high-dimensional
data modeling.

Two major limitations of lasso are: 1) the number of selected variables by lasso is
upper bounded by the sample size n, which is often considered as undesirable in the high-
dimensional setting, where the number of variables p can be much larger than n; 2) when
there are highly correlated prediction variables, lasso tends to select only one or few from
the group, and this again is considered as undesirable as which variables are selected (from
the highly correlated group) are a little arbitrary.

To address these two limitations, Zou and Hastie (2005) proposed the elastic-net method,
which penalizes a combination of the `2-norm and the `1-norm of the regression coeffi-
cients:

β̂e-net = argmin
β

n∑
i=1

(yi − β0 − xTi β)2 + λ1||β||1 + λ2||β||22. (1.5)

Now the number of selected variables is no longer bounded by n, and it can be as large as
p (when n < p), and when there are highly correlated prediction variables, they tend to be
either selected together in the fitted model or removed together from the fitted model.

2

1.2 Gaussian graphical model

We consider the following Gaussian graphical model with p variables, denoted by X:

X = (X1, · · · , Xp)
T ∼ Np(0,Σ), (1.6)

where Σ is a positive-definite covariance matrix. Denote Θ as the inverse covariance matrix,
i.e. Θ ≡ Σ−1. It is well-known that under the Gaussianity assumption, Θ encodes the
conditional dependence/independence between the variables, i.e., if Θjj′ = 0 (Θjj′ 6= 0), it
implies that Xj and Xj′ are independent (dependent) of each other conditional on all other
variables X\{j,j′}, and vice versa. Thus, Θ is often the primary parameter of interest.

Here we briefly review two methods for estimating Θ that serve as building blocks for
our work. Specifically, one is the neighborhood selection method by Meinshausen and
Bühlmann (2006), and the other is the graphical lasso method which has been investigated
by several researchers (Banerjee et al., 2008, Friedman et al., 2008, Yuan and Lin, 2007).

Given the model in (1.6), the relationship among the variables can be equivalently writ-
ten as follows:

Xj =
∑
j′ 6=j

βjj′Xj′ + Zj, j = 1, . . . , p, (1.7)

where Zj ∼ N (0, σ2
Zj

) and is independent of {Xj′ , j
′ 6= j}. Moreover, the regression

coefficients βjj′’s and the variance σ2
Zj

’s are given by:

βjj′ = −Θjj′/Θjj, σ2
Zj

= 1/Θjj. (1.8)

According to (1.8), identifying the zeros (or equivalently nonzeros) in Θ can be equiv-
alently accomplished by determining whether βjj′’s are zeros or not, where βjj′ can be
estimated by regressing Xj on {Xj′ , j

′ 6= j}.
Under certain sparsity assumptions, Meinshausen and Bühlmann (2006) proposed to fit

p separate lasso regressions to obtain sparse estimates of βjj′’s, i.e.

{
β̂jj′
}

= argmin
βjj′

n∑
i=1

(xij −
∑
j′ 6=j

βjj′xij′)
2 + λ

∑
j′ 6=j

|βjj′|, j = 1, . . . , p. (1.9)

With certain appropriate post-processing steps, one is able to obtain an estimate of the
zero/non-zero positions in Θ, as well as an estimate of Θ.

Another type of methods for estimating Θ is based on regularized likelihood; specifi-
cally, Yuan and Lin (2007) and Banerjee et al. (2008) proposed to apply the `1-norm penalty

3

to the negative log-likelihood, i.e.

Θ̂ = argmin
Θ�0

tr(ΘΣ̂)− log det Θ + λ
∑
j 6=j′
|Θjj′ |, (1.10)

where Σ̂ is an estimate for Σ, e.g., the sample covariance matrix of X . The optimization
in (1.10) is non-trivial, as Θ is required to be positive definite. To that end, Friedman et al.
(2008) developed an efficient algorithm using the block coordinate descent strategy, and
the algorithm is often referred as “glasso” in the literature.

1.3 Outline of the thesis

Chapter 2 focuses on the graph estimation problem for Gaussian graphical models. Graph-
ical models are commonly used in representing conditional independence between random
variables, and learning the conditional independence structure from data has attracted much
attention in recent years. However, almost all commonly used graph learning methods rely
on the assumption that the observations share the same mean vector. In Chapter 2, we ex-
tend the Gaussian graphical model to the setting where the observations are connected by a
network and the mean vector can be different for different observations. We propose an ef-
ficient estimation method for the model, and under the assumption of network cohesion, we
show that our method can accurately estimate the inverse covariance matrix as well as the
corresponding graph structure, both from the theoretical perspective and using numerical
studies. To further demonstrate the effectiveness of the proposed method, we also analyze
a statisticians’ coauthorship network data to learn the term dependency based on statistics
publications.

Chapter 3 addresses the directed acyclic graph (DAG) estimation problem. DAG is a
commonly used tool to encode causal relationships between random variables. Estimation
of the DAG structure is often a challenging problem as the computational complexity scales
exponentially in the graph size when the total ordering of the DAG is unknown. To reduce
the computational cost, and also with the aim of improving the estimation accuracy via
the bias-variance trade-off, we propose a two-step approach for estimating the DAG, when
data are generated from a linear structural equation model. In the first step, we infer the
moral graph of the DAG via estimation of the inverse covariance matrix, which reduces the
parameter space that one would search for the DAG. In the second step, we apply a penal-
ized likelihood method for estimating the DAG restricted in the reduced space. Numerical
studies indicate that the proposed method compares favorably with the one-step method in

4

terms of both computational cost and estimation accuracy.
Chapters 4 and 5 investigate supervised learning problems. Specifically, in Chapter 4,

we study the cointegration problem for multivariate time series data and propose a method
for identifying cointegrating vectors with simultaneously group and elementwise sparse
structures. Such a sparsity structure enables the elimination of certain coordinates of the
original multivariate series from all cointegrated series, leading to parsimonious and poten-
tially more interpretable cointegrating vectors. Specifically, we formulate an optimization
problem based on the profile likelihood and propose an iterative algorithm for solving the
optimization problem. The proposed method has been evaluated on synthetic data and also
applied to two real world data examples involving daily prices of financial sector stocks
and monthly treasury yields of different maturities. In Chapter 5, we focus on the learning
to rank problem with sparse feature selection. In particular, we extend the rank support
vector machine method to the sparse setting, by applying the lasso and elastic-net penal-
ties. We also employ the bundle method and the order statistic tree data structure to reduce
the computational complexity. Numerical results indicate that the proposed method works
well in both simulation studies and a real world stock selection problem.

5

CHAPTER 2

Gaussian Graphical Models on Network-linked
Data

2.1 Introduction

Network data provide information about pair-wise relations or interactions between units,
such as friendship or collaboration between people, neighborhood between locations etc.
Nowadays, modern data collection techniques make it possible to collect such network
information in more and more situations on top of the traditional covariates such as char-
acteristics of each person, gene expressions of each patient etc. Incorporating the network
information in statistical modeling is expected to be able to improve statistical estimation
or prediction performance as the network offers additional information about the relation
between different observations. However, one challenge lies in that traditional methods for
data analysis, such as regression models, density estimation and clustering methods typi-
cally assume the samples are independent and do not extend to situations when the samples
are connected by a network. Though there are many earlier work for specific settings (Lee,
2007, Manski, 1993, Raducanu and Dornaika, 2012, Vural and Guillemot, 2016, Yang et al.,
2011), substantial progress has been made only recently on extending many of the standard
statistical methods to incorporate network structures, such as Li et al. (2016) for regres-
sion, Tang et al. (2013) for classification, and Yang et al. (2013), Binkiewicz et al. (2014)
for clustering. In this chapter, we generalize the widely used Gaussian graphical model to
incorporate network information.

Graphical models are commonly used to represent pairwise relationship between a
group of random variables, in which each node of the graph corresponds to a random
variable and an edge between two nodes represents conditional or marginal dependence
between the two random variables. Graphical models have received extensive attention
in the fields of statistics and machine learning, due to its wide application in biological

6

problems, text mining and causal inference, to name a few. The Gaussian graphical model
is a special member of the family of undirected graphical models (a.k.a. Markov random
field) where the joint distribution of random variables is assumed to be Gaussian. In such
a graphical model, two disconnected nodes are interpreted to be conditionally independent
given all the other random variables. When Gaussian distribution is assumed for the data,
the conditional independence is fully characterized by the covariance matrix. In particular,
random variables j and j′ are conditionally independent given the rest if and only if the
(j, j′)th entry of the inverse covariance matrix (a.k.a precision matrix) is zero. As a result,
estimating the graph structure for Gaussian graphical model is equivalent to identifying the
zero positions of the precision matrix. There has been a large body of work in estimat-
ing the graph structure under Gaussian graphical models, especially in high dimensional
situations when the number of variables is close to or much larger than the number of ob-
servations. Meinshausen and Bühlmann (2006) proposed a node-wise regression method
with the lasso penalty that is fast and renders good asymptotic properties in estimating
the graph. A wide class of methods based on penalized likelihood (Banerjee et al., 2008,
d’Aspremont et al., 2008, Friedman et al., 2008, Rothman et al., 2008, Yuan and Lin, 2007)
are proposed later. In particular, the graphical lasso algorithm of Friedman et al. (2008) is
one of the most widely used algorithms for the problem due to its computational efficiency.

The above line of work on Gaussian graphical models assume the observations come
from the same distribution, an assumption that is restrictive in many real-world situations.
Zhou et al. (2010) extend the model by allowing time stamps along with the observations,
and the covariance matrix varies smoothly over time. On the other hand, Guo et al. (2011),
Danaher et al. (2014) and Mohan et al. (2014) assume there are multiple groups of observa-
tions for which the covariance matrices are different but still similar across the groups. In
these extensions, the data observations are assumed to share the same mean vector. How-
ever, this may not be the case in many real-world applications. One special case that was
considered before is when in addition to the multivariate Gaussian random variables, addi-
tional covariate vectors associated with each observation are also given, in which a sparse
linear relationship is assumed between the mean vectors and the covariates (Cai et al., 2013,
Lee and Liu, 2012, Lin et al., 2016, Rothman et al., 2010, Yin and Li, 2011, 2013). Though
many applications in gene analysis involve data sets in this format, the assumption of hav-
ing covariates and a sparse linear mapping between mean vectors and covariates is still
restrictive in many problems.

In this chapter, we consider the problem of estimating a graphical model with het-

7

erogeneous mean vectors when a network connecting the observations is available. For
example, in analyzing the word frequencies of researchers in writing papers, the condi-
tional dependence may represent certain conceptual connections between different words
and is expected to be universal for all people. However, as people have personal writing
styles and different research interests, it is more reasonable to assume the expected word
frequencies for different researchers are different. In such problems, we may have the col-
laboration network of the researchers as additional information which can be used to help
in model estimation. In this chapter, we propose a generalization of the Gaussian graph-
ical model to such setting where each data point can have individual expectation but all
the data points share the same covariance structure. In addition to the data matrix, we as-
sume a network connecting all of the observations is available. We thus define a Gaussian
graphical model with network cohesion (GNC), where the term “network cohesion” refers
to the phenomenon that connected nodes have similar mean vectors (Li et al., 2016). As
the network is one of the most general data structure to represent pairwise relationship,
our model can also be used to handle many other types of data commonly encountered in
data analysis that are not necessarily directly represented in the network format, such as
multivariate functional data and high dimensional spatial observations. Our contributions
in this chapter include:

1. We propose a generalized Gaussian graphical model for multivariate network-linked
data as well as an efficient algorithm to estimate the model.

2. Under the network cohesion assumption, we provide theoretical guarantees for our
method to consistently estimate the Gaussian covariance matrix and the correspond-
ing graph structure in high dimensional settings where the number of variables can
be much larger than the number of observations.

3. We show that the graphical model estimation admits an oracle estimation property,
in the sense that, even if the true covariance estimate is known, one cannot achieve a
better estimation of the the mean vectors than our method under the same penalized
maximum likelihood framework. In particular, our estimate cannot be improved by a
more complicated and computationally demanding penalized likelihood estimation,
which is intuitively expected to be better.

The rest of the chapter is organized as follows. Section 2.2 introduces a Gaussian
graphical model on network-linked observations and the corresponding two-stage model
estimation procedure. Section 2.3 presents a rigorous definition of network cohesion and
error bounds of our estimation under the assumption of network cohesion. It also shows

8

that the estimation cannot be improved by a joint penalized likelihood estimation with
the network cohesion penalty, though intuitively the latter uses the data more thoroughly.
Section 2.4 presents simulation studies on the performance of the proposed method under
various settings and comparisons with its iterative version as well as the standard graphical
lasso. Section 2.5 presents an example of applying the proposed method to analyze depen-
dences beteween statistical terms, and Section 2.6 summarizes the chapter with discussion.

Notations. Given a matrix X ∈ Rn×p, let X·j denote the jth column and Xi· denote
the ith row. Let ||X||0 = #{(i, j) : Xij 6= 0} be the L0 norm and ||X||1 =

∑
ij |Xij| be

the L1 norm. A special variant that will be used is the L1 norm constrained on off-diagonal
elements, which is ||X||

1,off =
∑

i 6=j |Xij|. For a square matrix Σ, let tr(Σ) and det(Σ)

be the trace and determinant of Σ respectively. By default, we treat all vectors as column
vectors. A network or graph connecting n nodes are denoted by Gn, with the subscript n
usually being omitted when it is clear in context. Furthermore, if two nodes i and i′ of
Gn are connected, we write i ∼Gn i′. The adjacency matrix of a network Gn is an n × n
matrix A, such that Aii′ = 1 if i ∼Gn i′ and 0 otherwise. Note that for any undirected
network (which will be the network we consider in this chapter), the adjacency matrix is
symmetric. For the adjacency matrix A, we define its Laplacian by L = D − A where
D = diag(d1, d2, · · · , dn) and di =

∑n
i′=1 Aii′ is the degree of node i. In addition, define

the normalized Laplacian Ln = D−1/2LD−1/2, as well as the approximately normalized
Laplacian Ls = 1

d̄
L where d̄ is the average degree of the network G, given by 1

n

∑
i di.

Assume τ1 ≥ τ2 ≥ · · · ,≥ τn−1 > τn = 0 be the eigenvalues of Ls, with corresponding
eigenvectors ui’s.

2.2 Gaussian graphical model with network cohesion

Assume that the data matrix we have is X , recording n independent observations Xi· ∈
Rp, i = 1, 2, · · · , n, such that each Xi· is a random vector from a multivariate Gaussian
distribution

Xi· ∼ N (µi·,Σ), i = 1, 2, · · · , n,

where µi· ∈ Rp is a p-dimensional vector and Σ ∈ Sp+, in which Sp+ is the set of p × p

symmetric positive definite matrices. Let Θ = Σ−1 be the precision matrix and

M = (µ1·, µ2·, · · · , µn·)T = (µ·1, µ·2, · · · , µ·p)

9

be the mean matrix. The log-likelihood on the observations can be written up to a constant
as

log det(Θ)− tr(Θ(X −M)T (X −M))/n. (2.1)

The Gaussian distribution is naturally associated with an undirected graph G(v) in which
each of the p coordinates corresponds to a node in the graph and the pairs of nodes j, j′ such
that j �G(v) j′ corresponds to the conditional independence relationship xj ⊥ x′j|{xk, k 6=
j, j′} (Lauritzen, 1996). Note that we assume all the observations share the same covariance
structure but may have different mean vector µi’s. In the special case when µi· = µ for all
i = 1, 2, · · · , n, the model is the standard i.i.d. multivariate Gaussian model. In general,
the model defined above involves np + p(p − 1)/2 parameters and is not estimable with
only n observation. We make two further assumptions on the model:

• In a graphical model, one typically assumes that the graph structure between random
variables is sparse, which is equivalent to Θ being a sparse matrix. This is the same
assumption made in almost all Gaussian graphical model estimation methods.

• Further, let G(o) be the network connecting all n observations Xi·; we assume that
µi·’s are cohesive over the network. That means µik and µi′k are similar if node i, i′

are connected i ∼G(o) i′. We measure the network incohesiveness of vector µ·k by∑
i∼Gi′

d(|µik − µi′k|),

and assume this incohesiveness measure to be small, where d(·) can be defined to be
any reasonable function to measure the magnitude of a scalar. Two natural choices
are d(|µik − µi′k|) = (µik − µi′k)2 (Li et al., 2016) and d(|µik − µi′k|) = |µik − µi′k|
(Hallac et al., 2015). For computational efficiency, we will focus on the squared
difference in this chapter. We specifically write the cohesiveness measure by its
equivalent form

µTLsµ =
1

d̄

∑
i∼i′

(µi − µ′i)2

and refer this quantity as the cohesion penalty.

As there are two graphs involved in our setting, we assign specific names to them in order
to avoid confusion in later discussion: the observed network that connects n observations,
G(o), is referred as the “observation network”; the graph structure among p random vari-
ables that is to be estimated, G(v), is referred as the “Gaussian graph”.

10

2.2.1 Model estimation

We use the following two-stage procedure to estimate the model and refer it as the Gaussian
graphical estimation with Network Cohesion and lasso penalty (GNC-lasso) .

Algorithm 1: Two-stage GNC-lasso algorithm
1 Given X , λ and α.

1. Mean estimation: Minimize

||x·j − µ·j||22 + αµT·jLsµ·j (2.2)

separately for each j = 1, . . . , p. Denote the estimate as M̂ .

2. Covariance estimation: Let Ŝ = 1
n
(X − M̂)T (X − M̂). Solve for Θ̂ by

min
Θ∈Sn+

log det(Θ)− tr(ΘŜ)− λ||Θ||
1,off. (2.3)

Note criterion (2.2) is a univariate Laplacian smoothing and has a closed form solution

µ̂·j = (In + αLs)−1x·j. (2.4)

In practice, we usually need to compute the estimate on a sequence of α values, so we
will first calculate the eigen-decomposition of Ls, then each (I + αLs)−1 can be directly
obtained in linear time. Since Ls is often sparse, taking advantage of that and using the fact
that Ls is symmetrically diagonal dominant, the eigen-decomposition of Ls can be com-
puted very efficiently (Cohen et al., 2014).

Given M̂ , criterion (2.3) is a graphical lasso problem that uses the lasso penalty (Tib-
shirani, 1996) to encourage sparsity in estimation. It can be solved by the glasso algorithm
of Friedman et al. (2008). One can also include the diagonal elements of Θ in the penalty
as was done in the original glasso algorithm. This subtle modification does not make much
difference so we will not distinguish the two versions in later discussion.

Note that ∑
j

µT·jLsµ·j = tr(MTLsM).

11

Therefore criterion (2.2) is essentially solving

min
M∈Rn×p

tr((X −M)T (X −M)) + αtr(MTLsM)

which is a cohesion penalized Gaussian log-likelihood with the covariance being σ2Ip for
some σ. It is thus natural to instead use a penalized log-likelihood to estimate both M and
Θ jointly by

max
Θ,M

log det(Θ)− 1

n
tr(Θ(X −M)T (X −M))− λ||Θ||

1,off −
α

n
tr(MTLsM). (2.5)

The above optimization is bi-convex and we can iteratively solve M by fixing Θ and then
solve Θ by fixing M , with initialization done by the two-stage procedure. We refer this
method as “iterative GNC-lasso”. The computational complexity of the iterative method is
significantly higher than the two-stage estimation and can hardly handle problems in which
either n or p is large. To see this, notice that in each iteration when fixing Θ and maxi-
mizing over M , all p coordinates are coupled resulting in a problem of scale np× np (see
Proposition 2). Thus for even moderate n and p, one needs either huge memory or resorting
to certain Gauss-Seidel type algorithms that further increase the number of iterations. This
disadvantage of the iterative estimation will be amplified when one needs to select λ and α,
as will be discussed in next subsection. More importantly, although intuitively the iterative
method is expected to provide better model estimation, we will show later by both the-
oretical and empirical results that such iterative estimation does not bring improvements.
Therefore, we will focus on the two-stage GNC-lasso throughout this chapter.

Finally, we emphasize that, between the two model parameters Θ and M , our primary
interest is to estimate Θ and will treat M as a nuisance parameter to some extent. This is
because Θ depicts the underlying population, while µi· only provides individual effects that
may not have generalizable knowledge of the data.

2.2.2 Model selection

There are two tuning parameters λ and α in GNC-lasso. Note α is the tuning parameter
controlling the mean estimation and such estimation can be easily validated by checking
predictive performance. In particular, in this chapter, we always tune α from a sequence of
candidate values by 10-fold cross-validation. In each validation, the sum of squared predic-
tion errors on validation set

∑
(Xij−µ̂ij)2 is computed and the α that renders the minimum

average error in all folds is used. Given α, we obtain M̂ and use Ŝ = 1
n
(X−M̂)T (X−M̂)

12

as the input of the glasso problem in (2.3); therefore λ can be selected by standard param-
eter tuning methods for glasso. Such tuning methods can be chosen according to specific
applications. For example, if prediction is the major interest, it can be selected again by
cross-validation. On the other hand, Gaussian graphical model is very often used as an
exploratory tool to obtain interpretable partial correlations between variables, and in this
situation λ can also be selected to achieve a predefined sparsity level of the estimated graph
or according to the easiness of interpretation.

Note that the model selection step illustrates another important advantage of using two-
stage estimation instead of the iterative method. In the iterative method, the coupling of α
and λ makes it difficult to tune them separately by different criteria. Moreover, even if one
is willing to tune the parameters under the same criterion, due to the coupling, the model
fitting must be done on a grid of (α, λ) pairs, which involves m1 × m2 model fittings if
m1 α values and m2 λ values are to be considered. In contrast, the two-stage method only
needs m1 + m2 times of model fittings instead, which is substantially more efficient, in
addition to the fact that the two-stage estimation can be many times faster than the iterative
method for each model fitting.

2.3 Theoretical properties

In this section, we investigate theoretical properties of the GNC-lasso estimator. Through-
out this section, we always assume the observation network G(o) is connected, without loss
of generality. Recall that τ1 ≥ τ2 ≥ · · · ,≥ τn−1 > τn = 0 are the eigenvalues of Ls, with
corresponding eigenvectors ui’s. We also need the following notations for matrix norms:
given a matrix M , let ||M || be its spectral norm and ||M ||F be its Frobenius norm. In
addition, given two quantities an and bn, which depend on n, we use an % bn to denote the
fact that bn ≤ Can for some constant C, which can also be written as bn = O(an).

2.3.1 Cohesive assumptions on the observation network

Before proceeding to our estimators, we first answer the question: given a vector µ ∈ Rn

over the network, what is a reasonable mathematical representation for the assumption “µ
is cohesive on the network?” Intuitively, we can define cohesion as a condition that the
cohesion penalty µTLsµ is small in certain sense. Alternatively, an equivalent way is to
require ||Lsµ||2 to be small, because Lsµ is the gradient of the cohesion penalty up to a

13

constant and
||Lsµ||2 → 0 ⇐⇒ µTLsµ→ 0.

It turns out that defining cohesion with respect to Lsµ is easier for later derivations, so
we will take this option. The vector Lsµ itself also has nice interpretation. Note the ith
coordinate of Lsµ is given by

di
d̄

(µi −
1

di

∑
i′∼G(o) i

µ′i),

therefore Lsµ represents the difference between µi and its local average for all nodes i. Let
Ls = UΛUT be the eigen-decomposition of Ls in which the eigenvalues τi are sorted in
decreasing order. For any µ ∈ Rn, we can represent µ by its basis expansion µ = Uβ =∑n

i=1 βiui where β ∈ Rn and each βi is the magnitude of µ in the direction of ui. In any
reasonable cohesion assumption, we expect ||Lsµ||22 to be much smaller than ||µ||22. Notice
that

||µ||22 = ||β||22 and ||Lsµ||22 =
∑
i

τ 2
i β

2
i .

Therefore we specifically make the follow assumption as our requirement of a vector µ
being cohesive over the network:

Assumption 1 (Cohesion assumption). Given a network G(o). Let µ =
∑n

i=1 βiui be the

basis expansion of µ according to the eigenvectors of Ls. For some positive constants NG

and δ, we have

Scale: ||µ||22 = ||β||22 =
∑
i

β2
i = NG · n, (2.6)

Cohesion: τi|βi| ≤ n−
1+δ

3 ,∀i ∈ [n]. (2.7)

These two indicate

||Lsµ||22 ≤ n
1−2δ

3 � NGn = ||µ||22.

While the cohesion assumption specifies what vectors are considered as cohesive in our
theoretical analysis, the assumption alone is not enough to ensure the estimability of the
model. For a given integer m, define t(m) := τn−m. To ensure the cohesion assumption
can effectively control the model complexity, we make the following assumption about the
observation network G(o) itself.

14

Assumption 2. There exists m such that

cG · t(m) ≥ 1√
m

(2.8)

for some constant cG. In particular, define mG to be the smallest m that satisfies (2.8). We

call such mG the cohesive dimension of the network.

Assumption 2 is more a definition than assumption, as we can always take m = n − 1

and the fact that τ1 ≥ n
n−1

ensures the assumption trivially holds. Therefore, we always
have the cohesive dimension mG ≤ n − 1. We call mG the cohesive dimension since it in
some sense measures the effective number of parameters we need to estimate after assum-
ing network cohesion. It indicates that if we require ||Lsµ||22 = O(1

mG
), then we are at least

free to pick up an arbitrary vector µ from a subspace of dimension mG spanned by the last
mG eigenvectors of Ls without any constraint. From this interpretation, it is clear that we
hopemG to be small, otherwise the complexity of the model will not be effectively reduced
by the cohesion assumption.

We now distinguish two different situations of network cohesion. Obviously, if µ = c1

for a scalar c, it must be perfectly cohesive since all elements are the same and this is exactly
what standard graphical model estimation methods such as glasso assume. However, this
is trivial cohesion since there is no heterogeneity between observations. If the vector is
trivially cohesive, one does not need to use the more general GNC-lasso. In our setting, a
vector µ is said to be nontrivially cohesive if

||µ− P1µ||2 % ||P1µ||2

where P1µ is the projection of µ onto the subspace spanned by 1, i.e. a constant vector
with all coordinates being the average of µ. The nontrivial cohesion setting is the regime
where GNC-lasso is primarily designed for and where we extend the standard graphical
model estimation framework.

Now we justify that Assumptions 1 and 2 are reasonable and realistic by the following
proposition. Specifically, we show that a lattice network’s cohesive dimension is O(n2/3),
and nontrivial cohesion of µ over the lattice network is allowed under the two assumptions.

Proposition 1 (Cohesive properties of a lattice network). Assume
√
n is an integer and G(o)

is a
√
n×
√
n lattice network. Then we have:

1. The cohesive dimension mG ≤ cn2/3 for some constant c.

15

2. There exists µ satisfying Assumption 1 with δ < 1/2 such that ||µ−P1µ||22 ≥ c′n for

some constant c′. In particular, this indicates that ||µ− P1µ||2 % ||P1µ||2.

2.3.2 Mean estimation error bounds

Now we proceed to discuss the estimation bound for the n × p mean estimate M̂ in Al-
gorithm 1. Formally, we assume a heterogeneous multivariate Gaussian model for the
observed data matrix X:

Assumption 3. Assume X = M∗ +E where M∗ = (µ∗·1, µ
∗
·2, · · · , µ∗·p) and E = (εij) such

that εi· ∼i.i.d N (0,Σ∗) for some Σ∗ ∈ S+
n . Let σ2 := maxj Σ∗jj > 0. Moreover, assume

log p < cn for some constant 0 < c < 1.

Finally, we make the same cohesive assumption for each column of M∗.

Assumption 4. Assume Assumptions 1 holds for all µ∗·j , j = 1, 2, · · · , p.

Theorem 1 (Mean matrix error bound). Under Assumptions 2 - 4, let M̂ be the estimated

mean matrix M from (2.2). Then we have

||M̂ −M ||∞ ≤ (2
√

2σ + 1)[cG
√
mGn

2−δ
3 +

√
log pmG] (2.9)

with probability at least 1 − exp(−cn) − exp(−CmG log p) for some constants c and C.

In Frobenius norm, we have

||M̂ −M∗||F ≤
√

(1 + 4σ2)(c2
GmGn

1−2δ
3 + 1)p (2.10)

with probability at least 1− exp(−p(n−mG))− exp(−pmG).

Note the theorem shows that we may not achieve vanishing errors for all entries of M .
This is expected as the cohesion penalty is a ridge-type penalty and it is known that ridge
regression does not enjoy vanishing estimation errors in general. Nevertheless, the average
error measured by ||M̂ −M∗||F/

√
np can still be vanishing as long as the cohesive dimen-

sionmG = O(n
2
3) as in the case when G(o) is a lattice network. Then as we will show in the

next subsection, M̂ is an adequately accurate estimate of M that ensures good estimation
properties of the precision matrix and the corresponding Gaussian graph structure, which
is our primary target.

16

2.3.3 Inverse covariance estimation error bounds

For properties on the inverse covariance estimation, we need a few more notations and
assumptions. Let Γ∗ be the Fisher information matrix of the model, defined as

Γ∗ = Σ∗ ⊗ Σ∗ (2.11)

where ⊗ is the Kronecker product. In particular, under the multivariate Gaussian distribu-
tion, we have Γ∗(j,k),(`,m) = Cov(XjXk, X`Xm). Define the set of nonzero entries in Θ∗ to
be

S(Θ∗) = {(j, j′) ∈ [n]× [n] : Θ∗jj′ 6= 0}. (2.12)

We use So(Θ∗) to denote the set of nonzero off-diagonal elements of Θ∗ and Sc(Θ∗) to
denote the complement of S(Θ∗). Let s = |So(Θ∗)| be the number of nonzero off-diagonal
elements in Θ∗. For any two sets T1, T2 ⊂ [n] × [n], let Γ∗T1,T2

denote the submatrix with
rows and columns taken in T1, T2 respectively. When it is clear in the context, we may
suppress the notation Θ∗ in S(Θ∗) and just write it as S. Let ψ be the maximum number
of nonzeros in each row of Θ∗, which is also the maximum node degree of the Gaussian
graph plus 1 :

ψ = max
j
||Θ∗j·||0. (2.13)

Moreover, define
κΣ∗ = ||Σ∗||∞,∞, (2.14)

which measures the overall magnitude of the covariances. We also define the parameter

κΓ∗ = ||(Γ∗SS)−1||∞,∞ (2.15)

Finally, it is known that a necessary and sufficient condition for lasso regression to suc-
ceed in support recovery is the irrepresentability condition (Wainwright, 2009). Similarly,
we need an edge-level irrepresentability condition here.

Assumption 5. There exists some 0 < ρ ≤ 1 such that

max
e∈Sc
||Γ∗eS(Γ∗SS)−1||1 ≤ 1− ρ.

When only Frobenius norm error bound is considered, a much weaker assumption is
adequate without the requirements on ψ, κΣ∗ , κΓ∗ and Assumption 5.

Assumption 6. Let ηmin(Σ∗) and ηmax(Σ∗) be the minimum and maximum eigenvalues of

17

Σ∗, respectively. There exists a constant k̄ such that

1

k̄
≤ ηmin(Σ∗) ≤ ηmax(Σ∗) ≤ k̄. (2.16)

Let Ŝ = 1
n
(X − M̂)T (X − M̂). We use Ŝ as the input for the glasso estimation of

(2.3). The difference from our estimation and the standard glasso lies in the fact that our Ŝ
is obtained by plug in our estimate M̂ instead of using the true M∗. We would expect that
if M̂ is a reasonable estimate of M∗, Θ∗ can still be accurately estimated. The following
theorem confirms this intuition, based on a few concentration properties of Ŝ around Σ∗

and the proof strategy of Ravikumar et al. (2011).

Theorem 2. Under the conditions of Theorem 1 and Assumption 5, there exist some positive

constants C, c, c′, c′′ that only depend on NG, cG and σ, such that if Θ̂ is the solution of the

two-stage procedure of Algorithm 1 with α = n
1+δ

3 , λ = 8
ρ
ν(n, p) where

ν(n, p) := C max
(√

log pnmGn
− 2+2δ

3 ,
√

log pn
√

log pm
3/2
G n−

4+δ
3 ,√

log pn
√
mGn

− 1+δ
3 ,
√

log pn
√

log p
mG

n
,

√
log p

n

)
and n is large enough to ensure

ν(n, p) <
1

6(1 + 8/ρ)ψmax{κΣ∗κΓ∗ , (1 + 8/ρ)κ3
Σ∗κ

2
Γ∗}

,

then with probability at least 1−exp(−c log(p(n−mG)))−exp(−c′ log(pmG))−exp(−c′′ log p),

we have

1. The edge set is a subset of the true edge set, i.e.

So(Θ̂) ⊂ So(Θ
∗).

2. The estimate Θ̂ satisfies

||Θ̂−Θ∗||∞ ≤ 2(1 + 8/ρ)κΓ∗ν(n, p). (2.17)

3. If in addition, all of the nonzero off-diagonal elements of Θ∗ satisfy

max
(j,j′)∈So(Θ∗)

|Θ∗jj′| > 2(1 + 8/ρ)κΓ∗ν(n, p),

18

then the edge set is exactly recovered by S(Θ̂).

4. In Frobenius norm, the estimate satisfies

||Θ̂−Θ∗||F ≤ 2(1 + 8/ρ)κΓ∗ν(n, p)
√
s+ p. (2.18)

5. In row-wise L∞ norm, the estimate satisfies

||Θ̂−Θ∗||∞,∞ ≤ 2(1 + 8/ρ)κΓ∗ν(n, p)ψ. (2.19)

6. In spectral norm, the estimate satisfies

||Θ̂−Θ∗|| ≤ 2(1 + 8/ρ)κΓ∗ν(n, p) min(
√
s+ p, ψ). (2.20)

Remark 1. 1. To make the sample size requirement practical, we mostly need κΓ∗ , κΣ∗

and ρ to be constants or restricted in a bounded region, as in Ravikumar et al. (2011).

2. To achieve the Frobenius bound (2.18), we do not need the irrepresentability assump-

tion or the information of κΓ∗ and κΣ∗ . Following the proof strategy in Rothman et al.

(2008), we can have the same bound with Assumption 6.

Compared with the standard glasso error bound (Ravikumar et al., 2011), the prices
we pay for assuming different mean vectors under the cohesion assumption are the first
four terms in the formula of ν. As a result, we need a stronger requirement on the p/n
ratio in the high-dimensional setting, depending on the observation network G(o). To see
the comparison in a simpler format, we assume mG = O(n2/3), which holds for lattice
networks and path networks.

Corollary 1. Under the assumption of Theorem 2, if we have mG ≤ cn2/3 for some con-

stant c and δ < 1
2
, then all the results of Theorem 2 hold with

ν(n, p) ≤ C
√

log npn−
δ
3

where C is a constant that only depends on NG, cG, σ.

Remark 2. 1. According to Corollary 1, for estimation consistency in a Gaussian graph-

ical model with nontrivially cohesive mean vectors, we need log p = o(n
2δ
3) for

δ < 1/2. This is strictly stronger than the condition log p = o(n) required in the

case of i.i.d multivariate Gaussian problems (Ravikumar et al., 2011).

19

2. Note that the stronger requirement for p/n ratio is simply because we want to allow

for nontrivial cohesion. On the other hand, if we let δ →∞, the cohesion assumption

becomes trivial cohesion. The error bound in our theorem becomes the same as

glasso (Ravikumar et al., 2011) and the requirement is still log p = o(n), so we do

not sacrifice accuracy by using GNC-lasso.

2.3.4 Oracle mean estimation and sufficiency of two-stage estimation

Given the error bound from the two-stage procedure, a natural question to ask is whether
we can achieve better performance by optimizing the penalized joint log-likelihood (2.5).
A good estimate of Θ reflects the covariance structure in the penalized joint likelihood and
may help to produce a better estimation ofM than the separable estimation in the two-stage
procedure, and such improved estimate of M will in turn help to improve the estimate of Θ

again. In this section, however, we will give a negative answer to that question. Let (Θ̃, M̃)

be the maximizer of (2.5). Note given Θ̃, M̃ must be the maximizer of (2.5) as a function
of M , and vice versa. We will show that such M̃ will not improve M̂ produced by our
two-stage estimation. In particular, under diagonal dominance assumption of the precision
matrix, we will show that even if the true Θ is given by an oracle and used in place of Θ̃, the
maximizer of (2.5) over M cannot reduce the estimation error of M̂ by more than a trivial
constant scale. Since the oracle estimate of M cannot be better than M̂ , nor will M̃ . Based
on the theoretical discussion of Section 2.3.3, we can see the inverse covariance estimate
will not be improved by M̃ either.

For the ease of derivation, we use the basis expansion in the spectrum of Ls again.
Recall that U is the matrix of eigenvectors of Ls and for any M ∈ Rn×p, we can write it
as M = UB. As U is orthonormal, estimating M is equivalent to estimating B. We now
specifically define the following two estimation objectives to estimate B:

min
B∈Rn×p

tr((X − UB)T (X − UB)) + αtr(BTΛB), and (2.21)

min
B∈Rn×p

tr(Θ∗(X − UB)T (X − UB)) + αtr(BTΛB), (2.22)

in which Λ = diag(τ1, τ2, · · · , τn). It is not difficult to see that (2.21) is the mean estima-
tion step (2.2) in the two-stage procedure (up to U), while (2.22) is the mean estimation
procedure of maximizing (2.5), with Θ replaced by true Θ∗. Therefore the estimation of
(2.22) is an oracle estimate in the sense that we assume the true covariance matrix is al-
ready known. Though (2.22) is not applicable in practice, it serves as a benchmark for the

20

best performance one could expect in estimating B (or equivalently M). Let B̂1 and B̂2 be
the estimates from (2.21) and (2.22) respectively and let Wk = B∗ − B̂k, k = 1, 2 be the
estimation error matrices. Then we have the following result.

Proposition 2. For the estimate from (2.21), we have

W1Ip + αΛW1 = αΛB∗ + Ẽ, (2.23)

where Ẽ = (ε̃1·, ε̃2·, · · · , ε̃n·) and ε̃i· ∼i.i.d N (0,Σ∗). For the estimate from (2.22), we have

W2Θ∗ + αΛW2 = αΛB∗ + Ė, (2.24)

where Ė = (ε̇1·, ε̇2·, · · · , ε̇n·) and ε̇i· ∼i.i.d N (0,Θ∗).

Intuitively, one can see from the formula in Proposition 2 that there is no reason to
expect significant improvement of W2 over W1. The random parts of the two errors come
from N (0,Σ∗) and N (0,Θ∗) and in general either can be larger than the other, depending
on specific Σ∗. For better illustration, we define two additional estimating equations:

W3Ip + αΛW3 = αΛB∗ + Ė (2.25)

W4diag(Θ∗) + αΛW4 = αΛB∗ + Ė (2.26)

Note equation (2.25) is almost identical to (2.23), except that the covariance of the random
noises is now Θ∗ instead of Σ∗. Which of W1 and W3 has a smaller norm is a random event
and there is no clear winner between them when ||Σ∗|| and ||Θ∗|| are in similar magnitudes,
as assumed in (2.16). Thus we can say W1 and W3 are equivalent error matrices in distri-
bution.

On the other hand, equation (2.26) corresponds to the situation when we carry p separate
Laplacian smoothing estimations but adjust α for each variable so that it is proportional to
1/Θ∗jj . Intuitively, when the off-diagonals are of small magnitudes, the estimation W2

should not be very different from W4 and when the diagonals of Θ∗ are in the similar
magnitude as in Assumption 2.16, W3 and W4 should also be similar. The next theorem
verifies this intuition under the assumption that Θ is diagonally dominant. As a result, we
see that using Θ in estimation (2.22) does not bring real improvement in this situation and
W1,W2,W3,W4 are essentially equivalent.

Theorem 3. Under Assumption 3, assume W2, W3, and W4 are the estimation errors from

(2.24), (2.25) and (2.26) respectively, with the same α. If Θ∗ is diagonally dominant with

21

maxj

∑
j′ 6=j |Θ∗j′j |

Θ∗jj
≤ ρ < 1, then we have

(1− ρ) min(1,min
j

Θ∗jj) ≤
||W3||∞
||W2||∞

≤ (1 + ρ) max(1,max
j

Θ∗jj). (2.27)

In particular, under Assumption 2.16, we always have

(1− ρ)
1

k̄
≤ ||W3||∞
||W2||∞

≤ (1 + ρ)k̄

for the constant k̄.

Theorem 3 assumes diagonal dominance of Θ∗. Here we give a brief justification for
this assumption. Given a general multivariate Gaussian y ∼ N (0,Σ), it is known that the
element-wise conditional distribution can be written in an element-wise regression form:

yj =
∑
j′ 6=j

ζjj′yj′ + ξj

where ζj ∈ Rp such that ζjj′ = − Θjj′

Θj′j′
for j′ 6= j and ζjj = 0, and further ξj is a Gaussian

random variable with zero mean and variance as the conditional variance of yj|{yj′}j′ 6=j .
Thus the diagonal dominance assumption of Theorem 3 is essentially assuming

max
j
||ζj||1 = max

j

∑
j′ 6=j

|ζjj′| < ρ < 1.

Specifically, the assumption is in the same form as the Assumption 4 of Meinshausen and
Bühlmann (2006) when one uses the node-wise regression method to estimate the Gaus-
sian graphical model. In that situation, ρ < 1 is actually an assumption needed for the
node-wise regression method to consistently estimate the graph structure (see Proposition
4 of Meinshausen and Bühlmann (2006)). Though the glasso estimation does not directly
rely on this assumption, it can still be expected that such assumption is not strong as long
as good graph estimation performance is expected.

We conjecture that the phenomenon of the maximum penalized joint likelihood failing
to provide further improvements over the two-stage estimation may be expected in a much
wider class of problems. For instance, in a different problem of using sparse regression to
adjust the Gaussian graphical model estimation, this phenomenon was observed in numer-
ical results of Yin and Li (2013), though no explanation was given there. Here we provide
an intuitive explanation of why we do not expect improvement by (2.22) even when the

22

diagonal dominance does not hold. The explanation is expected to be applicable in many
other situations as well, such as the the sparse regression problem of Yin and Li (2013).

We hope to use Θ in estimating M as information may be pooled across p variables
so that the estimation in each dimension can be improved. It is straightforward to see that
in the Gaussian log-likelihood (2.1), the maximizer over M is always X which does not
involve Θ. On the other hand, the cohesion penalty is separable for the p dimensions so that
it does not help to pool information between the p coordinates either. As a result, though
the solution of the penalized likelihood problem after including the cohesion penalty does
depend on Θ, we cannot expect fundamental improvements over the simple estimation (2.2)
since the objective does not effectively pool information between variables.

2.4 Simulation studies

In this section, we investigate the performance of the proposed method using several simu-
lation examples. We first demonstrate the effectiveness of the proposed method by varying
the sparsity and dimensionality of the underlying Gaussian graph. Then we compare the
performance of the two-stage GNC-lasso with iterative GNC-lasso and standard glasso un-
der both nontrivial cohesion and trivial cohesion (constant mean vector) settings over the
observation network.

2.4.1 Performance under different Gaussian graphs

We first generate data from a model with nontrivial network cohesion. The observation
network G(o) in our simulation study is a lattice network with n = 20 × 20 = 400 nodes.
Each node corresponds to a random vector with dimension p = 500. For the jth variable,
j = 1, 2 · · · , p, µ∗·j is assumed to vary smoothly over the lattice, as shown in Figure A.1 of
the Appendix. We constrain the range of µ∗·j to be between 0 and 1 and the resulting µ∗·j’s
are nontrivially cohesive. In the first example, we evaluate the performance of GNC-lasso
by varying the underlying sparsity of Θ∗. In particular, the Gaussian graph G(v) is gen-
erated as an Erdos-Renyi graph on p = 500 nodes such that each node pair is connected
independently with probability 0.005, 0.01, and 0.02 respectively. The Gaussian noise is
then from N (0,Σ∗) where Θ∗ = Σ∗−1 is consistent with the Gaussian graph and we set
Θ∗ = A ∗ 0.3 + (e + 0.1) ∗ I where A is the adjacency matrix of the variable graph, and
e is the absolute value of the minimum eigenvalue of A ∗ 0.3. Such that the noises are
comparable with µ∗·j in magintude. We evaluate the performance of the proposed method

23

in recovering the true underlying Gaussian graph, measured by the receiver operating char-
acteristic (ROC) curve, along a graph estimation path by varying λ. An ROC curve depicts
the tradeoff between True Positive Rate (TPR) and False Positive Rate (FPR), where

TPR =
#{(j, j′) : j 6= j′,Θ∗jj′ 6= 0, Θ̂jj′ 6= 0}

#{(j, j′) : j 6= j′,Θ∗jj′ 6= 0}

and

FPR =
#{(j, j′) : j 6= j′,Θ∗jj′ = 0, Θ̂jj′ 6= 0}

#{(j, j′) : j 6= j′,Θ∗jj′ = 0}
.

In each setting, we repeat the data generation and model estimation independently 200
times. Figure 2.1 shows the ROC curves of the two-stage GNC-lasso for the three sparsity
levels. As expected from Theorem 2, the graph selection performance of GNC-lasso in-
creases as the true graph structure becomes sparser. When the sparsity level is 0.005, the
GNC-lasso correctly recovers almost all true edges while only falsely setting 0.4% of the
null-pairs to be edges. Even for the denser case of 0.02, it correctly detects more than 60%
true edges when the FPR is 0.4%.

In the second example, we fix the sparsity level of the Gaussian graph to be 0.01 and
evaluate the graph selection performance of GNC-lasso when p = 200, 500, and 800 re-
spectively. The observation network and the corresponding µ∗·j values are still generated as
in the previous example. The ROC curves are shown in Figure 2.2. Again, as expected from
the theory, the performance degrades gradually as p grows. When p = 200, GNC-lasso is
able to detect almost all true edges with only 0.4% FPR. For the higher dimension setting
when p = 800, it is also able to achieve more than 75% TPR when FPR is controlled at
0.4%.

2.4.2 Comparison with other methods under different cohesion set-
tings

In this example, we compare several estimation methods under nontrivial cohesion. The
methods we compare include: 1) the proposed method where α is tuned by 10-fold cross-
validation (“two-stage GNC-lasso”) ; 2) the proposed method where α is set to be the one
that gives the best ROC curve (“optimal two-stage GNC-lasso”); 3) the jointly penalized
likelihood method (2.5) using iterative optimization where α is also set to be the optimal
(“optimal iterative GNC-lasso”); 4) the glasso estimate using the algorithm of Friedman
et al. (2008) (“glasso”). Note that the optimal α is unknown in practice, but the performance
under the optimal α provides a benchmark to evaluate the effectiveness of tuning α by

24

0.000 0.001 0.002 0.003 0.004

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive

Tr
ue

 P
os

iti
ve

sparsity 0.005
sparsity 0.01
sparsity 0.02

Figure 2.1: n = 400, p = 500, varying spar-
sisty, 200 replications

0.000 0.001 0.002 0.003 0.004

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive

Tr
ue

 P
os

iti
ve

p=200
p=500
p=800

Figure 2.2: n = 400, sparsity is 0.01, varying
p, 200 replications

25

0.000 0.001 0.002 0.003 0.004

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive

Tr
ue

 P
os

iti
ve

optimal two−stage GNC−lasso
two−stage GNC−lasso
optimal iterative GNC−lasso
glasso
y=x

Figure 2.3: Nontrivial cohesion in mean, n =
400, p = 500

0.000 0.001 0.002 0.003 0.004

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive

Tr
ue

 P
os

iti
ve

two−stage GNC−lasso
glasso (optimal GNC−lasso)
y=x

Figure 2.4: Trivial cohesion in mean (con-
stant), n = 400, p = 500.

cross-validation. Moreover, iterative GNC-lasso is computationally expensive, especially
when tuned by cross-validattion. Therefore we only compare with its optimal version.

Figure 2.3 shows the ROC curves of the four methods obtained from 200 independent
replications. It can be seen that glasso completely fails in such setting with an ROC curve
almost identical to the straight line y = x, i.e. the ROC curve for random guessing. This is
expected as in the nontrivial cohesion setting, the mean vectors are quite different from be-

26

ing constant over the network. On the other hand, the three variants of GNC-lasso achieve
reasonable model selection performances, by correctly recovering more than 80% of the
true edges while only falsely setting 0.2% of the null-pairs to be edges. The cross-validated
GNC-lasso is only negligibly worse than its oracle version, indicating that cross-validation
is effective at selecting a good value of α. Moreover, the performance of the two-stage
GNC-lasso and the iterative GNC-lasso are similar, with the iterative GNC-lasso being
slightly inferior. This agrees with what we have observed in general and can be explained
by our theory, i.e. there is no significant difference between the two - either can be slightly
better than the other by chance.

Next, we evaluate the performance of the proposed method under the trivial cohesion
setting, i.e. when the i.i.d model assumption is correct. Note this is the setting where the
standard glasso is expected to perform the best. We still use the same Gaussian model
as before, except for setting µij = 0 for all pairs of (i, j), thus the data we observe are
i.i.d. samples from N (0,Σ∗). It is clear that the optimal version of GNC-lasso is just
the glasso estimate, by letting α → ∞. Figure 2.4 shows the ROC curves of GNC-lasso
where α is tuned by cross-validation and the standard glasso. As one can see, glasso is
effective at recovering the graph structure in this setting as it now assumes the correct
model. Further, the cross-validated GNC-lasso remains competitive when comparing with
its optimal version (glasso).

2.5 Data example: learning associations between statisti-
cal terms

In this section, we apply the proposed method to a statisticians network data based on bib-
liography from four statistical journals collected by Ji and Jin (2014). In this data set, the
author-to-paper bipartite graph, as well as the titles of the published papers are available.
We demonstrate the proposed method by learning partial correlations between statistical
terms that have appeared in paper titles and we treat the coauthorship network as the obser-
vation network.

In data pre-processing, we remove all authors who have only one paper in the data set
and filter out common stopping words as well as terms that have appeared in fewer than
10 papers. For each author, we then calculate his/her average term frequency across all pa-
pers for which he/she is a coauthor. The coauthorship network is constructed by checking
whether or not two authors have coauthored at least one paper, and we focus on the largest

27

connected component of the network. Finally, to focus on more informative terms, we sort
the terms according to their term frequency-inverse document frequency score (tf-idf), one
of the most commonly used approach in natural language processing to measure how in-
formative a term is (Leskovec et al., 2014). We keep the top 300 terms with the highest
tf-idf scores. The final data set we use has n = 635 authors and p = 300 terms. Each
observation is a 300-dimensional vector showing the average frequency of term usage for
a specific author. The coauthorship network is shown in Figure 2.5.

The interpretation of the proposed method is natural in this setting. Treating each au-
thor as an observation, the mean vector of the Gaussian distribution corresponds to the
author-specific term usage habit. If two authors have collaborations, their writing habits
are potentially similar due to common research interests and personal interactions. Given
the term usage habit of each author, the observed average term frequency deviates ran-
domly from the person’s habit and the correlation between the deviations of different terms
is depicted by a graph G(v) due to connections between statistical concepts, assumed to
be common across all authors. On the other hand, the standard Gaussian graphical model
assumes all the authors share the same term preference and the deviation of observation
from this term preference is due to common statistical concepts, which is to be learned.
Intuitively, the proposed model interpretation is potentially more interpretable and flexible
and offers more information.

28

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.5: The coauthorship network of 635 statisticians based on four statistical jour-
nals. Both the size and the color of each node indicate the degree of the node (number of
connections), with larger and darker nodes being statisticians with more coauthors in the
network.

Again, we select α using 10-fold cross-validation. The cross-validation on λ for GNC-
lasso and glasso recovers 4 and 6 edges respectively, which are a little sparse. As discussed
in previous sections, cross-validation may not necessarily provide easily interpretable re-
sults and in this setting, the cross-validated Gaussian graphs for both methods are too sparse
to interpret. Instead, we apply both methods to obtain 25 edges in the final Gaussian graphs,
which is a number that gives interpretable results for both methods. Figure 2.6 and Fig-
ure 2.7 shows the two estimated graphs of statistical terms. For visualization, we only plot
the terms that have connections in at least one of the two graphs. This results in 47 terms
in the figure.

Overall, most of the estimated edges represent valid concepts, such as “Markov chain
Monte Carlo”, “exponential families”, “measurement error”, “least absolute (deviation)”.
Regarding reasonable discoveries, “high dimensional”, “gene expression”, “covariance
matrices”, “partially linear model”, “maximum likelihood”, “confidence bands” and “bi-
variate associate” are discovered in the GNC-lasso graph but are missed in the glasso

29

graph, while the concept of “moving average” is discovered by glasso but missed by
GNC-lasso. While glasso connects “false-discover-control”, GNC-lasso misses the edge
between “false-discovery” and “control”, both of which can be reasonable. On the other
hand, regarding potential false discoveries, the 4-connected component of “orthogonal-
construction-computer-experiment” in the glasso graph may not correspond to any well-
established concepts in statistics, though combing the terms together can be meaningful.
The edge between “moving average” and “least absolute” is also questionable. In the GNC-
lasso graph, the connections of “monotone-count” and “alternative-composite” are likely
to be false.

30

absolute

alternative

association

average

bands

bivariate

carlo

chain

composite

computer

confidence

construction

control

count

covariance

dimensional

dimensions

discovery error

experiments

exponential

expression

false

families

forecasting

gene

hidden

high

inhomogeneous

intensity

intervals

least

likelihood

linear

localmarkov

matrices

maximum

measurement

monotone

monte

moving

orthogonal

partially

point

polynomial

probabilistic

Figure 2.6: Partial correlation graphs estimated using Glasso

absolute

alternative

association

average

bands

bivariate

carlo

chain

composite

computer

confidence

construction

control

count

covariance

dimensional

dimensions

discovery error

experiments

exponential

expression

false

families

forecasting

gene

hidden

high

inhomogeneous

intensity

intervals

least

likelihood

linear

localmarkov

matrices

maximum

measurement

monotone

monte

moving

orthogonal

partially

point

polynomial

probabilistic

Figure 2.7: Partial correlation graphs estimated using GNC-lasso

31

2.6 Conclusion

In this chapter, we extend the standard graphical lasso problem and the corresponding esti-
mation to the more general setting in which each individual observation has its own mean
vector while all observations share the same covariance matrix under the assumption of
network cohesion. Both the problem and the cohesion assumption are well motivated by
many real world examples. Though the model involves more parameters than the num-
ber of observations, estimation can still be done with the help of network cohesion. The
method is computationally efficient with theoretical guarantees to precisely estimate the
inverse covariance matrix and the graph structure. In addition, we show that the estimation
cannot be improved by using the maximum penalized joint likelihood estimator, though
such estimator may be preferred at first look. The effectiveness of our proposal is demon-
strated in both simulation studies and a real world application.

32

CHAPTER 3

A Two-Step Approach for Estimating Directed
Acyclic Graphs

3.1 Introduction

Graphical model is one of the most popular tools for representing the probabilistic structure
of the underlying random variables. Using nodes to denote the variables and edges to
denote their conditional dependence, graphical models provide a way for analyzing and
visualizing interactions between these variables. In particular, directed graphs can be used
to encode causal relations among variables. In this chapter, we focus our discussion on
the directed acyclic graph (DAG), that is, all edges are directed and there is no cycle in
the graph. The interpretation of DAG is based on the directed Markov property (Lauritzen,
1996), and it has been widely used in a large variety of applications, such as, genetic
networks (Hughes et al., 2000), social networks (Friedman et al., 2008) and time series
analysis (Aalen et al., 2012).

Reconstructing DAG from observational data is a computationally NP-hard problem,
and the number of candidate DAGs grows super-exponentially with the number of nodes.
There has been a number of methods proposed to estimate DAGs with relatively small
number of nodes, which are essentially based on searching through all possible graphs in
the space. Two examples of such kind of methods are the max-min hill climbing algorithm
(Tsamardinos et al., 2006) and the Peter-Clark (PC) algorithm (Spirtes et al., 2000). If
given a natural ordering of the variables, the estimation of DAGs reduces to the estimation
of their skeletons, and two important such methods include the implementation of the PC-
algorithm, proposed by Kalisch and Buhlmann (2007), and penalized likelihood approachs,
proposed by Shojaie and Michailidis (2010) and Van de Geer et al. (2013). Note that
both methods assume a high-dimensional sparse setting. In particular, for multivariate
Gaussian random variables, the estimation problem resembles the estimation of the inverse
covariance matrix, or the precision matrix.

33

How to reduce the computational cost for estimating DAG poses a challenging problem,
and an effective method which leads to such reduction will facilitate the analysis of large-
scale networks. In this chapter, we propose a two-step approach of estimating DAGs,
which will expedite the procedure of reconstructing DAGs from data. Specifically, we
introduce the following two-step approach, which involves an initial screening step and a
reconstruction step:

• Step 1: Screening. In this step, we develope a method for estimating the inverse
covariance matrix corresponding to the DAG, which provides us a reduced space for
possibly existing edges in the DAG.

• Step 2: Reconstruction. Based on the result in step 1, we reconstruct the DAG on
a reduced parameter space, which is of a much lower dimension compared with the
original one. Consequently the reconstruction of the DAG is expected to be much
faster on this reduced parameter space, and due to the bias-variance tradeoff, the
estimation accuracy is also possibly better for the two-step estimate.

The rest of the chapter is organized as follows: in Section 2, we propose the two-step
method in greater details together with theoretical justifications; in Sections 3 and 4, we
evaluate the performance of the proposed method using simulation studies and a real-world
S&P500 stock data; Section 5 summarizes the chapter.

3.2 The proposed two-step methodology

In this section, we introduce the model set-up for DAG, and describe in detail how our
two-step method is applied to reconstruct the DAG.

Consider a Gaussian DAG, which can be represented using the following linear struc-
tural equation model (SEM) (Peters and Bühlmann, 2012):

Xj =
∑

k∈pa(j)

AjkXk + Zj; j = 1, 2, · · · , p, (3.1)

where pa(j) denotes the parental nodes of node Xj , Zj is the noise term and independent
of {Xk : k ∈ pa(j)}. We additionally assume that Z1, . . . , Zp are independent Gaussian
with equal variance, that is, Zj ∼ N (0, σ2). Note that the equal variance assumption on
Zj’s enables identifiability of the graph (Peters and Bühlmann, 2012). With the notation
X = (X1, · · · , Xp)

T , the model can be equivalently written in the following matrix form:

Xp×1 = Ap×pXp×1 + Z, ⇔ X = (I − A)−1Z ≡ ΛZ,

34

with A ∈ Rp×p contains the adjacency information, and Λ = (I − A)−1. Here, we impose
several constraints on A, including 1) the corresponding graph is sparse (i.e., A being
sparse), 2) the graph does not contain self-loops (i.e., diag(A) = 0), and 3) the graph is
acyclic.

Further, note that since X = (I−A)−1Z, then we have Cov(X,X) = (I−A)−1D(I−
A)−T , where D = diag(σ2, . . . , σ2). Consequently, the inverse covariance matrix of X
(denoted by Θ) is given by

Θ = (I − A)TD−1(I − A). (3.2)

Note that Θ encodes the moral graph corresponding to the DAG encoded by A. For a
directed acyclic graph, its corresponding moral graph is obtained by adding edges between
all pairs of nodes that have a common child, then removing the direction of all edges.
In other words, if we only focus on the skeleton of a DAG, its edge set is a subset of
its moralized graph counterpart. With the DAG represented in the linear SEM form, its
moral graph is encoded by Θ, corresponding to the inverse covariance matrix of X . By
estimating the inverse covariance matrix first then restricting the DAG estimation on the
space governed by the inverse covariance estimate, we effectively reduce the estimation
space of the directed edges, from which we attain computational gain.

3.2.1 Some useful theoretical results

Our primary interest is to estimate A using iid observations of X arranging in the rows
of X ∈ Rn×p. Throughout this chapter, we use X = [xij]1≤i≤n,1≤j≤p to denote the data
matrix, and bold X to denote the underlying random vector.

In this subsection, we introduce assumptions and describe some theoretical results that
justify the validity of the proposed two-step method.
Sparsity Assumption (A1). Let si be the number of nonzero elements in the ith row of A
and s∗j be the number of nonzero elements in the jth column of A, then s = O(1) where s
is defined as:

s := max{s1, · · · , sp, s∗1, · · · , s∗p}

This assumption implies that none of the nodes has many children, nor do we allow the
case where a node has many parents.

Denote the inverse covariance matrix of X by Θ. The following proposition then en-
sures that under the sparsity assumption (A1), given a sparse A, its corresponding moral
graph, which is reflected by Θ, is also sparse.

35

Proposition 3. Suppose the adjancency matrix A ∈ Rp×p for the DAG satisfies sparsity

assumption (A1), then its corresponding moral graph, denoted by Θ is also sparse, with

sΘ ∼ O(p), where sΘ is the total number of nonzero off-diagonal entries in Θ.

To prove Proposition 3, we need the following Lemma 3.2.1.

Lemma 3.2.1. Suppose M ∈ Rp×p satisfies the sparsity assumption (A1), then Ω
4
= MMT

is sparse, that is, sΩ ∼ O(p).

Proof of Lemma 3.2.1. First we note

Ωij =

p∑
k=1

MikM
T
kj =

p∑
k=1

MijMjk.

The total number of nonzero elements in Ω is thus given by∑
i

∑
j

1(Ωij 6= 0) =
∑
i

∑
j

1(
∑
k

MikMjk 6= 0)

≤
∑
i

∑
j

∑
k

1(Mik 6= 0)1(Mjk 6= 0)

=
∑
k

{∑
i 1(Mik 6= 0)

}{∑
j 1(Mjk 6= 0)

}
≤ p · s · s ∼ O(p)

With Lemma 3.2.1, we can prove Proposition 3 as follows.

Proof of Proposition 3. By (3.2), Θ can be written as:

Θ = (I − A)TD−1(I − A), (3.3)

where D is a diagonal matrix. Without loss of generality, we can assume D = I , the
identity matrix. Now given A that satisfies the sparsity assumption (A1), it immediately
follows that I−A also satisfies the sparsity assumption, and so does (I−A)T . Substituting
M in Lemma 3.2.1 by (I − A)T and applying the lemma, it directly follows that for Θ

defined as in (3.2), sΘ ∼ O(p), which means Θ is sparse.

Next we introduce the faithfulness assumption (A2) and show that under the faithfulness
assumption, if node pair (i, j) are not linked in the moral graph encoded by Θ, then the
corresponding pair (i, j) are not linked in the adjancency matrix A of the DAG neither.

36

Faithfulness Assumption (A2). Consider the Gaussian DAG given in (3.1). We say the
DAG satisfies the faithfulness assumption if the following equality holds for all i < j:

− σ−2
j Aij +

∑
k>j

σ−2
k AikAjk = 0 (3.4)

if and only if Aij = 0 and AikAjk = 0 for all k > j.
Note that if the nonzero entries in A are independently sampled continuous random

variables, the assumption holds for all choices of A almost surely. Further, it is not difficult
to see that under the faithfulness assumption (A2), if Θij = 0, then Aij = 0 as well for
i, j = 1, 2, · · · , p; i 6= j (Loh and Buhlmann, 2014, Spirtes et al., 2000), where Θ is the
inverse covariance matrix corresponding to the DAG in (3.1), whose adjacency matrix is
A.

This result is a population level statement, which guarantees that the true (undirected)
edge set EΘ ≡ {(i, j) : Θij 6= 0, i 6= j} is at least a superset of the true edge set of
A, defined as EA ≡ {(i, j) : Aij 6= 0, i 6= j}. This implies that if we knew EΘ, we
could simply restrict the searching of EA within EΘ, and if the size of EΘ is small or Θ

is sparse (implied by Proposition 3), the parameter space for estimating A can be signfi-
cantly reduced. Of course, in practice, we do not know Θ (or more precisely EΘ), but we
can estimate it using many of the graph learning algorithms that have been developed for
estimating the nonzero entries of the inverse covariance matrix. Therefore, we propose a
two-step approach for estimating A. In the first step, we apply an undirected graph learn-
ing algorithm to estimate EΘ, and in the second step, we apply a directed graph learning
algorithm to estimate EA (or A) but with the nonzero entries restricted within ÊΘ. If the
size of ÊΘ is small, this approach will obviously reduce the computational cost. Further,
since the nonzero parameter space is also reduced, due to the bias-variance tradeoff, the
statistical estimation accuracy may also be improved, even though in practice, ÊΘ may not
be a superset of EA. Specifically, using the symmetric differece notation, we have

∆ ≡ EA∆ÊΘ = (EA\ÊΘ)︸ ︷︷ ︸
∆1

∪ (ÊΘ\EA)︸ ︷︷ ︸
∆2

≡ ∆1 ∪∆2. (3.5)

If ÊΘ = EΘ, ∆1 = ∅, but in practice, ÊΘ may not be the same as EΘ, and ∆1 may not
be empty, which implies that we will not be able to identify the edges in ∆1 in the second
step of our method. Nevertheless, since the parameter space is reduced in the second step
of our method, due to the bias-variance tradeoff, statistical estimation accuracy may still be
improved, as long as the size of ∆1 is not large.

37

3.2.2 Step 1: estimating the moral graph

Given the data matrix X ∈ Rn×p (assuming it is centered), we first obtain an estimate of
the inverse covariance matrix corresponding to X , denoted by Θ, which will be used to
provide ÊΘ. As noted above, Θ reflects the moral graph corresponding to the DAG, whose
information is encoded by A.

Note given the model in (3.1), the inverse covariance matrix Θ corresponding to X can
be written as follows:

Θ = Λ−TD−1Λ−1 = (I − A)TD−1(I − A), where D = diag(σ2
1, · · · , σ2

p). (3.6)

Note based on the discussion in the previous subsection, if the sparsity assumption (A1)
holds, Θ is also sparse. Then to obtain an estimate Θ̂ for Θ, we propose to estimate Θ in
the following way. First, we use graphical lasso (Friedman et al., 2008) combined with sta-
bility selection (Meinshausen and Buhlmann, 2010) to obtain a weight matrix W . Specif-
ically, we apply graphical lasso with a sequence of tuning parameters {λk}Kk=1 over B
bootstrapped samples of the original data X , denoted by {X(b)}Bb=1. For each bootstrapped
sample X(b), given tuning parameter λk, we are able to obtain an estimate Θ̂k,b for Θ via
graphical lasso. Define the selection probability corresponding to λk, denoted by Πk, as

Πk ≡ 1

B

B∑
b=1

I(Θ̂k,b 6= 0),

where both the inequality and indicator function are taken entry-wise. Note that with the
definition in Meinshausen and Buhlmann (2010), Πk, k ∈ {1, . . . , K} forms the stability
path of each edge, and each entry in Πk can be roughly interpreted as the probability of an
edge being selected over B bootstrapped samples. Further, let

W = [Wij] ≡ max
k=1,2,··· ,K

Πk,

where the maximum is taken over the entire stability path and the operation is also per-
formed entry-wise. Each entry in W encodes the maximum selection probability over the
corresponding stability path, and can be viewed as an empirical measure of the “existing
probability” for each edge. This facilitates us to assign different penalties on different en-
tries of Θ when using the graphical lasso to estimate Θ, which is also expected to yield
more accurate estimates. Specifically, Θ̂ is obtained by solving the following optimization

38

problem:
Θ̂ = argmin

Θ∈Sp+

{
log det Θ− tr(SΘ) + ρ‖(1−W) ∗Θ‖

1,off
}
, (3.7)

where S = XTX/n, the sample covariance matrix of X , ∗ denotes the entry-wise product
between matracies, and ρ is a tuning parameter.

Note that the weighted graphical lasso penalizes more on edges that have small values
of Wij and penalizes less on edges that have large values of Wij . Since stability selection
avoids the complication of choosing a proper tuning parameter and provides a good sense
for which edges are likely to exist and which are not, we expect the weighted graphical lasso
to perform better than the standard graphical lasso. Further, note if an edge is removed in
the first step, it will never be recovered back in the second step, thus if one is concerned
about selecting most true edges (i.e. sensitivity), a small value of the tuning parameter ρ in
(3.7) would be preferred. On the other hand, a small value of ρ tends to result in a larger
set of ÊΘ, which implies that the parameter space in the second step will be larger, and
then both the variance of the estimate in the second step and the computational cost will
also be larger. Thus, there are considerations in both the bias-variance tradeoff and the
computational cost when selecting ρ.

3.2.3 Step 2: reconstructing the DAG on the restricted space

In this step, we reconstruct the DAG, or equivalently estimate A, using the estimated Θ̂

from step 1. Specifically, let

MΘ̂ = {M ∈ Rp×p : Mij = 0 if Θ̂ij = 0}, (3.8)

i.e. the collection of p × p matrices with certain entries being 0, and the reconstruction of
A will be restricted to the reduced spaceMΘ̂. Further, we let

`(A) =
1

2

p∑
j=1

n∑
i=1

(
xij −

∑
k:k 6=j

xikAjk

)2

,

39

which is the negative log-likelihood up to a constant, and we consider to estimate A using
the following criterion:

min
A

`(A) (3.9)

subject to
∑
i 6=j

|Aij| ≤ K, (3.10)∑
j1=jL:1≤k≤L

I(Ajk−1,jk 6= 0) ≤ L− 1, (3.11)

for any {j1, · · · , jL} ⊆ {1, 2, · · · , p}. Note the first constraint corresponds to the sparsity
assumption on A, while the second one guarantees that the estimated Â satisfies the acyclic
property of DAG. However the second constraint in fact includes a total number of O(pp)

constraints, which is super-exponential in p and renders the optimization computationally
infeasible. It turns out that by introducing an intermediate dual variable matrix, the number
of constraints can be reduced to p3 − p2 (Yuan et al., 2014), and the criterion (3.9)-(3.11)
can be written in an equivalent form

min
A,λ

`(A)

subject to
∑
i 6=j

|Aij| ≤ K, (3.12)

λik + I(j 6= k)− λjk ≥ I(Aij 6= 0), i, j, k = 1, . . . , p, i 6= j. (3.13)

Note that now the acyclic property ofA is satisfied as long as the set of constraints in (3.13)
are satisfied.

Further, to ease the optimization, we replace the indicator function I(Aij 6= 0) with the
truncated `1 function Jτ (Aij) = min(|Aij|/τ, 1) (Shen et al., 2012), where τ is a tuning
parameter and Jτ (x) approximates the indicator function as τ → 0+. Then following the
derivations in Yuan et al. (2014) and using techniques in ADMM, we obtain the augmented
Lagurangian for the ADMM update:

Lρ(A,B, U, λ, ξ, y) = `(A) + µ‖B‖1 +
ρ

2
‖A−B + U‖2

F (3.14)

+
ρ

2

∑
k

∑
i 6=j

(|Bij|wij + τ(1− wij) + ξijk

−τλik − τI(j 6= k) + τλjk + yijk)
2,

where y = {yijk}p×p×p is a scaled dual variable tensor, and U = {uij}p×p is a scaled dual
variable matrix.

40

Then optimizing (3.14) can be solved by iteratively minimizing each of the six blocks
(A,B, λ, ξ, y, U) sequentially while holding others fixed until convergence. Specifically, at
iteration s+ 1, we have the following update rules:

A(s+1) = argminA∈M
Θ̂
Lρ(A,B

(s), λ(s), ξ(s), y(s), U (s)) (3.15)

B(s+1) = argminB∈M
Θ̂
Lρ(A

(s+1), B, λ(s), ξ(s), y(s), U (s)) (3.16)

λ(s+1) = argminλ Lρ(A
(s+1), B(s+1), λ, ξ(s), y(s), U (s)) (3.17)

ξ(s+1) = argminξ�0 Lρ(A
(s+1), B(s+1), λ(s+1), ξ, y(s), U (s)) (3.18)

y
(s+1)
ijk = y

(s)
ijk + (|B(s+1)

ij |+ ξ
(s+1)
ijk − τλ(s+1)

ik − τI(j 6= k) + τλ
(s+1)
jk) (3.19)

U (s+1) = U (s) + (A(s+1) −B(s+1)) (3.20)

Note the updates in ξ, y and U are straightforward. The updates in A and B are now
carried out in a much smaller parameter space (compared with the entire collection of p×p
matrices), and thus the computational cost is much reduced. Specifically, let Ij denote
the potential nonzero positions for the jth row of A, then AIj is updated by solving the
following minimization problem:

min
AIj

1

2

n∑
i=1

(xij −
∑

k 6=j,k∈Ij

xikAjk)
2 +

ρ

2
||AIj −B

(s)
Ij

+ U
(s)
Ij
||2.

Equivalently, AIj is the solution for:

(XT
Ij
XIj + ρI)AIj = XT

Ij
Xj + ρ(B

(s)
Ij
− U (s)

Ij
).

Similarly for B. Note that at each iteration, A(s+1) is obtained by rows, that is, A(s+1) is
obtained by solving p separate equations. Therefore, it implies that mis-specification in Ij
(due to errors in ÊΘ) will not affect much the updates in other rows of A.

The update in λ is a little involved, and we provide more details.
Algorithm for updating λ. When updating λ while holding the rest of the parameters
fixed, we aim to minimize the following objective function (after omitting a constant
scalar):

f(λ) =
∑
k

∑
i 6=j

(|Bij|wij + τ(1− wij) + ξijk − τλik − τI(j 6= k) + τλjk + yijk)
2 .

41

The first-order condition is then given by:

2τ(Qλ+W) = 0,

where

Q = (2τ)

p− 1 −1 · · · −1

−1 p− 1 · · · −1
...

...
−1 −1 · · · p− 1

 , (3.21)

and the (i, k) entry of W is given as follows, for i, k = 1, · · · , p:

Wik =
∑
j 6=i

(|Bji|wji − |Bij|wij)− τ
∑
j 6=i

(wji − wij) +
∑
j 6=i

(ξjik − ξijk) +
∑
j 6=i

(yjik − yijk)

− τ

(∑
j 6=i

I(i 6= k)−
∑
j 6=i

I(j 6= k)

)
.

If Q were invertible, the minimizer for f(λ) would be:

λ∗ = −Q−1W.

However, the Q matrix given in (3.21) is of rank p− 1 and thus not invertible. Hence min-
imizing f(λ) w.r.t. λ potentially has infinite number of optimizers. Note that if we use the
generalized inverse of Q for Q−1, then during the updating iterations, the value of λ may
explode (observed in simulation studies).

Now among the infinitely many possible optimizers, we propose to use the one that has
the smallest Frobenius norm. Specifically, we consider the following optimization problem
when updating λ:

min
λ

f̃(λ) ≡ f(λ) + ρ · tr(λTλ), ρ > 0. (3.22)

Denote the solution to (3.22) by λ̃(ρ), then the desired optimizer λ∗ is given by:

λ∗ = lim
ρ↓0

λ̃(ρ).

For completeness, we derive the solution for λ∗ in the following.

42

Note the first order condition for optimizing (3.22) is given by:

∇f̃(λ) = (2τQ+ 2ρI)λ+ (2τ)W
set
= 0,

i.e., (
Q+

ρ

τ
I
)
λ = −W. (3.23)

Given the special form of Q, we see that

Q = (2τ)
(
pI− eeT

)
, where e = (1, · · · , 1)T ∈ Rp×1.

Then the LHS of (3.23) is given by:(
2τp+

ρ

τ

)
I− (2τ)eeT ,

and its inverse is given by:

(
2τp+

ρ

τ

)−1
[
I− 2τ

2τp+ ρ/τ
eeT
]−1

=
(

2τp+
ρ

τ

)−1
[
I +

2τ 2/(2τ 2p+ ρ)

1 + 2τ 2/(2τ 2p+ ρ)‖e‖2
eeT
]

=
τ

2τ 2p+ ρ

[
I +

2τ 2

4τ 2p+ ρ
eeT
]
,

where the first equality comes from the following identity:

(
I + cV V T

)−1
= I− c

1 + c‖V ‖2
V V T for some vector V.

Therefore, the minimizer of (3.22) is given by:

λ̃(ρ) = − τ

2τ 2p+ ρ

[
I +

2τ 2

4τ 2p+ ρ
eeT
]
W.

Now let ρ→ 0, we have:

λ∗ = − 1

2τp

[
I +

1

2p
eeT
]
W.

3.3 Simulation studies

In this section, we investigate the performance of the proposed method and compare it with
the one-step approach, which optimizes (3.13) on the entire space of p× p matrices.

We consider DAGs with p =30, 50, 100, and 200 nodes, and the edges come from an
Erdos-Renyi random graph. Specifically, we generate the graph according to P (Aij 6= 0) =

43

0.02, i > j. Values of the nonzero entries inA are generated according to Unif(−0.25,−1)∪
Unif(0.25, 1). The data are then generated according to (3.1) with σ2 = 1, and n = 100.
All results are averages over 50 replications.

We first look at the results for step 1 of the proposed method. Figure 3.1 shows the
ROC curves in identifying the edges in the moral graph of A, i.e. Θ. As one can see, the
weighted graphical lasso performs significantly better than the standard graphical lasso in
recovering the moral graph structure. As expected, as p increases, the performaces of both
weighted graphical lasso and standard graphical lasso deteriorate. However, note that the
graph structure inA is our primary interest, rather than the moral graph. What we truly care
about is whether edges in A can be retained in Θ̂ so that they remain in the parameter space
in the second step of the proposed method and so that there is a chance to identify them in
the second step. Specifically, we are concerned if Aij 6= 0, then whether the corresponding
Θ̂ij is nonzero. The results are summarized in Figure 3.2, where the sensitivity is computed
using A as the baseline, rather than Θ. Note that for the four settings (p =30,50,100,200)
we have considered, the ROC curves almost overlap, and maintain a sensitivity close to 1
for a wide range of specificity values. This is a desired result as it implies that though some
of the edges in the moral graph may be missed by the weighted graphical lasso, most edges
in A are kept in Θ̂ and they will be used to define the parameter space for the second step
of the proposed method.

44

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

ROC curve

1-SPECIFICITY

S
E
N
S
IT
IV
IT
Y

Weighted
Unweighted

(a) p = 30, n = 100

0.0 0.2 0.4 0.6 0.8
0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

ROC curve

1-SPECIFICITY

S
E
N
S
IT
IV
IT
Y

Weighted
Unweighted

(b) p = 50, n = 100

0.0 0.2 0.4 0.6 0.8

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

ROC curve

1-SPECIFICITY

S
E
N
S
IT
IV
IT
Y

Weighted
Unweighted

(c) p = 100, n = 100

Figure 3.1: ROC curves for Θ̂ in identifying edges in the moral graph of A. Solid red
curves correspond to the weighted graphical lasso, and the dashed black curves correspond
to the standard graphical lasso.

Figure 3.2: ROC curves for Θ̂ when using A as the baseline. n = 100, p =30, 50, 100,
200.

Table 3.1 summarizes the final results in terms identifying edges in A and also esti-
mation accuracy for A. Again, we evaluate the graph identification performance using
sensitivity and specificity while the estimation accuracy using the Frobenius norm. We

45

also recorded the computational time, which includes both step 1 and step 2 for the pro-
posed method. As one can see, as expected, in terms of the computational cost, the two-step
method is much faster than the one-step method, and the difference is more dramatic when
p increases. Further, the two-step method also performs better than the one-step method
in terms of identifying the edges in A. This is probably due to the bias-variance trade-off,
as the two-step method first reduces the size of the parameter space (without losing much
bias) so that one only needs to search for the model within a much restricted parameter
space in the second step (resulting in much reduced variance).

Table 3.1: Simulation results based on 50 replications

(n, p) Two-step One-step

(100, 30) Specificity 0.90(0.010) 0.85(0.010)
Sensitivity 0.90(0.080) 0.90(0.076)

Frobenius loss 1.71(0.091) 1.67(0.087)
Computational time 80s 205s

(100, 50) Specificity 0.94(0.006) 0.86 (0.005)
Sensitivity 0.95(0.0259) 0.95(0.053)

Frobenius loss 2.48(0.082) 2.49(0.062)
Computational time 350s 610s

(100, 100) Specificity 0.95(0.003) 0.80(0.003)
Sensitivity 0.90(0.029) 0.83(0.024)

Frobenius loss 5.43(0.072) 5.56(0.057)
Computational time 3335s 29205s

3.4 Data example

In this section, we apply the proposed method to a stock return data and also compare the
performance with the one-step method.

The data are collected from S&P500 via http://finance.yahoo.com, over the period of
2013-01-01 to 2014-12-31 with 458 consecutive trading days. We collect daily returns of
10 stocks over this period, specifically, YHOO (Yahoo), APPL (Apple), GOOGL (Google),
IBM (IBM), QCOM (Qualcomm), T (AT&T), VZ(Verizon), GM (General Motors), LUV
(Southwest Airlines), and AME (Ametek). In addition, we also collected the daily returns
of the S&P500, so we can compute the daily excess return of each stock. The excess return
of a financial asset is the return that exceeds a particular benchmark or index with similar

46

level of risk. In this case, we use the S&P500 index as the benchmark and the regression
coefficient between long term stock return and long term S&P500 index return as the level
of risk. Specifically, the excess return of stock i at time t can be calculated as follows:

exri,t = ri,t − βi · rm,t

where ri,t is the daily return of stock i at time t, rm,t is the daily return of S&P500 at time
t, and βi is the regression coefficient if we regress the long term return of stock i on the
long term S&P500 index return. Note the excess rate of return is essentially the return of a
stock after removing the effect of the market.

We then apply both the one-step and two-step methods to the excess returns to investi-
gate the “intrinsic” dependence structures of these stocks. The results are shown in Figure
3.3. As one can see, the two-step method identifies few edges than the one-step method,
which is in accordance with the results in simulation studies, i.e. the two-step method tends
to enjoy higher specificity than the one-step method in simulation studies. It can also be
seen that edges identified by the two-step method are essentially connecting companies
within the same sector, e.g. Yahoo and Google, Verizon and AT&T. The one-step method
did not discover the pair of Verizon and AT&T, while at the same time, some of the connec-
tions identified by the one-step method are a little dubious, for example, Google and GM,
Yahoo and GM, GM and Southeast Airlines. Both methods identified the pair of Southwest
Airlines and Ametek; though both companies belong to the sector of public transportation,
it is not clear whether they are closely related.

YHOO

AAPL

TVZ

GOOGL

IBM

QCOM

GM LUV

AME

YHOO

AAPL

TVZ

GOOGL

IBM

QCOM

GM LUV

AME

Figure 3.3: Estimated dependence structures among 10 stocks using the one-step (left) and
two-step (right) methods

47

3.5 Summary

The Directed Acyclic Graph (DAG) is a commonly used tool to encode the causal rela-
tionship between random variables. Estimation of the DAG structure is often a challenging
problem as the computational complexity scales exponentially in the graph size when the
total ordering of the DAG is unknown. To reduce the computational cost, and also with the
aim of improving the estimation accuracy via the bias-variance trade-off, we have proposed
a two-step approach for estimating the DAG in this chapter, when data are generated from a
linear structural equation model. In the first step, we infer the moral graph of the DAG via
estimation of the inverse covariance matrix, which reduces the space that one would search
for the DAG. In the second step, we apply a penalized likelihood method for estimating the
DAG to the reduced space. Numerical results indicate that the proposed method compares
favorably with the one-step method in terms of both computational cost and estimation
accuracy.

48

CHAPTER 4

Estimating Cointegrated Vectors with
Structured Sparsity

4.1 Introduction

Cointegration is a statistical tool for analyzing multiple time series data and it has been
widely used in econometrics and macroeconomic analysis. The pioneering concept of
cointegration was initially proposed in Granger (1981) with the specification and analy-
sis focusing primarily in the spectral domain. The idea was later formalized by Engle and
Granger (1987), who established the connection between the autoregressive and the error
correction representations of the cointegrated system. The authors proposed to estimate
the cointegrated vector with a two-stage estimator under the regression framework, with
estimation and discussion focusing on the cointegration of two univariate series. Later on,
Johansen (1988) considered to estimate the cointegrated vector in a multivariate setting
through maximizing the profile likelihood function. Asymptotic properties of the estima-
tors have also been discussed, as well as a procedure for testing the number of cointegrating
vectors based on the likelihood ratio test statistic. Another test with a similar hypothesis
yet based on the unit-root residuals was proposed by Phillips and Ouliaris (1990). All these
work consider the cointegrated vector being dense, i.e. the cointegration series involve all
coordinates of the original series.

Much more recently, Wilms and Croux (2016) considered the sparse cointegration, in
which some of the entries in the cointegrating vectors are exactly zero, so that each cointe-
grated series is formulated by a linear combination of only a few coordinates of the original
multivariate series. The authors showed that sparse cointegration leads to better forecasting
performance, yet the cointegrated series themselves are never of primary concern.

In this chapter, we consider a similar setting in which the cointegrating vectors are
sparse. However, instead of simply assuming the cointegrating vectors are sparse, we as-
sume the cointegrating vectors are simultaneously group sparse and elementwise sparse,

49

which lays one of the major differences between our model setup and that in Wilms and
Croux (2016).

Such a “mixed-sparsity” assumption is not arbitrary and has an important association
with how the cointegrating vectors are obtained thus the formulation of the cointegrated
series. It is well-known that if the original multivariate system is cointegrated, then the
coefficient matrix has a low-rank representation and can be decomposed into two compo-
nents, one of which encodes the cointegrating vectors and the other encodes the “speed”
of cointegration. The decomposition, however, is not uniquely identifiable. With the sole
assumption that the cointegrated vectors are elementwise sparse as in Wilms and Croux
(2016), there may be some other sparse (or non-sparse) representations of the cointegrating
vectors which yield similar or even superior forecasting performances. Consequently, it be-
comes uninformative to place any attention on the cointegrated series. The limitation can
be partially addressed by the additional assumption that the cointegrated vectors are also
group sparse. By properly placing the group-sparse assumption, we are able to obtain coin-
tegrating vectors whose group-sparsity pattern is invariant to linear transformations, albeit
the non-uniqueness in identifying the cointegrating vectors. In other words, we are able
to eliminate an invariant set of the coordinates of the original series based on the obtained
cointegrated series, no matter what the ultimate sparse cointegrating vectors are from the
low-rank decomposition. We retain the elementwise sparsity assumption as in Wilms and
Croux (2016) to encourage further sparse representation of the cointegrating vectors. For
example, as in one of the data applications we will see later, suppose one is interested in
constructing portfolios of stocks based on their cointegration relations, then from the per-
spective of reducing the transaction cost and improving the portfolio stability, it would be
desirable to shrink the large basket of stocks to a smaller subset such that stocks that are
marginally related are removed in the first place, and only a few stocks are involved for
each cointegrated series.

The rest of the chapter is organized as follows. In Section 4.2, we present the formal
problem formulation and introduce the method which leads to the cointegrated vectors with
our desired sparsity pattern. In Section 4.3, we evaluate the performance of the proposed
method using simulation studies, with a focus on the error of the estimated coefficient
matrix and the recovery of the cointegrated space. In Section 4.4, we apply the proposed
method to data examples, one being stock data and the other being treasury yield data.
Section 4.5 summarizes the chapter.

50

4.2 Problem formulation and the proposed method

We start the presentation with a general p-dimensional vector autoregressive (VAR) pro-
cess. Consider a multivariate process Xt ∈ Rp that evolves according to a VAR(d) model,
i.e.

Xt = µt + Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦdXt−d + εt, (4.1)

where µt ∈ Rp is the vector of intercept terms, Φ1, . . . ,Φd are p × p transition matrices,
and εt ∈ Rp is an innovation process satisfying

E(εt) = 0, E(εtε
T
t) = Σε, E(εtε

T
s) = 0 for t 6= s.

The characteristic polynomial A(z) of {Xt} is then defined as

A(z) := I − Φ1z − · · · − Φdz
d.

If the roots of |A(z)| = 0 lie outside the unit circle, {Xt} is unit-root stationary or an
I(0) process, and {Xt} is called an I(d) process if its dth-order difference process {∆dXt}
is unit-root stationary. Here we assume {Xt} is at most an I(1) process, that is, ∆Xt is
stationary if Xt is not. Specifically, we follow the definition in Lütkepohl (2005) and refer
to {Xt} as cointegrated if there are linear combinations given in the form of βTXt that are
I(0), where β ∈ Rp×r, and the r cointegrated series are given by βT·iXt, where β·i ∈ Rp

denotes the ith column of β and is a cointegrating vector.
The model in (4.1) can be equivalently written in the form of a vector error correction

model (VECM), i.e.

∆Xt = µt + ΠXt−1 + Φ∗1∆Xt−1 + · · ·+ Φ∗d−1∆Xt−d+1 + εt,

where the correspondence between the parameters of the VECM and those of the VAR
model is given by

Φ∗j = −
d∑

i=j+1

Φi, and Π = Φ1 + · · ·+ Φd − I = −A(1). (4.2)

With the VECM representation, the rank of Π determines the number of cointegrated series
of Xt. There are two extreme scenarios: if rank(Π) = 0, then Π = 0 and Xt is not
conintegrated; if rank(Π) = p, then Xt is an I(0) process and can be studied directly from
the VAR representation. However, if 0 < rank(Π) = r < p, we can write Π = αβT for

51

some α, β ∈ Rp×r. Then Xt is cointegrated with r linearly independent cointegrated series
given by βTXt, and these r linear combinations are unit-root stationary. The rest of the
chapter focuses on this non-trivial case, i.e., 0 < rank(Π) < p.

Let Wt = βTXt be the r linearly independent cointegrated series with β = [β1, . . . , βr]

being the cointegration vectors. In many real-world applications, each cointegrated series
does not necessarily involve all coordinates of Xt, and further some coordinates are not
expected to appear in any of the cointegrated series. In other words, the cointegrating
matrix β possesses the structure of being simultaneously elementwise sparse and group
(row-wise) sparse.

We are interested in investigating how to estimate such a β with the designated sparsity
pattern from a snapshot of the random process that constitutes our sample. Without loss of
generality and for easiness of presentation, we consider the special case d = 2 and µt = 0,
and the VECM is simplified to

∆Xt = ΠXt−1 + Φ∗1∆Xt−1 + εt. (4.3)

The estimation procedure can be easily generalized to the situation when d > 2.

4.2.1 Estimation

In this subsection, we formulate an optimization problem with appropriate regularization
terms, whose solution is the estimated cointegrating matrix with the designated sparse
structure. We first provide an outline of the proposed method. Specifically, by writing
Π = αβT and profiling out the other parameters (i.e. Φ1, α,Σε), we obtain the profile
likelihood with β being the sole parameter. Without the assumption of sparsity or the pres-
ence of penalty terms, the minimizer of the negative profile likelihood β̌ can be obtained
by solving a generalized eigenvalue problem and then extracting the eigenvectors. With
the presence of penalty terms, we solve the same generalized eigenvalue problem, but aim
to obtain simultaneously group sparse and elementwise-sparse eigenvectors. These sparse
eigenvectors can be obtained from a procedure analogous to the sparse PCA (Zou et al.,
2006) upon transformations.

We start the derivation by obtaining the cointegrating vectors without any sparsity con-
straint (Johansen, 1988). Given centered data {x0, . . . , xn}, which is a snapshot of the
underlying process {Xt}, we denote

∆X[t1:t2] =
[
∆xt1 · · · ∆xt2

]T
and X[t1:t2] =

[
xt1 · · · xt2

]T
.

52

Under the Gaussianity assumption that εt ∼ N (0,Σε) and write Π = αβT , the log-
likelihood function based on VECM is given by

`(α, β,Σε) = −n
2

log |Σε|−
1

2

n∑
t=2

(∆xt−αβTxt−1−Φ∗1∆xt−1)TΣ−1
ε (∆xt−αβTxt−1−Φ∗1∆xt−1)+constant.

(4.4)
After first profiling out Φ∗1 by partial regression, and then followed by α and Σε, the uncon-
strained estimated cointegrating matrix β̌ maximizes the profile log-likelihood and is the
solution to the following minimization problem:

β̌ : = argmin
β∈Rp×r

{
det
[
S00 − S01β(βTS11β)−1βTS10

]}
= argmin

β

{
|βTS11β − βTS10S

−1
00 S01β| · |βTS11β|−1

}
,

(4.5)

where

S00 =
1

n− 1
RT

0R0, S01 =
1

n− 1
RT

0R1, and S11 =
1

n− 1
RT

1R1, (4.6)

are sample covariances based on partial regression residuals R0 and R1, obtained by re-
spectively regressing ∆Xt and Xt−1 on ∆Xt−1. Note the equality in (4.5) comes from the
matrix identity

det
([

S00 S01β

βTS10 βTS11β

])
= |S00|·|βTS11β−βTS10S

−1
00 S01β| = |βTS11β|·|S00−S01β(βTS11β)−1βTS10|,

followed by viewing |S00| as a constant since it does not involve β. The solution to (4.5)
are the first r columns of Q, where Q are eigenvectors satisfying

S11QΛ = S10S
−1
00 S01Q, subject to QTS11Q = I, (4.7)

where Λ = diag(λ1, . . . , λp), and these λ’s are non-decreasing solutions to the generalized
eigen-equation1

|λS11 − S10S
−1
00 S01| = 0. (4.8)

Now we elaborate on how to obtain Q satisfying (4.7) that in essence are the eigenvec-
tors of the generalized eigenvalue problem, as it is closely related to our later formulation
of the optimization problem. Decompose S11 as S11 = LLT , where L = QS11Λ

1/2
S11

, with
QS11 being the eigenvectors of S11 and ΛS11 being the diagonal matrix formed by the cor-

1Note |ψT (M1−M2)ψ||ψTM1ψ|−1 can be minimized by solving the generalized eigen-equation |λM1−
M2| = 0.

53

responding eigenvalues. Then L−1S11(L)−T = I holds by the construction of L. Now
for (4.8), let QM be the eigenvectors corresponding to eigenvalues λ that are solutions to
the following equation:

|λI − L−1S10S
−1
00 S01(L)−T | = 0, (4.9)

such that QM satisfies

L−1S10S
−1
00 S01(L)−T = QMΛQT

M , or equivalently,QT
M

(
L−1S10S

−1
00 S01(L)−T

)
QM = Λ.

By letting Q := (L)−TQM , Q satisfies

QT
(
S10S

−1
00 S01

)
Q = Λ and QTS11Q = I,

hence also satisfies S11QΛ = S10S
−1
00 S01Q. Moreover, the λ’s which solve (4.9) are also

solutions to (4.8). In other words, such Q is the solution to (4.7) and contains our desired
eigenvectors corresponding to the generalized eigenvalue problem: it is obtained by first
solving the usual eigenvalue problem based on

[
L−1S10S

−1
00 S01(L)−T

]
as denoted in (4.9),

and then transforming the obtained eigenvectors QM by left-multiplying (L)−T .
With a pre-specified r, the above procedure, by extracting the first r columns of Q that

are eigenvectors corresponding to the generalized eigenvalue problem in (4.7) and (4.8),
offers r cointegrating vectors without any sparsity structure. This implies that if a spe-
cial structure of the cointegrating matrix is desired, it can be achieved by incorporating
regularization terms that induce such a structure in solving the same eigenvalue problem.
Specifically, denote

M := L−1S10S
−1
00 S01L

−T . (4.10)

Then combining the above derivations and applying the sparse PCA idea in Zou et al.
(2006), we consider the following criterion that encourages both group sparse and elemen-
twise sparse structures in β̂:

(Â, B̂) = argmin
A∈Rp×r,B∈Rp×r

{ n∑
i=1

‖zi −ABT zi‖2 + λ
r∑
j=1

‖B·j‖22 + ρ

p∑
i=1

r∑
j=1

∣∣[L−TB]
ij

∣∣+ γ

p∑
i=1

||
[
L−TB

]
i·||2
}
,

subject to ATA = Ir×r,

(4.11)

where Z = [zT1 , . . . , z
T
n] ∈ Rn×p (n ≥ p) comes from the decomposition M = ZTZ, and

the desired sparse cointegrating vectors β̂ = [β̂1, . . . , β̂r] are given by β̂ = L−TB. Note that
the decomposition M = ZTZ comes analogously from the self-constrained formulation of
principal component analysis and may not be unique. We will later show in the appendix

54

that the specific decomposition does not make a difference as only M is involved in the
optimization procedure.

Once again, note that based on the previous derivation, the unconstrained cointegrating
vectors β̌ consist of the first r columns of Q, which is the solution to the generalized eigen-
value problem (4.7) and can be obtained by solving the usual eigenvalue problem based on
M and transforming the obtained eigenvectors QM by left-multiplying (L)−T (see equa-
tion (4.9)). This suggests that a sparse cointegrating matrix β̂ can be obtained if we are
able to obtain sparse eigenvectors corresponding to the generalized eigenvalue problem, or
equivalently, the corresponding sparsity structure has been taken into consideration in ob-
taining the eigenvectors ofM . Zou et al. (2006) showed that the columns of B̂, which is the
solution to the following optimization problem, are proportional to the first r eigenvectors
of M :

(Â, B̂) = argmin
A,B

{ n∑
i=1

||zi − ABT zi||2 + λ
r∑
j=1

||bj||2
}

subject to ATA = Ir×r,

where Z again comes from the decomposition of M = ZTZ, Ap×r = [a1, . . . , ar], and
B = [b1, . . . , br] with b̂j ∝ QM,j, for j = 1, . . . , r. To induce the sparsity in b̂j’s, Zou
et al. (2006) applied the `1-norm penalty on columns of B and formulate the following
optimization problem:

(Â, B̂) = argmin
A,B

{ n∑
i=1

||zi − ABT zi||2 + λ
r∑
j=1

||bj||2 +

p∑
j=1

ρj||bj||1
}

subject to ATA = Ir×r.

In our setting, we assume the cointegrating vectors, which are given by L−TB, are simulta-
neously group sparse and elementwise sparse, where the group sparsity is imposed on the
rows of the transformed matrix. Therefore, instead of directly imposing such constraints on
the eigenvectors B as in Zou et al. (2006), we apply the corresponding regularization terms
on the transformed eigenvector L−TB. Thus there are three regularization terms in the op-
timization problem (4.11): the first term λ

∑r
j=1 ‖B·j‖2 comes from the self-constrained

formulation in principal component analysis, and the choice of λ will not affect the final
solution (Zou et al., 2006); the second term induces the elementwise sparsity; and similarly,
the third term induces the group sparsity by penalizing the sum of the `2 norm of the rows
of L−TB, corresponding to a group lasso penalty.

Before delving into the algorithm that solves (4.11), we provide further insight on the

55

group sparse assumption on the cointegrating matrix β. First we note that the decomposi-
tion Π = αβT is not unique: for an arbitrary invertible matrix U ∈ Rr×r, let α̃ := αU ,
β̃ := βU−T , then Π = α̃β̃T . Therefore, the cointegrating matrix can also be represented by
β̃, with the corresponding cointegrated series given by β̃TXt. However, β and β̃ span the
same space. In other words, we are not able to identify a unique cointegrating matrix, but
the cointegration space is uniquely identifiable. The imposed group sparse structure on the
cointegration matrix β is invariant to such transformations: forU ∈ Rr×r and β̃ = βU−T , if
the ith row of β is identically zero, then the ith row of β̃ will also be identically zero. Con-
sequently, the above outlined procedure offers some cointegrating matrix β̂ that equips the
corresponding cointegrating vectors with the following property: each cointegrated series
only involves a few coordinates of the original series and some coordinates of the original
series do not show up in any of the cointegrated series.

Solving for the sparse cointegrating matrix. Now we specify the algorithm for op-
timizing (4.11). The solution to (4.11) can be obtained by iteratively solving for A and
B, while holding the other one fixed. Specifically, let Q = L−TB, and since

∑n
i=1 ‖zi −

ABT zi‖2 = ‖Z − ZBAT‖2
F , the objective function in (4.11) can be rewritten as

L(A,Q) = ‖Z−ZLTQA′‖2
F +λ

r∑
j=1

‖(LTQ)·j‖2
2 +ρ

p∑
i=1

r∑
j=1

|Qij|+γ

p∑
i=1

||Qi·||2 (4.12)

Hence, we can equivalently solve the optimization by iteratively updating A and Q, and
ultimately obtain the desired B by applying the transformation on Q via B = LT Q̂. Al-
gorithm 2 outlines the alternate update between A and Q. The exact update of Q further
involves a coordinate descent algorithm and is given in the appendix.

Overall, we summarize the computational procedure for obtaining the cointegrating
vectors with the designated sparsity pattern in Algorithm 3.

4.2.2 Tuning parameter selection.

The exact solution to (4.12) relies on the input values of the tuning parameters.
There are two tuning parameters in the proposed criterion, ρ and γ. Since the data under

consideration is time series, cross-validation becomes infeasible, whereas for information
based selection criterion, the calculation of the degrees of freedom is complicated under our
proposed framework and may not have closed-form formulae. Here we consider choosing
tuning parameters based on the average prediction error on the validation set, using a rolling
window strategy. Specifically, let Tr denote the length of each rolling window, Tv denote

56

Algorithm 2: Algorithm for obtaining (Â, Q̂) from (4.12).
Input: Input matrices M and L, tuning parmaeters λ, ρ and γ.

1 Initialization. Initialize A by setting Â(0) to be the first r eigenvectors of M .

2 while not converged do
3 For fixed Â(m), update Q by:

Q̂(m) = argmin
Q

{
‖Z−ZLTQ(Â(m))T‖2

F+λ·trace(QTLLTQ)+ρ

p∑
i=1

r∑
j=1

|Qij|+γ
p∑
i=1

||Qi·||2
}

(4.13)
For fixed Q̂(m), compute the SVD of

[
MLT Q̂(m)

]
= UDV T and update Â by

Â(m+1) = UV T

4 end

5 Normalization. Let B̂∞ = LT Q̂ = [̂b1, . . . , b̂r], then let B̌ = [b̌1, . . . , b̌r] where
b̌1 = b̂1/‖b̂1‖2.

6 Let β̂ = (LT)−1B̌, i.e., β̂ = Q̂diag(1/‖b̂1‖2, . . . , 1/‖b̂r‖2).

Output: Sparse cointegrating matrix β̂.

the length of the validation set, and ∆jump denote the fixed jump size. The total number
of rolling windows is then⌊

T − (Tr + Tv)

∆jump

⌋
, where T is the length of the entire available sample.

Then for each rolling window wi, we fit the model to the data using data points within the
rolling wondow wi, that is, data points with indices (1 + (wi− 1)∆jump), . . . , (Tr + (wi−
1)∆jump), obtain parameter estimates based on Algorithm 3, and then do one-step-ahead
forecast on the validation set (Tr + 1 + (wi− 1)∆jump), . . . , (Tr + Tv + (wi− 1)∆jump).
The tuning parameters (ρ, γ) are then selected based on the pair that gives the minimum
relative mean square forecasting error, averaged over all rolling windows.

4.3 Simulation studies

In this section, we evaluate the performance of the proposed method using synthetic data.
We consider two settings, where the underlying processes {Xt} all evolve according to a
VAR(1) model, whose VECM representation is given by

∆Xt = ΠXt−1 + ε,

57

Algorithm 3: Obtaining sparse cointegrating vectors.
1 Model: ∆Xt = ΠXt−1 + Φ∗1∆Xt−1 + εt.

Input: Observed data X , tuning parameters ρ and γ, λ is fixed at a small postive
value.

2 1. Obtain partial regression residuals R0, R1 and the residual sample covariances
S00, S01 and S11.

3 2. Calculate the matrix on which a usual eigenvalue problem is considered:

M = L−1S10S
−1
00 S01L

−T , where S11 = LLT .

4 3. Solve the optimization problem (4.11), by alternately updating A and Q according
to Algorithm 2.

5 4. Obtain the sparse cointegrating vector β̂ based on the convergent solution.

Output: Simultaneously group sparse and elementwise sparse cointegrating vector
β̂.

with the corresponding VAR representation being Xt = (I + Π)Xt−1 + ε.
It is worth pointing out the choice of model parameters for a cointegrated system can

not be arbitrary. Roughly speaking, in order to construct a cointegrated series from a multi-
variate I(1) system, restrictions on some matrix-valued polynomial involving interactions
among the coefficient matrices are required. We discuss some of the restrictions in the
appendix. For example, under a VAR(1) setup, the restriction translates to

ρmax(I + Π) < 1, where ρmax(·) denotes the spectral radius.

S1. Cointegrated series in non-overlapping pairs. In this setting, we consider a
cointegrated system in which each cointegrated series is a linear combination of non-
overlapping pairs of the original series.

We illustrate the generating mechanism on a simpler model in which only two series are
involved. To generate two cointegrated series {ξt} and {ηt} with the cointegrating vector
being (1, β), we can sequentially generate data at each time point according to

ξt = ξt−1 + αξ(ξt−1 + βηt−1) + εξt

ηt = ηt−1 + αη(ξt−1 + βηt−1) + εηt

where (αξ, αη, β) satisfies |1 + αξ + αηβ| < 1 (see Tsay, 2005). This is a 2-dimensional

58

case for a VAR(1) model with the following VECM:

∆Xt =

[
αξ

αη

] [
1 β

]
Xt−1 + εt.

Now we consider a p-dimensional cointegrated systemXt in which there are r cointegrated
series (r ≤ p/2) (hence a total of 2r series are involved in the cointegrated relations).
With non-overlapping pairs of series, the above procedure can be carried out in parallel.
Specifically, we proceed as follows. For each cointegrated series k = 1, . . . , r:

1) Uniformly choose αk,1 and αk,2 from (−0.9,−0.85,−0.8, . . . ,−0.1, 0.1, 0.15, . . . , 0.9),
which determine the speed of cointegration of the two series in the cointegrated series
indexed by k.

2) Uniformly choose the sum γk := 1+αk,1+αk,2βk from (−0.9,−0.8, . . . ,−0.1, 0.1, . . . , 0.9),
hence automatically we have |γk| < 1.

3) Solve for βk =
γk−1−αk,1

αk,2
, with (1, βk) being the effective entries of the cointegrating

vector for the kth cointegrated series.

We fill αk,1, αk,2 and βk into α ∈ Rp×r and β ∈ Rp×r, which later form Π := αβT .
Specifically, for α, its (2k − 1, k) and (2k, k) entries are respectively filled with αk,1 and
αk,2 for k = 1, . . . , r, and the rest entries are set zero. Similarly for β, its (2k − 1, k) entry
is 1 and its (2k, k) entry is βk with the rest being zero. Finally, the sequence is generated
according to

Xt = (I + Π)Xt−1 + εt,

and we control the magnitude of Σε to obtain the desired level of signal-to-noise ratio.
Note that for a cointegrated system Xt generated in this way, there are r cointegrated

series, with the kth cointegrating vector being

(0, . . . , 0︸ ︷︷ ︸
2(k−1)

, 1, βk, 0, . . . , 0︸ ︷︷ ︸
(p−2k)

)T ,

and the corresponding cointegrated series being Xt,(2k−1) + βkXt,(2k). Note that only the
first 2r coordinates are involved in the cointegrated series, and the rest (p−2r) coordinates
are stand-alone univariate random walks. Also note that the above mentioned restrictions
are satisfied since we require |1 +αk,1 +αk,2βk| < 1 for all k = 1, . . . , r, and together with
the block structure of α and β, this ensures that the coefficient matrix conforms with the
restriction.

59

S2. Cointegrated series with an identical set of series involved. In this setting,
we consider a cointegrated system in which all cointegrated series have an identical set
of coordinates of the original series involved. In other words, the matrix of cointegrating
matrix is group sparse.

As we have pointed out at the beginning of this section, the coefficient matrix needs to
satisfy certain restrictions so that the multivariate system can even have any cointegrated
relations. With a pre-specified model dimension p and the number of cointegrated series r,
we generate the model parameters as follows:

1) Randomly generate each entry of α ∈ Rp×r from Unif[(−0.21,−0.19) ∪ (0.19, 0.21)].

2) Let sG denote the group sparsity level of β ∈ Rp×r, then p(1 − sG) rows of β are set
to zero at random. The rest of the entries are nonzero and randomly generated from
Unif[(−2.1,−1.9) ∪ (1.9, 2.1)].

3) Check if the restriction ρmax(I + αβT) < 1 is satisfied. If ρmax < 1, proceed with
the above generated α and β to generate data according to Xt = (I + αβT)Xt−1 + εt;
otherwise, repeat steps 1 and 2 until the constraint on the spectral radius is satisfied.

Empirically, for S2, the required α and β can be generated using a while loop until the
restriction is satisfied, which does not take long. For all settings, we consider the following
two types of structure for Σε:

a) Σε = σ2I, that is, each coordinate of εt is independently identically distributed (iid);

b) Σε,ij = (σ2)ρ|i−j| for some 0 < |ρ| < 1, that is, the correlation has an AR(1)-type
decay.

In terms of evaluation, as previously mentioned, the cointegrating vectors are not uniquely
identifiable, but the cointegration space is. Hence, instead of comparing the estimated coin-
tegrating vectors to the data generating cointegrating vector β?, we measure the principal
angle between the space spanned by columns of β? and that by columns of the estimates
β̂. Empirically, the angle θ (denoted as Space.Err) is calculated using θ = arccos(dmax),
where dmax is the largest singular value of QT

β̂
Qβ? , with Qβ̂ and Qβ? coming from the QR

decomposition of β̂ and β?, respectively. Additionally, we measure the relative error of the
estimated Π matrix, given by

Pi.Err =
‖Π̂− Π?‖F
‖Π?‖F

.

The results are summarized in Tables 4.1 - 4.3. In general, the proposed method works
reasonably well in both estimating Π and identifying the space spanned by columns of

60

β. As expected, as the signal to noise ratio increases, the relative estimation error tends
to decrease. The performance of the proposed method in identifying the space spanned
by β does not depend much on the signal to noise ratio though. Further, as the sparsity
of the underlying model increases, the performance of the proposed method also tends to
improve. The difference between performances under the two types of error covariance,
i.e. Σε = σ2I vs Σε = (σ20.5|i−j|) is not much.

Table 4.1: Simulation results for S1 with p = 100, r = 20 over 50 replications
SNR 0.75 1.25 1.6 2.0

Σε = σ2I
Pi.Err 0.20(0.047) 0.22(0.026) 0.13(0.010) 0.12(0.008)

Space.Err 0.006(0.0019) 0.005(0.0016) 0.002(0.0006) 0.0008(0.00035)

Σε = σ2(0.5|i−j|)
Pi.Err 0.22(0.009) 0.25(0.026) 0.16(0.009) 0.14(0.0091)

Space.Err 0.008(0.0022) 0.005(0.0017) 0.003(0.001) 0.001(0.0005)

Table 4.2: Simulation results for S2 with p = 20, r = 5, ‖β·,j‖0 = 6, over 50 replications
SNR 1.5 2.5 3.5 4.5

Σε = σ2I
Pi.Err 0.92(0.10) 0.49(0.201) 0.23(0.10) 0.15(0.108)

Space.Err 0.10(0.09) 0.03(0.012) 0.03(0.016) 0.05(0.031)

Σε = σ2(0.5|i−j|)
Pi.Err 0.86(0.13) 0.40(0.158) 0.20(0.12) 0.10(0.054)

Space.Err 0.09(0.09) 0.04(0.023) 0.03(0.021) 0.04(0.025)

Table 4.3: Simulation results for S2 with p = 30, r = 5, ‖β·,j‖0 = 4, over 50 replications
SNR 1.5 2.5 4.0 4.5

Σε = σ2I
Pi.Err 0.34(0.14) 0.17(0.10) 0.57(0.18) 0.45(0.15)

Space.Err 0.03(0.019) 0.02(0.015) 0.02(0.017) 0.02(0.018)

Σε = σ2(0.5|i−j|)
Pi.Err 0.38(0.17) 0.17(0.11) 0.61(0.20) 0.50(0.20)

Space.Err 0.04(0.020) 0.02(0.019) 0.03(0.021) 0.03(0.019)

4.4 Data examples

In this section, we apply the proposed method to two data examples that are potentially
useful in constructing portfolios in the financial market. The first example was briefly
mentioned in the introduction section and we seek cointegrated series among a set of stock
prices, while in the second example, we seek cointegrated series among treasury yields of
different maturities, as several earlier work have indicated that the term structure of U.S.
treasury bills can be modeled as a cointegrated system (Bradley and Lumpkin, 1992, Hall

61

et al., 1992, Zhang, 1993). For both examples, we assume the cointegrating vectors are
simultaneously elementwise sparse and group sparse.

For both examples, we assume the original series follow a VAR(1) model, whose
VECM form is

∆Xt = αβTXt−1 + εt, (4.14)

or equivalently,Xt = (I+αβT)Xt−1+εt, if written in the VAR form. We split the collected
data into training and testing sets, obtain the cointegrating vector(s) on the training set, and
then apply the corresponding transformation to series on the testing sets and check whether
the cointegrated series on the testing set is stationary, via the augmented Dickey-Fuller test
(ADF) tests. Specifically, for training data, we select tuning parameters ρ and γ based on
the selection procedure described in Section 4.2.2, then fit the model to the entire training
set with the selected tuning parameters, and obtain the cointegrating vectors.

4.4.1 Financial sector stock data

In this example, we use daily price data of stocks within the financial sector (based on
GICS) that are among S&P 100 index constituents, as of March 2017. This gives us a total
number of 14 stocks. We seek 2 cointegrating vectors among these stocks prices such that
the cointegrated series are stationary. The time span under consideration is January 1, 2014
to December 31, 2016. The training set contains data ranging from January 1, 2014 to
December 28, 2015, and the testing set contains data from January 1, 2016 to December
31, 2016. Note that the original stock price series are I(1), as their differenced series are
roughly I(0) (via the ADF test).

Table 4.4 shows the correlation matrix for the log-returns of these stocks. In general,
these stocks have exhibited a large degree of comovement in terms of their log-returns, with
the smallest correlation detected between ALL and AXP (0.37) and the largest between GS
and MS (0.88).

As previously mentioned, after we obtain the cointegrating vectors from the training
data and the corresponding cointegrated series, we apply the same linear transformation on
the testing data, so that the cointegrated series on the testing set are also available. Then we
use the ADF test to test the stationarity of the cointegrated series on both the training set
and the testing set. Table 4.5 shows the p-values of the test results, with the null hypothesis
being that the series is stationary. Both tests fail to reject the null hypothesis (especially on
the testing set) indicating that the identified series are stationary.

Table 4.6 shows the estimated cointegrating vectors, and the detected cointegrated time
series are shown in Figure 4.1 and Figure 4.2 respectively. As one can see, the identified

62

Table 4.4: Correlation matrix for log-returns of financial sector stocks
AIG ALL AXP BAC BK BLK C COF GS JPM MET MS USB WFC

AIG 1.00
ALL 0.56 1.00
AXP 0.51 0.37 1.00
BAC 0.70 0.47 0.53 1.00
BK 0.69 0.50 0.56 0.79 1.00
BLK 0.69 0.53 0.52 0.69 0.72 1.00
C 0.75 0.52 0.54 0.88 0.79 0.74 1.00
COF 0.62 0.46 0.57 0.70 0.69 0.67 0.73 1.00
GS 0.72 0.54 0.55 0.81 0.77 0.74 0.83 0.71 1.00
JPM 0.76 0.56 0.54 0.85 0.80 0.72 0.87 0.72 0.85 1.00
MET 0.76 0.49 0.51 0.78 0.75 0.70 0.79 0.67 0.76 0.79 1.00
MS 0.72 0.51 0.55 0.83 0.78 0.74 0.85 0.69 0.88 0.84 0.77 1.00
USB 0.72 0.57 0.56 0.81 0.80 0.74 0.82 0.73 0.79 0.85 0.76 0.79 1.00
WFC 0.71 0.56 0.53 0.79 0.76 0.71 0.78 0.71 0.78 0.83 0.73 0.77 0.85 1.00

Table 4.5: p-value from the ADF test on identified cointegrated series
Training set Testing Set

Series 1 0.99 0.82
Series 2 0.99 0.98

cointegrated series exhibit a much higher degree of stationarity on the training set than on
the testing set, though the detected series on the testing set fail to reject the null hypothesis
that they are stationary via the ADF test. Note the estimation is based on the implicit
assumption that the dynamic of the underlying series is unchanged over time, which is
hardly satisfied for real data.

Table 4.6: Estimated cointegrating vectors for financial sector stocks
AIG ALL AXP BAC BK BLK C COF GS JPM MET MS USB WFC

CV 1 0.08 -0.19 0.07 0.00 -0.14 0.07 -0.29 -0.61 0.00 0.00 0.70 0.47 -1.10 0.65
CV 2 -0.13 -0.39 0.14 0.00 -0.20 0.04 0.57 0.30 -0.26 0.16 -0.79 0.78 0.00 0.69

63

Figure 4.1: Estimated cointegrated series 1 for financial stocks

-5

-4

-3

-2

-1

0

1

2

3

4

20
14

-0
1-

02
20

14
-0

1-
16

20
14

-0
1-

31
20

14
-0

2-
14

20
14

-0
3-

03
20

14
-0

3-
17

20
14

-0
3-

31
20

14
-0

4-
14

20
14

-0
4-

29
20

14
-0

5-
13

20
14

-0
5-

28
20

14
-0

6-
11

20
14

-0
6-

25
20

14
-0

7-
10

20
14

-0
7-

24
20

14
-0

8-
07

20
14

-0
8-

21
20

14
-0

9-
05

20
14

-0
9-

19
20

14
-1

0-
03

20
14

-1
0-

17
20

14
-1

0-
31

20
14

-1
1-

14
20

14
-1

2-
01

20
14

-1
2-

15
20

14
-1

2-
30

20
15

-0
1-

14
20

15
-0

1-
29

20
15

-0
2-

12
20

15
-0

2-
27

20
15

-0
3-

13
20

15
-0

3-
27

20
15

-0
4-

13
20

15
-0

4-
27

20
15

-0
5-

11
20

15
-0

5-
26

20
15

-0
6-

09
20

15
-0

6-
23

20
15

-0
7-

08
20

15
-0

7-
22

20
15

-0
8-

05
20

15
-0

8-
19

20
15

-0
9-

02
20

15
-0

9-
17

20
15

-1
0-

01
20

15
-1

0-
15

20
15

-1
0-

29
20

15
-1

1-
12

20
15

-1
1-

27
20

15
-1

2-
11

20
15

-1
2-

28

Cointegrated Series 1, on traning set

-17

-15

-13

-11

-9

-7

-5

-3

20
16

-0
1-

04
20

16
-0

1-
11

20
16

-0
1-

19
20

16
-0

1-
26

20
16

-0
2-

02
20

16
-0

2-
09

20
16

-0
2-

17
20

16
-0

2-
24

20
16

-0
3-

02
20

16
-0

3-
09

20
16

-0
3-

16
20

16
-0

3-
23

20
16

-0
3-

31
20

16
-0

4-
07

20
16

-0
4-

14
20

16
-0

4-
21

20
16

-0
4-

28
20

16
-0

5-
05

20
16

-0
5-

12
20

16
-0

5-
19

20
16

-0
5-

26
20

16
-0

6-
03

20
16

-0
6-

10
20

16
-0

6-
17

20
16

-0
6-

24
20

16
-0

7-
01

20
16

-0
7-

11
20

16
-0

7-
18

20
16

-0
7-

25
20

16
-0

8-
01

20
16

-0
8-

08
20

16
-0

8-
15

20
16

-0
8-

22
20

16
-0

8-
29

20
16

-0
9-

06
20

16
-0

9-
13

20
16

-0
9-

20
20

16
-0

9-
27

20
16

-1
0-

04
20

16
-1

0-
11

20
16

-1
0-

18
20

16
-1

0-
25

20
16

-1
1-

01
20

16
-1

1-
08

20
16

-1
1-

15
20

16
-1

1-
22

20
16

-1
1-

30
20

16
-1

2-
07

20
16

-1
2-

14
20

16
-1

2-
21

20
16

-1
2-

29

Cointegrated Series 1. on testing set

Figure 4.2: Estimated cointegrated series 2 for financial stocks

-4

-3

-2

-1

0

1

2

3

20
14

-0
1-

02
20

14
-0

1-
16

20
14

-0
1-

31
20

14
-0

2-
14

20
14

-0
3-

03
20

14
-0

3-
17

20
14

-0
3-

31
20

14
-0

4-
14

20
14

-0
4-

29
20

14
-0

5-
13

20
14

-0
5-

28
20

14
-0

6-
11

20
14

-0
6-

25
20

14
-0

7-
10

20
14

-0
7-

24
20

14
-0

8-
07

20
14

-0
8-

21
20

14
-0

9-
05

20
14

-0
9-

19
20

14
-1

0-
03

20
14

-1
0-

17
20

14
-1

0-
31

20
14

-1
1-

14
20

14
-1

2-
01

20
14

-1
2-

15
20

14
-1

2-
30

20
15

-0
1-

14
20

15
-0

1-
29

20
15

-0
2-

12
20

15
-0

2-
27

20
15

-0
3-

13
20

15
-0

3-
27

20
15

-0
4-

13
20

15
-0

4-
27

20
15

-0
5-

11
20

15
-0

5-
26

20
15

-0
6-

09
20

15
-0

6-
23

20
15

-0
7-

08
20

15
-0

7-
22

20
15

-0
8-

05
20

15
-0

8-
19

20
15

-0
9-

02
20

15
-0

9-
17

20
15

-1
0-

01
20

15
-1

0-
15

20
15

-1
0-

29
20

15
-1

1-
12

20
15

-1
1-

27
20

15
-1

2-
11

20
15

-1
2-

28

Cointegrated Series 2, on training set

0

5

10

15

20

25

20
16

-0
1-

04
20

16
-0

1-
11

20
16

-0
1-

19
20

16
-0

1-
26

20
16

-0
2-

02
20

16
-0

2-
09

20
16

-0
2-

17
20

16
-0

2-
24

20
16

-0
3-

02
20

16
-0

3-
09

20
16

-0
3-

16
20

16
-0

3-
23

20
16

-0
3-

31
20

16
-0

4-
07

20
16

-0
4-

14
20

16
-0

4-
21

20
16

-0
4-

28
20

16
-0

5-
05

20
16

-0
5-

12
20

16
-0

5-
19

20
16

-0
5-

26
20

16
-0

6-
03

20
16

-0
6-

10
20

16
-0

6-
17

20
16

-0
6-

24
20

16
-0

7-
01

20
16

-0
7-

11
20

16
-0

7-
18

20
16

-0
7-

25
20

16
-0

8-
01

20
16

-0
8-

08
20

16
-0

8-
15

20
16

-0
8-

22
20

16
-0

8-
29

20
16

-0
9-

06
20

16
-0

9-
13

20
16

-0
9-

20
20

16
-0

9-
27

20
16

-1
0-

04
20

16
-1

0-
11

20
16

-1
0-

18
20

16
-1

0-
25

20
16

-1
1-

01
20

16
-1

1-
08

20
16

-1
1-

15
20

16
-1

1-
22

20
16

-1
1-

30
20

16
-1

2-
07

20
16

-1
2-

14
20

16
-1

2-
21

20
16

-1
2-

29

Cointegrated Series 2. on testing set

64

4.4.2 Treasury yield data

In this example, we use monthly data of treasury yields of different maturities, and consider
a total number of 7 series with the maturities being 1yr, 2yrs, 3yrs, 5yrs, 7yrs, 10yrs,
and 20yrs respectively. We seek 1 cointegrated relation among these series such that the
cointegrated series is stationary. The time span under consideration is January 1995 to
December 2016. We use the data ranging from 1995 to 2014 as the training data, and the
data ranging from 2015 to 2016 as the testing data.

In principle, as the cointegrated series represents the long-run relationship among the
interest rates, it is reasonable to expect the existence of more than one cointegrated series,
as the long-run equilibrium may not be unique. With 7 given series, we could expect as
many as 6 cointegrated series, given the special inter-linkage among these rates. However,
as indicated by Bradley and Lumpkin (1992), some of the cointegrated series might be
sensitive and unstable. Hence in their work, they focused on reporting one cointegrated
series, with the 7yr rate as the dependent variable. On the other hand, although there
are available testing procedures for testing the number of cointegrated relations, they are
sensitive to regime change (Hall et al., 1992). Given the time span under consideration for
our collected data, there has been one significant regime change after the 2008 subprime
mortgage crisis, as a result of the Federal Reserve’s accommodative monetary policy such
as quantitative easing, and a minor regime change around 2002 after the “Dotcom Bubble”.
For the above mentioned reason, we do not conduct any test to determine the number of
cointegrated relations. We set r = 1 and focus on presenting the resulting cointegrating
vector. Empirically, we have tried with larger values of r, however, many of the detected
cointegrated series have rejected the null hypothesis of the ADF test against their non-
stationary alternatives.

Figure 4.3 shows the treasury yields of different maturities. As one can see, the original
series are non-stationary, but always move toward the same direction.

65

0

1

2

3

4

5

6

7

8

9

1/
1/

95
7/

1/
95

1/
1/

96
7/

1/
96

1/
1/

97
7/

1/
97

1/
1/

98
7/

1/
98

1/
1/

99
7/

1/
99

1/
1/

00
7/

1/
00

1/
1/

01
7/

1/
01

1/
1/

02
7/

1/
02

1/
1/

03
7/

1/
03

1/
1/

04
7/

1/
04

1/
1/

05
7/

1/
05

1/
1/

06
7/

1/
06

1/
1/

07
7/

1/
07

1/
1/

08
7/

1/
08

1/
1/

09
7/

1/
09

1/
1/

10
7/

1/
10

1/
1/

11
7/

1/
11

1/
1/

12
7/

1/
12

1/
1/

13
7/

1/
13

1/
1/

14
7/

1/
14

1/
1/

15
7/

1/
15

1/
1/

16
7/

1/
16

Treasury yields of different maturities, 1995 -- 2016

GS1 GS2 GS3 GS5 GS7 GS10 GS20

Figure 4.3: Treasury yields of different maturities over time

The estimated cointegrating vector is shown in Table 4.7, which contains the coeffi-
cients corresponding to treasury notes/bonds with different maturities in the cointegrated
series formed by their linear combination. We can see that treasury yields of similar ma-
turities have similar magnitudes in coefficients: (1yr vs. 2yrs), (3yrs vs. 5yrs), and (7yrs
vs. 10yrs); yet the estimated coefficients have opposite signs. This is also consistent with
the belief that there is some long-run equilibrium among these rates, and the divergence
of rates will not be persistent due to the arbitrage activities in the secondary market. The
cointegrated series on both the training and the testing sets fail to reject the null hypothesis
of stationarity, with p-values being 0.98 and 0.97 respectively. Figure 4.4 shows the time
series plots for the cointegrated series on both the training and testing sets.

Table 4.7: Estimated cointegrating vector for treasury yields with constant maturity
Maturity 1yr 2yr 3yr 5yr 7yr 10yr 20yr

Estimated coefficient -6.37 7.31 1.81 -2.24 0 0 -1.28

66

Figure 4.4: Estimated cointegrated series for treasury yields

-4

-3

-2

-1

0

1

2

3

4

1/
1/

95
6/

1/
95

11
/1

/9
5

4/
1/

96
9/

1/
96

2/
1/

97
7/

1/
97

12
/1

/9
7

5/
1/

98
10

/1
/9

8
3/

1/
99

8/
1/

99
1/

1/
00

6/
1/

00
11

/1
/0

0
4/

1/
01

9/
1/

01
2/

1/
02

7/
1/

02
12

/1
/0

2
5/

1/
03

10
/1

/0
3

3/
1/

04
8/

1/
04

1/
1/

05
6/

1/
05

11
/1

/0
5

4/
1/

06
9/

1/
06

2/
1/

07
7/

1/
07

12
/1

/0
7

5/
1/

08
10

/1
/0

8
3/

1/
09

8/
1/

09
1/

1/
10

6/
1/

10
11

/1
/1

0
4/

1/
11

9/
1/

11
2/

1/
12

7/
1/

12
12

/1
/1

2
5/

1/
13

10
/1

/1
3

3/
1/

14
8/

1/
14

Cointegrated Series on the traing set

-2.5

-2

-1.5

-1

-0.5

0

Cointegrated series on the testing set

4.5 Summary.

In this chapter, we have considered a cointegrated VAR system, from which we are able to
obtain cointegrating vectors that are simultaneously group and elementwise sparse. Specif-
ically, the group sparse pattern is invariant to linear transformations, enabling us to remove
a subset of the coordinates of the original series from the cointegration space, regardless of
the exact estimates of the cointegrating vector. The optimization criterion whose objective
function incorporates proper regularization terms, has been formulated based on solving
a generalized eigenvalue problem, which is a surrogate of maximizing the profile likeli-
hood function. We have applied the proposed method to two real world data examples and
obtained interpretable results.

67

CHAPTER 5

Sparse Rank Support Vector Machines

5.1 Introduction

In this chapter, we consider the learning to rank problem. Learning to rank has attracted
significant interests in recent years, with broad applications in areas such as web search,
recommender systems and information retrieval; for detailed introduction on the topic, we
refer the readers to Liu et al. (2009). In standard ranking problems, we are given a set of
“queries” q1, . . . , qn, where n denotes the number of queries, and for each qi, i = 1, . . . , n,
there are a set of associated “documents” xi1, . . . , xim, where each xik, k = 1, . . . ,m

is a vector containing p features (which usually depend on the query qi), i.e. xik =

(xik1, . . . , xikp) = (xikj)
p
j=1, and together with the query-document features, there are also

associated ratings (rankings) rik ∈ R, indicating how much the document xik is “relevant”
for query qi, with large value of rik being more relevant and small value of rik being less
relevant. Note that for notational simplicity (and without loss of generality), we assume the
number of documents m is the same for different queries, but in general, this may not be
the case.

The goal is to learn a ranking function f̂(x), such that when a new query q∗ and the asso-
ciated query-documents x∗1, . . . , x

∗
m are given, one can use the ranking function to produce

scores f̂(x∗1), . . . , f̂(x∗m), such that these scores match well with the underlying ranking of
these documents, in terms of their relevance to the query. In this chapter, we focus on the
linear ranking function, i.e. f(x) = wTx.

The support vector machine (Cortes and Vapnik, 1995) has been a popular tool for
classification problems in both the machine learning and statistics communities, and it
has been extended to address the learning to rank problem with great success (Joachims,
2002). Specifically, in the learning to rank setting, the rank SVM considers the following

68

optimization criterion:

min
w,ξikk′

n∑
i=1

∑
rik>rik′

ξikk′ + λ
∑
j

w2
j (5.1)

subject to wTxik − wTxik′ ≥ 1− ξikk′ for rik > rik′ , (5.2)

ξikk′ ≥ 0, (5.3)

where λ is a tuning parameter. The criterion implies that for query qi, if the rank of doc-
ument k is higher than that of document k′, i.e. rik > rik′ , then the score wTxik should
be larger than the score wTxik′ , for a “margin” of at least (1 − ξikk′), ξikk′ ≥ 0, and the
summation of ξikk′ over all document pairs (within the same query) should be as small as
possible.

Note (5.1) can be written in an equivalent “loss + penalty” form, i.e.

min
w

∑
i

∑
rik>rik′

(1− wTxik + wTxik′)+ + λ
∑
j=1

w2
j , (5.4)

where the loss (1 − wTxik + wTxik′)+ is called the hinge loss and the penalty is called
the ridge penalty. The hinge loss can be considered as a convex relaxation of the indicator
function I(wTxik < wTxik′), which directly compares the two scores wTxik and wTxik′ .
The idea of penalizing by the sum-of-squares of the parameters is also used in neural net-
works, where it is known as weight decay. The ridge penalty shrinks the fitted coefficients
towards zero. It is well known that this shrinkage has the effect of controlling the variances
of ŵ, hence possibly improves the fitted model’s prediction accuracy, especially when there
are many highly correlated features. So from a statistical function estimation point of view,
the ridge penalty could possibly explain the success of the rank SVM. On the other hand,
computational learning theory has associated the good performance of the rank SVM to its
margin maximizing property (Joachims, 2006), a property of the hinge loss.

Note the standard rank SVM uses all features when learning the ranking function. This
could be undesirable, especially in the high-dimensional setting, as many features may not
be relevant for ranking, and keeping them in the ranking function will introduce unneces-
sary noise when it comes to prediction. In this chapter, we propose to extend the standard
rank SVM model to the high-dimensional setting so that irrelevant features can be removed
from the ranking function. Specifically, the rest of the chapter is organized as follows. In
Section 2, we describe two sparse rank SVM models and develop efficient algorithms for
solving them. In Section 3 and 4, we demonstrate the performances of the proposed meth-
ods using simulation studies and a real-world stock selection problem. Section 5 concludes

69

the chapter.

5.2 Sparse rank support vector machines

In this section, we consider two versions of sparse rank SVMs, the `1-norm rank SVM and
the elastic-net rank SVM. Specifically, in the `1-norm rank SVM, we propose to replace
the `2-norm penalty in the standard rank SVM with the `1-norm penalty Tibshirani (1996),
i.e.

min
w

∑
i

∑
rik>rik′

(1− wTxik + wTxik′)+ + λ
∑
j

|wj|, (5.5)

where λ is a tuning parameter, and when λ is large enough, the solution ŵ is sparse. It is
well-known that the `1-norm penalty has two major limitations: 1) the number of selected
features is upper bounded by the sample size. Therefore, when the number of relevant
features exceeds the sample size, for example in the high-dimensional setting, the `1-norm
penalty can only discover a portion of the relevant features; 2) for highly correlated and
relevant features, the `1-norm penalty tends to pick only one or a few of them. To address
these two limitation, we also propose to use the elastic-net penalty (Zou and Hastie (2005))
for the rank SVM, i.e.

min
w

∑
i

∑
rik>rik′

(1− wTxik + wTxik′)+ + λ1

∑
j

|wj|+ λ2

∑
j

w2
j , (5.6)

where both λ1 and λ2 are tuning parameters. Note the only difference between (5.5) and
(5.6) is that in the `1-norm rank SVM, we penalize the `1-norm of the coefficient vector w,
while in the elastic-net rank SVM, we penalize both the `1-norm and the `2-norm penalties
of w, and by doing so, the elastic-net rank SVM enjoys several benefits: 1) similar to the
`1-norm rank SVM, it automatically selects features; 2) the number of selected features is
no longer upper bounded by the sample size; 3) when features are highly correlated, they
tend to be selected or removed together.

Since (5.5) is a special case of (5.6) with λ1 = 0, for most of the discussion in the rest
of the chapter, we focus on (5.6).

70

5.2.1 Algorithm

To solve the elastic-net rank SVM, note that (5.6) can be transformed into a quadratic
programming problem, i.e.

min
w+
j ,w

−
j ,ξikk′

∑
i

∑
rik>rik′

ξikk′ + λ1

∑
j

(w+
j + w−j) + λ2

∑
j

(w+
j + w−j)2 (5.7)

subject to (w+ − w−)Txik − (w+ − w−)Txik′ ≥ 1− ξikk′ for rik > rik′ , (5.8)

ξikk′ ≥ 0, w+
j ≥ 0, w−j ≥ 0, (5.9)

where w+
j and w−j are positive and negative parts of wj respectively, and at most one of

them is non-zero. One can solve (5.7) - (5.9) using standard software packages, but the
computational cost tends to be high as a generic quadratic programming algorithm would
not take into account the special structure of the elastic-net rank SVM. In this subsection,
we develop an efficient algorithm for solving the elastic-net rank SVM based on the bundle
method and the order statistics tree data structure.

Note the criterion in (5.6) can be written as:

J(w) = L(w) + P (w), (5.10)

where
L(w) =

∑
i

∑
rik>rik′

(1− wTxik + wTxik′)+, (5.11)

and

P (w) = λ1

p∑
j=1

|wj|+ λ2

∑
j=1

w2
j . (5.12)

The bundle method is a general approach for solving optimization problems of format
(5.10), where L(w) and P (w) are convex and non-negative, and it is especially efficient
when P (w) is quadratic in w, such as P (w) = λwTw (Le et al., 2008, Teo et al., 2010).
The bundle method provides an iterative algorithm; the essence of the algorithm is to con-
struct a piecewise linear lower bound approximation of L(w) at each iteration and solve an
approximate optimization problem of (5.10). Specifically, suppose at iteration t, the “opti-
mizer” from the previous iteration is w(t−1), then using the first order Taylor expansion and
convexity of L(w), we have

L(w) ≥ L(w(t−1)) +∇L(w(t−1))T (w − w(t−1)) (5.13)

= aTt w + bt, (5.14)

71

where at = ∇L(w(t−1)) is any sub-gradient of L(w) at w(t−1), bt = L(w(t−1))− aTt w(t−1),
and aTt w + bt = 0 is often referred as a cutting plane. Then the lower bound of L(w) is
constructed as

Lt(w) = max
s=1,...,t

(aTs w + bs), (5.15)

where we pool all cutting planes from earlier iterations to construct a (hopefully tight) lower
bound of L(w). Further, w(t) can be updated via the following optimization problem:

w(t) = arg min
w
Lt(w) + P (w). (5.16)

Note if P (w) is quadratic in w, since Lt(w) is piecewise linear (with t pieces), (5.16) can
be formulated as a quadratic programming problem, and it can be solved efficiently if t is
not large (e.g. on the order of 10 or 100) (Le et al., 2008)

In the setting of the elastic-net rank SVM, recall P (w), which contains both `1-norm
and `2-norm of w. If we solve (5.16) directly using quadratic programming, the `1-norm
penalty ‖w‖1 will add p linear constraints to the optimization problem, and if p is large,
these extra linear constrains will render the computation inefficient. To address this diffi-
culty, we consider a quadratic approximation of ‖w‖1 and use that to replace the `1-norm
penalty (Fan and Li, 2001); specifically, we define:

Pt(w) = λ1

∑
j

w2
j

2|w(t−1)
j |

+ λ2

p∑
j

w2
j , (5.17)

and propose to update w(t) using the following criterion:

w(t) = arg min
w
Lt(w) + Pt(w). (5.18)

Note now Lt(w) is piecewise linear in w and Pt(w) is quadratic, thus (5.18) can be solved
efficiently. Overall, the algorithm is presented in Algorithm 4.

Finally, note that Algorithm 4 involves the computation of Lt(w(t)) in each iteration,
and direct computation of L(w) requires going through all pairs of “documents” associated
with a “query”, which would lead to the O(nm2) computational complexity and is ineffi-
cient. Here we first simplify the formula for L(w), as well as its sub-gradient, then propose
to use the order statistics tree to reduce the computational cost. Specifically, note L(w)

(5.11) can also be written as follows:

L(w) =
∑
i

∑
k

[
(c+
ik(w)− c−ik(w))wTxik + c+

ik(w)
]
, (5.19)

72

Algorithm 4: A bundle algorithm for the elastic-net rank SVM
Require: w(0), ε ≥ 0
t← 0
while εt > ε do
t← t+ 1
at ← a sub-gradient of L(w) at w(t−1)

bt ← L(w(t−1))− aTt w(t−1)

Update Lt(w) by adding the new cutting plane aTt w + bt = 0
Update Pt(w) according to (5.17)
w(t) ← argminw Lt(w) + Pt(w)
εt ← J(w(t))− Jt(w(t))

end while
Output: w(t)

where

c+
ik(w) = Cardinality {k′ : (rik > rik′) and (wT (xik − xik′ < 1)}, (5.20)

c−ik(w) = Cardinality {k′ : (rik < rik′) and (wT (xik′ − xik < 1)}. (5.21)

Similarly, a subgradient of L(w) can be written as

∇L(w) =
∑
i

∑
k

(c+
ik(w)− c−ik(w))xik. (5.22)

Thus, efficient computation of L(w) and ∇L(w) reduces to efficient counting of c+
ik(w)

and c−ik(w). It turns out that the order statistics tree data structure can be used for that
purpose. We refer readers to Cormen et al. (2001) and Airola et al. (2011) for details and
only summarize the major results here.

For a binary search tree, a node u contains a real valued key(u). The height of a binary
search tree is the length of the path from the root node to the lowest leaf node, and the size
of a (sub-)tree is the number of elements it contains. The order statistics tree is a binary
search tree with the following properties:

• The search property: let u1 be a node in a binary search tree. If u2 is a node in the
left subtree of u1, then key(u2) ≤ key(u1). If u2 is a node in the right subtree of u1,
then key(u2) ≥ key(u1).

• Balance: the height of the tree is O(log(m)) after insertions and deletions, where m
is the number of nodes in the tree.

73

Algorithm 5: Counting c+
ik(w) and c−ik(w) for “query” i

Input: (ri1, xi1), . . . , (rim, xim), w
Output: c+

ik(w) and c−ik(w) for k = 1, . . . ,m
Sort wTxik in order: wTxiπ(1) ≤ · · · ≤ wTxiπ(m)

Initialize both c+
i and c−i length m vectors of zeros

Initialize T as an empty tree
Initialize k = 1
for k′ = 1, 2, . . . ,m do

while k ≤ m and wTxiπ(k) − wTxiπ(k′) < 1 do
Insert riπ(k) into the tree T
k = k + 1

end while
c+
iπ(k′)(w) = count-larger(T, riπ(k′))

end for
Initialize T as an empty tree
Initialize k = m
for k′ = m,m− 1, . . . , 1 do

while k ≥ 1 and wTxiπ(k′) − wTxiπ(k) < 1 do
Insert riπ(k) into the tree T
k = k − 1

end while
c−iπ(k′)(w) = count-smaller(T, riπ(k′))

end for

• The size information is stored for each node:

size(u) = size(left(u)) + size(right(u)) + 1

This data structure allows efficient counting of c+
ik(w) and c−ik(w) for each “query”

i. Specifically, the algorithm proceeds as Algorithm 5 (Airola et al., 2011), where the
computational cost is O(nm log(m)), rather than O(nm2).

5.2.2 Tuning parameter selection

The elastic-net rank SVM contains two tuning parameters, one for the `1-norm penalty, the
other for the `2-norm penalty. Similar as in the usual supervised learning setting, e.g. re-
gression or classification, they can be selected using validation or cross-validation. Specif-
ically, for a given pair of (λ1, λ2), one first obtains the estimate of w, denoted as ŵ(λ1, λ2),
then the performance of ŵ(λ1, λ2) can be evaluated on a separate validation set based on

74

its ranking accuracy, which can be defined as∑
i

∑
rik>rik′

I(ŵTxik > ŵTxik′), (5.23)

where the first summation is over the validation set, and one can select the tuning pa-
rameters that maximize the ranking accuracy on the validation set. Similarly for cross-
validation.

5.3 Simulation studies

In this section, we evaluate the performance of the proposed elastic-net rank SVM on syn-
thetic datasets and compare with the standard rank SVM and the `1-norm rank SVM.

We consider the setting where the ratings (rankings) are generated according to a linear
model, i.e.

rik =

p∑
j=1

wjxikj + εik, k = 1, . . . ,m; i = 1, . . . , n; (5.24)

where n is the number of queries, m is the number of instances per query, and p is the
number of features. We set the first five elements of w as 1 and the rest as 0. For each query
i, the feature vectors xik, k = 1, . . . ,m are generated independently from the multivariate
normal distribution with mean 0 and covariance Σ, i.e. N (0,Σ), where Σ will be specified
later. The random noise εik, k = 1, . . . ,m are generated independently from the distribution
N (0, σ2).

Regarding Σ, we consider three different structures:

• Identity: features are independent of each other, specifically, Σ = Ip×p

• Equal correlation: features are correlated, and all pairwise correlations are the same,
specifically,

Σ =

1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · · · · · · · ·
ρ · · · ρ 1

 ,
where we set ρ = 0.4 in simulation studies.

• AR1 autocorrelation: features are correlated, and pairwise correlations decay expo-

75

nentially with respect to the index difference, specifically,

Σjj′ = ρ|j−j
′|,

where we set ρ = 0.6 in simulation studies.

In each simulation study, we split the n queries into the training part and the validation
part. We use the training part to estimate w and use the validation part to select the tuning
parameters. When using the validation set to select tuning parameters, we compute an
empirical rank accuracy (ERA), i.e.

ERA =

∑
i∈val

∑
k,k′ I(ŵTxik > ŵTxik′ , rik > rik′)

nval ·m(m− 1)
. (5.25)

To evaluate the performance of the final estimate ŵ, we consider two measures. The first
measure is referred as the Angle, and it is defined as

Angle = arccos(
wT ŵ

‖w‖ · ‖ŵ‖
), (5.26)

which measures the angle between the two vectors, w and ŵ. The second measure is
referred as the rank accuracy (RA); it is computed on a separate independent test set (also
of size n queries) and defined as

RA =

∑n
i=1

∑
k,k′ I(ŵTxik > ŵTxik′ , w

Txik > wTxik′)

n ·m(m− 1)
. (5.27)

5.3.1 Effects of n and m

We first investigate the effects of n (number of queries) and m (number of instances per
query). We fix p = 100, and for each structure of the covariance Σ, we set a value for σ2

such that the signal-to-noise ratio is equal to 1. We considered two cases: n = 200,m = 50

and n = 100,m = 100; in both cases we have n×m = 10000 instances.
We also investigated the effect the split of the n queries into training and validation

parts. Specifically, we considered three possible proportions of the validation set, 0.2, 0.4,
and 0.6. For example, when n = 200 and the proportion is set to 0.2, the 200 queries are
randomly split into two sets, one with 160 queries (training) and the other with 40 queries
(validation), and so on. The idea is that when the training set is large but the validation set
is small, the estimated ŵ is relatively stable but the selection of the tuning parameters will
be unstable, vice versa, and we wish to investigate how the size of the training set and the

76

size of the validation set trade off with each other.
Table 5.3.1 summarizes the results. First, as one can see, the rank accuracies are more

than 90% in almost all cases, which demonstrate the validity of the methods. Comparing
n = 100,m = 100 and n = 200,m = 50, they give similar performances in terms of
both rank accuracy and angle estimation. This is not surprising as the rank SVM (when
n = 1) is essentially fitting a rank regression model, and the convergence rate of rank
regression is

√
m, thus as long as n × m does not change, the performance are similar.

In terms of the training and the validation split, it seems the performance does not depend
much on the ratio of the two, at least within the range we have considered; even when
the validation part is as large as 60% of the dataset, the performance of the final estimate
did not degrade much. Further, we observe that the performance of standard rank SVM
is consistently worse than that of the `1-norm rank SVM (as the underlying true model
is sparse), and `1-norm rank SVM does not perform as well as the elastic-net rank SVM,
under all three correlation structures, with the advantage of the elastic-net rank SVM being
more prominent when the features are correlated.

77

Table 5.1: Simulation results under 3 correlation structures. We set p = 100 and σ2’s are set
such that the signal-to-noise ratio is equal to 1. Three methods are compared, the standard
rank SVM, the `1-norm rank SVM and the elastic-net rank SVM. All results are averages
over 50 replications.
Correlation Validation n=200, m=50 n=100, m=100
Structure Method Proportion Angle RA Angle RA

Identity

0.2 0.213 (0.038) 0.932 (0.025) 0.210 (0.017) 0.934 (0.011)
`1 0.4 0.210 (0.029) 0.933 (0.019) 0.195 (0.022) 0.938 (0.014)

0.6 0.231 (0.044) 0.926 (0.028) 0.199 (0.024) 0.937 (0.016)
0.2 0.271 (0.020) 0.914 (0.012) 0.273 (0.020) 0.912 (0.013)

`2 0.4 0.274 (0.022) 0.913 (0.014) 0.262 (0.012) 0.916 (0.008)
0.6 0.270 (0.020) 0.914 (0.012) 0.265 (0.012) 0.915 (0.008)
0.2 0.154 (0.022) 0.951 (0.014) 0.125 (0.029) 0.960 (0.019)

E-net 0.4 0.141 (0.027) 0.955 (0.017) 0.116 (0.025) 0.963 (0.016)
0.6 0.143 (0.027) 0.954 (0.017) 0.112 (0.022) 0.964 (0.014)

Equal

0.2 0.340 (0.068) 0.925 (0.027) 0.341 (0.077) 0.923 (0.037)
`1 0.4 0.341 (0.067) 0.925 (0.029) 0.341 (0.070) 0.926 (0.027)

0.6 0.350 (0.087) 0.916 (0.046) 0.318 (0.071) 0.928 (0.028)
0.2 0.493 (0.030) 0.894 (0.015) 0.490 (0.032) 0.892 (0.015)

`2 0.4 0.496 (0.030) 0.893 (0.013) 0.485 (0.030) 0.896 (0.016)
0.6 0.495 (0.026) 0.895 (0.011) 0.486 (0.030) 0.895 (0.014)
0.2 0.272 (0.073) 0.941 (0.029) 0.263 (0.065) 0.941 (0.025)

E-net 0.4 0.261 (0.064) 0.943 (0.025) 0.242 (0.058) 0.943 (0.030)
0.6 0.238 (0.060) 0.945 (0.033) 0.209 (0.035) 0.951 (0.014)

AR1

0.2 0.339 (0.076) 0.923 (0.031) 0.297 (0.110) 0.934 (0.052)
`1 0.4 0.316 (0.054) 0.929 (0.022) 0.307 (0.085) 0.931 (0.043)

0.6 0.314 (0.048) 0.923(0.027) 0.286 (0.078) 0.939 (0.029)
0.2 0.427 (0.047) 0.901 (0.019) 0.441 (0.022) 0.898 (0.008)

`2 0.4 0.409 (0.035) 0.906 (0.014) 0.409 (0.016) 0.904 (0.009)
0.6 0.407 (0.025) 0.905 (0.009) 0.409 (0.022) 0.904 (0.009)
0.2 0.201 (0.060) 0.951 (0.030) 0.196 (0.059) 0.956 (0.030)

E-net 0.4 0.165 (0.043) 0.960 (0.023) 0.200 (0.056) 0.953 (0.032)
0.6 0.140 (0.023) 0.967 (0.011) 0.170 (0.043) 0.963 (0.020)

78

5.3.2 Effects of p and signal-to-noise ratio

Next we investigate the effects of p (number of features) and the signal-to-noise ratio. We
fix n = 100,m = 100, and the validation proportion is set to 0.4. We considered two cases
for p: p = 50 and p = 200, and three levels of the signal-to-noise ratio, 0.25, 0.5 and 1.

Table 5.2 summarizes results. It is not surprising to see that as the signal-to-noise ratio
decreases, the performances of all method degrade. As p increases (the number of nonzero
wj’s is fixed), the performances of the `1-norm rank SVM and the elastic-net rank SVM
do not change much, while that of the standard rank SVM degrades significantly. Similar
as in the previous simulation study, overall we also observe that the elastic-net rank SVM
performs better than the `1-norm rank SVM and the `1-norm rank SVM performs better
than the standard rank SVM under all three correlation structures.

79

Table 5.2: Simulation result under 3 correlation structures. We fix n = 100,m = 100.
Three methods are compared, the standard rank SVM, the `1-norm rank SVM and the
elastic-net rank SVM. All results are averages over 50 replications.

Correlation p=50 p=200
Structure Method SNR Angle RA Angle RA

Identity

1 0.177 (0.028) 0.943 (0.019) 0.216 (0.032) 0.931 (0.021)
`1 0.5 0.299 (0.041) 0.905 (0.026) 0.310 (0.079) 0.901 (0.051)

0.25 0.520 (0.064) 0.834 (0.040) 0.563 (0.099) 0.821 (0.063)
1 0.187 (0.010) 0.940 (0.007) 0.363 (0.009) 0.884 (0.006)

`2 0.5 0.369 (0.046) 0.881 (0.029) 0.641 (0.020) 0.796 (0.012)
0.25 0.647 (0.034) 0.793 (0.022) 0.977 (0.030) 0.691 (0.018)

1 0.123 (0.035) 0.960 (0.023) 0.112 (0.021) 0.964 (0.014)
E-net 0.5 0.246 (0.044) 0.921 (0.028) 0.204 (0.046) 0.935 (0.029)

0.25 0.466 (0.089) 0.851 (0.058) 0.440 (0.061) 0.860 (0.038)

Equal

1 0.277 (0.025) 0.939 (0.022) 0.336 (0.051) 0.923 (0.024)
`1 0.5 0.550 (0.053) 0.868 (0.062) 0.507 (0.091) 0.882 (0.042)

0.25 0.789 (0.063) 0.792 (0.086) 1.059 (0.220) 0.731 (0.137)
1 0.350 (0.025) 0.921 (0.012) 0.636(0.027) 0.869 (0.011)

`2 0.5 0.651 (0.053) 0.863 (0.021) 0.953 (0.054) 0.796 (0.031)
0.25 0.909 (0.063) 0.794 (0.073) 1.222 (0.035) 0.686 (0.063)

1 0.188 (0.061) 0.958 (0.026) 0.256 (0.072) 0.939 (0.042)
E-net 0.5 0.423 (0.117) 0.902 (0.071) 0.408 (0.072) 0.912 (0.030)

0.25 0.809 (0.155) 0.830 (0.066) 0.870 (0.184) 0.832 (0.053)

AR1

1 0.313 (0.070) 0.931 (0.028) 0.284 (0.044) 0.929 (0.027)
`1 0.5 0.493 (0.088) 0.867 (0.072) 0.487 (0.081) 0.881 (0.044)

0.25 0.673 (0.165) 0.827 (0.073) 0.669 (0.231) 0.828 (0.139)
1 0.301 (0.029) 0.933 (0.015) 0.552 (0.018) 0.871 (0.008)

`2 0.5 0.506 (0.063) 0.874 (0.027) 0.824 (0.057) 0.794 (0.030)
0.25 0.851 (0.120) 0.778 (0.062) 1.146 (0.061) 0.680 (0.043)

1 0.191 (0.031) 0.959 (0.015) 0.151 (0.032) 0.966 (0.013)
E-net 0.5 0.283 (0.049) 0.926 (0.036) 0.307 (0.104) 0.922 (0.071)

0.25 0.541 (0.146) 0.865 (0.074) 0.630 (0.121) 0.839 (0.079)

80

5.4 Data example

In this section, we apply the proposed method to a real-world stock selection problem.
Specifically, we treat each trading day as a “query”, different stocks in a trading day as
“documents”. The rating (or ranking) of a “document” is the return of the stock on the next
trading day. For each trading day, features of a stock are summary statistics of the stock.
In particular, we considered 21 features, falling into different categories, such as the corre-
lation between the stock and the market (Beta), the asset change of the company (Value),
the price change of the stock (Momentum), the market value of the company (Size), profit
and sales of the company (Growth), which have all been considered as important factors
impacting the price of a stock.

We obtained daily returns and the 21 daily features of 2958 A-shares stocks listed in
the Shanghai Stock Exchange (SHSE) and Shenzhen Stock Exchange (SZSE) in China
from January 2013 to August 2017. We wish to build a ranking model, such that when
given new features of these stocks, we can use the model to rank them and the rankings
are in accordance with the returns of these stocks on the next trading day. To evaluate the
performance of the ranking model, we used a strategy that is commonly used in the financial
industry when selecting stocks: on each trading day, we long the top 100 stocks based on
the rankings given by the ranking model and short the bottom 100, then we compute the
returns of these long-short holdings on the next trading day; in this way, we obtain a curve
of cumulative returns over time, and it can tell us how well the ranking model selects stocks.

Figures 5.1-5.4 plot the cumulative return curves under this long-short strategy when
using individual features to rank the stocks. As one can see, some features already work
pretty well by themselves, while some others do not work so well; different features may
also work well at different time periods. For example, for a time period, the momentum
features may work better than the value features, while at other time periods, the situation is
reversed. Further, Figure 5.5 shows the pairwise correlations between the 21 features’ daily
returns (not cumulative returns) when this long-short strategy is used for each individual
feature. As one can see, some features’ daily returns are highly (positively) correlated
(especially when they come from the same category), some features’ returns are weakly
correlated, and there are also features that are strongly negatively correlated, indicating
they work at different time periods.

In order to evaluate and compare the performances of the three methods, i.e. the
standard rank SVM, the `1-norm rank SVM, and the elastic-net rank SVM, we divide
the data into training (1/1/2013-12/31/2014), validation (1/1/2015-12/31/2015), and test-
ing (1/1/2016-8/3/2017) sets. We use the validation set to choose tuning parameters. The

81

2014 2015 2016 2017

0.
0

0.
1

0.
2

0.
3

0.
4

Cumulative return of feature 1

Date

R
et

ur
n

2014 2015 2016 2017

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Cumulative return of feature 2

Date

R
et

ur
n

2014 2015 2016 2017

0.
00

0.
10

0.
20

0.
30

Cumulative return of feature 3

Date

R
et

ur
n

2013 2014 2015 2016 2017

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

Cumulative return of feature 4

Date

R
et

ur
n

2013 2014 2015 2016 2017

−
0.

1
0.

0
0.

1
0.

2
0.

3

Cumulative return of feature 5

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Cumulative return of feature 6

Date

R
et

ur
n

Figure 5.1: Cumulative return curves when long top 100 stocks and short bottom 100 stocks
using individual features (features 1-6).

82

2013 2014 2015 2016 2017

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Cumulative return of feature 7

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Cumulative return of feature 8

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Cumulative return of feature 9

Date

R
et

ur
n

2013 2014 2015 2016 2017

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Cumulative return of feature 10

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
2

0.
4

0.
6

0.
8

Cumulative return of feature 11

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
5

1.
0

1.
5

2.
0

Cumulative return of feature 12

Date

R
et

ur
n

Figure 5.2: Cumulative return curves when long top 100 stocks and short bottom 100 stocks
using individual features (features 7-12).

83

2013 2014 2015 2016 2017

0.
0

0.
2

0.
4

0.
6

0.
8

Cumulative return of feature 13

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Cumulative return of feature 14

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative return of feature 15

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Cumulative return of feature 16

Date

R
et

ur
n

2013 2014 2015 2016 2017

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Cumulative return of feature 17

Date

R
et

ur
n

2013 2014 2015 2016 2017

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Cumulative return of feature 18

Date

R
et

ur
n

Figure 5.3: Cumulative return curves when long top 100 stocks and short bottom 100 stocks
using individual features (features 13-18).

84

2013 2014 2015 2016 2017

−
0.

1
0.

0
0.

1
0.

2

Cumulative return of feature 19

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
1

0.
2

0.
3

Cumulative return of feature 20

Date

R
et

ur
n

2013 2014 2015 2016 2017

0.
0

0.
1

0.
2

0.
3

Cumulative return of feature 21

Date

R
et

ur
n

Figure 5.4: Cumulative return curves when long top 100 stocks and short bottom 100 stocks
using individual features (features 19-21).

85

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

−1.0

−0.5

0.0

0.5

1.0

Figure 5.5: Correlations between 21 features’ daily returns when the long-short strategy is
used for each individual feature

Table 5.3: Cumulative returns and Sharpe ratios (SR) of the three methods in training,
validation and testing periods

Training Validation Testing
Return SR Return SR Return SR

`1 0.698 3.63 0.958 6.14 0.328 2.26
`2 0.752 3.68 0.873 5.14 0.204 0.95

E-net 0.820 4.00 1.070 6.36 0.405 2.18

final models are then applied to the testing set to compute the cumulative returns under the
long-short strategy.

The results are plotted in Figure 5.6 and summarized in Table 5.3. As one can see,
all three methods perform reasonably well. Over the period of five years, the long-short
strategy makes more than 200% profit with little drawback. Overall, the elastic-net rank
SVM performs the best with higher returns than the standard rank SVM and the `1-norm
rank SVM. Table 5.3 summarizes the cumulative return and the Sharpe ratio for the training,
validation and testing periods separately. Again, as one can see, in testing period, the
elastic-net rank SVM achieved the highest return and Sharpe ratio.

5.5 Summary

In this chapter, we focus on the learning to rank problem with sparse feature selection.
In particular, we have extended the standard rank SVM method to the sparse setting, by

86

20130107 20130712 20140109 20140710 20150107 20150707 20160104 20160704 20161229 20170703

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Date

R
et

ur
n

l_1
l_2
EN

Figure 5.6: Cumulative return curves when long top 100 stocks and short bottom 100
stocks using the fitted model to rank stocks. The two vertical lines indicate the separation
of training, validation and testing sets.

applying the lasso and elastic-net penalties. We employed the bundle method and the order
statistics tree data structure to reduce the computational complexity. Numerical results
indicate that the proposed method works well in both simulation studies and a real-world
stock selection problem.

87

CHAPTER 6

Future Work

Looking into future, we list some potential directions that one may continue to pursue.
In Chapter 2, as mentioned at the end of Section 2.3.4, using the maximum likelihood

framework to pool information between variables does not help in estimating the mean.
Nevertheless, if methods other than the maximum likelihood framework are used, signifi-
cant improvements may be achievable. For instance, in the single observation setting with
independent variables, it is known that the James-Stein estimator (James and Stein, 1961,
Stein, 1956) can improve the estimation after introducing pooling between variables. It
will be interesting to know if such estimators can be defined by incorporating the general
covariance information in Gaussian graphical model problems. Another direction of future
work is to allow both the mean and the covariance matrix to vary across observations while
being cohesive according to a network structure.

In Chapter 3, since the final estimation is restricted to the moral graph identified in step
1, which is encoded by Θ̂, it is crucial to understand how the estimation accuracy in step 2
is affected if the moral graph is mis-specified. Among various possible mis-specifications
of the moral graph, we are particularly interested in cases where the estimated moral graph
in step 1 is not a super-graph of the true moral graph corresponding to the DAG. In other
words, we are concerned with cases in which some true edges are missed from the very
beginning of step 2, due to them not being identified in the estimated moral graph in step 1.
It would be interesting to quantify how such type of mis-specifications affect the accuracy
of the estimation in step 2.

88

BIBLIOGRAPHY

Odd O Aalen, Kjetil Røysland, Jon Michael Gran, and Bruno Ledergerber. Causality,
mediation and time: a dynamic viewpoint. Journal of the Royal Statistical Society:
Series A (Statistics in Society), 175(4):831–861, 2012.

Antti Airola, Tapio Pahikkala, and Tapio Salakoski. Training linear ranking svms in lin-
earithmic time using red–black trees. Pattern Recognition Letters, 32(9):1328–1336,
2011.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection
through sparse maximum likelihood estimation for multivariate gaussian or binary data.
Journal of Machine Learning Research, 9:485–516, 2008.

Norbert Binkiewicz, Joshua T Vogelstein, and Karl Rohe. Covariate assisted spectral clus-
tering. arXiv preprint arXiv:1411.2158, 2014.

Michael G Bradley and Stephen A Lumpkin. The treasury yield curve as a cointegrated
system. Journal of Financial and Quantitative Analysis, 27(03):449–463, 1992.

Andries E Brouwer and Willem H Haemers. Spectra of graphs. Springer Science & Busi-
ness Media, 2011.

T Tony Cai, Hongzhe Li, Weidong Liu, Jichun Xie, et al. Covariate-adjusted precision
matrix estimation with an application in genetical genomics. Biometrika, 100(1):139–
156, 2013.

Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng, Anup B
Rao, and Shen Chen Xu. Solving sdd linear systems in nearly m log 1/2 n time. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 343–
352. ACM, 2014.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction
to algorithms second edition, 2001.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995.

Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse
covariance estimation across multiple classes. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 76(2):373–397, 2014.

89

Alexandre d’Aspremont, Onureena Banerjee, and Laurent El Ghaoui. First-order methods
for sparse covariance selection. SIAM Journal on Matrix Analysis and Applications, 30
(1):56–66, 2008.

Robert F Engle and Clive WJ Granger. Co-integration and error correction: representation,
estimation, and testing. Econometrica: Journal of the Econometric Society, pages 251–
276, 1987.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–1360,
2001.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

Clive WJ Granger. Some properties of time series data and their use in econometric model
specification. Journal of econometrics, 16(1):121–130, 1981.

Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. Joint estimation of multiple
graphical models. Biometrika, page asq060, 2011.

Anthony D Hall, Heather M Anderson, and Clive WJ Granger. A cointegration analysis of
treasury bill yields. The Review of Economics and Statistics, pages 116–126, 1992.

David Hallac, Jure Leskovec, and Stephen Boyd. Network lasso: Clustering and optimiza-
tion in large graphs. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 387–396. ACM, 2015.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12(1):55–67, 1970.

Timothy R Hughes, Matthew J Marton, Allan R Jones, Christopher J Roberts, Roland
Stoughton, Christopher D Armour, Holly A Bennett, Ernest Coffey, Hongyue Dai,
Yudong D He, et al. Functional discovery via a compendium of expression profiles.
Cell, 102(1):109–126, 2000.

W. James and Charles Stein. Estimation with quadratic loss. In Proc. 4th Berkeley Sympos.
Math. Statist. and Prob., Vol. I, pages 361–379. Univ. California Press, Berkeley, Calif.,
1961.

Pengsheng Ji and Jiashun Jin. Coauthorship and citation networks for statisticians. arXiv
preprint arXiv:1410.2840, 2014.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 133–142. ACM, 2002.

Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 217–
226. ACM, 2006.

90

Søren Johansen. Statistical analysis of cointegration vectors. Journal of Economic Dynam-
ics and Control, 12(2):231–254, 1988.

Markus Kalisch and Peter Buhlmann. Estimating high-dimensional directed acyclic graphs
with the pc-algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

Steffen L Lauritzen. Graphical models. Oxford University Press, 1996.

Quoc V Le, Alex J Smola, and Svn Vishwanathan. Bundle methods for machine learning.
In Advances in neural information processing systems, pages 1377–1384, 2008.

Lung-fei Lee. Identification and estimation of econometric models with group interactions,
contextual factors and fixed effects. Journal of Econometrics, 140(2):333–374, 2007.

Wonyul Lee and Yufeng Liu. Simultaneous multiple response regression and inverse co-
variance matrix estimation via penalized gaussian maximum likelihood. Journal of mul-
tivariate analysis, 111:241–255, 2012.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, 2014.

Tianxi Li, Elizaveta Levina, and Ji Zhu. Prediction models for network-linked data. arXiv
preprint arXiv:1602.01192, 2016.

Yanming Li, Bin Nan, and Ji Zhu. Multivariate sparse group lasso for the multivariate
multiple linear regression with an arbitrary group structure. Biometrics, 71(2):354–363,
2015.

Jiahe Lin, Sumanta Basu, Moulinath Banerjee, and George Michailidis. Penalized maxi-
mum likelihood estimation of multi-layered gaussian graphical models. J. Mach. Learn.
Res., 17(1):5097–5147, January 2016. ISSN 1532-4435.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in
Information Retrieval, 3(3):225–331, 2009.

Po-Ling Loh and Peter Buhlmann. High-dimensional learning of linear causal networks
via inverse covariance estimation. Journal of Machine Learning Research, 15(1):3065–
3105, 2014.

Helmut Lütkepohl. New introduction to multiple time series analysis. Springer Science &
Business Media, 2005.

Charles F Manski. Identification of endogenous social effects: The reflection problem. The
Review of Economic Studies, 60(3):531–542, 1993.

Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection
with the lasso. Annals of Statistics, pages 1436–1462, 2006.

Nicolai Meinshausen and Peter Buhlmann. Stability selection. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

91

Karthik Mohan, Palma London, Maryam Fazel, Daniela M Witten, and Su-In Lee. Node-
based learning of multiple gaussian graphical models. Journal of Machine Learning
Research, 15(1):445–488, 2014.

Jonas Peters and Peter Bühlmann. Identifiability of gaussian structural equation models
with same error variances. Technical report, 2012.

Peter CB Phillips and Sam Ouliaris. Asymptotic properties of residual based tests for
cointegration. Econometrica: Journal of the Econometric Society, pages 165–193, 1990.

Bogdan Raducanu and Fadi Dornaika. A supervised non-linear dimensionality reduction
approach for manifold learning. Pattern Recognition, 45(6):2432–2444, 2012.

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, Bin Yu, et al. High-
dimensional covariance estimation by minimizing 1-penalized log-determinant diver-
gence. Electronic Journal of Statistics, 5:935–980, 2011.

Adam J Rothman, Peter J Bickel, Elizaveta Levina, and Ji Zhu. Sparse permutation invari-
ant covariance estimation. Electronic Journal of Statistics, 2:494–515, 2008.

Adam J Rothman, Elizaveta Levina, and Ji Zhu. Sparse multivariate regression with co-
variance estimation. Journal of Computational and Graphical Statistics, 19(4):947–962,
2010.

Xiaotong Shen, Wei Pan, and Yunzhang Zhu. Likelihood-based selection and sharp pa-
rameter estimation. Journal of the American Statistical Association, 107(497):223–232,
2012.

Ali Shojaie and George Michailidis. Penalized likelihood methods for estimation of sparse
high-dimensional directed acyclic graphs. Biometrika, 97(3):519–538, 2010.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group
lasso. Journal of Computational and Graphical Statistics, 22(2):231–245, 2013.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search,
volume 81. MIT press, 2000.

Charles Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution. In Proceedings of the Third Berkeley symposium on mathematical statistics
and probability, volume 1, pages 197–206, 1956.

Minh Tang, Daniel L Sussman, and Carey E Priebe. Universally consistent vertex classifi-
cation for latent positions graphs. The Annals of Statistics, 41(3):1406–1430, 2013.

Choon Hui Teo, SVN Vishwanthan, Alex J Smola, and Quoc V Le. Bundle methods for
regularized risk minimization. Journal of Machine Learning Research, 11(Jan):311–365,
2010.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

92

Robert Tibshirani. The lasso method for variable selection in the cox model. Statistics in
medicine, 16(4):385–395, 1997.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-
climbing bayesian network structure learning algorithm. Machine learning, 65(1):31–78,
2006.

Ruey S Tsay. Analysis of financial time series, volume 543. John Wiley & Sons, 2005.

Sara Van de Geer, Peter Bühlmann, et al. L1-penalized maximum likelihood for sparse
directed acyclic graphs. Annals of Statistics, 41(2):536–567, 2013.

Elif Vural and Christine Guillemot. Out-of-sample generalizations for supervised manifold
learning for classification. IEEE Transactions on Image Processing, 25(3):1410–1424,
2016.

Martin J Wainwright. Sharp thresholds for high-dimensional and noisy recovery of sparsity
using l1-constrained quadratic programming. IEEE Transactions on Information Theory,
2009.

Ines Wilms and Christophe Croux. Forecasting using sparse cointegration. International
Journal of Forecasting, 32(4):1256–1267, 2016.

Jaewon Yang, Julian McAuley, and Jure Leskovec. Community detection in networks with
node attributes. In 2013 IEEE 13th International Conference on Data Mining, pages
1151–1156. IEEE, 2013.

Wankou Yang, Changyin Sun, and Lei Zhang. A multi-manifold discriminant analysis
method for image feature extraction. Pattern Recognition, 44(8):1649–1657, 2011.

Jianxin Yin and Hongzhe Li. A sparse conditional gaussian graphical model for analysis
of genetical genomics data. The annals of applied statistics, 5(4):2630, 2011.

Jianxin Yin and Hongzhe Li. Adjusting for high-dimensional covariates in sparse precision
matrix estimation by `1-penalization. Journal of multivariate analysis, 116:365–381,
2013.

Ming Yuan and Yi Lin. Model selection and estimation in the gaussian graphical model.
Biometrika, 94(1):19–35, 2007.

Yiping Yuan, Xiaotong Shen, Wei Pan, and Zizhuo Wang. Constrained likelihood for
reconstructing a directed acyclic gaussian graph. To Be Published, 2014.

Hua Zhang. Treasury yield curves and cointegration. Applied Economics, 25(3):361–367,
1993.

Shuheng Zhou, John Lafferty, and Larry Wasserman. Time varying undirected graphs.
Machine Learning, 80(2-3):295–319, 2010.

93

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320,
2005.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Jour-
nal of Computational and Graphical Statistics, 15(2):265–286, 2006.

94

APPENDIX A

Proofs of the Main Results in Chapter 2

A.1 Proof
We first introduce two additional matrix norms for theoretical discussion. Let ||M ||∞ de-
note its elementwise maximum, which is ||M ||∞ = maxij |Mij|, ||M ||1,1 be its columnwise
maximum norm, i.e. ||M ||1,1 = maxj ||M·j||1, and let ||M ||∞,∞ denote its rowwise maxi-
mum norm, i.e. ||M ||∞,∞ = maxi ||Mi·||1.

The following lemma summarizes a few concentration inequalities that we will use.

Lemma 1 (Concentration of norm of general multivariate Gaussian). For a Gaussian ran-
dom vector x ∼ N (0,Σ) where Σ ∈ Rp×p, we have

P(|||x||2 −
√

tr(Σ)| > t) ≤ 2 exp(−c t2

φmax(Σ)
)

for some constant c > 0 and φmax(Σ) is the largest eigenvalue of Σ. Furthermore, we have

P(|||x||22 − tr(Σ)| > t) ≤ 2 exp(−c t

φmax(Σ)
).

For ||x||1, we have

P(|||x||1 −
2

π

p∑
i=1

√
Σii| > t) ≤ 2 exp(−c t2

pφmax(Σ)
)

Proof of Lemma 1. The first one is directly from the fact of concentration of Lipchitz func-
tion of sub-gaussian random vectors. The second one is true from the definition of sub-
exponential random variables.

Proof of Proposition 1. Since the node degrees on a lattice network are almost the same,
we expect Ls to be very close to Ln. In the following proof, we will treat Ls as Ln. By
basic theories of graph spectrum (Brouwer and Haemers, 2011), one can show that the
eigenvalues of such networks are (up to a constant scaling)

2− cos(
iπ√
n

)− cos(
jπ√
n

) = 2 sin2(
iπ

2
√
n

) + 2 sin2(
jπ

2
√
n

), i, j ∈ [
√
n].

95

Set m to be the smallest integer such that t(m) ≥ n−1/3, then the rest eigenvalues for
n > n−m must satisfy

2 sin2(
iπ

2
√
n

) + 2 sin2(
jπ

2
√
n

) ≤ n−1/3,

which for large enough n is approximately equivalent to

π2

2
(
i2

n
+
j2

n
) ≤ n−1/3. (A.1)

This requires (i, j) to be in the ball with radius
√

2
π2n2/3. The proportion of such pairs is

approximately the ratio between the area of the 1/4 ball and that of the square of [0,
√
n]×

[0,
√
n], which is n2/3

2πn
. Thus we have

m ≤ c
n2/3

2π

for some constant c. We now prove the second argument. Assume all the inequalities in
Assumption 1 hold with equal signs. From (A.1), we have∑

i<n

1

τ 2
i

=
∑

1≤i,j≤
√
n

1

(2 sin2(iπ
2
√
n
) + 2 sin2(jπ

2
√
n
))2

= n
∑

1≤i,j≤
√
n

1

(2 sin2(iπ
2
√
n
) + 2 sin2(jπ

2
√
n
))2

1√
n

1√
n

≥ n
∑

1≤i,j≤
√
n

1

(2π
2i2

4n
+ 2π

2j2

4n
)2

1√
n

1√
n

≈ 4n

π2

∫
π

2
√
n
≤x,y≤1

1

(2x2 + 2y2)2
dxdy

≥ 4n

π2

∫
(
√

2π
2
√
n

)2≤x2+y2≤1

1

4(x2 + y2)2
dxdy

=
n

π
(
2n

π2
− 1),

in which the integration approximation error is in a much lower order and will not change
the magnitude. Therefore, we have∑

i<n

β2
i = n−

2(1+δ)
3

∑
i<n

1

τ 2
i

≥ c′n
4−2δ

3 ≥ n

for δ < 1/2. Further, when δ < 1/2, there must exist β satisfying the two requirements of

96

Assumption 1 simultaneously since

||µ− P1µ||22 =
∑
i<n

β2
i .

For analysis, we first write problem (2.2) into an equivalent one so we can have an
easier form for theoretical derivation. Recall that Ls = UΛUT is the eigen-decomposition
of Ls and for any µ ∈ Rn, we can write µ = Uβ where β ∈ Rn. Substituting µ in (2.2), we
obtain an equivalent problem in the form of weighted ridge regression, i.e.

min ||y − Uβ||22 + α
∑
i

τiβ
2
i , (A.2)

where y = x·j for each j when we solve for the jth variable and the corresponding Uβ̂
gives µ̂·j .

We first present a lemma regarding the mean estimation property for a single variable
mean vector µ. It gives the estimation bound for a univariate Laplacian smoothing which
can be of independent interest, and its proof will be the major component when we establish
the error bounds of estimated mean matrix M̂ .

Lemma 2 (Single Laplacian smoothing bound). Under Assumptions 1-3, let α = n
1+δ

3 , the
estimated µ̂ in each of the problem of (A.2) satisfies

||β̂ − β∗||∞ ≤ 1 + cG
√

4σ2 log(n−mG)n−
1+δ

3
√
mG +

√
4σ2 logmG (A.3)

with probability at least 1− exp(− log(n−mG))− exp(− logmG), and

||β̂ − β∗||1 ≤ (1 + 2σ)[(n−mG)
√
mGn

− 1+δ
3 +mG] (A.4)

with probability at least 1− exp(−(n−mG))− exp(−mG), and

||β̂ − β∗||2 ≤
√

(1 + 4σ2)(c2
GmGn

1−2δ
3 + 1) (A.5)

with probability at least 1 − exp(−(n − mG)) − exp(−mG). In particular, for each µ̂·j
which is the estimate of the jth variable, we can replace σ2 by Σ∗jj .

Proof of Lemma 2. We can directly write out the solution of (A.2) as

β̂ = (I + αΛ)−1β∗ + (I + αΛ)−1UT ε = (I + αΛ)−1β∗ + (I + αΛ)−1ε̃,

where ε̃ ∼ N (0, σ2I). Therefore we have

||β̂ − β∗||∞ ≤ ||(
ατi

1 + ατi
β∗i)

n
i=1||∞ + ||(1

1 + ατi
ε̃i)

n
i=1||∞ := ||I||∞ + ||II||∞,

97

where ||I||∞ ≤ max
i<n

α

1 + ατi
max
i<n
|τiβ∗i |

≤ α

1 + ατn−1

n−
1+δ

3 (by Assumption 1)

≤ αn−
1+δ

3 = 1. (A.6)

On the other hand, we can decompose II into two parts: the first n−mG elements and the
remaining mG elements. Then for the first n−mG elements, we have

||II1:n−mG ||∞ ≤ max
i≤n−mG

1

1 + ατi
max

i≤n−mG
|ε̃i| =

1

1 + αt(mG)
max

i≤n−mG
|ε̃i| (by Assumption 2)

≤ 1

1 + t(mG)n
1+δ

3

max
i≤n−mG

|ε̃i| ≤
√

4σ2 log(n−mG)

t(mG)n
1+δ

3

≤ cG
√

4σ2 log(n−mG)n−
1+δ

3
√
mG, (A.7)

with probability at least 1−exp(− log(n−mG)). For the rest part, with probability at least
1− exp(− log(mG)), we have

||IIn−mG+1:n||∞ ≤
√

4σ2 logmG. (A.8)

This completes the proof for (A.3).

For the L1 norm, we have

||I||1 =
∑
i

ατi|βi|
1 + ατi

≤
∑

i≤n−mG

|βi|+
∑

i>n−mG

ατi|βi|
1 + ατi

≤ n−mG

t(mG)
n−

1+δ
3 +

∑
i>n−mG

α

1 + ατn−1

n−
1+δ

3

≤ n−mG

t(mG)
n−

1+δ
3 +

∑
i>n−mG

αn−
1+δ

3

=
n−mG

t(mG)
n−

1+δ
3 +

∑
i>n−mG

1

= cG(n−mG)
√
mGn

− 1+δ
3 +mG. (A.9)

98

||II||1 =
∑

i≤n−mG

1

1 + ατi
|ε̃i|+

∑
i>n−mG

1

1 + ατi
|ε̃i|

≤
∑

i≤n−mG

1

1 + t(mG)n
1+δ

3

|ε̃i|+
∑

i>n−mG

|ε̃i|

≤ 2σ(n−mG)

t(mG)n
1+δ

3

+ 2σmG (A.10)

≤ 2cGσ(n−mG)
√
mGn

− 1+δ
3 + 2σmG (A.11)

with probability at least 1− exp(−(n−mG))− exp(−mG).

For the L2 norm, we have

||I||22 =
∑
i

α2τ 2
i |βi|2

(1 + ατi)2
≤

∑
i≤n−mG

|βi|2 +
∑

i>n−mG

α2τ 2
i |βi|2

(1 + ατi)2

≤ n−mG

t(mG)2
n−

2(1+δ)
3 +

∑
i>n−mG

(
α

1 + ατn−1

)2n−
2(1+δ)

3

≤ n−mG

t(mG)2
n−

2(1+δ)
3 +

∑
i>n−mG

α2n−
2(1+δ)

3

=
n−mG

t(mG)2
n−

2(1+δ)
3 +

∑
i>n−mG

1

= c2
G(n−mG)mGn

− 2(1+δ)
3 +mG. (A.12)

||II||22 =
∑

i≤n−mG

(
1

1 + ατi
)2|ε̃i|2 +

∑
i>n−mG

(
1

1 + ατi
)2|ε̃i|2

≤
∑

i≤n−mG

1

t(mG)2
n−

2(1+δ)
3 |ε̃i|2 +

∑
i>n−mG

|ε̃i|2

≤ 4c2
Gσ

2(n−mG)mGn
− 2(1+δ)

3 + 4σ2mG (A.13)

with probability at least 1− exp(−(n−mG))− exp(−mG) by Bernstein inequality. Com-
bining (A.12) and (A.13) completes the proof.

Now we proceed to obtain the error bound across p columns. We can still represent
each column of M∗ by basis expansion over U , which results in an expansion coefficient
matrixB∗ = (β∗·1, β

∗
·2, · · · , β∗·p) such thatM∗ = UB∗. Denote the estimate of (2.2) to be M̂

and define B̂ to be the corresponding eigen-expansion coefficient matrix on U , such that

B̂ = UTM̂.

99

Note B̂ can be seen as an estimate of B∗. We first state the estimation error bound of B̂ in
Lemma 3 and then the estimation error bound of M̂ is a direct result.

Lemma 3. Under Assumptions 2, 3 and 4, we have

||B̂ −B∗||∞ ≤ Cσ[(cG
√

log pn
√
mGn

− 1+δ
3) ∨

√
log(pmG)] (A.14)

with probability at least 1− exp(−c log (p(n−mG)))− exp(−c′ log(pmG)) for some con-
stant C, c′ and c. Moreover, we have

||B̂ −B∗||1,1 ≤ (2
√

2σ + 1)[cG
√
mGn

2−δ
3 +

√
log pmG] (A.15)

with probability at least 1− exp(−cn)− exp(−CmG log p). In Frobenius norm, we have

||B̂ −B∗||F ≤
√

(1 + 4σ2)(c2
GmGn

1−2δ
3 + 1)p (A.16)

with probability at least 1− exp(−p(n−mG))− exp(−pmG).

Proof of Lemma 3. We first check the elementwise maximum norm. The bound of (A.6) is
deterministic so it still holds for all columns of B. For each column, the bound of (A.7)
needs to be scaled up by

√
log p and changed to be

cG
√

4σ2 log p(n−mG)n−
1+δ

3
√
mG,

which holds with probability at least 1 − exp(−c log(p(n − mG))). Finally, the term of
(A.8) can be bounded by

√
Cσ2 log(pmG) with probability at least 1−exp(−c′ log(pmG))

for some constant C ′, by the Gaussian property. Combining the three parts leads to (A.14)
as

||B̂ −B||∞ ≤ 1 +
√

4σ2 log p(n−mG)n−
1+δ

3
√
mG +

√
C ′σ2 log(pmG)

≤ Cσ[(cG
√

log p(n−mG)n−
1+δ

3
√
mG) ∨

√
log(pmG)].

For the column-wise maximum norm, note that the bound of (A.9) still holds across
all columns, as it is deterministic. The first half of (A.10) is true for all columns with
probability at least 1 − p exp(−(n − mG)). Since we assume p < c log(n), this can be
bounded below by 1− exp(−c′n) for another constant c′. Finally, the second half of (A.10)
now has to be scaled up by

√
2 log p since is has to be controlled across p columns, with

probability at least 1− exp(−CmG log p). Combining these three terms we obtain

||B̂ −B||1,1 ≤ cG(n−mG)
√
mGn

− 1+δ
3 +mG + 2σcG(n−mG)

√
mGn

− 1+δ
3 + 2σ

√
2 log pmG

≤ (2
√

2σ + 1)[cG(n−mG)
√
mGn

− 1+δ
3 +

√
log pmG].

For the Euclidean norm, the deterministic part is the same as we sum across p columns.
The random noise level of the np Gaussian random variables ε̃ij is controlled by first sum-
ming across p columns for each row, as they are correlated. Then we further sum up over
rows. The magnitude is controlled by Lemma 1. This completes the proof.

100

Proof of Theorem 1.

||M̂ −M ||∞ = ||U(B̂ −B)||∞ ≤ min(||U ||∞||B̂ −B||1,1, ||U ||∞,∞||B̂ −B||∞).

The corollary is a direct result of (A.15) and the fact that U is an orthogonal matrix and
||U ||∞ ≤ 1.

The Frobenius norm error is more straightforward since ||M̂ − M∗||F = ||U(B̂ −
B∗)||F = ||B̂ −B∗||F as U is an orthonormal matrix.

Now we proceed to prove Theorem 2. Let

Ŝ =
1

n
(X − M̂)T (X − M̂)

S =
1

n
ETE

We first need a concentration inequality about Ŝ around S to incorporate the noises intro-
duced in the estimation of M , which we will show in the following lemma.

Lemma 4. Under the condition of Theorem 1, we have

||Ŝ − S||∞ ≤ C max
(√

log pnmGn
− 2+2δ

3 ,
√

log pn
√

log pm
3/2
G n−

4+δ
3 ,√

log pn
√
mGn

− 1+δ
3 ,
√

log pn
√

log p
mG

n

)
with probability at least 1− exp(−c log(p(n−mG)))− exp(−c′ log(pmG)) for some con-
stant c, c′ and C that only depend on NG, cG and σ.

Proof of Lemma 4.

Ŝ − S =
1

n
(UB∗ + E − UB̂)T (UB∗ + E − UB̂)− 1

n
ETE

=
1

n
[(B̂ −B∗)T (B̂ −B∗)− ETU((B̂ −B∗))− ((B̂ −B∗))TUTE + ETE]− 1

n
ETE

=
1

n
(B̂ −B∗)T (B̂ −B∗)− 1

n
ETU(B̂ −B∗)− 1

n
(B̂ −B∗)TUTE. (A.17)

101

Due to Lemma 3, we have

|| 1
n

(B̂ −B∗)T (B̂ −B∗)||∞ ≤
1

n
||B̂ −B∗||∞||B̂ −B∗||1,1

≤ C

n
[(
√

log pn
√
mGn

− 1+δ
3) ∨

√
log(pmG)][

√
mGn

2−δ
3 +

√
log pmG]

=
C

n
max

(
[
√

log pnmGn
1−2δ

3 +
√

log pn
√

log pm
3/2
G n−

1+δ
3],

[
√

log pmG

√
mGn

2−δ
3 +

√
log pmG

√
log pmG]

)
≤ C ′max

(√
log pnmGn

− 2+2δ
3 ,
√

log pn
√

log pm
3/2
G n−

4+δ
3 ,√

log pmG

√
mGn

− 1+δ
3 ,
√

log pmG

√
log p

mG

n

)
(A.18)

with probability at least 1− exp(−c log(p(n−mG)))− exp(−c′ log(pmG)).
On the other hand, note that UTE = (Uı·E·j)

n
i,j=1 and ||Ui·||2 = 1, thus (UTE)ij ∼

N (0, σ2). As a result, we have

||UTE||∞ ≤
√

2σ2 log(np)

with probability at least 1−exp(−c log(np)). Therefore the second term and the third term
in (A.17) satisfy

|| 1
n
ETU(B̂ −B∗)||∞ ≤

1

n
||UTE||∞||B̂ −B∗||1,1

≤ C ′′
1

n

√
log(np)[

√
mGn

2−δ
3 +

√
log pmG]

= C ′′[
√

log np
√
mGn

− 1+δ
3 +

√
log np

√
log p

mG

n
] (A.19)

with probability at least 1−exp(−c log(p(n−mG))−exp(−c′ log(pmG))−exp(−c′′ log(np)).
Note that both terms in the summation dominate the last two terms in (A.18). Thus substi-
tuting (A.18) and (A.19) into (A.17) leads to

||Ŝ − S||∞ ≤ C ′′′max
(√

log pnmGn
− 2+2δ

3 ,
√

log pn
√

log pm
3/2
G n−

4+δ
3 ,√

log pn
√
mGn

− 1+δ
3 ,
√

log pn
√

log p
mG

n

)
with probability at least 1− exp(−c log(p(n−mG)))− exp(−c′ log(pmG)) for some con-
stant C ′′′, c and c′.

The theoretical property of the glasso step (2.3) can be obtained in an almost identical
way as in Ravikumar et al. (2011), with modifications made due to using Ŝ as the input
instead of S. First, we have a modified concentration.

102

Lemma 5. Assume we have

||Ŝ − S||∞ ≤ Cν̄(n, p,mG)

for some constant C and function ν̄(n, p,mG) about n, p,mG. Under Assumption 3, we
have

||Ŝ − Σ||∞ ≤ C ′
(
ν̄(n, p,mG) ∨

√
2c log p

n

)
with probability at least 1 − exp(−c log p) for some constants C ′ and c that only depend
on σ.

We now give the error bound for the estimation of (2.3), given an estimate of sample
covariance matrix, denoted by Ŝ. Specifically, the result shows that even if Ŝ is not a
consistent estimate of the sample covariance matrix, we can still achieve vanishing errors
and sparsistency as long as Ŝ is reasonably close to S.

Proposition 4. Assume Ŝ satisfies

||Ŝ − Σ||∞ ≤ ν(n, p) := C max
(√

log pnmGn
− 2+2δ

3 ,
√

log pn
√

log pm
3/2
G n−

4+δ
3 ,√

log pn
√
mGn

− 1+δ
3 ,
√

log pn
√

log p
mG

n
,

√
log p

n

)
(A.20)

where C, c are positive constants. Under Assumption 5, let Θ̂ be the estimate from mini-
mizing (2.3) with λ = 8

ρ
ν(n, p). If n is large enough so that

ν(n, p) <
1

6(1 + 8/ρ)ψmax{κΣ∗κΓ∗ , (1 + 8/ρ)κ3
Σ∗κ

2
Γ∗}

,

then we have

1. The estimate Θ̂ satisfies

||Θ̂−Θ∗||∞ ≤ 2(1 + 8/ρ)κΓ∗ν(n, p).

2. S(Θ̂) ⊂ S(Θ∗) and includes all edges (i, j) such that

max
(i,j)∈So(Θ∗)

|Θ∗ij| > 2(1 + 8/ρ)κΓ∗ν(n, p).

Proof of Proposition 4. The proof is almost the same as the proof of Theorem 1 in Raviku-
mar et al. (2011). In particular, we just need to show that the primal-dual witness construc-
tion succeeds under the assumption. The choice of λ = 8

ρ
ν(n, p) ensures ||Ŝ−Σ∗||∞ ≤ ρ

8
λ.

With the requirement on the sample size, the assumptions of Lemmas 5 and 6 in Raviku-
mar et al. (2011) hold and we can get that strict dual feasibility holds for the primal-dual
witness, which shows the procedure succeeds. Then the first half of the conclusion is a

103

direct result of Lemma 6 in Ravikumar et al. (2011) and the second conclusion is true by
construction of the primal-dual witness procedure.

Note that Proposition 4 is deterministic as it is purely based on a fixed Ŝ and (2.3).
It is proved following the primal-dual witness strategy in Ravikumar et al. (2011). Us-
ing Lemma 4 and Lemma 5 and then applying Proposition 4 conditioning on combining
Lemma 4 and Lemma 5 leads to Theorem 2.

Proof of Theorem 2. The first three statements are direct results of combining Lemma 4,
Lemma 5 and Proposition 4 in appendix. The rest are also similarly shown in Ravikumar
et al. (2011). Specifically, the fourth statement is true since there are s+ p elements in Θ∗.
The last two statements come from the fact that

||Θ̂−Θ∗|| ≤ ||Θ̂−Θ∗||F

and
||Θ̂−Θ∗|| ≤ ||Θ̂−Θ∗||∞,∞ ≤ ψ||Θ̂−Θ∗||∞.

For the proof of Proposition 2, we need a few properties about Kronecker products.
Recall that given two matrices A ∈ Rm×n and B ∈ Rp×q, their Kronecker product is
defined to be an (mp)× (nq) matrix such that

A⊗B =

A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

Am1B Am2B · · · AmnB

 .

Given the matrix A, define vec(A) to be the column vector after stacking all columns
of A into one vec(A) = (A·1, A·2, · · · , A·n). Some standard properties about Kronecker
product and matrix multiplications include (assuming the dimensions of the matrices are
well matched for the operations)

vec(AB) = (Iq ⊗ A)vec(B), A ∈ Rn×p, B ∈ Rp×q (A.21)

vec(BT ⊗ A)vec(C) = vec(ACB), A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×p (A.22)
(A⊗B)(C ⊗D) = (AC)⊗ (BD) (A.23)

tr(ABAT) = vec(A)T (B ⊗ In)vec(A)

= vec(AT)T (In ⊗B)vec(AT), A ∈ Rn×p, B ∈ Rp×p. (A.24)

Proof of Proposition 2. We will only prove (2.24), since the proof of (2.23) is the same with
Θ∗ replaced by Ip. The conclusion is actually a direct result from the quadratic solution

104

after vectoring all the matrices. Specifically, the objective function (2.22) can be written as

tr(Θ∗(X − UB)T (X − UB)) + αtr(BTΛB)

= vec(X − UB)T (Θ∗ ⊗ In)vec(X − UB) + αvec(B)T (Ip ⊗ Λ)vec(B)

= vec(UB)T (Θ∗ ⊗ In)vec(UB)− 2vec(UB)T (Θ∗ ⊗ In)vec(X) + αvec(B)T (Ip ⊗ Λ)vec(B) + const

= vec(B)(Ip ⊗ UT)(Θ∗ ⊗ In)(Ip ⊗ U)vec(B)− 2vec(X)T (Θ∗ ⊗ In)(Ip ⊗ U)vec(B)

+ αvec(B)T (Ip ⊗ Λ)vec(B) + const

= vec(B)T [(Θ∗ ⊗ In) + α(Ip ⊗ Λ)]vec(B)− 2vec(X)T (Θ∗ ⊗ U)vec(B) + const.

The minimizer of the quadratic function satisfies

[(Θ∗ ⊗ In) + α(Ip ⊗ Λ)]vec(B) = (Θ∗ ⊗ UT)vec(X).

Substituting the relation X = UB∗ + U into the estimating equation gives

[(Θ∗ ⊗ In) + α(Ip ⊗ Λ)]vec(B) = (Θ∗ ⊗ UT)vec(UB∗ + E)

= (Θ∗ ⊗ UT)(Ip ⊗ U)vec(B∗) + (Θ∗ ⊗ UT)vec(E)

= (Θ∗ ⊗ In)vec(B∗) + vec(UTEΘ∗).

This gives

(Θ∗ ⊗ In)vec(W) + α(Ip ⊗ Λ)vec(W) = −vec(UTEΘ∗).

We can then use (A.22) again to get

vec(WΘ∗) + αvec(ΛW) = −vec(UTEΘ∗).

This is equivalent to (2.24) by noticing that Ė = −UTEΘ∗ satisfies the requirement.

Finally, we give the proof for Theorem 3 based on Proposition 2.

Proof of Theorem 3. Directly by definition, we have

W4,ij =
1

Θ∗jj + ατi
(ατiB

∗
ij + Ėij)

and
W3,ij =

1

1 + ατi
(ατiB

∗
ij + Ėij).

This indicates that for any i, j and arbitrary α,

min(1,min
j

Θ∗jj) ≤
W3,ij

W4,ij

=
Θ∗jj + ατi

1 + ατi
≤ max(1,max

j
Θ∗jj). (A.25)

105

We next show that under the assumption of diagonal dominance of Θ∗, even W2 cannot be
much better. For each j = 1, 2, · · · , p, from (2.24) it can be seen that

W2Θ∗·j + αW2,·j = (Θ∗jjI + αΛ)W2,·j + Θ∗jj
∑
i 6=j

Θ∗ij
Θ∗jj

W2,·i = αΛB·j + Ė·j

Therefore, we have

W2,·j+(Θ∗jjI+αΛ)−1Θ∗jj
∑
i 6=j

Θ∗ij
Θ∗jj

W2,·i = α(Θ∗jjI+αΛ)−1ΛB·j+(Θ∗jjI+αΛ)−1Ė·j = W4,·j

(A.26)
in which the last equation comes from (2.26). By the triangle inequality, (A.26) leads to

||W2,·j||∞ ≤ ||W4,·j||∞+||(Θ∗jjI+αΛ)−1Θ∗jj
∑
i 6=j

Θ∗ij
Θ∗jj

W2,·i||∞ ≤ ||W4,·j||∞+
∑
i 6=j

|Θ∗ij|
Θ∗jj

max
i
||W2,·i||∞.

(A.27)
Taking the maximum over j on both sides, we have

||W2||∞ ≤ ||W4||∞ + ρ||W2||∞. (A.28)

Similarly by using triangle inequality from the other direction, we can show that ||W2||∞ ≥
||W4||∞ − ρ||W2||∞. Thus

||W4||∞
||W2||∞

∈ (1− ρ, 1 + ρ).

Combining this with (A.25), we obtain

(1− ρ) min(1,min
j

Θ∗jj) ≤
||W3||∞
||W2||∞

≤ (1 + ρ) max(1,max
j

Θ∗jj).

Note that (A.27) holds for any vector norm. For example, if we take L1 norm instead,
it gives similar bound in || · ||1,1.

A.2 Simulation model on the lattice network
The observation network used in Section 2.4 is shown in Figure A.1. It is an

√
n ×
√
n

lattice network where n = 400. In nontrivial cohesion setting of the simulation study, we
generate the values of µ∗·j as follows. Given the row index q and column index r, we set
the value at the intersection node (q, r) by qr/n. After generating all values, we center
and scale the values to make sure values of all nodes are between 0 and 1. Then the node
index (q, r) is transformed into 1, 2, · · · , n and the corresponding values are assigned to
µ∗i,j, i = 1, 2, · · · , n. In this case, we have

||Lsµ∗·j||22 = 0.97 and ||µ∗·j||22 = 51.5.

106

while
||µ∗·j − P1µ

∗
·j||22 = 21.1 and ||P1µ

∗
·j||22 = 30.4.

Therefore it is a nontrivial cohesion configuration.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●
● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●

Figure A.1: The 20× 20 grid network in simulation studies. The size of the node indicates
the corresponding mean value in the nontrivial cohesion setting.

107

APPENDIX B

Proofs of the Main Results in Chapter 4

B.1 Update Q.
In this section, we give the explicit algorithm for updating Q, coming from the alternate
update between A and Q which solves the master optimization problem

L(A,Q) = ‖Z − ZLTQAT‖2
F + λ

r∑
j=1

‖(L′Q)·j‖2
2 + ρ

p∑
i=1

r∑
j=1

|Qij|+ γ

p∑
i=1

||Qi·||2,

and the optimization problem to be considered for updating Q is given by (same as that
in (4.13))

Q̂(m) = argmin
Q

{
‖Z−ZLTQ(Â(m))′‖2

F+λ·trace(QTLLTQ)+ρ

p∑
i=1

r∑
j=1

|Qij|+γ
p∑
i=1

||Qi·||2
}
.

(B.1)
For fixed orthonormal A, let A⊥ be an orthonormal matrix such that [A : A⊥] is a p × p
orthonormal matrix, which gives

‖Z −XQAT‖2
F = ‖ZA⊥‖2

F + ‖ZA−XQ‖2
F = ‖ZA⊥‖2

F + ‖Y −XQ‖2
F ,

where X := ZLT , Y := ZA. The first term does not involve Q. Therefore, to solve
for (B.1), it is equivalent to minimizing

f(Q) := ‖Y −XQ‖2
F + λ · trace(QTLLTQ) + ρ

p∑
i=1

r∑
j=1

|Qij|+ γ

p∑
i=1

||Qi·||2. (B.2)

Consider the first two terms. Let

‖Y −XQ‖2
F + λ · trace(QTLLTQ) = trace

(
Q′[λLLT +XTX]Q− 2QTXTY + Y TY

)
= trace

(
QTΓTΓQ− 2QTΓTΓ−TXTY + constant

)
= ‖Θ− ΓQ‖2

F + constant,

108

where

Γ = (λS11 +XTX)1/2 = (L(λI +M)LT)1/2 and Θ = Γ−1XTY = Γ−1LMA.

From the above step, we see that the objective function involves neither X nor Y , hence Z
is also excluded, which substantiates our earlier statement that the exact decomposition of
M will not enter into the optimization procedure. Now for a fixed orthonormal A, Q̂ can
be equivalently updated by

Q̂ = argmin
Q∈Rp×r

{
‖Θ− ΓQ‖2

F + ρ

p∑
i=1

r∑
j=1

|Qij|+ γ

p∑
i=1

||Qi·||2

}
, (B.3)

which is similar to the sparse group lasso setup in Simon et al. (2013), but with the response
being multivariate. Note that the lasso penalty has a universal regularization coefficient ρ,
and the group lasso penalty has a universal regularization coefficient γ. Moreover, the
group-sparse structure is non-overlapping. We use the mixed coordinate descent algorithm
proposed by Li et al. (2015) to solve (B.3). To match with the scaling in Li et al. (2015),
let γn = γ/(2n) and ρn = ρ/(2n). By Theorem 3.1 in Li et al. (2015), if√∑

k

(|Sjk|/n− ρn)2
+ ≤ γn,

then Q̂j· = 0, where Sjk = ΓT·j(Θ−ΓQj=0)·k, Qj=0 is identical to Q except that its jth row
is set to zero. The updating rule for Qjk is given in Algorithm 6. Specifically, if we only

109

impose a group-sparse structure on β, we can set ρ = 0 and proceed accordingly.

Algorithm 6: Updating rule for Q̂ given fixed A
Input: Fixed A, Γ = (L(λI +M)LT)1/2, Θ = Γ−1XTY = Γ−1LMA, tuning

parameters ρ and γ, convergence tolerance ε.

1 Initialization. Set Q(0) = 0.

2 while |||Q(m−1) −Q(m−2)|||F > ε do
3 Set S(m−1)

jk = ΓT·j(Θ− ΓQ̂
(m−1)
j=0)·k, where Q̂(m−1)

j=0 is identical to Q̂(m−1) except
that its jth row is set to zero. Set Q̂(m−1)

j,−k to be identical to Q̂(m−1)
j· except that its

kth coordinate is set to zero. foreach j = 1, . . . , p do
4 foreach k = 1, . . . , r do
5 if ‖Q̂(m−1)

j,−k ‖2 = 0 then

6 update Q̂jk by Q̂(m)
jk =

sgn(S
(m−1)
jk)

(
|S(m−1)
jk |−nγn−nρn

)
+

‖Γ·j‖22
;

7 else

8 update Q̂jk by Q̂(m)
jk =

sgn(S
(m−1)
jk)

(
|S(m−1)
jk |−nρn

)
+

‖Γ·j‖22+nγn/‖Q̂(m−1)
j· ‖2

;

9 end
10 end
11 end
12 end

Output: Updated Q̂.

B.2 Characterization of a cointegrated VAR system
In this section, we briefly discuss the constraints on the parameters for a cointegrated VAR
system. Without loss of generality, we assume {Xt} is a mean-zero process. For Xt =
Φ1Xt−1 + . . .ΦdXt−1 + εt that is an I(1) process, its characteristic polynomial is given by

A(z) := I − Φ1z − · · · − Φdz
d,

and satisfies the following:

(a) |A(z)| = |Ip − Φ1z − · · · − Φdz
d| = (1− λ1z) . . . (1− λdz) = 0 for z = 1.

(b) All other roots that are not 1 are assumed to lie outside the unit circle.

Note that (a) corresponds to that Π in the ECM representation being singular (see equa-
tion (4.2)), which is automatically satisfied if rank(Π) = r < p.

According to the Granger Representation Theorem, suppose

∆Xt = αβTXt−1 + Φ∗1∆Xt−1 + · · ·+ Φ∗d∆Xt−1 + εt,

110

where εt is white noise for t = 1, 2 Define

C(z) := (1− z)Ip − αβT z −
d−1∑
i=1

Φ∗i (1− z)zi,

and suppose the following conditions hold:

C.1 detC(z) = 0⇒ |z| > 1 or z = 1.

C.2 The number of unit roots z = 1 is exactly p− r.

C.3 α and β are both p× r matrices with rank(α) = rank(β) = r.

Then Xt has the representation

Xt = Ξ
t∑
i=1

εi + Ξ∗(L)εt +X∗0 ,

where1 Ξ = β⊥
[
αT⊥

(
Ip −

∑d−1
i=1 Φ∗i

)
β⊥
]−1

αT⊥. Note Ξ∗(L)ut =
∑∞

j=0 Ξ∗jεt−j is an I(0)

process and X∗0 contains the initial values.
Note the rank of Ξ is (p− r), so under conditions (C.1) – (C.3), Xt is driven by (p− r)

I(1) components and r I(0) components. The first term is a p-dimensional random walk,
and after multiplied by Ξ which is of rank (p−r), there are (p−r) stochastic trends driving
the system. Ξ∗ is determined by the model parameters. Specifically, define (see Lütkepohl,
2005) β̄ := β(βTβ)−1 ∈ Rp×r and let

Q :=

[
βT

β̄T⊥

]
∈ Rp×p, so that Q−1 =

[
β̄ : β⊥

]
.

Further, let Φ(z) := Ip −
∑d−1

i=1 Φ∗i zi, and let

B∗(z) := Q
[
Φ(z)β̄(1− z)− αz : Φ(z)β⊥

]
, B(z) = Ip −

d∑
i=1

Biz
i := Q−1B∗(z)Q,

and

Θ(z) := B(z)−1 =
∞∑
j=1

Θjz
j,

which can be decomposed as

Θ(z) = Θ(1) + (1− z)Θ∗(z) := Θ(1) +
∞∑
j=1

Θ∗jz
j(1− z),

1For a general matrix M ∈ R×n with rank(M) = n, we define M⊥ to be its orthogonal complement,
which is an m× (m− n) matrix with rank(M⊥) = m− n and MTM⊥ = 0.

111

by letting Θ∗0 = Θ0 −Θ(1) and Θ∗i = −
∑∞

j=i+1 Θj , for i ≥ 1. Finally, Ξ∗ is given by

Ξ∗(z) = Θ∗(z) + β̄βTB(z)−1.

The Granger Representation Theorem outlines the restriction on the model parameters
for a VAR system with a specified number of cointegration relations. Specifically, we
consider two most relevant cases, with d = 1 and d = 2 respectively.

When d = 1, the VECM representation is given by:

∆Xt = αβTXt−1 + εt.

Then C(z) = (1 − z)Ip − αβT z = −(I + αβT)z + Ip, and detC(z) = 0 is required to
have exactly (p− r) unit roots, and r roots that lie outside the unit circle. Equivalently, for
the (p− r) unit roots, we have

det(I − (I + αβT)z) = 0,

which is automatically satisfied since rank(αβT) = r. For the r roots that lie outside the
unit circle, let λ = 1/z, then

det(I − (I + αβT)z) = 0, |z| > 1 ⇔ det(λI − (I + αβT)) = 0, |λ| < 1.

This suggests that the eigenvalues of I + αβT satisfy

λ1 = · · · = λp−r = 1, |λi| < 1 for i = (p− r + 1), . . . , p.

When d = 2, the VECM representation is given by:

∆Xt = αβTXt−1 + Φ∗1∆Xt−1 + εt.

Then

C(z) = (1− z)Ip − αβT z − Φ∗1(1− z)z = Φ∗1z
2 − (I + αβT + Φ∗1)z + Ip.

For detC(z) = 0, it’s required to have exactly (p−r) unit roots, with the rest lying outside
the unit circle. Again, the unit roots will be automatically satisfied given the low rank
representation of αβT .

112

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Regularized least squares regression
	Gaussian graphical model
	Outline of the thesis

	Gaussian Graphical Models on Network-linked Data
	Introduction
	Gaussian graphical model with network cohesion
	Theoretical properties
	Simulation studies
	Data example: learning associations between statistical terms
	Conclusion

	A Two-Step Approach for Estimating Directed Acyclic Graphs
	Introduction
	The proposed two-step methodology
	Simulation studies
	Data example
	Summary

	Estimating Cointegrated Vectors with Structured Sparsity
	Introduction
	Problem formulation and the proposed method
	Simulation studies
	Data examples
	Summary.

	Sparse Rank Support Vector Machines
	Introduction
	Sparse rank support vector machines
	Simulation studies
	Data example
	Summary

	Future Work
	Bibliography
	Appendices
	Proofs of the Main Results in Chapter 2
	Proof
	Simulation model on the lattice network

	Proofs of the Main Results in Chapter 4
	Update Q.
	Characterization of a cointegrated VAR system

