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1. Transport Properties Calculation 

For a single parabolic band, the Hall coefficient, Seebeck coefficient, and electrical conductivity can be 
expressed as below by solving the Boltzmann transport equation with the relaxation time assumption: 
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where ݁ is the elementary charge, ħ is the reduced Planck’s constant, ݉∗ is the effective mass, ݇஻  is the 
Boltzmann constant, ܶ  is the absolute temperature, ݓ  is a proportionality constant, ߟ∗ = ாಷ

௞ಳ்
 is the 

reduced Fermi level, and ܨ௝(ߟ∗) = ∫ ఎೕ

ଵାୣ୶୮(ఎିఎ∗)݀ߟ
ஶ
଴  is the Fermi integral of the jth order. The relaxation 

time has an energy dependence of: 
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where ݓ is a proportionality constant which we set to 1.2 × 10ିଶଷ in this work. With acoustic phonon 
scattering assumed as the dominant scattering process, the scattering parameter ݎ has the value of − ଵ

ଶ
.  

The carrier concentration of a parabolic band can be expressed as: 
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where ℎ is Planck’s constant. The temperature-dependent Fermi level of CuInTe2 is derived from the 
temperature-dependent Seebeck coefficient of CuInTe2 using this model. 



For the case of GeTe, the determination of the transport coefficients is more complicated. It is believed 

that GeTe has 4-fold degenerate light valence bands at the ܮ point and deeper 12-fold degenerate heavy 

valence bands at the ߑ point with an energy difference of 0.27eV – 0.38eV at 300K.[1-4] Here, we take the 

value of 0.36eV obtained by Sun et al.[1] The energy difference between the light ܮ band and the heavy ߑ 

band also decreases as the temperature increases,[4-6] so here we take the temperature dependence of the 

energy difference to be −1.2 × 10ିଷܸ݁/ܭ  to meet the requirement that the two bands converge at 

approximately 600K, which was suggested by the Hall coefficient measurement in this work and previous 

studies.[4,6] The two band model for GeTe can be expressed as:[1]  
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where ∆ܧ is the energy difference between the light ܮ band and heavy Σ band, ܾ is the mobility ratio of 

the light hole to the heavy hole, and ߤ is the mobility of each band. The subscripts ℎ and ݈ correspond to 

heavy and light holes, respectively. The temperature-dependent Fermi level of GeTe is derived from the 

temperature-dependent Seebeck coefficient and electrical conductivity of GeTe using this model. 

2. Poisson model 

The CuInTe2 inclusions are assumed to be spheres surrounded by the GeTe phase. The radius of CuInTe2 

inclusions is related to that of the GeTe phase (modeled as spherical for computational convenience) by 

the doping ratio of CuInTe2: 
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where ݔ is the doping ratio. The common energy reference is set as the valence band maximum of pure 

GeTe. Note that we are studying the effect of holes, so carriers that are deeper into the valence band have 

higher energy. The spatial distribution of the electrostatic potential ܸ(ݎ)  is caused by the charge 

redistribution after the two phases come into contact and can be determined using the Poisson equation.  

For ݎ ≤ ܴ஼ூ்  in the CuInTe2 region, the Poisson equation can be written as: 
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For ܴ஼ூ் ≤ ݎ ≤ ܴீ் in the GeTe region, the Poisson equation can be written as: 
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where ߝ஼ூ்  is the dielectric constant of CuInTe2, ்ீߝ is the dielectric constant of GeTe, ߝ଴ is the vacuum 

permittivity, ݌஼ூ்ି௡௘௧(ݎ) is the net charge concentration in the CuInTe2 region, and ି்ீ݌௡௘௧(ݎ) is the net 

charge concentration in the GeTe region. 

At a given temperature, the defect concentrations in GeTe and CuInTe2 determine their carrier 

concentrations. If a certain amount of free carriers move away from a region, it will be left with net 

charge which can be written as: 

௡௘௧݌ = [(ݎ)ߤ]݌ −  ܵ16										଴݌

where [(ݎ)ߤ]݌ is the new carrier concentration determined by the chemical potential (ݎ)ߤ after the charge 

redistribution and ݌଴  is the carrier concentration under neutral condition before contact, which is 

determined by the temperature and defect concentration. If we further assume each material possesses a 

parabolic band structure for simplicity (noting that more complex band structures can easily be 

implemented), we have from Eqn. S5: 
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with ܧிି஺஼  and ܧ௏஻ெି஺஼  representing the Fermi level and valence band maximum after the two phases 

come into contact. Plugging Eqn. S17 into S14 and S15, we have: 
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where ܧ௢௙௙ is the energy offset between the maximum of the valence bands of the two phases, and for 

ܴ஼ூ் ≤ ݎ ≤ ܴீ் , 
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In order to solve for V(r) within the domain that we are interested in, additional boundary conditions are 

needed. At the center of the CuInTe2 inclusion, we set the electric field to be zero, that is: 
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On the other hand, since the total charge within the domain of ݎ ≤ ܴீ்  is conserved, based on Gauss’s 

law, the electric field at ݎ = ܴீ்  is also zero: 
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At the interface between the CuInTe2 and GeTe phases, the discontinuity of the electrostatic potential 

depends on the interface dipole, which is material dependent. Also, the electrical field discontinuity is 

decided by the interface free charge density. Here, for simplicity, we set them both to zero. Thus, the third 

and fourth boundary conditions at the interface are: 
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We used the fourth-order Runge-Kutta algorithm with the shooting method to numerically solve the 

Poisson equation with the above boundary conditions. To estimate the bulk matrix carrier concentration 

change due to charge transfer, we divide the total amount of charge transferred across the interface by the 

total volume of the sample, effectively averaging the charge transfer effect. The material parameters used 

in the calculation are: ݉ீ் = 0.5݉௘, ݉஼ூ் = 5݉௘, ்ீߝ = 37.5,[7] and ݉஼ூ் = 10.[8] 

To rule out the influence of interface states on the matrix carrier concentration, we estimated the total 

number of charge carriers that are trapped by these interface states and calculated the average matrix 

carrier concentration drop caused by this trapping. We then compared this value (caused by interface 

states trapping) to the value calculated using the charge transfer model developed above.  

The density of interface states is needed to calculate the total number of the charge carriers that are 

trapped by interface states. We use 1014 cm-2eV-1 as an estimate for the density of interface states (ߪ௜).[9] 

The energy barrier between the interface states and the valence band of GeTe matrix (߳௜) is set to 0.05 eV 

based on the observed convergence of the carrier concentrations of pure GeTe and GeTe-CuInTe2 

composites at approximately 600 K (which corresponds to an excitation energy of approximately 0.05 

eV). The shape of the nanoscale CuInTe2 secondary phases is set to be spherical (with radius r), with each 

of these phases embedded in a sphere of GeTe with larger radius (R). Therefore, for the sample with 5% 

CuInTe2 incorporated, the relation between ݎ and ܴ is: 
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The total number of charge carriers that are trapped in the interface states is 4ݎߨଶߪ௜߳௜. Dividing the total 

number of charge carriers trapped in interface states by the volume of GeTe matrix, the carrier 

concentration drop in the matrix is: 
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Setting the radius of the CuInTe2 to be 5 nm, the estimated drop in carrier concentration drop is 1.58×1018 

cm-3. 

For the charge transfer model we developed in the paper, with 5% CuInTe2 incorporated in the GeTe 

matrix, 5 nm radius CuInTe2 spherical inclusions, and 0.4 eV Fermi level offset as determined from 

Ultraviolet Photoemission Spectroscopy, the total carrier concentration drop in the GeTe matrix is 

predicted to be 1.0864×1019 cm-3. 



Comparing the two values calculated using two different models, we find that the carrier concentration 

drop caused by the interface states is almost an order of magnitude smaller than that caused by the charge 

transfer. Furthermore, the value we assumed for the density of interface states is an overestimate. We 

used 1014 cm-2eV-1 as the value to estimate the density of the interface states, which is an upper bound for 

the density of surface states. Because atoms at the surface have more dangling bonds than those at the 

interface, a previous study found the density of interface states to be even smaller (approximately 1013 cm-

2eV-1).[10] With this value as an estimate for the density of the interface states, the carrier concentration 

drop in the GeTe matrix caused by interface state trapping is almost two orders of magnitude smaller than 

that caused by the charge transfer.  

3. Sample Structural Characterization 

The densities of all samples as measured by the Archimedes method are given in Table S1. All GeTe-rich 

samples (with GeTe concentrations greater than or equal to 70 mol%) have densities above 6.07 g/cm3, 

while CuInTe2-rich samples (with GeTe concentrations less than or equal to 30 mol%) have densities 

below 5.88 g/cm3. The theoretical density can be calculated as below, assuming the phases are separated: 
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where ߩ஼௨ூ௡்௘మ is the theoretical density of CuInTe2, ீߩ௘்௘ is the theoretical density of GeTe, ݉஼௨ூ௡்௘మ is 

the molecular mass of CuInTe2, ݉ீ௘మ்௘మ is the molecular mass of Ge2Te2, and ݔ is the concentration of 

GeTe in the composites. Using literature values for the theoretical densities of GeTe (6.14 g/cm3)[11] and 

CuInTe2 (6.07 g/cm3)[12], the calculated theoretical densities of the composites and corresponding relative 

densities are also listed in Table S1. All GeTe-rich samples have relative densities above 98.9%.  

The powder X-ray diffraction (PXRD) patterns of 5 selected samples (GT-100, GT-90, GT-70, GT-30, 

and GT-10) are presented in Figure S1. The major phase of all the samples is identified as GeTe, with 

traces of the secondary phases of CuInTe2 and Ge according to the known peak positions of the minerals 

(GeTe: PDF card ref. 06-0469; CuInTe2: PDF card ref. 06-0605; Ge: PDF card ref. 03-0478). Several 

major Cu ߚ  diffraction peaks arising due to the strong Cu ߚ  radiation of the X-ray source are also 

identified and labeled in Figure S1. As the concentration of CuInTe2 increases, the intensity of the 

CuInTe2 peaks increases, while that of the GeTe peaks decreases. The Ge impurity peak disappears for all 

CuInTe2-added samples, indicating that the amount of Ge falls below the detection limit of PXRD. The 

coexistence of GeTe and CuInTe2 peaks confirms that GeTe and CuInTe2 can only form composites, due 



to the different space group of the two compounds (CuInTe2 has a tetragonal structure with the space 

group I4ത2d, while GeTe crystallizes with a rhombohedral structure in the space group ܴ4݉).[11,12] The 

secondary phase of Ge is present because Ge forms as a consequence of native defects in GeTe. 

Backscattered electron (BSE) images of the GT-98, GT-95, GT-90, and GT-70 samples taken to confirm 

phase separation are presented in Figure S2. The contrast of light and dark regions in the BSE images 

clearly confirms the existence of two phases, with the light-colored regions associated with the CuInTe2 

phase (which has a larger average atomic weight of 433.566) and the dark background associated with the 

GeTe matrix (which has a smaller average atomic weight of 400.460). This is confirmed by energy 

dispersive X-ray spectroscopy (EDS) element mapping, shown in Figure 3a, where the target element 

accumulates in the lighter area. A small amount of pure Ge is detected in the Ge mapping image as a very 

light spot that corresponds to a dark spot in the Te mapping image, though the concentration of Ge is so 

small that PXRD is not able to detect it. No In- or Cu-rich secondary phases were detected in the region 

tested. Comparing the BSE images of GT-98 and GT-95 in Figures S2a and S2b, it is clear that the 

concentration of light CuInTe2 areas increases from the former to the latter. The segregation of CuInTe2 in 

GT-98 strongly indicates that the solubility of Cu and In in GeTe is below 2%. Macroscale BSE images 

of GT-90 and GT-70 are presented for comparison (Figures S2c and S2d). The sizes of the CuInTe2 

inclusions in the GT-70 sample vary from several micrometers to 50 micrometers, and the various shapes 

of the segregated phase are identified with different surface area to volume ratios. As the concentration of 

CuInTe2 decreases from 30 mol% to 10 mol%, the extent of segregated CuInTe2 also decreases, and the 

inclusion shapes tend to be more spherical.  

The temperature-dependent heat capacity clearly indicates that a phase transition has taken place at 

approximately 660 K for all CuInTe2-incorporated composites (Figure 6a). The phase transition 

temperature of pure GeTe (approximately 674 K) is approximately 15 K higher than that of the 

composites. The decreased phase transition temperature of the composites suggests that a small amount of 

Cu and In go into the GeTe lattice to alter the phase transition temperature, as has been observed in a 

previous study on In-doped GeTe.[1] However, the phase transition temperature shift in our samples is 

only approximately 15 K, which is much smaller than the value observed in In-doped GeTe (125 K),[1] 

indicating that the amount of Cu and In entering the GeTe lattice is much smaller. Three consecutive heat 

capacity measurements were also done on the GT-87.5 sample to confirm the repeatability of the 

measurement (inset of Figure 6a).  

4. Mobility Calculation 



For the calculation of the mobility from various scattering mechanisms, we use the expression for 

electrical conductivity:[4,6]  
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where ܧ is the carrier energy, ߬௧௢௧௔௟(ܧ,ܶ) is the total relaxation time from all scattering processes, and ଴݂ 

is the Fermi distribution function. The relaxation time from acoustic phonon scattering is:[4]  
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where ߩ is the material density, ݒ௟ is the sound velocity of longitudinal acoustic phonons, and ܧ௔௖ is the 

deformation potential of acoustic phonons. The relaxation time from point defect scattering is:[4]  
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where ௗܰ  is the defect concentration and ∆ is a constant characterizing the mass and strain constant 

contrast between the matrix and point defect. The relaxation time from precipitate scattering is: 
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where ܴ is the precipitate radius, ݔ is the molar concentration of the precipitate, and ଴ܸ is the interfacial 

potential between the matrix and the precipitate. 

To obtain Figure 6b we used ݉∗ = 0.5	݉௘, ܧ௔௖ = 11 eV, ଴ܸ = 0.3 eV, ∆	= 10ିସ଻ , R = 20 nm, ρݒ௟ଶ = 

130 GPa, and a Fermi level of 0.3 eV with respect to the valence band edge. 
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Supplementary Tables and Figures 

Sample 
Name GT-100 GT-98 GT-95 GT-92.5 GT-90 GT-87.5 GT-85 GT-80 GT-70 

Density 
[g/cm3] 6.099 6.121 6.071 6.130 6.087 6.143 6.122 6.146 6.082 

Theoretical 
Density 
[g/cm3] 

6.140 6.139 6.136 6.134 6.132 6.131 6.129 6.125 6.118 

Relative 
Density [%] 99.3 99.7 98.9 99.9 99.3 >100 99.9 >100 99.4 

Table S1 Measured densities, theoretical densities, and relative densities of (Ge2Te2)x%(CuInTe2)1-x% 

samples. 

 



Figure S1 Powder X-ray diffraction patterns of 5 selected samples: GT-100, GT-90, GT-70, GT-30, and 

GT-10. 

 



 

Figure S2 a) Back scattered electron (BSE) image of GT-98 sample with 10000× magnification. b) BSE 

image of GT-95 sample with 10000× magnification. c) BSE image of GT-90 sample with 800× 

magnification. d: BSE image of GT-70 sample with 800× magnification. 

 

 

 

 

 

 

 

 

 


