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ABSTRACT

Results from a research study concerned with developing an experimentally validated

computational tool for predicting the progressive damage and failure response of 3D

woven textile composites (3DWTCs) in a multiscale framework are presented. There

are different constituents within the textile composite; fiber tows, including carbon,

glass and kevlar. The dry fiber tows are infused with SC-15 polymer matrix into

a single composite material. The 3DWTCs are made through a 3D textile weaving

process. Three different versions of hybridized architectures are examined to deter-

mine the progression of failure under tensile and compressive loading. The different

types of 3DWTCs are compared against one another to understand the benefits of

hybridization and the resulting performance enhancements. The scope of the project

also includes conducting a micro-CT analysis to study the effect of microstructure

imperfections on predicting the progressive damage and failure response, using a

two-scale computational mechanics framework. The micro-CT analysis delivers infor-

mation on the size of a representative unit cell (RUC), the fiber tows cross sectional

details and the porosity (if any) within the composite. These microstructure scale

inputs are the building blocks for 3D geometric modeling and finite element (FE)

analysis of unit cell (or a collection of these) at a global scale. The objective of this

work is to perform a multiscale investigation to study the progressive damage and

failure at different length scales. In the computational modeling, the macroscale finite

element analysis (FEA) is carried out at the representative volume element (RVE)

and coupon level, while the micromechanics analysis is implemented simultaneously

at the subscale level using material properties of the constituents (fiber and matrix)

as input. The subscale micromechanics analysis uses the N-layers concentric cylinder

model (NCYL) to compute the local fields in the fiber and matrix cylinders. The

influence of matrix microdamage at the subscale leads to progressive degradation of

fiber tow stiffness at the macroscale, modeled using a secant moduli approach, re-

sulting in the pre-peak nonlinear response. The post-peak strain softening response

xvi



resulting from different failure modes like fiber tow rupture, tow splitting and matrix

cracking in fiber tow, as well as inside the volume of textile, are modeled using a

mesh-objective smeared crack approach (SCA). The FE models, in addition to being

generated using nominally perfect geometry, are also generated directly from Micro-

CT data using the software tool SIMPLEWARE. The FE mesh generated using this

tool is a replication of real in-situ imperfection in the structure. A study on model-

ing the geometric imperfections and its effect on global stress-strain response of the

structure is carried out both at RVE and Coupon level as a part of this research. The

use of analytical solutions at the fiber-matrix scale in a multiscale framework delivers

a distinct computational advantage in the damage and failure analysis, where high

fidelity and computational efficiency are both gained at the same time.
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CHAPTER 1

Introduction

1.1 Motivation

Textile composites have widespread use in aerospace, automobile, civil and defense

industries due to their better structural properties tailoring capability and superior

mechanical performance, along with high damage tolerance, high impact resistance

and low fabrication cost. In the large family of textile composites, three dimensional

woven textile composites (3DWTCs) are recognized as a potential high performance

composite material and possess a great advantage of high resistance to delamina-

tion, as the latter is a common mode of failure in conventional laminated composites.

The mechanical performance can be enhanced due to reinforcement in the thickness

direction and the in-plane properties are significantly improved due to attempts at

aligning the in-plane fiber tows. This unique signature is a characteristic of the 3D

textile weaving process but at significantly reduced manufacturing cost and time,

compared to traditional pre-preg based materials. The design methods adopted for

3DWTC structures are still based on testing and therefore a high fidelity but com-

putationally efficient model is much needed. Such a model should be based on the

physics of material response and failure, using constitutive model properties that

can be measured independently through a set of coupon level tests. However, the

hierarchical nature of composites makes the characterization and modeling of such

materials a great challenge. Most of the damage and failure events evolve at the

constituent material scale with little knowledge on the in-situ constituent properties.

Predictions from computational models, therefore, may encompass a high level of

uncertainty. For large-scale structural analysis, homogenization at the macroscale is

essential to achieve computational efficiency, whereas the model also needs to consider

the influence of the underlying microstructure.

The progressive damage and failure analysis of composites has proven to be a
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challenging problem over the years, and reliable computational tools are indispensable

to accurately predict the strength and the major failure modes, simultaneously. The

mechanics of composite materials can be described well in a multiscale framework as

most of the failure phenomena at the global scale are dependent on constituent level

properties at the sub-scale. The available mean field theories for failure analysis can

be used for the prediction of homogenized elastic properties, but they are not able to

capture the local stress and strain gradients in the matrix layers or the fiber-matrix

interface. As a result, these models yield an overestimate of the composite nonlinear

behavior. Because damage and failure are governed by extreme properties of the fields

and not necessarily by the average properties, these methods find limited applications

to progressive damage development and failure analysis of composite structures.

Multiscale modeling is a suitable and efficient methodology for progressive dam-

age and failure analysis of 3DWTC, where information is shared across different

length scales. The proposed computational scheme should be able to bridge the gap

between micro and macro scale in a cost effective way. In the literature, a num-

ber of micromechanics models have been developed. Zhang and Waas [1] proposed

a micromechanics-based two-scale model which is able to predict the nonlinear re-

sponse of unidirectional composites. Their proposed micromechanics analysis uses

the analytical solutions derived from the concentric cylinder model along with the

generalized self-consistent model to find the effective properties of the unidirectional

fiber reinforced composite and also the stress and strain fields within the fiber and

matrix. The composite material is represented by an inner fiber core and an outer

matrix annulus. In this research, the 2-CYL fiber-matrix concentric cylinder model

is extended into a concentric fiber and any number of (N-1) matrix layers in general,

keeping the volume fraction constant, referred to as the N-layer concentric cylinder

micromechanics model (NCYL), which can analytically calculate the strain and stress

field within the fiber and matrix cylinders for a given applied remote composite strain

field, acting on the outer boundary of the matrix cylinder. The spatial variation of

strain and stress fields within the cylinder are the key determinants for progressive

damage and failure analysis of composite structures and hence, these fields need to

be predicted with high accuracy. The advantage of the NCYL model is that the ma-

trix strain and stress fields can be found in a discrete manner for each layer and the

evolution of damage can be localized at a particular layer of the matrix. These re-

sults are used at the sub-scale in a 2-scale analysis to calculate the effective nonlinear

composite response at the macro-scale. Because the sub-scale computation relies on

an analytical solution, a distinct computational advantage in composite progressive
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damage and failure analysis is evident, compared against a fully computational model

at each scale.

1.2 Research objective and thesis outline

Three dimensional, orthogonal woven composites are a class of 3DWTC composite

structures containing a set of fiber tows spreading in all three mutually perpendicular

directions (x, y and z-axes). Mechanical properties are highly dependent on the

geometry of reinforcements and their complex architectures. 3DWTC is manufactured

by laying up the warp and weft fiber layers and consequently running a Z-fiber in

the thickness direction to bind the in-plane layers together. A matrix material is

impregnated into these complex woven lay-ups and cured under certain condition to

get the woven solid structure. The interlacing fiber tows inside the matrix pocket

introduce much complex microstructure in the weaves, which makes the modeling

and failure analysis of the woven composites really challenging. The topology and

architecture of the weaves need to be modeled precisely to obtain accurate failure

predictions, and multiple material length scales should be considered to capture the

complex failure mechanisms which initiate at the fiber-matrix scale.

The purpose of this research is to establish a validated multiscale computational

framework to predict the progressive damage and failure response of these complex

3DWTC using constitutive property data measured from coupon level tests. The

pre-peak nonlinear behavior of the composite is modeled using the NCYL microme-

chanics model. The detaliled explanation for the NCYL model and the development

of the matrix nonlinear constitutive model for N=2, 3 and 4 cylinders are provided

in Chapter 2. The post-peak failure response of the composite is modeled using

smeared crack approach (SCA), where the stress-strain formulation of the contin-

uum is related to the non-continuum traction-separation law through a characteristic

length, henceforth making it mesh objective. Various fiber and matrix failure modes

are included in this study and their implementation in the SCA are explained in

Chapter 3. The material system (fiber and matrix materials) used in manufacturing

these hybrid complex architectures are detailed in Chapter 4. Although, there are

many forms of 3D woven composite with the variations of Z-fiber depth in thickness

direction, we will focus here mainly on three different configurations. The microstruc-

ture characterization studies, details of the modeling strategy including imperfections

and construction of the finite element (FE) model directly from the micro-CT data,

are presented in Chapter 4. The predictive capability of the proposed method is eval-
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uated by comparing the computational results of various hybrid textile configurations

with experiment for tensile loading conditions in Chapter 5. The detailed experimen-

tal set-up for compression test, effect of hybridization on the compressive response

and the coupon level modeling and simulations to validate the experimental results

are discussed in Chapter 6, followed by conclusions in Chapter 7.
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CHAPTER 2

N-Layer concentric cylinder model

(NCYL): an extended

micromechanics-based multiscale model

for nonlinear composites

2.1 Introduction

A validated multi-scale computational mechanics framework for progressive failure

modeling of composite structures is developed. Zhang and Waas [1] proposed a mi-

cromechanics based two-scale multiscale model which is able to predict the nonlinear

response of a composite. Their proposed micromechanics analysis uses the analytical

solutions derived from the concentric cylinder model (CCM) along with the general-

ized self-consistent model (GSCM) to find the effective properties of the unidirectional

fiber reinforced composites, which are dependent on constituent level fiber-matrix me-

chanical properties and fiber volume fraction. In this model, the composite material

is represented by an inner fiber core and an outer matrix annulus. It should be

noted that the 2-CYL fiber-matrix concentric cylinder micromechanics model can be

extended to a concentric fiber and any number of (N-1) matrix layers in general, keep-

ing the volume fraction constant, hence called the N-cylinder model (NCYL), which

can analytically calculate the strain and stress field within the fiber and matrix cylin-

ders for a given applied remote composite strain field, acting on the outer boundary

of the matrix cylinder. The spatial variation of strain and stress fields within the

cylinder are the key determinants for progressive damage and failure analysis of com-

posite structures and hence, they need to be predicted accurately. The advantage of

the NCYL concentric cylinder model is that the matrix strain and stress fields can

be found in a discrete manner for each layer and the evolution of damage can be
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localized at a particular layer of matrix. These results can be used at the sub-scale

in a multi-scale analysis to calculate the effective nonlinear composite response at a

global scale. This work is based on a full analytical solution and hence, it delivers a

distinct computational advantage in composite failure analysis. That is, high fidelity

and computational efficiency are gained at the same time.

Obtaining the analytical elasticity solutions of strain and stress fields of composite

structures has been a research area of interest for the last few decades as these ma-

terials have received widespread applications in the aerospace industry as lightweight

materials with enhanced mechanical properties. The prediction of homogenized me-

chanical properties of unidirectional (UD) composites has drawn the attention of many

researchers for a long time and various well known micromechanics models have been

proposed in the literature to evaluate the elastic properties of UD composites. The

analysis at the scale of fiber and matrix is referred to as micromechanics, which can

be categorized as follows: (1) Phenomenological models such as the Voigt [2] and

Reuss [3] models. The Voigt model is also known as the rule of mixture (ROM)

which is based on an iso-strain assumption, while the Reuss model is known as the

inverse rule of mixture (IROM) model, which is based on an iso-stress assumption.

(2) Semi-empirical models are known to correct the ROM model by introducing cor-

rection factors. The modified rule of mixture (MROM) models and the Halpin-Tsai

model [4] fall under this category. (3) Elasticity approach models include the concen-

tric cylinder model (CCM), proposed by Hashin and Rosen [5], where the composite

material is represented by an inner fiber core and an outer matrix annulus. In this

model, it is assumed that the entire composite is composed of concentric cylinders,

which vary in size, but the ratio of the fiber to the matrix radius is constant for each

concentric cylinder in order to maintain the same volume fraction. Christensen and

Lo proposed a generalized self-consistent model [6] in order to evaluate the transverse

shear modulus G23 in closed form. Other homogenization methods like Mori-Tanaka

model (M-T), developed by Mori and Tanaka [7] are inclusion models, where fibers

are simulated by inclusions embedded in a homogeneous medium. Tandon and Weng

[8] studied ellipsoidal inclusions of different aspect ratios and used the M-T model to

arrive at expressions for the five independent elastic constants for a fiber reinforced

lamina. The self-consistent model (S-C) has been proposed by Hill [9] and Budiansky

[10] to predict the elastic properties of composite materials reinforced by isotropic

spherical particles, and later this model was applied to UD composites with long

fibers. The S-C model leads to an iterative method that gives the stiffness matrix

of the homogenized medium. A new micromechanics model has been proposed by
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Huang et al. [11, 12] recently to predict the stiffness and strength of UD composites.

Numerical FE modeling is another widely used reliable tool to predict the me-

chanical properties of composites, but it includes many aspects, such as fiber pack-

ing definition, geometrical dimensions, definition of RVE, definition of appropriate

boundary conditions, and explicit meshing of fiber and matrix, all of which add to

computational time. The computational cost in numerical FE multi-scale models,

where each scale is solved numerically, represents a major disadvantage. Studies by

Li [13] and Sun and Vaidhya [14] discuss the effects of boundary conditions in the use

of different types of representative volume elements used in multi-scale analysis.

A micromechanics based multiscale model for a two-phase fiber and matrix system

has been proposed by Zhang and Waas [1], which establishes a multiscale computa-

tional framework for nonlinear composites, in which the subscale micromechanical

analysis is carried out using an analytical solution that is derived from the CCM in

conjunction with the extended GSCM. The full analytical micromechanics model is

able to capture the stress and strain gradients in the constituent materials when the

composite material is subjected to mechanical loading. The evolution of the com-

posite effective nonlinear stress versus strain response is dictated through two scalar

variables that correspond to matrix microdamage determined at the subscale mi-

cromechanical analysis. The accuracy of the model is assessed by comparison against

a corresponding 3D FEA.

The purpose of this research is to generalize the above mentioned analytical

method [1] to any number of matrix layers and resolve the local fields for N-matrix

cylinders, so that the development of damage and failure can be captured in a more

refined manner, analytically. That is, within a multiscale computational framework

for nonlinear composites, the evolution of localized damage is predicted for the dis-

crete layers of matrix and not for the whole volume of matrix, as done earlier in

Reference [1]. In this analysis, the number of layers of the concentric cylinder are

arbitrary, with each layer having a different thickness. A composite cylinder with

multiple number of matrix layers is considered in such a way that, each layer cor-

responds to a different volume. This approach is unique and novel, and is effective

for progressive damage and failure analysis in a multiscale framework. The approach

is validated by comparing with previously known solutions for N=2 cylinders and

against fully 3D FE solutions.

7



2.2 Material system

A multi-layered concentric cylinder model can be used to represent the microstructure

of a UD lamina in a prepreg tape-based laminated composite or a fiber tow in textile

composites. The fiber packing inside the tow can be assumed as (1) Hexagonal

array in the transverse plane where the fibers are of identical cross section or (2)

Random array where the fibers are of different diameters but the volume fraction

is preserved constant. In both the cases, the fibers are assumed to be infinitely

long and the effective response of the composite is macroscopically homogeneous and

transversely isotropic, requiring five independent constants to form the composite

stiffness tensor. Though the choice of these elastic constants are not unique, the axial

modulus, Ec
1, the axial Poisson’s ratio, νc12, the axial shear modulus, Gc

12, the plane-

strain bulk modulus, Kc
23 and the transverse shear modulus, Gc

23, are used throughout

the research. Therefore, the stiffness tensor for a transversely isotropic material can

be written in terms of these elastic constants as,

Cc =



Ec
1 + 4νc

2

12K
c
23 2νc12K

c
23 2νc12K

c
23 0 0 0

2νc12K
c
23 Kc

23 +Gc
23 Kc

23 −Gc
23 0 0 0

2νc12K
c
23 Kc

23 −Gc
23 Kc

23 +Gc
23 0 0 0

0 0 0 Gc
23 0 0

0 0 0 0 Gc
12 0

0 0 0 0 0 Gc
12


(2.1)

Other important constants, including the transverse modulus Ec
2 and transverse

Poisson’s ratio, νc23 can be computed as

Ec
2 =

4Gc
23K

c
23

Kc
23 + ψGc

23

(2.2)

νc23 =
Kc

23 − ψGc
23

Kc
23 + ψGc

23

(2.3)

where ,

ψ = 1 +
4Kc

23ν
c2

12

Ec
1
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Figure 2.1: Concentric N-cylinders assembly.

A representative multi-layered concentric cylinder unit with fiber radius R1 and

matrix outer radius RN is shown in Figure 2.1, and the resulting fiber volume fraction

is νf =
R2

1

R2
N

. We consider a transversely isotropic fiber cylinder surrounded by (N-1)

concentric isotropic matrix layers (Rk−1 ≤ r ≤ Rk, k = 2, ..., N). In this work, we

will refer to both Cartesian coordinates (x1, x2, x3) and Polar coordinates (r, θ, x) as

shown in Figure 2.1.

In the present study, the fiber is assumed to be linear elastic, transversely isotropic,

with “1” designating its longitudinal direction. Its stiffness tensor, Cf , can be written

in terms of fiber elastic properties as Equation (2.1) by replacing the superscript “c”

with “f.” In a shorthand notation, the stiffness matrix for the fiber is

Cf =



Cf
11 Cf

12 Cf
12 0 0 0

Cf
12 Cf

22 Cf
23 0 0 0

Cf
12 Cf

23 Cf
22 0 0 0

0 0 0 Cf
44 0 0

0 0 0 0 Cf
55 0

0 0 0 0 0 Cf
55


(2.4)
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where superscript “f” indicates the fiber layer and Cf
44 = (Cf

22 − C
f
23)/2.

The matrix material is an isotropic elastic-damaging solid, and its nonlinear re-

sponse is modeled using a modified J2 deformation theory of plasticity through a

secant moduli approach, as discussed in Section 2.3. As a result, the composite ef-

fective stress versus strain curve is extended to the nonlinear regime by substituting

secant moduli into Equation (2.1). The stiffness matrix for the matrix layers in a

shorthand notation is expressed as,

Ck =



Ck
11 Ck

12 Ck
12 0 0 0

Ck
12 Ck

11 Ck
12 0 0 0

Ck
12 Ck

12 Ck
11 0 0 0

0 0 0 Ck
44 0 0

0 0 0 0 Ck
44 0

0 0 0 0 0 Ck
44


(2.5)

where superscript k = 2, ...N indicates the matrix layer and Ck
44 = (Ck

11 − Ck
12)/2.

2.3 Matrix nonlinear constitutive model

In the present NCYL model, the inner fiber core is surrounded by (N-1) matrix

layers. During the process of damage evolution, the damage occurring in the discrete

matrix layers are identified based on the calculation of strain and stress field, whereas

the undamaged matrix layers retain their virgin properties as shown in Figure 2.1.

An assumption in the NCYL model is that the θ-dependence of failure is used to

initiate the degradation, but the entire matrix cylinder properties are degraded. It is

important to emphasize the fact here that, in the previous study by Zhang and Waas

[1], the entire volume of matrix material was degraded by same amount, as there was

no way of restricting the local damage zone to a particular region of matrix volume.

As a result, it overpredicts the stiffness degradation and the nonlinear stress-strain

response governed by stiffness degradation. This limitation is eliminated by NCYL

model and the radius of the discrete damage zone can be controlled as an input

variable to this model. Now, the homogenized elastic properties of the fiber tow

(Ec
1, ν

c
12, G

c
12, K

c
23 and Gc

23) are functions of the degraded properties of the damaged

matrix layers and the virgin properties of the undamaged matrix layers. This is a

very significant step to be able to capture the damage locally in the microscale, which

is based fully on an analytical solution.

The global (macroscopic and homogenized) behavior of polymer matrix composite
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materials exhibits nonlinear stress versus strain response before failure, especially in

the matrix dominated directions. Such nonlinear behavior is attributed to matrix

microdamage due to the growth of voids and flaws in the polymer matrix. The evo-

lution of such damage accounts for progressive deterioration of the material stiffness;

however, the tangent stiffness tensor still remains positive-definite. The coalescence

of matrix micro damage finally results in macroscopic matrix cracking, followed by

a post-peak strain softening regime. In this instance, the positive definiteness of

the matrix stiffness tensor is lost. The matrix constitutive model established in this

work is limited to matrix micro damage and progressive degradation of the stiffness

tensor only in the pre-peak regime. The post-peak failure response of matrix in the

microscale and its effect on the glaobal response of the fiber tow at macroscale is a

scope of future research.

It has been shown by Sicking [15] and supported by experimental data from Lam-

born and Schapery [16] that a polymer matrix exhibits limited loading path inde-

pendent behavior, surmised through combined tension-torsion tests. Hence, for such

a material, the state of stress can be uniquely determined from the state of strain

through a secant modulus. It is further assumed that the evolution of damage is

an irreversible process, therefore, once the matrix stiffness tensor is degraded due

to microdamage, it cannot be recovered. Such behavior suggests that a modified J2

deformation theory of plasticity can be employed to model the nonlinear stress-strain

response. In the present constitutive model, the degrading secant moduli are utilized

to compute the material stiffness tensor during unloading also.

In order to utilize a uniaxial stress-strain response to determine the damaging ma-

trix material response under combined loading, two equivalent variables, the equiva-

lent stress, σmeq, and the equivalent strain, εmeq, are introduced and related through a

secant Young’s modulus, Em
s as σmeq = Em

s ε
m
eq. According to J2 deformation theory,

the equivalent quantities are related to corresponding stress and strain components

as,

σmeq =

√
1

2
[(σm11 − σm22)2 + (σm22 − σm33)2 + (σm33 − σm11)2] + 3((σm12)

2 + (σm13)
2 + (σm23)

2)

(2.6)

εmeq =
1

1 + νms

√
1

2
[(εm11 − εm22)2 + (εm22 − εm33)2 + (εm33 − εm11)2] +

3

4
((γm12)

2 + (γm13)
2 + (γm23)

2)

(2.7)

11



where νms is the matrix secant Poisson’s ratio defined by

νms =
1

2
+
Em
s

Em
e

(
νme −

1

2

)
(2.8)

and Em
e and νme are the matrix elastic Young’s modulus and elastic Poisson’s ratio, re-

spectively. In this research, the matrix nonlinear stress-strain relation is characterized

using an exponential representation as,

σmeq = σmy −
k1
k2

(
e−k2ε

m
eq − e−k2

σmy
Eme

)
(2.9)

where σmy is the yield stress uniaxial tension, and k1 and k2 are two material param-

eters that govern the evaluation of matrix micro damage which can be determined

from an experimental stress-strain response [17], which is explained in the flow chart

below in Figure 2.2.

Figure 2.2: Flow chart to calculate the matrix in-situ properties.

The linear part of equivalent stress-strain diagram is used to claculate the yield

stress σmy and the nonlinear part of the curve is fitted to Equation (2.9) to calcu-

late the two material parameters k1 and k2 respectively. The detailed procedure to

compute these curve fitting parameters for each case (N=2, 3 and 4) are explained

12



in the following sections. The material system SC-15 matrix is considered here to

demonstrate the calculation of matrix in-situ properties.

2.3.1 Matrix in-situ properties for NCYL (N=2, 3 and 4)

A schematic diagram of 2-layers fiber-matrix concentric cylinders of a fixed volume

fraction is shown in Figure 2.3(a). The total volume of matrix is subdivided into two

layers of equal radii (M1 and M2), but the outer boundary of the matrix layers is

kept constant to preserve the total volume fraction, as shown in Figure 2.3(b). The

radii of M1 and M2 can be defined as any ratio and need not be equal, to be given as

inputs to the model N=3. Now, the total volume of matrix is subdivided into three

layers of equal radii (M1, M2 and M3), but the outer boundary of the matrix layer

is still kept constant to preserve the total volume fraction, as shown in Figure 2.3(c).

In general, the radii of M1, M2 and M3 can be defined as any ratio to be given as

inputs to the model N=4.

(a) N=2 (b) N=3

(c) N=4

Figure 2.3: Schematic models for NCYL.
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The matrix (M1 in Figure 2.3(a)) in-situ properties are calculated from tensile

test of [+45/-45]4s laminate as explained in the flow chart above in Figure 2.2. The

matrices (M1 and M2 in Figure 2.3(b)) in-situ properties are calculated based on the

matrix in-situ properties calculated for N=2. The detailed procedure is explained as

a flow chart in Figure 2.4. Again, the in-situ matrices (M1, M2 and M3 in Figure

2.3(c)) properties can be calculated based on the matrix in-situ properties calculated

for N=2, as explained in the flow chart in Figure 2.4.

Figure 2.4: Flow chart to calculate the matrix in-situ properties for N=3, 4.

Figure 2.5: Schematic to homogenize the elastic properties for inner layers.

To keep in mind, when calculating the in-situ matrix properties for outer matrix
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layer (M2) in Figure 2.3(b), the inner layer of matrix (M1) and the fiber are homog-

enized, as explained in Figure 2.5. Similar homogenization method is also applicable

to N=4 and can be extended to any number of matrix layers in general.

The in-situ nonlinear properties of SC-15 matrix, as computed above are given in

Table 2.1. When the damaged matrix layer stiffness is reduced due to microdamage,

the nonlinear response of the matrix is modeled through a secant moduli approach, in

which the matrix elastic properties are replaced with the corresponding secant moduli.

But for undamaged matrix layers, the virgin elastic properties are still retained as

explained earlier.

Table 2.1: In-situ nonlinear properties of SC-15 matrix.

σmy (MPa) k1 (MPa) k2

M1 30 4500 60

2.4 Analysis procedure

2.4.1 Micromechanics (NCYL model)

In the following analysis, it is assumed that the materials are linearly elastic, so the

principle of superposition is applied. As a result, the formulation of the fiber and

matrix responses under an arbitrary applied strain is obtained by imposing a single

nonzero composite strain and solving the resulting stress and strain fields. From

this, the relationship between any applied strain and the response of the stress and

strain inside the N-layered composite is obtained. The applied strain in a Cartesian

coordinate system is

εc = {εc11 εc22 εc33 εc12 εc13 εc23}
T (2.10)

where the superscript “c” denotes the applied strain on the composite cylinder, and T

denotes the transpose. In order to obtain the stresses and strains inside the N-layered

composite, we consider 3 different problems discussed in [5]. First, we consider the

problem of an applied axial normal strain, εc11. Next, we consider an applied axial

shear strain, εc12, from which the results for an applied strain εc13 can also be obtained

through a coordinate transformation. The last problem that will be considered is
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the Generalized Self-Consistent Method (GSCM) [6], from which the responses of the

remaining three applied strains are obtained. In each case the stress and strain fields

with the N-layers are solved for in closed form.

2.4.2 Transformation matrix F

The key to the proposed micromechanics model is to relate the applied composite

strains to the local matrix strains through a 6 by 6 transformation matrix, F, as

εm11

εm22

εm33

γm12

γm13

γm23


=



F11 F12 F13 F14 F15 F16

F21 F22 F23 F24 F25 F26

F31 F32 F33 F34 F35 F36

F41 F42 F43 F44 F45 F46

F51 F52 F53 F54 F55 F56

F61 F62 F63 F64 F65 F66





εc11

εc22

εc33

γc12

γc13

γc23


(2.11)

The Fij components can be computed by imposing a single non-zero composite strain

at a time on the fiber-matrix N-cylinders and solving the resultant matrix strain

fields. It should be noted that the proposed micromechanics model can be extended

to any number of matrix layers in general (N arbitrary), but for illustration purposes,

in this research, a 4-layered cylinders (N=4) is used for the computation of the axial

properties, including the axial tension (Ec
1 and νc12) and axial shear (Gc

12) and this

is subsequently used for the computation of the components Fi1, Fi4, and Fi5. The

rest of the components in the F matrix are determined via an extended 5-layered

GSCM method (N=4 and one outer composite cylinder), which also gives the com-

posite transverse properties, Kc
23 and Gc

23. In each case, the stress and strain fields

within the fiber and matrix layers are also obtained in closed-form. The procedures

for computing each component in the F matrix as well as the composite effective

constants are described in the following section. A Mathematica code is developed to

calculate all closed form expressions for the homogenized elastic properties and the

Fij components in symbolic form and has been implemented in a multiscale code. So

the focus here is to explain the general procedures for any N-cylinders and not to

show the explicit lengthy and complex expressions. For reference, the expressions for

N=2 are provided in [1] and these are validated by the present Mathematica code.
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2.4.3 Computation of Ec
1, ν

c
12 and Fi1 components by applying

εc11

The fiber and (N − 1) concentric matrix cylinders are subjected to a constant uni-

directional axial strain, εc11. We assume axisymmetric response (∂()
∂θ

= 0) with no

shear effects present inside the fiber and the matrices. We will also assume that the

displacement fields uir and uiθ are independent of the axial coordinate x and uix varies

linearly in the axial direction. Therefore, the displacement fields are in the form

uir = uir(r) (2.12a)

uiθ = 0 (2.12b)

uix = εc11x (2.12c)

where ur, uθ, and ux are the radial, circumferential, and axial displacements, re-

spectively, and i = 1, 2, ...N . Here i = 1 corresponds to the inner fiber layer and

i = 2, 3, ...N are the matrix layers. The corresponding nonzero strains are

εirr =
duir
dr

(2.13a)

εiθθ =
uir
r

(2.13b)

εixx = εc11 (2.13c)

The equilibrium equations in each layer in terms of displacement reduces to

d2uir
dr2

+
1

r

duir
dr
− uir
r2

= 0 (2.14)

The solution of this second order differential equation is [18]

uir = Air +
Bi

r
(2.15)

Ai and Bi are unknown constants, which are solved by applying the boundary and

continuity conditions. Because the layers are assumed to be perfectly bonded, the

displacements and traction are continuous at the interfaces. The continuity conditions

at the layer interfaces are,

ukr(Rk) = uk+1
r (Rk) (2.16a)
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ukx(x,Rk) = uk+1
x (x,Rk) (2.16b)

σkr (Rk) = σk+1
r (Rk) (2.16c)

where k = 1, 2, ..., (N − 1) and Rk is the location of the interface of the layers k and

k+1. In addition, B1 = 0 in order for u1r to be bounded in the fiber. By also assuming

no lateral constraints on the outer matrix layer, we set traction to be zero at the outer

matrix layer (σr(RN) = 0). By applying these boundary conditions, we get 2N linear

system of equations with 2N constants. By solving them, the values of Ai and Bi are

obtained, from which the displacement, stress, and strain fields are determined. The

composite effective properties are determined by equating the strain energy of the

concentric pairs to that of the equivalent homogenized composite material. Following

the procedure given in [18], the closed-form expressions for Ec
1 and νc12 are obtained.

Using a Mathematica code, we obtained the closed form expressions for Ec
1, ν

c
12

for N=4 cylinders in terms of the constituent elastic properties and the fiber volume

fraction. The expressions are lengthy and not provided here but the code is verified

with the expression for 2-cylinders (N=2) as mentioned in [1]. In order to compute

the Fi1’s, the only nonzero strain components prescribed on the concentric pair is εc11.

Hence, the lateral surface of the cylinder is constrained, following,

ur(RN) = 0 (2.17)

Solving Equations (2.16) and (2.17) gives all the unknown constants, Ai and Bi,

in terms of εc11. Substituting these constants back in the displacement field, the

matrix strain field (εmxx, ε
m
rr and εmθθ) is readily determined from the displacement

field, in terms of εc11. These matrix strains can be further transformed to Cartesian

coordinates through the transformation relations provided in Appendix A. Hence, the

Fi1 components are found to be

F11 = εm11/ε
c
11 = 1

F21 = εm22/ε
c
11

F31 = εm33/ε
c
11

F41 = εm12/ε
c
11 = 0

F51 = εm13/ε
c
11 = 0

F61 = εm23/ε
c
11

(2.18)

The expressions for F21,F31 and F61 are obtained using the Mathematica code.
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2.4.4 Computation of Gc
12 and Fi4 components by applying

γc12

The outer boundary of the N-layered concentric cylinders is subjected to displacement

fields so that an overall axial shear strain of γc12 is produced. It is convenient to view

the representative concentric cylinder units projected onto the x1− x2 plane in order

to analyze the axial shear response, as shown in Figure 2.6.

Figure 2.6: Projection of the concentric cylinders onto x1 − x2 plane when under an

axial shear strain, γc12.

The resulting displacement fields of the concentric cylinders under an applied shear

strain γc12 are

uix =

(
Air +

Bi

r

)
cos θ (2.19a)

uiθ = −Cix sin θ (2.19b)

uir = Cix cos θ (2.19c)

where i = 1, ..., N . The derivation of these equations are further discussed in [1].

Using these displacement fields, we can obtain the strain and stress fields using the

strain-displacement relationship and the constitutive equations. We solve for the

unknown values Ai, Bi, and Ci (i = 1, ...N) using the displacement and traction
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continuity conditions at the fiber-matrix and matrix-matrix interfaces. The continuity

conditions are

ukx(x, θ, Rk) = uk+1
x (x, θ, Rk) (2.20a)

ukθ(x, θ, Rk) = uk+1
θ (x, θ, Rk) (2.20b)

ukr(x, θ, Rk) = uk+1
r (x, θ, Rk) (2.20c)

τ kxr(x, θ, Rk) = τ k+1
xr (x, θ, Rk) (2.20d)

where k = 1, 2, ..., (N − 1) and Rk is the location of the interface of the layers k and

k+ 1. Note, the second and the third equations in Equation (2.20) result in the same

equations. Furthermore, the displacements at the outer boundary of the concentric

cylinders must satisfy the imposed boundary conditions so that,

uNx (x, θ, RN) = 0 (2.21a)

uNθ (x, θ, RN) = −γc12x sin θ (2.21b)

uNr (x, θ, RN) = γc12x cos θ (2.21c)

Similarly, the last two equations in Equation (2.21) provide the same result. Using

Equations (2.20) and (2.21), we obtain a linear system of equations, from which the

unknown constants Ai, Bi and Ci are solved in terms of γc12. By substituting these

constants back in the displacement field, matrix shear strain field (γmxr and γmxθ) is

readily determined from the displacement field, in terms of γc12. The matrix shear

stresses are obtained from shear strain fields using the matrix material constitutive

law. Since the shear stress at r = RN and θ = 0 in the cylindrical coordinate system

coincides with that in the Cartesian coordinate system, the composite effective axial

modulus, Gc
12, can be determined by dividing the shear stress by the shear strain. The

explicit expressions of Gc
12 for N=4 cylinders is obtained using the Mathematica code

as mentioned earlier. These matrix strains in cylindrical coordinates can be further

transformed to Cartesian coordinates through the transformation relations provided
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in Appendix A. Hence, the Fi4 components are found to be,

F14 = εm11/γ
c
12 = 0

F24 = εm22/γ
c
12 = 0

F34 = εm33/γ
c
12 = 0

F44 = εm12/γ
c
12

F54 = εm13/γ
c
12

F64 = εm23/γ
c
12 = 0

(2.22)

The expressions for F44 and F54 are obtained using the Mathematica code. In addition,

we can obtain the response of the system under γc13 by replacing θ with θ+ π
4
, following

the same procedure as in the case of γc12 and the corresponding Fi5 components are

found to be,

F15 = εm11/γ
c
13 = 0

F25 = εm22/γ
c
13 = 0

F35 = εm33/γ
c
13 = 0

F45 = εm12/γ
c
13

F55 = εm13/γ
c
13

F65 = εm23/γ
c
13 = 0

(2.23)

The expressions for F45 and F55 are obtained using the Mathematica code.

(a) Multilayered concentric cylinders (b) Equivalent composite cylinder

Figure 2.7: Illustration of the NCYL GSCM method (1st Approach).
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Figure 2.8: Illustration of the NCYL GSCM method (2nd Approach).

2.4.5 Computation of the transverse properties

One of the most challenging problems in composite materials is to predict the exact

solution for the effective transverse shear modulus, though there is a considerable

amount of literature available on its bounds [5, 19, 20, 21]. It was first proposed by

Christensen and Lo [6], that the transverse shear problem can be best solved using

the Generalized Self-Consistent Method (GSCM), in which both the fiber and ma-

trix are concentrically embedded in an infinite homogeneous medium with equivalent

composite properties. The moduli obtained by this model, although in a somewhat

complex format, can be expressed in a closed form and provides a unique approach

to interactions among the matrix and fiber reinforcements. However, as used in its

eigensolution form, this fiber-matrix-composite model is only applicable to compos-

ites with single-phase matrix layer(N=2). The extension of GSCM method from N=2

cylinders to multi cylinders can be approached in two ways: (1) Huang et. al. [22]

extended the Christensen and Lo model to multilayered composite cylinders within

the general framework of the self-consistent mechanics of composites proposed by Bu-

diansky [10] and Hill [23]. Their method starts with the energy equivalence between

summation of individual concentric cylinders and the equivalent composite cylinder,

which is considered to be the most fundamental in terms of accommodating multi-

layered composites. A schematic diagram of NCYL GSCM method for this approach

is illustrated in Figure 2.7, with (a) multilayered concentric cylinders embedded in

equivalent composite cylinder and (b) the isolated equivalent composite cylinder. It

incorporates the Christensen and Lo’s configuration into the evaluation of the average

strain in each individual cylinder and eventually overcomes all the drawbacks suffered
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by the conventional self-consistent method. Their proposed solutions for the effective

moduli is to be solved numerically by an iterative method and for N=2, a closed form

solution exist which is identical to Christensen and Lo’s eigensolution. (2) The second

approach can be done by splitting the multilayered cylinders into two parts; one part

corresponds to the three-phase model of Christensen and Lo [6], with homogenized

cylinder radius RN−1, outer matrix cylinder radius RN and the equivalent composite

cylinder. The other part corresponds to the multi-phase concentric cylinders, with

fiber radius R1, and outer matrix cylinder radius RN−1. The second part is further

split in a similar fashion and the process is repeated until it reduces to two-phase

concentric cylinder model of Hashin [5], with fiber radius R1 and matrix cylinder

radius R2. A schematic diagram of NCYL GSCM method for second approach is

illustrated in Figure 2.8, where N can vary from 2 to any finite large number and

degenerates to the three-phase model of Christensen and Lo [6] for N=2. This latter

approach was used by Li et al [24] to evaluate the effective elastic properties of an

isotropic elastic medium for four-phases (N=4). The second approach will be used in

this work for N-cylinders and anisotropic elastic medium. The computation for the

transverse response requires a traction-type boundary condition applied on the outer

boundary, rather than the axial problem, in which a strain-type boundary condition

is imposed on the outer surface of the concentric cylinders. Since only the transverse

response is of interest, the N-layered cylinder model can be reduced into a 2D plane

strain problem with the assumption that the fiber is infinitely long in the longitudinal

direction. The stress-strain relationships for each layer, including the homogeneous

medium are, σ
i
22

σi33

τ i23

 =

K
i
23 +Gi

23 Ki
23 −Gi

23 0

Ki
23 −Gi

23 Ki
23 +Gi

23 0

0 0 Gi
23


ε

i
22

εi33

γi23

 (2.24)

i = 1, 2, ...N,N + 1, where N + 1th layer is the homogenized composite layer. The

effective composite properties, KN+1
23 and GN+1

23 are determined using the properties

of fiber and matrix layers. The Airy’s stress function, φ, for such a problem in polar

coordinates has the form,

φi =
Mi

2
b2 ln r +

Hi

2
r2 +

[
Ai
2
r2 +

Bi

2

r4

b2
+
Ci
4

b4

r2
+
Di

2
b2
]

cos 2θ (2.25)

where i = N − 1, N,N + 1. The subscripts “N-1”, “N” and “N+1” designate the

homogenized cylinder, outer matrix cylinder and equivalent composite cylinder re-

spectively as shown in Figure 2.8 and it can vary from N=2 to any finite large num-
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ber. For N=2, it degenerates to subscripts “1”, “2” and “3” which designate the

fiber, matrix and equivalent composite cylinder respectively. The constants Mi, Hi,

Ai, Bi, Ci and Di are to be determined based upon the boundary conditions. The

stresses, strains and displacements for the fiber, matrix and equivalent composite

material can be computed from the stress function, material constitutive law, and

strain-displacement relations, as given in Appendix B.

The key to the N-layered cylinders model for the computation of transverse re-

sponse is to impose a stress state such that a state of pure shear or transverse tension

is achieved in the far field. In particular, the composite effective plane-strain bulk

modulus, Kc
23, is determined from the biaxial stress state of σc22 = σc33 = σ̄, while

the transverse shear modulus, Gc
23, is computed under the far field stress state of

σc22 = −σc33 = σ̄. Though the determination of F ′ijs require a single strain to be

imposed on the concentric cylinders, the results can be easily deduced from a single

stress loading condition.

In order to determine the response of the fiber and the matrices under an applied

strain εc22, we first consider two problems. The solution of these problems will be

superimposed in order to obtain the stress and strain responses under a single applied

strain εc22.

2.4.5.1 Computation of Kc
23 by applying biaxial stresses σc22 = σc33 = σ

The solution of an infinite medium under a biaxial state of stress, as shown in Figure

2.9, is well known in the literature.

Figure 2.9: Infinite medium with an inclusion subjected to biaxial tensile stress.

This problem is taken to be axisymmetric, resulting in Ai = Bi = Ci = Di = 0

(i = N − 1, N,N + 1) and HN+1 = σ (state of hydrostatic stress is reached as
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r → ∞). The remaining unknowns constants, HN−1, MN , HN and MN+1 are solved

using the traction and displacement continuity conditions as,

σkrr(r = Rk) = σk+1
rr (r = Rk) (2.26a)

ukr(r = Rk) = uk+1
r (r = Rk) (2.26b)

where k = N − 1, N . This boundary value problem can be written in a matrix

form as, 
1 −1

2

(
1
Vf

)
−1 0

2
GN−1

23

KN−1
23

GN−1
23

GN23

1
Vf
−2

GN−1
23

KN
23

0

0 1
2

1 −1
2

0 −GN+1
23

GN23
2
GN+1

23

KN
23

1



HN−1

MN

HN

MN+1

 =


0

0

σ̄

2
GN+1

23

KN+1
23

σ̄

 (2.27)

Next, the internal strain energy of the three-phase cylinder model (Figure 2.8) is

equated to that of the equivalent composite medium (Figure 2.7(b)) based upon an

important finding by Eshelby [25], which states that for a homogeneous medium

containing an inclusion, the strain energy, U , under applied displacement conditions,

is determined by

U = U o − 1

2

∫
s

(
T oi ui − Tiuoi

)
dS (2.28)

where S is the surface of the inclusion, U o is the strain energy of the equivalent com-

posite medium without inclusion, T oi and uoi are the tractions and displacements of

the equivalent medium without inclusion, and Ti and ui are the corresponding quan-

tities for the composite medium with the inclusion. Obviously, the strain energy of

the equivalent composite in Figure 2.7(b), U equiv, is identical to that of the composite

medium in Figure 2.7(a) if there is no inclusion, which yields U equiv = U o. Based on

the strain energy equivalence stated previously, U equiv = U . Using the notation for

the tractions and corresponding displacements, Equation (2.28) becomes∫ 2π

0

[σorrUr − σrrU o
r ]r=b b dθ = 0 (2.29)

where the stresses and displacements for the equivalent medium without inclusions
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are

σorr = σ̄ U o
r =

r

2KN+1
23

σ̄ (2.30)

Substituting the results for the stresses and displacements of the equivalent compos-

ites (Equations. (B.6) and (B.12) in Appendix B respectively) as well as Equation

(2.30) into Equation (2.29) gives,

MN+1 = 0 (2.31)

Thus, by solving the boundary conditions in Equation (2.27) and setting MN+1 to

zero, the effective plane-strain bulk modulus, Kc
23, can be obtained as

Kc
23 = KN+1

23 = KN
23 +

Vf
1

KN−1
23 −KN

23

+
1−Vf

KN
23+G

N
23

(2.32)

The explicit expression of Kc
23 for N=4 cylinders is obtained using the Mathematica

code as mentioned earlier. In addition, the stresses, strains and displacement fields for

each constituent in the instance that the outer boundary of the equivalent composite

material is subjected to biaxial tension are obtained through Equations (B.4)-(B.12)

in Appendix B.

2.4.5.2 Computation of Gc
23 by applying biaxial stresses σc22 = −σc33 = σ

The second problem that we consider is an infinite 2D medium under a tensile stress

state, σc22 = σ and a compressive stress, σc33 = −σ as shown in Figure 2.10.

Figure 2.10: Infinite medium with an inclusion under a tension and compression in

orthogonal directions.
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The state of stress σc22 = −σc33 = σ is achieved in the far field (r → ∞) by setting

Mi = Hi = 0 (i = N − 1, N,N + 1) and AN+1 = −σ. The remaining unknowns are

obtained using the continuity conditions of traction and displacement at all the layer

interfaces as,

σkrr(r = Rk) = σk+1
rr (r = Rk) (2.33a)

σkrθ(r = Rk) = σk+1
rθ (r = Rk) (2.33b)

ukr(r = Rk) = uk+1
r (r = Rk) (2.33c)

ukθ(r = Rk) = uk+1
θ (r = Rk) (2.33d)

where k = N − 1, N . This boundary value problem can be written in a matrix form

as,

[b] {d} = {f} (2.34)

where,

d =
[
AN−1 BN−1 AN BN CN DN CN+1 DN+1

]T

f =
[
0 0 0 0 σ̄ −σ̄ 2σ̄ −2σ̄

]T
(2.35)

Eshelby’s results [25] on the strain energy equivalence gives,∫ 2π

0

[σorrUr + σorθUθ − σrrU o
r − σrθU o

θ ]r=b b dθ = 0 (2.36)

where the stresses and displacements for the equivalent medium without the inclusions
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are,

σorr = τ23 cos 2θ σorθ = −τ23 sin 2θ

U o
r =

r

2GN+1
23

τ23 cos 2θ U o
θ = − r

2GN+1
23

τ23 sin 2θ
(2.37)

Similarly, the substitution of the stresses and displacements of the composite material

(Equations (B.6) and (B.12) in Appendix B, respectively) as well as Equation (2.37)

into Equation (2.36) results in,

DN+1 = 0 (2.38)

Thus, if the boundary conditions in Equation (2.34) are solved, and we set DN+1

to be zero, it gives the results for the composite effective transverse shear modulus

through a quadratic equation as,

X

(
GN+1

23

GN
23

)2

+ Y

(
GN+1

23

GN
23

)
+ Z = 0 (2.39)

where,

X = a0 + a1Vf + a2V
2
f + a3V

3
f + a4V

4
f

Y = b0 + b1Vf + b2V
2
f + b3V

3
f + b4V

4
f

Z = c0 + c1Vf + c2V
2
f + c3V

3
f + c4V

4
f

with,

a0 = −2GN2

23

(
2GN

23 +KN
23

) [
2GN−1

23 GN
23 +KN−1

23 (GN−1
23 +GN

23)
] [

2GN−1
23 GN

23 +KN
23(G

N−1
23 +GN

23)
]

a1 = 8GN2

23

(
GN−1

23 −GN
23

) [
2GN−1

23 GN
23 +KN−1

23 (GN−1
23 +GN

23)
] (
GN2

23 +GN
23K

N
23 +KN2

23

)
a2 = −12GN2

23 K
N2

23

(
GN−1

23 −GN
23

) [
2GN−1

23 GN
23 +KN−1

23 (GN−1
23 +GN

23)
]

a3 = 8GN2

23

{
GN−12

23 GN2

23 K
N−1
23 +GN−12

23 GN
23K

N
23(K

N−1
23 −GN

23) +KN2

23

[
GN−1

23 GN
23(G

N−1
23 − 2GN

23)+

KN−1
23 (GN−1

23 −GN
23)(G

N−1
23 +GN

23)
]}

a4 = 2GN2

23

(
GN−1

23 −GN
23

) (
2GN +KN

23

) [
KN−1

23 GN
23K

N
23 −GN−1

23

(
2GN

23(K
N−1
23 −KN

23) +KN−1
23 KN

23

)]
b0 = 4GN3

23

[
2GN−1

23 GN
23 +KN−1

23 (GN−1
23 +GN

23)
] [

2GN−1
23 GN

23 +KN
23(G

N−1
23 +GN

23)
]

b1 = 8GN2

23 K
N
23

(
GN−1

23 −GN
23

) [
2GN−1

23 GN
23 + (GN−1

23 +GN
23)K

N−1
23

] (
GN

23 −KN
23

)
b2 = −2a2

b3 = −2a3

28



b4 = −4GN3

23

(
GN−1

23 −GN
23

) [
KN−1

23 GN
23K

N
23 −GN−1

23

(
2GN

23(K
N−1
23 −KN

23) +KN−1
23 KN

23

)]
c0 = 2GN2

23 K
N
23

[
2GN−1

23 GN
23 +KN−1

23 (GN−1
23 +GN

23)
] [

2GN−1
23 GN

23 +KN
23(G

N−1
23 +GN

23)
]

c1 = 8GN2

23 K
N2

23

(
GN−1

23 −GN
23

) [
2GN−1

23 GN
23 +KN−1

23 (GN−1
23 +GN

23)
]

c2 = a2

c3 = a3

c4 = −2GN2

23 K
N
23

(
GN−1

23 −GN
23

) [
KN−1

23 GN
23K

N
23 −GN−1

23

(
2GN

23(K
N−1
23 −KN

23) +KN−1
23 KN

23

)]
From this, we can determine the value of the effective transverse shear modulus, Gc

23

or GN+1
23 , by solving the above quadratic equation. The explicit expression of Gc

23 for

N=4 cylinders is obtained using the Mathematica code as mentioned earlier. Finally, a

complete set of stresses, strains and displacements for each constituent corresponding

to transverse shear is obtained through Equations (B.4)-(B.12) in Appendix B.

2.4.5.3 Computation of Fi2, Fi3, and Fi6 components

So far, the stress and strain fields of each constituent in the three-phase cylinder

model have been determined for the cases that σc22 = σc33 = σ̄ or σc22 = −σc33 = σ̄

is imposed, as shown in Figures 2.9 and 2.10 respectively. The matrix strain fields

due to a single normal stress, either σc22 = σ̄ or σc33 = σ̄, can be obtained through

the superposition of the aforementioned two stress states as shown in Figure 2.11,

while the state of pure shear, τ c23 = σ̄, can be easily deduced from the stress state of

σc22 = −σc33 = σ̄ by changing θ to θ + π/4.

Now, we assume an infinite medium, similar to those in Figures 2.9 and 2.10,

under a constant applied single normal strain εc22. Using the constitutive equations,

the resulting stresses are σc22 = (Kc
23+Gc

23)ε
c
22 , σc33 = (Kc

23−Gc
23)ε

c
22 and τ c23 = 0. The

stress and strain response of this problem due to a single applied stress (σc22 or σc33) is

obtained by superimposing the stress and strains of the solutions obtained in Section

2.4.5.1 and 2.4.5.2. Since the elasticity problem due to a single applied stress has

been solved, the matrix strain fields due to εc22 can be easily obtained by superposing

the results from the two stresses, σc22 and σc33. Thus, the matrix strain field (εmrr, ε
m
θθ

and γmrθ) is readily determined in terms of εc22. These matrix strains can be further

transformed to Cartesian coordinates through the transformation relations provided
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in Appendix A. Hence, the Fi2 components are found to be

F12 = εm11/ε
c
22 = 0

F22 = εm22/ε
c
22

F32 = εm33/ε
c
22

F42 = γm12/ε
c
22 = 0

F52 = γm13/ε
c
22 = 0

F62 = γm23/ε
c
22

(2.40)

The expressions for F22,F32 and F62 for N=4 cylinders are obtained using the Math-

ematica code.

Figure 2.11: Applying superposition.

Similarly, the Fi3 components can be computed by imposing a single strain εc33

and the resulting non-vanishing components are

F13 = εm11/ε
c
33 = 0

F23 = εm22/ε
c
33

F33 = εm33/ε
c
33

F43 = γm12/ε
c
33 = 0

F53 = γm13/ε
c
33 = 0

F63 = γm23/ε
c
33

(2.41)
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The expressions for F23,F33 and F63 for N=4 cylinders are obtained using the Mathe-

matica code. The matrix strains due to a single composite strain γc23 can be obtained

from the case where a transverse shear stress is imposed in the far field of the N-

layered cylinder. The composite transverse stress and strain are simply related by

τ c23 = Gc
23 γ

c
23, where τ c23 = σ̄ is deduced from the stress state σc22 = −σc33 = σ̄ in

Section 2.4.5.2 by changing θ to θ + π/4. Thus the Fi6 components are computed

from the matrix strains due to γc23 as,

F16 = εm11/γ
c
23 = 0

F26 = εm22/γ
c
23

F36 = εm33/γ
c
23

F46 = γm12/γ
c
23 = 0

F56 = γm13/γ
c
23 = 0

F66 = γm23/γ
c
23

(2.42)

The expressions for F26, F36 and F66 for N=4 cylinders are obtained using the Math-

ematica code.

2.4.6 Matrix strain contours under a single applied compos-

ite strain

In the previous section, all the columns of F matrix are computed by applying the six

strain components one at a time. As mentioned earlier, the populated F matrix relates

the matrix strain components to the applied composite strains as shown in Equation

2.11. In order to validate the proposed micromechanics model, the computed matrix

strain fields under a globally prescribed single composite strain using the current

analytical solutions are compared against the results from a corresponding 3D FEA.

The FEA model utilized to analyze the axial tension and axial shear problem is a 3D

4-layered (1 fiber+3 matrix layers) cylinder model as shown in Figure 2.12. When

the cylinder is subjected to axial tensile loading, the problem is axisymmetric, hence,

Uθ = 0 is enforced everywhere on the boundary. To ensure a single axial strain is

prescribed on the cylinder, one end of the cylinder is fixed (ux(x = 0) = 0), while

the other end is subjected to an axial displacement δ. The outer lateral surface is

constrained (ur(r = RN) = 0) such that only a single axial strain is present. The

overall axial strain is calculated as δ/L, where L is the length of the cylinder. The

boundary conditions for the axial shear problem are given by, Equation (2.21), with
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Figure 2.12: FE Model for NCYL Method.

one end fixed. Note that L should be large enough to ignore boundary effects at the

ends.

The FEA model used to solve for the transverse tension and transverse shear

problem is a 3D 5-layered model, in which one fiber layer and three matrix layers

are concentrically embedded in the equivalent composite medium as illustrated in

Figure 2.13. Since the equivalent composite medium is assumed to be large enough to

produce uniform stress and strain distributions at the boundary, the outer boundary

of the composite is modeled as rectangular so that the boundary conditions can be

enforced easily. The boundary conditions for transverse normal and transverse shear

loading are summarized in Table 2.2.

Table 2.2: Boundary conditions for the transverse normal and transverse shear prob-
lem.

Transverse normal Transverse shear
εc22 = ε̄ γc23 = γ̄

ABCD U1 = 0 U1 = 0
EFGH U1 = 0 U1 = 0
AEHD U2 = 0 U2 = 0, U3 = 0
BFGC U2 = ε̄ L2 U2 = 0, U3 = γ̄ L2

ABFE U3 = 0 U3 = γ̄ x2
DCGH U3 = 0 U3 = γ̄ x2

The boundary conditions are prescribed on each outer surface of the rectangle. L1,

L2 and L3 are the length of the rectangle along x1, x2 and x3 directions, respectively.

Since the composite is assumed to be transversely isotropic, only four loading

conditions are considered, which are axial tension, axial shear, transverse tension
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Figure 2.13: FE Model for GSCM Method.

and transverse shear. In each case, a single strain value of 0.1% is prescribed to

the relevant component and the remaining strains are enforced to be zero. Since the

composite undergoes small deformation, both the fiber and matrix are linear elastic

in this regime. The elastic properties of the constituent materials are summarized

in Table 2.3, which are taken from various sources [18, 26]. Both S-2 glass fiber and

SC-15 epoxy resin are isotropic, while IM-7 carbon fiber is transversely isotropic. The

fiber volume fraction is set to 60% in each case.

Table 2.3: The elastic properties for IM-7 carbon fiber, S-2 glass fiber, and SC-15
matrix.

E1 E2 ν12 G12 G23

GPa GPa - GPa GPa
IM-7 Carbon Fiber 276.0 15.0 0.279 12.0 5.02

S-2 Glass Fiber 114.2 114.2 0.22 46.8 46.8
SC-15 Matrix 2.487 2.487 0.35 0.921 0.921

Figures 2.14-2.17 show the matrix strain contours, for each component, under

various applied composite strains as well as the results from the FEA models, in which

the constituent fiber is IM-7 carbon fiber. The results for the glass fiber are not shown

here. It can be concluded that the proposed micromechanics model provides accurate
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prediction of the spatial variation of the matrix fields when the composite is subjected

to loading. Capturing the strain and stress concentrations in the matrix material is

important to determine the damage and failure characteristics of composites such

as nonlinear stress versus strain response, strain to failure, strength and fatigue life.

In Section 2.5, a multi-scale computational framework is established to compute the

composite nonlinear behavior, in which the proposed analytical method is employed

for the subscale micromechanical analysis.

2.5 Multiscale approach for nonlinear homogenized

fiber composite

The macroscopic nonlinear response of composite materials is influenced by matrix

micro damage at the subscale. The motivation of the current study is to relate the sub-

scale micromechanical analysis to the composite effective response at the macroscale

through a multiscale modeling framework. In the proposed model, two scalar vari-

ables that characterize the evolution of the matrix microdamage based upon the strain

contours computed, are selected. The proposed model is different from previous mean-

field methods, in that, the extreme value of the matrix strains are utilized rather than

the average value to determine the composite nonlinear damage progression.
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(a) εm22 from proposed model (b) εm22 from FEA

(c) εm33 from proposed model (d) εm33 from FEA

(e) γm23 from proposed model (f) γm23 from FEA

Figure 2.14: Matrix contours under εc11 = 0.1%.

2.5.1 Multiscale computational framework

The multiscale methodology established in this work is based upon two scales. As

an example, for the macroscale, tow-level analysis of a unidirectional composite is

conducted by utilizing effective homogenized properties to compute stress and strains

in the composite. Simultaneously, it is intended to carry out the subscale analysis, at

the fiber and matrix level, using the micromechanics model, in which the constituent
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(a) γm12 from proposed model (b) γm12 from FEA

(c) γm13 from proposed model (d) γm13 from FEA

Figure 2.15: Matrix contours under γc12 = 0.1%.

stress and strain fields are provided in closed form. A flowchart of the multiscale

approach followed is shown in Figure 2.18. The commercially available finite ele-

ment software, ABAQUS (version 6.14), is used for the macroscale FEA, and the

micromechanics model at the subscale is implemented at each integration point of

the macro scale, using a user defined material subroutine, UMAT. This subroutine is

called at each integration point at each increment, and the material constitutive law

is updated through user-defined options. At the start of each increment, the material

state i.e. stress-strain and solution-dependent state variables from the previous equi-

librium step and the strain increments in the current step are passed into the UMAT

through the ABAQUS solver. In the nth increment, the total strain, εnij, is calculated

by adding the current strain increment, dεnij, to the strain in the previous step, εn−1ij ,

as εnij = εn−1ij + dεnij.
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(a) εm22 from proposed model (b) εm22 from FEA

(c) εm33 from proposed model (d) εm33 from FEA

(e) εm23 from proposed model (f) εm23 from FEA

Figure 2.16: Matrix contours under εc22 = 0.1%.

2.5.2 NCYL model and periodic boundary conditions (PBC)

In this multiscale computational framework, the strains at each integration point

in the FEA of homogenized composite, are applied to the subscale micromechanics

NCYL model. These integration point strains can be treated as the effective compos-

ite strains that are applied on a discrete fiber-matrix microstructure. The constituent
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(a) εm22 from proposed model (b) εm22 from FEA

(c) εm33 from proposed model (d) εm33 from FEA

(e) εm23 from proposed model (f) εm23 from FEA

Figure 2.17: Matrix contours under γc23 = 0.1%.

strain fields therefore can be computed in closed form by knowing the globally applied

strains through the micromechanical analysis.

However, it should be noted that the resulting matrix strain fields vary in space as

shown in Figures 2.14-2.17, hence the matrix equivalent strain, computed using Equa-

tion 2.7, has spatial variation as well. In the current fully analytical computational

scheme, it is hypothesized that the composite nonlinear behavior can be characterized
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using two scalar variables that are related to the matrix equivalent strain. This idea

is similar to the mean-field theories in which the average values of the strain fields are

utilized to determine the matrix nonlinear progression. In the present study, the two

scalar variables that govern the evolution of matrix microdamage are defined based

upon the maximum and average value of the square of the matrix equivalent strain

at the layers interface, respectively, as

Vmax = max

{
1

2

[
(ε̄m11 − ε̄m22)

2 + (ε̄m22 − ε̄m33)
2 + (ε̄m33 − ε̄m11)

2]+
3

4

(
γ̄m

2

12 + γ̄m
2

13 + γ̄m
2

23

)}
(2.43)

Vavg = avg

{
1

2

[
(ε̄m11 − ε̄m22)

2 + (ε̄m22 − ε̄m33)
2 + (ε̄m33 − ε̄m11)

2]+
3

4

(
γ̄m

2

12 + γ̄m
2

13 + γ̄m
2

23

)}
(2.44)

where ε̄mij is the matrix strain at the layers interface (r = RN). Physically, the average

term is dominant in the matrix strain field when the fiber volume fraction is low, while

the maximum value dominates the result for high fiber volume fraction. Therefore, a

weight function of Vmax and Vavg can be written as,

Vweight = V n
f Vmax + (1− V n

f )Vavg (2.45)

where n is dependent on the fiber-to-matrix stiffness ratio such that the effect of

constituent properties can be accounted for. In this work, it is assumed that,

n = 2

√(
Em

Ef
2

+
Gm

Gf
23

)
(2.46)

Consequently, two matrix equivalent strains can be computed; one is based upon the

weight function in Equation 2.45, while the other is based upon the average value in

Equation 2.44, as,

εeqm,1 =
1

1 + νs

√
Vweight and εeqm,2 =

1

1 + νs

√
Vavg (2.47)

Once the matrix equivalent strain is resolved, the matrix stiffness tensor is degraded

as a secant solid according to the nonlinear damage model presented in Section 2.3.

It is further hypothesized that the matrix secant moduli calculated using εeqm,1 are

subsequently used to compute the composite effective secant moduli, Ec
1, ν

c
12, K

c
23,

and Gc
23, while the matrix secant moduli determined from εeqm,2 is used to compute

39



Figure 2.18: Multiscale approach length scales.

Gc
12. In the present NCYL model, where the number of cylinders keep increasing,

the two scalar variables (Vavg and Vmax) are computed for each layer individually.

Hence, the equivalent strain and stress are also calculated individually for each layer

and the matrix stiffness can be degraded independently depending on the damaged

state of each layer. Consequently, if matrix microdamage occurs, the stiffness of the

subscale microstructure is reduced based upon the proposed secant moduli approach.

The subscale stiffness tensors are subsequently used to update the global stiffness and

stresses in the macroscale FEA. Therefore, the influence of matrix microdamage at

the subscale manifests as the degradation of the global stiffness of the composite at

the macroscale.
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(a) Hexagonal array (b) 5 fibers random array

(c) 15 fibers random array

Figure 2.19: 3D RUC of UD composite (Fiber volume fraction=60%).

41



2.5.3 3D FE model and periodic boundary conditions (PBC)

In order to verify the proposed method to compute the composite nonlinear response,

a finite element model is utilized to assess the accuracy of the prediction. IM-7/SC-

15 fiber reinforced composite, which has a fiber volume fraction of 60% is utilized

for analysis. The elastic properties of the fibers and matrix are provided in Table

2.3. The nonlinear properties of SC-15 matrix are given in Table 2.1. In this re-

search, the results from the FEA model serves as a reference to verify the proposed

NCYL-micromechanics based multi-scale model for computing the composite nonlin-

ear response.

A unidirectional fiber reinforced composite can be modeled at the fiber-matrix

level through a RUC with detailed fiber geometries and constituent properties. The

microstructure of a unidirectional composite is represented by the RUC composed of

three different arrangements of fiber packing; (a)hexagonally packed, (b) 5 fiber of

random packed, and (c) 15 fiber random packed, as shown in Figure 2.19, resulting in a

transversely isotropic solid with isotropic properties in the plane perpendicular to the

fiber direction. The effect of fiber randomness and the size of RUC on the residual

stress development in a cured composite have been addressed in [27]. The RUC

deforms like a jigsaw puzzle such that periodic boundary conditions are required to

ensure the continuity between the adjacent RUCs. The periodic boundary conditions

are imposed on pairs of opposite boundary surfaces as explained in [1].

To obtain a full characterization of the composite nonlinear response, four load-

ing scenarios are considered, including axial tension, transverse tension, axial shear

and transverse shear for all the three different arrangements of fiber packing. The

schematic loading directions for 15 fiber random packed array are shown in Figure

2.20 as an illustration. The carbon fiber is assumed linear elastic, while the matrix is

modeled as an elastic-damaging solid using a secant modulus approach as presented

in Section 2.3. The analysis was carried out using the commercially available code

ABAQUS, in which the matrix constitutive law is implemented through a UMAT.

2.6 Results and discussion

The stress-strain responses of the homogenized unidirectional composite are evalu-

ated for IM-7 carbon fiber with SC-15 epoxy for N=4, using the proposed NCYL

micromechanics based multiscale method. Also, the global responses using the 3D

FEA are calculated for IM-7 carbon fiber with SC-15 epoxy for hexagonal packed
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(a) Tension in fiber (1-1) direction (b) Shear in fiber (1-2) direction

(c) Tension in transverse (2-2) direction (d) Shear in transverse (2-3) direction

Figure 2.20: 3D RUC of UD composite for all loading cases.

microstructure. The comparison between the two methods on the prediction of the

composite nonlinear stress versus strain response is shown in Figure 2.21 for fiber vol-

ume fraction varying from 50 to 70%. Here, the 3D FE results are taken as a reference

to validate the proposed NCYL micromechanics model. The unidirectional composite

axial behavior is mostly dominated by fiber failure strain and hence, the axial nor-

mal stress-strain response exhibits almost linear response during the deformation, as

shown in Figure 2.21(a). In the transverse normal, axial shear and transverse shear

loading directions, damage evolves in the matrix, which leads to significant nonlinear-

ity in the stress versus strain response. The effective composite stiffness is degraded

during the pre-peak nonlinear response and modeled using the secant stiffness ap-

proach. The transverse normal and transverse shear responses, as shown in Figures

2.21(b) and 2.21(d), respectively are determined from the weight function defined in

Equation 2.45, suggesting that the fiber volume fraction affects the prediction and

the accuracy increases when the fiber volume fraction increases from 50 to 70%. Even

though the proposed method is an approximation based upon the choice of the scalar

variables, it offers good predictions on IM-7 composite material system for fiber vol-
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(a) Axial normal stress versus strain response (b) Transverse normal stress versus strain re-
sponse

(c) Axial shear stress versus strain response (d) Transverse shear stress versus strain re-
sponse

Figure 2.21: Comparison between NCYL (N=4) and 3D FEA (IM-7 carbon - SC-15
epoxy).

ume fraction varying from 50 to 70%. The results for the axial shear response, as

shown in Figure 2.21(c), is determined from the average matrix strain at the cylinder

interfaces and the accuracy of the prediction increases when the fiber volume fraction

decreases from 70 to 50%. Hence, it tends to overpredict the nonlinear response when

the fiber volume fraction is high. However, the proposed method still offers a good

prediction for fiber volume fraction range up to 70% and also compares well with the

3D FEA.

Microscale architectural effects on damage of composites is investigated in this

research to study the effect of fiber randomness on the damage evolution and nonlin-

ear progression of the stress-strain response of composite. Three different composite

microstructures with fiber volume fraction 60% are considered as finite element re-

peating unit cells, with appropriate periodicity conditions applied at the boundaries,
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as shown in Figure 2.19. Results representing predicted axial tensile, transverse ten-

sile, axial shear and transverse shear stress-strain curves are presented in Figure 2.22,

comparing with the global response of the homogenized unidirectional composite, us-

ing the NCYL model for N=2, 3 and 4 cylinders. For loading in axial direction, there

is no difference among all the cases as the composite failure is caused by fiber failure

strain as shown in Figure 2.22(a). As evident in Figure 2.22(c), the difference in hex-

pack, 5-fibers and 15-fibers nonlinear patterns are not so prominent and the curves

converge to N=4 case in the sequence of hexpack-5 fibers-15 fibers. The fact that

15-fibers case response is becoming closer to analytical solution, N=4 indicates that,

as a larger RUC with more fibers is considered, the model provides a better repre-

sentation of the actual (transversely isotropic) material response. Similar behavior is

observed in the case of transverse shear loading case in Figure 2.22(d), where 15-fibers

stress-strain response approaches to NCYL response. While all cases predict nearly

identical initial elastic stiffness in transverse loading case as shown in Figure 2.22(b),

once damage initiates, there are significant differences in the global deformation (i.e.,

damage) response due to microstructural variation in the three RUC representations.

In contrast to other loading cases, the transverse loading results in earlier onset of

damage localization for hexpack RUC, compared to 5-fibers and 15-fibers. The local

stress concentrations arising in the matrix between nearby fibers tend to cause early

onset of localization due to damage. The effect of the RUC geometry on the predicted

transverse shear stress-strain response of the composite is similar to its effect on the

predicted axial shear stress-strain response. The influence of the repeating unit cell

geometry and the effect of the directionality of the applied loading are studied here

for a particular random fiber arrangement with fixed volume fraction 60%. Further

detailed sensitivity study of damage progression with respect to different possible

random arrangements of fiber and volume fraction is a scope of future research.

The stress-strain responses of the homogenized unidirectional composite for all

loading cases, using the proposed NCYL micromechanics based multiscale method

are evaluated for IM-7 carbon fiber and S-2 glass fiber with SC-15 epoxy for N=2, 3

and 4 cylinders. A comparison among increasing cylinders are discussed here to show

the improvement of the results on the prediction of nonlinear stress versus strain

response for all loading cases. The stress-strain responses are shown in Figure 2.23

for fiber volume fraction varying from 50 to 70% and for both the material systems.

The axial normal stress-strain response is independent of the number of increasing

matrix cylinders since unidirectional composite axial behavior is dominated by fiber

stress-strain response and hence, exhibit almost a linear response for N=2, 3 and 4
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(a) Axial normal stress versus strain response (b) Transverse normal stress versus strain re-
sponse

(c) Axial shear stress versus strain response (d) Transverse shear stress versus strain re-
sponse

Figure 2.22: Comparison of effective response as a function of fiber arrangement and
direction of loading.

cases, as shown in Figures 2.23(a, b). As a result, the IM-7 carbon-epoxy composite

presents higher stiffness than the S-2 glass-epoxy composite in the axial direction. In

the transverse normal, axial shear and transverse shear loading directions, damage

evolves in a non-uniform manner, (gradients) in all the discrete layers of matrix. For

the case of two-phase fiber-matrix cylinders (N=2), the entire volume of matrix is

assumed to be degraded by the same amount using the secant stiffness approach and

hence, the global composite stiffness is underpredicted. When the number of cylinders

goes up, the damage is more localized and the reduction in global stiffness is predicted

in a more controlled and efficient way. As mentioned earlier, the transverse normal

and transverse shear responses, as shown in Figures 2.23(c, d) and Figures 2.23(g,

h), respectively are determined from the weight function defined in Equation 2.45,

suggesting that the fiber volume fraction and the fiber-to-matrix stiffness ratio affect
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the choice of the scalar variables that characterize the composite nonlinear responses.

In particular, when the fiber volume fraction is low or the fiber-to-matrix stiffness ratio

approaches one, the resulting composite nonlinear behavior tends to be dominated by

the average value of the matrix strain at the concentric cylinder interfaces, while on

the other hand, the maximum value is dominant for either high fiber volume fraction

or large fiber-to-matrix stiffness ratio. It should be noted that IM-7 carbon fiber is

transversely isotropic, and its transverse stiffness is significantly lower than that of

S-2 glass, as shown in Table 2.3. The axial shear response, as shown in Figures 2.23(e,

f), is determined from the average function defined in Equation 2.44 at all cylinder

interfaces. But in all these loading cases, there is a significant change in pre-peak

nonlinearity and the slope of the responses keep increasing as the number of matrix

cylinders increases from N=2 to N=4. Also, this feature is observed for all the volume

fraction range from 50 to 70%.

2.7 Conclusions

In this work, a subscale micromechanics model for N-layered concentric cylinders re-

ferred to as “NCYL” model is developed, which is able to capture the local stress

and strain gradients of the constituent fiber and matrix layers in closed form, when

the composite cylinder external boundary is subjected to strain loading. The local

field gradients in each discrete layer of fiber and matrix are the key inputs to this

progressive failure model, which is subsequently used to establish a multiscale com-

putational framework to predict the effective nonlinear response of a homogenized

unidirectional composite. The axial tension and axial shear problem are solved by a

N-layers CCM method, while the transverse tension and transverse shear are solved

using an extended (N+1) layers GSCM method. The matrix strains in each discrete

layer are related to the applied composite strains through a transformation matrix,

and the resolved spatial variations of the matrix strain fields are in good agreement

with corresponding 3D finite element analysis results. The volume of matrix micro-

damage is controlled by the number of concentric cylinders and as the number of

matrix layers increase, the effective stiffness goes up in a gradual manner as shown

in Figure 2.23 and the accuracy of nonlinear behavior is seen to improve, displaying

a converged response.

At the interface between all discrete layers, two scalar variables are defined as the

maximum and mean value of the matrix equivalent strain, according to Equations 2.45

and 2.44, respectively. It is assumed that the evolution of the composite nonlinear
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response is governed by these two scalar variables. The extent of local damage is

calculated explicitly in all matrix layers and the matrix stiffness tensor of individual

layer is degraded proportionately through a modified J2 deformation theory. Once the

matrix stiffness tensor is degraded, the matrix secant moduli are subsequently used

to compute the composite secant moduli. In particular, Ec
1, ν

c
12, K

c
23, and Gc

23 are

computed based upon the matrix secant moduli determined from Equation (2.45),

while Gc
12 is calculated using the matrix secant moduli determined from Equation

(2.44). The influence of matrix microdamage at the microscale manifests as the

degradation of the effective composite stiffness at the macroscale through a secant

moduli approach.

The nonlinear behavior is overpredicted by the two-phase (N=2) fiber-matrix

cylinder model and the accuracy of the solution goes up by increasing the number of

matrix cylinders. The proposed method provides better prediction of the composite

nonlinear stress versus strain response and matches well against the results from 3D

FEA. The predictive capability of the model is established here by two distinct com-

posite material systems, IM-7 carbon and S-2 glass with SC-15 epoxy, for fiber volume

fraction varying from 50 to 70% and the nonlinear responses converge from N=2 to

N=4 for all loading cases. The optimal selection of N depends on various factors; (1)

Material system, (2) Fiber to matrix stiffness ratio, (3) Volume fraction of composite

and (4) Matrix degradation rate as observed in experiments. Detailed study of the

NCYL model with respect to all these combined factors is the scope of future research.

Since, fully analytical solutions are utilized for the subscale micromechanics analysis,

the proposed method offers a significantly lower computational cost and is suitable for

large-scale progressive damage and failure analysis of composite structures. The main

focus in this work is achieved by establishing a multiscale method, which is capable

of predicting the effective linear elastic properties and also the nonlinear response of

the homogenized fiber reinforced unidirectional composites in a more efficient way.
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(a) IM-7-carbon - SC-15 epoxy for N=2,3,4 (b) S-2-glass - SC-15 epoxy for N=2,3,4

(c) IM-7-carbon - SC-15 epoxy for N=2,3,4 (d) S-2-glass - SC-15 epoxy for N=2,3,4

(e) IM-7-carbon - SC-15 epoxy for N=2,3,4 (f) S-2-glass - SC-15 epoxy for N=2,3,4

(g) IM-7-carbon - SC-15 epoxy for N=2,3,4 (h) S-2-glass - SC-15 epoxy for N=2,3,4

Figure 2.23: Comparison of NCYL results for IM-7 and S-2 glass composite systems.
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CHAPTER 3

Failure modeling of fiber tows and matrix

using Smeared Crack Approach(SCA)

3.1 Introduction

The objective of my research work is to perform a multiscale analysis to study the

progressive damage and failure of hybrid 3D woven textile composites at different

length scales. In this computational model, the macroscale finite element analysis

(FEA) is carried out at the representative volume element (RVE) or coupon level,

while the micromechanics analysis is implemented simultaneously at the subscale

level using material properties of the constituents (fiber and matrix) as input. The

subscale micromechanics analysis uses the N-layers concentric cylinder model (NCYL)

to compute the local fields in the fiber and matrix cylinders. The influence of matrix

micro-damage at the subscale causes the progressive degradation of fiber tow stiffness

at the macroscale by a secant moduli approach, resulting the pre-peak nonlinear

response. The post-peak strain softening response resulting from different failure

modes like fiber tow rupture, tow kinking, tow splitting and matrix cracking outside

of fiber tow are modeled using a mesh-objective smeared crack approach (SCA) [28].

A three dimensional (3D) SCA model for isotropic materials and a 2D orthotropic

model are presented in [29]. The 3D isotropic SCA model is useful to describe the

crack progression in the matrix material in a composite and the 2D orthotropic SCA

model is used to model crack and damage progression within the layers (lamina) of a

laminate. The 2D orthotropic SCA model is extended to a 3D orthotropic SCA model

[30, 31, 32] and the failure response of fiber tows (post-peak softening response) is

modeled using a new formulation, where the fiber tow is assumed to fail either in

compression due to kink band or in tension due to fiber breakage in the tows. It

is further assumed that when the critical stress (either tension or compression) is

reached, the crack plane aligns perpendicular to the fiber direction. Therefore, the
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crack orientation transformation matrix is determined by the material orientation

rather than the state of stress.

In hybrid textile composites, due to the heterogeneity of the microstructure and

the complexity of the stress fields, fiber tows exhibit multiple failure modes, including

tow kinking in compression, tow breakage in tension, shear banding and transverse

cracking. In some instances, the fiber tow can be delaminated from the surrounding

matrix at high strain rates, as shown by [33] through a split Hopkinson pressure

bar test. Shear bands are observed when the textile composite is subjected to the

through-the-thickness compression [33, 34]. Cracks that grow along the transverse

normal, axial shear and transverse shear directions are considered as matrix failure

modes, dominated by the strength and toughness of the polymer matrix material.

This chapter details the implementation of SCA approach in ABAQUS user-

material (VUMAT) framework. All possible fiber and matrix failure modes in 1-2, 2-3

and 1-3 planes are introduced and implemented in the in-house developed 3D SCA

code used for this research. The algorithms are documented in flow charts for a better

explanation, as a part of this thesis. The crack orientation transformation matrix,

as determined by the material orientation for all three mutually perpendicular crack

planes are considered.

3.2 Tow failure mechanisms: Post-peak strain soft-

ening response

Since the fiber tow pre-peak nonlinear response is attributed to matrix micro-damage,

no macroscopic damage criterion is required to drive the nonlinear damage progres-

sion. However, multiple catastrophic failure modes are observed in the experiment,

including tensile failure due to fiber rupture and transverse and shear matrix failure

in fiber tows which lead to tow splitting. These modes of failure result in a loss of

load-carrying capability, followed by a post-peak strain softening response. Since the

positive definiteness of the material tangent stiffness matrix is lost in the softening

regime, the FE analysis will provide mesh dependent results if no characteristic length

associated with the softening response is introduced. As a result, the pre-peak NCYL

model has to be supplemented by a suitable mesh objective approach for modeling

the post-peak softening response at the macro-scale. There are a variety of theories

and numerical implementations with respect to modeling of progressive damage and

failure in composites. In this study, the post-peak failure response at the macroscale
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is modeled using the smeared crack approach (SCA). This method was initially pro-

posed by [28] to model crack propagation and fracture in concrete. Extensions to

modeling failure in composites are given in the papers [29, 30]. The implementation

provides mesh objectivity with respect to numerical discretization and uses standard

3D finite elements available in most commercial packages. This latter aspect is of

great concern to practicing engineers in industry who are concerned with validated

computational methods.

In hybrid textile composites, fiber tows are surrounded by a polymer matrix,

resulting in a complex state of stress. A unidirectional fiber tow is shown schematically

in Figure 3.1, where fibers are aligned in 1-direction and the transverse 2-3 plane is

assumed to be isotropic. The microstructure of each fiber tow consists of thousands of

fibers distributed in the matrix medium with certain volume fraction, depending on

the manufacturing process and the applications. The fibers arrangement inside the

tow and the packing details have a great impact on the macroscopic global response,

which can be studied in a more detailed manner. The fiber packing controls the

distribution of matrix cracking inside the tow, but in our study the fiber tows are

homogenized and we try to capture the matrix cracking and the tow splitting at the

macroscale.

Figure 3.1: Unidirectional fiber tow (schematic).

Generally, the failure modes of a fiber tow can be grouped into two types, (1)

fiber failure modes that include tow breakage in tension and tow kinking in compres-
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sion as shown in Figures 3.2 and 3.3 respectively. For both tension and compression

failure modes, the crack planes are aligned orthogonal to the fiber direction. Figure

3.2 indicates the mixed mode behavior for fiber tension in 1-1 direction and shear

failure in 1-2 and 1-3 planes. The coupling between tension and shear failure modes

in the failure initiation criteria can be due to the fiber misalignment and crooked-

ness, as a consequence of manufacturing process. As the fibers are perfectly aligned

and the quality of the manufacturing process improves, the shear failure modes get

suppressed and fiber tensile breakage dominates. Figure 3.3 shows the fiber kinking

behavior due to compressive load and no shear components are included in the failure

initiation criteria for this study. (2) Matrix failure modes include transverse tension

and compression along with corresponding shear components as shown in Figures 3.4,

3.5 and 3.6. In all these modes, crack plane is parallel to the fiber direction but are

differentiated based on the crack normal aligned to 2-direction, as shown in Figure

3.4 compared to the crack normal aligned to 3-direction, as shown in Figure 3.5. The

transverse and shear strengths in 3-direction are equivalent to 2-direction, due to

assumed transverse isotropy but the crack orientation transformation matrix, as de-

termined by the material orientation for all three mutually perpendicular crack planes

are uniquely defined as explained in the following sections. For matrix failure modes

due to shear, the failure plane can be orthogonal to the fiber direction for the S12

and S13 cases, whereas the failure plane remains parallel to the fiber direction for the

S21, S31, S23 and S32 cases, as shown in Figures 3.4, 3.5 and 3.6. S12 is dominated

by fiber shear failure, whereas S21 is failure within the matrix, but parallel to the

fiber. In advanced composites, the interface shear strength is superior to the matrix

shear strength, hence S12 is dictated by the matrix shear strength. The assumption

of matrix failure due to combined transverse and shear loading in 3D is similar to that

proposed by Hashin [35]. Thus the matrix failure modes account for cracks growing

along the transverse normal, axial shear, and transverse shear directions, predicted

based on the corresponding strength and toughness of the composite.
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(a) Tensile failure (1-1) (b) Shear failure (1-2)

(c) Shear failure (1-3)

Figure 3.2: Fiber tension and shear failure modes for crack plane orthogonal to 1-
direction.

Figure 3.3: Fiber compression (kinking) for crack plane orthogonal to 1-direction.
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(a) Tensile failure (2-2) (b) Shear failure (2-1)

(c) Shear failure (2-3)

Figure 3.4: Transverse tension and shear failure modes for crack plane orthogonal to
2-direction.

For a single fiber tow/lamina element, the following failure modes are included

in this study: (a) Tension in 1 (fiber direction) and shear in 1-2 and 1-3 planes (b)

Compression in 1 (fiber direction) (c) Tension in 2 and shear in 2-1 and 2-3 planes (d)

Tension in 3 and shear in 3-1 and 3-2 planes (e) Compression in 2 and 3-directions.

The general methodology and formulation of the smeared crack code is explained

in Section 3.3 below, which applies to all the failure modes mentioned above. The en-

ergy dissipation, fracture toughness and the characteristic length are calculated based

on the mixed mode traction-separation laws as explained in Section 3.4. In Section

3.5, individual failure modes are explained in details depending on the corresponding

local crack traction and strain components and the crack orientation transformation

matrix. The flow chart of the main VUMAT and the smeared crack code are detailed

in Section 3.5.
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(a) Tensile failure (3-3) (b) Shear failure (3-1)

(c) Shear failure (3-2)

Figure 3.5: Transverse tension and shear failure modes for crack plane orthogonal to
3-direction.

(a) Compressive failure (2-2) (b) Compressive failure (3-3)

Figure 3.6: Transverse compression failure modes for crack plane orthogonal to 2-
and 3- directions.
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3.3 3D Orthotropic smeared crack approach (SCA)

for fiber tow

When failure initiates, the total strain ε is decomposed into a continuum strain, εco

and cracked strain, εcr as

ε = εco + εcr (3.1)

This decomposition assumes small strain and the continuum strain, εco can be fur-

ther decomposed into elastic, plastic, thermal and any other type of strain if present.

Here ε, εco and εcr are presented in the global coordinates. At the crack interface,

there exist three relative displacements between the crack faces. One is the crack

opening displacement, and the other two are the crack sliding displacements. The

subscripts n and t are used to designate the directions normal to the crack and tan-

gential to the crack, respectively. The key to the SCA is to embed cracks into a

continuum, hence, the mode-I crack opening displacement is represented by a local

smeared normal crack strain, εcrnn, and the two mode-II crack sliding displacements

are replaced by two local smeared shear crack strains, γcrt1 and γcrt2. These local crack

strains are defined in the local coordinates that incorporate crack orientation, and

can be related to the global coordinates through a transformation matrix, N, as,

εcr = Necr = N


εcrnn

γcrt1

γcrt2

 (3.2)

where ecr is a vector that contains local crack strains, and N is a 6 by 3 transfor-

mation matrix depending on crack orientation. The derivation for N in terms of the

direction cosines of the crack plane can be derived as,

N =



a211 a11a21 a11a31

a212 a12a22 a12a32

a213 a13a23 a13a33

2a11a12 a11a22 + a12a21 a11a32 + a12a31

2a11a13 a11a23 + a13a21 a11a33 + a13a31

2a12a13 a12a23 + a13a22 a12a33 + a13a32


(3.3)
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and a′ijs are the direction cosines governing the space vector transformation as,

x′i = aipxp (3.4)

When the SCA is implemented for a fiber tow failure due to tension or compression,

the crack plane is assumed to be perpendicular to the fiber direction. Thus, the axis

that defines the crack normal aligns with the 1-axis that denotes the fiber direction,

and N is reduced to,

N =



1 0 0

0 0 0

0 0 0

0 1 0

0 0 1

0 0 0


(3.5)

When the SCA is implemented for a fiber tow split in 2-direction due to transverse

loading, the crack plane is assumed to be parallel to the fiber direction. Thus, the

axis that defines the crack normal aligns with the 2-direction, and N is reduced to,

N =



0 0 0

0 0 0

1 0 0

0 0 0

0 0 1

0 1 0


(3.6)

When the SCA is implemented for a fiber tow split in 3-direction due to transverse

loading, the crack plane is assumed to be parallel to the fiber direction. Thus, the

axis that defines the crack normal aligns with the 3-direction, and N is reduced to,

N =



0 0 0

1 0 0

0 0 0

0 0 1

0 0 0

0 1 0


(3.7)

Similarly, the interface stresses at the crack interface, scr, can be transferred to
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the global stress state, σ , through,

scr =


σcrnn

τ crt1

τ crt2

 = NTσ (3.8)

The crack interface stresses are related to the local crack strains through,

scr = Dcrecr (3.9)

where Dcr is the crack interface stiffness matrix that dictates the failure evolution in

the post-peak strain softening regime. For a single crack in a 3D solid, Dcr can be

expanded as,

Dcr =

E
cr
nn 0 0

0 Gcr
t1 0

0 0 Gcr
t2

 (3.10)

where Ecr
nn is the secant stiffness across the crack interface due to crack opening,

and Gcr
t1 and Gcr

t2 are the two secant shear stiffness governed by crack sliding. These

quantities identify the modes of failure and are related to the corresponding traction-

separation laws with a characteristic length scale. The off-diagonal terms are assumed

to be zero, indicating that there is no coupling between the normal and shear crack

components. The determination of the components of the Dcr matrix is given in

Section 3.4 for all failure modes. It should be pointed out that the sudden loss of the

positive definiteness of the material tangent stiffness tensor may result in oscillations

in the numerical solutions corresponding to the post-peak softening regime. Hence, a

damping matrix, Dda, is introduced to modify the stress-strain relation at the crack

interface, and Equation 3.9 becomes,

scr = Dcrecr +Ddaėcr (3.11)

Consequently, the crack progression becomes a time dependent property by the

use of a damping matrix. The crack strain rate is approximated at each time step

using a backward finite difference scheme as,

ėcr =
ecr(t+ δt)− ecr(t)

δt
=
ecr − ecrold

δt
(3.12)

Substituting Equation (3.12) into Equation (3.11) provides the expression for the

local crack stresses as,
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scr = Dcrecr +
Ddaecr

δt
− D

daecrold
δt

(3.13)

The constitutive relation for a continuum is,

σ = Dcoεco (3.14)

where Dco is the continuum stiffness tensor. Combining Equations 3.1, 3.2, and

3.14 results in,

σ = Dco(ε− εcr) = Dco(ε−Necr) (3.15)

Noting Equations 3.8 and 3.13,

Dcrecr +
Ddaecr

δt
− D

daecrold
δt

= NTσ (3.16)

Substituting Equation 3.15 into Equation 3.16 provides,

Dcrecr +
Ddaecr

δt
− D

daecrold
δt

= NTDco(ε−Necr) (3.17)

Consequently, the relation between the local crack strains and the total global

strains can be obtained by rearranging Equation 3.17 as,

ecr =

[
Dcr +

Dda

δt
+NTDcoN

]−1 [
NTDcoε+

Ddaecrold
δt

]
(3.18)

Finally, the relation between the total stress and total strain in the post-peak

regime is computed by substituting Equation 3.18 into Equation 3.15, which gives,

σ =

Dcoε−DcoN
(
Dcr + Dda

δt
+NTDcoN

)−1
NTDcoε

−DcoN
(
Dcr + Dda

δt
+NTDcoN

)−1
Ddaecrold

δt

 (3.19)

Since the components in Dcr are related to the traction-separation law and are

functions of local crack strains, Equation 3.18 represents a group of highly nonlinear

equations involving local crack strains. Newton’s method is employed to solve for ecr,

that satisfies,

f(ecr) =

[
Dcr +

Dda

δt
+NTDcoN

]
ecr −NTDcoε− D

daecrold
δt

= 0 (3.20)
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Therefore, the local crack strains are computed using a successive iterative scheme.

At the kth iteration step,

[ecr]k = [ecr](k−1) − [
δf

δecr
]−1f(ecr) (3.21)

where J = [ δf
δecr

] defines the Jacobian matrix in a nonlinear system. Iteration

continues until f(ecr) approaches zero, or a suitable tolerance is met between two

successive values of ecr. Once the local strains are solved, they are substituted into

Equation 3.19 to compute the total stress at the end of an increment.

3.4 Characteristic length scale associated with the

traction-separation law

To restore mesh objectivity, a characteristic length is introduced such that the total

energy release rate during failure in a continuum element is equal to the fracture

toughness. The fracture toughness, or the critical energy release rate, GC , is defined

by the area under the traction-separation law that dictates the cohesive behavior of

crack propagation, as shown in Figure 3.7(b).

GC =

∫ δf

0

σ(δ) dδ (3.22)

where δ is the crack displacement within the fracture zone. In the SCA, δ repre-

sents the crack opening acting across a certain width within a finite element, denoted

as the crack band width, h. Assuming that all the cracks are uniformly distributed

over the crack band, and εcr is the accumulation of all the crack strains over the

fracture zone,

δ = h εcr (3.23)

If gc is defined as the area under the softening branch of the stress-crack strain

response as shown in Figure 3.7(a), then substitute Equation 3.23 into Equation 3.22

results in,

GC =

∫ δf

0

σ(hεcr)h dεcr = h

∫ εcrf

0

σ(εcr) dεcr = h gc (3.24)

Therefore, the strain-based description for a softening material is related to the

displacement-based traction-separation laws through the characteristic length, h. In
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a FE setting, h is chosen based upon the element type, element size, element shape,

and the integration scheme. Typically the length of the element projected onto the

crack normal is used as a characteristic element length. In the current study, secant

crack stiffness is used so that the softening response follows the traction-separation

law exactly, as shown in Figure 3.7(b). To prevent healing from happening, it is

required that,

Ėcr < 0 and Ġcr < 0 (3.25)

Hence, once the crack stiffness is degraded, it cannot be recovered. The loading

and unloading behavior during the evolution of the failure process is explained in

Section 3.5 below.

(a) Critical stress-strain response (b) Traction-separation law

Figure 3.7: Stress-strain softening response is related to the traction-separation law
through a characteristic length, h.

3.5 Fiber tow failure modes and initiation criteria

The failure response of fiber tows (post-peak softening response) is modeled using

the SCA formulated in Section 3.2. The fiber tow is assumed to fail in six different

possible modes as listed above. Stress-based mixed mode failure criteria are used

for crack initiation as proposed by Hashin [35]. It is further assumed that when the

critical stresses are reached, the crack plane is decided based upon the first failure

criterion met and therefore, the crack orientation transformation matrix, N, defined

in Equation 3.3, is determined accordingly. Also, once the evolved in-situ stress state
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at an integration point satisfies the first initiation criterion and enters into smeared

crack, no other modes of failure are allowed for that point. Introduction of multiple

cracks due to different failure modes at the same integration point is a scope of future

research.

3.5.1 Fiber tensile failure

We name this failure mode as Mode-1 and the crack normal aligns to the fiber direction

as shown in Figure 3.2. The failure initiation criterion is defined by

(
σ11
XT

)2 + (
σ12
S12

)2 + (
σ13
S12

)2 > 1, σ11 > 0 (3.26)

The local crack strains are related to the global strains through a transformation

matrix, N, defined in Equation 3.5 as,

ε11

ε22

ε33

γ12

γ13

γ23


= Necr = N


εcr11

γcr12

γcr13

 (3.27)

The local stresses at the crack interface, scr, are transferred to the global stress

state, σ, through,


σcr11

τ cr12

τ cr13

 = NT



σ11

σ22

σ33

τ12

τ13

τ23


(3.28)

The crack interface stresses are related to the local crack strains through,
σcr11

τ cr12

τ cr13

 =

E
cr
11 0 0

0 Gcr
12 0

0 0 Gcr
13



εcr11

γcr12

γcr13

 (3.29)

Let the onset stress states at the instant of failure initiation are denoted as σ∗11,

σ∗12 and σ∗13 which satisfy the Equation 3.26 as
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(
σ∗11
XT

)2 + (
σ∗12
S12

)2 + (
σ∗13
S12

)2 > 1, σ∗11 > 0 (3.30)

The traction-separation laws for each component of stress and the corresponding

fracture toughness are shown in Figure 3.8 below.

(a) Traction-separation law for σ∗
11 (b) Traction-separation law for σ∗

12

(c) Traction-separation law for σ∗
13

Figure 3.8: Traction-separation laws for fiber tensile failure.

3.5.2 Fiber compressive failure

We name this failure mode as Mode-2 and the crack normal aligns to the fiber direction

as shown in Figure 3.3. The crack orientation transformation matrix, N is defined in

Equation 3.5 and the failure initiation criterion is defined by

(
σ11
XC

)2 > 1, σ11 < 0 (3.31)

The crack interface stresses are related to the local crack strains through,
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σcr11

τ cr12

τ cr13

 =

E
cr
11 0 0

0 Gcr
12 0

0 0 Gcr
13



εcr11

γcr12

γcr13

 (3.32)

Let the onset stress states at the instant of failure initiation are denoted as σ∗11,

which satisfies the Equation 6.2 as

(
σ∗11
XC

)2 > 1, σ∗11 < 0 (3.33)

The traction-separation laws for each component of stress and the corresponding

fracture toughness are shown in Figure 3.9 below.

Figure 3.9: Traction-separation laws for fiber compressive failure.

3.5.3 Matrix tensile failure (Crack plane orthogonal to 2-

direction)

We name this failure mode as Mode-3 and the crack normal aligns to 2-direction, as

shown in Figure 3.4. The crack orientation transformation matrix, N is defined in

Equation 3.6 and the failure initiation criteria is defined by

(
σ22
YT

)2 + (
σ12
S21

)2 + (
σ23
S21

)2 > 1, σ22 > 0 (3.34)

The crack interface stresses are related to the local crack strains through,
σcr22

τ cr12

τ cr23

 =

E
cr
22 0 0

0 Gcr
12 0

0 0 Gcr
23



εcr22

γcr12

γcr23

 (3.35)
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Let the onset stress states at the instant of failure initiation are denoted as σ∗22,

σ∗12 and σ∗23 which satisfies the Equation 3.34 as

(
σ∗22
YT

)2 + (
σ∗12
S21

)2 + (
σ∗23
S21

)2 > 1, σ∗22 > 0 (3.36)

The traction-separation laws for each component of stress and the corresponding

fracture toughness are shown in Figure 3.10 below.

(a) Traction-separation law for σ∗
22 (b) Traction-separation law for σ∗

12

(c) Traction-separation law for σ∗
23

Figure 3.10: Traction-separation laws for matrix tensile failure in 2-plane.

3.5.4 Matrix tensile failure (Crack plane orthogonal to 3-

direction)

We name this failure mode as Mode-4 and the crack normal aligns to 3-direction, as

shown in Figure 3.5. The crack orientation transformation matrix, N is defined in

Equation 3.7 and the failure initiation criterion is defined by
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(
σ33
YT

)2 + (
σ13
S21

)2 + (
σ23
S21

)2 > 1, σ33 > 0 (3.37)

The crack interface stresses are related to the local crack strains through,
σcr33

τ cr13

τ cr23

 =

E
cr
33 0 0

0 Gcr
13 0

0 0 Gcr
23



εcr33

γcr13

γcr23

 (3.38)

Let the onset stress states at the instant of failure initiation are denoted as σ∗33,

σ∗13 and σ∗23 which satisfies the Equation 3.37 as

(
σ∗33
YT

)2 + (
σ∗13
S21

)2 + (
σ∗23
S21

)2 > 1, σ∗33 > 0 (3.39)

The traction-separation laws for each component of stress and the corresponding

fracture toughness are shown in Figure 3.11 below.

(a) Traction-separation law for σ∗
33 (b) Traction-separation law for σ∗

13

(c) Traction-separation law for σ∗
23

Figure 3.11: Traction-separation laws for matrix tensile failure in 3-plane.
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3.5.5 Matrix compressive failure(Crack plane orthogonal to

2-direction)

We name this failure mode as Mode-5 and the crack normal aligns to 2-direction, as

shown in Figure 3.6(a). The crack orientation transformation matrix, N is defined in

Equation 3.6 and the failure initiation criteria is defined by

(
σ22
YC

)2 + (
σ12
S21

)2 + (
σ23
S21

)2 > 1, σ22 < 0 (3.40)

The crack interface stresses are related to the local crack strains through,
σcr22

τ cr12

τ cr23

 =

E
cr
22 0 0

0 Gcr
12 0

0 0 Gcr
23



εcr22

γcr12

γcr23

 (3.41)

Let the onset stress states at the instant of failure initiation are denoted as σ∗22,

σ∗12 and σ∗23 which satisfies the Equation 3.40 as

(
σ∗22
YC

)2 + (
σ∗12
S21

)2 + (
σ∗23
S21

)2 > 1, σ∗22 < 0 (3.42)

The traction-separation laws for each component of stress and the corresponding

fracture toughness are shown in Figure 3.12 below.

3.5.6 Matrix compressive failure(Crack plane orthogonal to

3-direction)

We name this failure mode as Mode-6 and the crack normal aligns to 3-direction, as

shown in Figure 3.6(b). The crack orientation transformation matrix, N is defined in

Equation 3.7 and the failure initiation criteria is defined by

(
σ33
YC

)2 + (
σ13
S21

)2 + (
σ23
S21

)2 > 1, σ33 < 0 (3.43)

The crack interface stresses are related to the local crack strains through,
σcr33

τ cr13

τ cr23

 =

E
cr
33 0 0

0 Gcr
13 0

0 0 Gcr
23



εcr33

γcr13

γcr23

 (3.44)

Let the onset stress states at the instant of failure initiation are denoted as σ∗33,

σ∗13 and σ∗23 which satisfies the Equation 3.43 as
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(a) Traction-separation law for σ∗
22 (b) Traction-separation law for σ∗

12

(c) Traction-separation law for σ∗
23

Figure 3.12: Traction-separation laws for matrix compressive failure in 2-plane.

(
σ∗33
YC

)2 + (
σ∗13
S21

)2 + (
σ∗23
S21

)2 > 1, σ∗33 < 0 (3.45)

The traction-separation laws for each component of stress and the corresponding

fracture toughness are shown in Figure 3.13 below.

3.5.7 VUMAT Implementation

The commercially available finite element software, ABAQUS (version 6.14), is used

for the macroscale FEA, and the NCYL micromechanics model at the subscale is

implemented at each integration point of the macro scale, using a user defined ma-

terial subroutine, VUMAT. This subroutine is called at each integration point at

each increment, and the material constitutive law is updated through user-defined

options. At the start of each increment, the material state i.e. stress-strain and

solution-dependent state variables from the previous equilibrium step and the strain

increments in the current step are passed into the VUMAT through the ABAQUS
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(a) Traction-separation law for σ∗
33 (b) Traction-separation law for σ∗

13

(c) Traction-separation law for σ∗
23

Figure 3.13: Traction-separation laws for matrix compressive failure in 3-plane.

solver. The algorithms of the main VUMAT subroutine and the smeared crack sub-

routine are shown in Appendices C and E respectively.

3.6 3D Isotropic smeared crack approach (SCA)

for matrix

The thin layer of matrix pocket outside of the fiber tows and inside the volume of the

textile is treated as isotropic material and subjected to tensile and compressive failure,

when the textile material is subjected to loading. The matrix develops micro cracks

due to the growth of voids or inclusions, when subjected to loading and consequently

leads to degradation of stiffness of the structure, which also causes the pre-peak

non-linear behavior in the global stress-strain curve. The accumulation of matrix

microdamage leads to the initiation of matrix macroscopic cracking, followed by post-

peak strain softening response. In this study, the evolution of matrix failure is modeled
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using the 3D isotropic smeared crack approach (SCA), similar to the one formulated

in the previous section for fiber tow as 3D orthotropic trasversely isotropic smeared

crack approach. The basic formulation between two different material systems is the

same except the fact that, the crack orientation transformation matrix is determined

by the state of stress in isotropic material rather than the material orienation in

orthotropic material. The formulation is described in the following section and the

major changes are highlighted.

3.6.1 Determination of the crack constitutive relations

In the present study, a 1D uncoupled traction-separation law is employed and the

crack interface stiffness matrix Dcr dictates the failure evolution in the post-peak

starin softening regime. For a single crack in 3D solid, Dcr becomes,

Dcr =

E
cr 0 0

0 Gcr
1 0

0 0 Gcr
2

 (3.46)

where Ecr is the secant crack modulus resulting from normal crack strain (mode-I type

of failure), while Gcr
1 and Gcr

2 are associated with shear crack strains (mode-II type

of failure). In the current study, secant crack stiffness is used so that the softening

response follows the traction-separation law exactly, as shown in Figure 3.14.

To prevent crack healing from happening, it is required that,

Ėcr < 0 and Ġcr < 0 (3.47)

Hence, once the crack stiffness is degraded, it cannot be recovered. The loading and

unloading responses during the evolution of the failure process are specified in Figure

3.14. In the SCA, it is assumed that distributed cracks are ‘smeared’ out over a

certain width within the finite element such that the effect of progressive cracking is

represented by macroscopic strain softening in a continuum scheme. To restore mesh

objectivity, a characteristic length is introduced such that the total amount of energy

dissipated during failure in a continuum element is equal to the fracture toughness

defined for a cohesive element of the same size. The fracture toughness, or the critical

energy release rate, GC , is defined by the area under the traction-separation law that

dictates the cohesive behavior of crack propagation (see Figure 3.15(b)) as,
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Figure 3.14: Crack evolution is dictated using degrading secant crack stiffness.

GC =

∫ δf

0

σ du (3.48)

where u is the sum of crack displacements within the fracture zone. In the SCA,

u represents the crack strain acting across a certain width within a finite element,

denoted as the crack band width, h. Assuming that all the cracks are uniformly

distributed over the crack band, and since u is the accumulation of all the crack

strains over the fracture zone, it follows that,

u = h εcr (3.49)

If gc represents the area under the softening branch of the stress-strain response (see

Figure 3.15(a)), then substituting equation (3.49) into equation (3.48) results in,

GC =

∫ δf

0

σ(hεcr)h dεcr = h

∫ εcrf

0

σ(εcr) dεcr = h gc (3.50)

Therefore, the strain-based description for a softening material is related to the

displacement-based traction-separation laws through the characteristic length, h. In

a FE setting, h is chosen based upon the element type, element size, element shape,

and the integration scheme [28]. Typically the length of the element projected onto

the crack normal is used as a characteristic element length, as shown in Figure 3.16.
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(a) Critical stress-strain curve. (b) Traction-separation law.

Figure 3.15: Stress-strain softening response is related to traction-separation law
through a characteristic length, h.

Figure 3.16: Characteristic element length. The length of the element projected on
the crack model is used as characteristic element length

The 3D stress state inside the matrix material are updated through the user

subroutine over the progressive loading and subjected to the smeared crack code

when certain failure initiation criteria are met. Different stress based failure initiation

criteria are implemented for tensile and compressive failure of matrix material, as

described in the following sections. Single element test is carried out to check the

validity of the code and various case studies are considered to demonstrate the mesh

objectivity of both tensile and compressive failure using the smeared crack approach.

3.6.2 Matrix in tension (Principal stress criteria)

The matrix material surrounding the fiber tows are subjected to tensile failure, leading

to debonding of the contact surfaces from the fiber tows. The Z-fiber tows undulate

in top-bottom fashion and the thin matrix layer sandwiched in the gap between the
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Figure 3.17: Mohr’s circle and tensile failure criteria.

undulated and the in-plane fiber tows are seen through high level of 3D stress during

the progressive loading. An equivalent stress, combining all six stress components

in 3D framework, can be established and tensile failure initiation criteria can be

expressed as a function of equivalent stress, which should also be able to describe

the physics of the failure mode. In a monolithic material, cracks are likely to grow

under pure mode-I conditions since this mode of failure is energetically favorable.

However, in this study, it is assumed that the tensile cracks grow under pure mode-

I conditions, oriented with the maximum principal stress plane. For a given stress

state, the principal stresses, σ1, σ2, and σ3, and the corresponding principal axes, n1,

n2, and n3, are first computed and Mohr’s circle can be drawn for the maximum and

minimum principal stresses, as shown in Figure 3.17.

Every point on the Mohr’s circle defines the unique state of stress at a material

point. The normal and shear stresses on any plane whose normal n makes an angle

θ with the horizontal axis can easily be expressed as a set of equations in terms of

principal stresses and related to the equations of a circle in σN -τ plane, with the

angle θ as a parameter. Consider, for example, the coordinates of any point A on

the circle represent the values of σN and τ for the plane whose aspect is defined by

θ in Figure 3.17. Thus all possible information about the stresses on various planes

can be found from Mohr’s circle. If either principal stress is compression, it must be

taken with negative sign, so that in general the center B of Mohr’s circle may lie to
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Figure 3.18: Boundary conditions for single element subjected to uniaxial tension.

either side of the origin in Figure 3.17, but always on the σN axis. Maximum tensile

stress criterion is used for tensile crack initiation as,

σ1 > σ2 > σ3 and
σ1
σ0
≥ 1 (3.51)

where σ0 is the tensile critical strength, in the mode-I traction separation law. In

practical applications, it is further assumed that once the crack is initiated, the crack

orientation, determined from the principal stress directions, is fixed during the failure

evolution. It is further assumed that the crack interface is traction free in both normal

and shear directions during and after fracture energy dissipation. The two crack shear

moduli, Gcr
1 and Gcr

2 , are degraded as a function of εcrnn, indicating that the cracks

grow under mode-I dominated conditions. It is possible that the crack shear moduli

are degraded with respect to γcrt1 or γcrt2 , and a mixed-mode traction-separation law

could be introduced to ensure that the shear failure evolves under mode-II conditions

[36]. However, such a complicated failure mechanism requires further study of cracks

progressing at the microscale, and this aspect is not considered in the current study.

A single element test is carried out for uniaxial tension test with a suitable element

length to satisfy Bazant’s mesh size criteria and scaled fracture toughness. Figure

3.18 illustrates the boundary conditions for the single element subjected to uniaxial

tension. All the material properties that are used in this study are summarized in

Table 3.1. The resulting stress versus strain response is plotted in Figure 3.19. The

area under the curve is calculated and it closely matches with the scaled fracture

toughness used as input.
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Table 3.1: Stiffness, strength and fracture toughness values for single element and
mesh objectivity test.

Property Value

E(GPa) 2.487

ν 0.35

σy(MPa) 30

K1(MPa) 4500

K2 58.31

σ0(MPa) 60

GIC(N/mm) 1.5

(a) Stress-strain response subjected to tension. (b) ABAQUS simulation.

Figure 3.19: Single element test for matrix tensile failure.

In order to verify the mesh objectivity of the smeared crack code in FE framework,

a uniaxial tension test was performed on a unit volume cube with four different mesh

sizes, as shown in [31]. The in-situ matrix non-linear properties of SC-15 epoxy used

and the elements that lie on the mid-plane perpendicular to the loading direction

are assigned a 0.5% lower strength than the rest of the elements, so that the tensile

failure is localized within the cube in these weak elements. The resulting load versus

displacement responses for all the four mesh sizes clearly shows that the computed

fracture toughness, peak load and the localized fracture zone, are independent of mesh
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size, which clearly indiactes the mesh objectivity characteristics of the Smeared crack

approach. Hence, mesh objectivity is verified for tensile failure of matrix material

using 3D Isotropic smeared crack approach and the failure initiation criteria based

on principal stress limit.

3.6.3 Matrix in compression (Mohr-Coulomb’s criteria)

The matrix inside the textile involve complex stress state, when subjected to compres-

sive loading and not much is known about the failure behavior of particular epoxy sys-

tem under 3D stress conditions. Problems that involve polyaxial loading often makes

it worst and a reliable computational physics-based failure model is ineveitable. The

Mohr-Coulomb failure initiation criterion is widely applied to the matrix compres-

sion failure and to the description of shear frictional sliding. Matrix sliding friction

is defined in terms of the effective stress normal to the sliding surface and to the

shear stress resolved in the direction in which sliding occurs. It assumes that failure

occurs at particular combinations of the greatest and least principal stresses, that

the intermediate principal stress has no effect on failure and that failure criteria can

be set out in terms only of the stress state. Matrix sliding friction is important to

composite progressive failure modeling because it limits the differential stresses that

can be obtained at the interface of fiber tows and the matrix pocket. Modeling ma-

trix compression failure behavior demand knowledge of failure or frictional sliding

under generalized stress conditions. More details about the implementation of Mohr-

Coulomb’s criteria combined with Smeared crack code, in the framework of ABAQUS

VUMAT are explained in Chapter 6. Single element test along with mesh objectivity

and imperfection sensitivity of the matrix compression modeling are studied in the

framework of a micromechanics model.

3.7 Finite element implementation of NCYL and

SCA

A multiscale framework is established in this research using a combined approach

of NCYL and SCA models. NCYL is an analytical micromechanics model, which

is able to captute the pre-peak non-linearity caused by matrix micro-damage. The

detailed procedure to calculate the in-situ matrix non-linearity constants for N=2, 3

and 4 cylinders are explained in Chapter 2. It is an analytical discretization model,

where N can be extended to any number of matrix layers in general and all the stress
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and strain fields inside the cylinders can be expressed in closed form using the in-

house developed Mathematica code, as a part of this research. All the closed form

analytical expressions are formulated in explicit version of user-subroutine VUMAT to

interface with ABAQUS and that enables the implementation of this micromechanics

analytical model to run the finite element based numerical simulations. The main

VUMAT for the combined approach is reported in Appendix C and the detailed

flow chart for the implementation of NCYL (N=2, 3 and 4) in ABAQUS framework

are explained in Appendix D. Stress based failure initiation criteria are used for

different failure modes of both fiber tow and matrix material. The mixed-mode

failure initiation criteria of homogenized fiber tow are followed by 3D Hashin criteria

and implemented in 3D orthotropic transversely isotropic smeared crack code, as

explained in above sections. The matrix pocket outside the fiber tow and inside the

volume of textile is subjected to tensile and compressive failure modes. The tensile

failure criterion is based on maximum principal stress theory and the compressive

failure is initiated based on Mohr-Coulomb’s theory. Both tensile and compressive

failure are implemented using 3D isotropic smeared crack code, as explained above. A

detailed procedure of numerical implementation of both 3D orthotropic and isotropic

smeared crack codes in ABAQUS VUMAT framework are explained as flow charts

in Appendix E. Various numerical tests are carried out in the following sections to

strengthen and validate the implementation of NCYL and SCA models in ABAQUS

framework.

3.7.1 Single element test

Single element test (SET) is a basic fundamental and building block approach to

validate the in-house developed code for different failure modes. Matrix shear and

transverse tension failure modes lead to tow splitting, as observed in experiments by

many researchers. For laminated and hybrid textile composites, this mode of failure is

important and a validated computational tool is indispensable to capture this failure

phenomenon. As a scope of this research, the in-house developed code is tested for

a single element case as explained below. To decide the element size and the model,

following guidelines are followed: (1) Calculate the crack band characteristic length

for all failure modes in the SCA code, (2) Pick the lowest characteristic length and

divide by 10 (or as required, preferably >5) and this is the element size to be used

for a single element test and (3) Construct an 8 noded cube with the dimension

calculated. The unit cube element length of 0.001 mm is used for this exercise. For
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a single fiber tow or lamina element, the following tests are listed: (a) Tension in 1

(fiber direction), (b) Compression in 1, (c) Tension in 2, (d) Compression in 2, (e)

Pure shear and (f) Simple shear (parallel to fiber (1)).

Following guidelines are followed to decide boundary/loading conditions for each

test case and verification of results: (1) Always perform the hand calculation prior to

the element test to decide the appropriate boundary displacement for the case, i.e.

essentially constructing the stress-strain plot of SCA and calculating the strain. Make

sure that the final failure strain value is <50% (or even 20-30%). This is to avoid

other issues with strain measure differences between the hand calculations and the

ABAQUS results). Calculate the required BC displacement from final failure strain,

(2) for each test case, extract all the relevant reaction force-displacement data. Area

under these curves should always match with the energy released for crack formation

(fracture toughness multiplied by crack area) and (3) study the mixed mode loading

conditions in a similar way and decide if the mixed-mode law is satisfied at the final

failure. The simulated results in ABAQUS are carried out using the user-subroutine

VUMAT and shown in the figures below. For each case, all relevant stress-strain and

the reaction force-displacement data are extracted and the areas under these curves

are calculated. The whole exercise is based on mesh objective approach and to restore

it, the energy release rate (area under the curve) is compared in each case with the

hand calculated and scaled fracture toughness from real test data. The set of test

data used for this exercise are summarized in the following Table 3.2 for IM-7/977-3

material system.

Table 3.2: Stiffness, strength and fracture toughness values for single element test.

Strength(MPa) Fracture(N/mm) Stiffness(GPa)

Fiber tension(XT ) 2905 GF+
IC 40 E1T 164.3

Fiber compression(XC) 1274 GF−
IC 4 E1C 137.4

Transverse tension(YT ) 44.4 GM+
IC 0.256 E2T 8.977

Transverse compression(YC) 247.6 GM−
IC 0.256 E2C 8.694

In-plane shear(S12) 108 GM
IIC 1.156 G12 4.88

The detailed procedure to calculate the matrix in-situ non-linear properties for

N=2, 3 and 4 cylinders are explained in Chapter 2. The computed values for IM-

7/977-3 material system and volume fraction of 64% are summarized below in Tables
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3.3, 3.4 and 3.5 respectively. These values are used for single element test to validate

the Smeared crack code.

Table 3.3: In-situ nonlinear properties of 977-3 matrix for N=2.

σmy (MPa) k1 (MPa) k2

M1 48.3 5000 32

Table 3.4: In-situ nonlinear properties of 977-3 matrix for N=3.

σmy (MPa) k11 (MPa) k21

M1 69.5 6000 24

σmy (MPa) k12 (MPa) k22

M2 43.5 4000 19

Table 3.5: In-situ nonlinear properties of 977-3 matrix for N=4.

σmy (MPa) k11 (MPa) k21

M1 83 8000 27

σmy (MPa) k12 (MPa) k22

M2 55 5000 20

σmy (MPa) k13 (MPa) k23

M3 42 5000 24

3.7.1.1 Single element test results

A linear traction law is assumed for SCA to hand calculate the failure strain. As

a first case, high yield value of matrix is used as linear pre-peak matrix property

to calculate the force-displacement curves in ABAQUS simulations for each loading

case. The results for each test case are summarized in the following Table 3.6.
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Table 3.6: Summary result for single element test (SET) and linear matrix property.

Loading case Measured(N/mm) Scaled(N/mm) NCYL2 NCYL3 NCYL4

Fiber tension 40 0.25682 0.256 0.256 0.256

Fiber compression 4 0.0591 0.0606 0.0606 0.0606

Transverse tension 0.256 0.0011 0.0011 0.0011 0.0011

Transverse compression 0.256 0.0353 0.0386 0.0386 0.0386

Simple shear 1.156 0.0143 0.0143 0.0143 0.0143

Pure shear 1.156 0.0143 0.0143 0.0143 0.0143

As a second case, the nonlinear matrix in-situ properties are used from Tables 3.3,

3.4 and 3.5 for N=2, 3 and 4 respectively to calculate the force-displacement curves

in ABAQUS simulations for each loading case. The results for each test case are

summarized in the following Table 3.7.

Table 3.7: Summary result for single element test (SET) and non-linear matrix prop-
erty.

Loading case Measured(N/mm) Scaled(N/mm) NCYL2 NCYL3 NCYL4

Fiber tension 40 0.25682 0.256 0.256 0.256

Fiber compression 4 0.0591 0.0606 0.0606 0.0606

Transverse tension 0.256 0.0011 0.0011 0.0011 0.0011

Transverse compression 0.256 0.0353 0.041 0.0389 0.0388

Simple shear 1.156 0.0143 0.0164 0.0144 0.0144

Pure shear 1.156 0.0143 0.0164 0.0144 0.0144

As shown in Tables 3.6 and 3.7, the hand calculated scaled fracture toughness

from test data closely match with ABAQUS simulation results for all failure modes.

As a next step, the developed code is checked for demonstarting the tow split failure

mode as explained in next section.

81



(a) Force-displacement (b) Stress-strain

(c) ABAQUS simulation

Figure 3.20: Fiber tension (1).

3.7.2 Tow split test

Fiber tow split is a very common failure mode occuring mechanism, when the textile

composites are subjected to transverse and shear loading. Figure 3.26 strengthens

the eveidence of this failure mechanism, as shown by clear transverse cracks along the

width of fiber tow cross-section. Each individual fiber tow consists of thousands of

fibers embedded in a matrix medium in various packing arrangements. The matrix

inside the tow and in-between the fibers develops micro-cracks due to the growth of

voids and inclusions, when subjected to transverse and shear loading. These matrix

micro-cracks cause the pre-peak non-linear behaviour of the fiber tow and eventually

develop in to macroscopic cracks, which lead to two-piece failure of fiber tow due to

a single macro transverse crack. The fibers and matrix can be modeled discretely
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(a) Force-displacement (b) Stress-strain

(c) ABAQUS simulation

Figure 3.21: Fiber compression (1).

in a microscopic RVE level and numerical simulations can be carried out to capture

this failure phenomenon, but it computationally expensive to model individual fibers,

when analyzing the global larger structure. The goal of this research is to capture

these macroscopic transverse cracks at the homogenized fiber tow numerical model,

which uses the constituent level properties as inputs in a multi-scale framework. A

fiber tow is modeled inside a rectangular matrix box to represent the continuum

medium and subjected to transverse loading, as shown in Figure 3.27. This finite

element simulation demonstrates the capability of the multiscale method discussed

in the previous sections, by using combined approach of NCYL and SCA. The stress-
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(a) Force-displacement (b) Stress-strain

(c) ABAQUS simulation

Figure 3.22: Matrix tension (2).

strain behaviour and the progressive contour plot of matrix transverse cracks are

shown in Figure 3.28.

3.7.3 Angle ply test

Open hole tension (OHT) coupon geometry and dimensions are referred from Tech

Scout-1 to build up the 3D geometry model of a single ply in ABAQUS 6.14. A

finite element mesh is generated from the 3D model, as shown below in Figure 3.29

to simulate the tensile test for both unidirectional and angle plies separately. The
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(a) Force-displacement (b) Stress-strain

(c) ABAQUS simulation

Figure 3.23: Matrix compression (2).

purpose here is to validate the in-house developed smeared crack code by observing

the failure mode in each ply and comparing with the experiments and literature.

A non-radial, non-fiber-aligned mesh is used to elliminate the possibility of biasing

the results with respect to the fiber aligned mesh. The failure prone gauge area

near to the hole is discretized using a high mesh density, satisfying Bazant’s mesh-

ojectivity element length and a mesh gradient technique is used to gradually coarsen

the mesh density towards the non-failure grip area of the coupon. As observed in the

experiments, matrix micro-cracks initiate at the edge of hole at certain characteristic

angle depending on the angle of individual ply. These micro-cracks develop into a

prominent macroscopic crack between the fiber tows in the lamina and propagate
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(a) Force-displacement (b) Stress-strain

(c) ABAQUS simulation

Figure 3.24: Simple shear (BC parallel to fiber (1)).

along the length of the fibers. Open hole tension (OHT) numerical simulations are

carried out for 00, 450 and 900 angle plies using the same code, tested for single element

test and the contour plots of matrix cracking are shown below in Figures 3.30, 3.31

and 3.32 respectively. As shown in the figures, the developed smeared crack code

can capture the tow split in unidirectional ply, mixed-mode matrix cracking in 450

ply and the transverse matrix cracking in 900 ply. Now, the developed tool will be

implemented in the simulation of tensile test for three different notched laminates, as

explained in the following section.

3.7.4 Laminate test

A study was conducted under the support of phase I of the Air Force Research Labo-

ratory (AFRL) Tech Scout Project (TS-1) aimed at evaluation of existing progressive
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(a) Force-displacement (b) Stress-strain

(c) ABAQUS simulation

Figure 3.25: Pure shear.

damage prediction methods and NCYL multiscale method was chosen to be one of

potential tool to provide a more realistic representation of experiments. As a part of

Tech Scout-1 project, three different lay-ups (i.e., Lay-up 1: [0/45/90/−45]2s ; Lay-

up 2: [30/60/90/−60/−30]2s; Lay-up 3: [60/0/−60]3s) of notched tension specimens

were modeled and blind static failure predictions were carried out. All experimental

data used in this work were conducted by AFRL and provided a refernce to vali-

date the predictive models. After submission of blind predictions, NCYL model was

recalibrated in terms of constituent properties input to better correlate to the ex-

perimental results as part of the Tech Scout-1. A systematic mesh objective study
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Figure 3.26: Experimental proof of tow split.

Figure 3.27: Tow mesh subjected to transverse loading.
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Figure 3.28: Progressive plot for tow split.

Figure 3.29: Mesh used to simulate OHT test for angle ply.

Figure 3.30: Tow split captured in 00 ply.
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Figure 3.31: Matrix cracking captured in 450 ply.

Figure 3.32: Matrix cracking captured in 900 ply.

could not be conducted due to the imposed project timeframe and a coarse mesh was

used to help timely submission of the results. Since, the failure modes were not fully

implemented in the Smeared crack code before the due date of TS-1 predictions, the

failure modes in each lamina were not captured properly. Also, the strengths were un-

der predicted due to insufficent mesh density, especially for notched shear dominated

lay-ups. In this study, a more systematic approach is adopted in terms of choosing a

finer mesh and including all possible failure modes for fiber and matrix in the revised

3D smeared crack code. The purpose of this research is to establish a reliable compu-

tational framework to be able to predict the progressive damage and complex failure

mechanisms of laminated composites using the constituent properties in a multiscale

framework obtained from a coupon level tests of a unidirectional lamina.

Three different lay-ups of IM-7/977-3 carbon fiber composite laminates are studied

here. The constitutive fiber and matrix properties are obtained from the lamina

properties using inverse CCM analysis and partially from the manufacturers data.

The elastic properties for fiber and matrix materials are summarized in Table 3.2.

The matrix nonlinear response is obtained from a tension test on a [+45/−45]4s

symmetric laminate in conjunction with a computational micromechanics model, as

proposed by Ng et al. [17]. The fiber volume fraction of each lamina is 64%. The

strength characteristics are summarized in Table 3.2.

The dimensions of lay-ups and boundary conditions that are used for notched
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Figure 3.33: OHT loading and boundary conditions.

specimens are shown in Figure 3.33. Each lamina is modeled explicitly as a ho-

mogenized solid using 3D elements and are related to the micro-scale analysis of

fiber/matrix constituents through an analytical micromechanics N-layer concentric

cylinder (NCYL) model. A layer of discrete cohesive zone (DCZM) elements with a

thickness of 5% of the lamina thickness is implemented in-between the lamina layers

to account for possible delamination.

The finite element mesh is chosen based on two facts, (1) The characteristic ele-

ment length around the notch area should satisfy the mesh-objectivity criteria, which

is calculated based on fracture toughness, stiffness and strength for each individual

failure mode. The minimum element length of all the failure modes is chosen to be

0.2 mm around the notch area and a coarser mesh of 0.6 mm length is used in the

far field area for computational efficiency. (2) The chosen mesh is studied for stress

gradients around the notch area in a linear elastic analysis and verified with Lekhnit-

skii’s analytical solution for unidirectional and angle ply, which gives confidence to be

used for current revised simulations. The finite element meshes used for the current

simulations are shown in Figure 3.34 for demonstration.

The simulation results are compared with the experimental results along with the

progressive damage contour plots in Appendix F for all the three laminate configura-

tions.

3.8 Conclusions

A three dimensional (3D) orthotropic smeared crack model is developed including all

possible failure modes for fiber and matrix inside the fiber tow. The crack planes are

differentiated in all three orthogonal directions depending on the mode of failure and

the crack orientation transformation matrix is decided based on the material orien-

tation rather than the state of stress. Linear traction laws are used for both tension
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Figure 3.34: Finite element mesh used in OHT laminate simulation.

and compression failure modes of constituent materials (fiber and matrix) individu-

ally inside the tow and the mesh objectivity is maintained through a characteristic

length parameter, as detailed in the formulation. Mixed mode failure initiation cri-

teria are adopted from 3D Hashin criteria and the implementation of the smeared

crack algorithms in ABAQUS VUMAT framework are explained in details, along

with the flow charts. The matrix material outside the fiber tows is assumed to be

isotropic and a 3D isotropic smeared crack model is developed for modeling matrix

tensile and compressive failure. The tensile failure mode is based on pricipal stress

based theory and the compressive failure is motivated by Mohr-Coulomb’s theory.

Detailed study on the implementation of Mohr-Coulomb’s failure initiation criteria

combined with Smeared crack approach are included in Chapter 6. An exponential

traction law is used for both matrix tension and compression failure modeling and

mesh objectivity is in-built by preserving the fracture energy through characteristic

length, in a similar fashion for the linear traction laws for fiber tow failure modes.

The differences between the two formulations are based on the fact that, the crack

orientation transformation matrix is decided based on 3D state of stress in the case

of isotropic smeared crack model rather than the material orientation, as in the case

of orthotropic smeared crack model.

The smeared crack approach (SCA) is used to model the post-peak strain soft-

ening behavior of the material, whereas the pre-peak nonlinear behavior is modeled
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using the NCYL micro-mechanics model, as described earlier in Chapter 2. The com-

bined approach of NCYL and SCA completes the multi-scale framework to describe

the stress-strain behavior of the material system under different loading scenarios.

In this chapter, finite element implementation of the combined approach are demon-

strated, using various case studies like single element test, tow split test, unidirectional

ply split, angle plies matrix cracking and ultimately the whole open hole tension lam-

inate modeling for three different lay-ups. All these exercises validate the successful

implementation of NCYL and SCA in FE framework. The proposed computational

multiscale analysis approach can be used as a predictive tool in the textile progressive

failure analysis, which is demonstrated in the following chapters for tensile and com-

pressive loading, along with the study on the effect of hybridization and architectural

influence in the design of hybrid textile configurations.
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CHAPTER 4

Material system: Hybrid 3D woven textile

composites (H3DWTCs)

4.1 Introduction

Three-dimensional textile composites (3DTCs) are a relatively new class of ‘out-of-

autoclave’ technology products that have the potential to replace conventional pre-

impregnated (prepreg) tape laminates in terms of their excellent mechanical proper-

ties but at significantly reduced manufacturing cost and time. 3DTCs display high

damage tolerance, high impact resistance and a distinct cost advantage and hence

will likely see widespread use in the aerospace, automobile and defence industries

due to their better structural properties tailoring capability. These composites can

be created from a 3D weaving or braiding process by arranging the fiber tows into

complex dry preform structures, following which a resin is applied to the 3D preform

to create the composite material. A significant amount of work is done on the auto-

mated Robotic approach for processing of textile preforms [37]. Two distinct types of

3D woven textile composites (3DWTCs), a layer-to-layer angle interlock 3DWTC and

a Z-fiber orthogonal interlock hybrid 3DWTC, are popular and both have a great ad-

vantage over laminated materials. Angle-interlock 3D woven structures are common

in order to create much thicker woven preforms. In the interlock structures, yarns

can be woven from one layer to another and then back to the original layer to lock

adjacent layers to each other. In complex interlock structures, yarns may be woven

at specified points into several layers in order to join multiple layers. In this research,

Z-fiber orthogonal interlock hybrid 3DWTCs are studied in detail and analysed for

progressive failure analysis.

Three dimensional, orthogonal woven composites are a class of 3DWTC composite

structures containing a set of fiber tows spreading in all three mutually perpendic-

ular directions (x, y and z-axes). These structures display high resistance to layer
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delamination, as the latter is a common problem in conventional laminated compos-

ites. 3DWTCs are manufactured by laying up the warp and weft fiber layers and

consequently running a Z-fiber in the thickness direction to bind the in-plane lay-

ers together. A matrix material is impregnated into these complex woven lay-ups

and cured under specifed conditions to obtain a woven solid structure. The weaving

process followed ensures high consistency of the preform architecture and minimal

waviness of the in-plane fibers in both warp and weft directions. Several experimen-

tal studies [38, 39, 40, 41, 42, 43, 44] show that there is very low waviness of the

warp and weft directional tows, which allows to achieve enhanced mechanical prop-

erties. This category of composites is characterized with practically straight and well

aligned in-plane fibers. As a consequence, this type of textile composite show signifi-

cant improvement in in-plane elastic moduli and strengths than composites reinforced

with more conventional 3D angle interlock weaves usually produced by traditional 2D

weaving machines.

The hybridization of the composite material can be tailored for the specific need

of the structure by varying the fiber type and configuration of the weaving layers.

The material system (fiber and matrix materials) used in manufacturing these hybrid

complex architectures are detailed in Section 4.2. Although, there are many forms

of 3D orthogonal woven composites with the variations of Z-fiber depth in thick-

ness direction, we will focus here mainly on three different configurations, which are

described in the Section 4.3. These hybrid architectures are manufactured by Tex-

tile Engineering and Manufacturing (T.E.A.M.), Inc., Woonsocket, RI, USA. Every

manufacturing process comes with their unique signature of induced imperfections

in the outcome structure and the identification of these imperfections are significant

to improve the design and the manufacturing process, as described in Section 4.4.

The purpose of this research is to establish a multiscale computational framework to

predict the progressive damage and failure response of these complex 3D woven tex-

tile composites using constitutive properties measured from coupon level tests. The

microstructure characterization studies and the micro-computed tomography (Micro-

CT) analysis of geometric imperfections are provided in Section 4.5. Details of the

3D computer aided design (CAD) modeling strategy, including the construction of

the finite element (FE) model directly from the Micro-CT real data are presented in

Section 4.6, followed by conclusions in Section 4.7.
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Table 4.1: The elastic properties for IM-7 carbon fiber, S-2 glass fiber, kevlar fiber
and SC-15 matrix.

E1 E2 ν12 ν23 G12 G23

(GPa) (GPa) - - (GPa) (GPa)
IM7 carbon fiber 276.0 15.0 0.279 0.49 12.0 5.02

S-2 glass fiber 93.8 93.8 0.23 0.23 38.1 38.1
Kevlar fiber 112 112 0.36 0.36 41.2 41.2

SC-15 matrix 2.487 2.487 0.35 0.35 0.921 0.921

4.2 Material system

This research focuses on ‘hybrid’ Z-fiber orthogonal interlock textile architecture 3D

woven composite (H3DWC), where ‘hybrid’ refers to different constituent fibers, in-

cluding IM-7 carbon, S2 glass and Kevlar that are integrally woven into a single

preform. The carbon fibers are used because of their high specific strength and stiff-

ness, the glass for its relatively low cost (high strength per unit cost) and kevlar for

its high resistance (characterized by its toughness) to failure. Material properties for

each fiber type and the matrix are provided in Table 4.1.

4.3 Textile architecture

A series of warp and weft fibers run in-plane throughout the panel with little or no

undulation. A set of Z-fibers run in the direction of warp fibers and are drawn from

bottom to top to bind all the layers together. Z-fibers are usually inserted in-between

the spaces of the warp fibers. In this research, three different hybrid architectures,

as schematically shown in Figure 4.1 are investigated to understand the effect of hy-

bridization on the resulting tensile and compressive response. The schematic figures

of these configurations provide some details of the Z-fiber path. The first two archi-

tectures contain four layers of carbon (two layers in the warp and weft directions,

respectively) at one side, and the remainder are the glass layers. These hybrid config-

urations are unsymmetric architecture that consist of orthogonally oriented in-plane

carbon and the glass tows, for a total of 9 layers, named as Thin Asymmetric and of

total 17 layers, named as Thick Asymmetric respectively. The difference in the overall

thickness allows for studying the size-scaling effects by normalizing the result with

respect to the panel thickness. These two architectures are considered to be unsym-

metric in the sense that the types of the layered constituent fibers are unsymmetric

with respect to the mid-plane of the composite panel. The third architecture contains
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(a) Thin Asymmetric (b) Thick Asymmetric

(c) Thick Symmetric (d) Fiber types

Figure 4.1: Hybrid 3D woven textile configurations (Schematic).

the carbon layers for both outer surfaces (four layers of carbon on each side) and nine

layers of glass in the middle. This hybrid configuration is a symmetric architecture

that consists of orthogonally oriented in-plane carbon and glass tows of total 17 layers

and named as Thick Symmetric. The Z-fibers run half the thickness in two layers

in all Thick configurations to bind the layers together. This is a distinct feature of

these thick architectures (compared to the through thickness binding in the 3D Thin

Asymmetric configuration). These types of woven composites are categorized as 2.5D

Thick Symmetric and Thick Asymmetric configurations for Z-fibers running half the

thickness.

Among all the architectures, the planes that contain Z-fibers alternate along the

weft direction with a period of two to achieve a repeating textile pattern. These con-

figurations are infused with SC-15 polymer matrix material using a VARTM process.

The three hybrid architectures are further examined under microscopy to identify
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(a) Thin Asymmetric (b) Thick Asymmetric

(c) Thick Symmetric

Figure 4.2: Cross sections parallel to the warp direction (Ref: Dr M. Pankow et al.
[26], Dr D. Zhang [31]).

unit cells and characterize the in-situ imperfections.

The percentage of the carbon and glass content in each architecture is calculated

by dividing the number of carbon and glass layers by the total layers of the com-

posite. The images of the polished surface as shown in Figure 4.2 demonstrate high

straightness of the in-plane tows and high uniformity of the geometry for all config-

urations. For weft tows, the waviness is highest in certain layers, as caused by the

Z-fibers, where the kevlar fibers change directions from top to bottom or vice-versa

and clearly visible in the figures. The fiber tow waviness and the crookedness are

further examined with optical microscopy to characterize the textile architecture and

geometric imperfections.

4.4 Fabrications and manufacturing induced im-

perfections

The hybrid orthogonal Z-fiber textile preforms are infused with SC-15 epoxy resin

using a VARTM process to form a solid panel. VARTM is adapted from traditional

98



Resin Transfer Molding (RTM) by replacing the upper half mold with a vacuum

bag to enhance the impregnation of the fiber reinforcements. Details of the VARTM

technique and fabrication process are provided in [45, 34, 46, 47]. VARTM offers

distinct advantages over RTM including lower tooling cost, shorter mould time, and

ability to manufacture large structural components.

4.4.1 Geometry imperfections in the hybrid woven textile

composites

The Z-fiber orthogonal interlock hybrid woven composites do experience geometric

distortion of the textile architecture during the fabrication process due to their weav-

ing practice along the thickness direction. In these architectures, the kevlar Z-fiber

tows are used as weaves, that are woven through multiple layers, showing small undu-

lations along the weaving path. Compared with the rigid warp and weft tows running

straight, the Z-fiber shows much more compliance, and therefore it is easily affected

by the fabrication process, for example, the tension exerted on the fiber tows during

the weaving process and the mold pressure applied during the curing process. In the

VARTM process with a single-sided mold, atmospheric pressure is exerted on the tex-

tile preform through the vacuum bag covering, forcing the fiber tows to be settled in a

new position that is different from the predesigned one. This manufacturing induced

geometric imperfection of the textile architecture in the as-fabricated composite panel

is evident from the Micro-CT analysis of the sample, as described in detail in section

4.5.

It has been pointed out by Song et al.[48] that each manufacturing process is as-

sociated with a unique set of characteristics that result in a produced part deviating

from the expected ideal geometry. The set of such deviations, which is unique to each

manufacturing process, is termed the ’manufacturing imperfection signature’. Obtain-

ing the manufacturing imperfection signature of the textile composite is important to

determine the damage characteristics, such as strength, strain to failure and fatigue

life, which has been studied by many researchers [49, 50, 51, 52, 53, 54, 55, 56, 30].

The importance of incorporating the unintended geometric deviations of the woven

fabric into a textile architecture based finite element model has been recently ad-

dressed by Zhang et al. [57]. A voxel based numerical model is studied by [58] to

predict the deformed shape of 3D woven fabric during weaving and to investigate the

effect of geometrical imperfections.
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4.5 Micro-computed tomography (Micro-CT) anal-

ysis of textile configurations

In order to obtain a thorough understanding of the microstructure of the cured com-

posite, cross sectional microscopic images are used to characterize the textile geom-

etry. The 2D images at various cross sections along the length of the specimen are

rendered and reconstructed into 3D volume for the purpose of characterization, and

the measured dimensions are used as inputs to textile architecture based finite element

models presented in Section 4.6.

4.5.1 Micro-CT scanning parameters settings

The high energy Micro-CT scanner Skyscan 1173 system, with 40-130kV X-ray source

and pixel size of 6-140µm was chosen, as it has a large sample chamber for scanning

objects of 140 mm in diameter and 140 mm in height. Specimens were cut along the

warp and weft directions into 25 x 50 mm blocks and polished using a multi-speed

rotating grinder/polisher. For this sample, we could potentially run between 70 and

80kV with 17µm resolution. A schematic diagram of different steps carried out during

the scanning process and reconstructing the 3D images is shown in Figure 4.3. The

Micro-CT image data are analysed in detail, as described in the following sections.

4.5.2 Determining meso-scale RVE

A representative volume element (RVE) scanned image data were cropped down from

the larger specimen volume data of 25 x 50 mm sample size, as shown schematically

in Figure 4.4. Cross sections along the mid-plane of fiber tows were chosen selectively

to capture the periodicity of the RVE in both in-plane directions. The RVEs in the

black box are indicated in both warp and weft directions for all Thick Asymmet-

ric, Thick Symmetric and Thin Asymmetric configurations, as shown in Figure 4.5.

The geometric dimensions of RVEs and layers breakdown for these architectures are

summarized in Table 4.2.

4.5.3 Determining fiber tow cross-sectional details

Fiber tow cross section dimensions are measured from the RVE image data using a

measuring tool in both warp and weft directions, as indicated in Figure 4.6. Both the

warp and weft tows are assumed to be straight with rectangular cross sections and
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Figure 4.3: Steps in Micro-CT scanning process.

Table 4.2: RVE dimensions and layer breakdown
Configuration Dimension(mm) Total Carbon Carbon Glass Glass

(WxHxD) Layers Layers (%) Layers (%)
Thin Asymmetric 9.6x8.75x17.2 9 4 44.4 5 55.6
Thick Asymmetric 6.8x16.8x16 17 4 23.5 13 76.5
Thick Symmetric 6.8x15.96x16 17 8 47.1 9 52.9

Table 4.3: Fiber tow cross-section dimensions
FiberType a(mm) b(mm)

Weft Carbon 2.2 0.85
Warp Carbon 2.6 0.75

Weft Glass 2.1 1.00
Warp Glass 2.5 0.85

Kevlar 1.4 0.25
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Figure 4.4: Identification of meso-scale RVE.

(a) Thick Asymmetric/Symmetric (b) Thin Asymmetric

Figure 4.5: Micro-CT analysis to determine RVE.

the measured fiber tow dimensions are summarized in Table 4.3. Scanning electron

microscopy (SEM) images are taken on the cross section of each type of constituent

fiber tow to investigate how the fibers are distributed inside the tow and to determine

the average fiber volume fraction. The fiber volume fraction of each constituent tow

is summarized in Table 4.4.

It is assumed that the fiber volume fraction in both weft and warp tows are same

for each constituent tow. In the present study, the volume fraction of Kevlar tow is

76%, however, the modeling framework can be used to study the effects of Kevalr

volume fraction on the composite performance (stiffness degradation and failure).
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(a) Thick Asymmetric/Symmetric (b) Thin Asymmetric

Figure 4.6: Measurement of fiber tow details.

Table 4.4: Volume fraction data for different fiber types
FiberType V olumeFraction

Carbon 60.9± 3.6% (60%)
Glass 55.4± 4.5% (56%)

Kevlar 76%

4.5.4 Porosity analysis

A study is carried out by calculating the volume percentage of the pores in the RVE

by adjusting the grey scale difference in the scanned 3D image data. The volume

fraction of pores in the RVE is calculated as 0.91851%, which is negligible. Hence,

the RVE is assumed to be filled with materials without any pores and the effect of

the pores is not included in the damage modelling and failure analysis of the textile

composites.

4.5.5 Summary of microstructure output details from Micro-

CT analysis

Here, all the outputs from Micro-CT analysis are summarized as follows: (i) measure-

ment of RVE dimensions (ii) measurement of fiber tow cross-section details in both

the weft and warp directions and (iii) porosity analysis. An idealized 3D computer-

aided design (CAD) RVE of the Thin Asymmetric, Thick Asymmetric and Thick

Symmetric woven textile composites are modeled in the commercial finite element

(FE) software ABAQUS 6.14, as shown in Figure 4.7, taking into account all the

above input values from Micro-CT study without any geometrical imperfections. We
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will refer to these perfect models as ‘Model-I’ in the remainder of this thesis.

4.6 Modeling in-situ geometry imperfections

Finite element (FE) modeling of 3D woven textile composites is still a challenging

task for the research community because of the complexity of the textile architec-

ture of fiber tows and very thin layers of matrix between winding fiber bundles. The

manufacturing induced geometrical imperfections have a strong impact on the per-

formance and mechanical behavior of the structure in the physical loading scenario

and hence, must be included in FE modeling to accurately capture its effect on the

prediction of progressive damage and failure of the composite. In this work, an in-

novative approach of numerical modeling of imperfections is demonstarted where a

mesh is generated directly from Micro-CT data using a commercially available soft-

ware package, ‘Simpleware’. The point to be noted here is that, the generated mesh

is the real replication of the in-situ microstructure imperfections.

‘Simpleware’ deals with real scanned image data from Micro-CT analysis. It

can generate finite element (FE) meshes from the scanned image data, which help

in measuring and modeling the real imperfections in the structure. Each fiber tow

is segmented separately and assigned material properties with a well-defined fiber

orientation in both warp and weft directions. The thin layers of matrix between the

undulated fiber tows are meshed explicitly and assigned the material properties of

SC-15 epoxy. A schematic modeling of imperfections at meso-scale RVE for Thick

Symmetric configuration is shown below in Figure 4.8. In this novel and unique

approach, modeling and meshing the in-situ geometrical imperfections are possible in

a detailed and efficient manner. These real measured imperfections can be taken as a

reference to introduce imperfections to an idealized perfect geometry. The identified

RVEs of all three configurations are segmented and modeled explicitly using the

features of ‘Simpleware’, as shown in Figure 4.9. We will refer to these imperfect

models as ‘Model-II’ in the remainder of this thesis. It should be noted here that, the

generated mesh is a replication of the in-situ geometric imperfections in the 3DWTC

architectures, induced due to the manufacturing process.

4.7 Conclusions

A representative volume element (RVE) not only defines the repetitive nature of the

geometry of the structure, but also represents the continuum in a small scale to carry
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(a) Thin Asymmetric (b) Thick Asymmetric

(c) Thick Symmetric

Figure 4.7: 3D geometric model of perfect RVEs (Model-I).
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Figure 4.8: Segmentation of fiber tows using ‘Simpleware’.

out all the progressive damage and failure study of the material system. On the other

hand, a repeat unit cell (RUC) represents the smallest unit of the structure in terms of

geometry only, which is repetitive. The selection of RVE should be sufficient enough

to predict the global stiffness and also capture the failure mechanisms observed in

the structural scale. Progressive failure analysis based on RVE is computationally

effcient to model all geometry details inside RVE explicitly. In this study, RVEs of

all three textile architectures are identified based on detailed Micro-CT study and

subsequently used for progressive analysis in Chapters 5 and 6 for tensile and com-

pressive loading respectively. Various inputs required to model the geometry of the

textile architectures are extracted from the scanned image data of bigger sample in a

statistical way. These 3D geometry models are essential to carry out the progressive

failure analysis using the multiscale framework described earlier in the previous chap-

ters and hence, the accuracy of the model is crucial to capture the physics of different

failure mechanisms at different length scales. The fiber tows are homogenized in this

work and each fiber tow is segmented separately using the tool ‘Simpleware’. In that

way, the fiber crookedness and the geometric imperfections are modeled in a detailed

matter and subsequently included in the numerical simulations. This aproach is novel

in the way that, the in-situ imprefection sensitivity of the structure with respect to

different failure mechanisms and the global response can be studied in a more de-

tailed manner. The same approach is being used in the modeling of laboratory scaled

coupon analysis for tensile and compressive loadings in the following chapters. It is

important to study the size effect on the global response of the structure, when we

move from RVE to coupon level analysis, but at the same time the effect of manu-

facturing imprefections at different length scales of the structure cannot be ignored
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(a) Thin Asymmetric (b) Thick Asymmetric

(c) Thick Symmetric

Figure 4.9: 3D geometric model of imperfect RVEs (Model-II).

107



and must be included in the geometry models of both RVE and coupon. The detailed

measurement of tow imperfections and characterization are provided in Appendix G.
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CHAPTER 5

Damage and failure modeling of

H3DWTCs : a study of hybridization and

architectural effects on tensile response

5.1 Introduction

This chapter presents results of numerical simulations on predicting the progressive

damage and failure response of hybrid 3D woven textile composites (H3DWTCs) sub-

jected to tensile loading, using the novel two-scale computational mechanics frame-

work explained in previous chapters. Here the term ‘hybrid’ refers to different con-

stituent fibers, including carbon, glass and kevlar that are infused with SC-15 polymer

matrix and integrally woven into a single preform. The hybrid 3DWTCs are made

through a 3D textile weaving process. Three different versions of hybridized archi-

tectures are examined at the representative volume element (RVE) level to determine

the progression of damage and failure under tensile loading. Progressive damage and

failure of 3DWTCs at different length scales are captured in the present model by us-

ing a macroscale finite element analysis (FEA) at the RVE level, while a closed-form

micromechanics analysis is implemented simultaneously at the subscale level using

material properties of the constituents (fiber and matrix) as input. Manufacturing

induced geometric imperfections are considered in the simulation, where the FE mesh

is generated directly from Micro-computed tomography (MCT) real data using a code,

‘Simpleware’. These FE models are the real replication of in-situ geometric imperfec-

tions in the structure and subsequently included for progressive damage and failure

analysis. Micro-CT analysis of all three architectures are conducted in details. The

fiber tows and the thin layers of matrix in-between the tows are modeled explicitely

inside the RVE for each configuration.

The N-layer concentric cylinder (NCYL) micromechanics model is then introduced
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inside the fiber tow to compute local stress, srain and displacement fields in the fiber

and matrix used at the subscale. The 2-CYL fiber-matrix concentric cylinder model

is extended to fiber and (N-1) matrix layers, keeping the volume fraction constant,

hence called NCYL model and the matrix damage can be captured locally in the

discrete layers of matrix volume, as explained in details in Chapter 2. The influence

of matrix microdamage at the subscale causes progressive degradation of fiber tow

stiffness and matrix stiffness at the macroscale. The global stiffness matrix remains

positive definite, until strain softening response resulting from different failure modes

(such as fiber tow breakage, tow splitting in the transverse direction due to matrix

cracking inside tow and surrounding matrix failure outside of fiber tows) are initiated.

The failure initiation criteria are introduced at the tow level to facilitate analysis of

the post-peak softening failure response and are modeled using the mesh-objective

3D orthotropic smeared crack approach (SCA) in a two-scale framework. The ma-

trix pocket surrounding the fiber tows inside the RVE is subjected to tensile failure

and the post-peak softening failure response is modeled using the mesh-objective 3D

isotropic smeared crack approach (SCA). The implementation of both 3D orthotropic

and 3D isotropic smeared crack approach (SCA) are explained in details in Chapter

3. Results from multiscale analysis for both an idealized perfect geometry and one

that includes geometric imperfections are compared with experimental results [26].

The three different types of hybrid 3DWTCs are compared against one another at

RVE scale to understand the benefits of hybridization and the resulting performance

enhancements. The effect of microstructure geometric imperfections on the prediction

of progressive damage and failure response of these complex architecture mterials are

studied.

A three-scale modeling strategy is adopted to simulate the entire laboratory tested

coupon and investigate the progressive damage and failure behavior at the structural

level. The meso-scale RVEs are modeled explicitly in the failure prone gauge-area to

consider the tow architecture scale and the homogenized orthotropic elastic proper-

ties are considered in the non-failure area of the coupon for computational efficiency.

The proposed three-scale strategy predicts the global stress-strain response and the

detailed local complex failure mechanisms of the 3D woven composites. The coupon

level simulation results are compared with RVE scale results and the experimental

results [26] to further validate the proposed model. This novel modeling approach in-

cludes the in-situ geometric imperfections for progressive damage and failure analysis,

at both RVE and coupon level.
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5.2 Matrix nonlinear constitutive model

Polymer matrix materials exhibit a nonlinear stress versus strain response prior to

failure and when within a composite. Such nonlinear behavior is attributed to matrix

microdamage due to microcracking [59, 60, 61, 17]. The nonlinear matrix response

is modeled using a modified J2 deformation theory of plasticity, as formulated in

Chapter 2. The evolution of nonlinearitry accounts for progressive deterioration of

the material stiffness, however, the tangent stiffness tensor still remains positive-

definite. The coalescence of matrix micro damage finally results in matrix macroscopic

cracking, followed by a post-peak strain softening regime. In this instance, the positive

definiteness of the matrix stiffness tensor is lost, which is categorized as a failure. The

post-peak strain softening behavior is modeled through the smeared crack approach

(SCA) to capture matrix macroscopic cracking, as described in Chapter 3.

5.2.1 Modeling microdamage in a polymer matrix

As discussed in [17], the matrix in-situ response can be characterized through a tensile

test on a ±45◦ symmetric laminate. Furthermore, it is assumed that the matrix

nonlinear response can be characterized using an exponential relation,

σeq = σy −
K1

K2

(
e−K2εeq − e−K2

σy
E

)
(5.1)

where σy is the yield stress of the matrix in a uniaxial tension test, E is the elastic

modulus, K1 and K2 are two material constants that govern the evolution of ma-

trix microdamage. Different nonlinear responses have been reported for the matrix

within a carbon tow than that in a glass tow [32]. Table 5.1 summarizes the matrix

nonlinear properties used in the two-scale micromechanics model for computing the

response of each constituent tow. In addition, the pre-peak nonlinear properties of

the surrounding matrix in the macro model is assumed to be the same as the one

used for the glass tow.

Table 5.1: Matrix nonlinear properties used in this research.
σy (MPa) K1 (MPa) K2

Matrix (macroscale) 25 1700 40
In-situ carbon 25 3500 60
In-situ glass 25 1700 40
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5.2.2 Modeling failure progression in a polymer matrix using

the 3D isotropic SCA

In the experiment, matrix cracking is observed in regions of predominant tensile stress,

as presented in [26]. In a monolithic material, cracks are likely to grow under pure

mode-I conditions since this mode of failure is energetically favorable. The detailed

formulation of matrix tensile failure using 3D isotropic smeared crack approach is

explained in Section 3.6.2. In H3DWTCs, the cracks in the surrounding matrix may

be subjected to mixed-mode loading due to the presence of fiber tows. However, in

this study, it is assumed that the tensile cracks grow under pure mode-I conditions,

oriented with the maximum principal stress plane. It is further assumed that, once

the crack is initiated, the crack orientation, determined from the principal stress

directions, is fixed during the failure evolution.

The off-diagonal terms in the crack interface stiffness matrix Dcr are assumed to

be zero, indicating that there is no coupling between the normal and shear crack com-

ponents. The coupling between the crack shear and opening displacements, known

as crack dilatancy, has been extensively studied by Bažant and Gambarova [62], Wal-

raven [63], Walraven and Reinhardt [64], and Gambarova and Karakoç [65].

5.3 Fiber tow constitutive model

The experimental results of the ±45◦ symmetric laminate tensile tests indicate that

the matrix exhibits a nonlinear stress versus strain response due to the evolution

of microdamage. In the proposed computational scheme, each fiber tow is homoge-

nized as a 3D solid, therefore, micromechanical analysis must be implemented at the

subscale to capture such nonlinear behavior. Since the fiber tow pre-peak nonlinear

response is attributed to matrix microdamage, no macroscopic damage criterion is

required to drive the nonlinear damage progression. However, multiple catastrophic

failure modes are observed in the experiment, including tensile failure due to fiber

breakage and fiber tow splitting. These modes of failure result in a loss of load-

carrying capability of composite structure, followed by a post-peak strain softening

response. Since the positive definiteness of the material tangent stiffness matrix is lost

in softening regime, the FEA will provide mesh dependent results if no characteristic

length is introduced. As a result, the aforementioned two-scale NCYL model has to

be supplemented by a suitable mesh objective approach for modeling the post-peak

softening response.
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In the present study, fiber tow breaking and splitting are considered as the two

major failure modes for H3DWTCs subjected to tensile loading, which is evident from

the experimental investigation discussed in [26]. In addition, when the tow breakage

is initiated in axial tows due to tensile stress, the crack plane is assumed to be aligned

perpendicular to the fiber direction. On the other hand, the crack plane is assumed

to be parallel to the fiber direction when the tow splitting criterion is reached due to

transverse tensile loading. Details of the implementation of the 3D orthotropic SCA

within a FE framework are demonstrated in Chapter 3.

5.3.1 Tow pre-peak nonlinear response: NCYL model

Recently, Zhang and Waas [1] developed a two-scale, micromechanics-based model

for computing the nonlinear response of a unidirectional composite. In their model, a

fiber-matrix concentric cylinder is used as the repeat unit cell (RUC), to represent a

composite fiber tow. The two layers fiber-matrix analytical model has been extended

to N-layer fiber-matrix cylinders to analyze the stress and strain fields for all con-

stituent matrix layers. A representative N-layer concentric cylinder unit with fiber

radius ‘a’ and matrix outer radius ‘b’ is shown in Figure 5.1 and the resulting fiber

volume fraction is Vf = a2/b2.

Figure 5.1: N-Layers Concentric Cylinder Model (NCYL).

Micromechanics is used to relate the globally applied composite strains to the

fiber and matrix strains at the microscale through a six by six transformation matrix.

A detailed description of the NCYL micromechanics model and its implementation

in a multiscale analysis for progressive damage of textile composites is provided in

Chapter 2.
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5.3.2 Tow failure mechanisms: post-peak strain softening re-

sponse

The smeared crack approach (SCA) formulated in Section 3.3 for 3D orthotropic ma-

terial is utilized to model the failure progression of a single fiber tow, which include

tensile breakage in axial direction and tow splitting in the transverse direction. It is

further assumed that when the critical stress is reached, the crack plane is aligned

perpendicular to the fiber direction for tow breaking and the crack orientation trans-

formation matrix, N , is determined as given in Section 3.3. Tow splitting occurs due

to matrix cracking inside the fiber tow subjected to transverse and shear loading. In

this work, it is assumed that when the transverse critical stress is reached, the crack

plane is aligned parallel to the fiber direction for tow splitting. Therefore, the crack

orientation transformation matrix, N , is determined as given in Section 3.3. When

two-piece failure occurs in tensile loading, the recorded load drops significantly during

the experiment, indicating a considerable amount of fracture energy dissipation.

In the present study, it is assumed that when the tensile failure mode occurs, the

fracture energy is dissipated completely. The failure properties, including the critical

stress and fracture toughness for each mode of failure, are summarized in Table 5.2

for fiber tows and in Table 5.3 for SC-15 matrix respectively. The tensile strength

values for carbon and glass tows are taken from [66] and [67], respectively. It is worth

mentioning that characterizing the failure progression of fiber tows within H3DWTCs

is critical to understand the progressive failure response of this class of materials.

Table 5.2: Fiber tow failure properties used in the SCA model.
Failure mode Carbon Glass Kevlar
0◦ tension (MPa) 3000 3700 3600
0◦ compression (MPa) 977 720 720
90◦ tension (MPa) 55 65 65
90◦ compression (MPa) 247.3 247.3 247.3
Shear (MPa) 37 35 35
G+
ICF (N/mm) 40 60 40

G−ICF (N/mm) 4 4 4
G+
ICM (N/mm) 0.296 0.296 0.296

G+
IICM (N/mm) 0.647 0.647 0.647

Table 5.3: SC-15 matrix failure properties used in the SCA model.
Failure mode σcr (MPa) G+

ICM (N/mm) G+
IICM (N/mm)

Matrix tension 30 0.296 0.647
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5.4 Results and discussion for individual textile

configuration

Stress-starin responses, linear elastic moduli, Poisson’s ratios, peak strength and fail-

ure strains have been experimentally determined in [26]. The tensile test simulations

are carried out for Model-I (idealized perfect model with no imperfections) and Model-

II (imperfect model with in-situ geometric imperfections generated by ‘Simpleware’)

simultaneously in both weft and warp directions for all the three configurations de-

scribed earlier in Chapter 4. The RVE scale simulation results are compared with the

experimental results as summarized in the following sections.

5.4.1 Results for Thick Symmetric(2.5D) configuration

Three dimensional (3D) geometry models of meso-scale RVE (Model-I and Model-II)

are shown below in Figure 5.2 for Thick Symmetric hybrid configuration and the

finite elements are generated using ABAQUS 6.14. The Model-I had nearly 50,000

elements and took 20 hours to run on a high performance computing system using

32 CPUs, whereas, Model-II had nearly 590,000 elements and took 2 days to run on

the same computing system using 32 CPUs.

5.4.1.1 Elastic and strength properties

Considerable gradual linear growth of the elastic moduli under loading in the weft

and warp directions are observed for strains from 0.1% to 0.5% (Figure 5.3). The

linear growth is followed by a slow gradual reduction of the moduli with further in-

crease of strains. The ‘non-linear’ behaviour is attributed to a combination of matrix

microdamage and fiber splitting. The latter appears to be a minor cause contributing

less to the modulus versus strain variations. The stress-strain response, as shown in

Figure 5.3(a), exhibits a higher degree of linearity in the weft direction due to the

fact that loading occurs directly on the fiber tows situated in the outer most surface.

The warp direction shows more of a progression in failure of the material as shown

in Figure 5.3(b) and deviations from linearity occur relatively early in the loading

regime. However, due to the fact that different fiber tows will have different stresses

at the same externally applied displacement indicates that the carbon may fail earlier

than the glass and the failure envelope is progressive due to the hybrid materials be-

fore two-piece failure. Numerical predictions using the two-scale multiscale method

showed excellent agreement with experimental data for in-plane elastic moduli in both
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(a) Perfect RVE (b) Imperfect RVE

Figure 5.2: Meso-scale RVE of Thick Symmetric configuration (a) Model-I & (b)
Model-II.

weft and warp directions for the idealized perfect geometry without any imperfections

(Model-I). After including the in-situ geometrical imperfections and the fiber crooked-

ness in the FE model (Model-II), the predicted elastic moduli reduced the respective

Model-I values (e.g. warp-directional modulus 34.12 GPa and weft-directional modu-

lus 39.95 GPa) by only 2.2% in warp and 2.3% in weft-directions. As we can see, there

is a reduction in stiffness after including the geometric imperfections. For this hybrid

configuration, the weft direction is stiffer than the warp direction due to the fact that

there is one additional glass fiber tow layer in the weft direction as summarized in

Table 5.4.

The weft-direction tensile strength was found to be 467.61 MPa and warp-direction

strength 446.81 MPa as reported in Table 5.5 for Model-I; the former is 4.7% larger

due to a 5.8% higher fiber weight fraction in the weft direction. In Model-II, because

of the imperfections of fiber alignment in both in-plane and thickness directions,

there is significant fiber tow splitting observed in transverse and Z-fiber tows. The

predicted tensile strength reduced the respective Model-I values (e.g. warp-directional

strength 403 MPa and weft-directional strength 449.7 MPa) by only 9.8% in warp and

3.8% in weft-directions. As observed, there is a degradation of tensile strength after

including the geometric imperfections and predictions are closer to the experimental
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(a) Weft direction (b) Warp direction

Figure 5.3: Effective stress versus strain response for tensile loading in (a) Weft
direction & (b) Warp direction.

Table 5.4: Stiffness comparison between Experiment and Simulation results
EffectiveModulus Experiment Simulation(Model − I) Simulation(Model − II)

(GPa) (GPa) (GPa)
Warp 37.023± 11.34% 34.87 34.12
Weft 41.775± 3.58% 40.85 39.95

values. The global response tends to be highly nonlinear and matches well with

experimental results for Model-II as shown in Figure 5.3(b), which demonstrates the

effect of including manufacturing induced imperfections in the progressive damage

and failure analysis of these textile composites.

5.4.1.2 Progressive damage during quasi-static tensile loading

The multiscale methodology described in Sections 5.2 and 5.3, which combine model-

ing pre-peak nonlinearity using the NCYL secant stiffness method and the post-peak

strain softening response using Smeared crack approach (SCA), are used together to

conduct a thorough investigation of the damage and failure mechanisms in the hybrid

textile composite under consideration. The progressive damage and failure response

Table 5.5: Strength comparison between Experiment and Simulation results
Ultimatestrength Experiment Simulation(Model − I) Simulation(Model − II)

(MPa) (MPa) (MPa)
Warp 393.32 446.81 403
Weft 469.33 467.61 449.7
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Figure 5.4: Stress-strain response for tensile loading in the weft direction.

of textile RVE in both weft and warp directions subjected to uniaxial quasi-static ten-

sile tests are shown in Figure 5.4 to Figure 5.7 for imperfect RVEs with geometrical

imperfections (Model-II). In these figures, the progressive failure status at different

percentages of the failure strength are shown as contour plots of progressive failure

flags of the elements.

Firstly, a delayed damage initiation has been observed in weft direction loading.

First matrix cracking in warp direction loading is observed at 0.45% strain, which

is much ealier than weft loading (observed at 0.67% strain). The damage initiation

for the loading in weft or warp directions occurs in the range of applied strain 0.4-

0.7% (Figures 5.4-5.7, showing the data for weft and warp directions loading). This

range of damage initiation strains is significantly higher than the respective ranges

observed for other carbon/epoxy textile composites, and is at the lower end of the

typical damage initiation strain range (0.6-0.7%) for conventional cross-ply prepreg

tape laminated composites.

The damage in these composites starts near the location of Z-fiber tows and at the

edges of the in-plane fiber tows oriented transversely to the loading direction. Due to

this reason, there is significant amount of local disbonds and matrix cracking occuring

in the case of warp direction loading, as shown in Figure 5.7. This failure event leads

to development of transverse cracks inside the in-plane and vertical tows (referred to

as ‘tow splitting’) during the progressive loading process; these are followed by fiber

tow breakage in the axial direction at a very late stage of loading and finally causes

the ‘two-piece’ failure. A comparison study is being conducted from the simulation

results for progressive damage and failure, for both weft and warp direction loading.
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Figure 5.5: Progressive failure for tensile loading in weft direction.
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Figure 5.6: Stress-strain response for tensile loading in the warp direction.

The study is based on the figures shown above (Figures 5.4-5.7) and summarized in

Figure 5.8.

Damage initiation and evolution in both weft and warp directions are investi-

gated numerically using the NCYL multiscale framework and the matrix microdamage

model based on J2-deformation theory of plasticity. Previous experimental studies

[68, 69, 70] discuss the damage progression in 3D woven composites in a detailed

manner, which correlates well with the sequence of damage events captured with our

propsed model. Transverse cracks kinetics inside homogenized fiber tow is explained

in the literature [71] by bridging micro-meso scale. We have implemented the physics

of this failure mode in our Smeared carck code and captured the transverse cracks.

A micro-mechanics based damage approach is applied to the macro scale unit cell

model by Saleh et al. [70], which approximates the 3D woven composites as a cross-

ply laminate without considering the effects of the binder yarns in thickness direction

and also neglects the void contents and the geometrical imperfections induced due

to manufacturing process. Our modeling and analysis of unit cell includes in-situ

geometric imperfections and the predicted simulation results match closely with the

sequence of damage events described by them. The scope of this work is to establish a

computationally efficient progressive damage and failure analysis tool and the goal is

achieved by using the NCYL micromechanics multiscale model, which is based purely

on analytical solutions. The recommended matrix damage model improvements will

be the focus of a future work for off-axis tension and shear loading simulations.

Overall, the FE model results, that include imperfections (Model-II) show a good
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Figure 5.7: Progressive failure for tensile loading in warp direction.
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Figure 5.8: Comparison between weft and warp directions results.

prediction for the elastic stiffness in each case. Also, the model is able to capture the

non-linear stress-strain response to a close extent. It is noted that this model includes

real in-situ microstructure imperfections inside the RVE and the multiscale analysis

is carried out to capture the progressive failure. The difference in global stress-strain

responses, between the idealized perfect RVE (indicated as a blue line) and the one

with real in-situ microstructure imperfections (indicated as a black line) are visible

in Figure 5.3.

5.4.1.3 Uniaxial coupon level tensile test for multiple RVEs

Test specimens of suitable dimensions are to be decided based on the number of RVEs,

which should be sufficient to run the simulations and capture the main features of

the progressive damage and failure characteristics. Nine RVEs (3x3) are assembled

and studied for uniaxial coupon level test simulations using the multiscale analysis.

A breakdown of 3x3 RVEs for Thick Symmetric (2.5D) woven textile composite is

shown in Figure 5.9 for illustration.

The coupon level global stress-strain response is shown in Figure 5.3(a) for weft

direction, which matches fairly well with the single RVE results. Also, the progressive

damage and failure response of the coupon in the weft direction subjected to uniaxial

tensile loading is shown in Figure 5.10. In these figures, the progressive failure status

at the failure strength are shown as the contour plots of progressive failure flags of

the elements.
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Figure 5.9: Breakdown of components for 3x3 RVEs.
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Figure 5.10: Progressive failure status for 3x3 RVEs at failure strength.
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5.4.1.4 Summary and conclusions

In this study, Hybrid 2.5D Thick Symmetric woven textile composites having sym-

metric fiber architecture at the top and bottom, with two layers of Z-fibers running

through thickness direction is simulated for uniaxial tensile response to determine

the effect of hybridization and compute the effective stiffness and tensile strength for

both warp and weft directions, including progressive damage and failure. A Micro-CT

analysis is carried out to determine and measure real in-situ microstructural imper-

fections. This Micro-CT analysis helps to extract essential inputs (cross-sectional

details of fiber tows in both warp and weft directions and volume fraction of pores)

for constructing representative unit cells. Based on these inputs, an idealized 3D

CAD model of a unit cell is constructed and multiscale analysis is carried out for pro-

gressive failure analysis. A subscale micromechanics 2CYL model is used to establish

a multiscale computational framework to predict the effective nonlinear response of

a homogenized fiber tow. The influence of matrix microdamage at the microscale

manifests as the degradation of the effective fiber tow stiffness at the macroscale

through a secant moduli approach. Since, fully analytical solutions are utilized for

the subscale micromechanics analysis, the proposed method offers a lower computa-

tional cost and is suitable for large scale progressive damage and failure analysis of

composite structures. The multiscale homogenization of the fiber tows are used as

building blocks for an explicit FE model of 3D woven textile composite RVE. The

linear elastic stiffness of this textile architecture matches well to the experimental

results in both warp and weft directions. Also, the predicted failure strength and the

global nonlinear stress-strain responses are in good agreement with the experiments.

It is a challenging task to accurately model geometric imperfections, such as

crookedness and misalignment of fiber tows to study the effect of microstructure

imperfections on the global response of a textile composite structure. An effective

software tool, ‘Simpleware’ is used to generate a FE mesh from real MCT in-situ

data, which is able to capture the microstructure details and provide a platform to

carry out multiscale analysis on a real RVE model. The progressive failure response

from both models, namely, (1) Idealized RVE with no imperfections (Model-I) and (2)

‘Simpleware’ generated model with in-situ imperfections (Model-II), are compared to

demonstrate the effect of including geometric imperfections on the overall behaviour

of the composite. The coupon level simulation is carried out to understand the size

effect by a combination of multiple RVEs. Overall, the main objective of this research

is achieved by establishing a multiscale method, which is capable of predicting the

effective linear elastic stiffness, global nonlinear stress-strain response and two-piece
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(a) Perfect RVE (b) Imperfect RVE

Figure 5.11: Meso-scale RVE of Thin Asymmetric configuration (a) Model-I & (b)
Model-II.

failure strength of Hybrid 2.5D Thick Symmetric textile composites. The progressive

analysis methodology can be extended to other configurations of woven and braided

textile composites including the effect of hybridization and architectural variations.

In this study, the multiscale analysis combines the 2CYL micromechanics model for

pre-peak nonlinear response and the smeared crack approach (SCA) to model the

post-peak failure analysis. This combined computational approach is used in model

I and model II. The approach in model II, which uses a mesh generated directly us-

ing MCT data is novel, and provides a means to capture unintended microstructural

imperfections due to manufacturing process related effects.

5.4.2 Results for Thin Asymmetric(3D) configuration

Three dimensional (3D) geometry models of meso-scale RVE (Model-I and Model-II)

are shown in Figure 5.11 for Thin Asymmetric hybrid configuration and the finite

element models are generated using ABAQUS 6.14.

5.4.2.1 Elastic and strength properties

The global responses of both perfect and imperfect RVEs for Thin Asymmetric con-

figuration are shown in Figure 5.12. The differences in stress-strain response are

observed for both weft and warp directions, which show the effect of including man-

ufacturing induced imperfections in the progressive damage and failure analysis of

these textile composites.
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(a) Weft direction (b) Warp direction

Figure 5.12: Effective stress versus strain response for tensile loading in (a) Weft
direction & (b) Warp direction.

5.4.2.2 Progressive damage during quasi-static tensile loading

The multiscale methodology described earlier combines pre-peak nonlinearity using

the NCYL secant stiffness method and the post-peak strain softening response using

the smeared crack approach (SCA). The combined models are used together to con-

duct a thorough investigation of the damage and failure mechanisms in the 3D hybrid

textile configuration discussed above. The progressive damage and failure response of

Thin Asymmetric configuration, in both weft and warp directions subjected to uniax-

ial quasi-static tensile tests are shown in Figure 5.13 to Figure 5.16 for perfect RVEs

without geometrical imperfections. In these figures, the progressive failure status at

different percentages of the failure strength are shown as contour plots of progressive

failure flags of the elements.

The damage in these composites starts near the location of Z-fiber tows and at the

edges of the in-plane fiber tows oriented transversely to the loading direction. Due to

this reason, there is significant amount of local matrix cracking occurring in the case

of warp direction loading compared to weft direction, as shown in Figures 5.13-5.16.

This failure event leads to development of transverse cracks within the in-plane and

vertical tows (referred to as ‘tow splitting’) during the progressive loading process;

these are followed by fiber tow breakage in the axial direction at a very late stage of

loading and finally causes the ‘two-piece’ failure.
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Figure 5.13: Stress-strain response for tensile loading in the weft direction.

5.5 Effect of hybridization and conclusions

To obtain a full characterization of the composites nonlinear response and to extract

the effective linear stiffness properties along with strength, two loading scenarios are

considered, including tension in weft and warp directions for all the three hybrid

configurations.

5.5.1 Stiffness and strength comparison

Effective stress-strain relations, based on applied load and cross sectional area of

RVEs and global strains are determined from the simulations of all three configura-

tions. The effective elastic moduli, strength and failure strains are extracted from

these results for both perfect and imperfect RVEs. The elastic axial response show

linearity in both weft and warp loading directions, followed by a slow gradual reduc-

tion of the tangent moduli and ‘non-linear’ behavior. The stress-strain response in

the weft direction exhibits a higher degree of linearity, whereas the warp direction

shows more of a progression and early deviation from linearity due to large amount

of matrix cracking, occurring in the thin matrix layers between the fiber tows. This

phenomenon is attributed to the architectural influence and the orientation of Z-fibers

with respect to weft and warp loading directions. The effective moduli for all three

architectures are summarized in Table 5.6. Numerical predictions using the two-scale

multiscale method showed excellent agreement with experimental data for in-plane

elastic moduli in both weft and warp directions for the idealized perfect geometry

without any imperfections. After including the in-situ geometrical imperfections and
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Figure 5.14: Progressive failure for tensile loading in weft direction.
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Figure 5.15: Stress-strain response for tensile loading in the warp direction.

Table 5.6: Stiffness comparison between Experiment and Simulation results.
Architecture Modulus Experiment Model − I Model − II

(GPa) (GPa) (GPa)
Thin Asymmetric Warp 36.5± 11.34% 34.6 34.4

Weft 39.6± 3.58% 39.7 39.6
Thick Asymmetric Warp 29.1± 13.78% 28.4 28.2

Weft 57.2± 5.47% 55.8 55
Thick Symmetric Warp 37± 11.34% 34.8 34.1

Weft 41.8± 3.58% 40.8 39.9

the fiber crookedness in the FE model, the predicted elastic moduli reduced with re-

spect to the corresponding perfect models to some extent, depending on the amount

of imperfections existing in different configurations. As shown, there is a reduction in

stiffness after including the geometric imperfections. For these hybrid configurations,

the weft direction is stiffer than the warp direction due to the fact that there is one

additional glass fiber tow layer in the weft direction.

The weft and warp-direction tensile strength for all three architectures are sum-

marized in Table 5.7. The weft direction strengths are larger due to a higher fiber

weight fraction compared to the warp direction. In imperfect RVEs, because of the

imperfections in fiber alignment in both in-plane and thickness directions, there is

significant fiber tow splitting observed in transverse and Z-fiber tows. The predicted

tensile strength for imperfect models reduced the respective perfect model values in

all the configurations and predictions are closer to experimental values.

The tensile test simulations are carried out for both weft and warp directions and

the stress versus strain responses are obtained as shown in Figure 5.17. These sim-
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Figure 5.16: Progressive failure for tensile loading in warp direction.
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Table 5.7: Strength comparison between Experiment and Simulation results.
Architecture Strength Experiment Model − I Model − II

(MPa) (MPa) (MPa)
Thin Asymmetric Warp 427.4 491.3 410.4

Weft 566.8 600.5 572.6
Thick Asymmetric Warp 346.6 380.7 322.8

Weft 510.6 467.6 461.3
Thick Symmetric Warp 393.3 446.8 403

Weft 469.3 467.6 449.7

(a) Tension in warp direction (b) Tension in weft direction

Figure 5.17: Comparison of Stress vs. Strain responses for the different H3DWTCs.

ulation results are compared with the experimental results reported in, [26]. Hybrid

3DWTC of three different architectures are examined and the effect of hybridization

is investigated to understand the effective stiffness and strength in tension. Thin

Asymmetric configuration shows the highest strength in both warp and weft direc-

tions. Due to higher stiffness of the carbon fiber tows compared to glass, it will reach

its failure strength earlier than glass, even though both are subjected to same dis-

placement loading. The failure of carbon tows lead to progressive failure of glass tows

and the whole dynamics of failure pattern change due to addition of carbon layers,

that leads to decrease in overall strength. The architectures and orientations of fiber

tows have a strong impact on the localization of strains in the thin matrix layers

between fiber tows, which cause matrix micro-cracking and initiates the failure event.

Hybridization, by adding carbon to an existing glass fiber system, appears to provide

change in tensile stiffness but at the expense of a lower ultimate tensile strength.
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5.5.2 Conclusions

In this work, three different configurations of hybridized 3DWTCs are simulated for

uniaxial tensile response to determine the effect of hybridization and compute the ef-

fective stiffness and strength in tension for both warp and weft directions. A micro-CT

analysis is carried out to characterize in-situ microstructural geometric imperfections.

This micro-CT analysis helps to extract essential inputs like dimensions of unit cell,

RVE, cross-sectional details of fiber tows in both warp and weft directions and volume

fraction of pores. Based on these inputs, an idealized 3D geometry model of RVE is

constructed. Furthermore, the micro-CT data is used in conjunction with a software

tool, ‘Simpleware’, to generate a FE mesh that captures in-situ geometry, and provid-

ing a platform to carry out a 2-scale analysis on realistic imperfect RVEs. A subscale

micromechanics 2CYL model, with an analytical solution at the sub-scale is used to

establish a computational framework to predict the effective nonlinear response of

3DWTCs. The influence of matrix microdamage at the microscale manifests as the

degradation of the effective fiber tow stiffness at the macroscale through a secant

moduli approach. Since, fully analytical solutions are utilized for the subscale mi-

cromechanics analysis, the proposed method offers a lower computational cost and is

suitable for large scale progressive damage and failure analysis of textile composite

structures. The linear stiffness and strength of all the textile architectures studied

are predicted well when compared to experimental results. The approach presented

here can be used to understand and quantify the effects of hybridization and tex-

tile architecture on the tensile response of textile composites, in terms of constituent

properties. Furthermore, the modeling framework can be used to quantify the ef-

fects of uncertain constituent properties on the overall response of textile composites,

an essential task in an ICME (integrated computational materials engineering) of

composites.

5.6 Multi-scale modeling of test coupon (Macro-

meso-micro scale)

The complex multi-phase material systems of 3D woven textile composites are mod-

eled in three scales, (1) the homogenized macro scale, (2) the tow/matrix meso scale

and (3) the fiber/matrix micro scale. Figure 5.18 presents the framework of the

multi-scale method of 3D textile composites adopted here for the finite element (FE)

modeling and progressive failure analysis. The far field non-failure region (indicated
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Figure 5.18: Frame work of the multi-scale model of 3D textile woven composites.

A) is defined with homogenized elastic orthotropic properties extracted from meso-

scale RVE using periodic boundary conditions for computational efficiency. These

hybrid textile configurations are non-periodic in the thickness direction and hence,

periodic boundary conditions are excluded in that direction for analysis. The detailed

procedure of the meso-scale modeling is discussed in the previous sections. The fail-

ure prone gage region (indicated B) is defined as a collection of periodic multiple

RVEs in both length and width directions of the coupon. The meso RVEs define

the internal structures of the weave and consist of fiber tows running in all three

directions inside the matrix pocket. The fiber tows are modeled explicitly and are

related to the micro-scale analysis of fiber/matrix constituents through an analytical

micromechanics N-layer concentric cylinder (NCYL) model. The homogenized me-

chanical properties of the fiber tows are calculated through the NCYL model and the

tow composite strain at each integration point of the finite element model is related

to the analytical strain field of the fiber/matrix cylinders in the micro-scale through

a 6x6 transformation matrix, as described in Chapter 2.
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Figure 5.19: FE meshing of coupon including geometry imperfection.

5.6.1 Geometry and finite element modeling of coupon

As damage and failure initiation mechanisms are highly sensitive to the internal

structures of the weave and the distribution of local imperfections, the waviness

and crookedness of the fiber tows are modeled explicitely using the in-situ micro-

CT scanned data. A micro-CT study is conducted for the entire coupon and the

finite element mesh is generated directly from the scanned image data using a tool

called SIMPLEWARE. Figure 5.19 explains the workflow of the coupon modeling

and the mesh generation method for the Thin Asymmetric configuration and similar

procedure is followed for other two configurations.

The fiber tows run in all three orthogonal directions inside the matrix pocket

and the undulation of the fiber tows leave behind thin-layered of matrix in between

tows, which makes it extremely difficult to model in 3D CAD and generate a finite

element mesh for failure analysis. The novelty of this approach is to include the

real in-situ imperfections for progressive failure analysis at the entire coupon level, as

demonstrated in Figure 5.20 for all the three hybrid architectures. The gage region is

designed and modeled in such a way that, at least 3 RVEs are covered across width
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(a) Thin Asymmetric (b) Thick Asymmetric (c) Thick Symmetric

Figure 5.20: 3D geometry modeling of coupons including imperfection.

and length directions of the coupon.

5.6.2 Coupon analysis results and Conclusions

Figure 5.21 shows the comparison of the global stress versus strain response obtained

from the coupon with the meso-scale RVE for the Thick Symmetric weft configuration.

Also, these simulation results are compared with the experimental results, as available

in Reference [26]. Generally, the computational results are in good agreement with

the experiment. The failure evolution in the fiber tow is illustrated by the absolute

index values of the failure flag. Figure 5.22 shows the failure pattern of the coupon at

the peak load, which is caused ultimately by the weft fiber tow breakage in the gage

area extremity. It is noted that, the transition from the micromechanics mesh to the

homogenized region may influence this failure mode. Therefore, in a future study,

this effect is evaluated by extending the gage area mesh further into the homogenized

area.
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Figure 5.21: Comparison of stress vs. strain response for Thick Symmetric architec-
ture.

Figure 5.22: Final tensile failure of coupon (Matrix not shown for clarity).
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Three different textile configurations are modeled at coupon level to determine

the effect of hybridization and compute the effective stiffness and strength in tension

for weft direction. A global-local modeling strategy is implemented using the three

different length scales and the real in-situ microstructure imperfections are included

in this study, obtained from micro-CT analysis. A subscale micromechanics NCYL

model is used to predict the effective nonlinear response of a homogenized fiber tow.

The influence of matrix microdamage at the micro-scale manifests as the degrada-

tion of the effective fiber tow stiffness at the meso-scale through a secant moduli

approach. Since, fully analytical solutions are utilized for the micromechanics analy-

sis, the proposed method offers a lower computational cost and is suitable for large

scale progressive damage and failure analysis of composite structures. The linear

stiffness and strength of the textile architectures at coupon level are closely predicted

compared to the RVEs and experimental results. The novelty of the approach lies in

modeling the in-situ imperfections at the laboratory tested coupon level and carry-

ing out the progressive damage and failure analysis in a multiscale framework, which

enables of predicting the global response and the local complex failure mechanisms

of 3D textile woven composites including the effects of hybridization.
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CHAPTER 6

An experimental investigation of

hybridization on compressive response of

hybrid 3D woven textile composites

(H3DWTCs) and numerical prediction

6.1 Introduction

Results for the compression response of hybrid 3D woven textile composites (H3DWTCs)

that consist of carbon, glass and kevlar fiber tows and a polymer matrix material

are presented in this report, using a combination of experiments and a multi-scale

analysis. An experimental investigation of three different architectures of hybrid tex-

tile composites are studied under quasi-static loading and those experimental results

are used to develop a mechanics model for the compressive deformation response

of H3DWTCs using the finite element method. The modeling strategy incorporates

both representative volume element (RVE) and coupon level modeling to study the

compressive failure response. The RVE model considers micro scale based modeling,

where tows are considered homogenized entities of fibers and matrix, and the matrix

as an isotropic material. The coupon level model uses an actual representation of the

fiber tows and matrix, obtained using microCT images and subsequently discretized

using a commercial software tool, SIMPLEWARE. The effect of using multiple unit

cells in the RVE and the gage section of the test coupon, on the predicted compres-

sion strength, is studied. The fiber and matrix compression failure modes that are

observed in the experiments are seen to be captured by the models developed here.

Past literature on failure theories of composite materials have studied failure at

the meso scale and to a limited extent at the micro scale. However, it is now ac-

cepted that the mechanisms that lead to compressive failure, both for the matrix
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and fiber-dominated failure modes are highly complex and require careful modeling

(see for example, [55], [72], [73] and [74]). Strength and strain-based failure criteria

are commonly used with the finite element method to predict failure in composites.

In the past, homogenized, continuum based criteria have been presented to relate

internal (averaged) stresses to experimental results of material strength to the onset

of failure. These approaches, unfortunately, use averaged values and thus, failure

which initiates at the constituent level, are not properly captured. In this research,

mechanism-based failure models are discussed and proposed for each compressive fail-

ure mode in 3D woven textile composites, for the orthotropic homogenized fiber tow

and for the isotropic matrix. If textile composites are to be used in structural ap-

plications, then the understanding of how each failure mode takes place i.e. having

a mechanism based model for different failure modes is imporant. The mechanism

based models clearly show the contributions of the constituents to the failure mode

of concern. For instance, it is shown by Pavana and Waas [73] how matrix shear

nonlinearity and fracture toughness of the matrix contribute to kinking and split-

ting failure observed in compressive failure of fiber tows. The dominant damage and

failure modes of H3DWTCs subjected to compressive loading are: (1) fiber tow com-

pressive failure, (2) matrix compressive failure outside of fiber tows and inside the

volume of the textile and (3) matrix shear cracking, occuring close to the tow-matrix

interface. It is well established that the fiber compressive failure mode is governed

by the nonlinear resin shear behavior and imperfections such as the initial fiber mis-

alignment angle and voids, [75]. However, when a kink band sets in, splitting of the

matrix due to the large transverse strain can also occur as described in [73]. Matrix

compressive failure is associated with an instability in shear, typically governed by a

Mohr-Coulomb type criterion and this mode of failure may also precipitate the onset

of kink band formation.

Three different configurations of 3D woven textile composites are considered here

to compare their compressive strength and study the effect of hybridization and ar-

chitectural effects on the compressive response and failure behavior. In these con-

figurations, fiber tows run orthogonally in all directions, held by the matrix. The

thin layer of matrix volume between fiber tows start to develop micro cracks due

to shear stress, even though the structure is subjected to compressive loading in a

global scale. These micro cracks in the matrix can precipitate a large macroscopic

crack that can separate the tow from the matrix. In this study, the matrix and fiber

tows are the entities that are modeled and each entity is assumed to have a variety

of failure modes as discussed later. It is noted that, at the micro-mechanics scale,
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individual fibers and matrix inside the fiber tow can be modeled numerically, using a

representative volume element (RVE), to study the compressive failure and kinking

behavior in detail, which has been done previously, [76] and [73]. However, it is im-

practical to model a fiber tow using a fiber-matrix RVE (micromechanics) at the level

of the textile architecture (meso scale). Therefore, fiber kinking is modeled at the

(homogenized) fiber tow scale and macroscopic failure initiation criteria (informed

from the micromechanics modeling) are implemented to predict this failure behavior

for computational efficiency. A discussion of the modeling of fiber tow compressive

failure is included later in this report.

An important mode of matrix failure is compressive failure which is captured using

the Mohr-Coulomb model. Puck et al. ([77], [78], [79], [80]) were the first researchers

to propose a matrix failure model based on the Mohr-Coulomb criterion. The anal-

ysis includes matrix failure for a three dimensional (3D) stress state. In this study,

the significance of this failure mode for tow compressive failure is discussed using a

simple fiber-matrix tow model. It is seen that, for the material system studied here,

the Mohr-Coulomb mode of matrix compressive failure does not influence the tow

compressive strength, even though the matrix material is seen to initiate combined

compressive-shear failure. The peak load is still governed by resin shear nonlinearity

and fiber misalignment.

6.2 Material system

The material system considered is a ‘hybrid’ Z-fiber orthogonal interlock textile 3D

woven composite (H3DWC), where ‘hybrid’ refers to different constituent fiber tows.

The terms fibers and fiber tows are are used interchangeably and their meaning is

clear from the context. In-plane carbon and glass fiber tows are stacked together in

multiple layers in a cross-ply manner and kevlar fiber tows run orthogonally in the

thickness direction to bind the in-plane layers and prevent delamination. Kevlar fibers

are flexible and more ductile compared to carbon and glass fibers and that enables it to

run in the up-down-up fashion through the thickness of the laminate. The dry preform

is woven through 3D textile weaving process, with carbon and glass fibers subjected

to pretension, which enhances in-plane mechanical properties. The architecture of the

H3DWC helps to improve the damage tolerance behavior, and failure is progressive

in comparison to catastrophic failure of isolated brittle materials. The constituent

materials are IM-7 carbon fiber, S-2 glass fiber, kevlar fiber and SC-15 matrix, which

is a two-phase toughened thermoset polymer, used for high temperature applications.
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Table 6.1: The elastic properties for IM-7 carbon fiber, S-2 glass fiber, kevlar fiber
and SC-15 matrix.

E1 E2 ν12 ν23 G12 G23

(GPa) (GPa) - - (GPa) (GPa)
IM7 carbon fiber 276.0 15.0 0.279 0.49 12.0 5.02

S-2 glass fiber 93.8 93.8 0.23 0.23 38.1 38.1
Kevlar fiber 112 112 0.36 0.36 41.2 41.2

SC-15 matrix 2.487 2.487 0.35 0.35 0.921 0.921

Material properties for each fiber type and the matrix are provided in Table 6.1.

6.3 Textile architecture

In this research, three different hybrid architectures, as schematically shown in Figure

4.1 are investigated to understand the effect of hybridization on the resulting com-

pressive response, [34]. Detailed description of these hybrid textile confogurations are

covered in Section 4.3.

6.4 Matrix nonlinear constitutive model

In this material system, the matrix non-linearity caused due to microdamage is mod-

eled in two different length scale, i.e.(1) Matrix cracking inside the fiber tow is mod-

eled using the degraded secant stiffness properties of the matrix, in combination with

elastic fiber properties to homogenize the fiber tow stiffness at macro scale. Matrix

material behaves differently in the presense of fibers, in comparison to the pure ma-

trix only. Hence, it is important to extract the in-situ non-linear properties of matrix

to use in the predictive computational model. (2) The surrounding matrix cracking

outside of fiber tow and inside the volume of textile material is modeled using the

secant degraded stiffness and a modified J2 deformation theory of plasticity. The evo-

lution of non-linearitry accounts for progressive deterioration of the material stiffness,

however, the tangent stiffness tensor still remains positive-definite. The coalescence

of matrix micro damage finally results in matrix macroscopic cracking, followed by

a post-peak strain softening regime. In this instance, the positive definiteness of the

matrix stiffness tensor is lost, which is categorized as a failure. The post-peak strain

softening behavior of matrix failure inside the fiber tow is not considered here and

only the pre-peak non-linearity is taken into account to capture the macroscopic pre-

peak non-linear response. The post-peak strain softening behavior for fiber tow is
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modeled at the macroscopic level using the 3D orthotropic smeared crack approach

(SCA). The post-peak strain softening behavior for the surrounding matrix outside

the fiber tow is modeled through the 3D isotropic smeared crack approach (SCA) to

capture matrix macroscopic cracking, as described in the following sections.

6.4.1 Modeling microdamage in a polymer matrix

As discussed in [17], the matrix in-situ response can be characterized through a tensile

test on a ±45◦ symmetric laminate. Furthermore, it is assumed that the matrix

nonlinear response can be characterized using an exponential relation,

σeq = σy −
K1

K2

(
e−K2εeq − e−K2

σy
E

)
(6.1)

where σy is the yield stress of the matrix in a uniaxial tension test, E is the elastic

modulus, K1 and K2 are two material constants that govern the evolution of ma-

trix microdamage. Different nonlinear responses have been reported for the matrix

within a carbon tow than that in a glass tow [32]. Table 6.2 summarizes the matrix

nonlinear properties used in the two-scale micromechanics model for computing the

response of each constituent tow. In addition, the pre-peak nonlinear properties of

the surrounding matrix in the macro model is assumed to be the same as the one

used for the glass tow.

Table 6.2: Matrix nonlinear properties used in this research.
σy (MPa) K1 (MPa) K2

Matrix (macroscale) 25 1700 40
In-situ carbon 25 3500 60
In-situ glass 25 1700 40

6.5 Fiber tow constitutive model

The experimental results of the ±45◦ symmetric laminate tensile tests indicate that

the matrix exhibits a nonlinear stress versus strain response due to the evolution

of microdamage. In the proposed computational scheme, each fiber tow is homoge-

nized as a 3D solid, therefore, micromechanical analysis must be implemented at the

subscale to capture such nonlinear behavior. Since the fiber tow pre-peak nonlinear

response is attributed to matrix microdamage, no macroscopic damage criterion is

required to drive the nonlinear damage progression. However, multiple catastrophic
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failure modes are observed in the experiment, including fiber kinking. These modes

of failure result in a loss of load-carrying capability of composite structure, followed

by a post-peak strain softening response. Since the positive definiteness of the ma-

terial tangent stiffness matrix is lost in softening regime, the FEA will provide mesh

dependent results if no characteristic length is introduced. As a result, the aforemen-

tioned two-scale NCYL model has to be supplemented by a suitable mesh objective

approach for modeling the post-peak softening response.

In the present study, fiber kinking is considered as the major failure mode for

H3DWTCs subjected to compressive loading, which is evident from the experimental

investigation discussed in [72]. In addition, when the fiber kinking is initiated in axial

tows due to compressive stress, the crack plane is assumed to be aligned perpendicular

to the fiber direction. Details of the implementation of the 3D orthotropic SCA within

a FE framework are demonstrated in Section 6.5.2.

6.5.1 Tow pre-peak nonlinear response: NCYL model

Recently, Zhang and Waas [1] developed a two-scale, micromechanics-based model

for computing the nonlinear response of a unidirectional composite. In their model,

a fiber-matrix concentric cylinder is used as the repeat unit cell (RUC), to repre-

sent a composite fiber tow. The two layers fiber-matrix analytical model has been

extended to N-layer fiber-matrix cylinders to analyze the stress and strain fields for

all constituent matrix layers, as described earlier in Chapter 2. Micromechanics is

used to relate the globally applied composite strains to the fiber and matrix strains

at the microscale through a six by six transformation matrix. A detailed description

of the NCYL micromechanics model and its implementation in a multiscale analysis

for progressive damage of textile composites is provided in [81].

6.5.2 Fiber tow kinking failure: 3D orthotropic SCA

Fiber compression failure is a field where significant research is still being performed.

However, the mechanics of the failure mode involving fiber compression is more com-

plex. Depending on the material, different fiber compressive failure modes are possi-

ble [82]: (1) Microbuckling is a failure mode that consists of the microbuckling of the

fibers in the elastic matrix. The first mechanical model for this failure mode can be

tracked back to Rosens work [83] where the fibers are represented by infinite beams in

an elastic matrix and failure is attained when the compressive load equals the buck-

ling load. This model provides an upper bound for the failure stress, as it generally
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predicts a failure stress typically two to three times larger than the experimental one

(for carbon reinforced composites [82]). Models based on microbuckling have been

widely studied over the last decades. For these models, the matrix shear properties

as well as material imperfections play an important role. (2) Kinking can be defined

as the localized shear deformation of the matrix, along a band. Typically, the fibers

break at the edges of the band, and sometimes also in the interior. It should be noted

that some authors consider kinking as a consequence of microbuckling, while others

consider it as a separate failure mode [82]. Argon [84] was the first researcher to

develop a mechanical model for fiber kinking as a separate failure mode. For Argon,

failure is the result of matrix shear failure, prompted by an initial fiber misalignment.

For this model, and those that follow it, matrix elastic behavior and initial material

imperfections play an important role. (3) Fiber failure can be expected to occur for

fibers with low compressive strength, such as Aramid, but is not expected to happen

for carbon or glass fibers [82].

Figure 6.1: Unidirectional fibre tow (schematic).

In hybrid textile composites, fiber tows are surrounded by a polymer matrix,

resulting in a complex state of stress. A unidirectional fiber tow is shown schematically

in Figure 6.1, where fibers are aligned in 1-direction and the transverse 2-3 plane is

assumed to be isotropic. The microstructure of each fiber tow consists of thousands of

fibers distributed in the matrix medium with certain volume fraction, depending on

the manufacturing process and the applications. The fibers arrangement inside the
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tow and the packing details have a great impact on the macroscopic global response,

which can be studied in a more detailed manner. The fiber packing controls the

distribution of matrix cracking inside the tow, but in our study the fiber tows are

homogenized and we try to capture the fiber kinking at the tow level.

Figure 6.2: Fiber compression (kinking) for crack plane orthogonal to 1-direction.

The smeared crack approach (SCA) formulated in [31] for 3D orthotropic material

is utilized to model the failure progression of a single fiber tow, which include fiber

kinking in axial direction. Fiber failure mode that include tow kinking in compression

is shown in Figures 6.2. It is further assumed that when the critical stress is reached,

the crack plane is aligned perpendicular to the fiber direction for tow kinking and

the crack orientation transformation matrix, N , is determined as given in [31]. The

failure initiation criterion is defined by

(
σ11
XC

)2 > 1, σ11 < 0 (6.2)

The crack interface stresses are related to the local crack strains through,
σcr11

τ cr12

τ cr13

 =

E
cr
11 0 0

0 Gcr
12 0

0 0 Gcr
13



εcr11

γcr12

γcr13

 (6.3)

Let the onset stress states at the instant of failure initiation are denoted as σ∗11,

which satisfies the Equation 6.2 as
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(
σ∗11
XC

)2 > 1, σ∗11 < 0 (6.4)

When kinking failure occurs in compressive loading, the recorded load drops sig-

nificantly during the experiment, indicating a considerable amount of fracture energy

dissipation. It is worth noting that the tow compressive failure evolution is different

from the tensile failure behavior. In the experiment, when the fiber tow fails un-

der compression, the formation of kink band limits the peak load, while additional

kink bands are developed with continued deformation, resulting in a load plateau. It

indicates that even though the fibers are broken within the kink band, load is still

transferred through the band, allowing for stress redistribution. On the other hand,

when the tensile failure occurs, the material loses the load-carrying capability com-

pletely, resulting in a significant load drop. Therefore, a specific traction-separation

law is designed to account for the different failure characteristics for compression, as

illustrated in Figure 6.3. It is assumed that when failure progresses under compres-

sion, the crack interface can carry 50% of the compressive strength in the post-peak

regime, while fracture energy is completely dissipated for tensile failure. The failure

properties, including the critical stress and fracture toughness for each mode of fail-

ure, are summarized in Table 6.3 for fiber tows and in Table 6.4 for SC-15 matrix

respectively. The compressive strength values for carbon and glass tows are taken

from [31]. It is worth mentioning that characterizing the failure progression of fiber

tows within H3DWTCs is critical to understand the progressive failure response of

this class of materials.

Figure 6.3: Traction-separation laws for fiber tensile and compressive failure.
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Table 6.3: Fiber tow failure properties used in the SCA model.
Failure mode Carbon Glass Kevlar
0◦ tension (MPa) 3000 3700 3600
0◦ compression (MPa) 977 720 720
90◦ tension (MPa) 55 65 65
90◦ compression (MPa) 247.3 247.3 247.3
Shear (MPa) 37 35 35
G+
ICF (N/mm) 40 60 40

G−ICF (N/mm) 4 2 2
G+
ICM (N/mm) 0.296 0.296 0.296

G+
IICM (N/mm) 0.647 0.647 0.647

Table 6.4: SC-15 matrix failure properties used in the SCA model.
Failure mode Cohesion strength (MPa) µ G+

IICM (N/mm)
Matrix compression 30 0.75 1.5

6.6 Matrix compression failure: Mohr-Coulomb cri-

terion and 3D isotropic SCA

Shear fracture is the dominant mode of failure for matrix under all but the lowest

confining stress. The compressive strength of matrix is a function of the confining

stresses between the fibers and the strength increases with increase in confining stress.

The simplest and the best known failure criterion of failure is the Mohr-Coulomb (M-

C) criterion, where the variation of failure strength is linear approximation of the shear

and normal stresses on the failure plane. It has been established that the matrix in

composite materials fails in compression by shearing along a ‘failure’ plane oriented

at an angle θ with respect to the axial loading, that is specific for a particular epoxy

system. The M-C linear strength criterion implies that θ stays the same regardless of

the stresses applied.
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Figure 6.4: Mohr-Coulomb’s criterion.

M-C criterion is in terms of shear and normal stress on the plane of failure, defined

by

|τ |cr = Si + σN tanφ, σN < 0 (6.5)

where |τ |cr is the shear stress, σN is the normal stress, Si is the cohesion strength of

the epoxy and the intercept with the τ axis of the linear envelope, and φ (‘angle of

friction’) is the slope angle of the linear envelope of failure, as shown in Figure 6.4.

The relationship between the angle θ (the angle between the normal to the plane of

failure, point ‘A’ and the direction of the maximum principal stress) and φ is given

by,

2θ = φ+
π

2
(6.6)

The M-C criterion can also be given in terms of the maximum and minimum

principal stresses

|σ1| > |σ2| > |σ3|, σ1 < 0 (6.7)

The shear and the normal stress on the failure plane can be expressed in terms

of maximum and minimum principal stresses from Mohr’s cicle and can be replaced

in Equation 6.5. By separating all the terms containing σ1 from the rest of the

expression, and recalling the above relation between θ and φ from Equation 6.6 and
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also performing some trigonometric manipulations, we finally obtain M-C criterion in

terms of the principal stresses only, as followed:

σ1 = 2Si tan(450 +
φ

2
) + σ3 tan2(450 +

φ

2
) (6.8)

which can be reduced to

σ1 = C0 + σ3 tan2(450 +
φ

2
) (6.9)

where C0 = 2Si tan(450+ φ
2
). The two principal stresses can be plotted from Equation

6.9, as shown in Figure 6.5 below.

Figure 6.5: Mohr-Coulomb’s criterion in terms of principal stresses only.

For uniaxial compression case, failure occurs when σ1 attains its peak value C0.

Failure plane (point ‘A’) normal is at θ = (450+φ
2
) to σ1 direction, as shown in Figure

6.6.
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Figure 6.6: Mohr-Coulomb’s criterion for uniaxial compression case.

Matrix material is actually subjected to shear failure, when the textile composites

are subjected to compressive loading, but the failure mechanisn is commonly referred

as matrix compression failure. Indeed, failure occurs at an angle with the loading

direction, which is evidence of the shear nature of the failure process. A physical

model for matrix compression failure should predict that failure occurs when some

stress state is achieved, as well as what orientation the fracture plane should have

and how much energy the crack formation should dissipate.

The orientation of the fracture surface of specimens failing by matrix compres-

sion suggests that the Mohr Coulomb criterion is applicable to matrix compression

failure ([77], [78], [79], [80]). Matrix compression specimens fail by shear. For a pure

compression loading, this fact suggests that the angle of the fracture surface with the

through-the-thickness direction should be θ = 45◦, i.e. fracture should occur in the

plane of the maximum shear stresses. However, it is experimentally seen that the

angle is generally θ = 53±2◦ for most technical composite materials ([79], [80]). This

can be explained through the existence of a compressive stress acting on the poten-

tial fracture surfaces, and an associated friction stress. The 3D stress state inside the

matrix material are updated through the user subroutine over the progressive loading

and subjected to the smeared crack code when M-C failure initiation crieria is met.

An exponential traction law is accounted for both tensile and compressive failure of

151



matrix material, as shown in Figure 6.7. Single element test is carried out to check

the validity of the in-house developed code and various case studies are considered

to demonstrate the mesh objectivity of matrix compressive failure using the smeared

crack approach.

Figure 6.7: Traction-separation laws for matrix tensile and compressive failure.

In this study, a 3D finite element micro-mechanics model of IM-7 carbon fiber

and SC-15 matrix system is presented to understand the compressive response and

failure of unidirectional fiber reinforced polymer matrix composites. A 3D rectangular

representative volume element (RVE) of volume fraction, Vf = 50% is modeled as

a sandwiched matrix between the fibers, as shown in Figure 6.8 below. Previous

studies indicate the presence of complex three dimensional stress state in the matrix

medium, which influence the development of kink bands due to localization of shear

stresses. Few aspects of particular interest in this study are: (1) Implementation

of Mohr-Coulomb’s failure criteria for matrix compression in combination with 3D

isotropic smeared crack approach for modeling post-peak strain-softening response,

(2) Capability of the method to capture the deformation localization and formation of

kink bands in the sandwiched matrix medium at a given angle of fiber misalignment,

(3) The imperfection sensitivity of the compressive strength with respect to the angle

of fiber misalignment, and (4) Mesh objectivity of the model. This research would

establish the predictive capability of the proposed numerical model for fiber kinking
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failure mechanism in a micro-scale and its exiension to multiscale framework at macro-

scale.

Figure 6.8: Micro-scale RVE for uniaxial compression test.

Table 6.5: Stiffness, strength and fracture toughness values for single element and
mesh objectivity test.

Property Value

E(GPa) 2.487

ν 0.35

σy(MPa) 30

K1(MPa) 4500

K2 58.31

Cohesion strength(MPa) 30

µ 0.75

GIIC(N/mm) 1.5

A uniaxial compression test is carried out for the chosen RVE of fiber and matrix

volume, with a suitable element length to satisfy Bazant’s mesh size criteria and an

initial fiber misalignment angle of 0.10. The geometry of fiber-matrix assembly is

tilted by the imperfection angle but the end surfaces remain flat. Figure 6.9 illus-

trates the boundary conditions for the RVE subjected to uniaxial compression. The

fibers are assumed to be linearly elastic orthotropic and the matrix non-linearity is

modeled as a secant damaging solid using J2-deformation theory of plasticity. All the

153



material properties that are used in this study are summarized in Table 6.5. The com-

pressive response studies are carried out in a setting of both geometric and material

non-linearity and the resulting stress versus strain response along with the progressive

contour plots are shown in Figure 6.10. The maximum shear stress localizes at a cer-

tain characteristic angle in the sandwiched matrix medium between the fibers and the

microcracks develop in those elements. Consequently, all the microcracks accumulate

into a single visible macro crack at a slip angle, which depends on the co-efficient of

friction of the matrix material. The cohesion strength and the angle of friction are

the inputs to the Mohr-Coulomb’s model, which are the material properties for a par-

ticular matrix material and can be measured experimntally in geotechnical tests. The

progressive contour plots of shear stress are shown in the Figure 6.10. The cracked

elements which satisfy the Mohr-Coulomb’s failure initiation crierion are subjected to

enter into the Smeared crack code and shown in red in the progressive plots of Figure

6.11.

Figure 6.9: Boundary conditions for RVE uniaxial compression test.

An important study to be considered here is the sensitivity of the initial geo-

metric imperfection angle on the compressive strength and load-displacement curve.

Geometric models of the RVE are constructed with various fiber misalignment angles

ranging from 0.10 to 2.50 and the corresponding axial stress-strain plots are shown

in Figure 6.12. For all the imperfection angles, the model behaves linearly at first
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(a) Stress vs. strain. (b) Point ’A’.

(c) Point ’B’. (d) Point ’C’.

Figure 6.10: Progressive contour plots of shear stress.

(a) Stress vs. strain. (b) Point ’A’.

(c) Point ’B’. (d) Point ’C’.

Figure 6.11: The cracked elements are shown in red.

in the pre-peak regime and the initial stiffness closely match, indicating that the

range of imperfections considered here are smaller in magnitude. The matrix stiffness

is degraded using the secant stiffness approach and modeled using J2-deformation
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theory of pasticity, as described in Section 6.4. With increasing strain, the matrix

shear stiffness decreases and follows the non-linear curve as evident in experiments.

The degraded matrix stiffness allows to rotate the fiber progressively and the con-

tinued fiber rotation induces more shear strain in the matrix and hence establishes a

closed loop feed back network. The loop breaks when the matrix stiffness is degraded

sufficiently to provide any further resistance and slips into some characteristic angle

causing a shear band. After peak load, a sudden vertical drop in load is observed

in the displacement controlled experiments with increasing strain. As observed in

Figure 6.12, the compressive strength is sensitive to the initial imperfection angle

and there is a gradual drop in strength with increase in imperfection angle. The

post-peak compressive behavior is also affected by the misalignment angle. Consider

the case of imperfection angle 0.10 in Figure 6.12, where the decrease in stress in

the post-peak regime is very rapid and the drop is almost vertical. As the imperfec-

tion angle increases, the compressive strength decreases and the decrease in stress is

gradual in the post-peak regime, approaching a near constant value in the plateau

region. The difference between the compressive strength and the plateau regime is

also diminishing slowly with increase in imperfection angle, as observed in these plots.

Figure 6.12: Imperfection sensitivity of compressive strength.
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Figure 6.13: Mohr-Coulomb’s sensitivity of compressive strength.

The tow compressive strength is governed by both material and geometric non-

linearity and the kinking failure mechanism is the culmination of a structural insta-

bility. As shown in Figure 6.12, the tow strength is also sensitive to the degree of

imperfection in the structure. It is of interest to know how the Mohr-Coulomb failure

initiation in the matrix influences the tow compressive strength. The load drop in the

stress-strain plot is an indication of loss in load carrying capability of the structure

governed either by the instability or induced by matrix elements that are pushed into

the compressive failure via the Mohr-Coulomb (MC) criterion. Two cases of imperfec-

tion angles, 0.10 and 2.50 from the micromechanics study are revisited without using

the MC criterion for matrix compressive failure. The same boundary conidtions, ma-

terial properties and loading are used as before. The matrix remains as a secant solid

with an indefinite value of strain, without a limit. As shown in Figure 6.13, for the

case of angle of 0.10 (Case-A), the peak load is about the same (indicated by A). This

clearly indicates that, Mohr-Coulomb mode of matrix compressive failure does not

influence the tow compressive strength for low angles of imperfection for the material

system of interest here. Furthermore, fiber kinking is driven by an instability due

to fiber misalignment and resin nonlinearity. For the case of angle 2.50 (Case-B),

the first element going through the MC criterion corresponds to point B, which is

much earlier in the load-deflection response than the case with the absense of the MC

criterion, (indicated by B’). It is also seen that the plateau load is now reduced in

comparison with the case where the MC criterion is absent. Therefore, for tow com-
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pressive failure, when the fiber misalignment angle is small, the compressive strength

is governed by a limit load instability, whereas for larger angles, the maximum load

is slightly reduced when the MC criterion is in effect.

Figure 6.14: Study on interaction between kinking and splitting.

Figure 6.15: Progressive kinking-splitting plots for 0.10 (Case-A).
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Figure 6.16: Progressive kinking-splitting plots for 2.50 (Case-B).

The fiber tow kinking is the most dominant failure mode observed in compressive

failure of fiber tows. However, when certain matrix elements within the kink band sets

into Mohr-Coulomb’s criterion, the diagonal matrix elements perpendicular to it will

be subjected to large transverse strain. The kink band occurs at a certain friction an-

gle, which is the characteristic of the particular material system, but nonetheless, the

interest here is to study the interaction between splitting and kinking failure mode,

which may interact with one another. For the micromechanics model studied here,

two cases of misalignment of fiber tows, 0.10 and 2.50 are considered here to study the

interaction behavior between these two failure modes. A transverse strain based fail-

ure criterion is being added to Mohr-Coulomb’s criterion, keeping the same boundary

conidtions, material properties and loading as used before. The load-deflection plots

for both the cases are shown in Figure 6.14. There is no difference between the peak

load, even after adding the strain failure criterion, which implies, matrix elements are

going through Mohr-Coulomb’s crieterion first, leading to formation of kink band.

For the case of 0.10 angle, the first matrix element sets into kinking mode at peak

load (indicated by ‘red elements’ at B in Figure 6.15) and no transverse strain failure

is observed till that point. In the post-peak regime, the fiber tow is kinking and can

still hold the load of the structure till the fibers break completely. During this period,

the diagonal elements fail because they exceed the maximum transverse strain failure

criterion, leading to splitting (indicated by ‘green elements’ at C). Kinking leads to

splitting, as observed in this simulation for the case of 0.10 imperfection angle. For
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the second case of 2.50 imperfection angle, there is no vertical load drop and the load

regime turns into a plateau zone. The matrix elements sets into Mohr-Coulomb’s

criterion pre-maturely (indicated by ‘red elements’ at B in Figure 6.16), but even in

that case, splitting occures as a post-failure mechanism to kinking as seen in Fig-

ure 6.16(c), indicated by ‘green elements’. In both the cases, the splitting happens

as post-kinking failure mechanism, irrespective of angle of imperfection. It is noted

here that, without any failure criteria (Mohr-Coulomb and transverse strain), the

maximum load computed is almost the same for small angle of imperfection (0.10),

suggesting that for this material system, the maximum compressive strength is a case

of structural instability, driven by fiber misalignment and matrix non-linearity. But

for larger angle of imperfection (2.50), it is clear that Mohr-Coulomb’s criterion leads

to reduced plateau load.

In order to verify the mesh objectivity of the smeared crack matrix compression

code in the finite element framework, a uniaxial compression test was performed on

the same RVE with four different mesh sizes, as shown in Figure 6.17. The in-situ

matrix non-linear properties of SC-15 epoxy are calculated as shown in Section 6.4.

The compressive failure is localized within the matrix in the failure prone area. The

resulting load versus displacement responses for all the four mesh sizes are plotted

in Figure 6.18. This simulation is executed using the Explicit solver of ABAQUS in

VUMAT framework with the MC criterion active. It clearly shows that the computed

fracture toughness, peak load and the localized fracture zone, are independent of

mesh size, which clearly indicates the mesh objectivity characteristics of the Smeared

crack approach. Hence, mesh objectivity is verified for compressive failure of matrix

material using 3D Isotropic smeared crack approach. The cracked elements which

satisfy the Mohr-Coulomb’s failure initiation crierion are subjected to enter into the

smeared crack code and shown in red in the progressive plots of Figure 6.19 at peak

load for all the four different meshes.
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(a) Mesh-1 (5577 elements). (b) Mesh-2 (20000 elements).

(c) Mesh-3 (160000 elements). (d) Mesh-4 (2500000 elements).

Figure 6.17: Four different mesh sizes used in mesh objectivity study.

Figure 6.18: Load-displacement responses for RVE subjected to compression with

four different mesh sizes. The peak load and the fracture energy are unaffected by

the element size.
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(a) Mesh-1 (5577 elements). (b) Mesh-2 (20000 elements).

(c) Mesh-3 (160000 elements). (d) Mesh-4 (2500000 elements).

Figure 6.19: Four different mesh sizes used in mesh objectivity study. The cracked
elements are shown in red.

6.7 Quasi-static experimental results

Uniaxial compression tests were carried out to investigate the compressive response

of the 3D hybrid textile composites. Specimens were cut along the weft direction,

with a length of 7 inch and a width of 1.4 inch using a water jet and the thickness is

0.63 inch, as shown in the Figure 6.20. A notch of radius 0.0625 inch is drilled at the

center of the specimen.

Figure 6.20: Geometry and dimensions of test specimen.
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The thickness of different hybrid architectures vary according to the manufactur-

ing specifications, as described in Section 6.3. Tests were performed on a hydraulically

activated MTS machine at a loading rate of 0.0004 inch/sec to achieve a quasi-static

loading condition, and the load-displacement were recorded, as shown in the Figure

6.21. A manually hydraulic operated HCCF compression fixture was used to secure

the specimens on the MTS machine test bed. Different sets of jaws were machined

to clamp the specimens of different thickness on the compression fixture using the

hydaulic pumps, as shown in the Figure 6.22.

Figure 6.21: MTS machine test set-up.

In order to investigate the failure modes associated with the deformation history,

the notched and the back surfaces of the samples were speckled using air-brush, which

can be subsequently used to obtain surface strain fields via a digital image correla-

tion (DIC) technique. Images of the notched surface were taken during deformation

using a 12 Megapixel camera at 1-second time intervals. The full field surface strain

histories were obtained via the DIC software ARAMIS. In order to obtain a thorough

understanding on the compressive response of hybrid textile composites, tests were

performed on various configurations to investigate the architecture-dependent effect.
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Figure 6.22: HCCF compression fixture set-up.

6.7.1 Progressive damage mechanisms

Figure 6.23: Experimental stress-strain curves for Thick Symmetric architecture.

The experimental load-deflection curves for the Thick Symmetric configuration are

recorded from the tests and the macroscopic stress-strain curves are extracted from
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these data. Macroscopic stress is calculated by dividing the load with the cross-

sectional area of the test specimen and macroscopic strain is calculated by dividing

the DIC measurement of displacement with the specimen length. The experimental

stress-strain curves for 5 different tests are shown in Figure 6.23.

These curves exhibit similar trends, in that the initial propertional loading is

followed by an approximate load plateau, indicating considerable damage tolerance

for this class of materials. Figures 6.24 and 6.25 show the deformation response

for Thick Symmetric specimen loaded along the weft direction, in which a series of

images show the observed damage events, which are related to the loading history.

These images clearly show that the first damage that occurred which corresponds to

deviation from propertional loading is carbon fiber tow kinking on one side of the

notch. When the specimen is loaded further, additional kink bands are formed in

glass tows at the middle, accompanied by matrix cracking in between the fiber tows.

There is a small load drop due to first kink formation and the load raise subsequently

due to additional kink bands. At some instant, all the fiber tows are under the kink

zone but still has a residual load carrying capability, which leads to a plateau region

in the load-deflection plot. The failure is progressive, until a macroscopic wide kink

band forms through thickness leading to a significant load drop, when the fibers inside

the kink band break accompanied by lots of matrix cracking around it and loose their

load carrying capacity completely.

Figure 6.24: Progressive plot.
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Figure 6.25: Progressive damage events during test - view of notch side. Note the

markings in the figures indicating where kinking starts.

6.7.2 Micro-CT study of failed specimen

The matrix cracking is clearly observed in the DIC results, as shown in Figure 6.25.

The surface strain contours show the area of strain localization due to the textile

architecture, indicating the location that the matrix materials start to crack. The

post-peak failure response from the experimental results indicate that, there is a

single wide kink band formation through thickness and the specimen slips at certain

characteristic angle during the final failure, which is evident from the visual inspection

of the failed specimen shown in Figure 6.26.
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Figure 6.26: Test-3 failed specimen.

The damage events exhibited in the experiments are consistent for all the 5 tests.

The kink band is formed at a slip angle of approximately 400-450 from front to back

surface, across the thickness of specimen. Test-3 failed specimen is studied under

Micro-CT to measure the kink band angle and the 2D image of the mid plane is

shown in Figure 6.27. Also, cross-sectional images are taken from the side surface

of the specimen, as shown in Figure 6.28, which clearly indicates the presence of a

distinct transverse crack across the width and the mid plane fiber tows are misplaced

due to slip.

167



Figure 6.27: Measurement of kink band angle from Micro-CT study.

Figure 6.28: Micro-CT study of failed specimen.

6.8 Computational results

Stress-starin response, linear elastic moduli, compressive strength and failure strains

have been experimentally determined in previous Section 6.7. The compressive test

simulations are carried out for Model-I (Idealized perfect model with no imperfections)

and Model-II (Imperfect model with in-situ geometric imperfections) simultaneously

in weft direction for ‘Thick Symmetric’ configuration described earlier. The RVE
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(a) Perfect RVE (b) Imperfect RVE

Figure 6.29: Meso-scale RVE of Thick Symmetric configuration (a) Model-I & (b)
Model-II.

scale simulation results are compared with the experimental results and summarized

in the following sections.

6.8.1 Single RVE compression test

Three dimensional (3D) geometry models of meso-scale RVE (Model-I and Model-

II) are shown in Figure 6.29 for Thick Symmetric hybrid configuration and the finite

elements are generated using ABAQUS 6.12. The Model-I had nearly 79,000 elements

and took 5 hours to run on a high performance computing system using 64 CPUs,

whereas, Model-II had nearly 590,000 elements and took 7 hours to run on the same

computing system using 64 CPUs.
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6.8.1.1 Elastic and strength properties

Figure 6.30: Macroscopic stress vs. strain response comparing the different models.

Considerable gradual linear growth of the elastic moduli under loading in the weft

direction is observed for strains from 0.1% to 0.7% for both the models (Model-I

and Model-II) (Figure 6.30). For Model-I, the linear growth continues upto 0.9%

and there is a sudden drop in load, whereas, the linear growth is followed by a slow

gradual reduction of the moduli with further increase of strains in the case of Model-

II. The ‘non-linear’ behaviour is attributed to a combination of matrix microdamage

and fiber kinking. The fiber kinking appears to be a major cause contributing more to

the modulus versus strain variations. The stress-strain response, as shown in Figure

6.31(a), exhibits a higher degree of linearity due to the assumption of straight fiber

tows and no imperfections. The Model-II shows more of a progression in failure of

the material as shown in Figure 6.31(b) and deviations from linearity occur relatively

early in the loading regime. However, due to the fact that different fiber tows will

have different stresses at the same externally applied displacement indicates that

the carbon may kink earlier than the glass and the failure envelope is progressive

due to the hybrid materials before global kinking behavior. Numerical predictions

using the two-scale multiscale method showed excellent agreement with experimental

data for compressive elastic modulli in the case of idealized perfect geometry with

no imperfections (Model-I). The matrix in-situ non-linear shear properties have little
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(a) Model-I (b) Model-II

Figure 6.31: Progressive plots for different models.

Table 6.6: Stiffness comparison between Experiment and Simulation results.
EffectiveModulus Experiment Simulation(Model − I) Simulation(Model − II)

(GPa) (GPa) (GPa)
Weft 28.7± 3.58% 28.6 28.2

influence on the macroscopic non-linear response of Model-I. After including the in-

situ geometrical imperfections and the fiber crookedness in the FE model (Model-II),

the predicted elastic moduli reduced the respective Model-I values by only 1.2%. As

we can see, there is a reduction in stiffness after including the geometric imperfections.

For this hybrid configuration, the stiffness comparison is summarized in Table 6.6.

The weft-direction compressive strength was found to be 241.6 MPa as reported in

Table 6.7 for Model-I; In Model-II, because of the imperfections of fiber alignment in

both in-plane and thickness directions, there is significant fiber tow kinking observed

in axial tows. The predicted compressive strength increased the respective Model-I

values (254.7 MPa) by only 5.4%. As observed, there is a rise of compressive strength

after including the geometric imperfections and predictions are closer to the experi-

mental values. The global response tends to be highly nonlinear and correlates well

with experimental results for Model-II as shown in Figure 6.30, which demonstrates

the effect of including manufacturing induced imperfections in the progressive damage

and failure analysis of these textile composites.

6.8.1.2 Progressive damage during quasi-static compressive loading

The multiscale methodology described in Sections 6.4 and 6.5, which combine model-

ing pre-peak nonlinearity using the NCYL secant stiffness method and the post-peak
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Table 6.7: Strength comparison between Experiment and Simulation results.
Ultimatestrength Experiment Simulation(Model − I) Simulation(Model − II)

(MPa) (MPa) (MPa)
Weft 238.8 241.6 254.7

strain softening response using Smeared crack approach (SCA), are used together to

conduct a thorough investigation of the damage and failure mechanisms in the hybrid

textile composite under consideration. The progressive damage and failure responses

of textile RVE in weft direction subjected to uniaxial quasi-static compressive test are

shown in Figures 6.32 and 6.33 for Model-I and Model-II respectively. In these figures,

the progressive failure status at different percentages of the compressive strength (‘A’,

‘B’, ‘C’ and ‘D’) are shown as the contour plots of progressive failure flags for both

fiber tows elements going through kinking failure and the matrix elements satisfying

Mohr-Coulomb’s compression failure criteria.

The damage in these composites starts near the location of Z-fiber tows and at

the edges of the in-plane fiber tows oriented transversely to the loading direction.

Due to this reason, there is significant amount of local disbonds and matrix cracking

occuring in the matrix pocket, as shown in Figure 6.32. This failure event leads to

development of matrix cracks inside the axial fiber tows during the progressive loading

process and followed by fiber tow kink in the axial direction at a very late stage of

loading. Carbon fiber tows kink first at both top and bottom layers that cause the

first load drop. There is progressive kinking happening afterwards in the middle glass

fiber tows and the global kink angle slowly becomes prominent. The fibers in the

kink zone can still carry load and there is a rise in load deflection plot again after the

first load drop. When there is significant amount of fiber kink and the matrix failure

around it, the structure looses its load carrying capability and there is a major load

drop, named as ‘compressive’ failure. In the post-peak regime, a single macroscopic

visible kink band is formed along the thickness direction, as seen in Figure 6.32(d),

which also resembles the failed specimens from the experiments.

Damage initiation and evolution are investigated numerically using the NCYL

multiscale framework and the matrix microdamage model based on J2-deformation

theory of plasticity. Previous experimental studies [72] discuss the damage progression

in 3D woven composites due to compressive loading, in a detailed manner, which

correlates well with the sequence of damage events captured with our propsed model.

We have implemented the physics of fiber kinking failure mode in smeared carck code

and captured the kinking behavior. Our modeling and analysis of RVE includes in-situ
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Figure 6.32: Fiber kinking progressive plots for single RVE (Model-I).
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Figure 6.33: Fiber kinking progressive plots for single RVE (Model-II).

174



geometric imperfections and the predicted simulation results match closely with the

sequence of damage events observed in experiments. The matrix compression failure

mode is implemented using the Mohr-Coulomb’s failure initiation criterion combined

with 3D isotropic smeared crack code. Cohesion strength and the angle of friction

are the inputs used for this research, where the initial Cohesion strength is assumed

constant with variation of plastic strain of matrix. The present matrix compression

model can be improved by establishing the experimental data for compression test

of matrix, where the Cohesion strength variation with respect to the plastic strain of

matrix can be studied and used as input to the computational model, which will be

the focus of future work.

Overall, both the FE model results show a good prediction for the elastic stiffness.

Also, the model, that include imperfections (Model-II) is able to capture the non-

linear stress-strain response to a close extent. It is noted that this model includes

real in-situ microstructure imperfections inside the RVE and the multiscale analysis

is carried out to capture the progressive failure. The difference in global stress-strain

responses, between the idealized perfect unit cell (indicated as a blue line) and the

one with real in-situ microstructure imperfections (indicated as a red line) are visible

in Figure 6.30. The real imperfections are measured at tow level from the Model-II

and embedded in Model-I using the linear superposition of eigen buckling modes.

The detailed procedure of modeling the imperfections in the perfect RVE and the

sensitivity analysis with respect to carbon and glass fiber tow compressive strength

are described in Appendix H.

6.8.2 Multiple RVEs compression test

Compression test specimens of suitable dimensions are to be decided based on the

number of RVEs, which should be computationally efficient to run the simulations and

capture the main features of the progressive damage and failure characteristics. Nine

RVEs (3x3) are assembled in both warp and weft directions and studied for uniaxial

compression test simulations using the multiscale analysis approach described earlier.

A breakdown of 3x3 RVEs for Thick Symmetric (2.5D) woven textile composite is

shown in Figure 6.34 for illustration.

The 9RVEs model has 716650 elements and provides a similar mesh density to

the initial model used for single RVE. All of the constituent level material properties

described earlier are used in this model again and the same boundary conditions are

implemented that were imposed on the single RVE. The global stress-strain response
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Figure 6.34: Breakdown of components for 9RVEs.
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(a) Stress vs. strain plot (b) Progressive plot

Figure 6.35: Macroscopic stress vs. strain response comparing the different models.

is shown in Figure 6.35(a) for weft direction, which correlates well with the single RVE

results. Also, the progressive damage and failure response of the 9RVEs subjected to

uniaxial compression loading is shown in Figure 6.36. In these figures, the progressive

failure status at various points (‘A’, ‘B’, ‘C’ and ‘D’) of the stress-strain history are

shown as the contour plots of progressive failure flags for both fiber tows elements

going through kinking failure and the matrix elements satisfying Mohr-Coulomb’s

compression failure criteria.

The 9RVEs simulation is carried out to understand the size effect by a combina-

tion of multiple RVEs in comparison to single RVE results. The progressive failure

response from both models, namely, (1) Perfect RVE with no imperfections (Model-I)

were compared to (2) Imperfect RVE with in-situ geometric imperfections in Section

6.8.1 to demonstrate the effect of including geometric imperfections on the compres-

sive behavior of the textile composite.

6.8.2.1 Elastic and strength properties

The linear elastic stiffness of 9RVEs textile architecture matches well to the single

RVE and experimental results in weft direction. The in-situ non-linear matrix shear

properties have very little influence on the macroscopic non-linear stress-strain be-

havior for 9RVEs, as was shown previously in the single RVE Model-I results. The

predicted compressive strength for this simulation is in good agreement with the

experiments and single RVE simulations.

The progression of matrix cracking and the fiber kinking are somewhat similar

to the failure mechanisms observed in the case of single RVE. Carbon fiber tows

kink first at both top and bottom layers that cause the first load drop and there is
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Figure 6.36: Fiber kinking progressive plots for 9RVEs.
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progressive kinking happening afterwards in the middle glass fiber tows. After the

first load drop, the fibers in the kink zone still have residual load carrying capacity,

that causes the rise in load-deflection plot before there is a major load drop causing

structural failure. The kink angle is similar, except the fact that mutiple visible kink

bands are developed, as seen in Figure 6.36(d), in stead of single major kink band

observed in single RVE. The predicted global strength and stiffness are unaffected by

the formation of multiple kink bands, and hence provide a scope for investgation of

multiple kink band formations in the unnotched coupon and bring out the size effect

on fiber kinking failure mechanisms.

Overall, the main objective of this research is achieved by establishing a multiscale

method, which is capable of predicting the certain aspects of experimental results like,

effective linear elastic stiffness and compressive failure strength of Hybrid 3D woven

textile composites. These results clearly indicate that the geometric imprefections of

the fiber tows have a great impact on the non-linear behavior of the composites and

must be included in the coupon level simulation. Even though the predicted compres-

sive strength for single RVE and 9RVEs are within good agreement of experimental

results, the global nonlinear stress-strain response and the kinking behavior can be

studied by including the geometric imprefections in the simulation of the notched

coupon, which is explained in the following section.

6.9 Multi-scale modeling of notched coupon (Macro-

meso-micro scale)

The complex multi-phase material systems of 3D woven textile composites are mod-

eled in three scales, (1) the homogenized macro scale, (2) the tow/matrix meso scale

and (3) the fiber/matrix micro scale. Figure 6.37 presents the framework of the

multi-scale method of 3D textile composites adopted here for the finite element (FE)

modeling and progressive failure analysis. The far field non-failure region (indicated

‘A’) is defined with homogenized elastic orthotropic properties extracted from meso-

scale RVE using periodic boundary conditions for computational efficiency. These

hybrid textile configurations are non-periodic in the thickness direction and hence,

periodic boundary conditions are excluded in that direction for analysis. The detailed

procedure of the meso-scale modeling is discussed in the previous sections. The failure

prone notched gauge region (indicated ‘B’) is defined as a collection of periodic multi-

ple RVEs in both length and width directions of the coupon. The schematic diagram
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Figure 6.37: Frame work of the multi-scale model of 3D woven textile composites.

of the compression notched coupon with indicated regions ‘A’ and ‘B’ and physical

dimensions are shown in Figure 6.38. The meso RVEs define the internal structures

of the weave and consist of fiber tows running in all three directions inside the ma-

trix pocket. The fiber tows are modeled explicitly and are related to the micro-scale

analysis of fiber/matrix constituents through an analytical micromechanics N-layer

concentric cylinder (NCYL) model. The homogenized mechanical properties of the

fiber tows are calculated through the NCYL model and the tow composite strain at

each integration point of the finite element model is related to the analytical strain

field of the fiber/matrix cylinders in the micro-scale through a 6x6 transformation

matrix.
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Figure 6.38: Geometric dimensions of the notched compression coupon.

6.9.1 Geometry and finite element modeling of coupon

As damage and failure initiation mechanisms are highly sensitive to the internal

structures of the weave and the distribution of local imperfections, the waviness

and crookedness of the fiber tows are modeled explicitely using the in-situ micro-

CT scanned data. A micro-CT study is conducted for the entire coupon and the 3D

geometry model is generated directly from the scanned image data using a tool called

‘Simpleware’. Figures 6.39 and 6.40 explain the workflow of the coupon geometry

modeling and the mesh generation method for the Thick Symmetric configuration

and similar procedure is followed for other two configurations.

The fiber tows run in all three orthogonal directions inside the matrix pocket

and the undulation of the fiber tows leave behind thin-layered of matrix in between

tows, which makes it extremely difficult to model in 3D CAD and generate a finite

element mesh for failure analysis. The novelty of this approach is to include the

real in-situ imperfections for progressive failure analysis at the entire coupon level,

as demonstrated in Figure 6.41 for Thick Symmetric hybrid architecture. The gauge

region is designed and modeled in such a way that, at least 3 RVEs are included

across width and length directions of the coupon.

6.9.2 Coupon analysis results

Uniaxial compression test boundary conditions are applied to the numerical coupon

model, as shown in Figure 6.42. One end is constrained from all degrees of free-

dom and displacement loading is applied on the opposite end in axial direction. The

clamped faces are constrained to move in transverse directions and only allowed in

axial direction. The notch-side and the back surface are allowed to move freely, as

observed in the experiments. Figure 6.43 shows the comparison of the global stress
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Figure 6.39: Work flow of 3D geometry modeling of coupon.

Figure 6.40: FE meshing of coupon including geometry imperfection.
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Figure 6.41: 3D geometry modeling of coupons including geometry imperfection.

versus strain response obtained from the coupon simulation with the experimental

results, discussed in Section 6.7. Generally, the computational results are in good

agreement with the experiment. The failure evolution in the fiber tow is illustrated

by the absolute index values of the failure flag. The progressive damage and fail-

ure responses of textile coupon in weft direction subjected to uniaxial quasi-static

compressive test are shown in Figure 6.44. In these figures, the progressive failure

status at different percentages of the compressive strength (‘A’, ‘B’, ‘C’ and ‘D’) are

shown as the contour plots of progressive failure flags for both fiber tows elements

going through kinking failure and the matrix elements satisfying Mohr-Coulomb’s

compression failure criteria. Figures 6.45 and 6.46 show the final failure pattern of

the coupon at the end of simulation in comparison with the failed specimen from the

experiment.

The Thick Symmetric textile configuration is modeled at coupon level to deter-

mine the effect of hybridization and compute the effective stiffness and strength in

compression for weft direction. A global-local modeling strategy is implemented using

the three different length scales and the real in-situ microstructure imperfections are

included in this study, obtained from micro-CT analysis. A subscale micromechanics
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Figure 6.42: Boundary conditions applied to coupon simulation.

(a) Stress vs. strain plot (b) Progressive plot

Figure 6.43: Simulation results comparing with experiments.
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Figure 6.44: Progressive plots for the compression coupon simulation.
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Figure 6.45: Final compressive failure of coupon at the side faces.

Figure 6.46: Final compressive failure of coupon at the notch side.
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NCYL model is used to predict the effective nonlinear response of a homogenized

fiber tow. The influence of matrix microdamage at the micro-scale manifests as the

degradation of the effective fiber tow stiffness at the meso-scale through a secant

moduli approach. Since, fully analytical solutions are utilized for the micromechanics

analysis, the proposed method offers a lower computational cost and is suitable for

large scale progressive damage and failure analysis of composite structures. The linear

stiffness and strength of the textile architectures at coupon level are closely predicted

compared to the RVEs and experimental results. The novelty of the approach lies in

modeling the in-situ imperfections at the laboratory tested coupon level and carry-

ing out the progressive damage and failure analysis in a multiscale framework, which

enables of predicting the global response and the local complex failure mechanisms

of 3D textile woven composites including the effects of hybridization.

6.10 Conclusions

In this work, Thick symmetric configuration of hybridized 3DWTCs are simulated for

uniaxial compressive response to determine the effect of hybridization and compute

the effective stiffness and strength in compression for weft direction. A micro-CT

analysis is carried out to characterize in-situ microstructural geometric imperfec-

tions. This micro-CT analysis helps to extract essential inputs like dimensions of

RVE, cross-sectional details of fiber tows in both warp and weft directions and vol-

ume fraction of pores. Based on these inputs, an idealized 3D geometry model of

RVE is constructed. Furthermore, the micro-CT data is used in conjunction with a

software tool, ‘Simpleware’, to generate a FE mesh that captures in-situ geometry,

and providing a platform to carry out a 2-scale analysis on realistic imperfect RVEs.

A subscale micromechanics 2CYL model, with an analytical solution at the sub-scale

is used to establish a computational framework to predict the effective nonlinear

response of 3DWTCs. The influence of matrix microdamage at the microscale mani-

fests as the degradation of the effective fiber tow stiffness at the macroscale through

a secant moduli approach. Since, fully analytical solutions are utilized for the sub-

scale micromechanics analysis, the proposed method offers a lower computational

cost and is suitable for large scale progressive damage and failure analysis of textile

composite structures. The linear stiffness and strength of the textile architectures

studied are predicted well when compared to experimental results. Quasi-static ex-

perimental results for compressive test of 3D woven composite materials are reported.

The 3-scale modeling strategy adopted for the computational modeling of laboratory
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scale coupon, which also includes the in-situ geometric imperfections from Micro-CT

study, seems to capture most of the features of experimental results. The modeling

strategy is unique and novel in the way that captures compressive response and the

complex failure mechanisms, involved at fiber and matrix level. Also, the size effect

study indicates the inadequacy of single RVE represenation to capture the multiple

kink bands, although it can predict the compressive strength closely. Fiber tows

crookedness and geometric imperfections play an important role for the compressive

response of textile composites and must be included in the compuational modeling.

The coupon level modeling was found to predict the compressive strength and kink

band angle closely to the experimental results. The approach presented here can be

used to understand and quantify the effects of hybridization and textile architecture

on the compressive response of textile composites, in terms of constituent properties.

Furthermore, the modeling framework can be used to quantify the effects of uncertain

constituent properties on the overall response of textile composites, an essential task

in an ICME (integrated computational materials engineering) of composites.
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CHAPTER 7

Concluding Remarks

In this work, compressive response of 3DWTCs are studied experimentally and the

entire laboratory scale coupon is modeled using the macro-meso-micro scale model-

ing strategy, which includes in-situ geometric imperfections from Micro-CT measure-

ments. The modeling approach also includes single RVE and multiple RVE simula-

tions to study the size effect on the compressive response of textile composites. The

novelty of the modeling approach is to include the in-situ geometric imperfection at

the coupon level simulation, as the compressive strength is seen to be sensitive to

the fiber misalignment and other geometric imperfections in the structure. A de-

tailed Micro-CT study of the failed specimens reveals the kink band angle and other

damage mechanisms and fiber kinking in compressive failure. The Mohr-Coulomb

criterion is implemented to model matrix compressive failure in combination with

the smeared crack approach and a detailed micromechanics study is carried out to

demonstrate mesh objectivity of the method. Tow compressive strength is sensitive to

fiber misalignment angle, which has been shown using numerical simulations, along-

side the study on the interaction between splitting and kinking failure mechanisms.

Fiber kinking is driven by both geometric and material non-linearity in the matrix

and splitting failure is seen to be a post-kinking failure mechanism irrespective of

the misalignment angle of imperfection. The coupon level modeling was found to

predict the compressive strength and kink band angle closely to the experimental

results. Both single RVE and multiple RVE simulations predict the experimental

compressive strength closely, even though the analysis indicates that a larger RVE

develops multiple kink bands and the single RVE representation is inadequate to cap-

ture those effects. The laboratory specimen is scanned before the test and a geometric

model is developed from the scanned image data using the tool ‘Simpleware’. Hence,

the coupon geometric model is the real replication of the test specimen with all the

microstructure details.

The compression experimental results for Thick Symmetric configuration show
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fiber tow kinking starts on the carbon side and propagates to glass tows in the mid-

dle with a rise in load. A significant amount of progressive kinking is observed.

Finally, there is a large load drop when most fibers break within the kink band.

The experimental results are used to develop and validate a multiscale computational

model. The far field non-failure area at the ends of the coupon are homogenized

and the center notch area is segmented with homogenized fiber tows within a ma-

trix material. This center gage area is a collection of mesoscale RVEs, where each

fiber tow is homogenized and modeled explicitly along with matrix. A similar mod-

eling approach also used in the modeling of an unnotched dog-bone tensile coupon,

as shown in Chapter 5. The experimental results from [26] are used to validate the

tensile simulation results. Both RVE and coupon level modeling approach is followed

for uniaxial tensile test simulations. Modeling in-situ geometric imperfections has

an impact on the behavior of the structure and must be included in the progressive

failure analysis, which is demonstrated in the tensile response. Also, the hybridiza-

tion and the architecture has a great influence on the tensile response of 3DWTC,

as provided with details, by comparing the three different textile configurations in

previous chapters.

An image based modeling approach for textile composites is well established at

both RVE and the entire coupon level. Imperfections in textile composites have been

characterized and a Micro-CT study has been helpful to get inputs for geometric

modeling. The fiber tow is modeled as macroscopically homogeneous and a 2-scale

multiscale method is developed by introducing the NCYL micromechanics model at

each integration point of the homogenized fiber tow. The 2-layer fiber-matrix concen-

tric cylinder is extended to any number of discretized matrix layers for a fixed volume

fraction and all the stress and strain information are obtained in a closed form. The

matrix microdamage and the tow pre-peak non-linearity are modeled using a secant

stiffness approach in conjunction with J2-deformation theory of plasticity for the ma-

trix material. The matrix in-situ non-linear properties are extracted from coupon

level tests and can be calculated for any ’N’ in general. The post-peak strain soften-

ing behavior is modeled using the smeared crack approach (SCA) and various fiber

and matrix failure modes are included in this research. It is concluded that a nine

RVE representation and a single RVE representation are adequate to establish the

compressive strength of 3DWTCs, within 5% of the peak values that are obtained for

the whole coupon modeling of an imperfect (real) microstructure specimen and the

experimental results. Furthermore, the same model is also seen to predict the tensile

strength accurately. The results in Appendix H on the RVE compressive strength
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suggests that carbon fiber compressive strength dictates the initiation of kink band-

ing failure while the glass fiber tow compressive strength dictates the maximum load

sustainable. Thus, this important finding suggests how progressive failure occurs and

how different aspects of the compressive response is related to constituent structural

properties. It is noted that each tow strength is related to fiber misalignment within

a tow and the matrix nonlinear shear response. These conclusions as shown in Ap-

pendix H have been obtained by studying an RVE that has tow undulations which

are bounded by the measured values, where the measurements are summarized in

Appendix G.

A validated computational multiscale framework as established in this thesis is

very useful in design iterative studies of various textile architectures for structural

applications where damage tolerance and strength allowables dictate the boundaries

of the design envelope.
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APPENDIX A

Transformations between Cartesian and

Cylindrical Coordinates

It is convenient to formulate the concentric cylinder model in cylindrical coordinates

(x− r− θ), and the resulting strains are transformed to Cartesian coordinates (x1 −
x2 − x3) through,

ε11 = εxx

ε22 = εrr cos2 θ + εθθ sin2 θ − γrθsinθ cos θ

ε33 = εrr sin2 θ + εθθ cos2 θ + γrθsinθ cos θ

γ12 = γxr cos θ − γxθ sin θ

γ13 = γxθ cos θ + γxr sin θ

γ23 = 2(εrr − εθθ) sin θ cos θ + γrθ(cos2 θ − sin2 θ)

(A.1)

192



APPENDIX B

Formulations for the Extended

Generalized Self-Consistent Method

The stresses can be derived from the Airy’s stress function as shown in Timoshenko

and Goodier [26] as,

σrr =
1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2

σθθ =
∂2φ

∂r2
(B.1)

σrθ = − ∂

∂r

(
1

r

∂φ

∂θ

)
and the strains are related to the displacements as,

εrr =
∂ur
∂r

εθθ =
1

r

∂uθ
∂θ

+
ur
r

(B.2)

γrθ =
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

where ur and uθ are radial and hoop displacements in polar coordinates. Since the

displacements should be finite at r = 0, and the stresses must be bounded as r →∞,

it follows that,

MN−1 = CN−1 = DN−1 = BN+1 = 0 (B.3)

Using Airy’s stress function in polar coordinates, the stresses for the layer ‘(N-1)’

are,

σN−1rr = HN−1 − AN−1 cos 2θ
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σN−1θθ = HN−1 +

[
AN−1 + 6BN−1

r2

R2
N

]
cos 2θ (B.4)

σN−1rθ =

[
AN−1 + 3BN−1

r2

R2
N

]
sin 2θ

the stresses for the layer ‘N’ are,

σNrr =
1

2
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R2
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r2
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3

2
CN
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r2

R2
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− 3

2
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R4
N

r4
−DN
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N
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and the stresses for the layer ‘(N+1)’ are,

σN+1
rr =

1

2
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R2
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r2
+HN+1 +

[
−AN+1 −

3

2
CN+1

R4
N

r4
− 2DN+1

R2
N

r2

]
cos 2θ

σN+1
θθ = −1

2
MN+1

R2
N

r2
+HN+1 +

[
AN+1 +

3

2
CN+1

R4
N

r4

]
cos 2θ (B.6)
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2
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R4
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r4
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R2
N
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]
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According to the 2D plane-strain constitutive relations in Equation (2.24), the strains

for the layer ‘(N-1)’ are calculated as,

εN−1rr =
1

4GN−1
23

{
2HN−1

GN−1
23

KN−1
23

+

[
− 2AN−1 + 6BN−1

(GN−1
23
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23

− 1
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}
(B.7)

γN−1rθ =
1

2GN−1
23

[
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R2
N

]
sin 2θ

the strains for the layer ‘N’ are,
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1
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and the strains for the layer ‘(N+1)’ are,
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Finally, the displacements can be calculated based upon the strain-displacement re-

lations in Equation (A.1). The displacements for the layer ‘(N-1)’ are,
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the displacements for the layer ‘N’ are,

UN
r =

RN

4GN

{[
−MN

RN

r
+ 2HN

GN

KN
23

r

RN

]
+

[
− 2AN

r

RN

+ 2BN

(GN

KN
23

− 1
) r3
R3
N

+ CN
R3
N

r3

+ 2DN

(GN

KN
23

+ 1
)RN

r

]
cos 2θ

}
(B.11)

UN
θ =

RN

4GN

[
2AN

r

RN

+ 2BN

(GN

KN
23

+ 2
) r3
R3
N

+ CN
R3
N

r3
− 2DN

GN

KN
23

RN

r

]
sin 2θ

195



and the displacements for the layer ‘(N+1)’ are,
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APPENDIX C

Flowchart of VUMAT for combined

NCYL and SCA subroutines

The commercially available finite element software, ABAQUS (version 6.14), is used

for the macroscale FEA, and the NCYL micromechanics model at the subscale is

implemented at each integration point of the macro scale, using a user defined ma-

terial subroutine, VUMAT. This subroutine is called at each integration point at

each increment, and the material constitutive law is updated through user-defined

options. At the start of each increment, the material state i.e. stress-strain and

solution-dependent state variables from the previous equilibrium step and the strain

increments in the current step are passed into the VUMAT through the ABAQUS

solver. The algorithm of the main VUMAT subroutine is shown below in Figure C.1.
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Figure C.1: Flowchart of main VUMAT.
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APPENDIX D

Flowchart of NCYL (N=2, 3 and 4)

subroutines

The detailed algorithm for NCYL (N=2, 3 and 4) subroutines are explained in the

following flowcharts.
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Figure D.1: Flowchart of NCYL2 subroutine.
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Figure D.2: Flowchart of NCYL3 subroutine.
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Figure D.3: Flowchart of NCYL4 subroutine.
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APPENDIX E

Flowchart of 3D Orthotropic and

Isotropic smeared crack subroutines

The detailed algorithm for SCA (3D Orthotropic and Isotropic) subroutines are ex-

plained in the following flowcharts.
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Figure E.1: Flowchart of 3D Orthotropic smeared crack subroutine.
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APPENDIX F

Multiscale static analysis of notched

laminates using NCYL and SCA models

This section visits the numerical simulations on predicting the progressive damage

and failure response of three different multidirectioanl lay-ups from Tech Scout-1,

conducted by AFRL, for uniaxial tension tests using the two-scale computational me-

chanics framework described earlier. The carbon fiber composite laminates of material

system IM-7/977-3, including notched specimens are studied here. All the coupon

laminates are modeled explicitely using 3D solid elements for individual lamina and

the interlaminar failure due to delamination is modeled using discrete cohesive zone

elements (DCZM) inserted in-between the layers. All the constituent level input pa-

rameters are obtained from standard unnotched [0], [90] and [+45/−45]4s coupon

level experimental data, provided by AFRL through micromechanics analysis. The

pre-peak nonlinearity, as caused by matrix microdamage is modeled using N-layers

concentric cylinder model (NCYL) and the post-peak softening failure response is

modeled using the mesh-objective smeared crack approach (SCA) in a multiscale

framework. The proposed two-scale strategy with refined mesh and 3D Hashin fail-

ure modes implemented in the SCA code predicts the global stress-strain response

and the detailed local complex failure mechanisms of the laminated composites. The

coupon level simulation results are compared with experimental results to further

validate the proposed model.

The tensile test simulations are carried out at the coupon level for all the three

lay-ups including notched laminates. Figure F.1 shows the comparison of the global

stress versus strain responses for the current model of open-hole tensile specimens

with the experimental results. The failure evolution in each lamina is illustrated

by the absolute index values of the failure flag. Figures F.2-F.4 compare the damage

contour of each lamina with X-ray images at 90% of the ultimate strength. Generally,

the current refined non-fiber aligned mesh model results are in better agreement with
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the experiment in terms of strength, stiffness and mode of failures in each lamina

with different fiber orientation.

(a) Lay-up 1 (b) Lay-up 2

(c) Lay-up 3

Figure F.1: Comparison of stress vs. strain responses for OHT lay-ups.
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Figure F.2: Damage contours of each lamina for OHT Lay-up 1 [0/45/90/−45]2s.
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Figure F.3: Damage contours of each lamina for OHT Lay-up 2

[30/60/90/−60/−30]2s.
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Figure F.4: Damage contours of each lamina for OHT Lay-up 3 [60/0/−60]3s.

In this work, three different lay-ups are simulated for uniaxial tensile response to
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compute the effective stiffness and strength for notched laminates. A more realistic

finite element mesh is used to restore the mesh objectivity and capture the stress

gradient around the notch area. The subscale micromechanics NCYL model is used

to establish a multiscale computational framework to predict the effective nonlinear

response of a homogenized lamina and the Smeared crack approach is revised to

include all possible failure modes for the post-peak behavior. Overall, the main

focus in this work is achieved by establishing a multiscale method, which is capable

of predicting the complex failure mechanisms in each lamina and two-piece failure

strength of all the configurations.
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APPENDIX G

Imperfection characterization using

Micro-CT data

This section studies the tow imperfections in more details using the Micro-CT data

and image analysis using the tool, ‘Simpleware’. A single RVE of Thick Symmetric

architecture at mesoscale level is considered here to characterize the imperfections

in each component level, as shown in Figure G.1. This ‘hybrid’ textile configuration

consist of fibers, including IM-7 carbon, S2 glass and Kevlar that are integrally woven

into a single preform. A series of warp and weft fibers run in-plane throughout the

panel. A set of Z-fibers run in the direction of warp fibers and are drawn from bottom

to top to bind all the layers together. Z-fibers are usually inserted in-between the

spaces of the warp fibers. This architecture contains the carbon layers for both outer

surfaces (four layers of carbon on each side) and nine layers of glass in the middle.

The carbon and glass tows (total 17 layers) are orthogonally oriented in-plane and

symmetric with respect to the mid-plane. The Z-fibers run half the thickness in two

layers to bind the in-plane layers together.

The hybrid architecture is examined under microscopy to identify unit cells and

characterize the in-situ imperfections. The in-plane tows show high straightness and

high uniformity of the geometry, compared to out-of-plane binder kevlar tows. For

weft tows, the waviness is highest in certain layers, as caused by the Z-fibers, where

the kevlar fibers change directions from top to bottom or vice-versa and clearly visible

in the Figure G.2. The fiber tow waviness and the crookedness are further examined

with a SkyScan 1173 Micro-CT machine set-up (with 70-80kV X-ray source and pixel

size of 17µm) to characterize the textile architecture and geometric imperfections.

211



Figure G.1: Meso-scale RVE of Thick Symmetric configuration.

Here, all the tow imperfections from Micro-CT analysis are summarized as follows:

(i) measurement of centerline position of fiber tow, (ii) measurement of tow curvature

(iii) measurement of fiber tow cross-section area and (iii) measurement of tow ellipse

major radius. All these measurements are conducted at multiple cross-sections along

the length of a fiber tow and random sampling of fiber tows are chosen in the RVE for

both carbon and glass tows in both warp and weft directions. Figures G.3 - G.6 show

the contours of all these imperfection parameters in a range for all the four cases.

A statistical average calculation is done with confidence interval of 95% to find the

uncertainty bounds and mean for each imperfection parameter measured here.

The tow undulations are measured with reference to the center line of tow for both

weft and warp directions carbon and glass tows, as shown in Figures G.7. The mean

values of the tow centerline position with respect to a reference coordinate frame

and the bounds are tabulated in Tables G.1 - G.4 for all the four cases. Therefore,

if the ‘bounds’ are ‘zero’, it would imply that the tow is perfectly straight (zero

undulation). Therefore, the bounds provide the magnitude of the imperfection in

the tow straightness. The tow cross-sectional areas are measured and bounds are

calculated as shown in Figure G.8 and tabulated in Table G.5.

In this work, different geometric imperfection parameters are measured for both

warp and weft directions carbon and glass tows. Statistical bounds and variations are

calculated to characterize the uncertainty in the material system, which is a signature
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Table G.1: Weft Carbon tow bounds for undulation.
Townumber Mean(mm) Bounds(mm)

Tow1 7.6 ±0.003
Tow2 7.64 ±0.003
Tow3 7.73 ±0.008
Tow4 7.65 ±0.005
Tow5 7.57 ±0.002

Table G.2: Weft Glass tow bounds for undulation.
Townumber Mean(mm) Bounds(mm)

Tow1 9.73 ±0.003
Tow2 9.77 ±0.004
Tow3 9.67 ±0.004
Tow4 9.77 ±0.003
Tow5 9.72 ±0.004

Table G.3: Warp Carbon tow bounds for undulation.
Townumber Mean(mm) Bounds(mm)

Tow1 8.7 ±0.014
Tow2 8.68 ±0.016
Tow3 8.67 ±0.015

Table G.4: Warp Glass tow bounds for undulation.
Townumber Mean(mm) Bounds(mm)

Tow1 10.82 ±0.007
Tow2 10.87 ±0.006

Table G.5: Tow area bounds.
Townumber Mean(mm) Bounds(mm)
Weft Glass 1.27 ±0.024

Weft Carbon 1.04 ±0.046
Warp Glass 2.46 ±0.063

Warp Carbon 2.16 ±0.04
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(a) Weft Carbon Tows (b) Weft Glass Tows

(c) Warp Carbon Tows (d) Warp Glass Tows

Figure G.2: Breakdown of components of 3D woven textile composite.

of the associated manufacturing process. These parameters can be referred as inputs

for geometric modeling of the imperfection to include in the progressive damage and
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(a) Tow length (b) Tow curvature

(c) Tow area (d) Tow cross-section radius

Figure G.3: Weft Glass tows characterization.

failure analysis of textile composites, using the multiscale method established in this

research.
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(a) Tow length (b) Tow curvature

(c) Tow area (d) Tow cross-section radius

Figure G.4: Weft Carbon tows characterization.
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(a) Tow length (b) Tow curvature

(c) Tow area (d) Tow cross-section radius

Figure G.5: Warp Glass tows characterization.
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(a) Tow length (b) Tow curvature

(c) Tow area (d) Tow cross-section radius

Figure G.6: Warp Carbon tows characterization.
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(a) Weft Carbon Tows: Circle indicates mean
value

(b) Weft Glass Tows: Circle indicates mean
value

(c) Warp Carbon Tows: Circle indicates mean
value

(d) Warp Glass Tows: Circle indicates mean
value

Figure G.7: Uncertainty bounds for tow crookedness.

(a) Weft Tows: Circle indicates mean value (b) Warp Tows: Circle indicates mean value

Figure G.8: Uncertainty bounds for tow cross-section area.
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APPENDIX H

Imperfection sensitivity study on single

RVE compression

The sensitivity of the initial geometric imperfection angle on the carbon tow compres-

sive strength and load-displacement curve are studied in detail in Section 6.6, using

a micro-mechanics model and Mohr-Coulomb’s failure initiation criteria for matrix

compression. Similar geometric models of the RVE are constructed with various

glass fiber misalignment angles ranging from 0.10 to 2.50 and the corresponding axial

stress-strain plots are shown in Figure H.1.

Figure H.1: Imperfection sensitivity of compressive strength.

For all the imperfection angles, the model behaves linearly at first in the pre-peak

regime and the initial stiffnesses closely match, indicating that the range of imperfec-

tions considered here are small in magnitude. The matrix stiffness is degraded using
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the secant stiffness approach and modeled using J2-deformation theory of pasticity,

as described in Section 6.4. As observed in Figure H.1, the compressive strength of

the RVE is sensitive to the tow strengths. It is noted that there is a gradual drop

in tow strength with increase in imperfection angle within a tow. The post-peak

compressive behavior is also affected by the tow strengths and the tow undulations

within the RVE. The compressive strengths for both carbon and glass fiber tows are

summarized in Figure H.2.

Figure H.2: Carbon and glass tows compressive strength.

The tow compressive strength is governed by both material and geometric non-

linearity and the kinking failure mechanism is the culmination of a structural instabil-

ity. As shown in Figure H.2, the tow strength is sensitive to the degree of imperfection

for both the material systems. The crookedness of fiber tows in both warp and weft

directions are characterized in Appendix G, which shows the statistical variations and

uncertainties in the geometric imperfections, which play a crucial role in the geomet-

ric modeling of RVE for progressive failure analysis. The imperfections inherent in

the structure must be included in the numerical modeling and analysis to study this

effect. In this study, eigen buckling modes are extracted for the RVE and a linear

superposition of first few critical modes are embedded in the ideal geometry to model

the imperfection. At the same time, the imperfect RVE is modeled directly from

Micro-CT data using ’Simpleware’ as a reference solution. The fiber tow crooked-

ness along warp and weft directions for both carbon and glass tows are measured

directly from the Micro-CT data and used to scale the buckling modes to represent
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the geometry of fiber tow close to the real ones. That is, the scale factors are chosen

such that the undulated tows remain within the bounds of the measured undulation

indicated in Appendix G, Tables G.1 - G.4. The scaling factors for various modes

are chosen such that, the initial stiffness is always ±5% of the measured mean value.

The sensitivity study is carried out on the perfect RVE model using the carbon and

glass fiber tows compressive strength from Figure H.2, for a range of strength and for

a range of undulations. Figure H.3 shows the computational runs that were carried

out and the results are shown in Figure H.4.

Figure H.3: Summary chart for simulations results in Figure H.4.

Figure H.4: Imperfection sensitivity of RVE simulations.
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The results show the sensitivity of RVE strength to the tow strengths and fiber

undulation amplitudes. The RVE compressive response matches closely with the

imperfect model and the experiments after embedding the tow undulations within

the bounds and choosing the carbon and glass tow strengths indicated as RUN6. The

first load drop is dictated by carbon fiber tow compressive strength and the peak load

is dictated by glass fiber tow compressive strength, as shown in Figure H.4. There

is progressive kinking after initiation and a load rise between the first load drop and

the peak load. It is cleat that the non-linearity in the stress-strain response of textile

composites is driven by the tow undulation imperfections, whereas, carbon and glass

fiber tow strengths are determined to be strength limiting mechanism for this type

of textile composite materials.
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