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Abstract
 
High affinity, long lasting antibodies and memory B cells provide protection from foreign 

pathogens and their generation has been the target of nearly all succesful vaccines to 

date. Their development requires that B cells participate in the T-dependent humoral 

response and form Germinal Centers (GCs) where B cell affinity maturation and 

differentiation of long-lived antibody-secreting cells and high-affinity memory B cells 

takes place. The T-dependent humoral response must be tightly regulated because of 

its potential to recruit or generate B cells with self-reactivity that can lead to the 

development of autoimmune diseases. While it is well known that follicular helper and 

follicular regulatory T cells (Tfh and Tfr) are required for the control of GC responses 

and Tfh cells are widely studied, the mechanisms of Tfr cell action on newly recruited 

activated B cells and GC B cells are not fully understood.  

 

In my thesis work I found that follicular regulatory T cells can respond to the 

proinflammatory cytokines CCL3 and CCL4 (which can be secreted by GC B cells) ex 

vivo and make more frequent interactions with wild-type (WT) than CCL3-deficient GC B 

cells in vivo. Moreover, I showed that B cell intrinsic production of CCL3 is required for 

control of GC B cell expansion and is important for limiting the development of 

antinuclear antibodies. Together, our data suggests that CCL3 secreted by GC B cells 

promotes their direct interactions and control by Tfr cells in vivo.  

 

In addition to analysis of the cellular and molecular mechanisms of Tfr action on GC B 

cells, we also examined how kinetics of Tfh and Tfr cell response affects the recruitment 

of newly arriving antigen-specific B cells into the GC response. We found that B cells 

have a short, limited time frame in which they can participate in ongoing immune 

responses. Preloading B cells with activating antigen alone is sufficient to promote their 

participation at all stages of the GCs despite differences in the number and quality of 



x 
 

follicular T cells. Our data suggests that antigen-triggered activation may be the limiting 

factor for continuous recruitment of antigen-specific B cells into immunization-induced 

response. Overall, the findings of this work may be important for future improvements of 

vaccination approaches against pathogenic diseases and better treatments or 

prevention of autoimmune diseases.
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Chapter 1 – Introduction
 
The role of antibody responses in immunity 

Emil von Behring and Shibasabura Kitasato in 1890 showed that serum transfer from 

immunized to unimmunized hosts could render both diphtheria and tetanus toxin 

harmless [1]. It was later discovered that the molecules responsible for the protection to 

a wide variety of inoculum comprised of the gamma globulin fraction in human serum.  

The source of gamma globulins, termed antibodies or immunoglobulins, was traced 

back to plasma cells found residing in bone marrow [2]. Since then antibodies have 

been shown to recognize a wide variety of foreign antigens and be the key feature of 

the adaptive humoral immune response. The importance of antibodies in providing 

protection in humans was made clear by Charles Janeway who, along with Fred Rosen, 

pioneered intravenous antibody therapy for patients who lack the ability to mount their 

own humoral response and are subject to recurrent infections [3, 4]. Subsequently, the 

generation of antibodies has been the goal of nearly all vaccination strategies up-to-

date. 

 

T-independent and T-dependent B cell responses 

Antibody responses are mounted by B lymphocytes (B cells). Mature B cells express 

immunoglobulins in a membrane-attached form called B cell receptors (BCRs). During 

development, B cells undergo the process of random VDJ recombination of germline 

DNA encoding their BCRs. This process renders mature B cells expressing BCRs with 

unique antigen recognition sites and specificity. Because of the outstanding variability of 

the BCR repertoire between various B cells, a wide variety of antigens including 

proteins, lipids, DNA, RNA and polysaccharides can trigger B cell responses [5]. 

Antigen-dependent cross-linking of BCRs promotes B cell activation and may lead to 

proliferation and the generation of antibody secreting plasma cells [6]. Antibody 
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generated from these cells helps facilitate opsonization of foreign antigen, generate 

immune complexes, and promotes antigen capture to the follicles to further enhance the 

humoral immune response [7]. Memory cells may also be generated early in the 

response. These cells can be reactivated upon secondary challenge for rapid, 

secondary responses [7]. 

 

While initial activation of B cells is triggered by antigen-dependent cross-linking of 

BCRs, complete B cell activation depends on the nature of antigens and the signals 

from helper T cells (Th cells). Multivalent antigens that induce very strong cross-linking 

of BCRs or antigens that work in conjunction with innate immune Toll-like receptors can 

induce thymus-independent (T-independent) B cell response that require little to no 

involvement of Th cells. These antigens can directly trigger B cells to form short-lived 

plasma cells reside in local secondary lymphoid organs (SLOs) and produce antibodies. 

In some cases, they can also promote formation of memory B cells [8, 9]. Common to 

the T-independent response is that antigen affinity of the antibodies and memory B cells 

produced is relatively low.  

 

Protein or peptide-containing antigens can trigger thymus-dependent (T-dependent) B 

cell responses by enabling B cells interactions and acquisition of costimulatory signals 

from cognate Th cells [10]. Activated B cells internalize antigen-bound BCRs and direct 

them to endosomes, where antigenic proteins are processed into peptides and loaded 

onto major histocompatibility complex II (MHCII) molecules. Th cells that recognize 

pMHCII/peptide complexes presented on antigen-primed B cells through their T cell 

receptor (TCR) can engage into cognate interactions and provide survival, proliferation, 

and differentiation signals to their cognate B cells [10]. Like the T-independent 

response, in T-dependent response B cells form short-lived plasma cells and memory 

cells that express immunoglobulins of low affinity towards antigen. However, T-

dependent antigens also lead to the formation of transient, microanatomical structures 

in the B cell follicles of secondary lymphoid organs (SLOs) called germinal centers 

(GCs) [10]. Within the GCs, B cells undergo a process called affinity maturation where 
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their BCRs increase in affinity overtime. They also undergo extensive class-switching – 

the process that leads to the expression of immunoglobulins of IgG, IgA, or IgE isotype 

by activated B cells. GCs give rise to high affinity, class-switched memory B cells and 

long lived plasma cells (LLPCs) that migrate to the bone marrow, the gut or mammary 

glands and that can persist for months/years secreting higher affinity antibodies [11] . 

Generation of long-term high-affinity, class-switched antibody responses is a hall-mark 

of the T-dependent humoral response. Thus, understanding how the T-dependent 

process is controlled can provide new insights into vaccine design. 

 

Complex Regulation of B cells by T cells 

T cells play a multifunctional role in orchestrating B cell responses to foreign antigen. 

Early in the response, T cells provide signals that promote B cell survival and prompt 

differentiation into plasmablasts, early memory B cells, and GC B cells [6]. Within GCs, 

T cells are required for GC B cell survival, proliferation, class-switching, affinity 

maturation and generation of effector cells. Observations made in mice and humans in 

which T cells are incapable of helping B cells have shown that the resulting immune 

response and protection from disease are significantly impaired [12-14]. At the same 

time, excessive T cell help was also found to be disadvantageous and result in 

decreased overall affinity of the foreign antibody response and the recruitment of B cells 

that harbor BCRs specific to self-antigens [15-17]. 

 

Two types of CD4+ T cells are thought to be playing the major role in promoting and 

regulating T-dependent B cell responses: follicular helper T cells (Tfh) and follicular 

regulatory T cells (Tfr). 

 

While it has been known for several decades that CD4+ T cells are required for the 

formation of productive GCs, as well as for generating antigen-specific memory and 

LLPCs, the exact Th cell subset had initially remained elusive. Interleukin (IL)-4 

producing CD4+ T cells, or Th2 cells, were a candidate subset since IL-4 can stimulate 

immunoglobulin secretion and induce isotype switching. However, mice in which CD4+ T 
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cells cannot differentiate into Th2 develop GCs and can produce T-dependent antibody 

responses [18]. In the past decade, a subset of T cells termed Tfh cells, have been 

identified as the T cell required for the T-dependent humoral response [10, 19]. Tfh cells 

differentiate from foreign antigen-specific Th cells during infection or following an 

immunization and move into the follicles of SLO to support GC responses. Functionally, 

Tfh help regulate the magnitude of the GC response, restrict the entry of low affinity 

clones into the GC, and are critical to the process of affinity maturation [10, 19-22].  

 

While Tfh have been extensively studied, until recently much less attention has been 

paid to Tfr cells. Tfr cells arise predominantly, but not exclusively, from natural Tregs 

and appear to regulate the magnitude of the GC and the humoral response, class-

switching, and antigen specificity. Together Tfh and Tfr cells play a complex and 

multifaceted role in the T-dependent humoral response.  These cells will be described 

more in detail below once the process which they influence has been outlined.   

 

Initiation of T-dependent B cell response 

Early anatomy of B cell activation 

The first steps in the initiation of T-dependent B cell response is activation of naïve B 

cells by foreign antigens. This must be followed by acquisition of help from cognate Th 

cells. The spatial-temporal dynamics of these events depends greatly on the anatomy of 

secondary lymphoid organs (SLO), the types of antigens that drain or are actively 

delivered into SLO [23], and multiple molecular cues that orchestrate movements of 

lymphocytes within secondary lymphoid organs at different stages of their activation [10, 

24].  

The lymph nodes and the white pulp of the spleen can be broadly characterized by as a 

central T zone bordered by B cell follicles with interfollicular regions (IF) between 

adjacent follicles. Within the spleen, follicles are bordered by the marginal zone (MZ) 

while within the lymph node the follicles are adjacent to the subcapsular sinus (SCS) 

which both contain specialized cells to facilitate antigen capture and presentation [24] 

(Fig 1.1). B cells have been shown to acquire antigen at these sites or in other regions 
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of the SLO, depending on the type of antigen and its’ access into SLO [25]. 

  

 

The coordinated migration of B cells following antigen-driven activation depends on the 

secretion of chemokines and other factors by stromal and other cells types of the SLO 

and several different G-protein coupled receptors (GPCRs) expressed by B cells. 

Follicular stromal cells express CXCL13, which promotes B cell localization and 

migration within the B cell follicle via CXCR5 receptor [26]. Critical to the positioning of 

B cells following their initial activation is the increased expression of the EBV-induced 

molecule 2 (EBI2) receptor [27-29]. EBI2 is responsible for the initial movement of 

activated B cells towards the back of the follicle where its ligand, 7ɑ,25-

dihydroxycholesterol (7ɑ,25-OHC), is thought to be in high concentrations [29] and 

where B cells are likely to acquire additional antigen associated with the MZ or SCS [25, 

30]. CCR7 expression then guides B cells to the border between B cell follicles and the 

T zone and interfollicular areas [24, 31], where CCR7 ligands CCL21/19 are secreted by 

Figure 1.1. Anatomy of the Lymph Node 
Adapted from http://www.cell.com/immunity/image-resource-lymphnode. Credit: Ashley Moseman 
and Ulrich von Andrian, Harvard Medical School 

http://www.cell.com/immunity/image-resource-lymphnode
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interfollicular and T zone stromal cells [26, 32]. Uniform distribution of activated B cells 

along B-T border depends on both EBI2 and CCR7 [30, 31]. Migration to these regions 

helps position B cells to receive cognate CD4+ T cell help and promote their 

participation in the T-dependent humoral immune response. Following acquisition of T 

cell help, proliferating B cells can be visualized in the back of the follicle and 

interfollicular areas where they move in an EBI2-dependent fashion and where their 

initial differentiation into plasma, memory and GC B cells is thought to take place [30, 

33]. The following movement of GC B cells to the middle of the follicle is facilitated by 

the downregulation of CCR7, loss of EBI2, and by increasingly dominant CXCR5 

signals [30, 34]. 

 

Early T/B cell interactions 

At the T/B border, cognate Th cells and activated B cells undergo long-lived interactions 

that typically are longer than 10 min with some lasting for over an hour [31]. These 

interactions are dependent on factors such as the expression of integrins [35], the 

amount of antigen presented by B cells [21], and adhesion molecules [35, 36]. 

Interestingly, intravital microscopy has also revealed that B and T cells can perform a 

series of short, sequential interactions [31, 36]. These short interactions may be 

important in increasing the activation state of the B cell by enhancing the expression of 

pro-adhesion molecules and may eventually lead to longer duration contacts. 

Stabilization of contacts between B and T cells is critical for subsequent development 

into either early effector B cells or GC B cells [36, 37].  During contacts, T cells may 

provide a number of signals to cognate B cells including, but not limited to, IL-4, IL-21, 

and CD40L which influence the expression and activation of transcription factors such 

as Bcl6, Blimp1, and IRF4 [10]. 

 

Early differentiation of activated B cells 

During early cognate interactions, B cells integrate BCR signals and the many T cell 

derived signals being provided and differentiate into early effector cells or GC B cells. 

The presence and amount of these signals seemingly enable differentiation into 
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memory cells and plasmablasts as early as 2-3 days after activation and GC B cells as 

early as 4-5 days [33, 38]. The differentiation of B cells into one of these subsets is 

dependent on inducing the expression of the mutually antagonistic master transcription 

factors Bimp1 and Bcl6 [39].  

 

Plasmablasts are early plasma cells that still retain the ability to capture and present 

antigen to T cells despite their production of high amounts of soluble antibody [40]. 

Differentiation into plasmablasts critically depends on Blimp1 (encoded by Prdm1) 

which suppresses Bcl6. CD40 signaling, which can enhance Blimp1 expression, 

increases plasmablast numbers and is dependent on the amount of antigen which a B 

cell can present to T cells [11, 40]. High affinity B cells early in the response present 

more antigen and receive more T cell help for differentiation into and proliferate as 

plasmablasts [40, 41]. Long, durable cognate interactions between B and T cells will 

expose B cells to greater amounts of cytokines like IL-21 which can enhance IRF4 

expression and activity [42]. High expression of IRF4 helps repress Bcl6, and thus 

potentiates Blimp1 expression [43].  

 

Memory B cell generation early on may require the least amount of T cell help or is a 

default differentiation pathway after BCR engagement. At the same time, CD40 

signaling has been suggested in promoting the generation of memory cells prior to GC 

formation [44].  

 

Finally, activated B cells may also differentiate into GC B cells. GC B cells express Bcl6 

and may also express low levels of IRF4 for class switching and somatic hypermutation 

[45, 46]. T cell help is indeed required for the differentiation of GC B cells and long, 

durable contacts facilitate this process [31, 36]. 

 

Germinal Centers 

GCs arise and are visible at the center of B cell follicles 4-6 days after antigen 

challenge. Within GCs, B cells undergo rapid proliferation, somatic hypermutation of 

their BCRs, and are selected based on increased affinity towards antigen [10]. GC B 
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cells that are not selected undergo rapid apoptosis. This process leads to affinity 

maturation of antibody responses critically important for generation of neutralizing 

antibodies against many pathogens and toxins.  

 

Polarization of germinal centers into light and dark zones 

Early structural observations indicated that GCs are made of two zones: the light and 

dark zones (LZ and DZ, respectively). These names derive from microscopic 

observations because the dark zone, dense in dividing GC cells with high amounts of 

chromatin, appeared dark due to their ability to block light. Comparatively, the light zone 

does not have many dividing cells and B cells are interspaced by follicular dendritic cells 

(FDCs) [47].  

 

Light zone FDCs are stromal cells that produce the chemokine CXCL13 and are 

positioned at the center of B cell follicles [48]. In contrast, the dark zone is found closer 

to the T/B border. Here, specialized stromal cells called Cxl12-expressing reticular cells 

(CRCs) produce CXCL12 [49, 50]. The polarization of the GC into two distinct regions 

appears necessary for the proper development of the humoral immune response since 

special biological processes occur within each zone [51, 52]. 

 

Within the LZ, GC B cells are thought to acquire antigen and T cell help. FDCs are 

decorated with immune complexed antigen via Fc and complement receptors and can 

internalize and store antigen for an extended period [53-55]. GC B cell clones compete 

for limited amounts of antigen and pro-survival signals displayed on FDCs [56-58]. LZ 

GC B cells present antigen to resident Tfh cells who subsequently provide survival and 

activation signals. Taken together, the B cells within the LZ are activated, both from the 

reacquisition of antigen and from Tfh cells [22, 59, 60] and are poised for proliferation 

suggesting that LZ B cells are undergoing positive selection within this region. 

Paradoxically, evidence of actively proliferating cells in the LZ is rare with only B cells 

currently in the S-phase appearing in the LZ [22, 61]. 
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In contrast to LZ B cells, B cells within the DZ are characterized as highly proliferative. 

Observations made with the proliferation antigen Ki67 revealed nearly ubiquitous 

expression of this marker within the DZ and nearly universal uptake of thymidine 

analogs such as BrdU [61, 62]. In contrast to the LZ, B cells that are currently in the 

G2/M phase of cell division are significantly enriched in the DZ [22, 61]. During division, 

activation-induced cytidine deaminase (AID), which deaminates cytidine residues in the 

BCR genes randomly and enables class switching to different immunoglobulin genes 

(IgG, IgA, etc.), is active [10, 63]. B cells in the DZ do not share a similar gene profile to 

that seen in the LZ, most notably BCR and CD40 signaling profiles are absent [22, 60]. 

Consistent with this observation is the relative lack of T follicular helper cells and FDC-

laden antigen in the region. Together, this data implicates that the DZ is largely a region 

within the GC that supports proliferation, somatic hypermutation (SHM), and class 

switch recombination. 

 

Interzonal migration 

The division of labor suggests that B cells must travel between each zone before 

undergoing either proliferation or selection. Original observations suggested GC B cells 

first start in the DZ, move to the LZ, and then are either selected to become effector B 

cells or undergo apoptosis [7, 64]. However, this model does not account for the 

increase in affinity of antigen-specific antibodies observed in the serum nor the 

evolution of the DNA sequences obtained from B cell clones within the GC [65-67]. In 

contrast, three independent groups were able to observe that B cells shuttle and recycle 

between each zone [61, 62, 68]. Building on these studies one group observed that 

while nearly 50% of the B cells in the DZ moved to the LZ, only 10% moved from the LZ 

to DZ indicating only a relatively small number of cells are selected to continue 

participating in the GC [22]. Movement between the two zones appeared to be 

dependent on the surface expression of the chemokine receptor CXCR4. GC B cells 

that upregulate CXCR4 are thought to move to its ligand CXCL12, secreted by a 

resident reticular cell within the DZ [49, 50, 61, 69].  These observations provide strong 

evidence that antigen specific B cells within the GC are not restricted to one zone nor 
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do they progress in a linear fashion but instead undergo recycling following certain 

selective cues. 

 

The division of labor within the GC and interzonal migration appears to play an 

important role in proper humoral responses. While migration to the DZ is not required 

for the biological events that occur within that region, fewer mutations accumulate and 

thus proper SHM is not maintained in CXCR4-deficient GC B cells [69]. FOXO1 appears 

to be a critical transcription factor that promotes the ‘DZ B cell transcriptional program’. 

B cells that FOXO1 can still form GCs but there is no apparent polarization of the GC. 

SHM still occurs, but the proper selection of high affinity clones is not maintained [51, 

52]. These data suggest that selection and proliferation might be segregated to maintain 

development of high affinity B cell clones. 

 

Model of selection and cell fate decisions 

Within an individual GC, B cell clones compete both inter- and intra-clonally for limited 

resources. A critical factor for selection is the relative affinity of each clone for antigen 

within the same GC [21, 67, 70, 71]. Within the GC, competition for limited amounts of 

resources could be derived from two sources: antigen or Tfh help. In the antigen driven 

scenario, B cells would compete solely for antigen found on the FDCs. Higher affinity B 

cells would acquire more antigen through their BCR than lower affinity cells, have 

stronger BCR-mediated signaling, and go on to proliferate following the acquisition of T 

cell help. However, BCR signaling may be partially repressed in GC compared to naive 

B cells [72]. Additionally, this model would also suggest that the amount of T cell help is 

not limiting. Alternatively, Tfh help could represent the limiting resource in the GC. GC B 

cells would still compete for antigen from FDCs but the BCR would primarily mediate 

internalization of antigen. Higher affinity B cells would acquire, process, and finally load 

more antigen onto surface MHC than lower affinity cells. T cells would then provide 

stronger survival and differential cues to B cells that express the highest amount of 

peptide-MHC. Consistent with that the second model, increased T cell numbers can 

increase the size of the GC [16, 73] and T cells are the limiting factor for a variety of 

vaccine development efforts [74, 75]. Additionally, evidence for T cell mediated 
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selection has been provided using antigen targeted to GC B cells in a BCR-independent 

manner [21, 22, 76, 77]. In these experiments, GC B cells that presented more antigen 

for T cells outcompeted those that presented less antigen to Th cells [76, 77]. Together 

these findings strongly suggest that T cell help may be the limiting in GC B cell 

selection. However, whether BCR engagement may also contribute to GC selection in a 

BCR signaling-dependent fashion is unclear. 

 

Selection into the plasma cell fate 

In addition to being selected to continue developing within the GC, B cells may also be 

selected to differentiate into plasma cells that then persist for long periods of time in the 

bone marrow or the gut and secrete high affinity antibodies. The differentiation into 

LLPCs seems to depend strongly on the affinity of the B cell as plasma cells harvested 

from the bone marrow are all high affinity [78]. Like the models proposed above for 

selection, it is not entirely understood whether high amounts of BCR cross-linking in 

addition to T cell help contributes to the recruitment of high affinity GC B cells into the 

plasma cell compartment. However, strong evidence suggests that Tfh cells play a 

fundamental role in driving PC generation from GC B cells.  

 

Selection into memory B cells 

In contrast to plasma cells, GC B cells that differentiate into memory B cells do not 

seem to have an obvious distinguishing characteristic. The default pathway of GC B 

cells is to undergo apoptosis which they can be rescued from by successfully competing 

for limited amounts of survival signals [10]. While high affinity cells are either selected to 

become plasma cells or re-enter into the DZ following selection, moderate to low affinity 

clones are thought to either die or receive adequate signals to overcome apoptosis. 

Memory B cells may derive from populations of cells that receive ‘just enough’ signals to 

overcome apoptosis. Indeed, blocking apoptosis enhances memory B cell formation 

[79]. Disruption of the ability to receive T cell help through CD40 does not have an effect 

on memory cell formation after GCs are formed [80]. Indeed, GC-derived memory B 

cells’ development inversely correlates with the ability to receive T cell help [59]. 

Additionally, in experimental conditions where proper affinity maturation of a select GC 
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B cell population is disrupted, the generation of memory B cells is increased [69]. 

Confounding the study of memory B cells derived from the GC is that no reliable 

markers can differentiate them from memory B cells that arise prior to the GC [80]. 

Together, the decision to choose memory cell fate over apoptosis or reentry into the GC 

remains poorly understood but may be the default pathway for GC B cells that do not 

receive enough positive signals to either renter the DZ or differentiate into plasma cells. 

 

Follicular helper T cells 

Differentiation of Tfh cells  

The current paradigm of T cell differentiation suggests that specific transcription factors, 

or so called ‘master transcription factors,’ orchestrate the unique transcriptional profiles 

observed in each effector T cell lineage. Through observations of CXCR5+ T cells, 

multiple groups in 2009 identified that Bcl6, a powerful transcriptional repressor, was 

required for the development of T follicular helper cells [39, 81, 82]. Bcl6 directly 

represses the transcription factor Blimp1, which is high in other T cell lineages but is 

detrimental to the development of Tfh cells. By binding to the enhancer and promoter 

regions of various genes, Bcl6 drives expression of CXCR5 and multiple other factors 

that determine unique characteristics of Tfh cells. Forced expression of Bcl6 is sufficient 

to promote development of Tfh-like phenotype in CD4+ T cells [39].  

 

The stable expression of Bcl6 in T cells appears to depend on three signals. First, T 

cells undergoing priming by dendritic cells must receive strong T cell receptor signaling 

and CD28 stimulation that promotes the initial expression of Bcl6 [83, 84]. Secondly, T 

cells must receive IL-6 and IL-21 STAT1- and, to a lesser extent, STAT3- dependent 

signaling for continued expression of Bcl6 [85]. And finally, presentation of ICOSL on 

antigen-presenting cells and its recognition by ICOS on T cells is responsible for 

stabilization of Bcl6 expression, expression of CXCR5, and inhibition of Blimp1 [39, 86, 

87]. Intimate contact between differentiating T cells and APCs mediated by the SLAM-

associated protein, SAP, is also required [36]. 
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Suggested three stages of Tfh cell development 

Development of primed T cells into Tfh cells is a multistep process that can be arbitrarily 

divided into Pre-Tfh, Follicular Tfh and GC Tfh stages based on their anatomical 

location and expression levels of Bcl6, PD1 and CXCR5. Pre-Tfh cells express 

moderate levels of Bcl6, CXCR5, and high levels of EBI2 and can be visualized along 

the T-B border and interfollicular areas of SLO [33, 88-90]. While Bcl6pos antigen-

specific Th cells may be detected by FACS as early as 24 hours after immunization [33, 

85, 88], arrival of pre-Tfh cells at the T-B border often isn’t observed until 2-3 days 

following immunization [31, 33]. Follicular Tfh cells typically have higher expression 

levels CXCR5, PD-1 and ICOS compared to pre-Tfh cells, have decreased expression 

of CCR7 and EBI2, and can be found in the follicles at 2-4 days following immunization 

[33]. Of note, in addition to the developing Tfh cells that are migrating towards GCs in 

primary responses, memory Tfh cells also have a CXCR5int PD-1int surface staining 

phenotype [91]. Tfh cells that enter GCs express the highest amounts of Bcl6, CXCR5 

and PD-1 [89].  They begin seeding the GCs along with GC B cells around 3-5 days 

following immunization [33]. GC Tfh cells express S1PR2 receptor, which helps retain 

them within sphingosine -1-phosphate-low GCs in the primary immune responses [91, 

92]. Interestingly, in secondary responses, GC Tfh cells confinement within a single 

GCs is reduced and they can migrate between different GC-containing follicles [91, 93].  

 

Within GCs Tfh cells appear to undergo further development. Early on, GC Tfh cells 

predominately express IL-21 and can be found proximal to GC B cells that are mutating. 

As the response progresses, GC Tfh upregulate CD40L and production of IL-4 (and 

IFN-γ), decrease production of IL-21, and can be found more associated with GC B 

cells within the light zone [94-96]. These GC Tfh cells have functional differences in that 

IL-21+ GC Tfh cells support affinity maturation while IL-4+ GC Tfh are more tuned to 

induce class switching and plasma cell generation [95]. 
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Tfh cell derived signals important for selection of high-affinity GC B cells and generation 

of memory and plasma cells 

The signals which are provided by Tfh to GC B cells predominantly include the 

cytokines IL-21, IL-4, IFNγ and surface receptors such as CD40L. These signals are 

important for survival, class-switching, continued affinity maturation and differentiation of 

GC B cells. Within the GCs, IL-21 reinforces expression of Bcl6 and is required for 

optimal affinity maturation [95, 97]. IL-4 promotes GC B cell proliferation, survival [98, 

99], and the generation of plasma cells [95]. IL-4 and IFN also promote GC B cell 

class-switching to IgG1 and IgG2a and IgG3 isotypes, respectively [100, 101]. CD40L-

induced signaling has a critical role in maintaining GC responses and is required to 

support GC B cell survival [102], affinity maturation [100], and formation of memory and 

plasma cells [103, 104]. Strong CD40 signaling in B cells blocks Bcl6 expression and 

induces Blimp1 [19, 105-107]. Interestingly, rapid delivery of preformed CD40L 

molecules to the Tfh cell surface is dependent on the extensive GC B cell-Tfh cell 

contacts and ICOS signaling [108]. It is during these interactions when GC B cells are 

thought to integrate all Tfh cell-derived signals that ultimately dictate GC B cell fate. 

 

Tfh cell contacts with B cells within GCs 

GC B cell selection and differentiation depends on their direct interactions with cognate 

Tfh cells. Productive interactions between B and T cells require over 5 minutes of 

contact time to ‘scan’ presented pMHCII/peptides, generate an immunological synapse 

and directionally release cytokines to the target cell [109-112]. Therefore, prolonged 

cognate interactions between GC B cells and Tfh cells are thought to be important for 

selection and differentiation of GC B cells, as well as maintenance of GC Tfh cells [35, 

36, 113]. 

 

While prolonged interactions between cognate B and T cells at the B/T border are 

common, the dynamics of GC B cells and Tfh cell interactions is very different. GC Tfh 

make many short contacts with few lasting longer than 5 minutes [61]. It is believed that 

GC Tfh cells are constantly scanning GC B cells looking for where activating signals are 

the highest relative to other B cells within their immediate vicinity [61, 108, 114]. While 
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serial, short interactions with cognate GC B cells may be important for the de novo 

synthesis of GC Tfh-derived, pro-GC B cell molecules or for delivery of pre-formed 

molecules [108, 115, 116] or for the maintenance of the GC Tfh phenotype [33, 87, 

115], long duration interactions are capable of inducing a feed-forward loop that strongly 

promotes T cell polarization towards the B cell, delivery of cytokines, and the 

reorganization of co-stimulatory and B cell survival and differentiation molecules [108, 

110-112, 114, 117]. In this model, the amount of antigen to which B cells can display for 

T cell help would directly influence whether a long or short duration interaction would 

occur and directly affect GC B cell fate. 

 

Control of Tfh cells numbers and specificity of the GC response 

Tfh cells play a critical role in selecting and tuning B cells that participate in the humoral 

immune response. Early models proposed that the processes that occurred within GCs 

(affinity maturation, clonal diversification, and selection) were controlled by resident GC 

T cells and that they were the limiting factor within the GC [7]. These models predicted 

that by increasing the amount of help available to B cells, lower affinity clones or clones 

not specific towards the challenging antigen could receive enough T cell help to persist 

within the GC or differentiate into memory or plasma cells. 

 

Consistent with this model, excessive formation of Tfh cells has been shown to lead to 

the generation of spontaneous GCs, production of autoantibodies and development of 

autoimmunity as in the case of the sanroque mouse model [16, 118]. The sanroque 

mutation affects the RNA-binding protein Roquin, a protein that promotes degradation of 

multiple mRNAs including that of Icos and IFN[119]. Sanroque mice express higher 

levels of ICOS and IFN ultimately leading to increased Tfh generation, dysregulated 

GC responses and development of autoimmunity [15, 16, 119]. Other mouse models of 

autoimmunity also show increased formation of Tfh such as the BXSB-Yaa and 

MPL/Faslpr model [31, 120]. In humans, several reports have found that circulating 

CXCR5+ CD4+ T cells are significantly elevated in patients with autoimmune diseases 

such as systemic lupus erythematosus, Grave’s disease, and rheumatoid arthritis [121-

123]. While other factors may contribute to the development of autoimmune diseases, 
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increased numbers of Tfh cells and/or their activity correlate closely with disease. Thus, 

control over Tfh numbers and/or their specificity is believed to be important in 

preventing autoimmune responses. 

 

Follicular regulatory T cells 

It has been recognized for some time that in addition to Tfh and GC B cells, Tregs are 

also present within B cell follicles and GCs [124, 125]. However, whether these follicular 

Tregs were different from conventional Tregs and how they contributed towards 

protection against autoimmunity, particularly to antibody-based autoimmune diseases, 

was unknown. Recent work has begun to elucidate the role of Tfr cells in B cell 

responses.  

 

Differentiation of Tfr 

Tregs are known to co-opt similar transcription factor networks as non-regulatory CD4+ 

effector cells [126]. Like Tfh cells, the differentiation of Tfr cells from Tregs depend on 

Bcl6 which, along with NFAT2, upregulates CXCR5 and enables them to enter the 

follicles [127-131]. However, unlike Tfh cells, the effector function of Tregs depends on 

the expression of Blimp1 and Tfr cells paradoxically express both Bcl6 and Blimp1 [127, 

132]. Finally, Tfr cells express the T regulatory master transcription factor Foxp3 [127-

129, 133]. 

 

The differentiation of Tfr cells occurs in response to a wide range of antigen and 

immunizing conditions [127, 129, 134, 135] and is dependent on DCs [134]. High levels 

of TCR signaling can induce the expansion or differentiation of Tfr cells since in mice 

that lack inhibitory PTEN, Tfr numbers are increased [136]. This would suggest that 

Tregs see cognate antigen being presented by APCs and/or B cells. Consistent with 

that, Tfr cells are more clonal a population than Tregs [137]. Tfr cells do not develop in 

mice that lack B cells, which could indicate that they depend on B cell interactions for 

full differentiation [138]. Like Tfh cells, Tfr cells depend on the molecules CD28, ICOS, 

and SAP for their differentiation. CD28 appears to play a critical role in proliferation and 

differentiation of Tfr cells [127, 134, 139]. ICOS-deficient mice are defective in their 
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development of Tfr cells. Finally, SAP appears critical in their differentiation since SAP-

deficient Tregs do not generate Tfr cells [127]. 

 

The kinetics of Tfr differentiation is like that of Tfh helpers although with some key 

differences. While Tfr cells can always be detected within the follicles, and at a much 

higher frequency than Tfh cells, they are more prevalent following immunization. While 

initially thought to parallel Tfh cell differentiation, albeit at a reduced frequency, and then 

slowly decline as the GC wanes [127], our recent work has detailed their kinetics more 

closely [96]. Tfr appear to initially undergo a burst of differentiation prior to the 

establishment of a GC and prior to the appearance of Tfh cells. This is then followed by 

either a small decline or leveling of Tfr cells at the peak of the GC response and then a 

maintenance during the collapse of the GC. 

 

Although Tfr cells express Foxp3 [127-129, 137], Foxp3+ CD4+ cells can either be 

derived from the thymus or induced in the periphery. Thymically-derived Tregs, or 

natural Tregs, have specificity to self-proteins while those induced in the periphery 

typically are specific to foreign antigen [140]. Most work has shown that Tfr cells 

express markers of thymically-derived Tregs and are not specific to foreign antigen 

[127, 128, 132]. However, one publication has found that under exceptional 

immunization conditions, Tfr cells can be induced from non-Foxp3-expressing cells that 

are specific towards foreign antigen. However, these foreign antigen-specific Tfr cells 

only represent a small fraction of the total Tfr population. Interestingly, Tfr cells’ TCR 

usage also indicates that they do not undergo a polyclonal expansion to the same 

extent that Tfh cells do, suggesting that there is no dominant antigen to which Tfr cells 

are responding against [137]. Whether specific clones always arise or are dependent on 

the type of antigen, adjuvant, or site of immunization has not been addressed. 

 

Because Tfr cells can suppress the humoral immune response, their own development 

must be controlled as to allow normal, antigen-specific responses to generate high 

affinity, high titer antibodies. Two molecules that limit the differentiation of Tfr cells are 

PD-1 and CTLA-4. PD-1 expression by Tregs has been shown to limit the expansion or 
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differentiation of Tfr cells following immunization [134]. PD-1 blocks Tfr cell 

differentiation by interacting with PD-L1, but not PD-L2, on antigen presenting cells 

(APCs). However, whether PD-1 and PD-L1 are responsible for curtailing initial Tfr cell 

differentiation by DCs or inhibiting their full differentiation or maintenance is not known. 

CTLA-4 is an inhibitory receptor that binds to CD80 and CD86 and attenuates immune 

responses by competing with CD28 [17]. While Tfr cells use CTLA-4 as an effector 

molecule (as discussed below), their differentiation is also limited by its expression. 

CTLA-4 deletion in Treg cells enhances the generation of Tfr cells following 

immunization [141, 142]. This may be because of enhanced expression of pro-Tfr cell 

signals and the increase in expression of ICOS on Tregs when CTLA-4 is deleted [142]. 

 

Functions of Tfr cells 

The function of Tfr cells in suppressing the T dependent humoral immune response was 

initially shown to affect a multitude of factors including the numbers of Tfh and GC B 

cells, antigen-specific antibody production, and differentiation of plasma cells [127-129, 

134, 138]. Furthermore, they appear to affect the appearance of certain isotypes of 

antibody, notably IgE and IgA [141, 142]. Studies that looked for autoantibody 

production found that in a pristine-induced model of autoimmunity, they could control 

the development of pathogenic anti-dsDNA antibodies [131]. 

 

Tfr cellular and molecular mechanisms of action 

T regulatory cells have a myriad of cellular targets including antigen presenting cells 

and effector T cells [142-144]. The ability to target both types of cells lends to their 

ability to effectively shut down immune responses. However, since the GC is highly 

interdependent on continued cross-talk between GC B cells and GC Tfh cells for its 

maintenance and maturation, determining specifically what and how Tfr cells exert 

control in vivo is complicated. It has been suggested that Tfr cells can control either Tfh 

cell numbers, the cytokines Tfh cells secrete, or directly repress GC B cells [127, 131, 

143].  
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Tfr cells may exert control directly on GC Tfh cells. Evidence for this largely comes from 

ex vivo experiments that showed Tfr cells could suppress T cell proliferation, 

differentiation, and diminish T cell help to B cells [127, 134, 138, 141, 142]. In vivo, early 

work suggested that depletion of Tregs, once GCs were established (8 days post 

immunization), lead to an increase in Tfh cells but not GC B cells [127]. However, when 

Tfr were specifically depleted, both Tfh and GC B cell numbers increased significantly 

[127]. This may be explained because total Treg depletion might favor increased 

generation of Tfh cells that support non-antigen specific GC B cells and thus, even 

though there are increased numbers of Tfh cells, they cannot properly support the 

foreign antigen-specific GC population. In contrast, when Tfr cells are depleted, the 

brakes are taken off antigen-specific Tfh cells that can provide enhanced, cognate help 

to GC B cells. 

 

Tfr cells may also directly influence cytokine secretion by Tfh cells. In vitro analysis with 

co-cultures of B cells and Tfh cells found that Tfr could suppress IFN, IL-10, IL-21, and 

TNF- in Tfh cells [138]. The suppression of IFN, IL-10 and IL-21 was further 

confirmed using an in vivo system for the deletion of Tfr cells [131]. That IL-10 and IL-21 

are increased following the removal of Tfr cells in Tfh cells is not too surprising given 

that both cytokines have roles that affect B cell survival, proliferation, differentiation, and 

affect selection and isotype switching [95, 97, 145, 146]. The increase in these 

cytokines may in part explain why GCs and plasma cell numbers are increased and the 

affinity, amount and type of antibody being produced would change. 

 

Tfr cells may also act to deprive GC B cells of Tfh-derived signals. For instance, PD-1 

signaling in Tfh cells results in IL-4 and IL-21 production [20]. However, it is also found 

on Tfr cells and could compete with Tfh cells for PD-L1 ligands on GC B cells. 

Paradoxically, PD-1-deficeint Tfr cells are more suppressive both ex vivo and in vivo 

which could be explained by the possibility of enhanced TCR activation signals in Tfr 

cells [134, 147]. Tfr cell CTLA-4 may also potentially interfere with Tfh - B cells 

communication by downregulating or competing for CD80/86 on B cells [141, 142]. 
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Finally, Tfr may also act directly on GC B cells. Ex vivo, B cells cultured with Tfr cells 

and then subsequently activated do not proliferate or differentiate as much as 

unsuppressed B cells. The suppressed B cells showed significant differences in their 

metabolic pathways such as glycolysis suggesting that Tfr can act directly on B cells 

[143]. However, whether direct inhibition of GC B cells by Tfr cells occurs in vivo is not 

known. It is also unclear which factors may promote this inhibition and whether it 

depends on cognate recognition of self-antigens presented by GC B cells.  

 

Control of B and CD8+ T cell response by proinflammatory chemokines 

Previous studies suggested that proinflammatory chemokines may play a role in 

regulating T-dependent B cell responses through regulatory T cells. They have also 

been shown to influence CD8+ T cell response. In the section below, I will detail when B 

cells express proinflammatory cytokines, implicate that undifferentiated Tregs respond 

to these cytokines, and discuss some of the known roles that these cytokines have 

been shown to play in regulating T cell and APC interactions. 

 

Production of CCL3/4 by activated murine and human B cell subsets 

Chemokines are important factors that mediate the immune response through 

processes such as chemotaxis, inflammation, and development. B cells activated 

directly through their BCR can upregulate the production of several chemokines [148].  

Notably, the proinflammatory cytokines CCL3 and CCL4 (MIP1-α and MIP1-β, 

respectively) are upregulated in both mouse and human B cells following antigen 

receptor cross-linking [148, 149]. Strong BCR crosslinking in human GC B cells also 

results in upregulated production of CCL3/4 in vitro [149]. Freshly isolated GC B cells 

contain gene signatures that are enriched for genes downstream of BCR signaling 

suggesting that GC B cells may also upregulate CCL3 and CCL4 [22]. Indeed, analysis 

of microarrays of either LZ or DZ GC B cells reveals that LZ GC B cells are relatively 

enriched for CCL3 and CCL4 transcripts [150, 151]. 
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Chemokine receptors that can respond to CCL3 and CCL4 

Chemokines exert their pleiotropic effects through their binding of G-protein coupled 

receptors. CCL3 binds to the chemokine receptors CCR1 and CCR5 while CCL4 binds 

to CCR5 [152]. Binding of CCL3 or CCL4 to either CCR1 or CCR5 induces a signaling 

cascade that induces the reorganization of actin and facilitates formation of lamellipodia 

[153]. In this way, CCL3 and CCL4 can promote CCR5-mediated chemotaxis and/or 

probing behavior. Rapid sensitization to these chemokines often occurs through the 

endocytosis of receptors [154]. 

 

In addition to the known chemotactic receptors CCR1 and CCR5, both CCL3 and CCL4 

can bind to the chemokine scavenging receptor D6 [155]. D6 is a decoy receptor that 

acts as a chemokine sink since it has no known chemotaxis or signaling properties. 

 

Tregs can respond to CCL4 ex vivo and regulates GC responses in vivo. 

CCL4 was identified in 2001 as being able to exert control over the humoral immune 

response [148]. Ex vivo, CD25+ CD4+ T cells were found to migrate to activated B cell 

supernatant, as well as purified CCL4, but not CCL3 chemokine and could suppress B 

cell blasting [148]. Neutralization of CCL4 in unimmunized mice induced spontaneous 

formation of GCs. Moreover, it induced rapid generation of antinuclear antibodies [148]. 

Based on that study, it was hypothesized that CCL4 may be important for maintenance 

of B cell tolerance through attraction of Tregs to the activated B cells. However, this 

hypothesis has not been further tested or verified by intravital imaging. 

 

CCL3/4 and CCR5 in controlling T cell – APC interactions. 

In contrast to the mechanism of CCL3 or CCL4 action in T-B cell interactions, the role 

that these chemokines play in antigen priming of T cells by DCs is more understood. 

Similarly to activated B cells, activated DCs can secrete CCL3 and CCL4 after provision 

of help from antigen specific CD4 T cells. Under very specific conditions, immunization 

induces CCR5 expression in CD8+ T cells prior to antigen recognition [156]. Intravital 

imaging suggested that CCL3 and CCL4 promote chemokinesis of CD8+ T cells to DCs 

that enables more efficient scanning of the cells providing the “find me” signal. 
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Additionally, APC-derived CCL3 and CCL4 and T cell CCR5 may promote enhanced 

synapse formation, polarization in T cells, and activation [157, 158]. Thus, CCL3 and 

CCL4 may play various roles in promoting efficient interactions between T cells and 

APCs in vivo and enable complete activation of CD8+ T cells. 

 

Treg control of Th cell dynamics and responses in vivo 

Given that CCL3 and CCL4 play an important role in locating cells to sites of ongoing 

priming and contributes to synapse formation, and therefore activation, it stands to be 

reasoned that specific control of these chemokines can affect the outcome of the 

immune response. Early imaging studies of Tregs and Th cells found that Tregs could 

limit the time self-reactive T cells spent in contact with antigen presenting cells [159, 

160]. Importantly, based on the imaging of Tregs or Th cells and APCs it was suggested 

that Tregs could act directly on APCs [160]. Tregs engaged with APCs may influence 

many processes. One specific pathway that Tregs seem to influence in APCs is the 

production of CCL3 and CCL4 [161-163]. Loss of control of CCL3 and CCL4 (and 

CCL5) in APCs by Tregs leads to increased CD8+ T cell and DC interactions and results 

in a marked decrease in the avidity of the immune response [163].  

 

Scope of dissertation 

In the past decade, significant work has been made towards understanding the 

regulation of T-dependent humoral responses. These works have highlighted the roles 

of both Tfh cells and Tfr cells in promoting and controlling GC B cells and their 

selection. Progress has been made in understanding the development, physiological 

effects, and molecular mechanisms that both Tfh and Tfr cells utilize for their control of 

the humoral immune response [127, 129, 131, 134, 135, 137, 138, 141-143, 164]. 

Considering these developments, several new and exciting questions related to the 

control of the humoral immune response remain to be answered.  
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Can follicular T cells respond to CCL3/4 chemokines secreted by GC B cells and modify 

T-dependent responses? 

Since the initial implication that proinflammatory chemokines produced by B cells could 

control their responses through suppressive T cells, our understanding of the cells and 

molecules that govern the humoral responses has grown considerably. However, no 

study has further sought to characterize specifically the role of proinflammatory 

chemokines in the humoral response nor examine if CCL3/4 cytokines produced by GC 

B cells influence the dynamics of their interactions with either T follicular regulatory or T 

follicular helper cells. One of the main focuses of my thesis work has addressed 

whether CCL3 chemokine promotes T follicular regulatory cells response and influences 

the T-dependent immune response. 

 

Do changes in follicular T cells influence the recruitment of new B cells into ongoing GC 

responses? 

Follicular T cells have clearly been demonstrated to play a role in permitting entry and 

participation of B cells within the GC [21, 22, 77]. It has been shown that GCs can be 

seeded by 50-200 total B cell clones [67, 165]. Newly arriving and recently activated B 

cells can enter pre-existing GCs, provided they can effectively compete against other 

GC B cells for Tfh cell help [21, 70]. The quality of help provided by Tfh cells changes 

throughout the course of the GC as does the quantity of Tfh and Tfr cells [95, 96]. 

However, whether changes in quality and quantity of follicular T cells associated with 

the phase of the GC (i.e. early, peak, contraction) influences the recruitment of recently 

activated B cells has not been addressed. My thesis work, in part, has been to address 

how the temporal changes in follicular T cells can regulate B cell responses. 

 

Understanding Tfr cells’ effect on B cell participation both into and within the GC 

furthers our knowledge on mechanisms that shape vaccine responses and prevent 

autoimmune diseases. My thesis work has provided new insights into Tfr mediated 

control of the T-dependent humoral response. 
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Chapter 2 - CCL3 production by germinal center B cells promotes 
their direct sampling by follicular regulatory T cells and control

 
 

Abstract 

 

Previous studies and our findings suggest upregulated expression of proinflammatory 

chemokines CCL3/4 in GC centrocytes. However, the role of CCL3/4 for centrocyte 

interactions with follicular T cells and regulation of humoral immunity is poorly 

understood. We found that B cell intrinsic production of CCL3 is required for control of 

GC B cell expansion and is important for restricted development of class-switched anti-

nuclear antibodies. We also determined that follicular regulatory T cells (Tfr) respond to 

CCL3 chemokine ex vivo and interact more frequently with WT compared to CCL3-

deficient GC B cells in vivo in a CCR5 receptor-dependent fashion. Our findings suggest 

that CCL3 secreted by B cells promotes their direct interactions and control by Tfr cells 

and plays a role in the elimination of potentially self-reactive B cell clones.  

 

Introduction 

 

A hallmark of adaptive humoral immunity is the germinal center (GC) reaction. GCs are 

the primary site of antigen-dependent clonal expansion, immunoglobulin diversification, 

and affinity maturation. This set of coordinated processes ultimately leads to the 

generation of memory cells and long-lived plasma cells that secrete high-affinity 

antibodies and is dependent on follicular T cells [10]. Despite the wealth of studies 

dissecting the chemotactic cues that organize GCs [28, 166, 167], it is unclear whether 

additional factors enable efficient sampling of GC B cells by follicular T cells. 
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CCL3 and CCL4 (MIP1- and MIP1-) are proinflammatory chemokines that are 

secreted by various types of immune cells upon activation and play important roles in 

inflammatory responses and multiple other processes [168, 169]. In B cell cultures with 

naïve, memory or GC B cells, the cross-linking of B cell receptors (BCRs) upregulates 

expression and secretion of CCL3/4 [148, 149]. In addition, analysis of published GC 

microarray data suggests that expression of CCL3/4 may be elevated in GC centrocytes 

compared to centroblasts [60, 150, 151]. Despite multiple indications that CCL3/4 is 

secreted by activated and GC B cells, the significance of B-cell intrinsic production of 

proinflammatory chemokines for regulation of humoral response is unclear. 

 

In 2001 Bystry et al. demonstrated that treatment of unimmunized mice with anti-CCL4 

antibodies (Abs) leads to rapid development of GCs and generation of autoantibodies, 

mirroring the effects observed in mice deficient or depleted of regulatory T cells (Tregs) 

[170]. In addition, the study showed that a subset of splenic CD4 T cells that were 

CD25high, expressed high levels of TGF-β and CTLA-4, and had a suppressive 

phenotype ex vivo, can migrate to CCL4 (but not CCL3) in transwell assays. The 

observed transmigration of suppressive T cells was attributed to CCR5, the primary G-

protein coupled receptor for CCL3 and CCL4 [148]. The above observations raised the 

possibility that CCL4 may promote Tregs’ interactions with activated B cells or dendritic 

cells (that also produce CCL3/4) to regulate B cell responses. However, whether more 

recently identified subsets of follicular resident Tregs can respond to CCL3 or CCL4 has 

been unclear [125, 127, 129, 171]. 

 

Follicular regulatory T cells (Tfr) are a subset of FoxP3pos Tregs that play a role in the 

control of GC responses. While majority of Tfr cells arise from natural Tregs, some can 

be induced from foreign antigen-specific Th cells [135]. Similarly to follicular helper T 

cells (Tfh), Tfr cells develop in the secondary lymphoid organs following foreign antigen 

challenge, express the transcription factor Bcl6, upregulate surface expression of 

CXCR5, PD1 and Icos receptors, and localize to the follicles and the GCs [127-129]. 

However, while Tfh cells are required for the support of GC responses, Tfr cells 

negatively control GCs. In some studies, deficiency in Tfr cells has been reported to 
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induce a 1.5 to 2-fold increase in GC size and/or lead to a modest increase in foreign 

antigen-specific antibody response [127-129]. Other studies suggested that Tfr 

deficiency affects Tfh cell class-switching [131, 134, 142] increases recruitment of non-

foreign antigen-specific B cell clones into GCs [127, 131] and development of self-

reactive antibodies [131]. While multiple mechanisms of Tfr cells action have been 

suggested based on the in vivo and ex vivo studies [125, 134, 141-143, 170]. Whether 

in vivo Tfr cells only regulate Tfh cells and thus indirectly control GC responses or can 

also act on the GC B cells directly remains an open-ended question.   

 

Here we investigated the role of B cell-intrinsic production of CCL3 in the regulation of 

GC responses. Based on the 2-photon imaging of murine lymph nodes we found that 

production of CCL3 by GC B cells promotes their efficient sampling by Tfr cells in a 

CCR5 receptor-dependent fashion. Consistent with an important role of CCL3 in 

mediating GC-Tfr cells interactions, we found that immunized CCL3 deficient mice 

developed about 1.5-fold increase in GC responses compared to WT mice. Our data 

also suggests that B cell deficiency in CCL3 can lead to decreased control over anti-

nuclear B cell clones. Based on these data we suggest that CCL3 secretion by B cells is 

required for direct Tfr cell-mediated control of both foreign antigen-specific GC B cells 

as well as potentially self-reactive B cell clones.  

 

Materials and methods 

 

Mice, immunizations, and bone marrow chimeras. C57BL/6 (B6, WT) mice were 

purchased from the National Cancer Institute, Charles River or Jackson Laboratories. 

B6-CD45.1 (002014), CCL3-KO (002676), CCR5-KO (005427), β-actin-CFP (004218), 

UBC-GFP (004353), Stop-tdTomato (0079009) and E2a-Cre (003724) mice were from 

Jackson Laboratories.  HyHEL10 [61], MD4 [172], OTII [173], Foxp3EGFP, and Foxp3DTR 

mice were from internal colonies. All mice were housed in specific-pathogen free 

conditions.  Relevant mice were interbred to obtain HyHEL10 CFP+, HyHEL10 GFP+ 

CCL3-KO, OTII GFP+, OTII tdTomato+, MD4 CFP+, tdTomato+ Foxp3EGFP and 

tdTomato+ Foxp3EGFP CCR5-KO mice. 6-12 weeks old mice were immunized either s.c. 
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or i.p. with the protein antigens OVA (Sigma), DEL-OVA (produced as previously 

described [61]), or NP-KLH (Biosearch Technologies), mixed in either Ribi (Sigma) or 

Complete Freund Adjuvant (CFA, Sigma). [WT/WT  WT] and [CCL3/WT  WT] mixed 

bone marrow chimeras were generated by reconstitution of irradiated with a single dose 

of 960 rads B6 mice with 50:50% bone marrow cells from B6:B6-CD45.1 or CCL3-

KO:B6-CD45.1 mice. Chimeric mice were s.c. immunized with OVA in CFA at 8-10 

weeks after the BM reconstitution. All experiments were performed in compliance with 

federal laws and institutional guidelines as approved by the University Committee on 

Use and Care of Animals.  

 

Cell isolation, flow cytometry analysis and cell sorting. Lymphocytes were isolated by 

homogenizing lymph nodes (LNs) and/or spleens into a single cell suspension in DMEM 

medium (Corning) containing 2% fetal bovine serum (FBS, Atlanta Biologicals), 

antibiotics (50 IU/mL of penicillin and 50 µg/mL of streptomycin; Gibco) and 10 mM 

HEPES (Gibco) and straining through a 70 µm mesh filter (Falcon) in the presence of 20 

µg/ml of DNase I (Sigma-Aldrich). Red blood cells were lysed using Tris-buffered 

NH4Cl. The following antibodies and reagents were used for flow cytometry analysis: 

CD3 (BD, 145-2C11), CD4 (BD, RM4-5), CD8 (BD, 53-6.7), CD25 (BD, PC61.5), B220 

(BD, RA3-6B2), CD19 (BD, 1D3), CXCR5 (BD, 2G8), Fas (BD, Jo2), IgM (BD, R6-60.2), 

IgMa (BD, DS-1), Vβ5 (Biolegend, 6D5), CD45.1 (Biolegend, A20), CD45.2 (Biolegend, 

104), IgD (Biolegend, 11-26c.2a), PD-1 (Biolegend, RMP1-30), CXCR4 (eBiosciences, 

2B11), CD86 (Biolegend, GL1), Foxp3 (eBiosciences, FJK-16s), GL-7 (eBiosciences, 

GL-7), SA-qDot607 (Life Technologies), SA-DyLight 488 (Biolegend). Single-cell 

suspensions were incubated with biotinylated antibodies for 20 minutes on ice, washed 

twice with 200 µl OBS supplemented with 2% FBS, 1 mM EDTA, and 0.1% NaN3 (FACS 

buffer), and then incubated with fluorophore-conjugated antibodies and streptavidin for 

20 minutes on ice, and washed twice more with 200 µl FACS buffer. For Foxp3 staining, 

the cells were permeabilized and stained using Foxp3 staining buffer (eBioscience) 

according to the manufactures instructions. Cells were then resuspended in FACS 

buffer for acquisition. Lymphocyte apoptosis analysis was measured with AnnexinV-

FITC Apoptosis Detection Kit (Affymetrix) according to the manufacturers protocol. All 



28 
 

flow cytometry analyses and cell-sorting procedures were done using FACSCanto II and 

FACSAria IIIu, respectively. FlowJo Software (v 9.7, TreeStar) was used for data 

analyses and plot rendering. 

 

Cell purification and adoptive transfers. For adoptive transfers, cells were isolated from 

combined spleens and LNs of donor mice and CD4 T cells or B cells were enriched 

using autoMACS (Miltenyi Biotec) as described before [61]. The purity of B cells was 

>95%, and CD4 T cells >70% for all experiments. Lymphocytes were adoptively 

transferred by intravenous injection into the lateral tail vein. 

 

Generation of mice with Tregs and Tfr cells expressing tdTomato. In order to generate 

mice with fluorescent Tregs the following scheme was utilized: first, tdTomato 

expressing mice were crossed with Foxp3EGFP mice. tdTomato+ Foxp3EGFP mice were 

also crossed to CCR5-KO mice. Second, tdTomato+Foxp3EGFP or tdTomato+ Foxp3EGFP 

CCR5-/- Tregs were sorted and adoptively transferred into Foxp3DTR mice where 

endogenous Tregs were transiently ablated by DTx treatment (Sigma). To sort 

tdTomato expressing Tregs, the LNs and spleens from the tdTomato+Foxp3EGFP or 

tdTomato+ Foxp3EGFP CCR5-KO mice were combined and lymphocyte suspension was 

prepared as described above. The lymphocytes were separated from RBCs using 

Ficoll-Paque (GE Healthcare) gradients per manufacturer’s instructions using 14 mL 

round bottom tubes (Falcon). Single cell suspensions were enriched for CD4+ T cells as 

described above. Following the enrichment, EGFP+ cells were sorted into DMEM 

medium supplemented with 10% FCS. The purity of sorted Tregs as determined by 

intracellular Foxp3 staining was > 99%. About 0.8-1.5 million of purified tdTomato+ 

Tregs were then transferred into recipient Foxp3DTR mice via tail vein injection. Finally, 

one day later the endogenous nonfluorescent Tregs in the recipient Foxp3DTR mice were 

ablated by intraperitoneal injection of 5 µg/kg of DTx in PBS. The DTx treatment was 

repeated once more a week later.  

 

Cell culture and chemotaxis. Transwells with 5 µm pore size (Corning) were used. CD4 

T cells were isolated and enriched as described above from draining peripheral LNs of 
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mice s.c. immunized with OVA in Ribi at 10 days following immunization. T cells were 

resuspended with RPMI 1640 (Corning) supplemented with 2% fatty acid free BSA 

(Sigma-Aldrich), 10 mM HEPES, 50 IU/mL of penicillin, and 50 mg/mL of streptomycin 

(HyClone). For chemotaxis analysis, the lower chambers of transwells were filled with 

the same medium mixed with various concentrations of CCL3 or CCL4 chemokines 

(PeproTech). For chemokinesis analysis both upper and lower chambers of transwells 

were filled with either 200 ng/mL of CCL3 or with 400 ng/mL CCL4. Transwells with 

chemokines and resuspended CD4 T cells were incubated at 37ºC and 5% CO2 for 10 

minutes. After that, CD4 T cells were placed in the upper chambers of transwells at 

4x105 cells per well and incubated at 37ºC and 5% CO2 for 3 hours. Two to three 

replicas per condition have been performed per experiment. The transmigrated fraction 

of cells was stained and analyzed via flow cytometry. Chemotactic index was calculated 

as the ratio of cells that transmigrated to chemokine compared to no cytokine control. 

 

Enzyme-linked immunosorbent assay. For measuring NP-specific Abs, NUNC 

immunoplates were coated with 2 μg/ml of NP8-BSA or NP41-BSA (Biosearch) in 

borate saline buffer (100mM boric acid, pH 7.4, 0.9% NaCl). For measuring total titers of 

IgA, IgG1, IgG2b and IgG2c, plates were coated with 4 μg/ml of purified goat anti-

mouse Ig (H+L) (Southern Biotech, cat #1010-01). Blocking was done with PBS 

containing 0.1% gelatin and 0.1% sodium azide. Washes were done with PBS 

containing 0.05% Tween-20. Serial serum dilutions were applied. For detection of IgA, 

IgG1, IgG2b and IgE, the plates were incubated with 1:4000 dilution of biotinylated 

mouse anti-mouse IgA, IgG1, rat anti-mouse IgG2b, and rat anti-mouse IgE (BD 

Biosciences, clones C10-1, 10.9, R12-3, and R35-72) respectively followed by 

streptavidin-HRP (R&D). The color was developed using a substrate solution from R&D 

(DY999). For detection of IgG2c the plates were incubated with AP-conjugated goat 

anti-mouse IgG2c Abs (Southern Biotech, cat #1079-04) and visualized by incubating 

with nitrophenyl phosphate (Sigma) in carbonate buffer (22mM Sodium carbonate, 34 

mM sodium bicarbonate, 2.1 mM MgCl2). Plates were read with a Synergy HT 

microplate reader (Bio-Tek Incorporated) at 405 and 562 nm. All plates contained serial 
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dilutions of the serum that was used to generate the calibration curve for quantitative 

comparison of the samples. 

 

Immunofluorescence and Hep2 Staining. Freshly isolated lymph nodes were fixed in 1% 

PFA for 1 hour at room temperature, washed with PBS three times, and stored at 4ºC in 

30% sucrose solution overnight. Fixed samples were then transferred to OCT (Tissue-

Tek) and snapfrozen.  30 µm thick sections were cut via cryostat (Leica). The sections 

were dried at room temperature for 3 hours. They were then blocked using normal 

rabbit serum (Sigma-Aldrich) and endogenous biotin was blocked via a Biotin Blocking 

Kit (Vector) and then stained with rat anti-CD35 (BD, 8C12) Abs overnight followed by 

PE-conjugated anti-rat antibodies (Santa Cruz Biotechnology) for 1 hour. Slides were 

then stained with anti-Foxp3-biotin (eBiosciences, FJK-16s) Abs overnight. The next 

day, streptavidin conjugated Alexa647 (Life Technologies), anti-CD4-PE-TexasRed 

(BD, RM4-5), and anti-IgD-FITC (Biolegend, 11-26c.2a) Abs were added for 1 hour. 

Slides were then mounted in fluoromount-G (Southern Biotech) and analyzed via 

confocal microscopy with Leica SP5 II (Leica Microsystems). For Hep2 staining, serum 

was diluted to a concentration of 1:40 before being applied to Hep2 slides (Antibodies 

Incorporated). After a 30-minute incubation, serum was washed off three times and 

FITC-conjugated anti-mouse IgM or IgG was added with 300 nM of DAPI. The slides 

were then mounted with fluoromount-G and imaged on a Leica SP5 II. 

 

Two Photon Microscopy. Inguinal LNs (ILNs) were either explanted or surgically 

exposed for intravital imaging and perfused as previously described [61, 174]. ILNs 

were imaged with a Leica SP5 II (Leica Microsystems) fitted with a MaiTai Ti: Sapphire 

laser (Spectra-Physics) that was tuned to 870 nm. Each xy plane spanned 435µm x 

435µm and with z spacing ranging from 2-3 µm detecting emission wavelengths of 430-

450 nm (second harmonic emission of collagen), 465-500 nm (for CFP+ cells), 520-550 

nm (for GFP+ cells), and >560 nm (for tdTomato+ cells), every 20-25 seconds. Images 

were acquired by Leica Advanced Fluorescent Suite (Leica Microsystems). Analysis of 

the imaging data and generation of 3D rotations and time-lapse image sequences were 

performed using Imaris 7.6.5 x64 (Bitplane). Videos were processed with a median 
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noise filter. Semi-automated cell tracking in 3D was performed with Imaris 7.6.5 x64, 

and then verified and corrected manually. 3-dimensional GC volume was defined based 

on the distribution of HyHEL10 CFP B cells by combination of visual analysis and a 

custom-made MATLAB program that performed time integrated image rendering of CFP 

signal. TdTomato+ Tregs and Th that transited within the follicles and GCs were tracked. 

Their interaction with WT and CCL3-KO B cells within defined GCs volume were 

visually identified and categorized either as a strict contact as defined when cell-to-cell 

contact was unambiguous or a non-strict contact where cells could be observed in 

extreme proximity (~1µm). Finally, we normalized the number of contacts to the average 

number of WT or CCL3-KO B cells within the GC volume accessible to Tfr or Tfh cells to 

arrive at a normalized contact frequency. Annotation and final compilation of videos was 

performed in Adobe After Effects CS5.5 (Adobe). 

 

RT-PCR Analysis. RNA from sorted cells was obtained using RNeasy Kit (Qiagen) 

following the manufacturer’s instructions. RNA was treated with DNase to remove 

genomic DNA (Ambion). The concentration of RNA was calculated using a NanoDrop 

2000 (Thermo) and cDNA was synthesized using a SuperScript III kit (Invitrogen) 

following the manufacturer’s instructions. Preamplification of target genes was 

performed using PreAmp Kit (AB Biosystems) for 10 cycles. TaqMan assays were 

obtained from Applied Biosystems and RT-PCR was carried out on a RealPlex 2 

(Eppendorf). Expression levels of CCL3/4/5 were normalized to the level of β2m. 

 

Statistical analysis. Statistical analysis of data normalized to the control samples were 

performed using a one-sample t-test. For comparisons between two groups two-sample 

t-test was utilized. Welch’s correction was applied for data with unequal variances. For 

data in which more than two groups or more than two time points were analyzed, two-

way ANOVA followed by Dunnet or Bonferonni post-hoc analysis was done. In cases 

where we did not assume normally distributed data and the data was from paired 

measurements, we used the Wilcoxon signed-rank test. Two investigators 

independently categorized ANA staining and significance was then tested by 2 with 

trend test. All statistical tests were computed with PRISM (GraphPad) after consultation 
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with a University of Michigan Center for Statistical Consultation and Research 

representative. P values of less than 0.05 were considered statistically significant. Only 

statistically significant results were labeled. No samples were excluded from the 

analysis. 

 
Results 

 

GC centrocytes upregulate expression of CCL3, CCL4 and CCL5  

 

Figure 2.1: Centrocytes express proinflammatory chemokines 
A-D, Relative expression of proinflammatory chemokines in GC centroblasts (CB) and centrocytes 
(CC) compared to non-GC B cells (FASlow GL7low). Cells were sorted from peripheral LNs (pLNs) of 
mice at 10 days post s.c. immunization with 50 µg OVA in Ribi. A, Representative flow cytometry 
plots displaying the gating strategy for cell sorting. B-D, Relative expression of Ccl3 (B), Ccl4 (C), 
and Ccl5 (D) mRNA from cells sorted as shown in (A) and measured by quantitative RT-PCR. 
Chemokine CT values were normalized to β2m CT. Ccl3-5 expression in GC B cells was then 
normalized to non-GC B cells. Bars represent mean ± SEM. Data represent n=3 independent 
experiments, 5 mice total. *, P<0.05, two-tailed Student’s t-test with Welch’s correction. 
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To verify expression of Ccl3, -4, and -5 in murine GC B cells, we performed qPCR 

analysis of GC centroblasts, centrocytes and naive B cells sorted from the draining 

lymph nodes (LNs) of immunized mice at 10 days post immunization (d.p.i) (Fig 2.1A 

1A).  We found that expression of CCL3/4/5 is upregulated in murine GC centrocytes 

compared to centroblasts (Fig 2.1B-D). 

 

Increased GC response in CCL3-KO mice 

 

To determine if CCL3 plays a role in the regulation of GCs, we utilized CCL3-KO mice 

[175]. In unimmunized CCL3-KO and WT mice, we found no significant difference in the 

GC B cells numbers in peripheral lymph nodes (pLNs), spleens, mesenteric LNs (mLNs) 

and payer patches (PP) (Fig. 2.2A). However, upon immunization we detected a small, 

but significant increase in the GC response in CCL3-KO mice compared to WT that was 

independent of the antigen or the adjuvant used (Fig. 2.2B-E). We then tested whether 

in littermate-control CCL3-KO mice GCs were also elevated, and confirmed the 

previously observed phenotype (Fig. 2.2F, G). Additionally, we detected a trend towards 

increased numbers of GC B cells in immunized CCR5-KO mice (Fig. 2.2C). The 

observed accumulation of GC B cells was not due to a decreased clearance of 

apoptotic GC B cells in CCL3-KO, since the fractions of apoptotic and dead GC cells in 

immunized WT and CCL3-KO mice remained comparable (Fig. 2.2H-J). We also 

observed a small trend towards increased formation of plasmablasts in the pLNs of 

immunized CCL3-KO mice, but it was not statistically significant (Fig. 2.2K, L). 

 

To determine whether the observed increase in the GC response in CCL3-KO mice was 

due to overexpansion of foreign-Ag specific GC B cell clones, we examined the number 

of NP-binding cells within the GCs of mice immunized with NP-KLH in Ribi at 10 d.p.i. 

While the frequency of the NP+ B cells within the GC was similar between WT and 

CCL3-KO mice (Fig. 2.2M), their frequency relative to total lymphocytes was increased 

in CCL3-KO mice compared to WT counterparts (Fig. 2.2N, see inset). Despite of that 

small increase, no significant differences in the titers of high- or low-affinity NP-specific 

IgG1 antibodies (NP8, and NP41, correspondingly) was detected in the serum of CCL3-
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KO vs. WT mice (Fig. 2.2O, P). Overall, these results are consistent with modest 

overexpansion of foreign antigen-specific GC B cells, but not plasma cells, in the 

immunized CCL3-KO mice at 10 d.p.i.  

 

Figure 2.2 Increased GC response in CCL3-KO mice following immunization. 
A-G, Flow cytometry analysis of the GC B cells (Fashigh GL7high IgDlow) as a fraction of total B cells 
(A-D, F) or total lymphocytes (E, G) in WT, CCL3-KO, and CCR5-KO mice. A, Analysis of GCs in 
peripheral LNs (pLNs: inguinal, brachial and axillary LNs combined), spleens, mesenteric LNs 
(MLNs), and Peyer’s Patches (PP) from unimmunized mice. B-G, Analysis of GCs in the antigen-
draining pLNs from mice subcutaneously (s.c.) immunized with 50 µg of 4-Hydroxy-3-nitrophenyl 
(NP) acetyl-hapten conjugated to Keyhole limpet hemocyanin (KLH) in Ribi adjuvant (B) or 50 µg of 
OVA in Complete Fruend’s Adjuvant (CFA) (C) or 50 µg OVA in Ribi (D-G) at 10 d.p.i.  
Legend continues next page. 
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Immunization induces anti-nuclear antibody (ANA) response in CCL3-KO mice 
and in mice transferred with CCL3 deficient B cells  
 

We next asked whether over-expanded GC B cells in the CCL3-KO mice may contain 

anti-nuclear B cell clones. The presence of ANA in the serum of NP-KLH immunized 

WT and CCL3-KO mice was addressed by Hep2 staining (Fig. 2.3A) [176]. While little 

anti-nuclear staining of Hep2 slides was observed for serum from unimmunized mice, 

the presence of IgG ANA was detected in most CCL3-KO but in few WT animals at 15 

and 28 d.p.i. (Fig. 2.3B). We also found increased formation of ANA in the littermate 

control CCL3-KO compared to WT mice (Fig. 2.3C). Of note, majority of ANA from 

CCL3-KO mice exhibited non-homogenous nucleoplasmic patterns of Hep2 staining, 

while others were specific to nuclear membranes (Fig. 2.3A). Interestingly, immunized 

CCL3-KO mice had an increase in the titers of total IgG2c and IgA, but not other 

antibody isotypes in the serum of CCL3-KO mice at 28 d.p.i (Fig. 2.3D-H).  

 

To determine whether the observed generation of ANA is dependent on B cell-intrinsic 

chemokine production, we transferred 35 million of purified WT or CCL3-KO B cells into 

CCL3+/+ MD4 mice (with over 95% of B cells specific to Hen Egg Lysozyme) [172], 

which were then immunized with NP-KLH in Ribi and analyzed as described above. 

While only one out of thirteen MD4 mice receiving WT B cells had ANA, half of MD4 

Figure 2.2 cont. 
F, G, Verified in littermate-control mice. Each symbol represents one mouse. Bars represent mean. 
Data are derived from 2 or 3 independent experiments. *, P<0.05, Student’s t-test (two-sided in B-E, 
one-sided in F, G, with Dunnet’s correction in C). H-J, Flow cytometry analysis depicting apoptotic 
(Annexin V+  PI-, H, I) and dead (Annexin V+  PI+, H, J) GC B cells from draining pLNs of mice 
immunized as in D. K, L, Flow cytometry analysis of the plasma cells (PC) in pLNs of littermate-
control WT and CCL3-KO mice at 10 d.p.i. with 50 ug of OVA in Ribi. PC gating strategy (K) and 
fraction of total lymphocytes (L). Each dot represents a single mouse and bars indicate mean from 2 
independent experiments. Two-tailed Student’s t-test. M-P Analysis of NP-specific GC responses (in 
M, N) and antibody responses (in O, P) from mice immunized with 50 µg of NP-KLH in Ribi s.c. M, N, 
Flow cytometry analysis of NP-specific GC B cells as a fraction of total GC B cells (M) or total 
lymphocytes (N) at 10 d.p.i. Each dot represents a single mouse and bars indicate mean from 3 
independent experiments while the inlet depicts the mean of each individual experiment. *, P<0.05, 
two-tailed paired t-test. O, P, ELISA of NP-specific IgG1 titers that have high affinity (NP8-bidning) (O) 
and overall affinity (NP41-binding) (P) to NP. Relative titers were determined using serial dilutions and 
a calibration curve from control serum. Each point represents the mean ± SEM. Data are derived from 
2 independent experiments with 2-4 mice of each genotype per experiment. 
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mice that received CCL3-KO B cells generated robust ANA response following 

immunization (Fig. 2.3I). 

Figure 2.3. Generation of ANA responses in CCL3-KO mice following 
immunization. 
A-H, Analysis of serum from WT and CCL3-KO mice s.c. immunized with 50 µg of NP-KLH in Ribi 
and boosted with the same dose of antigen in Ribi on day 24. A-C Analysis of anti-nuclear IgG 
antibodies in mouse serum by HEP2 staining. The staining was categorized into negative, dim 
positive, or positive nuclear staining. A, Representative staining examples. Scale bar – 15 µm. B, 
Data summary for n=15 WT and 14 CCL3-KO mice. 
Legend continues next page. 
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To summarize, the above analysis suggests that B cell-intrinsic production of CCL3 is 

required for control over ANA development upon immunization.  

 

CCL3 and CCL4 induces chemotaxis of regulatory T cells ex vivo 

 

Based on the elevated expression of CCL3 and CCL4 in GC centrocytes, the observed 

dysregulation in GC and ANA responses in CCL3-KO mice and previously reported 

responsiveness of an unidentified subset of splenic Tregs to CCL4 chemokine ex vivo 

[148], we hypothesized that Tfr cells that localize to GCs may respond to CCL3 as well 

as CCL4 chemokines. To determine whether CCL3 and CCL4 can induce chemotaxis of 

Tfr cells ex vivo we performed transwell migration analysis of CD4 T cells isolated from 

pLNs of mice at 10 d.p.i. with OVA in Ribi. CXCR5high PD1high FoxP3+ Tfr cells 

transmigrated in response to CCL3 chemokine (Fig. 2.4A, B). Similar trends were 

observed for CXCR5low PD1low FoxP3+ and CXCR5int PD1int FoxP3+ cells (Fig. 2.4A, B). 

We also observed transmigration of Tfr and other regulatory T cell subsets to CCL4 

(Fig. 2.4C). The observed transmigration was predominantly due to chemotaxis rather 

than chemokinesis, since addition of CCL3 or CCL4 chemokines to both the upper and 

the lower wells of the transwell chamber did not promote Tregs’ transmigration (Fig. 

2.4B, C). While we also observed a slightly increased transmigration of Tfh cells 

(CXCR5high PD1high FoxP3–) to CCL3 and CCL4 chemokines in the transwell assays, the 

trend was not significant (Fig. 2.4D, E). These data suggest that CCL3 and CCL4 can 

induce chemotaxis of Tfr and possibly other Treg cells ex vivo.  

 

Figure 2.3. cont. 
C, Analysis of anti-nuclear IgG antibodies development in the initially ANA-negative littermate-control 
WT and CCL3-KO mice at 28 d.p.i. Data represents 4 independent experiments. *, P<0.05. **, 
P<0.005. χ2 test. D-H, Titers of total IgG1 (D), IgG2b (E), IgE (F), and IgG2c (G) on day 28 from mice in 
B and IgA (H) from mice in C. Relative titers were determined using serial dilutions and a calibration 
curve from control serum. Data represents 2 independent experiments with 2-4 mice of each 
genotype per experiment for D-G and 3 independent experiments with 3-5 mice of each genotype for 
H. *, P<0.05. **, P<0.005, two-tailed Student’s t- test. I, MD4 recipient mice received 35x106 B cells 
purified from WT or CCL3-KO mice and were immediately immunized s.c. and i.p. with a total of 100 
µg of NP-KLH in Ribi. Mice were boosted with the same dose of Ag in Ribi on day 24. Serum was 
collected and tested for Hep2 reactivity as described in A. Data represents 3 independent 
experiments with n=13 WT and 15 CCL3–/– B cell recipients. *, P<0.05. χ2 test. 
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Figure 2.4. Chemotaxis of Tfr cells to CCL3 and CCL4 ex vivo. 
A-E, Ex vivo transwell assay of CD4+ T cells purified from draining pLNs of WT mice at 10 d.p.i. with 
100 µg OVA in Ribi and analyzed by flow cytometry using the gating strategy as in (A). 
Transmigration of CXCR5highPD1high (Fol., black bars), CXCR5intPDint (Int., grey bars), or 
CXCR5lowPD1low (Low, white bars) CD4pos CD8neg B220 neg cell populations that also express Foxp3 
(B, C) or were FoxP3 neg (D, E) were measured against CCL3 (B, D) and CCL4 (C, E). The 
chemokines were added either to the lower chambers of transwells for analysis of chemotaxis or to 
both the upper and the lower chambers for analysis of chemokinesis. Chemotactic index was 
calculated as the ratio of cells that transmigrated towards the chemokine vs. no chemokine control 
(dashed red line). Chemotaxis and chemokinesis data are derived from 3 and 2 independent 
experiments correspondingly with 2 mice per experiment. Bars represent mean ± SEM, *, P<0.05, 
two-tailed, one-sample Student’s t-test (compared to 1). 
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CCL3 does not recruit Tfr cells into the GC light zone. 

Our observations that CCL3 promotes Tfr cells chemotaxis ex vivo and is required for 

control over GC response in vivo led us to ask whether CCL3 produced by GC 

centrocytes recruits Tfr cells from the follicles into the GCs. If this hypothesis is correct, 

the frequency of Tfr cells in the GC light zone should be reduced in CCL3-KO mice 

compared to WT mice. To test this, we analyzed the density of Tfr as well as Tfh cells in 

the GCs (both in the light and the dark zones) and in the follicles of the draining LNs 

from immunized CCL3–KO and WT mice. Fixed LNs were sectioned and stained with 

fluorescently conjugated antibodies towards IgD, CD35, CD4, and FoxP3 and analyzed 

by confocal microscopy (Fig. 2.5A-C). Interestingly, in WT mice, CD4+ FoxP3+ Tfr cells 

were enriched in the follicles compared to the GCs, while CD4+ FoxP3- Tfh cells were 

more abundant in GCs light zone than in the follicle and the dark zone (Fig. 2.5C, D, F). 

In contrast to the expected decrease in Tfr cell frequency within the GC light zone of 

CCL3-KO mice, the density and recruitment index of Tfr cells in the light zones of CCL3-

KO and WT mice were comparable (Fig. 2.5D, E). However, the recruitment index 

calculated for Tfr access into the GC dark zone relative to the follicle was higher for 

CCL3-KO mice (Fig. 2.5E). Similar results were found for Tfh cells (Fig. 2.5F, G).  

Based on this data we conclude that CCL3 is not required for Tfr or Tfh cells’ 

recruitment into the GC light zone from the follicles, but may play a role in limiting 

access of follicular T cells to the GC dark zone. 
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Adoptively transferred Tregs can become Tfr cells and be visualized by 2P 

microscopy 

Since we found that CCL3 is not required for Tfr cells’ access into the GCs, we then 

asked whether CCL3 could promote individual interactions of Tfr cells with GC B cells in 

vivo. To directly test this, we developed an imaging strategy that enabled visualization 

of adoptively transferred Tregs within the GC-containing follicles of living mice using 2-

photon (2P) microscopy (Fig. 2.6A). Because intravenous injection of Tregs is 

insufficient to get enough of the transferred Tregs into pLNs for microscopy analysis, we 

utilized the fact that adoptively transferred Tregs undergo proliferation in recipient 

FoxP3DTR mice upon DTx-induced ablation of DTR-expressing resident Tregs [177]. Of 

Figure 2.5. CCL3 does not recruit Tfr or Tfh cells into the GC’s light zone. 
Immunofluorescent analysis of Tfr and Tfh cells localization in the GCs and follicles of draining pLNs 
from WT or CCL3-KO mice at 10 d.p.i. with 50 µg OVA in Ribi. A-C, Representative example of a 
confocal image of pLN section and its analysis. A, Confocal image of GC-containing 10 mm thick 
section of pLN from WT mouse, stained with antibodies against IgD (white), CD35 (blue), CD4 (green) 
and anti-Foxp3 (red). B, Magnified image from the inset (in A) that illustrates how Tfr (CD4+Foxp3+) 
and Tfh (CD4+Foxp3–) cells were identified. C, Reconstruction of GC light zone (blue area), dark zone 
(black area), follicle (white area), Tfr (red circles) and Tfh cells (green circles) within the confocal 
image shown in (A) using manually defined surfaces in Imaris software. Scale bars  50 mm in the A, 
C and 10 mm in B. D-G Quantitative analysis of Tfr (D-E) and Tfh (F-G) densities in the GCs and the 
follicles. D, Density of Tfr in GC dark zone (DZ), light zone (LZ) and follicles around GCs calculated as 
the number of Tfr in each zone normalized to the total area of that zone. E, Recruitment index 
calculated as the density of Tfr in GC DZ or LZ normalized to their density in the GC-containing 
follicle. F, Quantitative analysis as in D for Tfh. G, Quantitative analysis as in E for Tfh.  D-G, Each 
symbol represents a distinct GC. For each GC, three unique z-positions were analyzed and data was 
averaged. Data is compiled from n=3 independent experiments with 4 mice per genotype total. Bars 
represent mean. *, P<0.05, two-tailed Student’s t-test. 
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note, while treatment of FoxP3DTR mice with DTx leads to development of severe 

autoimmune disease, pre-transfer of 106 polyclonal Tregs rescues FoxP3DTR mice from 

autoimmunity [177]. To generate mice with a high number of brightly fluorescent Tfr 

cells, we first transferred 106 polyclonal Tregs that expressed both Foxp3-GFP and 

tdTomato into Foxp3DTR mice [177, 178]. We then treated the Foxp3DTR recipients with 5 

µg of diphtheria toxin (DTx) 2 times, one weeks apart. As reported before, following 

transient ablation of Foxp3DTR Tregs, the adoptively transferred Tregs as well as the 

remaining endogenous Tregs underwent vigorous proliferation. At 14 days following the 

initial DTx treatment, tdTomato Tregs represented about 50% of all Tregs in the blood 

(Fig. 2.6B). We then co-transferred CCL3+/+ HyHEL10 B cells expressing cyan 

fluorescent protein (CFP), ovalbumin (OVA) specific OTII CD4 T cells expressing green 

fluorescent protein (GFP), as well as non-fluorescent HyHEL10 B and OTII T cells into 

the same recipient mice and induced their recruitment into the GCs by s.c. immunization 

with duck egg lysozyme conjugated to OVA (DEL-OVA) as previously described [61]. By 

8 d.p.i. the overall levels of Tregs in the blood had returned to normal (Fig. 2.6B). Based 

on confocal and flow cytometry analysis we determined that over a fifth of CD4+Foxp3+ 

cells from draining lymph nodes expressed tdTomato and that tdTomato+ cells were 

almost exclusively Foxp3+ (Fig. 2.6C, D). Additionally, tdTomato+ Foxp3+ cells that were 

also CXCR5high PD1high had increased expression of Bcl6+ as expected for Tfr cells (Fig. 

2.6C). In agreement with the enrichment of Tfr cells in the follicles relative to the GCs 

suggested by confocal analysis (Fig. 2.5C-E) we observed that at 7-8 d.p.i. a relatively 

minor fraction of GC-proximal Tfr cells entered into the GCs, while majority of the cells 

moved around GCs in proximity to the outer edge GC B cells (Fig. 2.6E, Movie S1). This 

data suggests that the adoptive transfer of fluorescent Tregs followed by transient 

ablation of non-fluorescent endogenous Tregs and immunization is sufficient to visualize 

Tfr cells within GC-associated follicles in living mice by 2P microscopy.  

https://drive.google.com/open?id=0B3QRBxBriBxvYjZ5WmNIVGFnREU
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Figure 2.6. 2P visualization of Tfr cells. 
A, Experimental diagram for generation of recipient mice with large numbers of highly fluorescent 
tdTomato+ Tregs and visualization of Tfr and GC B cells in the pLNs by 2P microscopy (See also 
Materials and Methods). B, Flow cytometry analysis of the endogenous and transferred TdTomato+ 
Treg numbers in the blood of FoxP3DTR mice throughout their treatments with DTx and immunization, 
performed as indicated in (A). C-E, Analysis of inguinal LNs from mice generated through the 
procedure described in (A) at 8 d.p.i. C, Representative flow cytometry analysis of Bcl6 expression in 
the CXCR5lowPD1low and CXCR5hiPD1hi subsets of TdTomato+ Tregs (top panels), endogenous Tregs 
(middle panels) and endogenous Th cells (bottom panels). D, Confocal immunofluorescence analysis 
of inguinal LN sections for the fraction of TdTomato+ cells that express Foxp3 (left bars) and fraction 
of Foxp3+ cells that express TdTomato+ (right bars) in GC-containing follicles. E, Representative 2P 
imaging analysis of Tfr cells localization with respect to GCs. A snapshot (left panel) from an intravital 
imaging experiment as analyzed in Imaris software (see also Movie S1). Tfr cells (red) and GCs 
containing CFP HyHEL10 B cells (cyan) and GFP OTII Tfh cells (green). Cell trajectory analysis for 
Tfr cells (middle panel) and both Tfr cells and GC B cells (right panel). Scale bars 40 µm. 
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GC B cells’ CCL3 promotes their contacts with Tfr, but not Tfh cells in a CCR5 

receptor-dependent way 

 

To determine whether GC B cell’s intrinsic production of CCL3 promotes their direct 

interactions with CCR5 proficient or deficient Tfr cells or with Tfh cells in vivo we utilized 

the experimental setup developed by us (Fig. 2.6) and in the previous work [61] and 

outlined in Figs. 2.7A and B. For analysis of T cell interactions with CCL3+/+ and CCL3-/- 

GC B cells, recipient mice were cotransferred with CCL3+/+ HyHEL10 B cells that 

expressed CFP and CCL3-/- HyHEL10 B cells that expressed GFP. To determine Tfr 

cells’ interactions with GC B cells we tracked TdTomato+ Tfr cells when they contacted 

or passed through the GCs, and analyzed their interactions with fluorescent CCL3+/+ 

and CCL3-/- foreign antigen-specific HyHEL10 B cells within the same GCs (Fig. 2.7C, 

Movie S2). To take into account the ambiguity of correct identification of B-T cell 

interactions by 2P imaging, we used both “strict” and “non-strict” definitions of contacts 

between GC B cells and follicular T cells. By “strict” we define the interactions that 

based on the cell colocalization analysis in 3D have taken place with high confidence. 

By “non-strict” interactions we identify all likely interactions identified based on cell 

proximity, including the “strict” interactions. The data was analyzed in a blinded fashion 

to avoid possible bias in cell contact definition (Fig. 2.7D, Movie S3). We calculated the 

normalized contact frequency of Tfr cells with fluorescent CCL3+/+ and CCL3-/- GC B 

cells by dividing the total number of Tfr cell contacts with CCL3+/+ or CCL3-/- GC B cells 

by the average numbers of fluorescent B cells of each type present in the imaged GCs. 

Tfr cells’ normalized contact frequency was lower for CCL3-/- compared to CCL3+/+ GC B 

cells in 5 experiments, independently of the “strict” vs “non-strict” B-Tfr cell contact 

definition (Fig. 2.7E, F). The differences in Tfr cell contact frequencies with CCL3+/+ and 

CCL3-/- GC B cells were not due to distinct migratory properties of CCL3+/+ and CCL3-/- 

B cells (Fig. 2.7O-R). In contrast to WT Tregs, CCR5-KO Treg contact frequency with 

CCL3+/+ and CCL3-/- GC B cells was not significantly different (Fig. 2.7E, F). These 

findings are consistent with a dominant role of CCR5 receptor on Tfr cells for sensing 

CCL3. Of note, duration of Tfr cell interactions with CCL3+/+ and CCL3-/- GC B cells was 

not significantly different (Fig. 2.7G, H).  

https://drive.google.com/open?id=0B3QRBxBriBxvQlYtSDBNVHFKbTQ
https://drive.google.com/open?id=0B3QRBxBriBxvVF9LZ1RpMHpKN1k
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Figure 2.7. Tfr cells make less frequent contacts with CCL3-KO B cells in GCs 
Legend on the following page. 
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In contrast to Tfr cells, OTII Tfh cell contact frequency with CCL3+/+ vs. CCL3-/- GC B 

was comparable (Fig. 2.7I, J, left panels). The ratio of T cells’ contact frequency with 

CCL3+/+ vs. CCL3-/- GC B cells was slightly but significantly lower for Tfh compared to 

Tfr cells (Fig. 2.7I, J, right panels). No significant difference in the duration of Tfh cell 

contacts with CCL3+/+ vs. CCL3-/- GC B cells was observed (Fig. 2.7K, L).  

 

The vast majority of Tfr and Tfh cell contacts with GC B cells were shorter than 5 min 

(Fig. 2.7K-N). However, while substantial number of both Tfh and Tfr cells also formed 

Figure 2.7. Tfr cells make less frequent contacts with CCL3-KO B cells in GCs 
(Previous Page) 
2P imaging analysis of Tfr and Tfh cells contacts with CCL3-/- and CCL3-/- GC B cells in the pLNs of 

mice at 8 d.p.i. A, B, Experimental diagrams for imaging GC B cell-Tfr cell interactions (A) and GC B 
cell-Tfh cell interactions (B). C, A snapshot (left panel) and cell trajectory analysis (right panel) from 
an intravital imaging experiment (see also Movie S2) performed at 8 d.p.i. as described in A. Scale 
bars - 50 mm. Left panel, Tfr cells (red), CFP HyHEL10 (cyan) and GFP CCL3–/–  HyHEL10 (green) 
GC B cells, auto-fluorescent cells (orange). Right panel, Tracks of Tfr cells (purple), CFP (blue) and 

GFP CCL3-/- (green) HyHEL10 GC B cells. D, Time-lapse images of Tfr cells (red) interacting 

with CCL3+/+ (cyan) or CCL3–/–  (green) HyHEL10 B cells within GCs. Cell contacts were verified in 3D 
space and classified as Strict (definitive contacts, top three examples) and Non Strict (possible 
contacts, bottom two examples) (see also Movie S3). Defined contacts between Tfr and B cells are 
indicated by white arrows. Yellow star illustrates example of pseudopod extension by a Tfr cell 
towards CFP GC B cell. Images are displayed as 20 µm z-stacks.  Scale bars - 5 mm. E-R, 
Quantitative analysis of CCL3+/+ CFP (blue circles) and CCL3–/– GFP (green circles) HyHEL10 GC B 
cell migration (O-R) and interactions with Tfr cells (E-L) or Tfh cells (I-L). Closed symbols represent 
intravital and opened symbols indicate explanted pLNs imaging. Data from 5 independent 
experiments (5 mice) per T cell type and genotype. E, F, Normalized contact frequency (NCF) for 
Strict (E) and Non Strict (F) interactions of WT or CCR5–/– Tfr cells with CCL3+/+ and CCL3–/–

 HyHEL10 B cells within defined volume of GCs normalized to the average number of HyHEL10 cells 
of each genotype. Linked symbols correspond to GC B cells in the same movie. (*, P<0.05, Wilcoxon 
matched-pairs test.) G, H, Contact duration between Tfr and HyHEL10 B cells of each genotype 
undergoing Strict (G) or Non Strict (H) interactions. Red lines represent the medians.  I, J, Left: 
NCF for Strict (I) and Non Strict (J) interactions of Tfr (also shown in E, F) and Tfh cells 

with CCL3+/+ or CCL3-/- HyHEL10 B cells calculated and analyzed as in E, F. Right: Ratio of the 

Tfr (also shown in E, F) and Tfh cell NCF with CCL3+/+ over CCL3-/- HyHEL10 B cells from the same 

movie. (*, P<0.05, Student’s t-test.)  K, L, Contact duration between Tfr (as in G and H) or Tfh cells 
with HyHEL10 B cells of each genotype undergoing Strict (K) or Non Strict (L) interactions. Red lines 
represent the medians. M, N, Time histograms for duration of strict (M) and non-strict (N) contacts 
between Tfr and Tfh cells with WT HyHEL10 GC B cells summarized from 6 independent experiments 
with Tfr cells and 5 independent experiments with Tfh cells. n corresponds to the total number of 

contacts. O-R, Analysis of CCL3+/+ and CCL3-/- HyHEL10 GC B cell motility from 5 movies with 

CCR5+/+ Tfr cells. Median cell velocity (O), median cell angle (P), track straightness (Q), and average 
squared displacement (R) calculated for tracked GC B cells. The data for explanted imaging is 
combined from 4 mice. (No statistically significant differences according to Mann Whitney U-test.) 
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more prolonged interactions with GC B cells, no Tfr cells interactions with GC B cells 

exceeding 7.5 min were detected (Fig. 2.7M, N). 

  

The data presented above suggest that local production of CCL3 by GC B cells 

increases their sampling efficiency by Tfr but not Tfh cells in vivo, and that this sampling 

depends on the expression of CCR5 receptor on Tfr cells. 

 

Intrinsic production of CCL3 by B cells is required for their control in the GCs 

 

Since CCL3 produced by GC B cells does not promote increased entry or retention of 

Tfr cells in the GC light zone, but rather is important for their local contacts with GC B 

cells, we then asked whether intrinsic production of CCL3 by B cells is required for their 

control in the GCs. To address that we generated mixed bone marrow (BM) chimeras 

reconstituted 50:50 with either CD45.2 CCL3+/+:CD45.1 CCL3+/+ BMs (control chimeras, 

#I) or CD45.2 CCL3-/-:CD45.1 CCL3+/+ BMs (CCL3/WT chimeras, #II), immunized them 

and monitored the composition of the GCs compared to the naïve B cell compartment 

(Fig. 2.8A). No difference in the participation of polyclonal CCL3+/+ and CCL3-/- B cells in 

the early GC response was observed (Fig. 2.8B, day 8). However, while CCL3+/+ B cells 

were similarly engaged into the GC response in both types of chimeras, CCL3-/- GC B 

cells were overrepresented in the GCs at days 10 and 15 (Fig. 2.8B). The observed 1.5-

fold increase in CCL3-/- GC B cells was consistent with the increase in the GC B cell 

numbers observed in CCL3-KO mice (Fig. 2.8B-G). Of note, the numbers of Tfh or Tfr 

cells were not statistically different between the CCL3/WT and control BM Chimeras at 

10 d.p.i. (Fig. 2.8C and D, day 10). We also tested whether the overexpansion of CCL3-

/- GC B cells occurred in GCs seeded exclusively by CCL3-/- B cells or in GCs with a 

mixed composition of CCL3+/+ and CCL3-/- cells. Quantitative immunofluorescent 

analysis demonstrated that in CCL3/WT chimeras, GCs consisted of mixed CCL3+/+ and 

CCL3-/- B cell populations with some of them containing larger fractions of GC B cells 

deficient for CCL3 (Fig. 2.8E and F). In summary, the BM chimera’s data suggests that 

intrinsic production of CCL3 by B cells is required for their control in mixed GCs.  
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Figure 2.8. Intrinsic production of CCL3 by B cells is required for their control 
in mixed GCs. 
A, Experimental outline and generation of mixed 50:50 WT/WT (Chimeras I) and WT/CCL3-KO 
(Chimeras II) BMChs (left) and example of flow cytometry analysis of total CD19+ cells and GC cells 
from draining pLNs of BMChs on day 10 p.i. with OVA in CFA (right). B-D, Flow cytometry analysis of 
draining pLNs from mixed BMChs at the indicated d.p.i. B, Fractions of CD45.1 or CD45.2 GC B cells 
relative to their respective CD19+ B cell population. C, D, Ratio of Tfr (C) or Tfh (D) cells to total 
lymphocytes. For B-D, data represents 4 independent experiments. Bars represent means and each 
symbol represents an individual mouse. (*, P<0.05, ANOVA with Dunnet post-analysis.) E, F, Ratio of 
CD45.2 to CD45.1 cells within distinct GCs of Chimera I and Chimera II as assessed by confocal 
microscopy analysis of pLNs at 15 d.p.i. from 2 independent experiments with 2 mice per experiment. 
E, Representative confocal image of draining pLN sections from WT/WT BMChs (top panel) and 
WT/CCL3-KO BMChs (bottom panel) stained with Bcl6 (blue), CD45.2 (white) and IgD (red)-specific 
antibodies. Scale bar represents 30 µm. F, Each point represents the ratio of IgDlow CD45.2+Bcl6+ to 
CD45.2–Bcl6+ cells in sections calculated for individual GCs across at least 2 sections per GC. Bars 
represent the mean values. (Statistical analysis by two-tailed Student’s t-test.) 
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Transient depletion of Tregs leads to relative increase in CCL3+/+ vs. CCL3–/– 

HyHEL10 GC B cells 

 

The simplest model that could explain the experimental observations made above is 

that GC B cell-secreted CCL3 promotes their direct interactions and inhibition by Tfr 

cells. In that case, transient depletion of Tfr cells should lead to increased expansion of 

CCL3-proficient compared to CCL3-KO GC B cells (Fig. 2.9A). In order to test that, we 

co-transferred CCL3+/+ and CCL3-/- HyHEL10 B cells into recipient FoxP3DTR mice, 

immunized mice to promote HyHEL10 entry into GC response and then treated mice 

with DTx to promote transient depletion of FoxP3+ cells or with PBS for control (Fig. 

2.9B). First, we looked into recruitment of HyHEL10 B cells into the GCs. Surprisingly, 

at 6 d.p.i. twice as many CCL3+/+ than CCL3-/- HyHEL10 B cells entered into GC 

response. However, at 9 d.p.i. we observed a trend suggesting relative expansion of 

CCL3-/- Hy10 GC B cells (Fig. 2.9C). As expected, treatment of the recipient mice with 

DTx led to significant drop in Tfr cells numbers in 3 days (Fig. 2.9D, E) and small 

increase in the GC B cell numbers (Fig. 2.9F). Upon Tfr cell depletion, we detected 

relative increase in CCL3+/+ compared to CCL3-/- HyHEL10 GC B cells (Fig. 2.9G, H). 

Therefore, the data is consistent with direct CCL3-dependent inhibition of GC B cells by 

Tregs at the peak of GC response (Fig. 2.9A). 
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Figure 2.9. Tregs limit B cell participation in GCs in a CCL3-dependent manner. 
A, Suggested model of CCL3-dependent regulation of GC B cells by Tfr cells and prediction for 

CCL3+/+ and CCL3-/- GC B cell participation in GCs upon ablation of Tfr cells. B, Experimental outline. 

FoxP3DTR recipient mice were transferred with HyHEL10 B cells, immunized with 50 μg DEL-OVA in 
Ribi s.c. and then treated either with PBS or 5 μg DTx in PBS i.p. 3 days before analysis. C, The ratio 

of CCL3-/- to CCL3+/+ HyHEL10 GC B cells (CD19+CD8-CD4-FashighGL7high IgDlow) at 6 and 9 d.p.i. in 

FoxP3DTR recipient mice treated with PBS. D-H, Flow cytometry analysis of cell participation in 
immune response at 9 d.p.i. in DTx-treated and control mice. D, E, DTx-mediated depletion of Tfr 
cells. Representative example (D) and Tfr fraction of total lymphocytes (E). (Student’s t-test, ****, 
P<0.00001.) F-H, Flow cytometry analysis of total GC numbers per draining ILNs (F), the fractions of 

CCL3+/+ and CCL3-/- HyHEL10 GC B cells in respect to the total GC cells (G), and the total numbers 

of HyHEL10 GC B cells of each kind per draining ILNs (H). Each dot represents a single mouse and 
paired analyses are indicated using a solid black line. 5 independent experiments. (One-tailed, 
Student’s t-test was used in F; **, p<0.005. One-tailed, paired, Student’s t-test used in G. ANOVA 
followed by Dunnet’s multiple comparison test with one-tailed p values reported for H) 
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Discussion 

 
Tfr cells have been reported to control the size of GCs, decrease the magnitude of 

foreign antigen-specific antibody responses, restrain participation of bystander B cell 

clones in the GCs and prevent development of anti-dsDNA antibodies in pristane 

immunized-mice [125, 127-129, 131]. However, the molecular and cellular mechanisms 

of Tfr cell-mediated control of GCs are not fully understood. Multiple molecular players, 

including IL10, TGF-β, GLUT-1 and IL21 have been suggested to be involved in Tfr cell-

dependent regulation [125, 131, 134, 141-143]. Tfr cells have been shown to control the 

numbers, specificity to foreign antigen and cytokine production by Tfh cells [131, 134, 

141, 142] that could in turn affect GC responses [19, 179]. In addition, Tfr cells could 

inhibit B cells’ expansion, class-switching and antibody production in cell culture in a 

GLUT-1-dependent fashion [143]. However, whether Tfr cells can directly repress GC B 

cells in vivo has not been definitively demonstrated.  

 

Our in vivo data suggests that B cells’ participation in GC response may depend on their 

direct interactions with Tfr cells. First, we determined that GC centrocytes upregulate 

expression of CCL3/4 compared to naïve B cells and centroblasts. We then showed that 

Tfr cells transmigrate to CCL3 and CCL4 in transwell assays and demonstrated that 

CCL3 production by GC B cells increases their encounters with Tfr cells in vivo. Lastly, 

we showed that CCL3 deficient B cells were transiently over expanded in the GCs of 

mixed CCL3-KO/WT BMChs and that depletion of regulatory T cells at the peak of GC 

response resulted in a relative increase in the numbers of CCL3-proficient compared to 

CCL3-KO foreign antigen-specific GC B cells. Taken together these observations 

suggest that production of CCL3 by GC B cells promotes their direct interactions with 

and control by Tfr cells (Fig 2.10A). While deletion of CCL3 is sufficient to exert an 

effect on GC-Tfr cell encounters and promote accumulation of GC B cells in vivo, future 

studies should address whether CCL4 chemokine secreted by GC B cells may further 

contribute to their interactions and regulation by Tfr cells.  
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Similar contact frequency of CCR5 receptor-deficient Tfr cells with CCL3-proficient and 

CCL3-KO GC B cells observed in vivo suggests that CCR5 is the predominant receptor 

on Tfr cells for sensing CCL3 production by GC B cells in wild-type mice. 

 

The effects observed in CCL3-KO mice are consistent, at least in part, with 

dysregulation of Tfr cells-mediated control. First, similar to the findings reported for mice 

with CXCR5-deficient Tregs that cannot access B cell follicles [129], we found a small 

transient increase in the total GC B cells including foreign antigen-specific GC B cells in 

CCL3-KO mice at 10 d.p.i. In addition, we observed increased development of IgA 

antibodies in the immunized CCL3-KO mice, as was previously detected in 

Figure 2.10: Model of direct GC B cell regulation by Tfr cells. 
A model of direct control of foreign antigen-specific and auto-reactive GC B cell by Tfr cells 
suggested based on the data that CCL3 secretion by GC B cells promote their direct sampling by Tfr 
cells and is required for control of GC B cell expansion and elimination of anti-nuclear B cell clones. 
A, General model that illustrates a possible scenario of direct non-cognate interactions between Tfr 
and foreign-Ag specific GC B cells as well as cognate interactions with self-peptides presenting 
cross-reactive GC B cells. B, A model of local CCL3 gradients produced by selected GC B cells 
following strong BCR crosslinking (and/or T cell help). Local gradients could then enable enhanced 
chemotactic sampling of selected GC B cells by the rare Tfr cells traversing the GCs. C, A model of 
how secreted CCL3 immobilized on the surface of GC B cells may act to stabilize very transient 
interactions of Tfr cells with GC B cells and result in more extensive GC B cell control. 
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Bcl6fl/flFoxp3cre mice that lack Tfr cells [131]. Finally, our data is consistent with the 

studies where targeted depletion or deficiency in Tfr cells leads to accumulation of non-

foreign antigen-specific clones in GCs and development of autoreactive antibodies [127, 

131]. Following immunization, significantly more CCL3-KO compared to WT mice, 

developed class-switched ANAs. Consistent with the role of B-cell intrinsic production of 

CCL3 for their control in GCs, we observed increased generation of ANA IgG in 

immunized MD4 mice that had received CCL3-KO, but not WT B cells. While increased 

GC size and generation of ANA could be associated with defective clearance of dying 

GC B cells [180, 181], this is an unlikely scenario for CCL3-KO mice, since the fractions 

of apoptotic GC B cells in the CCL3-KO and WT mice were comparable. Together this 

data suggests that CCL3 production is required for regulation of both foreign-Ag specific 

and anti-nuclear B cell clones. 

 

The observed dysregulation of humoral responses in CCL3-KO mice was not due to 

reduced frequency of Tfr cells in the follicles or in the GCs. While we found that CCL3 is 

not required for Tfr cell entry into the GC light zone, in CCL3-KO mice the frequency of 

Tfr and Tfh cells in the GC dark zone is elevated. Future studies should address 

whether CCL3 secreted by follicular B cells and centrocytes reduce follicular T cells’ 

access into the GC Dark zone and determine whether dysregulated positioning of 

follicular T cells or some other mechanisms may contribute to development of ANA in 

the immunized CCL3-KO mice. 

 

We suggest two possible models that could explain CCL3-dependent regulation of GC 

B cells described in this work. First, the observed regulation could be due to local 

chemo-attraction of Tfr cells to a subset of CCL3-secreting B cells within GCs. Since 

BCR crosslinking has been reported to induce upregulation of CCL3/4 production in GC 

B cells [149], we hypothesize that GC centrocytes that recently acquired antigen from 

FDCs (and possibly T cell help) are likely to produce more CCL3 than other GC B cells, 

and thus could form local short-range gradients of these chemokines in the light zone 

(Fig. 2.10B). Since our intravital imaging system does not allow discrimination between 

CCL3hi vs. CCL3low GC B cells, the advantage that CCL3hi GC B cells may have in 



53 
 

attracting Tfr cells may be significantly underestimated. Alternatively, CCL3 chemokine 

secreted by GC B cells may serve to stabilize very transient probing interactions of GC 

B cells with Tfr cells that are beyond the resolution capabilities of intravital 2P 

microscopy (Fig. 2.10C). Both of these models can lead to decreased efficiency in 

sampling of CCL3 KO B cells by Tfr cells and may explain ineffective control of both 

foreign-Ag specific as well as bystander/self-reactive clones in the GCs. 

 

Previous intravital imaging studies of Tfh cell interactions with cognate GC B cells 

revealed that majority of these encounters are transient [61].They also suggested that a 

small fraction of the interactions that are more prolonged (> 5-10 min) may be more 

efficient for productive communication between the cells and for GC B cell selection 

[36]. In this study we found that similarly to Tfh cells majority of interactions between 

foreign-antigen specific GC B cells and natural Tfr cells in vivo are shorter than 5 min. 

Interestingly, Tfr cells also formed some prolonged interactions with GC B cells. 

However, while a few Tfh cell contacts with GC B exceeded 7.5 min, none of these have 

been observed for Tfr cells. This discrepancy may be due to non-cognate interactions or 

very weak cognate interactions between foreign antigen specific GC B cells and natural 

Tfr cells. However, future studies should directly address whether Tfr cells recognize 

MHCII/self-peptides or MHCII/foreign peptide on GC B cells via T cell receptors (TCR), 

and how prevalent these cognate interactions are (Fig. 2.10A). Whether the observed 

transient interactions between GC B cells and Tfr cells occur in a cognate or non-

cognate fashion, they appear to be sufficient for direct inhibition of GC B cells in vivo. 

Future studies should address which molecular factors, in addition to CCL3, promote 

the observed suppression.  

 

In summary, our findings suggest that in addition to previously reported indirect control 

of GC B cells through Tfh cells, Tfr cells may also directly probe and repress GC B cells 

in vivo in a CCL3 chemokine-dependent fashion, ensuring robust control of T-

dependent B cell responses. 
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Description and link to movies 

 

Movie S1. 2-photon imaging of Tfr cells migration in respect to Tfh cells and GC B cells. 
Also see Fig. 2.6E. A time-lapse sequence of a 110 μm z-stack of a GC in an explanted 
inguinal lymph node imaged at 8 days after immunization. HyHEL10 GC B cell; cyan. 
Tfr; red. Tfh; green. Colored lines indicate the trajectories of the indicated cell types, 
tracked by Imaris and manually verified. Mice were generated as described in the Fig. 
2.6A. Time is shown as hh:mm:ss and z-stacks were acquired at 20 second intervals. 

Movie S2. Intravital imaging of Tfr cells in respect to the GCs containing both CCL3+/+ 
and CCL3-/- HyHEL10 B cells. The data shown corresponds with the images in Figure 
7C. A time-lapse sequence of a GC within inguinal LN of a mouse prepared as 
described in Fig. 2.7A and subjected to intravital imaging at 8 days post immunization. 
180 μm z-stack. GC volume (gray surface) was defined based on the distribution of CFP 
HyHEL10 cells. Quantitative analysis in Fig. 2.7 was performed for Tfr cells (red) 
interactions with HyHEL10 GC B cells (CCL3+/+; cyan. CCL3-/-; green.) within GC 
volumes defined in the same fashion. The tracks of individual Tfr cells outside the GC 
are labeled in purple while interior tracks are represented in yellow lines. Time is 
expressed as hh:mm:ss and z-stacks were acquired at 20 second intervals.  

Movie S3. Examples of Tfr cells interactions with GC B cells identified as “strict” or “non 
strict” for quantitative analysis. A time-lapse sequence of a representative Tfr (red) 
entering the GC (dashed white line) and then undergoing contacts with HyHEL10 
CCL3+/+ (cyan) or CCL3-/- (green) HyHEL10 GC B cells within inguinal LN of a mouse 
prepared as described in Fig. 2.7A and subjected to 2P imaging at 8 days post 
immunization. A 40 µM slice is in view. Inlets are zoomed in and 3D rotated to visualize 
the contact. Time is expressed as mm:ss and z-stacks were acquired at 25 second 
intervals 

Movie S4. 2-photon imaging of CCR5-deficient Tfr cells interacting with GC B cells. A 
time-lapse sequence of a GC within in an inguinal LN of a mouse prepared as described 
in Fig. 7A with CCR5-/- Tfr cells and subjected to explant imaging at 8 days post 
immunization. 120 um z-stack. Quantitative analysis was performed for CCR5-deficient 
Tfr cells (red) interactions with HyHEL10 GC B cells (CCL3+/+, cyan; CCL3-/-, green) 
within the GC and can be found in Fig. 2.7E, F, K, L. Time is shown as hh:mm:ss and 
z-stacks were acquired at 20 second intervals.  
 
Movie S5. 2-photon imaging of Tfh cells interacting with GC B cells. A time-lapse 
sequence of a GC within an inguinal LN of a mouse prepared as described in Figure 
2.7B and subjected to explant imaging at 8 days post immunization. 140 um z-stack. 
Quantitative analysis was performed for Tfh cells (red) interactions with HyHEL10 GC B 
cells (CCL3+/+, cyan; CCL3-/-, green) within the GC and can be found in Fig. 2.7M-R. 
Examples of long duration (>5 minutes) contacts and short duration (<5 minutes) 
contacts are shown in 10 um z-projections. Time is shown as hh:mm:ss for both time of 
the movie and for duration of the indicated contacts. Z-stacks were acquired at 20 
second intervals.

https://drive.google.com/open?id=0B3QRBxBriBxvYjZ5WmNIVGFnREU
https://drive.google.com/open?id=0B3QRBxBriBxvYjZ5WmNIVGFnREU
https://drive.google.com/open?id=0B3QRBxBriBxvYjZ5WmNIVGFnREU
https://drive.google.com/open?id=0B3QRBxBriBxvQlYtSDBNVHFKbTQ
https://drive.google.com/open?id=0B3QRBxBriBxvQlYtSDBNVHFKbTQ
https://drive.google.com/open?id=0B3QRBxBriBxvVF9LZ1RpMHpKN1k
https://drive.google.com/open?id=0B3QRBxBriBxvVF9LZ1RpMHpKN1k
https://drive.google.com/open?id=0B3QRBxBriBxvcFJ4RDRGS2ZjUjA
https://drive.google.com/open?id=0B3QRBxBriBxvemlySWFxUi1JY28
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Chapter 3 -Antigen acquisition enables newly arriving B cells to enter 
ongoing immunization-induced germinal centers

 

Portions of this chapter have been published: 

Turner J.S.*, Benet Z.L.*, and Grigorova I.L. Antigen Acquisition Enables Newly Arriving 

B cells to Enter Ongoing Immunization-Induced Germinal Centers. Journal of 

Immunology. 2017 Aug 15;199(4):1301-1307. PMID: 28687657. * Both authors 

contributed equally. 

 

Abstract 

 

Modern vaccines must be designed to generate long-lasting, high-affinity, and broadly 

neutralizing Ab responses against pathogens. The diversity of B cell clones recruited 

into germinal center (GC) responses is likely to be important for the antigen-

neutralization potential of the Ab-secreting cells and memory cells generated upon 

immunization. However, the factors that influence the diversity of B cell clones recruited 

into GCs are unclear. As recirculating naive antigen-specific B cells arrive in antigen-

draining secondary lymphoid organs, they may join the ongoing GC response. However, 

the factors that limit their entry are not well understood, and it is not known how that 

depends on the stage of the ongoing follicular T cell and GC B cell response. In this 

article, we show that, in mice, naive B cells have a limited window of time during which 

they can undergo antigen-driven activation and join ongoing immunization-induced GC 

responses. However, preloading naive B cells with even a threshold-activating amount 

of Ag is sufficient to rescue their entry into the GC response during its initiation, peak, 

and contraction. Based on these results, we suggest that productive acquisition of Ag 

may be one of the main factors limiting entry of new B cell clones into ongoing 

immunization-triggered GC responses. 
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Introduction 

 

A hallmark of T-dependent B cell responses is generation of germinal centers (GCs), 

which are important for the development of long-term high affinity humoral immunity [66, 

182].  GCs are anatomical substructures in B cell follicles that form around follicular 

dendritic cells (FDCs). GCs are seeded by antigen-activated B cells that have acquired 

cognate T cell help, proliferated, and differentiated into GC B cells. Within GCs, B cells 

undergo extensive proliferation, somatic hypermutation of their B cell receptors (BCRs), 

and class-switching and compete for Ag deposited on FDCs and for help from follicular 

helper T cells (Tfh) [183]. Tfh cells can drive GC B cells’ affinity maturation by providing 

help preferentially to GC B cells that present more antigenic peptides in the context of 

MHCII, thus rescuing GC B cells from apoptosis and promoting their proliferation [22, 

184].  In parallel, follicular regulatory T cells (Tfr) fine-tune GCs by down-regulating the 

magnitude of the GC response and by preventing expansion of non antigen-specific B 

cell clones [127, 129]. GC B cells then differentiate into long-lived plasma cells and 

class-switched memory B cells that harbor immunoglobulins and BCRs, respectively 

with higher affinity to foreign antigens [185-188]. 

 

While generation of long-lived plasma cells and memory B cells is a prerequisite for 

development of long-term humoral immunity, the diversity of B cell clones that 

participate in GC responses may contribute to the breadth of antigenic epitopes 

recognized by effector cells and therefore to the pathogen neutralization potential of the 

response. 

 

While previous studies suggested that GCs are formed by relatively few B cells, recent 

works unambiguously demonstrated that GCs are seeded by 50-200 B cell clones [67, 

189-191]. However, the ability of antigen-specific B cells to populate early GCs is 

variable. When T cell help is limiting, B cell clones with relatively low affinity to Ag are 

recruited into GCs less efficiently [192].  
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Preexisting GCs can also be populated by new B cell clones following a boosting 

immunization [193]. However, which factors control or limit recruitment of new B cell 

clones into ongoing GCs over the course of an infection or following a primary 

immunization is not known. Naïve antigen-specific B cells’ ability to enter preexisting 

“late” GCs is potentially limited by multiple factors, including limited availability of 

antigens to naive cells, competition with pre-existing GC B cells for Tfh cell help, 

differences in the helper functions of Tfh cells over time [194], and increased exposure 

of B cells to Tfr cells. In this study, we attempted to assess how the likelihood of new B 

cell recruitment into GCs depends on the stage (initiation, peak, or contraction) of the 

Tfh/Tfr and GC response. 

 

Our study suggests that B cells that transiently acquire a low amount of Ag can enter 

GCs at all stages of the response. However, the ability of naïve B cells to undergo 

antigen-dependent activation and recruitment into the GC response drops by 6-10 days 

after a standard immunization. We suggest that the main factor limiting the entry of new 

B cell clones into GCs after a primary immunization may be the availability of Ag for 

sampling by the naïve B cell repertoire. 

 

Materials and methods 

 

Mice. B6 (C57BL/6) mice were purchased from Charles River Laboratory. B6- CD45.1 

(Ptprca Pepcb/BoyJ) were purchased from the Jackson Laboratory. BCR transgenic 

HyHEL10 [195] and MD4 mice [172] were generously provided by Jason Cyster. 

HyHEL10 mice were crossed with UBC-GFP (004353) (Jackson Laboratory) and with 

B6- CD45.1 mice and maintained on the B6 background. MD4 mice were crossed with 

B6-CD45.1 and maintained on the B6 background. Recipient mice were 6–10 weeks of 

age. All mice were maintained in a specific pathogen free environment and protocols 

were approved by the Institutional Animal Care and Use Committee of the University of 

Michigan.  
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Antigen preparation. Duck eggs were purchased locally. Duck egg lysozyme (DEL) was 

purified as previously described [195]. Ovalbumin (OVA) were purchased from Sigma. 

DEL was conjugated to OVA via glutaraldehyde cross-linking as previously described 

[195].  

 

Immunization and adoptive transfer and immunization. Where indicated, recipient mice 

were preimmunized subcutaneously (s.c.) in the flanks and base of tail and into front 

foot pads (f.f.p.) with 100 μg OVA in Ribi (Sigma) or s.c. with 50 μg DEL-OVA in Ribi.  

 

HyHEL10 B cells were enriched from donor mice by negative selection as previously 

described [196]. Transient exposure to antigen was performed as previously described 

with an Ag dose slightly above the threshold required for B cell activation [197]. In brief, 

purified HyHEL10 B cells were incubated with 0.5 μg/mL DEL-OVA ex vivo for 5 

minutes at 37 °C and washed three times with room temperature DMEM supplemented 

with 4.5 g/L glucose, L- glutamine and sodium pyruvate, 2% FBS, 10 mM HEPES, 50 

IU/mL penicillin, and 50 μg/mL streptomycin. About 5 x104 DEL-OVA-pulsed or naïve 

HyHEL10 B cells were then transferred into recipient mice. To study MD4 B cell 

activation, splenocytes from MD4 CD45.1 mice with a known frequency of transgenic B 

cells were transferred into recipient CD45.2 mice either unimmunized or s.c. pre-

immunized with DEL-OVA in Ribi.  

 

Flow cytometry and cytokine staining. The following antibodies (Abs) and reagents were 

used for flow cytometry analysis: biotinylated anti-mouse IgD (11-26/SBA-1, 

SouthernBiotech) and CXCR5 (2G8, BD Biosciences); fluorescently conjugated anti-

mouse IgD-APC-Cy7 (11- 26c.2a, Biolegend), IgM
a

-PE (DS-1, BD Pharmingen), IgM
b

-

PE (AF6-78, BD Pharmingen), PD1-PE-Cy7 (RMP1-30, Biolegend), CD25-Brilliant 

Violet 421 (PC61, Biolegend), CD38-PerCP-eFluor 710 (90, eBioscience), B220-V500 

and B220-PerCP-Cy5.5 (RA3- 6B2, BD Pharmingen), FAS-PE-Cy7 (Jo2, BD 

Pharmingen), CD4-APC-Cy7 (RM4-5, Biolegend), CD8-APC-Cy7 (53-6.7, eBioscience), 

CD45.1-Alexa Fluor 700 (A20, Biolegend), GL7-eFluor 450 (GL7, eBioscience), FoxP3-

APC (clone FJK-16s, eBioscience), CD69-PE (clone H1.2F3, Pharmingen), IL-21-PE 
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(clone FFA21, eBioscience), IFNγ- Alexa Fluor 700 (clone XMG1.2, Biolegends),  and 

streptavidin-Qdot 605 (Life Technologies). Single-cell suspensions from inguinal lymph 

nodes (ILNs) were incubated with biotinylated antibodies for 20 minutes on ice, washed 

twice with 200 μl PBS supplemented with 2% FBS, 1 mM EDTA, and 0.1% NaN3

 

(FACS 

buffer), and then incubated with fluorophore- conjugated antibodies and streptavidin for 

20 minutes on ice, and washed twice more with 200 μl FACS buffer. For IL-21 and IFNγ 

cytokine staining, lymphocytes from ILNs of immunized mice were first resuspended in 

10% DMEM (DMEM supplemented with 4.5 g/L glucose, L- glutamine and sodium 

pyruvate, 10% FBS, 10 mM HEPES, 50 IU/mL penicillin, and 50 μg/mL streptomycin) 

and then cultured in a CO2 incubator, at 37oC and stimulated with Cell Activation 

Cocktail (Biolegends) that contains PMA, ionomycin and Brefeldin A for 6 hours 

according to the manufacturer’s instructions. For FoxP3 and cytokine staining the cells 

were permeabilized and stained using FoxP3 staining buffer set (eBioscience) 

according to the manufacturer’s instructions. Cells were then resuspended in FACS 

buffer for acquisition. Data were acquired on a FACSCanto and analyzed using FlowJo 

(TreeStar).  

 

Immunofluorescence. The following Abs/reagents were used for confocal 

immunofluorescent analysis: biotinylated anti-mouse IgD (11-26/SBA-1, 

SouthernBiotech), CD4-CF594 (RM4-5, BD biosciences), and streptavidin-Alexa Fluor 

647 (Life Technologies) or BCL6-A647(clone K112-91, BD-Pharmingen) and IgMa-PE 

(clone DS-1, BD-Pharmingen). Brachial lymph nodes (BLNs) were harvested from 

recipient mice, fixed for 1 h in 1% paraformaldehyde in PBS on ice and washed with 

PBS. They were then blocked overnight in 30% sucrose, 0.1% NaN3

 

in PBS, embedded 

in Tissue- Tek optimum cutting temperature compound, snap-frozen in dry ice and 

ethanol, and stored at -70 °C. Thirty micron cryostat sections were cut from the tissue 

blocks, affixed to Superfrost Plus microscope slides (Fisher), and stained first with 

biotinylated anti-IgD Abs and then with anti-CD4 Abs and streptavidin as previously 

described [197]. Alternatively, they were stained with anti-Bcl6 and anti-IgMa Abs. 

Confocal analysis of the sections was performed using Leica SP5 with argon and 

helium-neon lasers, 2-channel Leica SP spectral fluorescent PMT detector, and a 20x 
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oil-immersion objective with a numerical aperture of 0.7. Images were processed using 

Imaris (Bitplane).  

 

Statistics. Statistical tests were performed as indicated using Prism 6 (GraphPad). 

Differences between groups not annotated by an asterisk did not reach statistical 

significance. 

 

Results 

 

Kinetics of immunization-induced follicular T cells and GC B cell response 

 

In order to determine whether the ability of B cells to enter immunization-triggered GCs 

depends on the stage of the GC response, we first analyzed the kinetics of GC B cell 

and follicular T cell responses in the draining lymph nodes (LNs) of mice immunized 

with the protein antigen ovalbumin (OVA) in Ribi adjuvant (Fig. 3.1A, B, gating strategy). 

In unimmunized mice there were over 3 times as many Tfr as Tfh cells (Fig. 3.2A-C). By 

6 days post immunization (d.p.i.) the number of Tfh cells significantly increased, 

reaching a 5:1 Tfh:Tfr ratio. (Fig. 3.2A-C). This was followed by expansion of GC B cells 

that peaked at 10-14 d.p.i. (Fig. 3.2D, E). At 14 d.p.i Tfh cell numbers and the Tfh/Tfr 

cell ratio started to decrease, followed by a substantial decline in GC B cell numbers by 

21 d.p.i. (Fig. 3.2A-E). Based on the observed kinetics of the GC response and 

previously published data, GC seeding in the draining LNs is likely to occur between 3 

and 6 d.p.i. [33, 198]. This is followed by the peak of the GC response at 10 d.p.i. and 

its resolution after 14 d.p.i.   

 

Previous studies indicated that Tfh cells' cytokine production and effector functions vary 

depending on the stage of GC response [194]. To test whether these observations 

would hold under our selected immunization conditions, we assessed production of IL-

21 and IFNγ cytokines by Tfh cells at various times following immunization with OVA in 

Ribi. Consistent with previous findings [194], we observed a trend for decreased 

production of IL-21 by Tfh cells during the later stages of the Tfh cell response (Fig. 3.1 
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F-I). Interestingly, we also found that, during Tfh cells’ contraction phase, production of 

IFN-γ by Tfh cells increased significantly (Fig. 3.1 F-H, J). To summarize, Tfh cell 

frequency, production of cytokines, and the Tfh/Tfr cell ratio vary during the different 

stages of the immunization-induced GC reaction; these might affect recruitment and 

participation of new B cell clones in T-dependent responses 

         

 

Figure 3.1: Gating strategy for follicular T cells, GC B cells and class-switched 
GL7low B cells.  
(A, B) Flow cytometry gating strategy for endogenous Tfh and Tfr cells (A) and GC B cells (B) utilized 
for analysis presented in Figure 1. C, Flow cytometry gating strategy for total, GC, and GL7low class-
switched HyHEL10 B cells  
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Figure 3.2: Kinetics of immunization-induced follicular T cell and GC B cell 
response.   
Flow cytometry analysis of follicular T cells and GC B cells in the ILNs of mice immunized s.c. with 
OVA in Ribi in the flanks, base of the tail, and into the front foot pads. (A) Frequencies of Tfh cells 
and Tfr cells among CD4+ B220− CD8− cells. (B) Total numbers of Tfh cells and Tfr cells. (C) Tfh/Tfr 
cell ratios. (D) Frequencies of GC B cells among B220+ CD4− CD8− cells. (E) Total numbers of GC B 
cells. (F–J) Analysis of IL-21 and IFN-γ production by Tfh cells at various times following 
immunization. Representative examples of flow cytometry cytokine staining of FoxP3− CXCR5high 
PD1high Tfh cells from ILNs of mice at 6 d.p.i. (F and G) and at 14 d.p.i. (H), following ex vivo 
stimulation with PMA and ionomycin (G and H) or no ex vivo stimulation (F). Fraction of Tfh cells that 
upregulate production of IL-21 (I) or IFN-γ (J) following ex vivo stimulation. Data are from three or 
four independent experiments, with one to three mice per experiment. Data are mean ± SEM. *p < 
0.05, **p < 0.01, ordinary one-way ANOVA with Tukey multiple-comparison test. 
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Antigen-pulsed B cell recruitment into the different phases of the GC response 

 

To address whether B cells that acquire the same amount of antigen have a 

substantially different ability to enter GCs depending on the phase of the GC response 

we made use of a recently published experimental strategy [197](Fig. 3.3A). Transgenic 

HyHEL10 B cells [61] that have B cell receptors (BCR) specific to duck egg lysozyme 

(DEL) were incubated ex vivo for 5 minutes with DEL chemically conjugated to OVA 

(DEL-OVA) at a concentration only slightly above HyHEL10 B cells activation threshold 

[197]. The unbound antigen was then washed off and HyHEL10 B cells were transferred 

into mice preimmunized with OVA in Ribi. While DEL-OVA pulsed HyHEL10 B cells 

could not reacquire their cognate DEL Ag in vivo, they could present preacquired OVA 

Antigenic peptides in the context of MHCII molecules for recognition by OVA-specific Th 

cells in vivo. Our previous study demonstrated that antigen-pulsed B cells transferred 

into recipient mice preimmunized with OVA for 3 d undergo proliferation, differentiate 

into GC B cells, and participate in histologically defined GCs in vivo and that their ability 

to enter the B cell response is critically dependent on the acquisition of the antigen-

linked OVA for presentation to activated Th cells [197].  

 

To assess B cell recruitment into an immunization-driven GC response at its various 

stages, fifty thousand DEL-OVA pulsed HyHEL10 B cells were transferred into recipient 

mice at 3, 6, 10 and 14 days after immunization with OVA or, for control, into 

unimmunized mice (Fig. 3.3A). These times correspond to the initiation, peak and 

contraction phases of the Tfh cell response (Fig. 3.2A-C).  

 

At 4 days after the transfer of antigen-pulsed HyHEL10 B cells, we observed their 

expansion in the draining LNs of all OVA-immunized recipient mice (Fig. 3.3B). Based 

on the GL7high FAShigh IgDlow CD38low phenotype (Fig. 3.2C), comparable numbers of 

HyHEL10 B cells differentiated into GC B cells in all OVA-immunized, but not in control 

recipient mice at 4 days after transfer (Fig. 3.3E; Fig. 3.4, black bars). At 6 days after 

the  
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Figure 3.3: Antigen-pulsed HyHEL10 B cell recruitment into B cell response 
during initiation, peak and resolution of the immunization-induced GC response.   
(A) Experimental scheme. A total of 5 × 104 HyHEL10 B cells, pulsed ex vivo with 0.5 μg/ml DEL-OVA, 
was transferred into unimmunized control mice or mice that were immunized with OVA in Ribi s.c. and in 
the front foot pads 3, 6, 10, or 14 d earlier. Flow cytometry analysis of ILNs was performed at 4, 6, and 8 
d post-HyHEL10 B cell transfer. Frequencies of total HyHEL10 B cells (B–D) and GL7high FAShigh IgDlow 
CD38low HyHEL10 B cells (E–G) and GL7low IgMlow IgDlow HyHEL10 B cells (H–J) among B220+ CD4− 
CD8− cells at 4 d (B, E, and H), 6 d (C, F, and I) and 8 d (D, G, and J) following the transfer. Data are 
from three to five independent experiments. Each dot represents an individual mouse. *p ≤ 0.05, **p ≤ 
0.01, ***p ≤ 0.001, ***p ≤ 0.0001 versus unimmunized control, Kruskal–Wallis test, with Dunn multiple-
comparison test. 
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transfer the numbers of HyHEL10 GC B cells either slightly increased (when transferred 

at 3, 6 d.p.i.) or stayed the same (at 10, 14 d.p.i.) (Fig. 3.3F; Fig. 3.4, gray bars). In all 

cases, HyHEL10 GC B cell numbers started to decline by 8 days after B cell transfer, as 

expected due to their inability to reacquire their cognate Ag DEL within GCs and 

compete with OVA-specific endogenous GC B cells (Fig. 3.3G; Fig. 3.4, white bars). 

Some of the antigen-pulsed HyHEL10 B cells also differentiated into GL7low class-

switched B cells, which made up 20-40% of total HyHEL10 B cells by 6-8 days after 

Figure 3.4: Antigen-pulsed HyHEL10 B cell recruitment into GC responses 
during initiation, peak and resolution of the immunization-induced GC 
response.  
GL7high FAShigh IgDlow CD38low HyHEL10 GC B cells displayed as a fraction of B220+ cells (A) and their 
ratio to endogenous GC B cells (B) at 4d (black bars), 6d (gray bars) and 8d (white bars) following the 
transfer of DEL-OVA-pulsed HyHEL10 B cells into unimmunized mice or mice preimmunized with OVA 
in Ribi for 3, 6, 10 and 14 days. Data are from 3-5 independent experiments, shown as mean ± SEM. 
In A, data is combined from Fig. 3.3 E-G. 
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their transfer (Fig. 3.3B-D, H-J). Few, if any, HyHEL10 plasma cells were found (data 

not shown). 

 

The presence of HyHEL10 B cells in the GCs of OVA-immunized, but not control mice, 

was confirmed by immunofluorescent analysis of draining LNs regardless of the time of 

transfer following immunization (Fig. 3.5, HyHEL10 B cells express GFP and are 

detected as green). Majority of GC resident HyHEL10 B cells also expressed Bcl6 (Fig. 

3.5B; see examples 1, 4, 7, 10, 11). Of note, HyHEL10 B cells were also found in other 

regions of B cell follicles with some of them IgMa positive (Fig. 3.5B; examples 2, 5) and 

some class-switched (Fig. 3.5B; examples 3, 6, 9). 

 

Altogether these results indicate that at various stages of the OVA-immunization 

induced endogenous follicular T cell/GC response, acquisition of relatively small 

amounts of DEL-OVA antigen by newly arriving HyHEL10 B cells is sufficient for their 

recruitment into the GC and class-switched GL7low memory B cell responses in OVA-

draining lymph nodes. However, when antigen-pulsed B cells are transferred at the 

peak and resolution phases of the Tfh/GC response (at 10 and 14 d.p.i.), their 

subsequent accumulation as GC and class-switched GL7low B cells at 6 and 8 days after 

transfer is reduced.  

 

Naïve B cell recruitment into ongoing GC responses 

 

To test the ability of naïve B cells to enter the GC response during its various stages, 

naïve HyHEL10 B cells were transferred into mice immunized with their cognate Ag 

DEL-OVA in Ribi adjuvant at 0, 3, 6, 10 and 14 d.p.i (Fig. 3.6A). While HyHEL10 B cells 
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Figure 3.5: Antigen-pulsed HyHEL10 B cells can enter GCs during the 
initiation, peak, and resolution of the immunization-induced GC response.  
(A and B) Examples of DEL-OVA pulsed HyHEL10 B cells’ anatomical positioning with respect to 
GCs. Confocal immunofluorescent analysis of 14–20-μm-thick sections from the brachial LNs of mice 
that were immunized or not with OVA in Ribi 3, 6, 10, or 14 d before receiving DEL-OVA pulsed 
HyHEL10 B cells; slides were analyzed at 6 d post transfer. GFP-expressing HyHEL10 B cells are 
shown in green. Sections were stained with fluorescently conjugated anti-CD4 (red) and anti-IgD 
(blue) Abs (A) or IgMa (red) and Bcl6 (blue) (B). (B) Right panels show a zoomed-in view of the boxed 
HyHEL10 cells in the left panels. In (A), IgDlow areas represent GCs. In (B), Bcl6+ cells are GC B cells; 
IgMa− HyHEL10 B cells are CSW. Red staining not colocalized with GFP+ HyHEL10 cells is likely due 
to nonspecific binding of IgMa to other cells, presumably to macrophages and FDCs. The data are 
representative of three independent experiments, with one mouse per experiment. Scale bars: 50 μm 
(A and B, left panels), 10 μm (B, right panels). 
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transferred into recipient mice prior to or 3 days after the immunization mounted a 

vigorous GC B cell response, their ability to form GC B cells began to decline when they 

were transferred 6 days following the immunization and completely disappeared at later 

times (Fig. 3.6B, white bars). Naïve HyHEL10 B cells also formed substantially smaller 

class-switched B cell responses when transferred into DEL-OVA immunized mice with a 

10-14 day delay (Fig. 3.6C, white bars). However, HyHEL10 B cells pulsed with a low 

dose of Ag (0.5 μg/ml of DEL-OVA) formed GC B cells and class-switched GL7low cells 

when transferred into DEL-OVA immunized mice even at the peak and prior to 

contraction phases of the GC response, similarly to antigen-pulsed cells transferred into 

OVA-immunized mice (Fig. 3.6B, C, gray bars, Fig. 3.3E-J).  

 

 

 

Figure 3.6: Recruitment of naïve and DEL-OVA-pulsed HyHEL10 B cells into B 
cell response during initiation, peak and resolution of GC response in DEL-
OVA immunized mice. 
(A) Experimental scheme A total of 5 × 104 HyHEL10 B cells (naive or pulsed ex vivo with 0.5 μg/ml 
DEL-OVA) was transferred into mice immunized s.c. with DEL-OVA in Ribi 0, 3, 6, 10, or 14 d earlier. 
Flow cytometry analysis of ILNs was performed at 6 d post-HyHEL10 B cell transfer. Frequencies of 
unpulsed or DEL-OVA–pulsed HyHEL10 GL7high FAShigh IgDlow CD38low (B) and HyHEL10 
GL7low IgMlow IgDlow (C) B cells among B220+ CD4− CD8− cells. Data are from three independent 
experiments. Each point represents one mouse. *p < 0.05, multiple t tests with the Holm–Sidak 
correction for multiple comparisons. 
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To test whether B cells have a limited window of time to undergo Antigen-driven 

activation following a standard protein immunization, we utilized BCR transgenic B cells 

from MD4 mice that have the same specificity to DEL as HyHEL10 B cells. While MD4 

B cells cannot undergo class-switching as HyHEL10 B cells, they are better for 

enumeration of Antigen-specific B cells by flow cytometry because they constitute the 

majority (>95%) of B cells in MD4 mice.  Splenocytes from CD45.1 MD4 mice were 

transferred into recipient CD45.2 mice preimmunized with DEL-OVA in Ribi for 3, 6 and 

10 days or into unimmunized control mice. One day later Antigen-driven activation of 

the recently arriving MD4 B cells was assessed in the ILNs of preimmunized mice 

based on their upregulation of surface CD69 (Fig. 3.7A). We found that many MD4 B 

Figure 3.7: Antigen-dependent activation of B cells at various times post 
immunization. 
(A–D) Upregulation of CD69 by naive MD4 or B6 B cells transferred into DEL-OVA–preimmunized 
mice. (A) Experimental scheme. A total of 2–10 × 105 naive CD45.1 MD4 B cells was transferred into 
mice immunized with DEL-OVA in Ribi s.c. 3, 6, or 10 d earlier or into unimmunized control mice. 
Similar numbers of CD45.1 B6 B cells were transferred into mice immunized with DEL-OVA in Ribi 
s.c. 3 d earlier. Flow cytometry analysis of ILNs was performed 1 d post–B cell transfer. (B) 
Representative flow cytometry analysis of MD4 B cell CD69 surface staining after their transfer into 
unimmunized mice (shaded graph) or mice immunized 3 d earlier (gray line) or 10 d earlier (black 
line). (C) Frequencies of CD69high MD4 B cells (B220+ CD4− CD8− CD45.1+ CD45.2−; black bars) and 
endogenous B cells (B220+ CD4− CD8− CD45.1− CD45.2+; white bars). Data are from three 
independent experiments, with one mouse per experiment. (D) Frequencies of CD69high B220+ CD4− 
CD8− CD45.1+ CD45.2− B6 B cells that were transferred at 3 d post–DEL-OVA immunization (black 
bars) and CD45.1− CD45.2+ endogenous B cells (white bars). Data are from two independent 
experiments, with four recipient mice. Data are mean ± SEM. *p < 0.05, **p < 0.01, ordinary one-way 
ANOVA, Tukey multiple-comparison test. 
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cells transferred at 3 days post immunization underwent activation (Fig. 3.7B, C). In 

contrast, transferred non-transgenic CD45.1 B cells did not upregulate CD69 in ILNs of 

DEL-OVA mice preimmunized for 3 days (Fig. 3.7D). The fraction of MD4 B cells that 

underwent antigen-dependent activation and upregulated CD69 significantly decreased 

between 3 and 10 days following DEL-OVA immunization (Fig. 3.7B, C). Based on 

these observations and the findings described above, we conclude that following 

immunization with standard protein antigen in Ribi adjuvant, antigen-driven activation 

becomes the predominant factor limiting the entry of new antigen-specific B cells into 

the ongoing GC B cell response. 

 
Discussion 

 

While the cellular and molecular mechanisms of GC B cell affinity maturation and their 

differentiation into memory B cells and plasma cells have been analyzed in a great level 

of detail, the factors that control clonal diversity of B cell responses are much less 

understood. In this work, we addressed which factors may limit the access of new 

antigen-specific B cell clones into GC and memory B cell responses following a 

standard protein/adjuvant immunization. First, we asked whether the ability of B cells 

uniformly exposed to the same small dose of cognate antigen to enter GC responses 

would be different during the initiation, peak, and resolution of the follicular T cell / GC B 

cell response. Our studies suggest that the initial expansion of antigen-experienced B 

cells in vivo and the generation of GC B cells do not strongly depend on the phase of 

the follicular T cell/GC response. We also confirmed histologically that B cells can enter 

GCs during various phases of follicular T cell/GC response (Fig 3.8A). However, when 

antigen-exposed B cells enter the GC response during the peak or contraction phase 

their subsequent expansion as GC B cells and their differentiation into memory-like 

GL7low class-switched B cells is reduced (Fig 3.8A). We speculate that the observed 

trend may be explained by the decreased ability of Tfh cells to support proliferation and 

survival of both older and newer GC B cell clones possibly due to the decrease in Tfh 

cell numbers and altered cytokine-mediated activity and/or the relative increase in the 

contribution of Tfr cells that negatively impact GC sustainability [95, 127, 129]. 
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We then assessed the ability of naïve antigen-specific B cells to enter the GC response 

at various times following immunization with their cognate Ag. We found that in contrast 

to B cells that pre-acquired a small amount of Ag, naïve B cells’ ability to enter both the 

GC and GL7low CSW B cell responses drops by 6-10 days following immunization. That 

correlated with significantly decreased ability of antigen-specific B cells to undergo 

“early” activation (Fig. 3.8B).  This outcome is consistent with naïve B cell access to Ag 

becoming relatively limited in vivo after a few days following the immunization, 

suggesting it is a critical factor for new antigen-specific B cell clones’ recruitment into 

the GC response. The fact that boosting immunizations promote recruitment of new 

antigen-specific B cell clones into preexisting GCs is consistent with this hypothesis 

[193]. 

 

One possibility is that over time naïve B cells’ access to antigen becomes more 

restricted. Formation of immune complexes leads to antigen redistribution onto FDCs 

[199]. While antigens persist on FDCs for prolonged periods of time supporting the GC 

response, a previous study indicated progressive loss in naïve B cells’ ability to acquire 

antigens from FDCs over time [200]. Gradual degradation of antigen and formation of 

GCs around FDCs may partially limit access of naïve B cells to FDC-presented 

antigens. Steric hindrance by the antibodies generated during the early B cell response 

in some cases may additionally limit antigen acquisition by newly arriving B cell clones 

[201]. Further studies are necessary to discriminate between these possibilities and 

thus decipher factors controlling recruitment of new B cell clones into ongoing 

immunization-induced GCs. Future studies should also address whether various 

adjuvants or antigen administration protocols affect the window of time in which new B 

cells may enter ongoing GCs following immunization. Dissecting these factors may be 

important for improving the diversity of B cell clones entering GCs following vaccinations 

and thus increasing the chances of generating broadly neutralizing antibody responses. 
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Figure 3.8: Model of new B cell entry into the GC response at various times 
after immunization.  
(A) B cells exposed to a threshold-activating dose of Ag and cognate T cell help can enter the GC 
response with comparable efficiency at various times after immunization, including the initiation, peak, 
and resolution phases of the follicular T cell response. However, their subsequent expansion in GCs 
and formation of memory cells are reduced during the Tfh/GC resolution phase, possibly due to their 
decreased exposure to Tfh cell–produced IL-21 and/or increased repression from Tfr cells. (B) 
Following immunization, naive antigen-specific B cells have a limited window of time during which they 
can enter the GC response. This is determined by antigen-dependent activation of the naive B cells 
entering into antigen-draining LNs. In mice immunized s.c. with DEL-OVA in Ribi, antigen-dependent 
activation and entry into GCs starts to decrease at 6 d.p.i. 
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Chapter 4 - Conclusions and future directions
 

In this dissertation, we have investigated several factors which influence B cell 

participation in the immune response by Tfr cells. In chapter 2, we suggest a role for the 

proinflammatory chemokine CCL3 in promoting Tfr mediated surveillance and 

suppression of GC B cells. In chapter 3, we find that antigen-dependent activation of B 

cells is the dominant factor rather than the phase of the Tfr and Tfh cell responses in 

controlling B cell entry and participation within the GC. 

 

Discussion of results from Chapter 2 

 

The study summarized in Chapter 2 suggests that CCL3 plays an important role in the 

regulation of T-dependent humoral immune response. Unimmunized WT and CCL3-KO 

have comparable GC B cells. In contrast, immunization leads to an accumulation of GC 

B cells in CCL3-KO mice. We did not observe alterations in the frequencies of 

preapoptotic or apoptotic GC B cells between WT and CCL3-KO mice. 

 

The increase in GC can be partly attributed to the accumulation of foreign-antigen 

specific GC B cells. Despite increased numbers of foreign-antigen specific cells, foreign-

antigen specific IgG1 antibodies were not increased in the primary immune response. 

This result is consistent with the similar numbers of PCs in WT and CCL3-KO mice. 

Unexpectedly, secondary immunization led to significantly increased antigen-specific 

IgG1 antibodies in WT mice but not in CCL3-KO mice (see Appendix A1, Fig. A1.A-C). 

 

In addition to the accumulation of foreign-antigen specific cells in the GCs, CCL3-KO 

mice were more likely to develop ANA responses following immunization. Hep2 staining 

patterns did not suggest that loss of CCL3 contributed significantly to the development 

of anti-dsDNA antibodies. Histological analysis of the kidneys and livers did not show 
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deposition of immune complexes or any gross anatomical changes related to 

autoimmunity in CCL3-KO mice at 40 d.p.i.  

 

This study suggests that B-cell intrinsic production of CCL3 is partly responsible for the 

dysregulation of humoral responses in CCL3-KO mice. CCL3-KO B cells were 

overrepresented, although transiently, in the GCs of mixed bone marrow chimeras at 10 

and 15 d.p.i. Additionally, transfer of CCL3-KO but not WT B cells into MD4 mice 

resulted in the development of ANAs following immunization. 

 

According to a previous study, CCL4, but not CCL3, may promote interactions between 

Tregs and B cells or DCs and that these interactions could influence the T-dependent 

humoral immune response and the development of autoimmunity [148]. However, this 

hypothesis was never directly tested in vivo. Additionally, this study did not address how 

CCL3 or CCL4 contribute to follicular T cell interactions. To address this, we first 

isolated CD4 T cells from immunized mice and analyzed their responsiveness to CCL3 

and CCL4 chemokines ex vivo. We confirmed that CCL4 could promote chemotaxis of 

Tregs but, in contrast to the previous study, found that CCL3 also promoted their 

chemotaxis. More importantly, CCL3 and CCL4 could both promote chemotaxis ex vivo. 

Many aspects of the dysregulation of the humoral immune response observed in CCL3-

KO mice are consistent with previous findings where Tfr cells were ablated or do not 

form. Based on this, we suggest that CCL3 produced by GC B cells could be important 

for their interactions with Tfr cells and for the control of GC responses.  

 

Previous microarray data suggested that CCL3 and CCL4 may be slightly upregulated 

by GC B cells in the LZ compared to the DZ. QPCR analysis of sorted GC B cells was 

able to confirm this observation. We then asked whether CCL3 promoted Tfr localization 

and recruitment into the LZ from the follicle. Unexpectedly, we found that the frequency 

of Tfr cells in the LZ of WT and CCL3-KO mice was comparable and that increased 

numbers of both Tfr and Tfh cells were found in the DZ of CCL3-KO mice. 
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Since there was no defect in Tfr localization to the GC light zone, we sought to test 

whether CCL3 may promote local interactions between GC B cells and Tfr cells. To 

address this, we developed a novel system that enabled intravital 2P imaging of Tfr cell 

migration in respect to GCs and their interactions with GC B cells in the peripheral LNs 

of mice. Analysis of Tfr cell migration in GCs 8 d.p.i. suggests that the majority of Tfr 

cells migrated along the perimeter of GCs. These Tfr cells made contacts with GC B 

cells along the outer border with only a few Tfr cells moving inside the GC. Quantitative 

analysis of interactions between foreign antigen-specific transgenic GC B cells and Tfr 

cells (derived from polyclonal, natural Tregs) suggested that Tfr cells formed more 

frequent interactions with CCL3 proficient vs. CCL3 deficient GC B cells. The observed 

effect was small but was consistent across multiple experiments. In contrast, we found 

no difference in the duration of Tfr interactions with CCL3 proficient vs. deficient GC B 

cells. 

 

For comparison, we also imaged and analyzed interactions with Tfh cells with GC B 

cells. We found that in contrast to Tfr cells, the frequency in which Tfh cells interaction 

with CCL3 proficient and deficient GC B cells is the same. 

 

We then asked whether expression of CCR5 on Tfr cells was important for Tfr cell 

contacts with CCL3-proficient GC B cells by 2P imaging. We found that CCR5 deficient 

Tfr cells did not preferentially interact with either CCL3-proficient or deficient GC B cells. 

This data is consistent with CCR5 being the predominant receptor on Tfr cells for 

sensing CCL3 produced by GC B cells. 

 

Based on the observed dysregulation of GC responses and the 2P imaging data, we 

suggest a model wherein CCL3 promotes direct sampling and regulation of GC B cells 

by Tfr cells in vivo. In accord with this model, transient ablation of Tregs (including Tfr 

cells) during the peak of the GC response resulted in increased accumulation of CCL3 

proficient but not deficient GC B cells. 
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Altogether, my data provides in vivo evidence suggesting that CCL3 produced by GC B 

cells and CCR5 on Tfr cells promote Tfr – GC B cell interactions and is important for 

control of GC responses. Moreover, this data is consistent with direct Tfr-mediated 

suppression of GC B cells in vivo. Thus, we show that, in addition to acting on Tfh cells, 

Tfr cells can directly suppress GC B cells in a contact-dependent fashion, ensuring 

robust control of GC responses.  

 

Future directions for chapter 2:  

 

We suggest a role for CCL3 in mediating control over the GC in a Tfr-dependent 

manner. However, the chemokine and chemokine receptor system is noted for its 

redundancy [152]. CCL4 expression is also elevated in activated B cells, as well as in 

LZ GC B cells. Previous studies suggested that CCL4 promotes Treg migration and is 

important for control of GC responses [148], We found that Tfr cells undergo 

chemotaxis to both CCL3 and CCL4 ex vivo. It is therefore likely that both CCL3 and 

CCL4 chemokines secreted by GC B cells may promote their interactions with Tfr cells. 

While in our initial studies we found no increase in GC responses in WT or CCL3-KO 

mice treated with anti-CCL4 antibodies (data not shown), future studies should examine 

various clones of CCL4-neutralizing Abs to determine whether they may induce or 

contribute to dysregulation of GC responses in vivo.  The antibodies efficiently 

neutralizing CCL4 in vivo should then be tested in conjunction with Tfr intravital imaging 

system to determine whether CCL4 contributes to GC B cell scanning by Tfr cells and 

together with CCL3 promote negative control of GC B cells by Tfr cells. 

 

The intravital imaging experiments enabled us to suggest that GC B cell-secreted CCL3 

promotes their direct contacts with Tfr cells. However, we could detect only small 

differences in Tfr contact frequencies with CCL3 proficient vs. deficient GC B cells (10-

25%). Interestingly, single cell qPCR analysis of B cell subsets that I performed 

suggests that only a minor fraction of LZ GC B cells have significant upregulation in 

CCL3/4 expression (Appendix II, Figure A1). Our 2P imaging system does not allow 

discrimination between CCL3/4hi and CCL3/4low GC B cells. Therefore, our interaction 
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data may significantly underestimate Tfr interaction frequency with CCL3/4hi GC B cells. 

In the future, this may be addressed using a fluorescent CCL3 reporter or a CCL3 

overexpression system to determine how the amount of CCL3 being expressed by GC 

B cells relates to their interaction frequency with Tfr cells.  

 

Another direction that has not been addressed in my thesis work is the nature of 

molecular signals that trigger proinflammatory chemokine expression in LZ GC B cells. 

It is tempting to suggest that the few LZ GC B cells that upregulate CCL3/4 expression 

are GC B cells that have undergone positive selection in the LZ and therefore 

specifically require attention of Tfr cells. Both Ag and T cell help may be available for 

GC B cells in the LZ, and expression of CCL3/4 chemokines has been shown to be 

upregulated due to BCR cross-linking or through CD40 stimulation of B cells [148, 149, 

202]. It is possible that either signal alone is sufficient to trigger proinflammatory 

chemokines or that both are required for high levels of CCL3/4 expression [203]. It is 

also possible that other signals can promote CCL3/4 upregulation in GC B cells, such 

as Toll-like receptor ligands. TLRs play an important role in humoral immune response 

dysregulation [204, 205]. Therefore, it would be interesting to assess whether 

acquisition of TLR7 or TLR9 ligand-linked antigens promotes increased production of 

CCL3/4 by GC B cells and thus increased attention of Tfr cells. Of note, Tfr-mediated 

suppression of GC B cells that acquire TLR ligands may contribute to better control of B 

cell clones specific to anti-nuclear antigens. 

 

While this work provides evidence for the role of CCL3 in Tfr-mediated repression of 

foreign antigen-specific GC B cells, how it controls ANA responses remains an opened 

question. Based on the development of ANA responses in MD4 mice transferred with 

CCL3-KO B cells, we suggest that this effect is B cell intrinsic. However, whether CCL3 

expression is required during B cell development in the bone marrow, shortly after B cell 

activation, or within the GC remains unclear. In the future, conditional CCL3-KO mouse 

model may be instrumental in addressing the stage of B cell development or response 

when CCL3 expression is required for better control of ANA responses. 
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Tfr cells are largely thought to be derived from natural Tregs and thus specific to self-

antigens although under certain experimental conditions foreign antigen Tfr cells can 

arise [127, 129, 135, 137]. Cognate B cells and Tfh cells can engage in interactions with 

durations much longer than noncognate cells [31, 36]. Within the GC, it is believed that 

productive interactions require durations lasting longer than 5-10 minutes [36]. 

Interestingly, we observed GC B cell interactions with “natural” Tfr cells or that lasted 

over five minutes. However, we did not detect any Tfr-GC B cell interactions that lasted 

longer than 7.5 minutes. While no definitive conclusions can be made, it is possible that 

5-7.5 minute long interactions represent Tfr cells that are weakly reactive to foreign 

antigen or B cells which inadvertently acquired self-antigen. Future studies will need to 

address how Tfr and GC B cells interact with one another when GC B cells are known 

to present cognate antigen, and determine how prevalent or important cognate GC-Tfr 

cell interactions are in vivo.  

 

Conclusions from chapter 3 

 

GCs can be seeded by 50-200 unique B cell clones by 6 days post immunization [67]. 

Entry into the GC may continue past this point as newly activated B cells can be seen 

entering the GC [68]. However, these analyses were done coinciding with either the 

initiation or just prior to the peak of GC B cell responses when Tfr cell numbers are only 

beginning to ramp up. Therefore, it is unclear whether activated B cells could 

continuously seed the GC as the immune response progressed and follicular T cell 

numbers changed. 

 

In chapter 3, we investigated factors that mediate continuous B cell recruitment into an 

immunization-induced immune response. The purpose of the study was to determine 

whether different phases of the GC would affect recently activated B cell recruitment 

into ongoing GCs. While highly dominant prior to and during the peak, Tfh cell numbers 

decrease over time. In contrast, Tfr cell numbers slowly increase. In Chapter 2, we have 

suggested that Tfr cells can act directly on GC B cells to limit their participation within 

the GC. However, whether Tfr cells directly interact with newly arriving B cells in the 



79 
 

same manner as they do with GC B cells and limit their recruitment into GCs has been 

unclear. In addition, whether Tfr cell interactions with activated B cells may change over 

time as Tfr cells become more prevalent was not known.  

 

Published work also suggested that Tfr cells alter cytokine production in Tfh cells which 

our results and others have suggested change over time [131]. Therefore, the role of Tfr 

cells in modulating newly arriving B cell fate and different phases of the GC response 

either through direct interactions or through Tfh cells has not been previously assessed. 

Analysis of these factors is important for increasing the efficiency of existing vaccines 

and increasing diversity of B cell clones recruited into humoral immune response. 

 

We found that naïve antigen specific B cells have impaired recruitment into GC 

responses as early as 6 days post immunization. However, exposure to a threshold 

activation dose of antigen was sufficient to rescue B cell participation. The initial 

proliferation of antigen-exposed B cells and recruitment into the GCs was unaffected by 

the phase of GC or follicular T cell response. However, once in the GCs, recently 

activated B cells that joined the response during its peak or contraction phase 

proliferated less and formed reduced numbers of class-switched memory cells. Overall, 

these data suggest that antigen-dependent activation is the critical factor for initial 

recruitment of B cells into the ongoing immunization-induced GC response, but other 

factors within the GC contribute to their further proliferation and differentiation. Based on 

this study we suggest that the frequency of Tfr cells is not likely to be critical for the 

recruitment of new B cell clones into the ongoing GC response. However, it may still be 

important for proliferation and differentiation of the newly formed GC B cells. 

 

Future directions for chapter 3 

 

Our study made use of a single antigen stimulation condition with a large number of B 

cells being specific to an identical epitope. In reality, B cell responses to foreign antigen 

are highly diverse, consisting of 50-200 unique clones in each GC [67]. Increased 

diversity is likely to lead to enhanced protection through increased breadth of antibody 



80 
 

epitope specificities. However, the potential to recruit B cells into the response with 

cross-reactive specificities to self-antigen may increase with each additional unique 

clone being recruited. It has been shown previously that cross-reactive B cells can 

participate within GCs [206]. Interestingly, their cross reactivity can be selected against 

via affinity maturation thereby increasing clonal diversity and keeping self-tolerance 

intact [206]. However, it is not known how early these types of B cells are recruited into 

the response. Cross-reactive B cell recruited earlier would face less Tfr-mediated 

suppression within the GC and potentially have more rounds of SHM to increase their 

affinity towards foreign antigen. Our data suggested that antigen alone is sufficient for 

the recruitment of B cells into the GC yet that antigen is not normally thought of as being 

able to be recognized by Tfr cells. This can be addressed by pulsing our foreign 

antigen-specific B cells with foreign antigen conjugated with a self-peptide. We can then 

assess recruitment of either B cells pulsed with foreign antigen alone or the self-peptide 

conjugated antigen. If Tfr cells block the entry of recently activated clones through a self 

antigen-specific mechanism, then recruitment of B cells that received the self-peptide 

conjugated to foreign antigen would be diminished compared to those only pulsed with 

foreign antigen. 

 

We and others have found that Tfh cells alter their cytokine production from IL-21+ cells 

to IFNγ (or IL-4) cells [95]. It is possible that the reason we see differences in 

participation of the recruited B cells within the GC between the initiation and peak vs. 

the contraction phase is a result of altered cytokine production by Tfh cells. 

Interestingly, Tfr have been implicated in changing the levels of cytokine production in 

Tfh cells directly ex vivo and evidence exists for this function in vivo. However, those 

studies did not look at the kinetics of cytokine production by Tfh cells. Therefore, it is 

possible that Tfr cells indirectly regulate GC B cell participation through alterations in 

Tfh cell cytokine production profile. This question can be addressed using Tfr-deficient 

mouse models and kinetically analyzing Tfh cytokine production. If indeed Tfr cells can 

mediate the switch in cytokine production it would suggest that Tfr control the fate of GC 

B cells through Tfh cells. 
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Our finding that naïve B cells, but not antigen-pulsed B cells, have reduced chances of 

participating in ongoing responses past 6 days post immunization suggests that antigen 

acquisition may be the limiting factor in B cell recruitment. One factor that may 

contribute to the loss of available antigen is its sequestration by immune complexes 

[199]. Immune complexes are deposited on FDCs within the GC either through FcγRIIB 

or complement receptors (such as CD35)[199, 207]. Immune complexes may also bind 

to FcγRIIB on B cells and prevent activation of other antigen specific clones [208]. Both 

factors may be responsible for the loss in GC participation of naïve B cells. This may be 

addressed by transferring FcγRIIB deficient naïve B cells into immunized mice at 

various time points. If inhibitory Fc receptors on B cells are playing a role, then the 

participation windows of FcγRIIB -KO B cells should be increased relative to WT B cells. 

Mixed bone marrow chimeras wherein FcγRIIB-KO mice are reconstituted with WT 

bone marrow would allow one to address the role of FcγRIIB on FDCs in limiting 

recruitment of newly activated B cells. 

 

Final thoughts 

 

The findings from this thesis answer important and fundamental questions about how 

Tfr cells regulate B cell responses. We found that while Tfr cells do not appear to 

prevent the recruitment of foreign antigen-specific B cells into the T-dependent humoral 

response, but are critical in directly controlling B cells within the GCs. Efficient 

regulation of GC B cells was dependent on their intrinsic expression of CCL3 which 

potentiated Tfr contacts through CCR5. 

 

These results leave open the most fundamental and unresolved question of Tfr cell 

biology: do Tfr cells regulate humoral responses in an antigen-specific manner? Our 

studies were not designed to address this question but nonetheless provide insight into 

the antigen-dependency of Tfr cells. Given the data presented in Chapter 2, one could 

hypothesize that Tfr have an ability to suppress B cells within the GC in both an antigen-

dependent and -independent manner. We also observed that despite developing from 

polyclonal Tregs, Tfr cells could engage in contact durations of 5-7.5 minutes with 
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antigen-specific B cells. This finding is interesting given that it is believed that contact 

durations over 5 minutes between Tfh cells and GC B cells are considered productive 

[36, 108, 116]. Our imaging studies could not address whether active signaling occurred 

between Tfr and GC B cell pairs that underwent durable interactions. Additionally, we 

cannot preclude the ability of foreign-antigen specific B cells to either a) acquire self-

antigen or b) develop cross-reactive affinities. These factors may promote durable 

interactions between foreign antigen-specific cells and self-antigen-specific Tfr cells.  

 

In Chapter 3, we pulsed antigen-specific B cells ex vivo with foreign antigen and found 

that Tfr cell numbers or their ratio to Tfh cells did not make a difference towards their 

recruitment. However, since foreign antigen-specific B cells were pulsed exclusively 

with foreign antigen and were unable to acquire additional antigen within the GC 

through their BCR, Tfr cells may simply not be able to suppress these B cells well. 

Alternatively, Tfr cells may simply be ignorant of ongoing recruitment of B cells into the 

GC and only respond to GC B cells that express certain unknown GC-acquired 

molecules. While we know BCR signaling can trigger the expression of CCL3, recently 

recruited B cells may not currently be secreting the chemokine by the time they arrive 

into the GC. However, once in the GC, some unknown stimuli can promote CCL3 

expression by GC B cells and then promote their interactions with Tfr cells.  

 

Overall, my thesis findings, along with a number of reported observations, allow us to 

develop a model of Tfr mediated regulation of the GC. Irrespective of their cross 

reactivity to self, B cells that are activated via foreign antigen are capable of seeding or 

being recruited into GCs. Cross-reactive GC B cells that were recruited early can 

mutate away from self-reactivity and increase their foreign antigen affinity. An unknown 

mechanism, possibly BCR cross-linking, triggers the expression of CCL3 within GC B 

cells. Tfr cells sample CCL3-secreting B cells and potentially suppress them directly. 

However, these interactions may promote further differentiation or proliferation of Tfr 

cells and this may be enhanced during interactions with cross-reactive GC B cells. The 

increase in Tfr numbers may also affect cytokine production by Tfh cells either directly 

or indirectly. This in turn affects further participation within the GC by GC B cells – 
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regardless of when they were recruited or their specificity. This model assumes a 

constant supply of foreign antigen while, in most physiological circumstances, foreign 

antigen is often limiting. However, self-antigen is not limiting. This model posits an 

interesting feedback loop wherein Tfr could short-circuit GC reactions provided enough 

self-reactive or cross-reactive B cells were recruited into the GC. 

 

In conclusion, my thesis work has identified that CCL3 can promote the control of T 

dependent humoral responses by Tfr cells. Tfr cells can directly interaction with GC B 

cells and we believe that these interactions are responsible for some of their 

suppressive effects in vivo. While not tested directly, it is likely Tfr cells undergo cognate 

interactions similar to Tfh cells when presented with cognate antigen. The 

understanding of Tfr cell biology may prove critical in understanding the causes of 

autoimmune diseases in humans. We hope that these studies will promote further 

interest into understanding the molecular and cellular mechanisms of GC regulation. 
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Appendix A – Supplementary Information for Chapter 2
 
Appendix A.1 – Secondary Humoral Responses in CCL3-KO Mice 

 
A hallmark of the adaptive immune system is the generation of memory cells. Memory 

cells enable the rapid clearance of pathogens and is a goal of vaccine development. As 

an extension to the work performed in Fig. 2 and Fig. 3, we addressed if CCL3 could 

affect the memory recall response. WT and CCL3-KO littermate mice were immunized 

with NP-KLH in Ribi and serum draws were taken at 0, 10, 15, and 20 days. On day 24, 

mice were boosted and a final serum draw occurred on day 28. Despite greater 

numbers of GC B cells in CCL3-KO mice, there was no increase in either low affinity or 

high affinity NP-specific IgG1 antibodies during the primary response (Fig. A.1A-B). In 

contrast to the primary response, antigen boosting significantly increased the titers of 

NP-specific IgG1 in WT but not CCL3-KO mice (Fig. A.1A-B). The overall affinity of the 

responding B cells was not affected by CCL3 (Fig. A.1C). This piece of data suggests 

that CCL3 may play a role in memory B cell responses. 

Figure A.1: NP-specific IgG1 recall response. 
A,B, ELISA of NP-specific IgG1 titers that have high affinity (NP8-binding) (A) and overall affinity (NP41-

binding) (B) to NP from mice immunized with 50 µg NP-KLH in Ribi and boosted with the same dose at 
day 24. C, affinity maturation as measured by the NP8- to NP41-binding ratio. Black line with filled in 
circles, WT mice. Dashed line with open circles, CCL3-KO mice. *, P < 0.05, Student’s t-test. 
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Appendix A.2 – Heterogenous expression of CCL3 and CCL4 in LZ GC B cells 

 

We hypothesize that certain events such as antigen recognition, provision of T cell help, 

or stimulation via pattern recognition receptors within the LZ may trigger the expression 

of CCL3 and CCL4 in GC B cells and promote efficient Tfr mediated surveillance of B 

cells. If this were true, then only a fraction of B cells within the LZ might express 

relatively high levels of CCL3 and CCL4. To test this hypothesis, we performed qPCR 

analysis of CCL3, CCL4, and B2m on single cell sorted centrocytes, centroblasts, and 

naïve B cells. We performed two independent experiments and in both we observed 

that a few centrocytes, but not centroblasts or naïve B cells, expressed noticeably 

higher levels of CCL3 and CCL4 compared to the rest of the population (Fig. A.2A). We 

used an alternative normalization gene, HPRT1, to confirm our results with B2m. All 

cells which showed higher expression of CCL3 or CCL4 relative to B2m showed similar 

increases relative to HPRT1 (Fig. A.2B). Maximum likelihood analysis was then done to 

determine if the observed data was likely to derive from two or more separate 

distributions. We found that for the two experiments, the data is more likely to derive 

from at least two separate populations (Fig A.2C, one experiment shown). This finding 

suggests that signals that induce CCL3 and CCL4 expression in centrocytes is relatively 

rare. Interestingly, the fraction of centrocytes expressing higher levels of CCL3 and 

CCL4 is around 5-10%, a proportion similar to the fraction of centrocytes which can be 

observed to migrate from the light zone to the dark zone.  
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Figure A.2: Single qPCR analysis of centrocytes, centroblasts, and naïve B cells. 
A-C, Single cell qPCR of centrocytes, centroblasts, and naïve B cells sorted from mice immunized with 

OVA in Ribi on day 10. A, QPCR of CCL3 (x axis) and CCL4 (y axis) relative to B2m for centrocytes, 
centroblasts, and naïve B cells. Centrocytes with visually higher expression of either CCL3 or CCL4 are 
labeled with their ID number. B, QPCR of CCL3 and CCL4 relative to HPRT1 for centrocytes. Red 
numbering indicates cells which had higher expression of CCL3 or CCL4 relative to HPRT1 but not B2m. 
C, Maximum likelihood distributions of centrocytes in (A, top) from either one distribution (top) or two 
distributions (bottom). Red dots indicate low expressing cells. Green dots indicate high expressing cells. 
Numbers indicate cell ID number.  
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Appendix A.3 – Treg-mediated CCL3-dependent effects on B cell participation at 

different stages of the GC response 

 

We addressed how Treg-mediated, CCL3-dependent control over B cell participation 

within the GC changed as the response contracts. To test this, we transferred HyHEL10 

B cells as described in Fig 2.9 into Foxp3DTR. Mice were immunized with DEL-OVA and 

at 12 d.p.i. were treated with PBS or DTx. Three days later, the participation of WT and 

CCL3-KO HyHEL10 B cells within the GC was analyzed. In contrast to the mixed bone 

marrow chimeras (Fig. 2.8), WT HyHEL10 B cells were found to dominate the GC 

relative to CCL3-KO HyHEL10 B cells during contraction phase of the GC (Fig. A.3A-C). 

Furthermore, treatment of DTx did not appear to benefit the participation of WT 

HyHEL10 B cells since the ratio of CCL3–/– to CCL3+/+ HyHEL10 B cells within the GC 

increased due a slight expansion of the numbers of CCL3–/– HyHEL10 B cells. 

Combined with Fig. 2.8, these data suggest that CCL3 may play different roles in the 

participation of GC B cells depending on the phase of the GC. 

 

Figure A.3: CCL3 promotes Ag specific B cell participation during the 
contraction of GC responses 
A-C, Flow cytometry analysis of HyHEL10 cell participation in the GC at 15 d.p.i. in Foxp3DTR 
recipient mice treated with PBS or DTx 12 d.p.i. A, ratio of CCL3–/– to CCL3+/+ HyHEL10 GC B cells 
(CD19+CD8-CD4-FashighGL7high IgDlow) in PBS or DTx treated mice. B, C, Flow cytometry analysis of 
total GC numbers per draining ILNs. The fractions of CCL3+/+ and CCL3–/– HyHEL10 GC B cells of 
total GCs (B), and the total numbers of HyHEL10 GC B cells of each kind per draining ILNs (C). Each 
dot represents a single mouse and paired analyses are indicated using a solid black line. 3 
independent experiments. (*, P<0.05. Two-tailed, Student’s t-test was used in A. Paired t-test used in 
B. ANOVA followed by Dunnet’s multiple comparison test with one-tailed p values reported for C.) 
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