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Abstract: This study delineates the regulatory effects of

inflammatory cytokines on mononuclear phagocyte plas-

minogen activator (PA) activity. The mechanisms by
which mononuclear phagocytes modulate PA activity are

described. Mononuclear phagocytes regulate net PA ac-

tivity by the balanced expression of urokinase-type PA

( uPA), in either secreted or membrane-associated forms,
and a specific plasminogen activator inhibitor, PAI-2.

Therefore, understanding how immunomodulators regu-

late macrophage PA activity requires that the compara-

tive effects of uPA and PAI-2 be elucidated. We deter-

mined how recombinant interferon-y (IFN) and tumor

necrosis factor-a (TNF) regulate plasminogen activation

in monoblast-like U937 cells and normal human mono-

cytes. In U937 cells, both IFN and TNF induced concur-
rent increases in secreted PA and PA inhibitor activities.

These effects were accompanied by increased immuno-

reactive uPA and PAI-2 in conditioned media (enzyme-

linked immunosorbent assay) and steady-state levels of

cellular uPA and PAI-2 mRNA (Northern analysis). To

determine the relative abilities of IFN and TNF to either
promote or inhibit plasmin generation, we directly com-

pared the effects IFN and TNF, using optimal stimulating

concentrations. IFN induced PA activity to 180% of the

level achieved by TNF. In contrast, IFN elicited only
78% of the PA inhibitor produced by TNF stimulation.
These differences in secreted activity can be explained by

the shift in balance between uPA and PAI-2 proteins. Im-
munoreactive uPA was induced equally by IFN and TNF,

but TNF generated higher levels of PAI-2. The same over-

all pattern of results was seen in normal human mono-

cytes. IFN and TNF differ greatly in the ability to aug-
ment receptor-bound PA activity in U937 cells, as IFN
induced a twofold increase but TNF had no effect. We

conclude that IFN and TNF modulate mononuclear
phagocyte proteolytic activity through coordinate regula-

tion of secreted and receptor-bound uPA, balanced against

concurrent expression of PAI-2. These effects are cyto-
kine specific, as IFN is superior to TNF in stimulating

expression of both secreted and receptor-associated PA ac-

tivities. These properties suggest mechanisms by which

mononuclear phagocytes control proteolysis in cytokine-

rich inflammatory foci. J. Leukoc. Biol. 31: 256-263;

1992.
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INTRODUCTION

Substantial evidence indicates that plasmin formation through

the action of plasminogen activators (PAs) is crucial for the

orderly generation and resolution of inflammation [13].

Mononuclear phagocytes are the dominant source of PA

activity among leukocytes [13]. During recruitment, mono-

nuclear phagocytes utilize urokinase-type plasminogen acti-

vator (uPA) to focus piasmin activity in the immediate pen-

cellular environment, thereby effecting sufficient extracellular

matrix degradation to permit migration across tissue planes

[16, 26]. Plasmin is believed to be important in inflammatory

tissue remodeling through its degradation of provisional

fibrin-fibronectin matrices and many of the glycoprotein

constituents of basement membranes [13]. Some immuno-

modulatory effects of uPA are indirect, as uPA has been

shown to be a chemotactic factor for polymorphonuclear leu-

kocytes and a lymphocyte mitogen [5, 7]. Further, uPA acti-

yates some cytokines, such as tumor necrosis factor (TNF),

transforming growth factor �3, and interleukin-!, but macti-

yates others, such as interferon--y (IFN) [24, 25, 31, 37].

Thus, the expression of PA activity is intimately involved in

the course of the inflammatory response by directing inflam-

matory cell trafficking, matric remodeling at the inflamma-

tory site, and cytokine-mediated cell-to-cell signaling.

Because expression of macrophage PA activity affects so

many aspects of the inflammatory response, it is necessary to

understand how this system is regulated. These mechanisms

are undoubtedly complex, as mononuclear phagocytes cx-

press not only uPA and a plasma membrane receptor for

uPA (uPAR) but also a PA inhibitor (PAI-2) [4, 41]. It ap-

pears that mononuclear phagocytes have the capacity to

modulate expression of each component of the PA system in-

dependently. We have shown, for example, that uPA and

PAI-2 synthesis can be modulated in either parallel or diver-

gent fashion depending on the agonist used [19, 28]. Agonist-

specific effects on uPA binding sites have also been shown

[ 27]. The net expression of mononuclear phagocyte PA ac-

tivity, however, is a reflection a dynamic balance of these,
highly interactive proteins. Therefore, examining one of

these proteins in isolation is insufficient. Instead, it is essen-

tial to adopt a more integrated approach in which changes

in PA activity are assessed in the context of concomitant,

changes in PA inhibitor activity.

The factors in the inflammatory milieu responsible for
regulating macrophage. PA activity remain poorly character-

ized. Cytokines likely provide important regulatory signals
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for macrophage PA activity. PA activity is expressed abnor-

maliy in vivo in inflammatory lung disease, such as sarcoido-

sis, in which cytokines are pathogenetically important {3,

20]. In vitro, stimuiated lymphocytes stimulate net macro-
phage PA activity, but the mechanisms are unclear because

individual effects on uPA, PAI-2, and uPAR were not de-

scribed [18, 40]. Conversely, inflammatory cytokines and

hematopoietic growth factors have been shown to induce

changes in either PA, PA inhibitor, or uPAR in isolation, but

the effects of these mediators on the relative balance between

these components has not been delineated [9, 27, 32, 36]. Ac-

cordingiy, it is not known whether individual cytokines affect

net PA activity or the components of the PA system in an

agonist-specific manner. To determine whether there is cyto-

kine specificity in the regulation of the mononuclear phago-

cyte PA system, we compared the effects of IFN and TNF on

the relative expression of PA and PA inhibitor activities in

human mononuclear phagocytes. We specifically examined

the regulatory effects of these inflammatory cytokines on

uPA and PAI-2 synthesis, as well as on surface receptor-

associated PA activity.

MATERIALS AND METHODS

Reagents

Plasminogen was prepared from outdated human plasma by

lysine-Sepharose affinity chromatography (Pharmacia Chem-

icals, Piscataway, NJ) [14]. Plasminogen preparations were

rendered free of active plasmin by treatment with phenyl-

methylsulfonyl fluoride (1 mM) for 16 h at 25#{176}C,followed by

extensive dialysis in 0.05 M phosphate buffer, pH 7.5. The

human PAI-2 cDNA, generously provided by Andrew C.

ebb (Department of Biological Sciences, Weilesley College,

ellesiey, MA), was the subcioned internal PstI-DraI frag-

ent ofthe pcD-1214 clone in pGEM-2 (Promega, Madison,

I), inserted between the PStI and SmaI sites in the poly-

inker [42]. Human urokinase cDNA was obtained from the

apanese Center Resources Bank-Gene, National Institute of

eaith, Tokyo [34]. This is a nearly full-length clone inserted

n the PstI-PvuII site of pcD. Culture medium and additives

crc found to contain less than 0.1 endotoxin unit/mi, as de-

ermined by a Limulus amebocyte lysate assay (Whittaker

ioproducts, Walkersville, MD).

solation of Monocytes

uman peripheral blood monocytes were purified from

uffy coats provided by the American Red Cross, Detroit,

I. Buffy coats were diluted 1:1 with 5 mM EDTA-normai

aline and purified by density gradient centrifugation through

ymphoprep (Nycomed AS, Oslo, Norway). After washing

he RPMI-1640 (Gibco, Grand Island, NY), cell number was

etermined by counting in a hemocytometer and viability

as assessed by trypan blue exclusion. Differential cell

ounts were determined by examining Giemsa-stained cyto-

entrifuge samples. The mononuclear cells were resuspended

t 2 x 106 cells/mI in complete medium consisting of

PMI-1640 supplemented with penicillin (100 U/mi), strep-

omycin (100 �g/ml), gentamicin (100 pg/mi), L-glutamine

2 mM), and 5% fetal bovine serum (Hyclone, Logan, UT),‘nd the monocytes were purified by adherence in 16-mm

�lastic dishes (Corning, Corning, NY) at 5 x 106 cells/well
approximately 2 x 106 monocytes) for 2 h in humidified air

ontaining 5% CO2 at 37#{176}C. Nonadherent cells were re-

noved by washing with RPMI-l640 at 37#{176}C.and adherent

:elis were cultured in complete medium or serum-free

nedium as indicated below.

U937 Cell Culture

U937 cells (American Type Culture Collection, Rockville,

MD) were maintained in complete medium in humidified
air containing 5% CO2 at 37#{176}C.Cells were routinely pas-

saged into 50 ml of fresh medium by seeding 5 x 106 cells

into 75-cm2 tissue culture flasks (Corning) at 3- to 4-day in-

tervais. Cells were always passaged 24 h before stimulation

with cytokines.

Preparation of Cells for Determination of PA and
PA Inhibitor Activities

U937 cells were washed extensively in RPMI-1640 and sus-

pended in serum-free medium supplemented with 0.1%
(w/v) bovine serum albumin (BSA; Sigma Chemical Co., St.

Louis, MO), dispensed (106 in 1 ml) in sterile 12 x 75 mm

polypropylene tubes (Falcon, Lincoin Park, NJ), and in-

cubated with varying concentrations of recombinant IFN
and TNF (Genzyme, Boston, MA). After 24 h, cells and

conditioned media were separated by centrifugation. The PA

and PA inhibitor activities of the conditioned media were

then determined by esterolytic assays. The cells were washed

extensiveiy with RPM!, counted, and used immediately to

measure receptor-bound uPA activity (see below).

Adherent monocytes were cultured in serum-free medium

supplemented with 0.1% human serum albumin (American

Red Cross) for 24-48 h with varying doses of IFN and TNF.

The conditioned media were then removed and the PA and

PA inhibitor activities detemrined by esterolytic assays. As

an internal quality control for each experiment, monocytes

were cultured in parallel wells with 10 ng/mi phorhol

myristate acetate (PMA) to ensure that there was the ex-

pected increase in PA inhibitor activity [35]. On occasion,

cells were refractory to PMA and were considered to be

either endogenously activated or injured during purification.

Data derived from these cell preparations were not used.

Determination of Receptor-Bound PA

To quantitate the uPA activity associated with the plasma

membrane uPAR, U937 cells were washed extensively with

RPMI-1640. To dissociate the uPA from its receptor, cells

were then treated with 50 mM glycine, 100 mM NaCl, pH 3,

for 3 mm, 0#{176}C,at 3 x 106 cells/mi [4, 39]. A 40% volume

of neutralizing buffer (0.5 M HEPES, 100 mM NaCI, pH 7.5)

was then added. As a control, cells were treated with a neutral

buffer consisting of 50 mM glycine, 100 mM NaC1, pH 7.4.

The neutral buffer did not displace detectable PA activity

(data not shown). Samples were centrifuged, and the super-

natant was assayed for PA activity as detailed below.

Esterolytic Assays for PA and PA Inhibitor Activities

Plasminogen activator activity was measured with the estero-

lytic assay of Coleman and Green, with minor adaptations

for use in 96-well plates [8]. Test samples (10 �&l) were mixed
with an optimal amount of plasminogen in 0.67 M glycine,

0.17% BSA, 1.7 �tM Tris, 0.02% triton X-100 (50 j�l) and in-

cubated at 37#{176}Cfor 30 mm. The plasmin generated by this

step was then quantified by addition of the synthetic plasmin

substrate thiobenzyl benzyloxycarbonyl-L-lysinate (0.2 mM;

Calbiochem. La Jolla, CA) and a color reagent, 5,5’-

dithiobis 2-nitrobenzoic acid (2.2 mM; Calbiochem) in
200 �l of 0.2 M phosphate, 0.2 M NaCl, 1% Triton X-100.

After 30 mm at 37#{176}C,optical absorbance was read at 414 nm

with a muitichannel spectropliotometer � Flow Laboratorles.

McLean, VA). Alter subtracting control values of wells lack-

ing test samples, PA activity was determined from a standard
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Fig. 1. PA and PA inhibitor activities of IFN-stimulatcd U937 cells. IFN induced a dose-related increase in both PA (left) and PA inhibitor (right) activities.

PA activity is expresserl in milliPloug units (mPU) and PA inhibitor in PAL units (1 PAl unit = I mPU inhibited). PA: P < .05; **P < .001. PA inhibitor:
*P < .01; �P < .005.
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curve generated with commercially prepared urokinase (Cal-

biochem) and expressed in milliPloug units (mPU).

Because uPA is secreted as a proenzyme, stable complexes

with PAI-2 do not form in conditioned media until ex-

ogenous plasminogen is introduced in the first phase of the

esterolytic assay [41]. Therefore, by modifying the esterolytic

assay, we can measure either PA or PA inhibitor activity in
conditioned media. To measure PA inhibitor activity, serial

dilutions of the test samples were coincubated with 2 mPU

of urokinase and the residual PA activity was measured in
standard fashion. PA inhibitor activity was calculated from

a plot of the sample concentration (reciprocal of the dilution

factor) versus residual PA activity and expressed as PA in-

hibitor units/ml (1 PAl unit = 1 mPU PA inhibited). En-

dogenous PA activity was included with the exogenous 2

mPU when calculating PA inhibition.

uPA and PAI-2 Antigens

Levels of immunoreactive uPA and PAI-2 in 24-h conditioned

media were measured using Tint-Elize-uPA and Tint-Elize-
PAI-2 enzyme-linked immunosorbent assay (ELISA) kits ac-

cording to manufacturer’s directions (American Diagnostica,

Greenwich, CT).

mRNA Analysis

For these experiments, U937 cells were cultured in serum-

containing medium (2.2 x l0� in 50 ml) in 75-cm2 flasks in

the presence or absence of IFN (0-1000 U/ml) and TNF

(0-500 U/mi) for periods ranging from 0.5 to 12 h. Cells were

washed with RPMI-1640 and flash frozen at - 70#{176}C.To ex-

tract cellular RNA, cell pellets were sonicated on ice in urea

(5 M), LiCl (3 M), and heparin (14 U/ml), according to the

method ofAuffray and Rougeon [1]. RNA was pelleted after

overnight precipitation at - 20#{176}Cand extracted repeatedly

with phenol-chloroform. The aqueous layer was precipitated

with ethanol-Na acetate at -20#{176}C. The RNA pellet was

suspended in RNAase-free water and concentration deter-

mined by spectroscopy at 260 nm.

Human monocytes were purified from mononuclear cells

by adherence to 60-mm plastic tissue culture dishes (Corn-

ing). Mononuclear cells (2 x 107) were plated, routinely

yielding 8 x 106 monocytes/dish. The adherent monocytes

were incubated for 4 h in serum-containing medium in the

presence and absence of IFN (1000 U/ml) and TNF (500

U/ml). The medium was then removed and the monocytes

lysed directly in the culture dish by repeated pipet aspiration

in 4.23 M guanidine isothiocyanate (IBI, New Haven, CT),

0.5% sarcosyl, 25 mM citric acid, and 0.72% 2-mercapto-

ethanol. The RNA was purified by phenol-chloroform ex-

traction and precipitation at - 70#{176}Cin isopropanol-Na ace-
tate [6] and quantitated as above.

The RNA was size fractionated electrophoretically on 1%

agarose gels containing 3.5 �tM formaldehyde and 20 pg/mi

ethidium bromide [30]. Visualization of ribosomai bands

under ultraviolet (UV) light provided internal size markers

for each lane and also confirmed that the RNA content was

equal in corresponding lanes. The RNA was transferred to

Hybond nylon filters (Amersham, Arlington Heights, IL)

according to the method of Southern and fixed by exposure

to UV light [30]. The cDNA of interest was labeled with

[32P]dCTP (Amersham) by random priming, achieving

specific activities of approximately 5 x 108 cpm/�g DNA

[17]. The nylon filters were then hybridized with 2 x 10’ cpm
of [32P]cDNA for 18 h at 65#{176}C,followed by serial washes of

increasing stringency, the final wash consisting of 0.1 x stan-

dard saline citrate (0.15 M NaCl/0.15 M Na citrate), 0.1% so-

dium dodecyi sulfate at 68#{176}C[30]. The filters were then de-

veloped by autoradiography, using Kodak XAR-5 X-Omat�

AR film at - 70#{176}C(Eastman Kodak, Rochester, NY).

Statistics

For experiments utilizing U937 cells, comparisons between

groups were performed using an unpaired Student’s I-test

F45]. Where appropriate, data were log transformed to en-

sure equivalent variances between groups. For experiments

utilizing peripheral blood monocytes, a paired Student’s t-

test was used to compensate for interdonor variability in the

levels of PA and PA inhibitor activities expressed under con-

trol conditions.

RESULTS

Cell Culture

U937 cells were always >95% viable at the onset of cytokine

stimulation. After incubation in serum-free medium for

24 h, cells were routinely >90% viable, even at the highest

concentrations of cytokines (1000 U/ml IFN and 500 U/mI
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NF). Higher concentrations significantly reduced cell via-

ility in 24-h cultures. Mononuclear cells consisted of ap-

roximately 40% monocytes, and adherent cell preparations

ere routinely >94% monocytes and >95% viable. The

fects of cytokines and serum-free medium on monocyte

iability were identical to those observed in U937 cells.

ffects of IFN and TNF on PA and PA Inhibitor
ctivities of U937 Cells

) determine the effects of IFN on PA and PA inhibitor ex-

ession, conditioned media were assayed after incubation

r 24 h with 0-1000 U/mi IFN. Conditioned media of con-

ol cells consistently contained low levels of PA activity

4.7 ± 8.1 mPU/ml). IFN induced a marked increase in PA

tivity in a dose-dependent manner, reaching a maximum

1000 U/mi (391 ± 40.2 mPU/ml; P < .001) (Fig. 1). Con-

tioned media of control cells also showed activity when

sayed for PA inhibitor (25.8 ± 2.4 PAl units/ml). In

trailel with the increase in PA activity, IFN induced a dose-

pendent increase in PA inhibitor activity that reached a

aximum at 1000 U/mi (146.0 ± 46.2 PAl units/ml;

< .005) (Fig. 1).

Cells were stimulated with 0-500 U/mi TNF for 24 h to

termine the effects on secreted PA and PA inhibitor activi-

�s. Conditioned media from control ceiis contained PA ac-

Tity (71.8 ± 10.0 mPU/mi). TNF increased PA activity in

dose-dependent manner, reaching a maximum at 500 U/ml

55.9 ± 11.4 mPU/mi; P < .001) (Fig. 2). TNF induced a

trallei increase in PA inhibitor activity, from control levels

. 25.8 ± 2.4 PAl units/mi to a maximum of 206 ± 83.4

) < .005) in response to 500 U/mi (Fig. 2). The maximal

crease in PA activity was significantly less than that achieved
r the highest concentration of IFN (P < .02). However, the

fference between the cytokines in maximally inducing PA

hibitor activity was not statistically significant.

To compare directly the effects of IFN and TNF on secreted

It and PA inhibitor activities, cells were stimulated in

trallel using a maximal concentration of either IFN (1000

/ml) or TNF (500 U/ml). IFN stimulation increased PA ac-

Tity to 180 ± 21.3% of the level produced by TNF (Fig. 3;

< .01). By contrast, IFN-induced PA inhibitor activity

as only 78 ± 11.7% of the activity induced by TNF

) = .15). Thus, the two cytokines differed markedly in alter-

ing the balance between secreted PA and PA inhibitor activi-

ties (P = .008; Fig. 3), with IFN producing a secretory

profile more amenable to fluid-phase plasminogen activation.

Measurement of uPA and PAI-2 Antigens

Macrophages secrete uPA in a zymogen form that is not in-

hibited by PAI-2 until it is activated by plasmin [41]. This

permits measurement of both PA and PA inhibitor activities

in conditioned media. When piasminogen is added in the

initial phase of the esterolytic assays, however, there is a

potential for forming uPA-PAI-2 complexes that do not con-

tribute to either net PA or PA inhibitor activities. We there-

fore used ELISA assays for uPA and PAI-2 to determine how

the results of the activity assays reflected changes in the reia-

tive balance between secreted uPA and PAI-2 proteins. We

stimulated U937 cells with maximal concentrations of IFN

and TNF (1000 and 500 U/mI, respectively) and assayed con-

ditioned media for uPA and PAI-2 antigens. In keeping with

U-
z

z
U-

2.0

1.0

0.0

PA

p = 0.008

PA INHIBITOR
Fig. 3. Comparative effects of IFN and TNF on secreted PA and PA inhibi-

tor activities in U937 cells. Activities induced in parallel cultures by IFN

(1000 U/mi) and TNF (500 U/mI) are expressed as a ratio (IFN/TNF). IFN

induced 180% of the PA activity produced by TNF (IFN/TNF >1;

P < .01). IFN elicited only 78% of the PA inhibitor activity produced by

TNF (IFN/TNF < I; P = .15). IFN/TNF (PA) * IFN/TNF (PA inhibitor);

P = .008.
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Fig. 5. (A) Northern blot analysis of U937 cells incubated with IFN

U/mi) for 0-6 h. Filters were hybridized with a cDNA probe for

(2.4 kb; top) and PAI-2 (2.0 kb; bottom). IFN increases mRNA for

uPA and PAI-2, with the maximal increase occurring at approximately 6

(B) Northern blot analysis of U937 cells incubated with TNF (500

0-6. Filters were hybridized with a eDNA probe for uPA (top) and

(bottom). TNF increases mRNA for both uPA and PAI-2, peaking at

proximately 6 h.
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Fig. 4. Effects of IFN and TNF on secretion of uPA and PAI.2 antigens by

U937 cells. IFN (1000 U/mi) and TNF (500 U/mi) induced significant in-

creases in uPA and PAI-2 antigens over unstimulated controls. IFN. and

TNF-induced uPA antigen levels were virtually identical, whereas TNF in-

duced significantly higher levels of PAI-2 antigen than did IFN (P < .02).

*P < .002; � �P < .05.

the expression of functional activity, IFN and TNF induced

significant increases in both uPA and PAI-2 antigens (Fig. 4).

IFN and TNF produced equal levels ofuPA antigen. By con-

trast, the level of PAI-2 antigen secreted by IFN-stimuiated

cells was significantly lower than that induced by TNF

(P < .02). Therefore, IFN produces higher levels of net PA

activity than TNF because there is less offsetting inhibition

by PAI-2, not because uPA secretion is relatively enhanced.

This demonstrates that although IFN and TNF are alike in

increasing both uPA and PAI-2 levels, they differ significant-

ly in their modulation of the relative baiance of enzyme and

inhibitor and thus in their induction of net PA activity.

Effect of IFN and TNF on mRNA for uPA and PAI-2

We next determined whether IFN- and TNF-induced in-

creases in uPA and PAI-2 protein levels could be explained

by proportionate increases in steady-state mRNA levels.

Cells were incubated with either IFN (1000 U/ml) or TNF

(500 U/mI) for varying time intervals prior to lysis and RNA
extraction, as detailed in Materials and Methods. The same

filters, stripped and reprobed, were used for determination

of both uPA and PAI-2 mRNA. IFN induced substantial in-

creases in mRNA for both uPA and PAI-2 (Fig. 5A). Both

message levels peaked after stimulation for 4-6 h. The mes-

sage levels declined at similar rates, returning to near control

levels within 12 h. TNF also increased mRNA for both uPA

and PAI-2 over a similar time period (Fig. 5B). The increase

in uPA mRNA levels over controls was consistently smaller

in response to IFN than TNF, whereas the two cytokines in-

duced similar increases in PAI-2 mRNA. The same pattern

was seen with monocytes (Fig. 6; see below).

Effects of IFN and TNF on PA and PA Inhibitor
Expression by Monocytes

We sought to determine whether the results of experiments

with U937 cells accurately reflect the effects ofIFN and TNF

on authentic human mononuclear phagocytes. Like U937

cells, monocytes expressed secreted PA inhibitor activity that

increased from 63 ± 19 PAl units/ml in controls to 106 ± 33

(P < .05) in response to IFN (1000 U/mI) and to 167 ± 50

(P < .05) in response to TNF (500 U/mi) (Fig. 6). In con-

trast to U937 cells, PA activity was not detectable in any of

the monocyte supernatants. Extending the incubation times

to 48 h did not appreciably alter these results (data not
shown).

Monocytes were incubated with either IFN (1000 U/mi)

TNF (500 U/mi) for 4 h prior to lysis and RNA

In parallel with the PA inhibitor activity data, both IFN

TNF increased mRNA for PAI-2 (Fig. 6).

mRNA was consistently detectable under controi

IFN and TNF induced marked increases in uPA mRNA
were quite similar to the results obtained with U937

Thus, the apparent absence of PA activity in

conditioned media is likely due to a lower level of uPA

TNF thesis and a predominance of PAI-2 secretion, rather than

fundamental difference in uPA regulation between

cytes and U937 cells.

Determination of Receptor-Bound uPA

We further determined whether stimulation with IFN

TNF for 24 h also modulated the uPA activity bound to

rophage plasma membrane receptors. In parallel with

effects of IFN and TNF on secreted PA activity, we

that the cytokines had markedly different effects on

bound uPA of U937 cells. Even relatively low doses of

(100 U/mi) increased receptor-bound uPA above
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Fig. 6. Effects of IFN and TNF on normal human monocytes. Stimulation

ofmonocytes with IFN increased secreted PA inhibitor activity. Stimulation

of monocytes with TNF also increased secreted PA inhibitor activity (left;

*P < .05). Data are expressed as in Fig. 1. Northern blot analysis (right)

shows that stimulation of monocytes with either IFN or TNF increases

mRNA for both uPA and PAI-2.

values (from 61.8 ± 15.3 mPU/1 x 106 cells to 117 ± 21.1;

P < .02) (Fig. 7). By contrast, TNF had no effect on

receptor-bound uPA activity, even at the highest doses used

(500 U/mi). These experiments were limited to U937 cells as

the leveis of PA activity that could be extracted from mono-

cytes by acid washing were not consistently above the detec-

tion limit of the esterolytic assay.

�DISCUSSION

Mononuclear phagocytes control plasminogen activation by

combined expression of uPA, PAI-2, and the uPA receptor.

We have shown that macrophages can be induced to regulate

the uPA and PAI-2 genes in tandem or divergent fashion [19,

28]. The ability to regulate the components ofthe PA system

independently enables macrophages to express a broader

range of PA activity than would be possible if modulation of

uPA synthesis were inextricably linked to parallel changes in

PAI-2 synthesis. This also suggests that equivalent changes

in PA activity can be achieved mechanistically by a spectrum

ofconcomitant changes in uPA and PAI-2 expression. Clear-

ly, then, the overall regulation of macrophage PA activity

cannot be understood by isolated studies of uPA, PAI-2, or

the uPA receptor. In the present study, we investigated the

regulatory effects of IFN and TNF on the relative balance of

uPA and PAI-2 expression by mononuclear phagocytes.

Both IFN and TNF increased concurrent secretion of PA

and PA inhibitor activities (Figs. 1 and 2). Increased expres-

sion of uPA and PAI-2 adequately explains these functional

changes, as increased levels of uPA and PAI-2 antigens were

present in conditioned media (Fig. 4). These findings extend

previous observations that IFN can augment expression of

uPA mRNA in macrophages [9] and that in other cell types,

such as H1080 fibrosarcoma cells, TNF can augment PAI-2

synthesis [32]. This cytokine responsiveness is consistent
with the genetic structure ofthe uPA and PAI-2 genes, which

both contain AU-rich sequences in the 3’ untranslated

regions that are typically associated with rapid modulation

by inflammatory cytokines [2, 44].

It is important to note that the responses to IFN and TNF

were similar only to the extent that both cytokines caused

up-regulation ofuPA and PAI-2. When we compared the in-

creases elicited by IFN and TNF, substantial differences in

the magnitude of responses were revealed. IFN caused a sig-

nificantly greater increase in secreted PA activity than did

TNF (Figs. 1-3). However, PA inhibitor activity did not fol-

low this pattern, as the PA inhibitor actively elicited by IFN
was approximately 75% of the response to TNF (Figs. 1-3).

Clearly, modulation of the balance between PA and PA in-

hibitor activity is cytokine specific.

By examining synthesis ofuPA and PAI-2 proteins, we de-

termined the likely basis for the difference between IFN and

TNF in augmenting PA activity, IFN and TNF produced

identical increases in uPA secretion, but PAI-2 secretion was

significantly greater in response to TNF than IFN (Fig. 4).

Thus, the cytokine-specific effects on PA activity can be at-

tributed not to a direct effect on uPA expression, but rather

to differences in the counterreguiatory effects of PA inhibitor.

The up-regulation ofuPA and PAI-2 mRNA suggests that

both cytokines augmented neosynthesis of these proteins

( Figs. 5 and 6). However, in contrast to protein levels, the in-

crease in uPA mRNA was consistently greater in response to

TNF than IFN. The discrepancy between steady-state mRNA

levels and protein expression suggests that other regulatory

mechanisms, such as translational or posttranslational steps

in uPA synthesis, are also differentially affected by these

cytokines. This does not appear to be the case for PAI-2

regulation, as we did not observe notable discrepancies be-

tween stimulated levels ofPAI-2 mRNA, antigen, and activity.

We also observed that PA activity associated with plasma

membrane uPAR was differentially affected by IFN and

TNF. IFN doubled the acid-dissociable PA activity, whereas

TNF had no effect (Fig. 7). By directly measuring receptor-

associated enzymatic activity, we extended previous work in

which uPAR was enumerated by antibody binding alone

[26]. In that study, the number of uPAR was increased by

IFN and to a lesser extent by TNF. However, here we show
that the number of uPAR occupied by endogenously gener-

ated uPA was up-regulated only by IFN. Our results could

be explained in several ways, possibly by up-regulation of

uPAR expression, with IFN inducing a larger response than

TNF. Alternatively, the lower levels of PAI-2 secretion in-

duced by IFN may have permitted greater expression of
receptor-associated PA activity. This could occur either by

less inhibition of the enzyme on the cell surface or by reduc-

tion of inhibitor-mediated internalization of receptor-bound

enzyme [11]. To resolve these issues, it will be necessary to

perform studies of receptor-associated PA enzymatic activity

combined with formal analysis of uPA receptor expression.
This work wiil be particularly important because receptor-

associated uPA may have unique functional properties that

create a propitious site for proteolysis in the immediate

periceilular environment [10, 26, 33].

I I

IFN (U/mi) � TNF(U/mI)

Fig. 7. Effects of IFN and TNF on the level of receptor-associated PA ac-

tivity of U937 cells. IFN doubled receptor-associated PA activity

(tP < .05), while TNF had no effect. Data are expressed in mPU per mu-
lion cells.
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It appears that the U937 cell is a valid model for uPA and

PAI-2 synthesis by authentic mononuclear phagocytes, as the

responses of peripheral blood monocytes to IFN and TNF

effectively duplicated those of U937 cells (Fig. 6). The ab-

sence ofdetectabie PA activity in monocyte supernatants was

the only distinction between the cell types. Although we can-

not state conclusively that a posttranscriptional processing

step prevented expression offunctionai PA activity, it is more

likely that small amounts of secreted uPA were effectively

quenched by PAI-2. U937 cells, being a monoblast-iike

malignant line, could be expected to produce higher levels of

uPA than the more differentiated monocyte [13]. Further-

more, previous studies have suggested that down-regulation

of uPA production and enhanced production of PAI-2 are

features of greater mononuclear phagocyte differentiation

[29, 43].

There is strong evidence that factors regulating immune

and inflammatory responses interact extensively with the

proteins controlling plasmin-mediated fibrinolysis. For ex-

ample, fibrin degradation products are known to be chemo-

taxic for leukocytes, suppressive of lymphocyte function, and

directly injurious to endotheliai cells [12, 15, 38]. As dis-

cussed previously, macrophage PA activity has also been im-

plicated in the activation as well as in the degradation of

growth factors and cytokines [24, 25, 31, 37]. In vitro,

products of stimulated lymphocytes have been shown to reg-

ulate macrophage PA and PA inhibitor activities [18, 40]. In

chronic immune reactions in vivo, there is abnormal regula-

tion and functional expression of local PA and PA inhibitor

proteins [20, 22]. In several murine models of granuioma-

tous inflammation, piasmin-mediated fibrinoiysis is sequen-

tially linked to the inflammatory course of the disease; local

PA inhibitor activity is enhanced as the granulomatous le-

sion evolves, and PA activity appears later as granulomas

regress. This sequential expression was shown to be modu-

lated by T cells [21-23]. Collectively, these observations

strongly suggest that cytokines exert a major influence on

macrophage-derived PA activity in immune reactions and

inflammatory foci. Because we have shown that individual

cytokines can produce distinct profiles of macrophage PA ac-

tivity, it is possible that local piasmin activation is controlled

by phasic changes in cytokine activity during the course of

an inflammatory response. In reciprocal fashion, changes in

plasmin generation could influence the reiease and function

of the same cytokines.

In summary, we have demonstrated that IFN and TNF

stimulate both PA and PA inhibitor activities in mono-

nuclear phagocytes. There are potentially important distinc-

tions between the effect of these cytokines, as IFN elicits a

profile of secreted and receptor-associated activities that sur-

passes TNF in promoting plasminogen activation. By fur-

ther characterizing the factors regulating PA expression, we

hope to elucidate the complex mechanisms by which fibri-

nolysis is integrated with the pathogenesis of specific immu-

nity and inflammation.
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