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Purpose: To investigate deep reinforcement learning (DRL) based on historical treatment plans5

for developing automated radiation adaptation protocols for non-small cell lung cancer (NSCLC)
patients that aim to maximize tumor local control at reduced rates of radiation pneumonitis grade
2 (RP2).
Methods: In a retrospective population of 114 NSCLC patients who received radiotherapy, a 3-
component neural networks framework was developed for deep reinforcement learning (DRL) of10

dose fractionation adaptation. Large-scale patient characteristics included clinical, genetic, and
imaging radiomics features in addition to tumor and lung dosimetric variables. First, a generative
adversarial network (GAN) was employed to learn patient population characteristics necessary for
DRL training from a relatively limited sample size. Second, a radiotherapy artificial environment
(RAE) was reconstructed by a deep neural network (DNN) utilizing both original and synthetic15

data (by GAN) to estimate the transition probabilities for adaptation of personalized radiotherapy
patients’ treatment courses. Third, a deep Q-network (DQN) was applied to the RAE for choosing
the optimal dose in a response-adapted treatment setting. This multi-component reinforcement
learning approach was benchmarked against real clinical decisions that were applied in an adaptive
dose escalation clinical protocol. In which, 34 patients were treated based on avid PET signal in the20

tumor and constrained by a 17.2% normal tissue complication probability (NTCP) limit for RP2.
The uncomplicated cure probability (P+) was used as a baseline reward function in the DRL.
Results: Taking our adaptive dose escalation protocol as a blueprint for the proposed DRL
(GAN+RAE+DQN) architecture, we obtained an automated dose adaptation estimate for use at
∼ 2/3 of the way into the radiotherapy treatment course. By letting the DQN component freely25

control the estimated adaptive dose per fraction (ranging from 1 ∼ 5 Gy), the DRL automatically
favored dose escalation/de-escalation between 1.5 ∼ 3.8 Gy, a range similar to that used in the
clinical protocol. The same DQN yielded two patterns of dose escalation for the 34 test patients,
but with different reward variants. First, using the baseline P+ reward function, individual adaptive
fraction doses of the DQN had similar tendencies to the clinical data with an RMSE= 0.76 Gy; but30

adaptations suggested by the DQN were generally lower in magnitude (less aggressive). Second, by
adjusting the P+ reward function with higher emphasis on mitigating local failure, better matching
of doses between the DQN and the clinical protocol was achieved with an RMSE= 0.5 Gy. Moreover,
the decisions selected by the DQN seemed to have better concordance with patients eventual out-
comes. In comparison, the traditional temporal difference (TD) algorithm for reinforcement learning35

yielded an RMSE= 3.3 Gy due to numerical instabilities and lack of sufficient learning.
Conclusion: We demonstrated that automated dose adaptation by DRL is a feasible and a promis-
ing approach for achieving similar results to those chosen by clinicians. The process may require
customization of the reward function if individual cases were to be considered. However, develop-
ment of this framework into a fully credible autonomous system for clinical decision support would40

require further validation on larger multi-institutional datasets.
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I. INTRODUCTION

Most non-small-cell lung cancer (NSCLC) patients are inoperable due to locally advanced disease or distant metas-
tases and thus radiation therapy (radiotherapy) becomes the main option for treatment of these patients. However,45

treatment outcomes remain relatively poor despite significant advances in the technologies of radiotherapy planning,
image-guidance, and delivery [1]. It is conjectured that escalation of radiation dose is an option to improve treatment
outcome results. For instance, a dose increment by 1 Gy can lead to 1% improvement in local progression free survival
[2]-[3]. However, this has not always been demonstrated to be the case, as was learned from RTOG-0617 clinical trial
results, where dose escalation has led to surprisingly negative results [4]. Though the specific causes of this negative50

finding are still being worked out, it is clear that dose escalation can not be employed using a one-size fits all approach
to the patient population. While necessary for cancer treatment, radiotherapy provides cure but can also pose risks
that need to be tailored according to each individual patients characteristics. For treatment of lung cancer, a major
limiting constraint to dose escalation is the toxicity risk from thoracic irradiation that leads to radiation-induced
pneumonitis (RP). RP causes cough, fever, etc, and it affects the quality of life for patients even if the local control55

(LC) of the tumor is assured. Therefore, an important question that the current studies are attempting to address is:
can machine learning algorithms identify from patient characteristics an optimal dose schedule to render LC with max-
imally reduced RP in an individual patient? However, before attempting to address this challenging question, we need
to demonstrate that machine learning algorithms can actually be taught to mimic clinicians decision making processes.

60

With the latest advances in machine reinforcement learning (RL) algorithms, which provide better dynamic learn-
ing options, we are poised to explore the feasibility of automated decision making for dose escalation in NSCLC
patients. Traditional machine learning methods have witnessed increased applications in radiotherapy including
quality assurance, computer-aided detection, image-guided radiotherapy, respiratory motion management, and now
outcomes prediction [5]. However, traditional machine learning methods may lack the ability to handle the dynamics65

of highly complex decision making process in a clinical radiotherapy environment. For instance, our institutional pro-
tocol UMCC 2007-123 [2]-[3] defines dose escalation under a sophisticated adaptation policy (see Sec.II G 2) towards
improved treatment outcomes. Thus, it could be utilized as a suitable testbed to assess our proposed RL methods
for automated radiation adaptation. The rationale for utilizing reinforcement learning in automating radiation dose
adaptation is that it allows exploration of all possible paths into the future so that expected benefits and risks can70

be weighed into the decision making process. In an analogous fashion such as playing chess or board games, the
decision maker needs to explore the consequences of the next moves and develop an optimal strategy to win the
game, which in our case is controlling cancer while reducing treatment side effects. To realize this task within the
complex radiotherapy environment, we developed dynamical procedures to utilize the existing historical treatment
plans to represent the radiotherapy environment (Sec. II G 2), where the states within this environment are defined75

as predictor factors of local control (LC) and radiation-induced pneumonitis (RP) responses.

In recent years, deep learning applications have gained success in variety of fields including video games, computer
vision, and pattern recognition. A key factor in this success is that deep learning can abstract and extract high-level
features directly from the data. This helps avoid complex feature engineering or delicate feature hand-crafting and80

selection for an individual task [6]. Recent studies have demonstrated that using a class of deep learning algorithms
based on convolution neural networks can efficiently replace traditional feature selection in image segmentation. while
at the same time providing superior performance [7]-[8]. These strengths motivated Google DeepMind’s incorporation
of deep neural networks (DNN) into the known Q-learning search algorithm of RL [9], which enabled it to master a
diverse range of Atari games with human-level performance using the raw pixels and scores as inputs [10]. The DQN85

algorithm has been shown to display actions similar to human instincts in playing these games. Such ability was
demonstrated by AlphaGo when it dethroned the world champion of the ancient Chinese game GO, a 19 × 19 grid
board game considered to have intractable (316! ≃ 10678) possibilities. The sheer complexity of GO renders the ability
to make human decisions from intuitive intelligence indispensable for playing properly and having a credible chance
at winning. This study tends to pursue the characteristic of intuition-driven decisions in the DQN for mimicking90

and comparing clinicians dose adaptation decisions in treatment planning. However, there are millions of records
with detailed moves of previously played games that could be used in training the DQN algorithm; this is a luxury
that we do not possess in the clinical or the radiotherapy world. Therefore, we also incorporated new developments
in deep learning for generating synthetic data to help meet the goal of training automated actions owing to the
demand of high-sample-size requirement by the DQN. Specifically, we deployed 3 different DNNs to tackle several95

problems in building a machine learning approach for completing automation of clinical decision making for adaptive
radiotherapy, see Fig. 1(b). The first DNN (GAN, Sec.II E) aims to generate sufficiently large patient data from
existing small-sized observations for training the simulated radiotherapy environment. The second DNN is tasked to
learn the radiotherapy environment, i.e., where and how states would transit under different actions (dose fraction
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modifications) based on the data synthesized from the GAN and real clinical data available, Sec. II G 3. The third100

DNN is the innovative DQN itself responsible for prompt and accurate evaluation of the different possible strategies
(dose escalation/de-escalation) and optimizing future rewards (radiotherapy outcomes). In contrast, classical RL
methods such as the model-free temporal difference (TD) algorithm [9], which require a sufficiently larger number
of observations to be sampled and high consistency in the states (variables) and actions (decisions), do not fit well
with the complex, real clinical radiotherapy environment where the data are noisy and complete information may105

be missing as well as limited sample size. Moreover, clinical decisions are in general likely to be more subjective
than objective. These are some of the hurdles that our approach based on the 3-component DNN design attempts to
overcome. We believe that the proper integration of these three components based on deep learning is essential for
building a robust RL environment for decision support in radiotherapy adaptation.

110

In previous work [11], Kim et al. developed a Markov decision process (MDP) from the perspective of analytical
radiobiological response to compute optimal fractionation schemes in radiotherapy. The MDP design was based on
delicate assumptions on the latent behavior of the tumor and the organs-at-risk (OAR) with respect to given dose.
Several numerical simulations were presented and their behavior, based on the assumptions made, were discussed
but no realistic clinical scenarios were evaluated. Another similar approach based on analyzing stochastic processes115

of reinforcement learning with TD techniques [12] was used to dynamically explore the transition probability with
varying fractionation schedules. Based on simplified radiobiological assumptions, different reward (utility) functions
were tested in preclinical cell culture data to nonuniformally optimize the prescribed dose per fraction [12].

Here, implementation details and network architectures are described and organized as follows. In Sec. II, we120

succinctly introduce the methods and rationale of our utilization; Sec. III demonstrates the results of the different
components of our proposed approach and their benchmarking against real clinical protocol results. In Sec. V and
Sec. IV, we summarize our methods presentation as an integrated system and discuss future potential developments
as well as the limitations of our current study.

II. MATERIALS AND METHODS125

A. Overview

In our investigation to apply DQN for escalation of dose in NSCLC data, we first faced the obstacle of the absence
of a well-characterized radiotherapy environment (i.e., the rules of the game) as shown in Fig. 1(a) and Fig. 4. This is
unlike the case of applying DQN to board games where complete information of the game rules are defined beforehand
and also one can play the game repeatedly almost at no real cost. In the case of patient care in general or radiotherapy130

specifically, this would be ethically and practically prohibitive due to the consideration of patients’ safety and the
cost of time. To alleviate this difficulty, we developed a radiotherapy artificial environment (RAE), also referred to
as the (approximate) transition DNN in Sec.II G 3 for simulating the radiotherapy treatment response environment.
Due to the limited available sample size, we combined the GAN with the transition DNN to support the fidelity of
reconstructing a RAE. As the GAN can generate synthetic patient data very similar in its characteristics to the real135

ones, we then trained the RAE with mixed data; the synthesized data by the GAN and the available real clinical
data. After the reconstruction of the radiotherapy environment, we introduced the DQN agent (decision maker) into
this environment to interact with it, as indicated in Fig. 1(b) and evaluated its performance by learning the adaptive
behavior of a dose escalation clinical protocol conducted successfully in our institution and recently published in
JAMA Oncology [3].140

B. Datasets

We used historical treatment plans of 114 NSCLC patients for training our 3-component DRL for decision support
of response-based dose adaptation. The patients had been treated on prospective protocols under IRB approval
as described in [13]. All tumor and lung dose values were converted into their 2 Gy equivalents (EQD2) by an
in-house developed software using the linear-quadric model with an α/β of 10 Gy and 4 Gy for the tumor and145

the lung, respectively. Generalized equivalent uniform doses (gEUDs) with various parameters a were calculated
for gross tumor volumes (GTVs) and uninvolved lungs (lung volumes exclusive of GTVs). Blood samples were
obtained at baseline and after approximately 1/3 and 2/3 of the scheduled radiation doses were completed. A total of
250 features including dosimetric variables, clinical factors, circulating microRNAs, single-nucleotide polymorphisms
(SNPs), circulating cytokines, and positron emission tomography (PET) imaging radiomics features before and during150
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(a)How to let the DQN interact with
limited-sample-sized data of the historical patient

population treatment?

(b)A 3-component DNN solution is proposed to (1) generate
synthetic data through GAN to (2) model the radiotherapy
environment by the transition DNN that is used by (3) the

DQN to make optimal decisions for adaptation of dose.

FIG. 1. A 3-component DNN solution to overcome limited sample size and model the radiotherapy environment for DRL
decision making.

radiotherapy were collected. Pre-treatment blood samples were analyzed for cytokine levels, micro RNAs (miRNAs),
and single nucleotide polymorphisms (SNPs), which have been identified as candidates from the literature as related
to lung cancer response. FDG-PET/CT images were acquired using clinical protocols and the pre-treatment and intra-
treatment PET images were registered to the treatment planning CT using rigid registration. The image features
analysis was performed using customized routines in MATLAB and the features included metabolic tumor volume,155

intensity statistics, and texture-derived metrics [14, 15]. Part of this population, with dose adaptations at ∼ 2/3 of
the way through treatment as served by Protocol UMCC 2007-123 [2]-[3], are described in Sec. II G 1. Nine predictive
features, defined in (14) with characteristics described in TABLE. I, were selected for modeling the RAE. These
features are related to LC and RP2 responses based on Markov blankets and Bayesian analyses as detailed in [13] and
briefly reviewed below.160

C. Variable Selection for simulating radiotherapy environment

In order to define the radiotherapy environment via a large-scale variable list, we used techniques based on Bayesian
network graph theory, which allows for identifying the hierarchical relationships among the variables and outcomes
of interest. The approach we used is based on identifying separate extended Markov blankets (MBs) for LC and
RP2 from the above high-dimensional dataset of 297 candidate variables. An MB of LC (or RP2) is the smallest set165

containing all variables carrying information about LC (or RP2) that cannot be obtained from any other variable
(inner family); then for each member in the blanket of LC (or RP2), a next-of-kin MB for this member was also derived
using a structure learning optimization algorithm [13]. The algorithm combines efficient graph-search techniques with
statistical resampling for robust variable selection [13]. The selected variables by this approach are summarized in
(14). It should be emphasized that the purpose of this step is to provide an approximate radiotherapy environment170

that would allow simulating transitions between its states when the DQN agent is making decisions.

D. Deep Neural Networks

We mainly utilized deep neural networks (DNNs) for our proposed DRL approach and the main notations used
are summarized here for convenience. Denoting data {xi} with labels {yi} such that X = {(xi,yi) |xi ∈ R

n, yi ∈
R

m, i = 1, . . . , N}, a DNN finds a function fDNN : R
n → R

m to weave through the data such that fDNN(xi) ∼= yi as175

much as possible via the utility of three distinct components: neurons zi ∈ R, layers of k neurons z = (z1, . . . , zk),
and activation functions σ, see Fig. 6 (left). If a DNN has layers j = 0, . . . , ℓ, each of which has nj neurons, then j = 0
and ℓ would denote the first (input) and final (output) layer, respectively. An activation function σ : R

nj−1 → R
nj

connecting the neurons of the (j − 1)th layer z(j−1) ∈ R
nj−1 and those of the jth layer zj ∈ R

nj would satisfy:

z(j) = σ
Ä
Θ(j−1) · z(j−1) + b(j−1)

ä
(1)180

where Θ(j−1) ∈ R
nj×nj−1 and b(j−1) ∈ R

nj−1 represent the unknown weights and biases to be estimated. A typical
choice of σ is a sigmoid or a rectified linear unit (ReLU), where we empirically choose σ = eLU [16] in this study for

better convergence. Our best parameters {Θ(j),b(j)}ℓ−1
j=0 are then derived from the forward dynamics and backward
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(error) propagation resulting from the DNN loss function [17]:

L(Θ, z, λ) =
1

2
‖y − z(ℓ)‖2 −

ℓ∑

j=1

¨
λ(j−1), z(j) − σ

Ä
Θ(j−1) · z(j−1) + b(j−1)

ä∂
(2)185

where λ(j−1) ∈ R
nj−1 are the Lagrange multipliers at layer j − 1 to preserve layerwise information (1).

In this study, we primarily rely on the universality of DNNs to model the dynamic complexity hidden in the
radiotherapy data. This universality refers to the capability of a neural network to approximate any continuous
function (on a compact subset of R

n) with suitable activation functions [18]. Due to limited patient sample size,
we implemented random dropouts on neurons to efficiently mitigate overfitting [19] throughout. In such scenario,190

randomly selected neurons are assigned zero weights, which is a form of regularization to prevent the network from
over-adaptation (overfitting) to the data during training process.

E. Generative Adversarial Nets

To alleviate the problem of small sample size in clinical datasets when modeling the complex state transitions
in a radiotherapy environment, we utilize generative adversarial nets (GANs) [20] to synthesize more radiotherapy195

patient-like data. A GAN consists of two neural nets, one of which is generative (G) and responsible for generating
synthetic data, and the other one is discriminative (D), which tries to measure the (dis)-similarity between the
synthesized and real data as shown in Fig. 2. The basic underlying idea is simple: by learning to confuse D, G can
get more sophisticated in generating similar data through the following setup.

200

FIG. 2. GAN is used to generate new data, where G asks D to verify the authenticity of the data source. From latent points
z, generated patients are synthesized as x̃ in G. With y = (x, x̃) mixing with real and the generated patient data, D is trying
to verify its source.

Denote the space X ⊇ {x ∈ R
n} containing the (original) dataset with distribution x ∼ Pdata, and there is a latent

space Z = {z ∈ R
m} with a prior distribution z ∼ Pprior, where in our case a Gaussian distribution is assumed.

The generative network G : Z → X tries to learn a map from Z to X such that an induced probability distribution

PG = Pprior(G
−1) · |det

Ä
∂G−1

∂x

ä
| on X is close to the original Pdata. The discriminative network D : X → R then

simultaneously learns to discriminate observations from the true data and the synthesized data generated by G. In205

general, G aims at generating indistinguishable data to confuse D, whereas D attempts to distinguish the data
produced by G or not. They interact with each other in a competitive sense, hence the name GAN. The adversarial
characters of D and G are created via the loss function of two-player mini-max game:

min
G

max
D

L(D, G) = min
G

max
D

E
x∼Pdata(x) [log D(x)] + E

z∼Pprior(z) [log(1 − D(G(z))] , (3)

where D(y) =





1, y is real

1/2 y is indistinguishable

0, y is generated

.210

Subsequently, we introduce the algorithm for generating synthetic data for building our DRL for dose adaption.
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F. Deep Q-Networks

We are applying reinforcement learning to mimic how physicians decide dynamically on the dose fraction trade-offs
needed to prescribe to a certain patient. In reinforcement learning, there is the environment (an MDP) and an
agent (an optimal action search algorithm). An agent takes charge of delivering actions a ∈ A in an environment,215

which is a world described by the various states s ∈ S in the environment. Upon a decision made under a current
state π : S → A, an agent receives corresponding reward R and gets promoted to another state. The transition
between states and rewards R are feedback for the agent to perceive how to optimize its subsequent strategy for
future actions. In our setting, an artificial agent would provide a second opinion or take place of a physician to deliver
actions. Specifically, in this study, we will evaluate the required dose per fraction (adaptation) in the second period220

of a dose-escalation radiotherapy treatment course. This agent will then interact with the radiotherapy artificial
environment (RAE) reconstructed by the transitional DNN, Fig. 1(b), and adjust its own adaptation strategy based
on received feedback.

Reinforcement learning is essentially formulated as a Markov decision process (MDP), denoted by (S, A, P, γ, R),225

where S = {(x1, . . . , xn) ∈ R
n} be the space of states, A is the collection of actions, R : S × A → R is the reward

function, and P : (S × A × S, Ω) → [0, 1] is the transition probability function between two states under an action
a ∈ A with Ω a σ-algebra of S × A × S that naturally induces a conditional probability Psa(t) ≡ Prob(t |s, a) ≡
P (s, a, t )/P (s, a) on space of next states t ∈ S from previous observation (s, a) ∈ S ×A. A sequence of actions acting
on an initial state s0 ∈ S leads to the dynamics of an MDP:230

s0
a0−→ s1

a1−→ s2
a2−→ · · · .

The Q-learning search algorithm is a common method to find an optimal policy given an MDP or an RAE in our
case, where a Q-function is defined as the average discounted sum of rewards R in all future steps from current state
s

under a policy π : S → A as in (4). The expectation value is considered in the sense of computing all possible paths235

starting from current state s to represent all possible benefits received in the future. A discounting factor 0 ≤ γ ≤ 1
diminishes how we perceive future profits, providing a trade-off between the importance of immediate reward versus
future ones, i.e., short-term responses versus long-term outcomes.

In Q-learning, an optimal policy π∗ : S → A is defined such that Qπ∗

= maxπ Qπ is satisfied when the value240

iteration scheme is adapted for computation. Via the Bellman’s equation of off-policy, the estimation of optimal Qπ∗

is converted into an iterative sequence {‹Qi}∞
i=1 → Qπ∗

defined by [9]:

Qπ(s, a) = E

[
∞∑

k=0

γk R(sk, π(sk))
∣∣∣π, s0 = s, a0 = a

]
(4)

‹Qi+1(s, a) = Et∼Psa

ï
R(s, a) + γ max

b∈A

‹Qi(t, b)

ò
. (5)245

Upon the contraction mapping theorem [21], the convergence is reached at the unique fixed point as i → ∞,

‹Q∗(s, a) = Et∼Psa

ï
R(s, a) + γ max

b∈A

‹Q∗(t, b)

ò
. (6)

It can be noticed that computation of (5) can quickly become cumbersome when the cardinality |S| or |A| is large.
A recent solution proposed by Google DeepMind in [10] and [22] was to evaluate the Q-function efficiently using

supervised learning by DNNs by ‹Qi = QΘi

DNN, where Θi denotes the weights of DNNs in (1) at ith iteration with a250

sequence of loss functions Li(Θi) to be minimized where:

Li(Θi) = E(s,a)∼ρ

ñÅ
Et∼Psa

ï
R(t, a) + γ max

b∈A
Q

Θi−1

DNN(t, b)

ò
− QΘi

DNN(s, a)

ã2
ô

. (7)

where ρ is the probability distribution over policy sequences s and actions a also called the behaviour distribution.
The loss function (7) can be understood to pursue a DNN sequence {QΘi

DNN}∞
i=1 such that

{
QΘi

DNN

}∞

i=1
→ {Yi}∞

i=1

since (7) indicates:255

Li(Θi) = E(s,a)∼ρ

[Ä
Yi(s, a) − QΘi

DNN(s, a)
ä2]

. (8)
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by defining Yi(s, a) = Et∼Psa

î
R(t, a) + γ maxb∈A Q

Θi−1

DNN(t, b)
ó

using Q
Θi−1

DNN(s, a) at previous time t − 1. It is also

understood that since one is not able to duplicate Yi exactly using a DNN approximator QΘi

DNN at every iteration

i due to the finite degrees of freedom in DNN, namely (1), there always exists a small error Yi − QΘi

DNN 6= 0 to be
compensated by the loss function (8), where Fig. 3 (left) shows their intertwined relationship. The sequence {Yi}∞

i=1260

approached by both operations of the DNN and the loss function (8) can be proven to approximate the self-iterated

sequence {‹Qi}∞
i=1, whose convergence to the optimal Q-function ‹Q∗ is already guaranteed by the contraction mapping

theorem. Summing up all the facts one derives an operational sequence QΘi

DNN → ‹Q∗ by DNN as illustrated in Fig. 3
(right).

The reason a DNN approximator QΘi

DNN fails to play the role ‹Qi directly is because of the finite approximation265

ability as mentioned above. Should a DNN have a perfect deformation such that Yi = QΘi

DNN is true for all i, then

Yi(s, a) = Et∼Psa
[R(t, a) + γ maxb∈A Yi−1(t, b)], which leads to the whole sequence {Yi}∞

i=1 = {‹Qi}∞
i=1 by definition

of (5). In this perfect case, the three characters {Yi}∞
i=1, {‹Qi}, and {QΘi

DNN}∞
i=1 coincide. Due to the imperfect nature

of the DNN approximator, the sequences {Yi}∞
i=1, {‹Qi}, and {QΘi

DNN}∞
i=1 split with tiny differences from one another.

In fact, the approximation accuracy of QΘi

DNN → Yi can impact the performance of a RL algorithm. A linear function270

approximator was first considered in early literature [23] for computational reasons.

Y1 Y2 · · ·

QΘ0
DNN QΘ1

DNN QΘ2
DNN · · ·

{Q̃i} Q̃∗

{Yi} ∼=
Eq.(8)

{QΘi

DNN}

FIG. 3. Machinery of DQN convergence. The left figure depicts the relation between {Yi} and {QΘi

DNN}, where arrow “⇒”
denotes “create” and “99K ” denotes “approximate”. The right figure illustrates the convergence relationship between 3 se-
quences.

FIG. 4. An incomplete MDP where the environment is unknown or missing.

Besides using DNN for Q-function iteration, DQN also utilizes techniques of experience replay memory and separat-
ing target networks to enhance its performance stability [22]. As mentioned in Sec. II A, since our DQN agent is not
allowed to explore optimal actions based on trial-and-error (risky actions) in real patients, our approach towards deep
RL has to be different from common RL realizations used in non-clinical applications. The autonomous actions will275

instead be based on supervised learning from historical data rather than direct online (or model-free) MDP learning
as shown in Fig. 4, which could complement previously learned actions.

First, we attempt to reconstruct the environment of radiotherapy lung cancer patients from the existing data by

an approximate transition ‹P → P of the real-world. An accurate reconstruction of the environment will require a280

large amount of data to be available and reliable. This is why we utilized GAN to synthesize patient-like data. After
the reconstruction of the radiotherapy artificial environment (RAE), we then adopt deep Q-learning to search for the
optimal policy sequence for response-based dose adaptation.

G. Deep Reinforcement Learning for Radiotherapy Dose Adaptation

Before attempting to apply DRL for autonomous clinical decision making, a main purpose of this study is to evaluate285

whether we can actually utilize reinforcement learning to reproduce or mimic known clinical decisions that have been
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previously made. To achieve this goal, we design the following setup for dose adaptation of NSCLC patients and test
its performance using data from a successful dose escalation protocol UMCC 2007-123 [2]-[3]. We will first provide a
brief description of this dose escalation protocol, which will be used for benchmarking, followed by the design of our
proposed DRL system to mimic this protocol.290

1. Setting of protocol UMCC 2007-123

Protocol UMCC 2007-123 is a phase II dose escalation clinical trial [3]. The study aimed to demonstrate that adap-
tive radiotherapy-escalated radiation dose to the 18F-fludeoxyglucose (FDG)-avid region detected by midtreatment
PET can improve local tumor control at 2 years follow-up, with a reasonable rate of radiotherapy-induced toxicity. In
a population of 42 patients who had inoperable or unresectable stage II to stage III NSCLC, the trial demonstrated295

an 82% local control. The radiation was delivered in 30 daily fractions of 2.1 to 5.0 Gy: 2.1 to 2.85 Gy fractions for
the initial dose of approximately 50 Gy EQD2, and 2.85 to 5.0 Gy for the adaptive phase of treatments up to a total
RT dose of 92 Gy EQD2 [3]. For the purpose of the DRL analysis, we present the protocol succinctly as follows. A
treatment has total fractions f(t) and dose/fraction a(t) as functions of time t with:

f(t∗) = f0, f(T ) = 30, a(t) =

®
a0, 0 ≤ t ≤ t∗
a1, t∗ ≤ t ≤ T

(9)300

where t∗ is the time for adaptation, T is the time of a complete treatment with 0 < t∗ < T and f0, a0, a1 are constants
subject to the conditions a0 ∈ [2.1, 2.85] Gy, a1 ∈ [2.85, 5] Gy, and the total dose

63 Gy ≤ a0 f0 + a1 (30 − f0) ≤ 86 Gy (10)

As mentioned above, the first 50 Gy (EQD2) of radiation will be given based on prePET and preCT, the remaining
dose is delivered to the target based on avid mid-treatment FDG-PET uptake as identified by the metabolic tumor305

volume (MTV). The protocol requires NTCP of lung to be maintained ≤ 17.2% (approximately equivalent to 20 Gy
mean lung dose) based on estimates by the LKB model [24]:

NTCP (x) =
1√
2π

∫ x

−∞

e− u2

2 du (11)

with

x =
lung gEUD − TD50

m · TD50
. (12)310

The clinical endpoint for lung NTCP in the protocol UMCC 2007-123 was RP2. The dataset of NSCLC has:

a0
∼= 2, a1 ≥ 2, f0

∼= 20, T = 6 weeks, t∗ ∼= week 4 =
2

3
treatment (13)

as shown in Fig. 5. We designed our agent to adapt dose after week 4 of the treatment, i.e., to find the best policy
for a1 of (9) after t = t∗.

2. Setting for deep reinforcement learning315

In DRL, one needs to decide the representation of states, where in our case the states should contain enough patients
information to indicate or reflect changes in possible treatment outcomes. In reality, there are numerous variables
including hidden ones that may be related to radiotherapy treatment outcomes; it is not feasible to choose all of them.
Hence, to develop the transition probabilities, we selected 9 variables related to cytokines, SNPs, miRNA and PET
radiomics features in order to predict LC and RP2 (see TABLE I) by using the Bayesian network approach developed320

in [13] to represent the RAE states. Hence, to develop the transition probabilities, we selected important variables to
represent the RAE states for LC and RP2 prediction (see TABLE I) based on our previous Bayesian network analysis
[13] as follows. Firstly, constraint-based local discovery algorithms using Markov blankets were employed to select the
variables that are mostly related to LC or RP2 from the high dimensional dataset (297 candidate variables). Then we
built a single Bayesian network from these selected variables for both LC and RP2 prediction by using graph learning325

algorithms (score-based learning algorithm and leaf node elimination) with statistical resampling by bootstrapping
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FIG. 5. An approximated environment reconstructed from data to simulate radiotherapy adaptation response of patients. A
DQN agent manages to extract information from the data of the right-hand-side based on the two transitions (blue-dashed
and red-solid arrows, explained in (17) later) and submit actions at the 2/3 period of a treatment (right solid-green arrow),
where the environment is hidden in this illustration. At the end of a whole treatment course, the complete information is then
collected for reconstructing the radiotherapy environment (dashed-green arrow).

to mitigate overfitting. Finally, the nodes in the BN with the highest AUC value for joint prediction of LC and RP2
were determined and evaluated using cross-validation. This process resulted in 9 selected features, which included
cytokines, SNPs, miRNA and PET radiomics features that were considered important predictors to represent the
state variables.330

In this study, we are interested in determining how much dose should be delivered according to patients’ information
and thus compute an optimal policy of dose/fraction to mimic/compare with known clinical decisions based on dose
adaptation protocols as benchmark for evaluation. This leads us to define the reward (15), as a trade-off between
encouraging improved LC and attempting to suppress RP2. The last term here is meant to comply with the clinical
protocol requirement for the probability of RP2 risk not to exceed 17.2%.335

Definition. Define the state variables s = (x1, . . . , xn) ∈ S with n = 9,

x1 = IL4 x2 = IL15, x3 = GLSZM.GLN, x4 = GLRLM.RLN,
x5 = MCP1, x6 = TGFβ1, x7 = Lung gEUD, x8 = Tumor gEUD, x9 = MTV

(14)

where x1, x2, x5, x6, x9 are cytokines, x3, x4 are of PET radiomics, and x7, x8 are dose features. Let A = {a1 =
dose/frac} ⊆ R

+ be the allowed actions after t = t∗ and define our reward function R(s, a) = R(s) based on the
complication-free tumor control (P+) utility [25] while respecting the dose escalation clinical protocol requirement:340

R(s) =
1

2
Prob(LC | s) ·

(
1 − Prob(RP2 | s)

)
·
(
1 + sgn(17.2% − Prob(RP2 | s))

)
, sgn(x) =





1, x > 0

0, x = 0

−1, x < 0

(15)

where s ∈ S, Prob(LC | s) is the conditional probability of obtaining tumor local control after observing state s, similar
for Prob(RP2 | s).

In the computational aspect of DQN, the Q-function in (7) is defined to have a similar form to (4) but with a DNN345

structure and weights Θ that could be tuned for better approximation of the real Q-function:

QΘ
DNN : S → R

|A| by QΘ
DNN(s) =

à
Q(s, a1)

Q(s, a2)
...

Q(s, ak)

í

(16)
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Predictors Biological/clinical characteristics References

IL4 Th2 cytokines. Regulates antibody production, haematopoiesis, and
inflammation. Promotes the differentiation of naive helper T cells into
Th2 cells. Decreases the production of Th1 cells.

[26], [27], [28].

IL15 Th1 cytokines. Induces activation and cytotoxicity of natural kill (NK)
cells. Activates macrophages. Promotes proliferation and survival of T
and B-lymphocytes and NK cells.

[26], [27], [28].

GLSZM.GLN The gray-level nonuniformity (GLN) feature of a gray-level size zone
matrix (GLSZM), defined by

Ng∑

i=1

(
Nr∑

j=1

P (i, j)

)2¬ Ng∑

i=1

Nr∑

j=1

P (i, j).

Notations see [29].

GLRLM.RLN The run-length nonuniformity (RLN) feature of a gray-level run length
matrix (GLRLM) defined by

Ng∑

j=1

(
Nr∑

i=1

P (i, j)

)2¬ Ng∑

j=1

Nr∑

i=1

P (i, j).

Notations see [29].

MCP1 Chemokine expressed and secreted by adipocytes. Adipocyte expres-
sion of MCP-1 is increased by TNF-α.

[30], [31].

TGFβ1 Th2 cytokines. An important role in regulation of immune system. Pro-
duced by every leukocyte lineage, including lymphocytes, macrophages,
and dendritic cells.

[32]

Lung/tumor gEUD
(α/β = 4 Gy, 10Gy
resp)

Generalized equivalent uniform dose of lung/tumor converted from
EQD2 dose distributions:

EQD2 = Nfrac × d ×

Å
d + α/β

2 + α/β

ã
[33],[34].

MTV Metabolic tumor volume from PET imaging. -

TABLE I. Selected predictors for LC and RP2 and their characteristics.

where the inputs and the outputs are adjusted in order to take advantage of deep learning capabilities rather than
literally follow (4). We remark that at each state s, another two DNN classifiers were trained for predicting prob
(LC|s) and prob (RP2|s) for more accurate computation of the reward (15). Since accurate evaluation of LC and350

RP2 is also considered as part of the natural transition of the environment that needs to be known as precise as
possible, and therefore another two classifiers based on the selected 9 predictors were built to predict the LC and
RP2 probabilities trained using the clinical outcomes rather using only the approximation by the LKB model (11).
An episode is a sequence of states performed by an agent according to a developed policy π. The termination of an
episode was set to invoke whenever Prob(LC | s) > 70% and Prob(RP2 | s) < 17.2% are attained.355

3. Setting for probability transition function and building the radiotherapy artificial environment (RAE)

The reconstruction of the RAE then relies on a well-approximated transition function from the dataset. For this
purpose, our data of NSCLC of N = 114 patients are organized in the following form,

î
s
(0)
i | s(1)

i | s(2)
i

ó
= [week 0 | week 2 | week 4] ,î

a
(0)
i | a(1)

i

ó
= [week 0 7→ week 2 | week 2 7→ week 4] .

where s
(k)
i =

Ä
x

(k)
i1 , x

(k)
i2 , . . . , x

(k)
in

ä
∈ S denotes the ith patient at the kth period of treatment with n predictors,360

i = 1, . . . , N . k = 0 denotes the period of the treatment t = 0 ∼ week 2; k = 1 is t = week 2 ∼ week 4 and k = 2
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FIG. 6. Random dropout DNNs (left) are used with data (z(0), z(l)) = (x,y) following notations in Sec. II D to reconstruct

the transition probability of the environment (right), where P̃sa : (x1, x2, . . . , x9) 7→ (y1, y2, . . . , y9) is an approximation to the
real world. Different layers are consequences of different actions made on the state (x1, x2, . . . , x9). At each layer, 100 possible
status of a patient are considered according to top transition probabilities. This process repeats itself at every state of each
layer.

stands for t = week 4 ∼ week 6. In full expansion, the data corresponding to Fig. 5 has the form of table with 3
blocks:

N samples








x
(0)
11 x

(0)
12 . . . x

(0)
1n a

(0)
1 x

(1)
11 x

(1)
12 . . . x

(1)
1n a

(1)
1 x

(2)
11 x

(2)
12 . . . x

(2)
1n

x
(0)
21 x

(0)
22 . . . x

(0)
2n a

(0)
2 x

(1)
21 x

(1)
22 . . . x

(1)
2n a

(1)
2 x

(2)
21 x

(2)
22 . . . x

(2)
2n

...
...

...
...

...
...

...
...

...
...

...
...

...
...

x
(0)
N1 x

(0)
N2 . . . x

(0)
Nn a

(0)
N x

(1)
N1 x

(1)
N2 . . . x

(1)
Nn a

(1)
N x

(2)
N1 x

(2)
N2 . . . x

(2)
Nn




(17)

An approximate transition probability trained by a DNN ‹P : S×A×S → [0, 1] indicates the probability transforming

from an old state s to a new states t under action a: ‹P (s, a; t) := ‹Psa (t) :=flProb (t | s, a). The training was performed365

by state transitions from different patients and two time periods (pre- and during-radiotherapy) (k = 0, 1) with a
total sample size of twice the size of the patients.

‹P
s
(k)
i

,a
(k)
i

Ä
s
(k+1)
i

ä
=flProb

Ä
s
(k+1)
i |s(k)

i , a
(k)
i

ä
(18)

with
¶
yi = s

(k+1)
i

©
served as labels in the loss function

L =

1∑

k=0

N∑

i=1

‖yDNN

Ä
s
(k)
i , a

(k)
i

ä
− y‖2

(19)370

where yDNN is a set of DNN classifiers to simulate ‹P . In our pilot DNN simulations, we observed that the range
of state variables has large variations from one another and a single network architecture did not provide satisfying
predictions. Thus, to achieve better approximation, we employed n = 9 sets of independent DNNs, denoted by
DNN1, DNN2, . . . ,DNN9, to predict the ith variable with its own DNNi such that the ensemble prediction of all

variables would yield yDNN =
Ä
yDNN1
1 , yDNN2

2 , . . . , yDNN9
9

ä
. By doing this, we were able to calculate the corresponding375

probabilities of next possible states flProb (t | s, a) as the product of each separate variable’s transition probability.

Furthermore, to increase the credibility of the Q-function evaluation based upon the Bellman’s iteration (5), we
searched up to Npossible = 100 next possible transitions via top probabilities of yDNN to distribute possible Q-values
visualized in Fig. 6 (right) where each layer displays the 100 most possible moves under any given action. For com-380

parison with board games, it worth noting that in chess, the possible number of moves is around 20 for the average
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position while in GO it is about 200.

Although the Bayesian network may provide some constraints on the state transitions, for the majority in our fully
connected neural network there is no obvious causal relationship between state variables xi that could be proven.385

Therefore, we only considered independent DNNs instead of recurrent neural network approaches [35]. Our design of
the transition function is shown in Fig. 6.

4. Setting for generative adversarial network (GAN)

To generate necessary patient sample size for the training of the transition probability function, we chose a feature
space containing 3 periods of a treatment plan altogether:390

X =
¶Ä

s(0), a(0) | s(1), a(1) | s(2)
ä

∈ R
3n+2
©

and define a prior latent space Z = {z ∈ R
m=10} equipped with multivariate normal distribution z ∼ N (µ,Σ) where

µ = 0 and Σ = 0.05 · I are used. With the completed settings of GAN + transition DNN + DQN, our framework for
lung dose adaptation is depicted by Fig. 5.

III. EXPERIMENTS AND RESULTS395

A. Model Architecture and Computational Performance

Each DNN of yi
DNN, i = 1, . . . , 9 in yDNN contains two hidden layers with exponential linear unit (eLU) activations

[16] and softmax for output layer such that the topology resulted in [n, 60, 60, nlevels], where nlevels denotes the number
of category variables being discretized. Particularly, we took nlevels = 3 since according to [13] the best prediction
falls within range xi ∈ {−1, 0, 1} denoting the low, mid, or high value of a given predictor. All DNNs were trained400

with random dropouts in neurons to avoid overfitting pitfalls. The DNN of the DQN QΘ
DNN is equipped with two

hidden layers in eLU activation functions with topology [n, 120, 120, |A|]. Training operations for the DNNs under
the described structure utilized the ADAM optimizer, which is a first-order gradient-based optimization of stochastic
objective functions using adaptive estimates of lower-order moments [36]. In our case, the GAN training took roughly
7, 000 epochs with 2 batches for generating synthetic data; the transition DNN training took 35, 000 iterations and405

the DQN learning ran 30, 000 ∼ 50, 000 iterations. Our deep learning algorithms are based on Tensorflow [37]. All
experiments were implemented in ARC-TS high performance computer cluster (FLUX) with 6 NVIDIA K40 GPUs.

B. Results

1. Generated adversarial network

With the setting of Sec.II G 4, 4,000 new patients were synthesized based on the original data by GAN, which410

attempts to infer the probability distribution of patients characteristics from limited sample size. As an unsupervised
learning method, we measured the GAN performance using the loss function (3) and analyzed the data similarity
between the original clinical data and the generated ones as shown in the histograms of Fig. 7. The results show good
agreement between our original and synthesized patients characteristics based on the selected 9 variables.

2. The transition probability function of radiotherapy artificial environment415

With the generated patient data provided by GAN, the transition probability function of 9 discretized chosen
variables could be trained more reliably. We predicted each variable interaction independently as mentioned in
Sec. II G 3 such that an ensemble DNN classifier would represent the radiotherapy artificial environment yi

DNN with
its inputs and outputs given by:

yi
DNN : {−1, 0, 1}9 → {−1, 0, 1} (20)420
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FIG. 7. Each subfigure demonstrates approximate probability distribution of a predictor xi, i = 1 ∼ 9 by its histogram.
Blue-shaded areas represent the distributions of the original data while the green-shaded areas represent the distributions of
the generated data by GAN.

where the cross-entropy loss function of multiclass prediction was adopted for training:

L(Θ) = − 1

N

N∑

i=1

K∑

k=1

y
(k)
i log

Ä
σ(k)(Θ · zℓ−1

i )
ä

(21)

Using a total sample size of 4, 114 with 35, 000 iterations for each batch, the following average accuracy for each
predictor on 10-fold cross-validation was obtained as shown in Fig. 8 ranging from 0.55-1.0.

3. DQN optimal dose per fraction prediction425

For reinforcement learning being neither a pure supervised nor a unsupervised learning method, accurate evaluation
of an agent can be quite challenging [10, 38]. Following [39], our metric for the DQN agent measures the total rewards
collected in each episode (a complete treatment course). Fig. 9(a) illustrates the total rewards in 10, 000 episodes
by our in-house DQN on a classical game MountainCar for instance, where a well-defined environment is provided
by OpenAI [40] for training RL agents. It is observed that most of RL algorithms demonstrate oscillating behavior430

including DQN, where the RL learner here is demonstrated to be stable and accurate in deriving the rewards. On the
other hand, Fig. 9(b) evaluates the total reward of automated dose adaptation collected in 10, 000 episodes, which
are relatively noisy due to the higher complexity of the radiotherapy environment and the associated uncertainties
within several components: the GAN error, the transition probability function, and the joint LC-RP2 classifier and
also the oscillating behavior of the DQN itself.435
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FIG. 8. The mean accuracy of each predictor: (y1, y2, . . . , y9) = (0.88, 0.65, 0.93, 1.00, 0.55, 0.99, 0.83, 0.98, 0.49) with an error
bar visualized.

(a)MountainCar (b)Dose adaptation

FIG. 9. Total rewards of episodes collected by the DQN in two different tasks, where a classical game MountainCar is compared
with the artificial environment reconstructed for the dose adaptation.

Dose fraction prediction results are shown in Fig. 10, where the autonomous actions a1 of a(t) in (9) are computed
towards achieving optimal rewards (15) by the DQN to maximize LC rate while minimizing RP2 probability. We
allowed the agent to freely control dose from a1 = 1 ∼ 5 Gy such that A = {1, 1.1, 1.2, . . . , 5} Gy are permissible.
The DQN algorithm was evaluated on 34 patients from the institutional dose escalation study (UMCC Protocol
2007-123) who had complete information on the 9 selected variables of the RAE. Qualitatively, it is noted that the440

DQN automatically favored doses between 1.5 ∼ 3.8 Gy, which coincides with the original decision support range
of the clinical protocol. This shows the ability of the DQN to learn the effective support interval for treatment
adaptation according to the clinical protocols as shown in Fig. 10 Quantitatively, the estimated root mean-square
error (RMSE) ≃ 0.76 Gy, which suggests good agreement with clinical decisions but still has relatively high errors for
practical considerations.445

However, it was also noted that the DQN decisions based on (15) were consistently lower than their clinical
counterparts. Notably, a manual translation by about 0.75 Gy to all automated dose can achieve a better agreement in
RMSE. Besides using a manual constant shift, a natural way to better mimicking the clinical actions is to appropriately
modify the reward function by emphasizing higher local control beyond the baseline P+ function as follows:450

R(s) =
1

2

»
Prob(LC | s) ·

(
1 − w · Prob(RP2 | s)

)
·
(
1 + sgn(17.2% − Prob(RP2 | s))

)
, (22)

with w = 0.8. This reward function mainly increases the weight on LC due to
√

x ≥ x, ∀x ∈ [0, 1] with RP2 weighting
remained unchanged. As a result, most of doses were escalated to achieve higher LC rate as shown in Fig. 11 achieving
an RMSE= 0.5 Gy. Moreover, by considering the knowledge of final outcomes of treatments, we would be able to
compare the decisions made by the DQN and those by the clinicians. Under the guiding principle of “doing no harm”,455

our evaluation criteria is defined in TABLE III. Using coloring dots in green and red as indications of “good” and
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FIG. 10. Automated dose decisions given by DQN (green dots) vs. clinical decision (blue dots) with RMSE 0.76 Gy.

“bad” respectively in Fig. 11, one may identify the quality of the decisions made. As a result, this criteria suggest
that the clinician made 19 good and 15 bad decisions, whereas that DQN had 17 good, 4 bad, and 13 potentially good
decisions, as organized in TABLE. II. The results show that there is no significant difference between the clinicians
and the DQN in the category of “good” while there exist differences in the category of “bad” and “potentially good”,460

which may favor the DQN in such uncertain situations. Particularly, this “potentially good” category shown in orange
dots of Fig. 11 with (LC, RP2)=(+, −) and reduced dose computed by DQN seems to lower the adaptive dose for
decreasing risky situations, which could be partly related to the fact that the actual outcomes were used in training
the LC/RP2 predictors. However, this would require further independent validation.

Summary Good Bad Potentially good∗

clinicians 19 (55.9%) 15 (44.1%) 0

DQN 17 (50%) 4 (11.8%) 13 (38.2%)

TABLE II. Summary for the evaluation on clinicians’ and the DQN decisions.

The decisions of the DQN versus the clinicians in Fig. 11 can also be summarized in the boxplots of Fig. 12. The465

data in the plots were analyzed using two-tailed Wilcoxon signed-rank test of paired differences in medians at 5%
level of significance [41]. For the non-adaptive cases, there was no significant difference between the clinical decisions

LC label RP2 label evaluation for clinicians

+ − good

+ + bad

− + bad

− − bad

LC label RP2 label relative dose evaluation for DQN

− − ≤ 0 bad

− − > 0.2 good

− + ≥ −0.2 bad

− + < 0.2 good

+ − = 0 good

+ − > 0 bad

+ − < 0 potentially good

+ + ≥ 0 bad

+ + < 0 good

TABLE III. Evaluation of automated dose adaptation, where relative dose ≡ (automated dose − clinical given dose). It should
be noted that the notion of good or bad here is quite subjective. For instance, if a patient eventually obtains RP2 without
LC, but the DQN suggested higher than the clinical dose given, this is considered as a bad decision. See the row with LC= −,
RP2= + and relative dose > 0.
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FIG. 11. Automated dose decisions given by DQN (black solid line) vs. clinical decision (blue dashed line) with RMSE= 0.5
Gy. An evaluation of good (green dots), bad (red dots), and potentially good decisions (orange dots) are labeled according to
TABLE III.

and the DQN’s (p-value = 0.83). However, in the case of adapted patients there was a difference (p-value = 0.001).
Using one-tailed analysis it is noted that DQN decisions were generally lower (more conservative) than the clinicians’
with p-value = 0.0006.470

FIG. 12. The comparison on 34 patients of protocol 2007-123 divided into groups with and without adaptation. FX1 denotes
the dose/frac given in the first 2/3 period of the treatment; clinical denotes that of the last 1/3 treatment based on protocol
2007-123 compared with the DQN results using modified reward (22). Note that some patients in FX1 on the left figure were
given maximum dose 2.85 Gy/frac according to protocol in Sec. IIG 1.

4. Comparison with temporal difference method

We also compared our proposed approach based on DQN to the traditional RL methods based on TD(0), which is a
model-free approach [9]. Among the different TD(λ) techniques, 0 ≤ λ ≤ 1, the TD(0) without eligibility trace used is
the closest counterpart to DQN and therefore was chosen for this comparison. The results of TD(0) shown in Fig. 13
are far off from the clinical decisions (RMSE= 3.3 Gy ) in comparison to the DQN suggestions which may be due475

to the lack of numerical stability in the Q-value computation. Specifically, this could be attributed to the fact that
traditional TD is designed for navigating limited known discrete states in the environment and learn the underlying
environment model, whereas the DQN can still determine a possible action even if a state was not previously observed
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as in the large radiotherapy state space S defined in (14). Moreover, the generated RAE in our case and inherent
replay memory device of DQN contribute to improving the RL stability and convergence, which is not the case in480

traditional RL.

FIG. 13. Automated dose decisions given by TD(0) method (green dots) vs. clinical decision (blue dots) with RMSE≃ 3.3 Gy.
Possible reasons for the TD method failure to mimic the clinical decisions is the convergence instability.

IV. DISCUSSION

In this study, we have explored the feasibility of developing a deep reinforcement learning (DRL) framework for
dynamic clinical decision making in adaptive radiotherapy. Reinforcement learning as a different category of machine
learning, besides typical supervised and unsupervised learning, has its own prerequisites. A major portion of its485

development relies on having a well-defined environment (S, A, P, γ, R) of a Markov Decision Process (MDP), which
is a challenge to construct in the case of a complex radiotherapy process- with its clinical settings, known experimental
constraints, and also limited available datasets to explore such an environment. Therefore, we devised a modified
DQN architecture which is neither model-free nor model-based, since strictly speaking such approaches would indicate
an ability to learn the transition state behavior dynamically during consecutive observations and actions made (e.g.,490

board games), which is not permissible here with the large number of the states and the limited data available. In

order to approximate ‹P → P to be sufficiently reliable, the corresponding data for reconstruction must be adequate
and usable for training. This problem was tackled in this work by using the GAN approach, which allowed us to
generate new synthetic data with characteristics resembling the original limited observations.

495

In the dataset containing NSCLC of 114 patients who received radiotherapy as part of their treatment and had
sufficient (clinical, dosimetric and biological) information to model RAE, automated dose adaptation by DRL was
evaluated on a subset (34 patients) who underwent an institutional dose-adaptive escalation protocol (UMCC 2007-
123). Our DNNs utilized only 2 hidden layers, which are developed for our RL application and the corresponding
data type, although they are relatively shallower than the Microsoft’s Residual Nets or the Google’s Inception Net,500

for instance, especially tasked for image recognition of large dataset. However, more layers (abstraction levels) may
be needed as our adaptive radiotherapy datasets grow in terms of variables (-omics) and sample size.

The reward function in the current work was selected based on prior knowledge and empirical experiences to mimic
the clinical adaptation scenario, since the real reward in clinical practice may not be accessible or known. We initially505

used the reward (15) to derive the suggested dose using the known P+ based utility function and RP2 constraint to
mimic the original protocol, which resulted in an RMSE around 0.76 Gy as shown in Fig. 10. However, this reward
function resulted in consistent underestimation of the suggested dose (too conservative), and therefore we adjusted
the reward function to attain closer policies πDQN : S → A from the same agent. As suggested by (22), this adjusted
reward function provided higher weights on increasing local control (i.e., raising dose to attain higher LC rates) as510
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shown in Fig. 11. Other possible reward functions are discussed in [12]. The demonstration of how changing rewards
would lead to different policies was shown in Fig. 10 and Fig. 11. Besides utilizing empirical knowledge to define the
reward functions used here, an alternative approach called inverse reinforcement learning (IRL) can be applied to
reverse engineer the reward hidden inside the real world based on a perfect mentor [42], which may not be available
in practical clinical settings and would be considered as a subject of future work.515

Interestingly, we noticed in our results that the DRL not only achieved comparable results to clinical decisions but
also can make recommendations that would help adjust current decisions as part of its training when used as a second
reader decision support system. The current study has focused on mimicking clinical decisions as a proof-of-principle
and as validation of the feasibility of DRL for automated dose adaptation applications. However, this algorithm520

would require further validation on independent datasets once they become available. The use of Bayesian networks
as shown here could help constrain the environment as well as define the reward functions. The Bayesian networks not
only help predict outcomes, but also identify hierarchical relationships within the state variables, which is currently
being investigated.

525

Another limitation of this study is that we only considered a single adaptation action of changing the dose/fraction
rather than, for instance, devising a continuous adaptation protocol on a daily or weekly basis. However, this is due
to the nature of action information availability within our current data. If one could retrieve more data of tumor
response or status monitoring closely/continuously during treatment, this would provide more time stamps to build
a more accurate model of RAE and eventually help in reducing the DQN learning error. The information used to530

reconstruct the RAE environment was limited to certain molecular biomarkers and PET imaging data. However, this
information could be further enriched by utilizing tumor and normal tissue response and monitoring indicators from
radiogenomics [43] or non-invasive new imaging information from CT radiomics [44], advanced ultrasound [45–47],
magnetic resonance spectroscopy [48], or optical imaging in the case of superficial tumors [49]. Should more data
become available, continuous adaptive decision making may be introduced and further evaluated using the proposed535

DRL approach.

V. CONCLUSIONS

Our study introduced deep RL as a viable solution for response-adaptive clinical decision making. We proposed
a combination of three deep learning components: GAN + transition DNN + DQN to provide an automated dose
adaptation framework as shown in Fig. 1(b). All three components are essential and complementary to each other-540

from generating the necessary training data for learning the transition probability of the approximated environment to
searching for the optimal actions. The use of deep Q-networks as a modern reinforcement learning technique allows us
to potentially realize automated decision making in complex clinical environments such as radiotherapy. Towards this
goal, we approximated the transition probability function from historical treatment plans via independent DNNs and
GAN to generate sufficient synthetic patient data for training. Our proposed method was demonstrated successfully on545

an institutional dose escalation study with empirical reward functions. However, further developments and validations
on larger multi-institutional datasets are still required for building an autonomous clinical decision support system
for response-based adaptive radiotherapy.
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