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ABSTRACT 

 
The next generation of computing platforms increases proximity to the source of information 

rather than to humans, allowing much more aggressive miniaturization. The key technology for 

miniaturization has been process scaling, which has reduced the silicon area, increased 

computational capability and lowered power consumption. However, the latest deep-submicron 

technologies do not fit well with mm-scale computing because of the increased leakage current. 

Therefore, advances in circuit level techniques are critical to realizing networks of mm-scale IoT 

computing platforms. 

Smart sensor nodes have been a popular research topic in recent decades, as the demand for 

collecting and processing environmental data has grown. Consequently, promising research 

outcomes have been published in various areas of medical care, environmental monitoring and 

surveillance. Such wireless sensor nodes (WSNs) require new circuit techniques as they are placed 

in a very distinct operating environment with specialized purposes compared to conventiona l 

applications. Ultra-low power consumption is one of the most challenging constraints resulting 

from the form factor of the system. 

In this dissertation, circuit techniques to reduce power consumption of the system is 

introduced. A 4.7nW wake-up timer with 13.8ppm/℃ temperature coefficient demonstrated in this 

dissertation lowers system sleep power while minimizing the energy overhead for peer-to-peer 

communication. A 2.5psrms digital phase-locked loop with noise self-adjustment improves the 

system stability by making the noise of the clock invariant to the environmental changes. A neural 



xv 

 

recording amplifier with 1.8 noise efficiency factor enhances the power efficiency of the analog 

front-end. As a demonstration of the miniaturized sensor system, this dissertation presents a 2.7cm3  

stand-alone global navigation satellite system that can acquire 1791 positions. 
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CHAPTER 1   

Introduction 

 

1.1  Miniaturized Sensor Nodes 

Miniaturization and interactive communication are the two main topics that dominate the 

recent research in the internet-of-things (IoT) [1]–[11]. The high demand for continuous 

monitoring of environmental and bio-medical information has accelerated sensor technologies as 

well as circuit innovations. Simultaneously, the advances in communication methods and the wide 

spread use of cellular and local data links enable the networking of sensor nodes. This potential 

improvement in machine service for humans could trigger the commercial development of a sensor 

node with platforms that collect, process and transmit widely spread environmental and bio-

medical data. 

In the history of computing platforms, from mainframes in the 1950s to workstations in the 

1960s, personal computers in the 1980s, laptops in the 1990s and now the current smartphones, 

one of the most evident trends is the increasing convenience and frequency of access by humans 

who utilize the computing platform. Miniaturization of the computer is an important factor in this 

trend, lowering cost, reducing the required space and providing mobility. However, the need for 



2 

 

physical access with an interfacing component like a screen, buttons or a touch surface limits its 

minimum form factor and therefore inhibits further miniaturization. 

On the other hand, the next generation of computing platforms, which is the IoT, increases 

proximity to the source of information rather than to humans, allowing much more aggressive 

miniaturization. The key technology of miniaturization has been process scaling, which has 

reduced the silicon area, increased computational capability and lowered power consumption. 

However, leakage current of a device has continuously increased with the process scaling so that 

the latest deep-submicron technologies do not fit well on the mm-scale computing platforms that 

demand nano-watt levels of sleeping power. Therefore, advances in circuit level techniques are 

critical to realize networks of mm-scale IoT computing platforms. Furthermore, a miniatur ized 

form factor incurs a severely restricted energy budget  [12], [13]. For instance the 0.92-mm3 Li 

thin-film battery introduced in [14] provides nearly 1/106th the energy capacity of an alkaline AA 

battery. Therefore, the transition of the circuit design regime from milli-watt to nano-watt level is 

critical. 

The power consumption of a sensor node can be categorized into two types. The active 

power is usually micro to milli-watt level, which is dominated by processor, sensor interface and 

data transceiver. The reduction of energy to perform a single operation such as temperature sensing, 

positioning or data transmission, is emphasized to maximize the frequency of operation given the 

fixed amount of harvested power. In addition, it is related to the minimum required battery size. 

Assuming that the active time of a system is short enough to consider that the harvested energy 

during the time is negligible, the battery capacity must be larger than the energy required for a 

single operation. This sets the main constraint for a system form factor. The active power 

consumption is also important for the system perspective. First, the output resistance of a 
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millimeter-scale battery is large enough to impact the system functionality and the energy 

efficiency. For instance, a 0.92mm3 Li thin film battery has a maximum output resistance of 60kΩ, 

and it can cause 600mV output voltage drop from the 3.2V nominal output voltage with 10μA load 

current. Such significant voltage drop let significant portion of total energy be wasted by the 

battery itself. Furthermore, it can cause functional failure of circuit or performance degradation 

due to the supply noise. The remedy for both of the problems is to incorporate a voltage regulator 

to provide a stable supply voltage, which also poses power conversion loss. Therefore, circuit 

techniques to minimize the energy per operation as well as the power consumption are important.  

On the other hand, sleep power is usually nano to sub-nano watt level and is affected by the 

leakage of the power down switches, static random access memory and few always on blocks. The 

minimization of the leakage current determines minimum sustainable harvestable power using 

duty-cycled operation. As long as the harvested power is larger than the sleep power, a system can 

sustain the operation perpetually. 

 

1.2  Outline of the Dissertation 

Chapter 2 of this dissertation reviews recent advances in circuit techniques in the 

implementation of the key building blocks for miniaturized sensor nodes. It includes design 

challenges associated with sensor front-end circuits. Circuit techniques for analog references and 

amplifiers are also introduced. Then, system level discussions on capacitive sensor interfaces and 

bio-medical applications is demonstrated. As one of the key elements for saving sleep power of a 

miniaturized sensor node, ultra-low power timing references are reviewed. It also review design 

challenges in data transceiver, energy harvester, power management unit and digital logic gates. 
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Among key building blocks of a wireless sensor node, the wake-up timer is the key always 

on block that dominates sleep power if accurate duty cycling is desired. In Chapter 3, a 4.7nW 

wake-up timer is demonstrated that minimize its power overhead for the system sleep power. The 

proposed wake-up timer showed 13ppm/℃ temperature coefficient which is the state-of-the art 

accuracy as a monolithic on-chip oscillator.  

Accurate clock generation using a PLL will be highly beneficial for power reduction of 

wireless transceiver. In Chapter 4, a circuit technique to generate a system clock using a phase-

locked loop (PLL) is proposed. As a proto-type design, a 2.5psrms jitter PLL is demonstrated. It has 

a noise reconfiguration capability to minimize its power overhead with given noise specificat ion 

as well. 

In Chapter 5 a miniaturized global navigation satellite system (GNSS) is proposed. An 

energy harvester, a power management unit and RF and optical transceivers are implemented to 

support energy-efficient, stand-alone operation. A sensor interface layer is also implemented to 

monitor environmental variables such as temperature and pressure. 

Finally, Chapter 6 of this dissertation covers a power efficient front-end scheme using 

parametric amplification as a future work. Sensor interface circuits, which interacts with pressure, 

humidity, acceleration, neural signal sensors, are required to exhibit appropriate input referred 

noise so it can monitor signals with sufficient accuracy. At the same time, power consumption of 

the interface needs to be as low as possible due to the highly constrained power budget originates 

from the system form factor. Therefore power efficiency of front-end amplifiers are highly 

emphasized. This work targets to reduce the power consumption of a neural recording front-end 

by 2x while maintaining the input referred noise 2-3μW. 
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CHAPTER 2   

Research Trends for Miniaturized Sensor Nodes 

 

2.1  Analog Circuit Techniques 

Due to the inherent energy constraints of wireless sensor nodes, reducing the power 

consumption of the main building blocks that make up such systems is critical. Efficient power 

management circuits, low-power energy harvesting circuits and communication protocols that 

minimize energy consumption are emphasized. 

The energy budget of a sensor interface is highly limited due to the battery size, and most of 

the major building blocks need to consume sub-nano to micro watt amounts of power [2]–[4], [9], 

[15]–[17]. Thus innovative circuit techniques are required to reduce the power consumption of 

these mW-circuit designs by more than 106
 times. In this section, useful circuit design techniques 

aimed at improving voltage reference, current reference and amplifier DC biasing are reviewed. 

2.1.1  Voltage References 

An accurate voltage reference that is insensitive to process, voltage and temperature (PVT) 

variations is required in many analog and mixed-mode circuits, such as those found in an amplifier 

or an analog-to-digital converter (ADC). However, conventional band-gap based voltage 
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references consume more than 100 nW, making integration into an ultra-low power sensor node 

system difficult. 

The sample-and-hold bandgap proposed in [18] can be a good solution to such problems. 

As shown in Figure 2.1 (a), the voltages of the bandgap reference are simply sampled at C1–C5 

and maintained by occasionally enabling the bandgap. The bandgap is heavily duty-cycled so that 

the on-time of the bandgap is only 0.003% of the off-time. The major factor that determines the 

minimum duty-cycle is the leakage in the sample-and-hold circuits. The leakage of a sample–and-

hold switch consists of the diode leakage of the source-to-body junction and the transistor off-

leakage from the source to the drain. These two leakages are minimized by adopting a low power 

amplifier that biases the drain and body voltages to the source voltage when the sampling transistor 

is off as shown in Figure 2.1 (b). The proposed work consumes 2.98 nW, which is approximate ly 

a 250x reduction, while maintaining the accuracy of the output voltage under temperature and 

supply variations. 

EN
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(a)                                                                                 (b) 
 

Figure 2.1 (a) A sample-and-hold bandgap circuit proposed in [18]. (b) Schematic of a sample-

and-hold switch. 
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A CMOS-based voltage reference consuming less than 30 pW is proposed in [19]. This 

work uses two transistors of different sizes, M1 and M2, with the sizes shown in Figure 2.2. The 

output voltage can be calculated by equalizing the current of the two transistors. The subthresho ld 

current of a MOSFET can be calculated using the following equation:  

  21 1

gs ds

T T

V Vth V

mv v

sub ox T

W
I C m v e e

L


  
   

 
 

 (1) 

where μ, COX, W, L, VT , Vgs, Vds and Vth are the mobility, unit oxide capacitance, width of the 

transistor, length of the transistor, thermal voltage, gate-to-source voltage, drain-to-source voltage 

and threshold voltage, respectively. The subthreshold slope factor, m, is expressed as 1+Cd/Cox 

where Cd is the unit depletion capacitance. There exist other sources of static current, such as the 

drain-induced barrier-lowering (DIBL) current of M1 and source-to-body junction leakage currents. 

However, they are typically negligible compared with the subthreshold current. Therefore they are 

ignored to simplify the solution and provide an intuitive understanding of the operation of the 

voltage reference. Assuming that Vds is sufficiently greater than VT  so that exp(-Vds/VT) can be 

neglected, the currents though M1 (I1) and M2 (I2) are as follows:  

 
1

1

1

21
1 1 1

1

1

th ref

T

V V

m v

ox T

W
I C m v e

L





   (2) 

 
2

2

2

22
2 2 2

2

1

ref th

T

V v

m v

ox T

W
I C m v e

L




   (3) 

 

 
Vref

M1

M2

 

Figure 2.2 A CMOS based voltage reference proposed in [19]. 
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Equating (2) and (3) provides Vref as a function of the process parameters as described by the 

following equation:   

   
1 2

1 2

1 2

2 21 2
1 1 2 2

1 2

1 1
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(4) 

 

Note that the output voltage, Vref, is dependent on the difference between the two threshold 

voltages and the ratio of the device parameters, making it insensitive to process variation. The 

optimal device size for minimizing the temperature coefficient (TC) can be determined using the 

following equation:  

 

 
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1 1 1

0
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C m L





 
   

 





 

(5) 

Note that (4) and (5) are slightly different and corrected versions of equations (3) and (4) in [19].  

2.1.2  Current References 

The bias current of an amplifier determines its bandwidth. If the bias current is lower than 

its target, the signal bandwidth is reduced, causing gain attenuation at high frequency. On the other 

hand, if the current is too large, the noise integration range of the signal is increased unless an 

accurate filter insensitive to PVT variation is added before the sampling. If the amplifier noise is 

the dominant noise source, the thermal noise reduction and the noise bandwidth increase cancel 
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each other out; thus, the output noise rarely depends on the bias current. However, if the major 

noise source is the input of the amplifier, an increase in the noise integration range causes a lower 

signal-to-noise ratio at the output. Energy waste due to the high bias current is another side effect 

of high bias current. In addition, changing the pole locations can impair the feedback stability of 

the amplifiers. Therefore, stable bias current generation, insensitive to environmental change, is 

required. 

A current reference is usually implemented using a resistor. Figure 2.3 shows conventiona l 

methods used to generate a current reference for a constant-gm and a current reference using the 

combination of a voltage reference and a resistor. The challenge of such an implementation in 

IOUT 

IOUT 

 

Figure 2.3 Conventional current references (a) constant-gm (b) resistor regulation. 

CTAT 

generator Current 

level selector

VDD

VREG

Stacked 2T

line regulator

IOUT 

 
Figure 2.4 A resistor-less current reference proposed in [20]. 
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ultra-low power sensor nodes is the size of the resistor. Due to power limitations, sensor nodes 

demand a sub-nA current reference. Thus >100 MΩ is required in order to implement such low 

current using conventional approaches, which is highly impractical because of the size of the 

resistor. 

[20] proposes a 20-pA resistor-less current reference circuit using a threshold voltage 

cancellation scheme. A complementary to absolute temperature (CTAT) voltage generator using 

a diode stack of transistors produces a gate voltage of a subthreshold transistor and compensates 

for the temperature dependence of the threshold voltage as shown in Figure 2.4. The supply voltage 

of the CTAT circuit is generated with a 2T voltage reference [19], and its supply dependence is 

minimized. The output stage is designed with a stack of NMOS transistors to improve the load 

sensitivity of the output current. The quiescent power consumption of this current reference is 23 

pW, which is suitable for low power applications. 

Nevertheless, the aforementioned technique relies on precise coefficient matching between 

the CTAT generator and the NMOS threshold voltage, which is difficult to achieve without mult i-

temperature trimming. An ultra-low power current reference replacing a resistor with a switched 

Vref

φ2

φ1 FSW

Cd

IOUT

Non-overlapping 
clock gen.CSW

VSW

Vp1 Vp2

Pulse gen.

VS

 

Figure 2.5 A switched capacitor based current reference generation. 
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capacitor is introduced in [21]. A voltage reference can be implemented in sub-nW power 

consumption conditions [19]. If stable frequency is available in the sensor node, a stable current 

reference can be generated by regulating a switched capacitor with a reference voltage as shown 

in Figure 2.5; its output current is CswVrefFsw. Note that the area occupied by the capacitor is 

proportional to the output current, making it advantageous for the generation a sub-nW current 

reference. The voltage ripple generated by the switching operation of the capacitor can be 

attenuated by the parallel capacitance, Cd, and is further reduced by sampling the mirroring voltage, 

Vp, with the switching clock or with R-C filtering using a pseudo-resistor. Typically Cd needs to 

be at least 10 times larger than Csw to sufficiently lower the voltage ripple caused by the switching 

operation [21]. 

2.1.3  Resistance Boosting 

Often a sensor node measures slowly varying signals, such as voice, pressure or neural 

signals. Its analog front-end demands time constants of a filter or amplifier that are an order of 

magnitude larger than the signal changing rate in such cases. A pseudo-resistor, introduced in [22], 

has been widely adopted to generate very low frequency poles and zeros for low pass filtering, ac 

IOUT 
VIN

VBN

VBP

1 N

(a) (b) (c) (d)
 

Figure 2.6 Use of pseudo-resistor in (a) noise filtering (b) ac coupling (c) common mode 

feedback and (d) amplifier servo loop. 
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coupling, common mode feedback and amplifier biasing as shown in Figure 2.6 [17], [23]–[26]. 

A pseudo-resistor can provide a very large resistance with a series of turned-off transistors that 

occupies only a few micro meter squares. Despite the efficient use of area, the resistance is highly 

dependent on environmental changes such as temperature and process variations, which makes 

widespread use of this approach difficult. For instance, in the amplifier biasing circuit shown in 

Figure 2.6 (d), the small resistance of the pseudo-resistor at high temperature increases the low 

cut-off frequency, which may even reach the signal bandwidth thereby causing signal attenuation. 

Furthermore, the current through the resistor is not negligible in such cases, resulting in signal 

distortion convoluted by the non-linearity of the pseudo-resistor. High resistance also causes side 

effects such as an increased settling time defined as the time constant of the pseudo-resistance and 

the parallel capacitance. Sometimes, the resistance is comparable to or even greater than the 

equivalent resistance of gate and metal-insulator-metal (MIM) capacitors caused by the leakage 

current due to tunneling, resulting in a shift of the DC operating point. 

Adaptive biasing on the gate voltages of the pseudo-resistance has been proposed to 

improve the robustness of the pseudo-resistance [26]–[28]. The gate voltages of the pseudo-

resistances are generated by a bias current combined with a replica transistor to define the 

impedance of the pseudo-resistor. In such approaches, however, the Vgs of the turn-off transistor 

in the pseudo-resistor varies according to the output voltage, and therefore the linearity becomes 

worse. 

The duty-cycled resistor introduced in [29]–[31] is a viable option for achieving an accurate 

and linear resistance. Assuming that the switching frequency of a resistor is faster than the 

frequency of interest, the resistance, usually implemented with poly-silicon or N-well, is boosted 
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by the factor of the duty cycle. [31] and [30] implemented stable 256 MΩ and 20 GΩ for bias 

current generation and amplifier biasing, respectively, using on-chip poly-resistors. 

A switched capacitor can also provide a large impedance with a small area [32], [33]. The 

resistance of a switched capacitor is 1/CSWFSW, as discussed in Section II-B. Therefore, a smaller 

capacitance and switching frequency, which are advantageous to implement with a smaller area 

and low power, offer greater resistance. [33] demonstrates a series-parallel charge-sharing 

technique during the capacitance switching operation that further boosts the equivalence resistance.  

Vin+ Vin-
VG1

VG2

 

Figure 2.7 A differential current reuse amplifier proposed in [44] 
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Figure 2.8 A multi-chopper amplifier proposed in [25]. 
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2.1.4  Amplifier 

The minimum power consumption of an instrumentation amplifier is limited either by the 

input referred noise or the signal bandwidth, depending on the amplifier specification. Most of the 

sensor node applications, such as monitoring pressure [34], temperature [2], humidity [35], 

acceleration [36] or bio signals [17], [22]–[24], [32], [37]–[41], involve slowly varying signals of 

up to a few kHz; thus, the power consumption is determined by the noise specification rather than 

the bandwidth. Therefore, it is important to optimize the noise efficiency factor (NEF) of the 

amplifier, which can be expressed using the following equation [42]: 

𝑁𝐸𝐹 = 𝑉𝑟𝑚𝑠,𝑖𝑛√
2𝐼𝑡𝑜𝑡

𝜋 ∙ 𝑉𝑇 ∙ 4𝑘𝑇 ∙ 𝐵𝑊
 (6) 

where Vrms,in, Itot, VT , k, T and BW are the root-mean-square of input referred noise voltage, total 

amplifier current, thermal voltage, Boltzmann’s constant, temperature and noise integrat ion 

bandwidth, respectively. NEF indicates the amount of current dissipation required to accomplish 

an input-referred noise specification. As the noise spectral density at the input of the transistor can 

be calculated by 4 kTγ/gm, the maximization of the transconductance is critical. In this respect, an 

amplifier using transistors in subthreshold mode is advantageous. The transconductance, gm, of a 

transistor is dependent on Vgs in strong inversion 

𝑆𝑡𝑟𝑜𝑛𝑔 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛: 𝑔𝑚 =
2𝐼𝐷𝑆

𝑉𝑔𝑠 −𝑉𝑡ℎ

 (7) 

and is maximized when a transistor is in weak inversion[43] 

𝑊𝑒𝑎𝑘 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛: 𝑔𝑚 =
𝐼𝐷𝑆

𝑉𝑇

 
(8) 

A current reuse scheme that further improves the transconductance is proposed in [44], and 

a differential version [45] is shown in Figure 2.7. In this scheme, the input voltages are connected 

to both nmos and pmos differential pairs whose current is shared, so that the devices are connected 
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in parallel from an input signal’s perspective. Since the transconductance is increased to gmn+gmp 

while the current remains constant, the input referred voltage noise can be reduced compared to 

the single- input-pair implementation. This architecture has been widely adopted in instrumenta t ion 

amplifiers targeting low NEF. 

[25] proposes a multi-chopper amplifier that utilizes the excessive bandwidth to reduce the 

NEF. As noted in the previous paragraph, the current of the amplifier is sufficiently large to reduce 

the input referred noise, causing excessive bandwidth at the output. This work mixes the input 

signal to the unused bandwidth using f1 and f2 and then reconstructs the signal at the output as 

shown in Figure 2.8. This work achieved the lowest NEF of 1.38.  
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Figure 2.9 An incremental ΣΔ CDC proposed in [49]. (a) SAR mode (b) ΣΔ mode (c) detailed 

schematic (d) INL measurement with dynamic element matching and common-centroid 

indexing. 
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2.2  Sensor Interface 

2.2.1  Capacitive Sensor Interface 

To implement an ultra-low power sensor node, it is important to reduce the power 

consumption of the sensor itself. Capacitive sensors are suitable in this respect because the 

capacitive sensors do not consume static current [34]. Many papers have been published utilizing 

low power capacitive sensors to monitor parameters such as pressure [16], humidity [35], 

acceleration [36] and displacement [46].  

One of the key challenges of such capacitive sensors is the dynamic range of the signal 

[35], [46]–[50]. The sensors provide up to tens of pF of base capacitance but require aF accuracy 

to precisely read out the information. Therefore, the delta-sigma modulation method is 

advantageous for high accuracy applications [35], [46]. However, such an approach requires 

relatively high power consumption. Figure 2.9 shows a recently published incremental ΣΔ CDC 

with zoom-in 9-bit asynchronous successive approximation (SAR) [49]. The energy efficiency of 

the CDC is improved by lowering the oversampling ratio (OSR) through the pre-calibration of the 

Table 2.1 Performance summary of state-of-the-art CDCs. 

 
[48] Y. He 

ISSCC 2015 
[48] Ha, 

ISSCC 2014 
[49] Oh, 

VLSI 2014 

[16] Oh, 
ESSCIRC 

2014 

[35] Tan, 
JSSC 2013 

[46] Xia, 
ISSCC 2012 

[50] Nizza, 
TCAS-I 2013 

Method PM SAR IΣΔ Dual Slope ΣΔ ΣΔ PM 

Power (μW) 14 0.16 33.7 0.11 10.3 14900 84 

Input Range (pF) 0 – 8 2.5-75.3
2
 8.4-11.6 5.3-30.7 0.54-1.06 8.4-11.6 0.5-0.76 

Meas. T ime (ms) 0.21
 

4 0.23 6.4 0.8 20 0.033 

Resolution (Crms, 

aF) 
1443 6000 156 - 70 65 800 

SNR (dB) 
1
 65.57 60.6 94.7 44.2 68.4 84.83 40.9 

FoM (pJ/step) 1.87 0.54-1.3
3
 0.18 5.3

3
 3.8 21 0.52 

Area (mm
2
) 0.05 0.49 0.456 0.105 0.28 2.6 98 

Technology 
0.16μm 

CMOS 

0.18μm 
CMOS 

0.18μm 
CMOS 

0.18μm 
CMOS 

0.16μm 
CMOS 

0.35μm 
CMOS 

0.32μm 
CMOS 

1 SNR = 6.02 × ENOB + 1.76 
2 Composed of 8 subranges  
3 FoM with one subrange 
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capacitance range using 9 bit SAR operating with a capacitive digital-to-analog converter (CDAC). 

Initially, the integrators are disabled, and the CDAC voltage is directly connected to the 

comparator to perform a SAR search of CDAC, as shown in Figure 2.9 (a). After the SAR phase, 

ΣΔ CDC is activated and generates a bit stream of the capacitor comparison result, as shown in 

Figure 2.9 (b). The detailed schematic of the CDC is shown in Figure 2.9 (c) and consists of two 

OTAs, one comparator, a 9-bit CDAC and switched capacitor circuits. This work includes the 

energy efficient dynamic element matching (DEM) method to improve the linearity of the 9-bit 

CDAC, and the common centroid layout of the capacitor further improves the linearity, as shown 

in Figure 2.9 (d). The performance of this work and the state-of-the-art CDCs are summarized in 

Table 2.1. 

Table 2.2 Performance summary of analog front-end circuits for neural recording application 

 

[56] 
Muller, 
ISSCC 

2014 

[30] 
ChandraKuma
r, ISSCC 2016 

[57] Ng, 
ISSCC 2015 

[58] Lopez, 
ISSCC 2013 

[59] Walker, 
VLSI 2011 

[60] 
Majidzadeh, 
TBCAS 2011 

[61] 
Abdelhalim, 
JSSC 2013 

Power (μW/ch) 2.3 2 2.8 10.48 68 7.l92 10 

Supply (V) - 1.2 1 1.8 1.2 1.8 1.2 

Recoding Signal ECoG AP + LFP AP AP+LFP AP+LFP AP AP+LFP 

Bandwidth (Hz) 500
1
 1-5000 1-8200 0.5-6000 280-10000 10-7200 1-5000 

Max Input Offset 
(mV) 

100 40 220 - 15 5.7 - 

Input referred Noise 

(μV) 
1.3

1
 2

2
 - 7

3
 4.2 3.2

4
 – 5.8

5
 2.2 3.5 5.1 

Input Impedance 
(MΩ) 

28 300 - - - - - 

NEF 4.76 7
2
 – 4.9

3
 2.93 2.72 4.5 3.35 4.4 

PSRR (dB) 67 - 78 76 - 63.8 - 

CMRR (dB) 88 - 80 60 - 70.1 78 

THD (dB) - -74 1 (%) 1 (%) - 1 (%) -50 

Area (mm
2
) - 0.071 0.042 - 0.26 0.0625 - 

Technology 0.065μm 0.04μm 0.065μm 0.18μm 0.13μm 0.18μm 0.13μm 

1 Calculated from Fig. 24.1.4 
2 Measured in LFP mode (1-200Hz) 
3 Measured in AP mode (200-5000Hz) 
4 Measured in AP mode (300-6000Hz) 
5 Measured in LFP mode (0.5-200Hz) 
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2.2.2  Bio-signal Monitoring 

Bio-signal monitoring SoCs represent one of the most prominent areas of circuit 

applications in the last decade. The development of bio-signal sensors for use in personal 

healthcare is expected to greatly improve the quality of human life and help with early detection 

of disease. For instance, real-time monitoring of electrocardiography (ECG) is an effective method 

for the diagnosis and study of heart disorders such as arrhythmia [17]. Neural signal monitor ing 

from various regions of the brain enables the detection of neurological disorders such as epilepsy, 

schizophrenia, Alzheimer’s disease, Parkinson’s disease and autism [51]. 

[52] proposed a non-invasive multi-sensor acquisition system with simultaneous ECG, bio-

impedance (BIO-Z), galvanic skin response (GSR) and photoplethysmogram (PPG) monitor ing. 

The multi-parameter recording provides a more accurate and reliable health assessment in a 

comfortable wearable device. 

There has been high demand for technologies to enable simultaneous monitoring of a large 

number of neurons, and multi-electrode neural recording is becoming standard practice [22], [33], 

[37], [40], [41], [53]–[61]. In this way, it is possible to gather enough information from a specific 

part of the brain related to motor planning and control, enabling direct control of a robotic 

manipulator by cortical neurons. 

The read-out circuits must be designed to consume ultra-low power in order to avoid tissue 

damage caused by heat. The area is another challenge of the read-out circuits. The read-out circuit 

needs to provide sufficient immunity to the environmental noise caused by the electrochemica l 
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behavior of its surroundings, requiring a high power supply rejection ratio (PSRR) and common 

mode rejection ratio (CMRR). The input referred noise specification is also challenging. The peak 

spike voltage of the action potential (AP) of a neuron is 50-500 μV in the 0.1-700 kHz frequency 

range [62]. Therefore, 2-3 μVrms input referred noise is demanded for neural recoding read-out 

circuits. The amplitude of the local field potential (LFP) can be as high as 5 mV [63], but its ultra-

low frequency near sub-Hz makes it difficult to meet the noise specification due to the large device 

flicker noise. Pseudo-resistors are widely used to implement large time constants, and the current 

reuse technique is useful for minimizing power consumption while meeting a low noise 

specification. 

2.2.3  Modular Design 

Ultra-low power sensor nodes can be used in a wide variety of applications, but the basic 

operation mechanisms are similar, requiring common building blocks such as a wake-up timer, RF 

or optical communication, an energy harvester and a power management unit. Therefore, the 

modular design of each functional block can reduce the development time, verification overhead 

 
Figure 2.10 Examples of mm-scale sensor nodes for (a) temperature, (b) pressure, and (c) image 

sensing. 
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and manufacturing cost. Figure 2.10 shows millimeter-scale wireless sensor node designs for 

temperature monitoring [2], pressure monitoring [16] and imaging [4] developed based on a 

generic sensing platform [3]. 

2.3  Timing Reference 

The reduction of sleep power is critical to make a system sustainable with limited harvested 

energy. Wake-up timers are a key always-on building block that can dominate the sleep power. 

Therefore, a wake-up timer must be designed with a stringent power budget [21], [64]–[69]. A 

highly accurate timing reference is also important if the sensor node is required to mainta in 

synchronization for peer-to-peer or asymmetric communications. As an example, Figure 2.11 (a) 

shows a timing diagram of two wireless sensor nodes that need to communicate with each other. 
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Figure 2.11 Timing diagrams of a wireless sensor node (a) without timing uncertainty (b) with 

timing uncertainty. 
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Each sensor node sleeps for an hour and then wakes up for 100 ms to collect and process data. The 

data is transmitted every 4 hours. The power consumptions during sleep, active and radio modes 

are 10 nW, 10 uW and 2 mW, respectively. In this case study, the energy consumption in the sleep 

mode is the dominant factor, emphasizing the need for an ultra-low power wake-up timer. In 

contrast, the energy loss due to timing uncertainty is more pronounced with the presence of timing 

mismatch, as shown in Figure 2.11 (b). When the temperature coefficient is 50 ppm/℃, and the 

temperature difference is 10℃, the timing uncertainty is 500 ppm, which corresponds to 1.8 sec. 

This timing uncertainty causes significant energy loss for a sensor node that has to keep 

transmitting data until its peer responds.  

A crystal oscillator is a viable option to achieve such aggressive power and accuracy 

specifications. Recently, a pulsed driver technique published for 32-kHz crystal oscillators reduced 

power consumption drastically, allowing crystal oscillators to provide an accurate frequency of 

less than 100 ppm across wide PVT variations while consuming only a few nanowatts [70], [71]. 
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Figure 2.12 Summary of temperature coefficients and the power consumption of the recently 

published on-chip oscillators. 
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However, crystal oscillators require an off-chip component, which is difficult to integrate in a 

millimeter-scale sensor node [67]. 

On-chip clock generation techniques are useful when the system may allow frequency 

uncertainty higher than 500 ppm. Figure 2.12 shows the power consumption of recently published 

on-chip oscillators and their temperature coefficients. Gate leakage-based oscillators offer sub-nW 

power consumption. However, their oscillation frequencies can be as low as a few hertz, and the 

frequency uncertainty is very high (>10,000 ppm). Relaxation oscillators using an R-C time 

constant generally offer moderate temperature coefficients of tens of ppm/℃ with nanowatt to 

microwatt power consumption. 

In this section, we will discuss recent developments in crystal and on-chip oscillators and 

discuss their advantages with respect to use in millimeter-scale wireless sensor nodes. 

 

Figure 2.13 Block diagram of a pulse injection based crystal driver proposed in [70]. 
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2.3.1  Crystal Oscillator 

Conventionally, a crystal resonator is driven by an inverter-based amplifier in series with 

a resistor. However, there are many sources of energy waste in such architectures. Most notably, 

the inverter consumes static power due to the sinusoidal input voltage. The series resistance also 

dissipates a significant amount of power due to the large voltage imposed on it. A current-starved 

driver is proposed to minimize the static power and eliminate the series resistor [72]. The limited 

oscillation amplitude achieved using the current-starved driver reduces the power consumption 

drastically, but power consumption remains higher than 27 nW [72], [73], which is too large for 

integration into recent millimeter-scale wireless sensor nodes consuming less than 10 nW during 

sleep mode [3], [74]. 

A pulsed driver for an ultra-low power crystal is proposed in [70], [75]. Figure 2.13 shows 

a simplified circuit diagram of the crystal driver. One of the crystal voltages, OSC IN, is amplified 

and delivered to a delay-locked loop (DLL). The DLL generates two narrow pulses that are located 

at the peaks of the crystal voltages, OSCIN and OSCDRV. Then, a level converter shifts those pulses 

to a higher magnitude, and MP1 and MN1 are driven by the pulses. There are several advantages 

provided by this architecture in terms of power consumption. First, the crystal amplitude is 

restricted to 180 mV, which reduces the power consumption of the crystal series resistance. Second, 

the static power consumption of the driver switches is very low because the transistors receive 

rectangular pulses, and only one of MN1 and MP1 is enabled so that the leakage current though each 

transistor is very small. Third, the driver switch is only enabled when OSCDRV reaches its peak 

voltage. Therefore, the voltage across the driver switches is small, and most of the energy derived 

from the supply, EVDD, is delivered to the crystal to regenerate the waveform. According to eq. (19) 

and Fig. 12 in [70], when the drivers are properly sized, approximately 90% of the energy is used 
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to regenerate the waveform of the crystal, and only 10% is dissipated by the driver circuit. With 

the supplementary circuits of a DLL, amplifier, pulse generators and level converters, this work 

achieved 5.58 nW power consumption, which is a 4.8x reduction compared with prior works. 

2.3.2  On-chip Oscillator 

Conventionally, on-chip oscillators are developed using a time constant provided by a 

monolithic resistance and capacitance pair as shown in Figure 2.14 (a). The frequency of the 

oscillator is dominated by the R-C time constant but still affected by the comparator, buffer and 
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Figure 2.14 (a) Conventional on-chip oscillators (b) An R-C oscillator using constantrror charge 

subtraction proposed in [63] (c) A timing diagram of the oscillator [64] (d) A resistive 

frequency- locking scheme proposed in [67]. 
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reset switch delay, all of which are known to be temperature-dependent. Therefore, the delay 

caused by the supplementary components needs to be negligible compared with the R-C delay, 

which consumes a substantial amount of power. 

[64] introduces a constant charge subtraction method to eliminate the frequency 

dependency stemming from the comparator delay as shown in Figure 2.14 (b). A constant current, 

IREF, generated by a temperature-compensated resistor is provided to an integration capacitor, CINT. 

Instead of the conventional approach of fully discharging the capacitor, a constant amount of 

charge, VREF×C, is subtracted from CINT  when VINT  exceeds VSUB. Therefore, the voltage drop by 

the charge subtraction operation is always VREF×C/CINT , and thus the time moment that VINT  

crosses VCOMP is independent of the comparator delay. The output frequency is generated using a 

duty-cycled continuous time comparator. 

[67] introduces a resistive frequency- locking method that eliminates the comparator as 

shown in Figure 2.14 (d). In this architecture, the impedance of a switched capacitor is equalized 

to a temperature-compensated resistor by using a frequency- locked loop implemented with an 

ultra-low power amplifier. A wake-up timer that further reduces the power consumption using a 

frequency- locked loop and a duty-cycled resistor is proposed in [21].  

The performances of recently published low power on-chip oscillators are summarized in 

Table-III.  

2.3.3  Frequency Synthesizer 

A simple ring oscillator used as a frequency generator is acceptable in a processor despite 

the wide frequency variations observed in response to environmental changes. This observation is 

true because the throughput of a sensor node is determined by the sensor interface circuits rather 

than the processor speed. However, the change in the processor frequency results in increased 
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energy consumed by the processor core because the active time is usually determined not by the 

workload of the processor core but by the sensor signal acquisition time. Therefore, the core 

frequency needs to be stabilized by locking it to an accurate wake-up timer. 

A phase-locked loop (PLL) using a frequency reference generated by either a crystal or 

wake-up oscillator is a viable option to reduce the power overhead caused by excessive frequency. 

A charge-pump PLL, which is the most generic architecture for SoC clock generation, is not well 

suited for this purpose for several reasons. First, the VCO frequency tuning range is limited due to 

the low supply voltage. Many wireless sensor nodes operate with a supply voltage close to the 

MOS threshold voltage to reduce power consumption [76]. Under these conditions, the control 

voltage range is very limited because of the small charge pump output range resulting from the 

low supply voltage. Furthermore, the delay cells in the VCO operate in a subthreshold region in 

order to generate low frequencies, resulting in wide frequency variations depending on the 

temperature and process changes, thereby requiring an even larger control voltage range to 

compensate for the frequency change. Second, the size of the loop filter consumes a substantia l 

amount of space. A sensor node wake-up timer typically generates only a few kHz to minimize its 

energy overhead during the sleep period. The loop bandwidth of a PLL should be smaller than 

one-tenth of the reference frequency [77] and result in either a very small charge pump current or 

a very large loop filter capacitance. On the other hand, a digital PLL scales well to the lower loop 

bandwidth as its loop filter coefficients are represented as digital values. For example, a digita l 

loop filter of an all-digital PLL receiving 32kHz reference clock [78] is implemented with 14-bit 

words and its area occupation is 7-to-56x smaller compared to the analog implementation mostly 

due to the absence of the analog loop filter ([78], Table-V). Also, the DCO frequency tuning range 

is less affected by the low supply voltage. In addition, the frequency tuning code of a digital PLL 
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can be easily stored in memory and can be directly used when the system wakes up from sleep 

mode, reducing the lock time. Therefore, a digital PLL is better suited for the frequency 

synthesizers in miniaturized systems. 

2.4  Data Communication 

Many wireless sensor node applications require that the size be less than a cubic cm, 

sometimes nearing a cubic mm. Therefore, there is a basic challenge of degraded antenna radiation 

efficiency for RF communication due to the small form factor [79]–[85]. Furthermore, an active 

radio system requires a battery, power management unit, accurate timing reference and processing 

unit, which are usually too bulky to be integrated into a miniaturized sensor node. Small passive 

RF tags (12 mm3) [86] can be an alternative solution to the relatively large active radios. However, 

the functions of passive RFID tags are limited due to the lack of an integrated power source [87]. 
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Figure 2.15 (a) Conceptual diagram and (b) Schematic of a power oscillator [11] 
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Therefore, circuit techniques as well as integration methodologies that will facilitate the 

miniaturization of the necessary circuit building blocks are critical.  

In contrast, optical communication using a light-emitting diode (LED) as the transmit ter 

and a photovoltaic (PV) cell as the receiver can be implemented with high efficiency using very 

little space, making this approach suitable for line-of-sight (LoS) communication. For instance, 

LEDs smaller than 0.08 mm2 are commercially available, and photovoltaic cells can be as small 

as 0.07 mm2 [88]. 

2.4.1  RF Communication 

Conventional RF transmitters include a local oscillator (LO) and a power amplifier. An LO 

is usually implemented using an accurate frequency reference (crystal oscillator) and a phase-

locked loop. Although an accurate LO enables advanced communication protocols, certain 

characteristics make it unsuitable for use in an ultra-low power sensor node. First, the crystal 

requires a start-up time on the order of milliseconds [89]. This long start-up time wastes a 

substantial amount of energy because the system is in active mode during this time. The lock time 

of phase-locked loop (PLL) also contributes to the loading time and therefore also to the energy 

waste. Second, the base power consumption of such architecture is high due to the limited Q-factor 

of the monolithic inductor and the complex building blocks. Therefore, there is a need for simpler 

transmitter architecture. 

[10] introduces a minimum-shift keying (MSK) transmitter consuming 350 μW and using 

a power oscillator as shown in Figure 2.15. The proposed architecture employs a loop antenna on 

a printed circuit board (PCB) as a resonating component together with an on-chip capacitor array. 

Several advantages are gained by eliminating the PA and directly resonating the PCB antenna with 

a negative-gm circuit. The small form factor of an antenna typically results in a high quality factor, 
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and low radiation resistance results in low radiation efficiency [10]. If a conventional power 

amplifier drives the antenna, the small frequency difference between the carrier frequency and the 

antenna resonant frequency should cause a drastic reduction in the efficiency of the power 

amplifier. In contrast, if the antenna is directly resonated in the power oscillator, there is no other 

frequency component to cause frequency offset. The absence of an LO and power amplifier further 

reduces power consumption and space requirements. When there is asymmetry in the power and 

space budget of the sensor node and the base station, the frequency inaccuracy of the power 

oscillator-based transmitter is compensated in the base station. The power oscillator-based wireless 

transmitter for sensor node applications is adopted in [11], [90], [91], asserting its benefit. 

A complete system including a 2.4-GHz radio transmitter for a medical implant application 

is proposed in [9], [11]. This work’s goal is to operate the transmitter with less than 1 nW energy 
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Figure 2.16 A sensor-initiated synchronization protocol proposed in [10], [16] and [23] 
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Figure 2.17 Schematic of a background noise cancelling GOC receiver proposed in [24] 
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harvested from the Endocochlear Potential (EP), which is an electrochemical gradient in the inner 

ear. This energy limitation restricts the system’s average power consumption to 250 pW. To meet 

such an extreme energy constraint with a small antenna whose radiation efficiency is as low as 

0.8%, the system is deeply duty-cycled (0.00002%) and employs an energy harvester with ultra -

low quiescent power consumption (544 pW). By assuming that a base station, such as a smart 

phone or a smart watch, is placed nearby, the communication distance can be restricted to one 

meter, which helps to reduce the transmitter power. The carrier frequency is also one of the 

important factors that determine the transmitter power. Due to the small antenna size, a higher 

carrier frequency is preferred to maximize the radiation efficiency. However, a higher carrier 

frequency causes larger tissue absorption of the RF signals. [11] reports quantitative research on 

the antenna efficiency in several Industrial, Scientific, and Medical (ISM) bands and identifies 2.4 

GHz as the optimal frequency to minimize the transmitter energy considering both radiation 

efficiency and tissue absorption. 

The next area of potential improvement in the energy efficiency of an ultra-low power 

radio is a sensor-initiated protocol. Due to the aforementioned energy overhead as well as the size, 

crystal oscillators are difficult to integrate in a sensor node. The lack of an accurate timing 

reference in a sensor node forces the inclusion of a wake-up receiver so that the sensor node can 

wake up at appropriate times to enable its data radio [8]. However, such a wake-up receiver still 

consumes at least tens of microwatts, limiting the number of sensor node applications that can 

exploit a wake-up receiver [8], [92]–[95]. 

A sensor-initiated synchronization protocol to address this is proposed in [87], [91], [96]. 

Figure 2.16 shows a simplified timing diagram of sensor-initiated synchronization. Initially, a 

sensor node is in sleep mode, and the base station is in listening mode, waiting for a header from 
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the sensor node transmission. The sensor node then transmits its acquired data using pulse position 

modulation (PPM). The data interval of the data packet indicates the frequency of the timer in the 

sensor node. Then, the base station prepares data to send during the guard time. This guard time is 

determined by the frequency of the timer in the sensor node so that the sensor node can initiate its 

receiver exactly when the base station begins the transmission, thereby removing complex base 

band processing traditionally needed to accommodate the frequency uncertainty of the sensor node 

and saving power. 

2.4.2  Optical Communication 

An optical receiver can be much smaller and more power-efficient than that required for 

RF communication when the communication distance is less than a meter, and the sensor node is 

located in line-of-sight [88], [97]. Optical receivers adopt a PV cell as a light receiver, which can 

be integrated in a CMOS die [88] or energy harvester using light [97]. Therefore, such a system 

can be as small as a cubic mm due to the absence of an RF antenna [2]–[4], [7], [16]. Another 

advantage of an optical receiver compared with its RF counterpart is the power consumption and 

the energy-per-bit. A wake-up receiver can consume less than one nW [88], [97], which makes it 

suitable for use in a mm-scale wireless sensor node, and the energy-per-bit is less than 100 pJ/b, 

which is over 20-fold less than that of RF receivers. 

However, the presence of background light sources such as sunlight, incandescent light 

and fluorescent light may perturb the communication, resulting in an inferior bit rate. [97] proposes 

a dual-mode optical receiver that enables sub-nW asynchronous wake-up, a programmable data 

rate and background light tracking. A simplified circuit diagram of such a receiver is shown in 

Figure 2.17. Assuming the background light is changing slowly, the background light cancellat ion 

loop subtracts the current generated by the background light, INOISE, from the total output current 
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from the PV cell. A fast switching current is then delivered to M1 of Figure 2.17 to be compared 

with the voltage reference. The signal voltage is amplified by the post amplifier stages, and the 

data are recovered after oversampling the resulting digital output. Another advantage of this circuit 

is the maximum bit rate of the signal. A voltage mode optical receiver [88] has a bandwidth 

limitation that originates from the capacitance-to-current ratio of a PV cell, which is physically 

constrained. On the other hand, the circuit demonstrated in [97] adopts a current mode architecture 

in which the diode voltage is regulated to a voltage reference, VREF. The anode of the PV cell, 
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Figure 2.18 Block diagram of the conventional wireless transfer circuits 
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VDIODE, is virtual ground, so the maximum speed of the receiver is determined by the input 

impedance of the voltage regulation loop. 

2.5  Energy Harvesting 

Minimum harvestable input power (Pin,min) is a critical factor for a miniaturized sensor node 

to sustain its operation with a duty-cycled operation. Assuming that the system is at a steady state 

where the input power is equal to the used power, the duty cycle of the system can be determined 

as the following: 

𝜂ℎ𝑃𝑖𝑛 ∙ (𝑡𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑡𝑠𝑙𝑒𝑒𝑝) = 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ∙ 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 +𝑃𝑠𝑙𝑒𝑒𝑝 ∙ 𝑡𝑠𝑙𝑒𝑒𝑝  

Duty Cycle =
𝑡𝑎𝑐𝑡𝑖𝑣𝑒

𝑡𝑠𝑙𝑒𝑒𝑝 + 𝑡𝑎𝑐𝑡𝑖𝑣𝑒

=
𝜂ℎ𝑃𝑖𝑛 − 𝑃𝑠𝑙𝑒𝑒𝑝

𝑃𝑎𝑐𝑡𝑖𝑣𝑒 −𝑃𝑠𝑙𝑒𝑒𝑝

 

(9) 

where ηh, Pin, Pactive, Psleep, tactive and tsleep are harvester efficiency, input power, active mode power, 

sleep mode power, active time and sleep time, respectively. It can be seen that a sensor node may 

sustain its operation as long as the acquired power (ηh·Pin) is larger than Psleep.  

On the other hand, the input power of a miniaturized sensor node is highly constrained due 

to its small form factor. In this section, we discuss circuit techniques to improve the Pin,min and ηh 

when inductive coupling and photovoltaic cells are used. 

2.5.1  Inductive Coupling 

Conventional wireless power receivers are designed with a voltage rectifier and a DC-DC 

converter as described in Figure 2.18. The threshold voltage of the diodes in a voltage rectifier sets 

the minimum voltage level that the inductive antenna needs to provide, requiring higher input 

power. In addition, the limited efficiency of the DC-DC converter degrades the efficiency of the 

harvesters [98]. 

A resonant current mode wireless power receiver minimizes the energy loss caused by the 

voltage mode rectifier and the DC-DC converter [99]. Figure 2.19 shows a block diagram of the 
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proposed work, which places a capacitor in parallel with a receiver coil, forming an LC resonator. 

The received energy accumulates in the parallel LC resonator for multiple cycles and is transferred 

to a battery in current mode. The transient signal waveform of the voltage of the LC resonator, VC, 

and current in the receiver coil, IIND, are plotted in Figure 2.19. The switch that connects the 

receiver coil to the battery (SW2) is enabled when the coil current reaches its peak, i.e. all the 

resonation energy is stored in the inductor as a magnetic field. After the inductor current reaches 

zero, SW2 is disabled, initiating a new accumulation of energy in the resonator. This work 

improves Pin,min by eliminating the energy loss caused by the voltage rectifier and the DC-DC 

converter. The number of accumulation cycles is tunable so that the LC resonator accumulates 

energy for more cycles when the input power is low, building up enough energy to overcome the 

PV cell
(SC) DC-DC 

Converter

Battery
PV cell 

Switching 

Matrix

Battery

5x3 group

5x1 group

4x1 group

Single cell

3x12 4x9

7x5 (1 orphan)

6x6

5x7 (1 orphan)

MPPT Circuit

(a) (b)

Light Light

 
Figure 2.20 (a) Conventional light energy harvester using a PV cell. (b) A reconfigurable PV-cell 

network proposed in [32]. 
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energy loss during the battery charging operation, further improving P in, min. The reported Pin,min is 

0.6 μW, and its peak efficiency is 67.7% at 4.2 μW input power. 

2.5.2  Photovoltaic Cell  

A light harvester using a photovoltaic cell can provide a much lower Pin,min, down to sub-

nW levels [100]. As shown in Figure 2.20 (a), a conventional light harvester utilizes a photovolta ic 

cell and a DC-DC converter to charge a battery. The voltage on the diode is determined using a 

maximum-power-point-tracking circuit.  

A direct energy transfer method with a PV cell switching matrix is proposed in [100]. 

Instead of level converting the voltage from a PV cell to the battery, the PV cells are configured 

in series so that its output voltage is directly used to charge a battery as described in Figure 2.20 

(b). A PV cell network configures the number of series diodes depending on the input light 

intensity and provides 78-95% efficiency in both dim indoor (100 lux) and direct sunlight (100 

klux) conditions. 

2.5.3  Battery Management 

Battery reliability is one of the key challenges; thus, it is important to design the charging 

scenario well. As the system size decreases, the battery size should also decrease. The decreased 

battery voltage increases the internal resistance (RBAT) and therefore the effect of the IR drop. 

Moreover, RBAT  increases as a battery ages over charge/discharge cycles [14], [101]–[103]. The 

change in RBAT  is problematic for sensor systems. To prevent permanent damage to the battery 

and the sensor system, a low-power battery voltage supervisor (BVS) is implemented [104], [105]. 

The battery voltage is monitored by a conventional BVS, which includes a battery voltage 

divider, a comparator and a delay generator, as described in Figure 2.21. There are three important 
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functions of the BVS, as shown in Figure 2.22. First, Power-on Reset (PoR) generates a reset signal 

when the battery is initially connected. The system is enabled when the battery voltage exceeds 

the higher threshold voltage (VON). Second, Brown-Out Detection (BOD) detects low battery 

voltages that can damage the battery and the sensor system. When the battery voltage falls below 

the lower threshold voltage (VOFF), the BVS disconnects the battery from the system. Finally, 

Recovery Detection reactivates the system when sufficient voltage is sensed. The difference 

between the threshold voltages provides hysteresis (VHYST  = VON – VOFF) to avoid the system 

oscillating between the operation and sleep modes. 

Battery 

Voltage

Voltage 

Reference

Voltage 

Divider

Delay 

Generator

VDD

Battery Voltage Supervisor

VDD

RESET
RST

C
ir
c
u

it
s
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However, the constant small VHYST  of the BVS is not ideal for advanced miniature sensor 

systems. The increased IR drop in the minimized systems makes the systems unstable, oscillat ing 

between on and off. In [106], a large- constant-hysteresis BVS is proposed to handle the large and 

constant RBAT , and the large VHYST  solves the oscillation problem. The proposed design can handle 

an RBAT  of up to 17 kΩ with 635 pW power consumption at 3.6 V power supply voltage. In addition, 
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an adaptive-hysteresis BVS is described that updates VHYST  depending on the RBAT  measurement 

results [107]. It can endure a varying RBAT  up to 63 kΩ with 3.6 nW power consumption. 

2.5.4  Power Management 

Monolithic implementation and good efficiency are fundamental requirements for a power 

management unit (PMU) for miniaturized sensor nodes. In addition, there are several other factors 

that need to be considered. 

Each building block of a wireless sensor node requires different supply voltage levels, 

which can minimize its energy consumption. For instance, digital logic gates best operate near the 

threshold voltage to minimize the dynamic power consumption, whereas static random access 

memory (SRAM) requires more than twice the threshold voltage to maintain a proper noise margin. 

Also, analog front-end circuitries such as amplifiers, ADCs and filters require various supply 
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voltages depending on their noise specifications and signal dynamic ranges. Thus, a PMU that 

generates multiple output voltages is an essential element in a wireless sensor node.  

The output voltage resolution of a PMU is also an important factor. A millimeter scale 

battery typically exhibits a very high output resistance of up to tens of kilo-ohms. Therefore, the 

IR drop of the battery varies widely according to the static current of the system. In addition, the 

battery open-circuit-voltage itself varies widely depending on the remaining energy [102]. 

Therefore, DC-DC converters in the PMU need to provide output voltages with accurate resolution 

so that the each building block of the system may receive its optimum supply voltage regardless 

of the battery voltage changes. 

Scalability of load power is important to maintain good efficiency depending on the mode 

of operation. For instance a wireless sensor node consumes nano-watts in sleep mode, micro-watts 

in active mode and milli-watts in radio communication mode [69], [70]. Quiescent power 

consumption of the DC-DC converter should adjust to the output power level, making a switched -

capacitor based DC-DC converter suitable to the application since its switching loss can be easily 

scaled by configuring the switching frequency.  

The successive-approximation (SAR) switched-capacitor DC-DC converter proposed in 

[108] utilizes a series of 2:1 converters to realize 2N output levels. The charge sharing loss is 

reduced by offering a large number of conversion ratios.  The detailed implementation of the SAR 

operation is explained in Figure 2.23 when the configuration code is 10102. Each 2:1 switched 

converter produces its output, Vmid, which is defined as (Vhigh+Vlow)/2. When the configura t ion 

code of the nth stage is 1, Vhigh,n and Vlow,n are connected to  Vhigh,n-1 and Vmid,n-1, respectively. 

When the configuration code of the nth stage is 0, Vhigh,n and Vlow,n are connected to  Vmid,n-1 and 

Vlow,n-1, respectively. As an example, the switch configurations for a 4-stage DC-DC converter 
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with the configuration code are shown in Figure 2.23 (c), and the output voltage of each 2:1 

switched capacitor is plotted in Figure 2.23 (d). The output voltage, VOUT , is defined as 

VBAT×(Code+1)/2N
. 

A schematic of the 2:1 switched capacitor is depicted in Figure 2.23 (a). This work AC 

couples the clock to each transistor using capacitors and cross-coupled pairs to make Vgs of the 

switches identical regardless of input and output DC voltages. 

[109] proposes a SAR switched-capacitor DC-DC converter that improves the conduction 

efficiency compared with [108]. In [109], either Vhigh or Vlow of each 2:1 switched capacitor is 

directly connected to the supply rails, VBAT  or GND, as shown in Figure 2.24. By maximizing the 

number of connections to the supply rails, the effective output resistance of the DC-DC converter 

is decreased, and the conduction loss is improved. This approach has been further improved by 

increasing the number of conversion ratios in [110], providing more fine grained voltage control. 

The output voltages of a PMU can be regulated by monitoring them and modulating the 

switching frequency in order to set them close to the target references [111]–[115]. The switching 

loss of the DC-DC converter is dynamically adjusted according to the load current in such schemes. 

The conduction loss is also kept constant as the ratio of (VOUT,NL-VOUT)/VOUT,NL where VOUT,NL is 

the no-load output voltage. Therefore, output voltage regulation using the switching frequency can 

make the DC-DC converter operate near its maximum efficiency point across wide variation of 

load current. A feedforward control using the conversion ratio can further improve the regulat ion, 

thereby increasing the system reliability [116]. The switching frequency is usually controlled using 

a voltage-controlled oscillator (VCO) with a feedback loop. Due to the limited response time of 

such an implementation, a sudden increase of the load current can cause significant voltage droop. 

This is more critical for a miniaturized system since the high battery resistance further reduces the 
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output voltage by lowering VBAT . [116] proposes a feedforward control of the conversion ratio so 

that the output voltage can be instantly increased when a sudden voltage droop is detected. A 

system level design of a PMU for IoT sensor nodes is proposed in [110]. This work generates 0.6V, 

1.2V and 3.3V with an output load current range from 20 nW to 500 μW. 

2.5.5  Digital Circuits 

Process scaling following Moore’s law has driven improvements in performance, power 

reduction and larger scale integration, especially targeting high-performance and strong inversion 

operation. Although scaling with deep submicron technologies has achieved tremendous gain for 

high-performance systems, it is also associated with larger leakage, larger interconnect capacitance 

 
Figure 2.25 Energy-per-operation and delay of logic gates depending on the supply voltage [56].  
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and lagging supply scaling, which prohibits its use in miniaturized sensor nodes. Instead, for 

miniaturized sensor nodes, the primary concern is low energy consumption because of the small 

battery capacity and limited harvestable energy. Digital circuits operating in a near- or sub-

threshold region have gained great attention as a way to reduce either the power consumption or 

energy per operation [76], [117]–[124]. Digital circuits operating under such low supply voltages 

can exhibit lower energy per operation, primarily benefited by the reduced dynamic power 

consumption, which is quadratically proportional to the supply voltage. At the same time, the 
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interval of an operation during which the circuits consume their leakage current increases as a 

consequence of the slow evaluation time. Hence, the energy overhead from the leakage current is 

especially pronounced when the supply voltage is reduced below the threshold voltage of the 

devices due to the exponential relationship between the delay and the supply voltage. Therefor e, 

the energy per operation is optimized when a balance is achieved between the reduction of the 

dynamic energy and the increase of the leakage energy, as shown in Figure 2.25 [120]–[122], [125]. 

In addition, the optimal VDD is affected by the idle period [123], process variation [118], body 

biasing [126], mismatch and activity factor [117]. In this section, recent circuit level techniques 

for digital circuits are discussed. 

A circuit technique for the optimization of the supply and threshold voltages is proposed 

in [126]. In this approach, the replica path delay of multiply-accumulate (MAC) units are 

monitored to optimize the threshold voltage of the devices so that the leakage current is minimized 

given the supply voltage and the operating frequency, as shown in Figure 2.26. The body voltages 

of PMOS (VBBP) and NMOS (VBBN) are stabilized using a delay-locked loop composed of a phase 

detector, a decoder, a digital-to-analog converter (DAC) and body-tuned replica delay cells. The 

replica path delay is equal to the reference period in the steady state. The combination of VDD and 

body-biasing voltages are further optimized by sweeping the supply voltage to find the optimal 

combination for minimum power, as shown in the flow chart in Figure 2.27. Initially, VDD is set 

to maximum, and the body voltages are set to a maximum forward biasing condition. Then, VDD 

is decreased by one step using a DC-DC converter, and the body voltages are adjusted using the 

delay locked loop. This procedure is repeated until a minimum power state is achieved. 

In addition to minimizing the energy-per-operation, there is also a need to minimize power 

consumption, sacrificing energy efficiency. Most of the miniaturized sensor nodes adopt duty-
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cycling of the active mode in order to reduce the average power consumption to a level of 

harvestable power, as explained in section VI. However, this scenario is based on the assumption 

that the system has a reliable battery that serves as an energy buffer during sleep mode. However, 

such recursive charge and discharge actions degrade the battery reliability and shorten the system 

life time. For instance the 5,000 discharge cycles reported in [102] with a 30 min wakeup period 

limit the system life time to 3.5 months [15]. Therefore, a design methodology that lowers the 

active power consumption to a level of harvestable energy is required. 

Power consumption can be decreased by lowering VDD. However, a reduced on/off ratio 

limits the minimum supply voltage to 200-300 mV for reliable logic operation under PVT 
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variations. A Schmitt-trigger logic that can operate with 62 mV supply voltage is proposed in [127]. 

This approach could reduce the power consumption with an extremely low VDD, but the leakage 

current level is similar to the conventional logic gates, limiting the power reduction level to a linear 

relationship with VDD. 

A dynamic leakage-suppression logic (DLS) that drastically reduces the leakage current is 

proposed in [15]. The operation principle is explained in Figure 2.28. The bottom PMOS, MPB and 

top NMOS, MNT  are attached as power-gating transistors to an inverter composed of MPT  and MNB 

to guarantee that all of the transistors on the leakage paths are in a super-cutoff state after 

stabilization. As an example, Figure 2.28 (b) shows the case when 0 V is applied to the input. The 

intermediate node, n1, is connected to VDD through MNT , and n2 is set to approximately half of 

VDD. It can be seen that Vsg of MPB and Vgs of MNB become negative, creating a super-cutoff state. 

Similarly, both MNT  and MPT  are in a super-cutoff state when the input is high. As a result, the 

leakage current of the proposed logic gate is approximately 320 times smaller than that of a 

standard low-leakage stacked inverter. [15] proposes a prototype design of Cortex-M0+ processor 

in 180-nm CMOS technology, which consumes 0.295 pW under 550 mV supply. 
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CHAPTER 3   

Ultra-low Power Wake-up Timer 

 

3.1  Introduction 

Miniaturized computing platforms typically operate under restricted battery capacity due 

to their size [1]. Due to low duty cycles in many sensing applications, sleep mode power can 

dominate the total energy budget. Wakeup timers are a key always-on component in such sleep 

modes and must therefore be designed with aggressive power consumption targets (e.g., <10nW). 

Also, accurate timing generation is critical for peer-to-peer communication between sensor 

platforms [1]. Although a 32 kHz crystal oscillator can provide low power [2] and accurate long-

term stability, the requirement of an off-chip component complicates system integration for small 

wireless sensor nodes (WSNs). 

As a result, conventional on-chip oscillators for WSN applications utilize RC time 

constants, which show relatively accurate frequency stability compared to transistor delay 

dominated ring oscillators. Conventional RC oscillators periodically reset a capacitor using an RC 

time constant and comparator [3-4]. However, a power-hungry fast continuous comparator is 

needed to render its own delay negligible compared to the RC time constant and ensure good 

frequency stability. A timer using a frequency locking technique to allow an ultra-low power 

amplifier to replace the comparator is proposed in [5]. However, oscillation frequency cannot be 
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scaled down due to the resistor size, which limits the minimum power consumption. For example, 

even with a relatively large 55MΩ resistor occupying 0.2mm2 in 180nm CMOS, the topology 

consumes 18.2nW at 1V switching amplitude. 

To address this challenge and achieve a WSN timer with single-digit nW power 

consumption, we propose a new timer using a duty-cycled resistor scheme to increase resistance 

without impacting area. By generating the duty cycle using the frequency from the timer itself, an 

accurate on/off ratio is ensured. In addition, a current-reuse scheme is proposed to save power and 

also eliminates the need for chopping the bias current. Finally, a self-biasing technique is proposed 

to ensure stable operation and low power consumption across process-voltage-temperature (PVT) 
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variations. Using these techniques, the timer achieves 13.8ppm/C (−25 to 85C) at 3kHz and 

consumes 4.7nW while showing less than 1.5× power variation across temperature. 

3.2  Frequency locked loop using switched-capacitor frequency feedback 

Figure 3.1 explains the concept of the proposed timer. A voltage controlled oscillato r’s 

(VCO) frequency is sensed using the effective resistance of a switched capacitor. This effective 

resistance is transformed to current (ISC) by regulating it to a voltage generated by a series of 2-to-
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1 voltage down converters (VN). ISC is then compared to a current generated by a temperature-

compensated switched resistor (ISR) referenced to VP. The frequency locked loop is stabilized when 

ISC is equal to IR, thereby defining the oscillation frequency (FOSC) as 1/(M×RSW×CSW) where M 

is the duty cycle of RSW switching operation. Placing the switched resistor and switched capacitor 

in series effectively “reuses” current, reducing power consumption of this component by 2× 

compared to a conventional topology where they are placed in parallel. 

Figure 3.2 shows the detailed circuit implementation. Amp1 and Amp2 regulate voltages 

on RSW and CSW through M1 and M2, respectively. CD1 and CD2 are connected in parallel with RSW 

and CSW to reduce the ripple arising from switching events. However, those capacitors can reduce 

the frequency of the second pole and make the regulation loops unstable. Furthermore, ultra- low 

power design using subthreshold-biased devices exacerbates sensitivity to PVT variations, 
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Figure 3.3 Transient locking behavior of the output frequency, reference voltages and control 

voltages of the proposed oscillator (left) and their steady-state behavior (right) 
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complicating the design. This work proposes a self-biasing scheme that uses a replica of ISC to 

generate amplifier biasing currents. Assuming near 0dB gain of source follower M2, the regulat ion 

loop phase margin is defined by tan-1(gm1C3/gmamp1CD1) where gm1, and gmamp1 are 

transconductances of M1 and Amp1’s differential pair, respectively. As the phase margin is 

determined only by the ratio of transconductance and capacitance, stability can be ensured across 

a wide range of PVT variation. Furthermore, self-biasing acts to maintain relatively constant power 

consumption of analog building blocks across temperature and removes the need to include an 

accurate current reference generator, thereby saving power and area.  

Figure 3.3 shows the transient signal behavior of the reference and control voltages. VDIV 

is frequency divided from VOUT  and provides an accurate on/off ratio for the switched resistor. VSR 

and VSC are the voltages on RSW and CSW and are regulated by VN and VP, respectively, taken from 
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Figure 3.4 Reference voltage generation using switched capacitor based DC-DC (converter) 

(left) and simulation results of power and accuracy compared to a diode stack (right). 
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the down converter. Voltage ripple on VSR and VSC due to switching operation causes a current 

ripple on ISR and ISC (Figure 3.3, right). The difference between ISR and ISC is integrated by C1 and 

creates a quadratic ripple on VC. This ripple can perturb the duty cycle of VDIV, creating 

temperature and supply voltage sensitivity. To mitigate these non-ideal effects, a sampler is placed 

in front of the VCO so that the control voltage is constant within a divider cycle. Amp3 drives 

sampling transistor body voltages to remove the drain junction leakage from the sampled voltage, 
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Figure 3.5 Measurement results of wakeup timer temperature coefficient (top left), power 

consumption (top right), line sensitivity (bottom left), and Allan deviation (bottom right). 
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A key part of the proposed low-power scheme is the switched resistor. Resistor current (ISR 

= (VDD-VP)/(M×RSW)) can be reduced by either lowering the voltage across the resistor or 

increasing RSW. The lower bound on voltage swing is determined by amplifier input offset. VN is 

therefore selected to be 1/16th of the supply voltage in order to allow center frequency adjustment 

after trimming RSW and CSW under wide variation of amplifier offset and process. The practical 

upper bound of RSW is dictated by area requirements 

0.065mm2. The proposed resistor switching scheme increases the resistor size without increasing 

area. A switched resistor is usually implemented by placing a switch in series with a resistor [6]. 

However, current can still flow from the non-disconnected port to parasitic capacitance in the 

resistor even when the switch is off. This reduces the equivalent resistance and makes it 

temperature dependent. This effect worsens quadratically with resistor size as the current injected 

into its parasitic capacitance grows linearly while the current flowing through the resistor reduces 

inversely with resistance. Instead, we disconnect both resistor terminals so that charges on the 

parasitic capacitors is only shared while the switch is off. This eliminates injection of additiona l 

current from the parasitic capacitor (Figure 3.2, left). 
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Figure 3.6 Performance summary and comparison to prior work in low-power wakeup timers. 
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Reference voltages VN and VP are generated using a series of switched capacitor 2-to-1 

downconverter clocked by the oscillator output. The stable oscillator frequency results in a 

constant current consumption across temperature (Figure 3.4), especially compared to 

conventional diode stack based voltage dividers as shown in Figure 3.4, right. Even though the 

voltage mismatch between VN and VDD-VP is larger, it is negligible compared to the overall TC of 

the proposed timer. Furthermore, the mismatch is more linear than that of the diode stack, thus it 

can be more easily tuned out by trimming TC of RSW. The switching voltages are level converted 

though coupling capacitors and a pair of cross-coupled transistors so that the clock feedthrough of 

each switching transistor is balanced and driving capability is constant regardless of the output 

voltage [7].  

Figure 3.2 (bottom right) shows the schematic of the proposed VCO. The delay cell is 

composed of 1) low leakage transistors (MD1-MD4) that toggle the output polarity, 2) high leakage 

transistors (MD5-MD8) that provide leakage current to slowly charge/discharge the output, and 3) 

low leakage tuning transistors (MD9, MD10) that provide delay tunability via the supply voltage.  

Table 3.1 Performance summary and comparison to prior work in low-power wakeup timers. 

2 With 10 point calibration using temperature sensor.
3 Power consumption of temperature sensor is not included.
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Simulation results show that the proposed oscillator operates stably down to 630Hz, providing 

4.3× lower frequency floor compared to an inverter-based VCO, which is limited in this respect 

by its small on/off ratio at low VDD. 

3.3  Measurement Results 

The proposed design is fabricated in 180nm CMOS with an area of 0.5mm2. It uses only a 

single supply voltage and does not require additional voltage or current references. Measured 

results in Figure 3.5 show that the design generates 3 kHz while consuming 4.7nW with a 

temperature coefficient of 13.8ppm/°C measured from −25 to 85°C. Power consumption varies by 

<50% across this wide temperature range due to the self-biasing technique. Measured line 
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Figure 3.7 Die photo of the proposed wake-up timer. 
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sensitivity is 0.48%/V from 0.8V to 1.4V and Allan deviation is less than 63ppm. Figure 3.6 

provides a comparison table with other wakeup timers and Figure 3.7 shows a die photo. 
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CHAPTER 4   

Frequency Synthesizer 

 

4.1  Introduction 

Recently all-digital phase-locked loops (ADPLLs) have been widely adopted for their small 

size, configurability and portability [128]–[130]. Although an ADPLL is less susceptible to 

environmental variation compared with its analog counterparts, it is still affected by process and 

temperature changes. This leads to overly restrictive design specifications to ensure robust 

performance over the entire process and temperature range, causing a power penalty. For instance, 

gain of a digitally controlled oscillator (DCO) and a phase detector are the dominant factors that 

can cause variation in the loop dynamics. When a time-to-digital converter (TDC) is used as a 

phase detector, its delay elements are susceptible to environmental variation, so its quantiza t ion 

step represented as unit delay of the TDC is variable [131]–[136]. A 1-bit TDC or bang-bang phase 

frequency detector (BBPFD) is usually considered to operate independently of environmenta l 

changes because it does not have a delay element. However, the output amplitude of a BBPFD is 

fixed as 1 and 0 regardless of the input amplitude, making the input-to-output ratio dependent 

solely on the input amplitude [137]–[139]. Thus its gain is dependent on the amplitude of the input 

signal, which comes from DCO phase noise in a digital PLL. Therefore, the need for a DCO design, 
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which provides stable gain and noise, is emphasized in a BBPFD based digital PLL in order to 

ensure robust operation under the environmental changes. 

Reusability also contributes to variation in PLL operation. The increased fabrication, 

design and verification costs in the latest technologies have led to a demand for reusability. 

Reusability also reduces the development time of a product. However, there is a classic trade-off 

between productivity and efficiency. A generic PLL should cover a wide range of specifications. 

Thus, it cannot be optimized for any specific product and will inevitably result in wasted energy. 

There are a few requirements for a generic PLL. First, a generic PLL must have a wide 

frequency range to make it suitable for many products. Noise optimization for both short-term and 

long-term jitter is required to broaden its application space. Reconfigurability of the PLL mode is 

beneficial so that it can operate near an energy-optimal point in many applications. A charge-pump 

PLL is a well-known architecture showing robust operation. However, its analog nature creates 

problems such as a large loop filter size and limited reconfiguration ability in deep submicron 

technologies. For instance, digital loop filter reconfiguration is much more flexible with less area 

overhead compared to a charge-pump PLL using current digital-to-analog converter (DAC) and 

loop filter switches[135]. In addition, two-point modulation for the spread-spectrum can be done 

easily without employing addition DAC[140]. DSM noise cancellation in a fractional-N mode is 

also more straightforward with high accuracy and less overhead, whereas a charge pump PLL 

requires additional charge pump and pulse width control and suffers from mismatch[133], [141]. 

A multiplying delay-locked loop (MDLL) offers the advantage of reduced oscillator noise by 

refreshing the oscillator phase with a reference [142]. Nevertheless, its limited multiplication ratio 

and large period jitter at edge insertion make the MDLL an undesirable architecture for a generic 

PLL [143]. On the other hand, a digital PLL can provide robust operation across wide input and 
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output frequency ranges. In addition, its digital nature helps make it small and reconfigurable in 

the latest technology. Therefore, a digital PLL offers an attractive architecture to meet the 

requirements of a generic PLL. 

A DCO is considered the most important building block of a generic digital PLL for a 

couple reasons. First, the output phase noise is mostly governed by DCO noise, especially when a 

ring oscillator is used. An LC oscillator reduces the noise significantly but is difficult to adopt in 

a generic PLL due to the frequency range and size requirements. Noise filtering techniques have 

been proposed to improve the phase noise in a ring oscillator [144], [145]. However, their figure-

of-merit (FoM) is still worse than the theoretical limit of a ring oscillator [146] due to the additiona l 

power consumption and noise generation of the frequency detection circuit. Therefore a ring 

oscillator structure that can operate near its theoretical limit [146] is desirable. Second, a DCO’s 

gain and frequency range affect the performance of a PLL significantly. Nevertheless, the gain and 

frequency range vary significantly because its delay relies on the intrinsic parameters of the 

transistors. The change in the DCO gain results in variation of the PLL loop bandwidth as it moves 

away from the optimal point. Therefore, an accurate and linearized frequency tuning curve is 

required to maintain a constant loop bandwidth.  

In this work, we implemented a digital PLL with a nested frequency locked loop (FLL) 

that linearizes the DCO frequency tuning curve, providing stable gain. Therefore, the loop 

dynamics are insensitive to environmental variations. We propose a noise reconfiguration scheme 

using a noise reconfigurable DCO to create a trade-off between power and noise. We furthermore 

propose a noise detection circuit that uses the statistical behavior of BBPFD to self-adjust the noise 

depending on the noise specification. 
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4.2   Proposed Approach 

4.2.1  Basic Concept 

The proposed design adopts an FLL structure using a switched capacitor for the frequency 

feedback [21], [67], [147]–[151]. Its basic concept is introduced in Figure 4.1. The input current, 

IIN, is generated by regulating a resistor R0 with the voltage VR. The feedback current, IF, is defined 

by the following equation. 

F sw sw outI C V f
 

(10) 

where Csw, Vsw and fout are switching capacitance, voltage on Csw and output frequency, 

respectively. Assuming a large gain from the frequency detection block, IF should be equal to IIN 

in the steady state. Therefore the output frequency can be calculated using the following equation. 
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Figure 4.1 A conceptual schematic of a frequency locked loop using a switched capacitor 

frequency feedback. 
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When the identical voltage is used for VR and Vsw, the oscillation frequency of the FLL is defined 

in the following equation. 

0

1
out

sw

f
R C
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(12) 

Conventional methods of DCO implementation includes a gate voltage control of a current 

starving transistor[152], a series resistance control to load capacitor[153] or to supply voltage[154], 

a delay cell size control[78] or a digital current control for a current-controlled oscillator[155], all 

relying on the of physical device characteristics and it is difficult to achieve high linearity or PVT 

invariance[149]. In contrast, an FLL using switched capacitor can accurately control the output 

frequency because it is explicitly determined as (12) using a negative feedback loop[21], [67], 

[147]–[151]. 
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Figure 4.2 Simulated frequency tuning curves (a) with DAC attached to a VCO and (b) proposed 

FLL using switched capacitor frequency feedback. 
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As an example Figure 4.2 shows simulated frequency tuning curves of conventional and 

proposed DCOs. Figure 4.2 (a) is a conventional case where a DAC is attached to a current starved 

voltage-controlled oscillator (VCO) to form a DCO that shows a non-linear and PVT dependent 

frequency tuning curve. In contrast, a DCO with the proposed scheme demonstrates a highly linear 

and accurate tuning curve, as shown in Figure 4.2 (b).  

4.3  Loop Dynamics of the Proposed FLL 

In this section, the loop dynamics of the proposed FLL are analyzed. First, the feedforward 

path of the FLL is from the output current generated by the frequency detection block to the output 

frequency of the DCO marked with a dotted line in Figure 4.3. The control voltage, vctrl, is 

KVCO FOUT
C1

ron

ReqCL

io

rop

R0

rout

gmn

gmp
Vctrl

 
Figure 4.3 A simplified schematic of the proposed FLL for the analysis of the feedforward 

transfer function. 
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generated by the output current, io, multiplied by the output impedance of the detection block as 

shown in the following equation, 

     0 0 01 1out op mp eq on mn eq op mp on eq mnr R r g R R r g R r R g r R g    
 

(13) 

where rop, ron, gmp and gmn are PMOS output resistance, NMOS output resistance, PMOS 

transconductance and NMOS transconductane, respectively. Assuming rop =ron=ro, and M1 and M2 

are in a subthreshold region so that their transcondutance is maximized to Ibias/mvT , rout can be 

simplified to roR0Ibias/2mvT where m is 1+Cd/Cox and Cd and Cox are depletion and oxide 

capacitances respectively. 

11

out
ctrl out o o

out

r
v z i i

s r C
 

 
 

(14) 

The output frequency, fout, can be calculated by multiplying the gain for the VCO, KVCO, to (14).  

req(t)CL

fout(t)

RS

VS

vsw(t)

 
Figure 4.4 A simplified and linearized schematic at the source of the M1 for the analysis of 

feedback transfer function. 
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(15) 

Then, the feedforward transfer function from the output current of the frequency detector 

to the output frequency is 

1

( )
1

out VCO out
ff

o out

f K r
H s

i s r C
 

 
 

(16) 

Note that 1/routC1 is the dominant pole of the FLL. To analyze the feedback path of the 

proposed topology, we first need to analyze the transfer function of the switched capacitor. fout 

serves as an input to the switched capacitor, and its equivalent resistance, req, is the output. Then, 

the transfer function of the switched capacitor is  

2

1 1f

eq

out out sw out sw out

i
r

f f C f C f

  
    
     

(17) 

The change in req results in a change in the output current of M1 by modulating its gate-to-

source voltage. Figure 4.4 shows the linearized circuit diagram at the source of M1. Rs is the source 

resistance of M1(shown in Figure 4.1), which is expressed as 1/gm1. CL is a capacitor connected in 

parallel to the switched capacitor to lower the ripple magnitude. Vs is a virtual source voltage that 

provides DC voltage on the switched capacitor. v’sw is the voltage on the switched capacitor, and 

IIN
KVCORO

1+sROC1

VS

CSW(1/CSW+FOUTRS)
2
(1+s/ωP) 

FOUT

 
Figure 4.5 Linear model of the proposed FLL. 
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vsw is the voltage on the switched capacitor excluding the sawtooth ripple caused by the switching 

operation. Then, Vs can be defined as: 

1 s
s sw

eq

R
V V

R

 
  
 
   

(18) 

where Vsw is the DC voltage on the switched capacitor, which is 250 mV in this design. Then, vsw 

can be found as 

 
 

 
eq

sw s

s eq

r t
v t V

R r t



 

(19) 
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Figure 4.6 A Bode plot of open loop transfer function and closed transfer functions of the 

proposed FLL when Vs, KVCO, Rs, fout and CSW are 0.25 V, 15 GHz/V, 17 Ω, 2GHz and 7.5pF, 

respectively. 
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Therefore, the transfer function from the change of req to the change of vsw is determined using the 

following equation. 

 

   
2

( )eq eq
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eq eq s eq r t R eq s

r tv R
V V

r r R r t R R
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(20) 

Note that CL is ignored for simplicity in (17). The gain from fout to vsw is calculated by 

combining (17) and (20) as shown in the following equation. 
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 (21) 

ωp2 is the secondary pole generated by the CL and parallel resistance of Rs and Req. 
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Figure 4.7 Open loop transfer function of the proposed PLL. 
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(22) 

Finally, the feedback transfer function from fout to the feedback current, if, is determined 

by multiplying –gm1 by vsw.  
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(23) 

The linear model of the FLL is shown in Figure 4.5, and its open transfer function (black) is plotted 

in Figure 4.6 when Vs, Kvco, Rs, fout and Csw are 0.25 V, 15 GHz/V, 17 Ω, 2 GHz and 7.5 pF 

respectively. A wide regulation bandwidth (fBW) of more than 500 MHz is achieved. 

The closed loop gain is determined by the feedback factor using the following equation 

assuming a large feedforward path gain. 
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(24) 

To minimize the gain from the noise current to the output frequency, Rs must be minimized. 

However, given the DC bias current of Ibias, there is a limit to how much the transconductance can 
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Figure 4.8 Simulated phase noise curves of the free running VCO (red) and the proposed 

frequency locked loop (blue) 
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be increased, which is subthreshold transconductance, Ibias/mvT . Therefore, the minimum closed 

loop gain can be found as the following. 

   
 

 
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1 /
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(25) 
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(26) 

It can be seen that a large Vsw results in reduced noise gain; however, it also reduces the 

control voltage range. Therefore, a trade-off is made in the proposed design to set Vsw to 10 times 

vT , allowing a 10% increase in noise gain while maintaining 400 mV control voltage range with 

1V supply. A bode plot of the closed loop transfer function from the current input to the frequency 

output is displayed in Figure 4.6. The noise generated by the detection circuits, primarily due to 

the switched capacitor and biasing resistor, is low-pass filtered at the loop bandwidth. 

4.3.1  A Linearized Loop Dynamics of the PLL 

The linearized loop dynamics of the proposed PLL follows the conventional formula [138], 

[139], [156], [157] except for the parasitic non-dominant pole added by the FLL. 

 
Figure 4.9 A transient waveform at the top node of Csw 
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(27) 

where 
22PD PLLK G 

[138], 
 z I P REFK K T 

 and σPLL is the PLL output jitter. G is 1 when 

the DCO noise dominates σPLL and 2 when PLL limit cycle dominates σPLL[138]. M and TR are the 

frequency multiplication ratio and the period of reference clock respectively. Note that (27) is half 

of (7) in [156] because we assume BBPFD output is connected to 1LSB of  the DCO control, and 

KDCO is defined as a frequency step with LSB change. In this case, +1 and -1 outputs of BBPFD 

corresponds to the DCO frequency change of +KDCO/2 and –KDCO/2 making effective frequency 

gain of DCO be KDCO/2. 
 1 1 FLLs 

 is the parasitic pole generated by the FLL, and ωFLL can be 

approximated to 2πfBW. Note that the closed loop transfer function of the FLL is simplified to a 

first-order system in (18). As fBW is order-of-magnitude higher compared to the unit gain frequency 

of HOLG(s), the effect of this parasitic pole is negligible. In Figure 4.7, open-loop transfer function 

of the proposed PLL is depicted when TREF, KPD, KDCO, KP, M, ωz, and ωFLL are 20n, 6.7×1010, 

1.3M, 1, 40, 390k and 3.1G, respectively. It can be seen that the effect of ωFLL is negligible in the 

PLL loop dynamics. 

4.4  Noise Analysis 

One of the merits of the proposed architecture is that the output noise of the FLL is mostly 

determined by the frequency detection circuit. The VCO noise is high-pass filtered at the FLL 

bandwidth so that the noise becomes negligible when calculating the integrated phase noise, as 

shown in the closed loop transfer function from the VCO noise to fout, Figure 4.6(blue, dotted). 

The noise generated by the detection circuit dominates the output noise across most of the 

frequency range because fBW is large. Phase noise simulation results of the proposed FLL (blue) 
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and a free funning VCO (red) are plotted in Figure 4.8. The VCO noise is high-pass filtered at the 

FLL bandwidth (208MHz), and the lower frequency noise is dominated by the detection circuits.  

To calculate the noise property of the detection circuit, we first need to analyze the current 

noise generated by the switched capacitor. Figure 4.9 shows the transient waveform at the top node 

of Csw, Vc. The sampling operation happens twice per fout cycle, once for charging it to Vsw and 

once for discharging it to ground. In each sampling process, kT/C noise with bandwidth 1/2fout is 

generated, so its power spectral density can be written as 

 1 2

2
( )v v

sw out

kT
S f S f

C f
 

 

(28) 

where v1 and v2 are the sampled voltages at Vc. The amount of charge injected at every switching 

cycle to Vsw can be written as Csw(v1(t)-v2(t)), so the noise current of the switched capacitor can 

be calculated using the following equation. 

      1 1 2sw outi t C f v t v t 
 

(29) 

As v1 and v2 are uncorrelated, the power spectral density of the switched capacitor noise can be 

written as the following equation. 

2

1

1
4 4out sw

eq

i kTf C kT
R

 

 

(30) 
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Figure 4.10 Current division branches in the frequency detection block. 
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Note that the noise generated by the switched capacitor is equal to the noise of a physical 

resistor, whose size is equal to Req.   

Then, we need to analyze the current division branches at the sources of M1 and M2.  First, 

the current division ratio at the source of M1 is analyzed in Figure 4.10. The equivalent current 

noise from the switched capacitor, i1(t), is divided by the impedance ratio of Req and Rs. 

,1 1 1 1

1eq

out

eq s noise

R
i i i i

R R A
  


 

(31) 

where iout,1 is the amount of current produced at the output of the detection circuit. As mentioned 

in section 2, it is advantageous to increase the size of M1 to reduce the noise gain. The current 

division ratio α is simply  

R0

M1

M2VGP

VGN i2(t)

i4(t)

i3(t)

fn,vco

FOUTVCO

i1(t)

Req

 

Figure 4.11 A schematic of the proposed FLL with the noise sources. 

 

 

 

 

 
 

 

 

 
 

 



71 

 

sw

bias sw

sw T sw T

bias bias

V

I V

V mv V mv

I I

  




 

(32) 

On the other hand, i2, the noise generated by M1, is highly degenerated by the source 

resistance M1, and only a small fraction of i2 is delivered to the output, as described by the 

following equation. 

 ,2 21outi i 
 

(33) 

Similarly, the current noise from R0 and M2 can be calculated, as described the following equations 

,3 3outi i
 

(34) 

 ,4 41outi i 
 

(35) 

 
Figure 4.12 Phase noise at 10 MHz offset according to (4) when T, Ibias, γn, γp, vT  and fout are 

300°C, 3 mA, 2/3, 2/3, 26 mV and 2 GHz, respectively. 
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where β is the current division ratio at the source of M2, which is defined as the following equation 

when M2 is biased in a subthreshold region. 

R

R T

V

V mv
 


 

(36) 

Figure 4.11 shows equivalent noise sources in the detection circuit, i1-4(t). The output 

frequency noise can be calculated by multiplying the closed loop gain from the output current of 

the detection block by the output frequency. The noise contributions from Csw, R0, M1 and M2 can 

be found as follows: 

 
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(40) 

Note that the noise from M1 and M2 are relatively negligible compared with the noise from 

Csw and R0 because α and β are close to 1. By rewriting α and β in (37)-(40) using (32) and (36) 

and by summing all of the noise sources, the overall phase noise can be found as follows: 

 
 

2
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2 2

4 1
1

R p Tn T out
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V mvmv fkT
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I V V fV mv

  
         

(41) 

Detailed derivation on the phase noise is described in Appendix A. The discussion to this 

point shows that the output noise improves with a larger Vsw. Anoise is a function of Vsw as well, so 

increasing Vsw helps lower the noise not only from M1 and Csw but also from M2 and R0. The 
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smaller overdrive voltage of M1 helps reduce the noise generated by M1. Therefore, it is 

advantageous to maximize the transconductance of M1 by increasing the width until M1 operates 

in the subthreshold region. The latter part of (41) shows that increasing both VR and Vov,m2 helps 

reduce the output noise generated by M1 and R0. However, increasing VR and Vov,m2 limits the 

voltage tuning range of the VCO. As increasing VR is almost two-fold more effective than 

increasing Vov,m2, the size of M2 should be again maximized until M2 operates in the subthresho ld 

region given a fixed voltage allocation of VR and Vov,m2 combined. Note that the overall phase 

noise has Ibias in the denominator, so the DCO noise can be reconfigured by tuning the bias current 

while keeping the bias conditions, Vsw, Vr, Vov,m1 and Vmv,m2 constant. For instance, the FLL is 

configured in a low noise mode with a high current to prioritize noise performance. On the other 

hand, when power consumption is more important, the FLL is configured in a low current mode, 

sacrificing its noise performance. 

In an attempt to find an optimal biasing condition on Csw, R0, M1 and M2, the conclusion 

thus far is to set M1 and M2 at subthreshold mode and maximize Vsw and VR. Here, we will discuss 

a strategy in deciding the optimal ratio between Vsw and VR. First, the voltage assigned to them is 

defined as VB as follows. 

, 4B sw R DD c range TV V V V V v    
 

(42) 

where Vc,range is the input voltage range of the VCO to generate the target frequency under the PVT 

variation. 4vT  is subtracted from VDD as well to give sufficient Vds to either M1 or M2. Then, (41) 

can be rewritten as the following by substituting VR with VB-Vsw. 
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(43) 
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The phase noise at 10 MHz offset is plotted in Figure 4.12 when T, Ibias, γn, γp, vT , m and 

fout are 300°C, 3 mA, 2/3, 2/3, 26 mV, 1.2 and 2 GHz, respectively. The optimal noise performance 

is achieved when VR is almost equal to Vsw. The numerical solutions Vsw=0.271 and VR=0.229 are 

found when VB=0.5 after differentiating (34) and setting it equal to 0. Note that Vsw is weighted 

slightly more than VR because Anoise affects both the noise from Csw and VR. 

(43) can be simplified assuming equal VR and Vsw to intuitively understand its theoretical 

limit in terms of its figure-of-merit (FoM). 
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(44) 

Finally, the FoM of the proposed oscillator at its optimal biasing state can be found as the 

following.  
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(45) 

The first observation regarding (45) is that the FoM of the proposed oscillator only depends 

on the voltage ratio of VDD and Vsw, assuming VSW≫γnvT. The theoretical FoM maximum is found 

when Vsw=VDD/2, in which case VB=VDD, allowing zero voltage for Vc,range, M1 and M2. It is also 

assumed that γnvT/Vsw≪1. 

min 3 3

8 16
10log 10log 161.79

10 / 2 10

DD

DD

kTV kT
FoM

V 
   

 

(46) 

As an example of a practical case, when VDD=1, Vsw=VR=0.25 and there is 10% additiona l 

power consumption in the VCO and non-overlapping clock generation, the FoM of the proposed 
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oscillator is -158.1 dBc/Hz. As a comparison, the theoretical FoM limit of a CMOS ring oscillator 

analyzed in [146] is determined as the following. 

min, 3

7.33
10log 165.2

10
ring

kT
FoM


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(47) 

The theoretical limit of the proposed oscillator is approximately 3.3 dB worse than that of 

a conventional ring oscillator. However, there are several other factors that need to be considered. 

1) While adding transistors to give frequency tunability to a CMOS ring oscillator, the FoM 

typically gets worse. On the other hand, frequency tuning of the proposed oscillator can be 

achieved without FoM penalty. Therefore, the minimum FoM of a conventional ring oscillator is 

more over-estimated than that of the proposed oscillator. 2) The frequency tuning curve of the 

proposed oscillator is less sensitive to environmental change as it relies on an RC time constant 

rather than the transistor speed. 3) The proposed oscillator offers a highly linear frequency tuning 

curve, which is advantageous in the reduction of PLL loop bandwidth variation and two-point 

modulation [149]. 4) The proposed oscillator offers noise reconfiguration capability by 

programming its bias current. Therefore, the proposed oscillator is more efficient than a 

conventional ring oscillator in many applications. 

4.5  Circuit Implementation 

A schematic of the proposed circuit is shown in Figure 4.13. The gate voltages of M1 and 

M2 are generated using replica cells of the ones in the main branch. The amplifiers are designed to 

consume 500 nW so that the noise generated by those two amplifiers resides only in a very low 

frequency range and is filtered by the PLL loop. Low power voltage references are implemented 

using the 2-T structure proposed in [19]. R0 and CSW are used to tune the output frequency and the 
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noise. The size of M1 and M2 are tuned together with R0 and Csw so the voltages on R0 and Csw do 

not change depending on their values. 

4.5.1  Multi-phase feedback 

CL is placed in parallel with Csw to minimize the voltage ripple caused by the switching 

operation. When the switched capacitor is grounded, and only CL is connected to the source of M1, 

Vsw increases by the bias current, reducing the gate to the source voltage of M1 as shown in Figure 

4.14(a). Then, CSW is connected to the source of M1, causing an abrupt drop at the source voltage. 

The ripple magnitude is determined by the ratio between CL and CSW. If a small CL is used, the 

voltage ripple becomes large, modulating VGS of M1 substantially. As M1 provides a non-linear 

relationship between its Vgs and Ids, such fluctuation can perturb the linearity of the DCO frequency 
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Figure 4.13 A block diagram of the proposed digital PLL. 
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tuning curve. Therefore, CL must be at least 10x greater than Csw to sufficiently lower the ripple 

magnitude. However, a large CL incurs low second pole frequency in the FLL, degrading the 

stability and causing area penalty. In this work, we adopted multi-phase feedback from the VCO 

so that its effective switching frequency becomes Nphase times higher, where Nphase is the number 

of VCO phases as shown in  Figure 4.14(b). Then, the total capacitance connected in parallel with 

the switching capacitance is reduced by the factor Nphase, and it helps to provide higher fBW and 

phase margin. In addition, the multiphase feedback helps to reduce the area greatly. As the 

switching capacitance is reduced by the factor of Nphase, the total parallel capacitance can also be 

reduced by the same factor. Furthermore, nearly half of the non-switching capacitors are connected 

to the source of M1, serving as parallel capacitors. Therefore, the size of the additional capacitance 
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Figure 4.14 Voltage ripple caused by the switching operation (a) when a single phase is used (b) 

when multi-phases are used 
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is CL/Nphase–(Nphase-1)Csw/2Nphase, which is approximately 5 pF, while the total switching 

capacitance is 7.5 pF. Compared with 75 pF, when single phase feedback is used, 93% of the area 

is saved. 

4.6  Noise Detector 

In this section, a noise detector circuit using the statistical behavior of the BBPFD output 

is demonstrated. A digital PLL using a BBPFD has a limit-cycle due to the non-linearity of the 

BBPFD. Assuming no DCO noise is present, the DCO control alternates between two numbers 

neighboring the target frequency at every reference cycle. The BBPFD output also alternates 

between 1 and 0, and the resulting feedback phase is shown in Figure 4.15. The VCO phase drawn 

in a blue color follows the reference phase. The peak difference between the feedback and 

fOUT

FTARGET

Time

Freq KIKDCO

(KP+KI)KDCO

Time

Phase φPLL

M φREF

 
Figure 4.15 Behavior of a BBPFD-based digital PLL when DCO noise is not presented. 
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reference phase is the magnitude of the limit cycle, Φlmt. It can be found as the following equation 

where KDCO is the DCO gain, KP is the proportional path gain, KI is the integral path gain. 

 
2

DCO P I REF

lmt

K K K T
 

 

(48) 

When DCO noise presents, it perturbs the DCO output phase, and its magnitude may 

exceed Φlmt. In such cases, BBPFD produces consecutive 1s or 0s. In Figure 4.16, Early is the 

output of the BBPFD. At times t1 and t2, BBPFD generates either consecutive 1s or 0s due to the 

excessive noise of the DCO. 

FOSC Target 
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KDCO(KP+KI)/2π

DIFF

Early

NCNT

Time

Excessive DCO 

noise detected

KDCOKI/2π
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Figure 4.16 Transient waveforms (drawn from simulation results) of output frequency (fout), PFD 

output (Early) and the noise detection result (DIFF). 
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The histogram of the feedback phase is shown in Figure 4.17. The DCO phase noise 

produces a Gaussian distribution in the feedback phase, and the limit cycle offsets the distribution 

by ±Φlmt. The shaded region represents the possibility that the DCO noise exceeds Φlmt, in which 

case the BBPFD produces either consecutive 1s or 0s. A schematic to detect such an event is shown 

in Figure 4.18. The BBPFD output is compared with its previous value, and when they are the 

same, the noise count is increased by 1. After NBASE cycles of FREF, the noise count NCNT  is 

delivered to the DCO control block. fout is inversely proportional to the switching capacitance as 

shown in (3). Therefore, KDCO can be accurately determined as a capacitance ratio between total 

switching capacitance, CSW and unit capacitance, foutCu/Csw, assuring robust operation of the noise 

detector.  

As the DCO noise is adjusted using the proposed noise detector and the DCO gain is 

accurately controlled using a capacitor ratio, the PLL loop dynamics stay largely invariant to 

environmental changes. In this part, the PLL bandwidth and output jitter will be derived in terms 

of the DCO noise and other PLL configuration parameters. The unity gain frequency of the open 

loop transfer function of the PLL, fu, can be found by equalizing the absolute value of (27) to 1 

and it is 

 
Figure 4.17 Histogram of the feedback phase. 
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Assuming that the DCO noise is dominant at the output of the PLL and its flicker noise is negligib le 

compared to the white noise, σPLL can be approximated as a function of σDCO and the PLL loop 

bandwidth as the following [158]. 
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By combining (49) and (50), σPLL can be derived as 
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. 
(51) 

Note that σPLL is proportional to the square of the DCO noise because it exacerbates σPLL by 

reducing the phase detector gain as well as by its own power. Assuming an accurate DCO noise 

adjustment, σDCO can be derived from the equation shown in Figure 4.19. 
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(52) 

Finally, fu and σPLL can be expressed as the following equations which are independent to the 

environmental changes. Note that KDCO is replaced to (M/TREF)×(Cu/CSW). 
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Figure 4.18 The proposed noise detection circuit. 
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(54) 

4.6.1  Overall Implementation 

Figure 4.19 shows a block diagram of the proposed BBPFD-based digital PLL with PI 

control. A DCO Noise controller tunes R0 and CSW values while keeping their products constant 

at a value dependent on NCNT/NBASE, forming a noise self-adjustment loop. Note that Ibias is 

inversely proportional to R0 as shown in (10) and (11), and the DCO noise is also inversely 

proportional to Ibias as shown in (41). DCO frequency tuning is achieved by controlling Csw. The 

capacitance in an integral path consists of 6-bit coarse input, 10-bit fine input and 1-bit dithering 

input. The proportional path is designed with 5-bit control to maintain constant DCO gain while 

reconfiguring Csw.  

Figure 4.20 shows a transient waveform of the proposed PLL. Initially, an automatic 

frequency control (AFC) operates to find the switching capacitance that generates the target 

frequency. Then, the PLL loop is enabled to lock the output phase again using Ccon. After phase 

lock is achieved, a binary noise search is enabled using the noise detection block. Overall phase 

locking is achieved within 10 µs, and the noise locking takes 5.2 ms with 50MHz reference clock. 

4.7  Measurement Results 

The proposed design is fabricated in a 28-nm FDSOI process. The overall area is 0.045 

mm2. The proposed PLL is tested with 50 MHz input frequency generated using a function 
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generator (Keysight33600A), and its output noise is measured using a spectrum analyzer (Agilent 

N9030A). Frequency tuning curves of the proposed FLL is measured in Figure 4.21. It shows 

highly linear frequency tuning curve until the VCO tuning range is limited by the supply headroom. 

Figure 4.22 shows the power consumption of the PLL and the integrated phase noise. The 

integrated output phase noise is inversely proportional to the power consumption, as expected in 

(41). The integrated jitter can be configured from 2.5 to 15 ps while making a trade off with the 

power consumption from 1.7 to 5 mW. Figure 4.23 illustrates the function of the noise detection 

circuit depending on the configuration of the PLL. KDCO×KP is changed from 600kHz/LSB to 

4MHz/LSB and KDCO×KI is adjusted in accordance with KP keeping KP/KI as 128 assuring the 

PLL loop stability. The noise count shows a monotone relationship between the DCO noise amount 

and the noise count enabling the stable operation. The proposed noise detector assumes the 

Gaussian distribution of output noise. However, delta-sigma modulator (DSM) in the integral path 

generates quantization noise that does not follow a Gaussian distribution, and it can cause a 

discrepancy between the measurement and the theoretical calculation. This effect is more 
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Figure 4.19 A detailed schematic of the proposed digital PLL. 
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pronounced when the intrinsic DCO noise is small, i.e. when σDCO/Фlmt is small, making DSM 

quantization noise non-negligible as shown in Figure 4.23. The proposed PLL is tested with 

temperature sweep to verify the operation of noise self-adjustment. The DCO phase noise caused 

by device thermal noise is linear with temperature as shown in (41), whereas the PLL output jitter 
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Figure 4.20 A transient waveform (drawn from simulation results) of the proposed PLL. 

 

Figure 4.21 Measured DCO frequency tuning curve. 
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is proportional to the square of the DCO jitter because of the reduced bandwidth (51). Therefore, 

the PLL jitter has a quadratic relationship with temperature as it can be observed in Figure 4.24. 
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Figure 4.22 Measurement results of the integrated phase noise and the power consumption 

depending on the jitter configuration. 
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Figure 4.23 Measurement results of the noise detector output across varying DCO gain and 

noise. 
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When the noise adjustment is enabled, the output noise remains relatively constant to the 

temperature change. 

Figure 4.25 shows the phase noise measurement results when the output frequency is 2.4 

GHz and DCO is configured to a minimum noise state. The integrated phase noise is 2.522 ps 

while consuming 5 mW. A die photo of the layout is displayed in Figure 4.26. Table 4.1 compares 

 
Figure 4.24 Measurement results of the integrated jitter depending on the temperature. 
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Figure 4.25 The phase noise measurement result when fout is 2.4 GHz and the PLL is configured 

to the lowest noise mode. 
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the performance of the proposed PLL with previous works using ring oscillators. The proposed 

work provides a wide output frequency range of 0.8 to 3.2 GHz. Also, this work shows less than 

3 ps integrated jitter while using a cost-effective 50 MHz reference. Overall, the proposed PLL 

shows competitive performance compared with the previous works while providing power and 

noise reconfiguration and noise self-adjustment capability. 

 
Figure 4.26 Die photo of the proposed design. 

 

Table 4.1 Performance summary of the proposed design and comparison to prior arts of 

inductor-less designs. 

 This work [36] [37] [38] [39] [1] [40] [16] 

Output Frequency 

(GHz) 
0.8-3.2 3.2 2.4 1.6 0.2-3.8 0.2-3.2 0.8-1.8 2.4 

Oscillator Type Ring Ring Ring Ring Ring Ring Ring MDLL MDLL 

Reference Frequency 
(MHz) 

50 200 26 266 300 N/A 375 375 75 

RMS Integrated 
Jitter (ps) 

2.52 @ 2.4GHz 3.85 2.418 2.418 2.13
*
 3.1-14 3.2 0.4 0.7 

Integration Range 
(MHz) 

0.1-100 N/A 0.01-40 0.01-2 N/A
*
 0.01-100 0.01-100 0.01-100 0.01-40 

Power Consumption 
(mW) 

5 @ 2.4 GHz 2.915 6.4 2.7 1.98 0.7-3.4 0.9 0.6 0.43 

Noise 

Reconfiguration 

DCO 

Noise & Pwr 
N/A N/A N/A 

PLL Loop 

Bandwidth 
N/A N/A N/A N/A 

Figure of Merit  (dB) -225.1 ~ -226.5 -224 -221.6 -226.7 -230.5 
-224.8 ~ 
-218.6 

-228.59 -248.7 -246.7 

Area (mm
2
) 0.049 0.0216 0.013 0.019 0.026 0.017 0.2 0.2 0.024 

Technology 28nm SOI 40nm 40nm 65nm 65nm 22nm 130nm 130nm 28nm 
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4.8  Conclusions 

In this chapter, a digital PLL using a nested FLL as a DCO is introduced. The proposed 

DCO provides accurate gain insensitive to the environmental changes as its period is locked to an 

R-C constant. Also, phase noise of the DCO can be controlled using a bias current, so it can be 

adaptively tuned according to the noise specification. Further, a noise detection and self-

adjustment scheme is proposed to maintain constant noise performance under the environmenta l 

changes. The proposed work showed wide noise reconfigurability from 2.5 to 15ps while 

controlling its power consumption from 1.5 to 5mW. 
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CHAPTER 5   

Miniaturized Logger for  

Global Navigation Satellite System 

 

5.1  Introduction 

A prototype design of a miniaturized global navigation satellite system (GNSS) is proposed 

in this chapter. An energy harvester, a power management unit and RF and optical transceivers are 

implemented to support energy-efficient, stand-alone operation. A sensor interface layer is also 

implemented to monitor environmental variables such as temperature and pressure. 

5.2  Introduction 

In this section, we introduce a prototype design of a GNSS logger implemented for 

position-tracking of an object. There is a growing demand for miniaturized, low power GPS 

receivers for use in child safety devices, drones, smart watches, smart grids, wearable devices and 

devices for tracking pets and vehicles. Many of these applications do not require a high rate or 

real-time position-tracking, so the power requirement is significantly reduced by heavily duty-

cycling. The power of the GNSS signal is lower than the channel noise, and the small form factor 

makes it even smaller due to the small radiation efficiency. In this work, we developed a custom 

electrical antenna that achieved 20.66% radiation efficiency. In addition, we implemented an 
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autonomous system to sustain its operation with duty-cycling and energy harvesting by adopting 

the circuit techniques proposed in Chapter 2 of this dissertation.  

A block diagram of the prototype design is shown in Figure 5.1. The system is managed 

by a Michigan Micro Mote (M3) [3], which is a die-stacked system composed of an ARM Cortex-

M0 processor layer, energy harvester, decoupling capacitor, global optical communication (GOC) 

receiver, sensor layer and RF transmitter. The processor layer includes 8 kB SRAM, which is 

programmed by using the GOC receiver. A power gating switch in the processor layer is used to 

turn off the external components. A gate-induced drain leakage (GIDL) reduction technique [159] 

is adopted to improve the on-off ratio of the switch. The off-leakage and on-resistance are 

measured as 0.4 nA and 4.1 Ω, respectively. A serial peripheral interface (SPI) and a set of general 

purpose input/output (GPIO) are used to control the external components. A PMU based on a 
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Figure 5.1  (a) Block diagram of the proposed GNSS logger and (b) conceptual graph of its 

assembly 
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successive-approximation switched-capacitor DC-DC converter (section VII, [108]) provides 

supply voltages to the M3 stack layers. Its quiescent power and driving capability is programmab le 

using the clock frequency so that the output driving strength is small and operates in low power 

mode during the sleep mode, while the output driving strength is high and operates in high mode 

during the active mode. The radio layer transmits the GPS data to the base station. The radio uses 

a monolithic inductor as an antenna to reduce the area requirement (section V-A, [160]) and 

provide a maximum bit rate of 40.7 kbps with 4.7 nJ/bit energy consumption. The sensor layer 

Variable capacitor

Fixed capacitor

 

Figure 5.2 A CAD drawing of the printed antenna for the GNSS logger. 

(a) (b)
 

Figure 5.3 (a) The radiation pattern of the loop antenna (b) Simulation and measurement results 

of the reflection coefficient of the antenna. 
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measures the temperature and battery voltage of the system, which can potentially be used to 

further calibrate the RF front end and operation interval [2], [101], [161].  

The electrically small antenna developed for the GNSS logger is connected to the analog 

board through a U.FL connection. A printed 3D loop geometry, depicted in Figure 5.2, is chosen 

for this application. The orange areas correspond to the metalized portions. A variable capacitor 

(top) and a fixed capacitor (bottom) are used for matching to 50 Ω. The antenna dimensions are 

10×10×3.175 mm3, and it is printed on Rogers RT/duroid® 5880. The copper sheet on the bottom 

side acts as a shield between the antenna and the rest of the system. In order to account for 

fabrication tolerances, a variable capacitor (cap trimmer) is used as one of the capacitors. 
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Figure 5.4 Timing diagram of the operation of the proposed GNSS logger 

Item Specification

Energy / fix 96.5 mJ

Fix interval (TF) 5 Min

System life time 6.2 days

Battery Capacity (EBAT) 172.8 J

Standby Power (PS) 100 nW

System size 12 x 15 x 20 mm
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RF front end
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Total # of Fixes(NFIX) = EBAT/Etot = 1791 Fixes
 

Figure 5.5 Breakdown of the energy consumption 
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The antenna is simulated in ANSYS Electronics. Its radiation pattern is shown in Figure 

5.3(a), and its simulated radiation efficiency is 20.66%. The reflection coefficient of the antenna, 

obtained through simulation and measurement, is plotted in Figure 5.4 (b), and it matches well at 

the frequency of interest (1.57542 GHz). 

 
Figure 5.6 Die photos of M3 system. 
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The RF front-end and IF stage of the GNSS receiver incorporates commercial products and 

a custom antenna. The MAX2769 RF front end chip is configured to use 4 MHz IF, and the 

quadrature data is produced at a rate of 16 MHz. The stream of data is stored in SRAM (23LC1024) 

and then transferred to a NOR flash (M25P32) together with the reception time produced by the 

 
Figure 5.7 Photo graphs of the proposed system (a) On-PCB die stacking and wirebonding (b) 

board assembly (c) entire system 
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Figure 5.8 (a) Measured correlation results of the output of the GNSS logger (b) Fast Fourier 

transform of the IF signal 
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wake-up timer (AM0815). The correlation of the received data is processed in the base station after 

retrieving the data using the RF transmitter in the M3-stack. 

The system timing diagram is shown in Figure 5.4. The system is designed to have a 

programmable sleep time that can vary from a few minutes to multiple hours. After sleep, the 

system wakes up and initiates regulators, RF front-ends and SRAM within 5 ms. This time period 

is dominated by the startup of the 16 MHz crystal driven by the MAX2769. Then, the receiver is 

enabled to collect the data into the SRAM for 100 ms. The GPS data is transferred to a flash 

memory before the system goes back to sleep. The total energy consumption of the system is 

summarized in Figure 5.5. The system includes a 12 mAh polymer Li-ion battery, which can 

provide sufficient energy to collect 1,791 fixes without harvesting energy. The system can sustain 

its operation permanently with 12 klux light when the system operates at 10-min intervals. 

Figure 5.6 shows the micrographs of the chips used to build the M3 stack, and Figure 5.7 

shows the digital board as well as the overall system. The size of the proposed system is 

1.54×1.08×1.6 cm3. The digital board includes the M3 stack, SRAM, flash and timer chips. The 

top side of the digital board is coated with black epoxy, which mechanically protects the M3 stack 

and blocks light. The bottom side is coated with clear epoxy to allow light to reach the PV cell. 

The antenna is connected to the analog board using a U.FL connector. 

For testing, a GNSS signal is recorded for 30 minutes with a GNSS signal generator, LS01, 

and repeated using a horn antenna. The system is programmed to wake up every minute and 

acquire the received the GNSS signal. The measurement results of the GNSS logger after the 

correlation are shown in Figure 5.8. The system records IF GNSS signal quantized with 2-bit ADC 

for 100 ms. The correlation is performed in a base station after obtaining the data through radio 

communication. The system successfully acquired 8-10 satellites for each acquisition, which can 
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potentially enable ultra-low power miniaturized position tracking functions for child safety 

applications, drones, wearable devices and smart watches. 

5.3  Conclusion 

As a proto-type design, a 2.7cm3 stand-alone GNSS logger is presented. The proposed 

logger has the capability to sustain its operation without energy harvesting for 5 days while 

acquiring GNSS data at five-minute intervals. 
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CHAPTER 6   

Noise Improved Amplifier Using Parametric 

Amplification 

 

6.1  Introduction 

Miniaturized sensors are frequently used for in situ monitoring of bio-medical and 

environmental signals. In particular, neural recording sensor systems require miniaturization to 

limit brain tissue damage and accommodate tightly spaced electrodes. At the same time, neural 

potential sensor interface circuits must achieve aggressive input referred noise levels of <5 μVrms 

to monitor neural signals with sufficient accuracy. Given the small size and proximity to sensitive 

brain tissue, power consumption is also highly constrained to meet strict tissue heating limits.  

Noise efficiency factor (NEF) is the typical metric to quantify the amplifier noise vs. power 

efficiency [42] with the goal of achieving low input referred noise while drawing low current. 

While some amplifiers [162] have approached the ideal NEF of 1 (i.e., the NEF of a single bipolar 

junction transistor), neural recording amplifiers tend to have much larger NEF (3-7) because of 

many other stringent specifications such as: high input impedance, low signal frequency, high 

common mode rejection ratio, and high power supply rejection ratio [163]. In this work, we plan 

to develop a new neural recording amplifier that achieves an NEF of 1.8 while meeting the other 
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listed specifications. We will use a pre-amplifier stage that performs parametric amplifica t ion 

based on MOS C-V characteristics; this is coupled with effective suppression of the sampling-

induced kT/C noise by the electrode impedance. Power will be further limited with stepwise 

charging of the source voltage in the parametric amplifier. 

6.2  Parametric Amplification 

Parametric amplification via modulation of capacitance was introduced in [164], as shown 

in Figure 6.1. The DC gate voltage of the sampling capacitor sets the MOS capacitor in strong 

inversion during the track phase (Vs = VDD). After the input signal is sampled, the source voltage 

of the sampling p-type transistor is switched from VDD to GND, increasing the threshold voltage 

and setting the transistor in depletion mode. This reduces the gate capacitance, and with the total 
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Figure 6.1 Schematic (top left), cross section view (bottom left), input and output voltages (right) 

of a PMOS discrete-time parametric amplifier (DC voltages are neglected) 
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charge on the capacitor unchanged, a “parametric” amplification of the input signal is achieved. 

However, sampling operation of the parametric amplifier incurs kT/C noise, making it difficult to 

achieve low input referred noise. When the input signal is sampled on the sampling capacitance C 

at rate fs, the input referred noise floor becomes kT/Cfs due to noise aliasing as shown in Figure 

6.2 (top) 

To address this issue, we first note that microelectrode-to-brain interfaces of neural 

recording probes typically exhibit large impedances (>100kΩ [163]), which set the input R-C 
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Figure 6.2 Sampling noise when the input bandwidth is larger than the sampling frequency (top 

left). Sampling noise when the input bandwidth is smaller than the sampling frequency due to a 

large source resistance (top right). Noise calculation after the sampling when the input 

bandwidth is smaller than the sampling frequency (bottom left). NEF calculation of an amplifier 

chain composed of a parametric and a conventional amplifier (bottom right). 
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bandwidth to be far smaller than the sampling frequency, assuming a reasonable capacitor size of 

< 10pF (Figure 6.2). In this case, the additional noise generated by the sampling operation is 

4kTRon where Ron is the sampling switch on-resistance. A more detailed analysis is given in Figure 

6.2 (bottom left) and shows that sampling noise becomes < 1% of resistor noise when fs is 12.8× 

higher than the input R-C bandwidth. The NEF of the amplifier chain, consisting of a parametric 

and conventional amplifier can be further defined as follows: 
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(55) 

where vrms,par, vrms,amp, and Apar are the noise from parametric amplifier due to sampling, the 

following conventional (main) amplifier input referred noise, and the parametric amplifier gain, 

respectively. Ipar and Iamp are switching currents of the parametric amplifier and the conventiona l 
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Figure 6.3 Schematic of the proposed instrumentation amplifier. 
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amplifier bias current, respectively. Note that input referred noise of the main amplifier is scaled 

by Apar. Increasing the sampling frequency can lower vrms,par by reducing noise aliasing at the 

expense of increased switching power for the MOS capacitor and vrms,amp reduces with larger Iamp, 

as expected. Therefore, the total amplifier chain NEF is a function of fs and Iamp and is plotted in 

Figure 6.2 (bottom right) assuming a main amplifier NEF of 2. The north and south corners 

represent cases in which one of the amplifiers’ current is large, such that the other amplifier 

dominates total noise. The optimum combination of fs and Iamp exists through a line from west to 

east corner where noise and current levels of the parametric and main amplifiers are balanced. 

6.3  Adiabatic Source Switching 

In order to reduce NEF when using parametric amplification, it is critical that the source 

switching power at node Vs is kept small. In this work, we adopt an 8-phase soft-charging 

technique [165] to minimize the current overhead, as shown in Figure 6.3 (bottom). Instead of 

driving the source voltage directly to VDD or GND, the voltage is switched in small steps by 

charge sharing intermediate capacitors at each step. The intermediate voltages are uniformly self-

defined after several cycles of transitions. 

6.4  Proposed Neural Recording 

Figure 6.3 shows the detailed schematic of the proposed amplifier. A variable gain 

amplifier (VGA), employs a conventional structure using capacitor ratio and is placed after the 

main amplifier. The low cutoff frequency of the amplifier chain is determined by the pseudo-

resistor that forms a DC servo loop for the variable gain amplifier (VGA). A fast settling path is 

implemented using pseudo-resistors with a lower threshold voltage in order to reduce startup time 

while retaining a sufficiently large pseudo-resistance during normal operation. Note that this 
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structure is not suitable for the low noise amplifier (LNA) and only as a third stage, variable gain 

amplifier due to its large input capacitance. As parametric amplifier gain depends on the 

capacitance ratio before and after switching the source voltage, a large LNA input capacitance can 

lower its gain. Instead, we adopt an LNA that achieves its gain of 4 using a gm ratio as shown in 

Figure 6.3 (top). Device transconductance is proportional to the bias current when it operates in 

the subthreshold region. Therefore, LNA gain can be accurately controlled by using the current 

ratio. 

10
0

10
1

10
2

10
3

10
4

10
5

-30

-20

-10

0

10

20

30

40

50

60

1 2 3 4 5 6 7
0

0.5

1

P
e
rc

e
n
t

Chip #

1 2 3 4 5 6 7
0

1

2

3


V

Chip #

0 2 4 6 8
0

20

40

60

80

Chip #

[d
B

]

 

 

CMRR

PSRR

Gain

10
0

10
1

10
2

10
3

10
-15

10
-14

10
-13

10
-12

10
-11

10
3

10
4

10
-15

10
-14

10
-13

10
-12

Apar on, LFP mode Apar on, AP mode 

Apar off, LFP mode 

Apar off, AP mode 

Frequency [Hz]

G
a

in
 [

d
B

]

PSRR = 70dB

CMRR > 77dB

Frequency [Hz]

In
p

u
t 

re
fe

rr
e

d
 n

o
is

e
 

(V
2
/ 

H
z
)

4kTRs

LFP band AP band

Circuit Noise Equivalant to 
38nV/ Hz

4kTRs

T
H

D
 [

%
]

In
p

u
t 

re
fe

rr
e

d
 

n
o

is
e
 [

V
rm

s
]

[d
B

]

Frequency [Hz]

Sample #

Sample #

Sample #

 

Figure 6.4 Measured transfer function, PSRR, CMRR, input referred noise and THD with 

2mVpp input. 
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6.5  Measurement Results 

The proposed design is fabricated in 0.18μm CMOS technology with an area of 0.073mm2 . 

Figure 6.4 (top) shows the measured amplifier transfer function. The mid-band gain of the 

amplifier is improved by 3.37× by parametric amplification. The gain of the complete proposed 

amplifier is configurable from 30 to 60dB. The input referred noise is measured with 250kΩ source 
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Figure 6.5 Measurement performance of the parametric amplifier + LNA. Input referred noise 

when fs=550kHz (top left). Input referred noise when Iamp=470nA (top right). 2-D and 3-D plot 

of NEF as a function of Iamp and fs (bottom). 
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resistance and is shown in Figure 6.4. The input referred noise for the action potential (AP) 

frequency band (0.3-5kHz) is measured to be 2.1μVrms while consuming 2.4μW from 1.2V. The 

measured input referred noise for the local field potential (LFP) band (1-500Hz) is 3.5 μVrms. In 

addition, the performance metrics of 7 samples are plotted in Figure 6.4 (right). Neural recording 

front ends are often implemented as an array of a large number of channels, allowing for the non-

overlapping clock generator, charge sharing capacitors, and reference current generators to be 

shared. In the calculation of power and area, the aforementioned building blocks are considered 

amortized as in a multi-channel recording system.  

Figure 6.5 shows the measured noise characteristic of the proposed amplifier while varying 

LNA amplifier bias current and parametric amplifier sampling frequency. With a fixed sampling 

frequency of 450 kHz, total noise is dominated by the LNA when Iamp is small and the noise 

eventually saturates at larger Iamp when sampling noise starts to dominate (Figure 6.5, top left). 
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Gen.
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Figure 6.6 Die photograph of the proposed parametric amplifier based neural recording 

amplifier. 
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Similarly, output noise also decreases as the sampling frequency increases until it saturates to the 

noise level of the LNA (Figure 6.5, top right). Therefore, an optimal NEF is achieved when the 

noise sources are balanced with each other, as seen in Figure 6.5 (bottom left). Table 6.1 

summarizes the performance of the proposed design. The combination of the parametric amplifier 

and the LNA achieves 1.55 NEF when integrating noise from 300 Hz to 5 kHz for spike detection 

while also achieving competitive common-mode rejection and power supply rejection ratios of > 

70 dB. The NEF of the full proposed design is 1.8 in AP mode and 3.07 in LFP mode. Figure 6.6 

provides a die photo of the design. 

Table 6.1 Performance comparison with state-of-the-art instrumentation amplifiers for neural 

recording. 

1 Estimated

Power (μW)

Input referred Noise 

(μVrms)

NEF

Gain (dB)

Signal type

Bandwidth (Hz)

Input common mode 

range (mVpp)

PSRR (dB)

CMRR (dB)

THD

Size (mm
2
)

Technology

This work
Ng,

ISSCC2015

Chandrakumar, 

ISSCC2017

Chandrakumar, 

ISSCC2016

Lopez, 

ISSCC2013

5.4

3.2

2.83

30-74

AP

300-6000

-

70

60

1% (9mVpp)

0.088
1

0.18μm

2

AP: 7

LFP: 2

AP: 4.9

LFP: 7

-

AP+LFP

1-5000

40

-

-

-74 dB

0.071

40nm

2.8

AP: 5.2

LFP: 1.8

AP: 4.4

LFP: 7.4

-

AP+LFP

1-5000

40

-

-

-76 dB

0.069

65nm

2.8

4.13

2.93

57.8

AP+LFP

1-8200

200

78

> 80

-

0.042

65nm

2.4

AP: 2.1

LFP: 3.5

AP: 1.55

LFP: 2.68

30-60

AP+LFP

1-5000

45

> 70

> 70

1% (4mVpp)

0.071

0.18μm

AP: 1.8

LFP: 3.07

Parametric 

Amp + LNA

P-AMP + LNA 

+ VGA 

+ Offset AMP

Input impedance (MΩ) 74 - 300 1600 -

Muller, 

ISSCC2014

2.8

1.3

4.76

-

LFP

1-500

-

-

-

-

0.025

28

65nm
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6.6  Conclusion 

In this chapter, a power efficient analog front-end scheme using a parametric amplifica t ion 

is introduced. The noise aliasing induced by the sampling operation is avoided by using the 

inherent large source impedance of a microelectrode. The proposed scheme achieved the lowest 

NEF of 1.8 in the neural recording applications. 
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CHAPTER 7   

Conclusions and Future Directions 

 

7.1  Summary of Contributions 

There are many benefits that can be obtained by implanting a millimeter scale computing 

platforms. First, it reduces the risk of human implantation drastically. The implantation can be 

simply done with a syringe rather than surgical operation. As the surface area decreases, long- term 

sustainability of the system improves drastically. Second, the application space for environmenta l 

monitoring sensor nodes, such as temperature, pressure and acceleration sensors expands much 

more widely as a result of the miniaturized system size. 

The major challenges to realizing such a small system result from the limited battery 

capacity. Compared to Alkaline AA battery, the capacity shrunk by a factor of million. Therefore, 

the design circuit regime should be moved from milliwatt to nanowatt level. In addition, the die 

size needs to be small enough for the mm-scale integration while the use of off-chip components 

is highly limited. 

In Chapter 3 of this dissertation, a wake-up timer that consumes 4.7nW and exhibits 13.8 

ppm/℃ temperature coefficient was introduced. The ultra-low power consumption is highly 

advantageous in reducing the system sleep power because the wake-up timer is the key always on 

block that dominates the total sleep power consumption. In addition, the reported temperature 



108 

 

coefficient of 13.8 ppm/℃ is the lowest among RC oscillators, and it drastically improves 

energy overhead for the synchronization with peers. 

The 2.5psrms digital-PLL presented in Chapter 4 improves the system stability by reducing 

the variation of the loop bandwidth using a nested FLL. Furthermore, a noise detection scheme 

using the statistical behavior of BBPFD was proposed to maintain constant output noise 

performance under the change of environment such as temperature. Consequently, the power 

overhead is minimized with the given noise specification. 

In Chapter 5, a 2.7cm3 GNSS logger was proposed. It includes a die-stacked sensor platform 

composed of ARM cortex M0 processor, sensor, radio, solar cell, decoupling capacitor and 

harvester layers. The proposed system can acquire up to 1791 fixes using a miniaturized antenna 

with the radiation efficiency of 20.66%. 

Finally, Chapter 6 of this dissertation covered a power efficient front-end scheme using 

parametric amplification. Sensor interface circuits, which interacts with pressure, humid ity, 

acceleration and bio-medical signals are required to exhibit appropriate input referred noise so it 

can monitor the signals with sufficient accuracy. At the same time, the power consumption of the 

interface needs to be as low as possible due to the highly constrained power budget incurred by 

the system form factor. Therefore power efficiency of the front-end amplifiers is highly 

emphasized. This work proposes an analog-front-end scheme using a parametric amplification for 

neural recording applications. The proposed work showed input referred noise of 2.1 µV and 3.5 

µV for action potential bandwidth and local field potential bandwidth, respectively. 

7.2  Future Directions 

The presented wake-up timer uses only a single pair of supply voltages without requiring 

any external references or trimmings, which makes it readily applicable to a sensor node system. 
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Therefore, implementation of a sensor node system that benefits from its ultra-low power 

consumption and accuracy can be the next step of this work. 

The proposed noise detection scheme using statistical behavior of the BBPFD occupies 

small area and consumes negligible power consumption. However, it takes more than 5ms to 

construct a fine representation of the output noise distribution which can be an issue for 

applications requiring fast locking time. Instead, a noise detection scheme using a time-to-digita l 

converter (TDC) can be studied as an attempt to improve the noise locking time. In addition, the 

presented FLL-based DCO has a highly linear frequency turning curve. This characteristic can be 

exploited to instantly lock the output frequency with a change of the frequency multiplication ratio.  

The GNSS logger system presented in Chapter 5 adopted an off-the-shelf RF-front end and 

a flash memory. By integrating those circuits to the die-stacked sensor platform, the system size 

can be further miniaturized as shown in Figure 7.1. 

 

Figure 7.1 A GNSS receiver implemented by integrating all the building blocks in a die-stacked 

platform except for crystals and power regulators. 
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Lastly, this dissertation presented a neural recording amplifier using parametric 

amplification. The sampling noise during the parametric amplification phase was avoided by 

exploiting the large impedance of the microelectrode. This concept needs to be verified using a 

practical microelectrode. Furthermore, a multichannel neural recording system using this 

parametric amplification can be implemented to validate the practicality of the circuit. 
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