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Summary 

• Studies of the macroevolutionary legacy of polyploidy are limited by an incomplete sampling 

of these events across the tree of life. To better locate and understand these events, we need 

comprehensive taxonomic sampling as well as homology inference methods that accurately 

reconstruct the frequency and location of gene duplications. 

• We assembled a dataset of transcriptomes and genomes from 169 species in Caryophyllales, 

of which 43 were newly generated for this study, representing one of the densest sampled 

genomic-scale datasets available. We carried out phylogenomic analyses using a modified 

phylome strategy to reconstruct the species tree. We mapped phylogenetic distribution of 

polyploidy events by both tree-based and distance-based methods, and explicitly tested 

scenarios for allopolyploidy.  

• We identified 26 ancient and more recent polyploidy events distributed throughout 

Caryophyllales. Two of these events were inferred to be allopolyploidy. 

• Through dense phylogenomic sampling, we show the propensity of polyploidy throughout 

the evolutionary history of Caryophyllales. We also provide a framework for utilizing 

transcriptome data to detect allopolyploidy, which is important as it may have different 

macro-evolutionary implications compared to autopolyploidy.  

 

Key words: allopolyploidy, Caryophyllales, genome duplication, Ks plot, modified phylome, 

polyploidy. 

 

Introduction  

The prevalence and evolutionary consequences of polyploidy in plants have been discussed at 

length in the fields of macroevolution (Soltis et al., 2015; Lohaus & Van de Peer, 2016). 

Polyploidy has been correlated with acceleration of speciation (Tank et al., 2015; Smith et al., 

2017), surviving mass extinction (Fawcett et al., 2009; Vanneste et al., 2014a), evolutionary 

innovations (Vanneste et al., 2014b; Edger et al., 2015), and niche shift (Smith et al., 2017). While 

there is little disagreement about the importance of polyploidy in angiosperm evolution, the 

frequency and phylogenetic locations of these events often remain unclear. Several limitations in 

methodology and sampling have limited our ability to accurately locate polyploidy events. 
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Until recently, most studies of polyploidy have employed either dating synonymous 

distances (Ks) among paralogous gene pairs (Vanneste et al., 2013) or ancestral character 

reconstruction of chromosome counts (Mayrose et al., 2010; Glick & Mayrose, 2014). While these 

have facilitated the discovery of many polyploidy events, both are indirect methods that have 

insufficient resolution and can be misleading (Kellogg, 2016). Ks plots between syntenic blocks 

from individual sequenced genomes have the advantage of being sensitive enough to detect 

ancient and nested polyploidy events (Jaillon et al., 2007; Jiao et al., 2011, 2012, 2014). However, 

this technique suffers from the typically sparse taxon sampling available in whole genome data. 

Distribution of polyploidy events inferred using Ks plots from genomic data, whether or not taking 

synteny into consideration (Fawcett et al., 2009; Vanneste et al., 2014a), await re-examination 

with more comprehensive taxon sampling. An alternative to Ks plots is the detection of polyploidy 

from chromosome counts. This method has the best signal for recent events and is most often 

restricted to the genus level or below (Wood et al., 2009; Mayrose et al., 2010, 2011). 

Recent advances in transcriptome and genome sequencing offers the ability not only to 

measure Ks distances but also use gene tree topology to validate these. A combination of both 

approaches has allowed for the identification and placement of polyploidy events across the tree of 

life (Cannon et al., 2015; Edger et al., 2015; Li et al., 2015; Marcet-Houben & Gabaldon, 2015; 

Yang et al., 2015; Huang et al., 2016; Xiang et al., 2016). Despite this rapid increase in the number 

and precision of mapped polyploidy events, the sampling strategy for many of these studies was 

aimed at resolving deeper phylogenetic relationships. Testing hypotheses regarding the rich 

macroevolutionary legacy of polyploidy requires more extensive sampling of genomes and 

transcriptomes within a major plant clade. To date, only a few such data sets with sufficient 

sampling are available (Huang et al., 2016; Xiang et al., 2016). Furthermore, with a few 

exceptions (Kane et al., 2009; Lai et al., 2012; Estep et al., 2014; Hodgins et al., 2014), most of 

these studies have assumed autopolyploidy and have not explicitly tested for allopolyploidy. 

Despite the rich body of literature on gene expression, transposon dynamics, formation of novel 

phenotypes, and gene silencing and loss in recently formed allopolyploids (reviewed by Soltis & 

Soltis, 2016; Steige & Slotte, 2016), the long-term effects of allopolyploidy event remained poorly 

understood.  
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The plant order Caryophyllales offers an excellent opportunity to explore phylogenomic 

processes in plants. Caryophyllales forms a well-supported clade of c. 12500 species distributed 

among 39 families (Byng et al., 2016; Thulin et al., 2016), with an estimated crown age of c. 

67–121 Ma (Bell et al., 2010; Moore et al., 2010; Smith et al., 2017). Species of the 

Caryophyllales are found on every continent including Antarctica and in all terrestrial ecosystems 

as well as aquatic systems, occupying some of the most extreme environments on earth, including 

the coldest, hottest, driest, and most saline habitats inhabited by vascular plants. Familiar members 

of the group include cacti, living stones, a diverse array of carnivorous plants (e.g. the sundews, 

Venus flytrap, and tropical pitcher plants), and several important crop plants (e.g. beet, spinach, 

amaranth, and quinoa). Such extraordinary diversity makes Caryophyllales a prime system for 

investigating polyploidy vs diversification rate, character evolution, and niche shifts. Previous 

analyses using transcriptomes representing 67 species across Caryophyllales located 13 

polyploidy events (Yang et al., 2015). By generating 43 new transcriptomes we have expanded the 

previous sampling to include lineages with key evolutionary transitions, across a dataset that now 

includes 169 species of Caryophyllales. 

The size of this dataset makes an all-by-all homology search impractical. Hence, we 

developed a ‘modified phylome’ strategy to build homolog and ortholog groups for species tree 

inference. In addition, we use an all-by-all approach to build lineage-specific homolog gene sets 

(Yang & Smith, 2014), and take advantage of recent developments in gene tree-based methods for 

mapping polyploidy events (Cannon et al., 2015; Li et al., 2015; Yang et al., 2015). Our dense 

sampling allows us to take chromosome counts into consideration, and begin to explore 

allopolyploidy events. These improved methods for tree building and mapping of gene 

duplications, along with our improved taxon sampling, enable the most extensive exploration of 

polyploidy yet attempted in a major plan clade. The results reported here help establish the 

necessary foundation for further exploring the macroevolutionary consequences of polyploidy (for 

example, Smith et al., 2017). 
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Materials and Methods 

Taxon sampling, laboratory procedure, and sequence processing 

We included 178 ingroup datasets (175 transcriptomes, three genomes; Supporting Information 

Table S1) representing 169 species in 27 out of the 39 Caryophyllales families (Byng et al., 2016; 

Thulin et al., 2016). Among these, 43 transcriptomes were newly generated for this study (Table 

S2). In addition, 40 outgroup genomes across angiosperms were used for rooting gene trees (Table 

S1). Tissue collection, RNA isolation, library preparation, sequencing, assembly, and translation 

followed previously published protocols (Brockington et al., 2015; Yang et al., 2017) with minor 

modifications (Tables S1, S2). 

 

Caryophyllales homology and orthology inference from peptide sequences using a ‘modified 

phylome’ strategy 

We employed a modified phylome strategy for reconstructing orthogroups (Fig. S1). An 

‘orthogroup’ includes the complete set of genes in a lineage from a single copy in their common 

ancestor. Each node in an orthogroup tree can represent either a speciation event or a gene 

duplication event. An orthogroup differs from a homolog group in that the former is inferred from 

the latter by extracting rooted ingroup lineages separated by outgroups. The modified phylome 

procedure consisted of two major steps. First, ‘backbone homolog groups’ were constructed using 

peptide sequences from three Caryophyllales and 40 outgroup genomes. Second, peptides from 

transcriptomes were sorted to each backbone homolog. This two-step procedure allowed us to 

avoid the computationally intensive all-by-all homology search for constructing orthogroups. 

To construct the backbone homolog groups, we started from the proteome of the best 

annotated genome, sugar beet (Fig. S1; Dohm et al., 2014; http://bvseq.molgen.mpg.de/ v1.2, 

accessed June 25, 2015). Sequences from each beet locus were used to search against a database 

that consisted of combined proteomes from all 43 genomes using SWIPE v2.0.11 (Rognes, 2011) 

with an E-value cutoff of 0.01. The top 100 hits with bit scores higher than 50, and bit scores of at 

least 20% of the self-hit were retained and aligned using MAFFT v7.215 (Katoh & Standley, 2013), 

with ‘ --genafpair --maxiterate 1000’. The alignments were trimmed using Phyutility v2.2.6 (Smith 

& Dunn, 2008) with ‘-clean 0.1’, and trees were constructed using RAxML v8.1.5 (Stamatakis, 
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2014) with the model PROTCATWAG. After visual inspection of c. 10 resulting trees to evaluate 

outliers, terminal branches that were longer than two (absolute cutoff) or longer than one and more 

than 10 times as long as its sister (relative cutoff) were trimmed. Internal branches longer than one 

were separated (Yang & Smith, 2014). We retained trees that contained the original beet bait locus, 

combining those groups that shared beet locus IDs (i.e. had gene duplication within 

Caryophyllales). 

The resulting backbone homolog groups constructed from the 43 genomes were then used 

to place the remaining 175 Caryophyllales transcriptomes (Fig. S1). First, peptide sequences from 

each of the Caryophyllales transcriptomes were reduced using CD-HIT v4.6 (-c 0.99 -n 5; Fu et al., 

2012). The resulting sequences were then used in SWIPE analyses comparing the sequences to the 

beet proteome to identify matching backbone homolog groups. A new tree representing each 

expanded homolog group, with both genome and transcriptome data, was estimated using the same 

alignment and phylogenetic reconstruction settings as for the backbone homolog tree. To reduce 

isoforms in transcriptome datasets, monophyletic and paraphyletic tips that belonged to the same 

taxon were removed, leaving only the tip with the highest number of characters in the trimmed 

alignment (Yang & Smith, 2014). Spurious tips and long internal branches were cut using the same 

settings as for the backbone tree. For homolog groups with >1000 and <5000 sequences, 

alignments were constructed using PASTA v1.6.3 (Mirarab et al., 2014) with default settings, were 

trimmed by Phyutility with ‘-clean 0.01’, and phylogenetic trees were estimated using FastTree 

v2.1.8 (Price et al., 2010) with the model ‘WAG’. An initial internal branch length cutoff of 2 was 

used after reducing tips and trimming spurious tips with the same cutoffs as for the backbone trees. 

A second round of alignment and refining was carried out for these larger homolog groups. 

Homolog groups larger than 5000 were ignored.  

After obtaining final homologs using the modified phylome approach, we carried out 

orthology inference following the ‘rooted ingroup’ method in Yang & Smith (2014). Briefly, for 

each Caryophyllales orthogroup extracted from a final homolog, we walked from the root towards 

the tip. When two sister nodes share one or more taxa, the side with a smaller number of taxa was 

separated and both subtrees were taken into account in the next round until all subtrees contained 

only one sequence per taxon. For each resulting tree with at least 160 taxa, sequences were pooled, 

re-aligned using PRANK v140110 (Löytynoja & Goldman, 2010) with default settings, trimmed 
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with Phyutility with ‘-clean 0.3’, and a new ortholog tree estimated using RAxML with 

‘PROTCATAUTO’. A set of more stringent cutoffs was used to produce the final ortholog trees: 

absolute tips cutoff of 0.6, relative tip cutoff of 0.3, and an internal branch cutoff of 0.4. Aligned 

sequences were pooled according to remaining tips, trimmed (Phyutility with ‘-clean 0.3’), and 

remaining alignments with at least 150 characters and 160 taxa were used for species tree 

inference.  

 

All -by-all homology search and orthology inference in each of five Caryophyllales subclades from 

coding sequences  

Uncertainty in alignment and tree inference increases with dataset size. Given the absence of 

polyploidy events along the backbone of Caryophyllales (Smith et al., 2015; Yang et al., 2015), we 

divided Caryophyllales into five subclades according to previous phylogenetic analysis (Yang et 

al., 2015): PHYT: Aizoaceae+the ‘Phytolaccoid clade’ that consists of Nyctaginaceae, 

Phytolaccaceae s.l. (i.e. including Agdestis), Petiveriaceae, and Sarcobataceae (Yang et al., 2015), 

with Stegnosperma halimifolium (Stegnospermataceae) and the three Caryophyllales genomes 

Beta vulgaris (beet, Chenopodiaceae; Dohm et al., 2014), Spinacia oleracea (spinach, 

Chenopodiaceae; Dohm et al., 2014), and Dianthus caryophyllus (carnation, Caryophyllaceae; 

Yagi et al., 2014) as outgroups; PORT, the ‘Portullugo clade’ that consists of 

Molluginaceae+Portulacineae (Edwards & Ogburn, 2012) with the three Caryophyllales genomes 

as outgroups; AMAR, Amaranthaceae+Chenopodiaceae, with carnation and Phaulothamnus 

spinescens (Achatocarpaceae) as outgroups; CARY, Caryophyllaceae, with spinach, beet and P. 

spinescens (Achatocarpaceae) as outgroups; and NCORE, the clade that is sister to the rest of 

Caryophyllales, with all three Caryophyllales genomes plus Microtea debilis, Physena 

madagascariensis and Simmondsia chinensis as outgroups.  

An all-by-all approach was used for homology inference in each subclade following Yang 

& Smith (2014) with minor modifications (Methods S1). The final alignments from homolog trees 

with no taxon duplication (i.e. one-to-one orthologs), no more than one missing taxon (except 

requiring full taxon occupancy for CARY and PHYT), and average bootstrap value of at least 80 

were trimmed with Phyutility ‘-clean 0.5’. Trimmed alignment with at least 300 columns were the 

final orthologs. 
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Species tree inference  

We used two alternative approaches for constructing species trees for both the entire 

Caryophyllales using peptides (‘modified phylome dataset’) and each of the five subclades using 

coding sequences (CDS) (‘ the subclade dataset’). First, a supermatrix was constructed by 

concatenating trimmed ortholog alignments. A maximum likelihood tree was estimated from the 

supermatrix using RAxML, partitioning each locus, with the model set to PROTCATAUTO for 

peptides and GTRCAT for coding sequences for each individual partition. Node support was 

evaluated by the internode certainty all (ICA) scores (Salichos et al., 2014) calculated in RAxML 

using final ortholog trees as input. Probabilistic correction was used to take incomplete taxon 

occupancy into consideration (Kobert et al., 2016; Stamatakis, 2016). As implementation of ICA 

score calculation was updated in more recent releases of RAxML, we used RAxML v. 8.2.9 for 

calculating ICA scores. 

 In addition to the concatenated analyses, we also searched for the maximum quartet 

support species tree (MQSST) using ASTRAL-II v. 4.10.12 (Mirarab et al., 2014; Mirarab & 

Warnow, 2015) starting from maximum likelihood trees estimated from individual orthologs. Tree 

uncertainty was evaluated by using 100 multi-locus bootstrap replicates (Seo et al., 2005; Seo, 

2008; Mirarab et al., 2014), starting from 200 fast bootstrap trees for each final ortholog calculated 

in RAxML. 

 

Mapping polyploidy events based on subclade orthogroup tree topology 

To map polyploidy events in each subclade, we extracted orthogroups from each subclade 

homolog tree, requiring no more than two missing ingroup taxa. When two or more taxa 

overlapped between the two daughter clades, a gene duplication event was recorded to the most 

recent common ancestor (MRCA) on the subclade species tree (Yang et al., 2015). In this 

procedure, each node on a species tree can be counted at most once per orthogroup to avoid nested 

gene duplications inflating the number of duplications scored. Two alternative filters were applied 

for comparison. The first filter required an average bootstrap percentage of each orthogroup to be 

at least 50. Alternatively, we also tested a local topology filter that only mapped a gene duplication 
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event when the sister clade of the gene duplication node in the orthogroup contained a subset of the 

taxa in the corresponding sister clade in the species tree (Cannon et al., 2015; Li et al., 2015).  

 

Distribution of synonymous distance among gene pairs (Ks plots) 

For each of the ingroup Caryophyllales datasets, a Ks plot of within-taxon paralog pairs was 

created following the same procedure as Yang et al. (2015) based on BLASTP hits. Similarly, we 

carried out a second Ks analysis based on BLASTN between CDS without first reducing highly 

similar sequences to maximize detection of more recent polyploidy events. In cases where 

tree-based mapping was ambiguous, or comparison of within- vs between-species Ks peaks could 

help inform allopolyploidy, we also calculated Ks distribution of between-species reciprocal best 

BLASTN hit pairs. Ks values <0.01 were excluded to avoid isoforms from de novo assembled 

transcriptomes.  

 

Chromosome counts 

Chromosome counts were obtained from the Chromosome Counts Database (ccdb.tau.ac.il 

accessed 5 October 2015). When counts in this database were unavailable or inconsistent, counts 

were obtained from the Jepson eFlora (ucjeps.berkeley.edu/eflora/ accessed 5 October 2015) and 

Flora of North America (www.efloras.org/ accessed 5 October 2015). 

 

A total evidence approach for mapping polyploidy events 

We considered six scenarios for mapping polyploidy events including taking orthogroup tree 

topology, within-taxon Ks plots, and chromosome counts into consideration (Fig. 1). When 

polyploidy events occurred without subsequent speciation (or for which only one taxon is 

represented in our sampling; Fig. 1a–c), only a single within-taxon Ks plot would show a peak. In 

these instances, because we required at least two overlapping taxa between sister clades in the 

orthogroup tree to record a gene duplication event, no gene duplication was recorded from 

topology-based mapping. The polyploidy event was therefore mapped to the terminal branch with 

the Ks peak. However, when a polyploidy event was followed by lineage diversification, we used 

information from both Ks peaks and the orthogroup tree topologies to map duplication events (Fig. 

1d–f). If we saw an excess of duplication events along the same lineage in which all taxa share the 
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same within-taxon Ks peak, then this was inferred as autopolyploidy (Fig. 1d). However, if an 

excess of duplication events was found on a lineage ancestral to the lineage in which all taxa share 

the same within-taxon Ks peak, this was inferred to be an allopolyploidy event (Fig. 1e,f). We 

indicated the node with low support in Fig. 1 to highlight that allopolyploidy can lead to nodes 

with low support when both parental lineages are present or nodes that are well supported when 

one of the parental lineages is missing. We did not consider polyploidy events that were supported 

by chromosome count alone, as these can be within-population variation (Caperta et al., 2016), 

and an increase in number can represent chromosome fission instead of duplication (Fishman et al., 

2014; Chester et al., 2015).  

 

Results 

Data availability 

Raw reads for newly generated transcriptomes were deposited in the NCBI Sequence Read 

Archive (BioProject: PRJNA388222; Table S2). Assembled sequences, alignments, and trees were 

deposited in Dryad (doi:10.5061/dryad.st3gt). Scripts used were also archived in Dryad, with 

notes and updates for modified phylomes available 

from https://bitbucket.org/yangya/genome_walking_2016 and those for building lineage-specific 

homologs and mapping polyploidy events available 

from https://bitbucket.org/blackrim/clustering. 

 

RAxML and ASTRAL recovered nearly identical species tree topologies 

Both RAxML and ASTRAL analyses recovered identical topologies for most branches (Figs 2–6, 

S2–S4). We consider branches with an ICA score higher than 0.5 as strongly supported, as ICA 

scores lower than 0.5 suggests that the dominant bipartition is present in <80% of ortholog trees 

(Salichos et al., 2014). As multi-locus bootstrap support percentages increase with the number of 

loci (Seo, 2008) and given that each of our final ortholog set contained more than a hundred loci 

(Table 1), we consider multi-locus bootstrap values <100 as low support. Using this set of criteria, 

most branches from subclade datasets (Figs 2–6, S2) and the majority of the branches from 

modified phylomes (Figs S3, S4) were well-supported. 
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We recovered between 152 to 736 one-to-one orthologs and 0.2–1.1 million trimmed CDS 

columns from each of the five subclades. The concatenated supermatrices had gene occupancies of 

98–100% and character occupancies of 87–93% (Table 1). Four clades showed different 

relationships between RAxML and ASTRAL, with little support for either alternative relationships 

(Figs 2–6 marked with ‘*’ , S2): Cyphomeris gypsophiloides (Nyctaginaceae, PHYT) was sister to 

Allionia in the RAxML tree (ICA = -0.01) but was sister to the clade 

Nyctaginia+Anulocaulis+Boerhavia in the ASTRAL tree (bootstrap = 95); species in 

Leuenbergeria (Cactaceae, PORT) were monophyletic in the RAxML tree (ICA = -0.09) but were 

paraphyletic to the rest of Cactaceae in the ASTRAL tree (bootstrap = 69); Tidestromia lanuginosa 

(Amaranthaceae, AMAR) was sister to the clade of 

Froelichia+Guilleminea+Gossypianthus+Blutaparon+Alternanthera in the RAxML tree (ICA = 

-0.00), but was sister to Alternanthera in the ASTRAL tree (bootstrap = 50); and Saponaria 

officinalis (Caryophyllaceae, CARY) was sister to Gypsophila+Dianthus+Velezia in the RAxML 

tree (ICA = -0.04), but was sister to Dianthus+Velezia in the ASTRAL tree (bootstrap = 63). 

Among the 15045 homolog groups we obtained using the modified phylome approach, 15 

had >5000 sequences and were ignored, while the rest were used for subsequent orthology 

inference. The final concatenated matrix consisted of 624 loci and 215,669 amino acids, with a 

final gene occupancy of 92.6% and character occupancy of 80.1% (Table 1). The modified 

phylome approach recovered identical species tree topologies except for one branch that had little 

support from either analysis (Figs S3, S4): Leuenbergeria (Cactaceae) was monophyletic in the 

RAxML tree (ICA = 0.18) but was polyphyletic in the ASTRAL tree (bootstrap = 28). The 

modified phylome approach recovered an identical species tree topology compared to that 

recovered by the subclade analysis. When subclade trees had different topologies between 

RAxML and ASTRAL, the modified phylome tree agreed with the subclade ASTRAL results in 

the placement of Cyphomeris gypsophiloides (ICA = 0.23 and bootstrap = 97), whereas the 

position of Leuenbergeria was recovered in the same incongruent positions as recovered by 

RAxML and ASTRAL in the subclade tree analyses. The modified phylome approach recovered 

both Tidestromia lanuginosa (0.19/81) and Saponaria officinalis (0.38/98) in the same positions as 

found in the RAxML results for the subclade trees. 
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Twenty-six polyploidy events were mapped 

Twenty-six polyploidy events were inferred by using a total evidence approach of orthogroup tree 

topology, shared Ks peaks, and chromosome counts (Figs 2–6). Overall the two orthogroup tree 

filtering strategies, by bootstrap percentage or local tree topology, produced almost identical 

results for frequency of gene duplication (Figs 2–6, S5). The frequency of gene duplications was 

strongly associated with the inferred polyploidy events (Figs 2–6). In our Ks analysis, we only 

considered Ks peaks that were similar in height or taller than the peak, c. Ks = 2, that corresponds 

to the early eudicot paleohexaploidy that predates the origin of Caryophyllales (Dohm et al., 2012; 

Jiao et al., 2012; Yang et al., 2015).  

Two polyploidy events in the PHYT clade were supported by both homolog tree topology 

and shared Ks peaks (Figs 2, S5a, S6a). The frequency of orthogroups showing evidence of gene 

duplication were 52% filtered by bootstrap percentage and 45% filtered by tree topology for 

PHYT1, and 33% and 31% respectively for PHYT2. Both were significantly higher percentages 

compared to remaining branches (Fig. 2). 

At least four polyploidy events were recovered in the PORT clade. PORT1 was mapped to 

both the MRCA of Portulacineae (19%/17%) and its parent node (24%/22%) from gene 

duplications (Figs 3, S5b). However, Molluginaceae did not share the Ks peak that was present in 

all members of Portulacineae (Fig. S6b). Within-species paralogs in Portulacineae (represented by 

the PORT1 Ks peak in Talinum sp. at Ks = 0.64; Fig. 3, lower left) coalesced at lower Ks values 

compared to the Ks peak at 0.76 between Talinum sp. and Mollugo pentaphylla (Molluginaceae). 

However, similar comparison of Portulaca pilosa (Portulacineae) vs Mollugo pentaphylla showed 

overlapping Ks peaks (Ks = 0.9; Fig. 3, lower right), likely due to faster molecular rate in 

Portulaca compared to Talinum. Therefore, phylogenetic uncertainty likely at least partly 

contributed to the ambiguity in mapping. Both PORT2 and four were recovered by taxon-specific 

Ks peaks, and both had relatively high chromosome counts compared to close relatives (Figs 3, 

S6b). PORT3 was supported by shared Ks peaks and gene duplications in orthogroup trees 

(21%/18%), whereas chromosome counts were uninformative. 

At least three polyploidy events were recovered in the AMAR clade (Figs 4, S5c, S6c). 

AMAR1 was detected by an elevated percentage of gene duplications mapped to the branch 
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uniting Alternanthera+Gossypianthus+Blutaparon+Froelichia+Aerva (37%/35%). However, 

species of Aerva lacked the AMAR1 Ks peak shared by 

Alternanthera+Gossypianthus+Blutaparon+Froelichia at 0.4–0.65. Further examination of the 

between-species Ks peak of Aerva javanica vs Tidestromia lanuginose (Ks = 0.46) shows that it 

was more ancient than the within-species Ks peak AMAR2 at 0.23 in Aerva javanica (Fig. 4, lower 

left), suggesting that paralogs in Aerva javanica coalesced more recently than coalescing with taxa 

outside of Aerva, and AMAR1 and 2 were two distinct polyploidy events. The Ks peak within 

Aerva javanica (AMAR2, Ks = 0.23) overlapped with the between-species Ks peak of A. javanica 

vs A. lanata (Ks = 0.24; Fig. 4, lower right). Given that A. javanica had faster molecular 

substitution rate than A. lanata according to their relative branch lengths (Fig. 4), paralogous 

copies within A. javanica likely coalesced along the branch leading to A. javanica before 

coalescing with A. lanata. The lack of the AMAR2 peak in A. lanata as well as chromosome 

counts (2n = 32 for A. javanica vs 2n = 16 for A. lanata) further supported the location of AMAR2 

along the terminal branch leading to A. javanica. Based on the lack of the AMAR1 peak in both 

Aerva species, we inferred that AMAR1 was an allopolyploidy event, with one parental lineage 

closely related to Aerva and the other parental lineage missing, consistent with the scenario in Fig. 

1(f). 

At least seven polyploidy events were recovered in the CARY clade (Figs 5, S5d, S6d). 

CARY1 was detected through an elevated percentage of gene duplication in two adjacent nodes 

(21%/20% on the node that included Spergularia media, and 23%/20% in the node excluded S. 

media; Figs 5, S5d). However, S. media did not share the CARY1 Ks peak (Fig. S6d). The 

reciprocal best hits Ks peak between Spergularia media and Silene latifolia indicated that paralogs 

derived from CARY1 coalesced within Silene latifolia at similar Ks values compared to coalescing 

with Spergularia media (Fig. 5), suggesting that phylogenetic uncertainty at least partly 

contributed to the fact that CARY1 mapped to two adjacent nodes. 

Nested in CARY1, five taxa showed Ks peaks (Figs 5, S6d). Among them, within-species 

Ks peak CARY2 was observed only in Cerastium fontanum (2n = 72) but missing from its sister C. 

arvense (2n = 36). Honckenya peploides had a within-species Ks peak c. 0.06 (CARY3), its sister 

Schiedea membranacea had a Ks peak at 0.22 (CARY4), whereas their reciprocal best hit Ks peak 

was at 0.08, suggesting that CARY3 was restricted to the terminal branch leading to H. peploides. 
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The observation that the within-species Ks peak in S. membranacea (CARY4) was older than its 

split with H. peploides, but that CARY4 was not shared with H. peploides, suggested an 

allopolyploid origin of S. membranacea with one parental lineage closely related to H. peploides 

while the other parental lineage missing from our taxon sampling. Pairwise comparison among S. 

membranacea, H. peploides, and Scleranthus polycarpos showed that S. polycarpos had a 

polyploidy event CARY5 (Ks = 0.04) that is more recent than its split with Schiedea or Honckenya 

and is therefore restricted to S. polycarpos. CARY6, also nested in CARY1, was mapped to the 

terminal branch leading to Colobanthus quitensis. Although Colobanthus was weakly supported to 

be sister to the clade consisted of Honckenya+Schiedea+Scleranthus (ICA = 0.13, bootstrap = 100), 

the peak at Ks = 0.15 was more recent than the Honckenya/Scleranthus (Ks = 0.24) or the 

Schiedea/Scleranthus (Ks = 0.27) split and is therefore inferred to be independent of CARY 3, 4, or 

5. In addition to CARY2–6 that were nested in CARY1, one additional polyploidy event CARY7 

independent of CARY1 was mapped to the MRCA of Drymaria cordata and D. subumbellata by a 

shared Ks peak. Both species had high chromosome counts relative to their sister lineages.  

At least six polyploidy events were inferred in the NCORE clade (Figs 6, S5e, S6e). Both 

gene duplications (43%/34%) and shared Ks peaks supported a polyploidy event at the base of 

Polygonaceae (NCORE1). NCORE2–5 were supported by Ks peaks, and NCORE6 was supported 

by both Ks peaks and chromosome counts. We inferred NCORE5 (base of Droseraceae) and 

NCORE6 (branch leading to Nepenthes alata, Nepenthaceae) as two separate polyploidy events on 

sister branches given that very low frequencies of gene duplication events were mapped to the 

MRCA of Droseraceae+Nepenthaceae (0.9%/1.7%), compared to the MRCA of Droseraceae 

(2.8%/3.0%) and Nepenthaceae (16%/15%). 

In addition to the polyploidy events detected from each of the five subclades, three of the 

four taxa along the grade paraphyletic to PHYT+PORT+AMAR+CARY also each had a peak at 

Ks lower than 1: S. halimifolium (Fig. S6a), P. madagascariensis (Fig. S6e), and S. chinensis (Fig. 

S6e). No polyploidy event has been inferred along the Caryophyllales backbone leading to beet 

(Chenopodiaceae) from genome analysis (Dohm et al., 2012; Dohm et al., 2014), indicating Ks 

peaks mapped to this grade likely represent lineage-specific polyploidy events. Also, the relatively 

high chromosome count of S. chinensis (2n = 52) compared to M. debilis (2n = 18), the only taxon 

in this grade that did not experience a polyploidy event, further supports the lineage specific nature 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

of the polyploidy events along this grade. In addition, P. spinescens (Achatocarpaceae; sister to 

AMAR) also likely had its lineage specific polyploidy event, as it had a Ks peak that was not 

shared with its sister clade (Figs 4, S6c). 

Since we excluded Ks values <0.01 when plotting to avoid isoforms in de novo assembled 

transcriptome data resulted in very high Ks counts, occasionally there were apparent peaks at Ks < 

0.2. We have plotted all Ks values on a different scale to zoom in on these Ks peaks (shown in Fig. 

S6 only when Ks peak < 0.2 was confirmed). 

 

Discussion 

Our analyses add to a growing body of literature that suggests that polyploidy events are much 

more prevalent than previously thought (Cannon et al., 2015; Edger et al., 2015; Li et al., 2015; 

Yang et al., 2015; Huang et al., 2016; Xiang et al., 2016; Mandakova et al., 2017). The dataset 

presented here uniquely contributes to this question by greatly improving taxon sampling of 

transcriptomes in a major plant clade (169 species in Caryophyllales) whose evolutionary history 

spans a time period that encompasses both deep divergences and more recent events during the 

Neogene (Smith et al., 2017). Likewise, our improved homology search and filtering approaches 

aid in identifying the phylogenetic locations of polyploidy events. Moreover, we consider multiple 

lines of evidence for pinpointing the phylogenetic locations of polyploidy events, including 

orthogroup tree topology, Ks plots, and chromosome counts. These approaches identified 26 

polyploidy events across Caryophyllales, include 10 newly reported and 16 previously identified 

(Yang et al., 2015; Walker, et al., 2017 [Author, please insert either ‘a’ or ‘b’ to signify the 

correct Walker et al. (2017) citation]). Importantly, two of these 26 events are suggested to be 

allopolyploidy events.  

 

Species trees based on transcriptome data are concordant with previous analyses 

The species trees we recovered are highly concordant with previous analyses of family-level 

relationships (Figs 7, S3, S4; Cuénoud et al., 2002; Brockington et al., 2009; Schäferhoff et al., 

2009; Arakaki et al., 2011; Yang et al., 2015). As seen in previous analyses, the placements of 

Sarcobataceae and Stegnospermataceae remain poorly supported despite using hundreds of loci. 

We found weak support for two nodes that had previously received high support using a small 
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number of loci. Previous analyses using plastome recovered Cactaceae as being sister to 

Portulacaceae with 100% bootstrap support (Arakaki et al., 2011), but we recovered 

Anacampserotaceae+Portulacaceae as sisters to Cactaceae (modified phylome ICA = 0.31 and 

ASTRAL multi-locus bootstrap = 100). Previous studies recovered strong to moderate support for 

the monophyly of Portulacineae+Molluginaceae (likelihood bootstrap = 100, Arakaki et al., 2011; 

Bayesian posterior probability = 0.94 and parsimony bootstrap < 50, Nyffeler & Eggli, 2010), but 

we found low support for the relationship (ICA = 0.06 and multi-locus bootstrap = 93). This 

confirms that while individual loci can be informative, there is a large amount of phylogenetic 

conflict among gene trees (Smith et al., 2015; Walker et al., 2017 [Author, please insert either ‘a’ 

or ‘b’ to signify the correct Walker et al. (2017) citation]). Future studies should dissect these 

cases of discordance using a gene-by-gene approach (Arcila et al., 2017; Brown & Thomson, 2017; 

Shen et al., 2017; Walker et al., 2017 [Author, please insert either ‘a’ or ‘b’ to signify the 

correct Walker et al. (2017) citation]).  

 

Many polyploidy events are associated with taxonomic units and/or habitat shifts 

A notable pattern emerged showing that many polyploidy events occurred on branches leading to 

major taxa and/or involved clear habitat shifts (Fig. 7). For example, PHYT1 is located on the 

branch representing a transition from trees and large shrubs in wetter environments within the 

Neotropics to a radiation of arid- and semiarid-adapted herbs and subshrubs recognized as Tribe 

Nyctagineae of Nyctaginaceae (Douglas & Manos, 2007; Douglas & Spellenberg, 2010). Similarly, 

PORT1 at the base of Portulacineae is associated with the evolution of succulence (Nyffeler et al., 

2008; Edwards & Ogburn, 2012; Ogburn & Edwards, 2013). Additional polyploidy events are 

inferred along the branch leading to Polygonaceae (Schuster et al., 2013) and the branch leading to 

Droseraceae, a carnivorous family (Rivadavia et al., 2003). 

Similar cases of polyploidy events at or near the base of major clade origins include seed 

plants (Jiao et al., 2011), angiosperms (Jiao et al., 2011), monocots (Jiao et al., 2014), early 

eudicots (Jiao et al., 2012), and Asteraceae (Barker et al., 2016; Huang et al., 2016). This hints at a 

potential relationship between genome duplication and evolutionary innovations (Soltis & Soltis, 

2016). On the other hand, however, branches leading to major recognizable taxonomic units tend 

to be relatively long and thus had more time to accumulate changes. Hence, while correlations 
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between polyploidy and evolutionary novelty are intriguing, we must be cautious in assuming that 

polyploidy is the cause of such innovation (Smith et al., 2017).  

 

Inferring allopolyploidy from transcriptome data 

Methods of polyploidy detection developed for genomes or low-copy nuclear loci are inadequate 

for datasets with isoforms and missing duplicated copies (Lott et al., 2009; Jones et al., 2013; 

Marcussen et al., 2015; Thomas et al., 2017). While we applied a stringent filter to minimize 

missing taxa in orthogroups (no more than two missing), differential gene loss or silencing 

following polyploidy events remained a problem. Given our goal of accurately pinpointing the 

phylogenetic location of polyploidy events and searching for allopolyploidy is highly dependent 

on taxon sampling, we only explored cases when Ks vs orthogroup tree-based mapping disagreed 

with each other. 

Two allopolyploidy events were inferred in this study. We inferred the AMAR1 (Ks 

0.4–0.65; Fig. 4) paleopolyploidy event followed by a nested, more recent polyploidy event 

(AMAR2) together were responsible for the observed Ks peaks, instead of a single, deeper event as 

previously reconstructed (Yang et al., 2015). Schiedea also has a complex history (Fig. 5). While 

the polyploid origin of Schiedea was previously identified (Kapralov et al., 2009; Yang et al., 

2015), by including its close relatives, Honckenya and Scleranthus, we show that all three species 

each had their own lineage-specific polyploidy event. Schiedea likely had a parental lineage other 

than the lineage leading to Honckenya (see schematic phylogram in Fig. 5). The putative 

allopolyploid origin of Schiedea adds to a growing list of Hawaiian endemic radiations with 

similar putative allopolyploid origins (Barrier et al., 1999; Yang & Berry, 2011; Marcussen et al., 

2012; Roy et al., 2015), and demonstrates the importance of increased transcriptomic taxon 

sampling. Moving forward genome and transcriptome data will be essential for investigating 

selection, homeolog expression, gene silencing and loss in contributing to these divergence events 

following allopolyploidy.  

 

Improved homology inference methods improve polyploidy mapping 

In the original phylome approach (Huerta-Cepas et al., 2011), each sequence from a seed species 

was used to search against a database of sequenced genomes. The resulting homologous sequences 
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were filtered, aligned, and phylogenetic trees were constructed. In this study, we made three 

modifications to the original phylome approach to enhance the ability to accommodate 

transcriptome data (Fig. S1). First, we merged putative homolog groups that represent gene 

duplication within Caryophyllales, ensuring that our final orthogroups are non-overlapping. 

Second, given the presence of multiple transcript isoforms and the inherent incompleteness of 

transcriptome datasets, we used transcriptome sequences as queries to search against the beet 

proteome for sorting transcriptome-derived sequences into backbone orthogroups constructed 

with genomes only. Lastly, to clean up spurious tips and isoforms, we added tip-trimming and 

long-branch cutting procedures. By taking this two-step, baited approach we were able to process a 

large number of taxa without going through the time consuming all-by-all homology search 

required by OrthoMCL (Li  et al., 2003) and OrthoFinder (Emms & Kelly, 2015). A second 

advantage of this modified phylome approach is that it avoids a graph-based clustering step, and 

hence is not biased by sequence length or phylogenetic relatedness among taxa (Emms & Kelly, 

2015). The modified phylome approach is more effective than other baited approach such as 

HaMStR (Ebersberger et al., 2009) in that it explicitly takes gene tree topology into account in 

distinguish ortholog from paralogs. However, because both the original phylome and the modified 

methodology start with a seed genome, the resulting orthogroup set is dependent on the quality and 

gene content of the focal genome.  

In addition to the modified phylome approach, to overcome phylogenetic uncertainty 

associated with deep time scales we employed a second homology inference strategy that inferred 

subclade species trees using all-by-all homology search, Markov Clustering (van Dongen, 2000) 

of filtered hits, followed by alignment and tree trimming (Yang & Smith, 2014). We use the 

original Markov Clustering (MCL) instead of software packages like OrthoMCL (Li  et al., 2003) 

and OrthoFinder (Emms & Kelly, 2015) that aim at directly obtaining orthogroups using filtered 

and normalized BLAST hits. The normalization procedures used by these software packages were 

based on genome-derived data and were yet to be evaluated using transcriptome datasets that had 

isoforms, missing data, and assembly errors. By using the original MCL with relatively low 

inflation value (i.e. coarse clusters) and taking advantage of outgroup information to root and 

extract orthogroups, we were able to minimize the loss of gene duplication information in our 

dataset. 
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Our techniques found that for each inferred polyploidy event, approximately one-third of 

genes show clear evidence of duplication (i.e. they retain at least two overlapping taxa between 

paralogs), similar to the numbers identified in both transcriptomes and genomes (Yang et al., 

2015). For example, the PHYT2, AMAR1, and AMAR3 events follow this ‘one-third rule’ (Figs 

2–6). When there is phylogenetic uncertainty, gene duplication events may be mapped to two 

adjacent nodes, each with lower percentages, such as observed for PORT1 and CARY1. 

Percentages of gene duplication can be inflated during rapid diversifications, where short 

internodes and phylogenetic uncertainty make it difficult to distinguish paralogous copies from 

isoforms using tree topology. Such inflated percentages of gene duplication can be seen at the base 

of Cactaceae and Silene (without polyploidy), and at PHYT1 and NCORE1 (following a 

polyploidy event). 

 

Moving forward, additional taxon sampling of genomes and transcriptomes will be 

essential to identify additional polyploidy events and pinpoint their phylogenetic locations. 

Understanding the legacy of ancient polyploidy events in plant macroevolution will require many 

other forms of improved data as well, including functional studies of traits, molecular pathways, 

and genes themselves. Only then will we have a more comprehensive functional framework for 

understanding differential gene retention and diploidization following polyploidy events, and how 

polyploidy is linked to character evolution and niche shifts.  
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Fig. S1 Workflow for the modified phylome approach. 

Fig. S2 Maximum quartet support species tree (MQSST) from ASTRAL analysis of individual 

subclade orthologous gene trees.  

Fig. S3 Phylogram from RAxML analysis of the concatenated 624-gene supermatrix from 

modified phylomes, with ICA scores on branches. 

Fig. S4 Maximum quartet support species tree (MQSST) from ASTRAL analysis of 624 

orthologous gene trees from modified phylomes.  

Fig. S5 Proportion of orthogroups showing duplications filtered by local tree topology. 

Fig. S6 Distribution of within-taxon synonymous distances (Ks) among paralogs gene pairs.  

Table S1 Sources of data and settings for assembly and translation 

Table S2 Information for the 43 newly sequenced transcriptomes 

Methods S1 All -by-all homology search for subclade datasets. 
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Fig. 1 Scenarios of polyploidy events (Kellogg, 2016). Letters ‘A–E’ represent taxon names, 

followed by chromosome numbers with the base number ‘x’ , and schematic Ks plots (x-axis are Ks 

values, and y-axis are number of paralogous gene pairs). 

 

Fig. 2 Best tree from RAxML analysis of concatenated supermatrix of the phytolaccoid clade and 

Aizoaceae (PHYT). Percentage values above branches indicate proportion of orthogroups 

showing duplication filtered by bootstrap percentage. Internode certainty all (ICA) values are 

given below branches.  

 

Fig. 3 Best tree from RAxML analysis of concatenated supermatrix of Portulacineae and 

Molluginaceae (PORT). Percentage values above branches indicate proportion of orthogroups 

showing duplication filtered by bootstrap percentage. Internode certainty all (ICA) values are 

given below branches. Selected Ks plots based on BLASTN hits are shown below trees. Ks values 

<0.01 are not shown. 

 

Fig. 4 Best tree from RAxML analysis of concatenated supermatrix of Amaranthaceae and 

Chenopodiaceae (AMAR). Percentage values above branches indicate proportion of orthogroups 

showing duplication filtered by bootstrap percentage. Internode certainty all (ICA) values are 

given below branches. Selected Ks plots based on BLASTN hits are shown below trees. Ks values 

<0.01 are not shown. 

 

Fig. 5 Best tree from RAxML analysis of concatenated supermatrix of Caryophyllaceae (CARY). 

Percentage values above branches indicate proportion of orthogroups showing duplication filtered 

by bootstrap percentage. Internode certainty all (ICA) values are given below branches. Selected 

Ks plots based on BLASTN hits are shown below trees. Ks values <0.01 are not shown. 

 

Fig. 6 Best tree from RAxML analysis of concatenated supermatrix of the clade sister to rest of the 

Caryophyllales (NCORE). Percentage values above branches indicate proportion of orthogroups 

showing duplication filtered by bootstrap percentage. Internode certainty all (ICA) values are 

given below branches. 
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Fig. 7 Species tree inferred by RAxML analysis of the supermatrix from modified phylomes. 

Polyploidy events are labeled according to Figs 2–6. When orthogroup tree topology vs Ks plots 

place a polyploidy event to different branches due to either phylogenetic uncertainty or 

allopolyploidy, we placed the event at the most recent common ancestor of taxa that share a 

within-taxon Ks peak.  

 

 

 

Table 1 Statistics for homology and orthology inference. PHYT, PORT, AMAR, CARY, and 

NCORE are subclades within Caryophyllales (see Fig. 7) 

 Caryophyll

ales 

PHYT PORT AMAR CARY NCORE 

Data type Peptides Coding sequences (CDS) 

Homology inference Modified 

phylome 

All -by-all  

Orthology inference 

(Yang et al., 2014) 

Rooted 

ingroup 

One-to-one orthologs 

Number of taxa 

(ingroup + outgroup) 

175+40 45+4 29+3 37+2 31+3 31+6 

Minimal number of 

taxa per ortholog 

160 49 31 38 34 36 

Supermatrix 

dimension taxa × loci 

(columns) 

178 × 624 

(215669)  

49 × 152 

(217033) 

32 × 171 

(230873) 

39 × 315 

(453842) 

34 × 736 

(1130082)  

37 × 213 

(325966) 

Supermatrix 

gene/character 

92.6%/80.

1% 

100%/92

.5% 

97.8%/8

6.5% 

98.1%/8

7.2% 

100%/92.2

% 

97.5%/87

.8% 
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occupancy 

Minimal ingroup taxa 

for mapping gene 

duplication 

n/a 43 27 35 29 29 

No. of orthogroups 

used for mapping 

gene duplications 

n/a 2843 3577 4713 6686 1649 

n/a, not applicable [Author, please confirm inserted text ‘n/a, not applicable’ is correct].  
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Caryophyllaceae
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Acleisanthes acutifolia
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0. 1 substitution per site

AMAR

ingroups

Amaranthaceae + Chenopodiaceae (AMAR)

Percent gene duplication

Number of branches

AMAR1AMAR3
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Aerva javanica 2n=32

Agriophyllum squarrosum 2n=18

Achatocarpaceae Phaulothamnus spinescens

Bassia scoparia 2n=18

Chenopodium quinoa 2n=36
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0.1 substitution per site

Caryophyllaceae (CARY)

*

Percent gene duplication

Number of branches

CARY1

Illecebrum verticillatum 2n=10

Velezia rigida 2n=28

Polycarpaea repens 2n=18

Spergularia media 2n=18

Drymaria cordata 2n=24,36

Cerastium fontanum subsp. vulgare
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Clade sister to the rest of

Caryophyllales (NCORE)

Percent gene duplication

Number of branches

NCORE1

Chenopodiaceae Beta vulgaris 2n=18

Drosophyllum lusitanicum 2n=12

Chenopodiaceae Spinacia oleracea 2n=12

Physenaceae Physena madagascariensis

Plumbago auriculata 2n=14

Simmondsiaceae Simmondsia chinensis 2n=52
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Limonium spectabile 2n=18

Aldrovanda vesiculosa 2n=48

Rheum rhabarbarum 2n=22

Ruprechtia salicifolia 2n=28

Drosera binata 2n=32

Reynoutria japonica 2n=44

Caryophyllaceae Dianthus caryophyllus 2n=30

Fagopyrum tataricum 2n=16

Fagopyrum esculentum 2n=16
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Tamarix hispida 2n=24

Nepenthes alata SFB 2n=80

Microteaceae Microtea debilis 2n=18

Polygonum aviculare 2n=40,60

Persicaria minor 2 2n=40

Antigonon leptopus 2n=14,40,44,48

Rumex palustris 2n=60

Muehlenbeckia platyclada 2n=20
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Pterostegia drymarioides 2n=28
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0.09
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Allionia incarnata 2
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Trianthema portulacastrum SRA
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Acleisanthes obtusa
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