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Abstract: Polymorphonuclear leukocytes (PMNs) ad-
herent to fibrinogen exhibit a delay in the release of H202
in response to fMLP. Previously, we demonstrated that

H202 release in adherent PMNs coincides with the exocy-
tosis of lactoferrin-containing specific granules and acti-
vation of phospholipase D (PLD). We also found that che-
lation of intracellular calcium blocked both lactoferrin

and H202 release in stimulated PMNs in spite of the fact
that adhesion and spreading remained normal. Since
diradylglycerol (DRG) formation has been implicated in

PMN secretion and oxidant release, we determined the

effect of intracellular calcium chelation on PLD activa-

tion and DRG formation to ascertain whether DRG for-

mation was coupled to lactoferrin and H202 release. We
observed that chelation of intracellular calcium with bis-

(O-aminophenoxy)-ethanol-N,N;I%7’- tetraacetic acid (BAPTA)
prevented PLD activation as monitored by inhibition of

phosphatidylethanol formation. Formation of DRG der-
ived from phosphatidic acid (PA) was also inhibited in

the presence of BAPTA. Following the addition of the cal-
cium ionophore ionomycin to the BAPTA-treated PMNs,

lactoferrin and H202 release was coincident with the on-

set of DRG formation. Also the addition of sn-1,2-dide-
canoylglycerol to the BAPTA-treated PMNs stimulated
them to release H202. Our studies support the hypothesis

that DRG derived from PLD activation is required for
degranulation of specific granules and associated H202

release from adherent PMNs. J. Leukoc. Biol. 56:

105-109; 1994.
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INTRODUCTION

Previously, we correlated the exocytosis of lactof#{232}rrin-

containing specific granules and H202 release in polymor-

phonuclear leukocytes (PMNs) by taking advantage of the

long lag period and protracted kinetics ofoxidant generation

in adherent PMNs [1]. The correlation observed between the

release of LF-containing specific granules and H202 in ad-

herent PMNs is consistent with the concept that transloca-

tion of an active NADPH oxidase from the specific granule

membranes to the plasma membranes results in the delivery

of H202 to the external milieu. Ultrastructural and subcellu-
lar fractionation studies have shown that cytochrome b558

plays a critical role in the assembly of the cytosolic compo-

nents �47Ph0� and p67Ph0�, which leads to the generation of

021H202 by PMNs in suspension [2, �1 About 85% of the

total cytochrome b558 is associated with LF-containing

specific granule fractions in unactivated PMNs and the re-

mainder with the plasma membrane [3]. Therefore, it is not

surprising that in employing a cell-free system, an active

NADPH oxidase can be assembled on both plasma mem-

branes and specific granules, both of which contain

cytochrome b558 [4, 5]. Likewise, in adherent PMNs the

NADPH oxidase can be assembled on specific granules and

this assembled oxidase can be linked to the release of 02

into phagosomes [6].
We previously observed that diradylglyccrol (DRG) in-

creased following phospholipase D activation and was cor-

related with the exocytosis of LF-bearing specific granules

and H202 release [7]. We also found that chelation of in-

tracellular calcium blocked both LF and H202 release in

stimulated PMNs, in spite of the fact that adhesion and

spreading remained normal [1]. Since DRG has been impli-

cated in PMN secretion and oxidant release (8], we deter-

mined the effect of intracellular calcium chelation on PLD

activation and DRG formation in order to ascertain whether

DRG formation remained coupled to LF and H202 release

in activated, adherent PMNs.

MATERIALS AND METHODS

Reagents

N-Formylmethionyl-Iencyl-phenylalanine (fMLP), imida-

zole, horseradish peroxidase, H202, phospholipase D (PLD)

cabbage (type I), O-phenylenediamine hydrochloride, cardi-

olipin from bovine heart, f3-octylglycoside, scopoletin, so-

dium azide, dioleoylphosphatidylcholine, and ionomycin

were purchased from Sigma (St. Louis, MO). Dithiothreitol,

human LF, and sn-1,2-diacylglycerol kinase from E. co/i were

purchased from Calbiochem Corp (San Diego, CA). Silica

gel 60 thin-layer chromatography (TLC) plates were pur-

chased from Merck (Darmstadt, Germany). [32P]Adenosine-5’-

triphosphate (25 Ci/mmol) was obtained from ICN Phar-

maceuticals (Irvine, CA), and 1-O-[3H]octadecyl-sn-
glycero-3-phosphocholine (148 C i/mmol) was obtained from

Amersham (Arlington Heights, IL). Fibrinogen was pur-

chased from Kabi Diagnostics (Franklin OH), goat anti-

human LF antibody from Nordic Immunological products

(El Toro, CA), and rabbit anti-human LF and peroxidase-
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Fig. 1. Effect of BAPTA on the time course of H202 release, LF release, and
DRG formation from PMNs plated onto fibrinogen and activated with

fMLP. (A) PMNs (1 x l05/ml) were added to fibrinogen-coated 24-well

plates containing 100 nM fMLP in the presence (#{149},A) and absence (0, L�)
of 10 jzM BAPTA. The plates were then incubated at 37#{176}Cand samples

withdrawn at varying times and monitored for LF and H2O2 release. Values

represent the mean ± so of three separate experiments. (B) In parallel

wells, DRG formation was determined over the same time interval for

fMLP-stimulated PMNs in the presence (#{149})or absence (0) of 10 �sM

BAPTA. Values represent the mean ± SD of three separate experiments.

An asterisk (‘) indicates values that are significantly different (P < .01)

from controls at time 0.

Although there was a correlation between LF and H202

release in adherent PMNs, it was not clear whether the ex-
ocytosis of LF-containing granules was required for H202

generation. Therefore, we employed the intracellular cal-

cium chelator BAPTA to block the exocytosis of LF-

containing specific granules and determined the effect of this

treatment on H202 release. BAPTA-treatment of the PMNs

significantly inhibited (P < .01) fMLP-mediated LF and

H202 release in adherent PMNs (Fig. 1A). When PMNs

were plated onto fibrinogen and stimulated with fMLP un-

der the conditions that promote LF and H202 release, we ob-

served two peaks of DRG formation as noted previously [7].

The initial increase in DRG was similar in magnitude to the

DRG levels reported for PMNs activated with fMLP in sus-

pension. The second phase of DRG generation occurs

through a PLD-mediated pathway and corresponds to

degranulation and oxidant release in PMNs adherent to

fibrinogen [7]. As shown in Figure 1B, BAPTA treatment

blocked the second the phase of DRG generation without

affecting the first phase.
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conjugated goat anti-rabbit antibodies from Organon-
Teknika Corp. (Malverne, PA). sn-1,2-Didecanoylglycerol

was obtained from Avanti Polar-Lipids (Alabaster, AL). 10

Neutrophil preparation and functional assays

Human PMNs were isolated from human peripheral blood

as previously described [9] using dextran sedimentation fol-

lowed by hypotonic lysis to remove the majority of erythro-

cytes and centrifugation through Ficoll-Paque. Assays were

conducted in 24-well, flat-bottom, polystyrene Falcon

Primaria tissue culture plates coated with fibrinogen (50

j�g/ml) as previously outlined [10]. To measure H202 release,
PMNs (1 x 105/well) suspended in KRBG were added to

fibrinogen-coated wells containing Krebs-Ringer phosphate

buffer with glucose (KRBG), 24 �M scopoletin, 5 �g of

horseradish peroxidase, 1 mM sodium azide, and the mdi-

cated agonists and/or inhibitors in a final volume of 1 ml [1].

Samples were also evaluated for LF content [1].

DRG formation in PMNs plated onto fibrinogen

PMNs were plated onto fibrinogen-coated 24-well plates un-

der the same experimental conditions as those outlined for

H202 release [7]. At the indicated time points, PMNs from

eight wells were extracted according to the method of Shay-
man et al. [11] as combined as recently described [7]. DRG

was quantified by enzymatic conversion of DRG to [32P]PA

using E. co/i diacylglycerol kinase [12, 7]. The protein con-

centration of each sample was determined using the Pierce

BCA protein assay reagent (Pierce, Rockford, IL).

BAPTA loading of PMNs

PMNs (1.3 x 106/ml) were incubated with the intracellular

Ca2� chelator BAPTA at 10 �M in Ca2�-free phosphate-

buffered saline (PBS) for 30 mm at 37#{176}C.At the end of this

incubation, 1 x 10� cells were added directly to fibrinogen-

coated wells containing prewarmed KRBG with 100 nM

fMLP and Ca2� and assayed for H202, LF release, and DRG

formation at various times [1, 7].

Labeling of PMNs with [3HJIy50PAF

For assessment of phosphatidylethanol (PEt) formation,

PMNs were prelabeled with lyso-PAF. PMNs (1 x 107/ml)

were incubated in [3H]lysoPAF (108 M) for 30 mm at 37#{176}C

as previously described [14]. After labeling, PMNs were

pelleted at 300g for 5 mm, washed twice with PBS, and

resuspended in PBS containing 1 mM Ca2� and Mg2�.

PMNs were then preincubated in ethanol (200 mM) or

buffer for 5 mm at 37#{176}Cbefore plating onto fibrinogen-

coated plates, with ethanol being present throughout the

time course. Lipids were obtained and analyzed as previ-

ously described [7].

Statistical analysis

Data were analyzed by Student’s paired t-tests.

RESULTS

Effect of BAPTA on H202 and Iactoferrin release and
DRG formation in PMNs plated onto fibrinogen

Previously, we found a correlation between LF exocytosis

and Hi02 release in PMNs plated onto fibrinogen-coated

plastic and activated with fMLP [1]. As noted in Figure 1A,

the time course of LF release paralleled that of H202 release.
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Reversal of BAPTA/AM treatment on adherent PMN
function

Following the addition of ionomycin to indo-1/AM-labeled

PMNs in the presence or absence of BAPTA/AM, intracellu-

lar Ca2� can be restored to very high levels in both resting

and agonist-stimulated PMNs [6]. We therefore assessed the

effect of ionomycin on adherent PMNs. Addition of 100 nM

ionomycin to the BAPTA-treated adherent PMNs at 90 mm

resulted in significant release of both H202 and LF within

15 mm (Fig. 2A). The generation ofDRG following addition

of ionomycin at 90 mm coincided with the onset of H202 and

LF release, suggesting an association between these events

(Fig. 2B). These studies indicate that PLD-mediated DRG

formation is a calcium-dependent process and closely as-

sociated with degranulation and oxidant release in adherent

PMN.

Effect of BAPTA/AM on PLD activity in adherent PMNs
plated onto fibrinogen

To confirm that the increase in DRG occurring coinciden-

tally with LF and H202 was generated through the action of

a calcium-dependent PLD, we assessed the effect of ethanol
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Fig. 3. Effect of BAPTA on the formation of PEt in PMNs plated onto

fibrinogen. PMNs were labeled with [3H]lysoPAF. Labeled cells (1 x l05/nil)

were preincubated with ethanol (200 mM) or butler for 5 rain at 37#{176}Cand

then plated onto fibrinogen-coated 24-well plates containing 100 nM fMLP.

ill the presence or absence of BAPTA and ethanol. Samples were withdrawn

at the indicated times and assayed for PEt formation. Values represent the

mean ± SI) of three separate experiments.

on PMN functional responses. In the presence of ethanol,

PLD activation results in a transphosphatidylation reaction
80 � that generates phosphatidylethanol rather than PA. Previ-

� ously, we found that IMLP-stimulated adherent PMNs
0 failed to release significant amounts of H202 or LF, or gener-

60 La ate the second wave of DRG, in the presence of ethanol [7].

c These previous results suggested that DRG generated

40 through the action of PLD is critical for degranulation and
� oxidant release in IMLP-stimulated adherent PMNs. In the

� current studies, we labeled cells with [3H]lysoPAF and meas-

20 F- ured PEt formation at 15 and 90 mm in control and BAPTA-
� treated PMNs after addition to fibrinogen-coated plates. We

_J then determined whether intracellular calcium chelation

0 �l with BAPTA would prevent PLD activation. In the presence

of ethanol and absence of IMLP stimulation, there was a

modest increase in PEt formation at 90 mm (Fig. 3). fMLP
stimulation ofPMNs in the presence ofethanol did not affect

PEt formation at 15 mm but resulted in about a 13-fold in-

crease in PEt by 90 mm, corresponding to the second wave

of DRG formation. To determine whether the action of PLD

was Ca2� dependent, PMNs were incubated with 10 �tM

BAPTA/AM. As noted in Figure 3, BAPTA-treated PMNs

were impaired in their ability to generate PEt at 90 mm fol-

lowing activation with fMLP. These results indicate that

BAPTA blocks DRG formation by chelating intracellular

Ca2�, thereby preventing the PLD activity in the adherent

PMNs.

Effect of DiC1O on BAPTA/AM-treated PMNs

Because BAPTA treatment blocked the formation of DRG

generated through the action of a calcium-dependent PLD,

we assessed the effect ofexogenously added DiC1O on restor-

ing oxidant generation in the adherent PMNs (Fig. 4). We
observed that 50 jtM DiC1O by itself stimulated the cells to

release H202 upon addition of DiC1O 90 mm after BAPTA

treatment.

DISCUSSION

In the present study, we have focused on the effect of damp-

ening changes in [Ca2�] on the activation of PLD by fMLP

o FMLP

#{149}FMLP + BAPTA
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Fig. 2. Effect of ionomycin on reversing BAPTA inhibition of H202 and LF

release and DRG formation. (A) LF release and H202 release in PMNs in

the presence and absence of 10 jzM BAPTA. PMNs (1 x l05/ml) were added

to fibrinogen-coated 24-well plates containing either 100 nM fMLP (0, A)

or fMLP and 10 �M BAPTA (#{149},A) incubated at 37#{176}Cuntil 90 mm. At

90 mm (indicated by arrow) 100 nM ionomycin was added to the BAPTA-

treated adherent PMNs. Throughout the study samples were withdrawn at

varying times and monitored for LF and H202 release. (B) In parallel wells,

DRG formation in both fMLP-stimulated (0) and IMLP-stimulated and

BAPTA-treated (#{149})PMNs was measured over the indicated times. At 90

mm, as indicated by the arrow, 100 nM ionomycin was added to the BAPTA-

treated PMNs. Values represent the mean ± SD of three separate experiments.
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Fig. 4. Effect ofDiClO on BAPTA-loaded PMNs. PMNs (1 x 105/ml) were

added to fibrinogen-coated 24-well plates containing 10 sM BAPTA in the

presence of 50 �tM DiC1O (#{149}),which was added at 90 mm as indicated by

the arrow, or the absence of DiCIO (0). The plates were incubated at 3 7#{176}C,

and samples were withdrawn at varying times and monitored for H202
release. Values represent the mean ± SI) of three separate experiments.

in adherent human PMNs. Others have studied in more de-

tail the effect of changes in [Ca2�]1 on PLD activation in

both intact and electropermeabilized PMNs in suspension

[13]. There appears to be an absolute requirement for a rise

in [Ca2�]1 to induce PLD activation in intact or electroper-
meabilized suspended PMNs. However, in suspended,

IMLP-activated PMNs, PLD activation does not appear to

be required for induction of the respiratory burst [13]. In

contrast, we found that chelation of intracellular calcium

prevented PLD activation and the coincident release of LF-

containing specific granules and H202 from adherent PMNs.

Mammalian PLD is membrane bound and uses phos-

phatidylcholine as its primary substrate, although under cer-

tam conditions, phosphatidylethanolamine and phos-

phatidylinositol may be degraded [14]. PLD acting on

phosphatidylcholine exhibits two distinct enzymatic activi-

ties. In addition to the hydrolytic activity that generates

phosphatidic acid, PLD catalyzes a transphosphatidylation

reaction in the presence of primary alcohols in which the

phosphatidyl moiety of phosphatidylcholine is transferred to

a primary alcohol to produce phosphatidylalcohol [15]. In

this report, we observed that chelation of intracellular cal-
cium prevented PLD activation as monitored by inhibition

of PEt formation. It is not surprising then that generation of

DRG, derived from PA by activation of phosphatidic phos-

phohydrolase, was also prevented in the presence of BAPTA.

In contrast, the initial phase offormation ofDRG, likely der-

ived from PLC activation, was unaffected by intracellular

calcium chelation.

Following the addition of the calcium ionophore ionomy-

cm to the BAPTA-treated cells, LF and H202 release re-

sumed coincident with the onset of DRG formation. Studies

using cell-permeant short-chain DRG indicate that these
phospholipid products may be involved in degranulation, su-

peroxide generation, and protein kinase C activation by

PMNs in suspension [8]. Although the same studies indi-

cated that DiC1O will activate lysosomal release, DiC1O failed

to activate the respiratory burst and was a poor competitor

for [3H]PDBU binding to intact PMNs compared with other

short-chain DRG. These studies indicate that DiC1O stimu-

lated PMNs in suspension by means other than protein

kinase C activation [8]. In our study, however, DiC1O proved

to be a potent agonist for adherent PMNs by stimulating

these cells to release H202. Our studies continue to support

the notion that DRG, derived from PLD activation, is re-

quired for degranulation of specific granules and the as-

sociated release of H202 from adherent PMNs. In summary,

unlike PMNs in suspension, in which fMLP will preferen-

tially activate PLC to generate a respiratory burst, activated

adherent PMNs release H202 via a PLD-mediated pathway

[14, 16].
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