Title:
Range position and climate sensitivity: the structure of among-population demographic responses to climatic variation

Authors: Staci M. Amburgey ${ }^{1,2^{*}}$, David A.W. Miller ${ }^{1}$, Evan H. Campbell Grant ${ }^{3}$, Tracy A.G. Rittenhouse ${ }^{4}$, Michael F. Benard ${ }^{5}$, Jonathan L. Richardson ${ }^{6}$, MARK C. URban ${ }^{7}$, Ward Hughson ${ }^{8}$, Adrianne B. Brand ${ }^{3}$, Christopher J. Davis ${ }^{9}$, CARMEN R. HARDIN ${ }^{10}$, PETER W.C. Paton ${ }^{11}$, Christopher J. Raithel ${ }^{12}$, Rick A. Relyea ${ }^{13}$, A. Floyd Scott ${ }^{14}$, DAVid K. Skelly ${ }^{15}$, Dennis E. SKidds ${ }^{16}$, Charles K. Smith ${ }^{17}$, Earl E. Werner ${ }^{18}$
${ }^{1}$ The Pennsylvania State University, Department of Ecosystem Sciences and Management, University Park, PA, USA, 16802
${ }^{2}$ The Pennsylvania State University, Intercollege Graduate Ecology Program, University Park, PA, USA, 16802
${ }^{3}$ USGS Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Center, Turners Falls, MA, USA, 01376
${ }^{4}$ University of Connecticut, Department of Natural Resources and the Environment, Storrs, CT, USA, 06269
${ }^{5}$ Case Western Reserve University, Department of Biology, Cleveland, OH, USA, 44106
${ }^{6}$ Providence College, Department of Biology, Providence, RI, USA, 02918
${ }^{7}$ University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, USA, 06269
${ }^{8}$ Parks Canada, Jasper, AB, Canada, T0E 1E0
${ }^{9}$ University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA, USA, 16424
${ }^{10}$ Wisconsin Department of Natural Resources, Forestry Division, Madison, WI, USA, 53707
${ }^{11}$ University of Rhode Island, Department of Natural Resources Science, Kingston, RI, USA, 02881
${ }^{12}$ Rhode Island Department of Environmental Management, Division of Fish and Wildlife, West
Kingston, RI, USA, 02892
${ }^{13}$ Rensselaer Polytechnic Institute, Department of Biological Sciences, Troy, New York, USA, 12180
${ }^{14}$ Austin Peay State University, Department of Biology, Clarksville, TN, USA, 37040
${ }^{15}$ Yale University, School of Forestry and Environmental Studies, New Haven, CT, USA, 06511
${ }^{16}$ National Parks Service, Northeast Coastal and Barrier Network, Kingston, RI, USA, 02881
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/gcb. 13817

This article is protected by copyright. All rights reserved
${ }^{17}$ High Point University, Department of Biology, High Point, NC, USA, 27262
${ }^{18}$ University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, USA, 48109

*Correspondence: Staci M. Amburgey, tel. +1 814865 4183, fax +1 814863 4710, e-mail:
sma279@psu.edu

Demographic processes and climate interact and vary across a species' range to determine how species' distributions will respond to climate change. We predicted that populations at the extremes of a species' climate envelope are most sensitive to climate shifts. We tested this using a dynamic species distribution model linking demographic rates to variation in climate for wood frogs (Lithobates sylvaticus) in North America. Sensitivity to changes in climate cannot be predicted simply by knowing locations within the species' climate envelope.

This article is protected by copyright. All rights reserved

MS. STACI MARIE AMBURGEY (Orcid ID : 0000-0002-7100-7811)

```
Article type : Primary Research Articles
    - - + 
    Title:
    Range position and climate sensitivity: the structure of among-population demographic
    responses to climatic variation
```

 Running head: Range position and climate sensitivity
 Authors. Staci M. Amburgey ${ }^{1,2}$, David A.W. Miller ${ }^{1}$, Evan H. Campbell Grant ${ }^{3}$,
Tracy A.G. Rittenhouse ${ }^{4}$, Michael F. Benard ${ }^{5}$, Jonathan L. Richardson ${ }^{6}$, Mark C.
Urban 7, WARD HUGHSON ${ }^{8}$, Adrianne B. Brand ${ }^{3}$, Christopher J. Davis ${ }^{9}$, CARMEN R.
Hardin ${ }^{10}$, Peter W.C. Paton ${ }^{11}$, Christopher J. Raithel ${ }^{12}$, Rick A. Relyea ${ }^{13}$, A.
Floyd Scott ${ }^{14}$, David K. Skelly ${ }^{15}$, Dennis E. Skidds ${ }^{16}$, Charles K. Smith ${ }^{17}$, Earl E.
WERNER ${ }^{18}$
${ }^{1}$ The Pennsylvania State University, Department of Ecosystem Sciences and Management,
University Park, PA, USA, 16802
${ }^{2}$ The Pennsylvania State University, Intercollege Graduate Ecology Program, University Park,
PA, USA, 16802
${ }^{3}$ USGS Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Center,
Turners Falls, MA, USA, 01376
${ }^{4}$ University of Connecticut, Department of Natural Resources and the Environment, Storrs, CT,
USA, 06269
${ }^{5}$ Case Western Reserve University, Department of Biology, Cleveland, OH, USA, 44106
${ }^{6}$ Providence College, Department of Biology, Providence, RI, USA, 02918
${ }^{7}$ University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, USA,
06269

This article is protected by copyright. All rights reserved

${ }^{8}$ Parks Canada, Jasper, AB, Canada, T0E 1E0
${ }^{9}$ University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA, USA, 16424
${ }^{10}$ Wisconsin Department of Natural Resources, Forestry Division, Madison, WI, USA, 53707
${ }^{11}$ University of Rhode Island, Department of Natural Resources Science, Kingston, RI, USA, 02881 간
${ }^{12}$ Rhode Island Department of Environmental Management, Division of Fish and Wildlife, West Kingston, RI, USA, 02892
${ }^{13}$ Rensselaer Polytechnic Institute, Department of Biological Sciences, Troy, New York, USA, 12180
${ }^{14}$ Austin Peay State University, Department of Biology, Clarksville, TN, USA, 37040
${ }^{15}$ Yale University, School of Forestry and Environmental Studies, New Haven, CT, USA, 06511
${ }^{16}$ National Parks Service, Northeast Coastal and Barrier Network, Kingston, RI, USA, 02881
${ }^{17}$ High Point University, Department of Biology, High Point, NC, USA, 27262
${ }^{18}$ University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, USA, 48109

Correspondence: Staci M. Amburgey, tel. +1 814865 4183, fax +1 814863 4710, e-mail: sma279@psu.edu

Keywords: bioclimatic envelope model, climate change, Lithobates sylvaticus, range shifts, species distribution model, state space model, wood frog

Type of Paper: Primary research article

Abstract

Species' distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these
relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species' climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.

Introduction

A persistent theme in ecology is the need to understand the factors that shape and describe species distributions (Grinnell, 1917; MacArthur, 1972; Gaston, 2009; Sexton et al., 2009). These factors have been touted as a means to understand the conditions that facilitate sustainable populations currently and in the future (Sexton et al., 2009). Species distributions are determined by a spectrum of biotic and abiotic factors that act across varying spatial and temporal scales (Anders \& Post, 2006; Sexton et al., 2009). Among abiotic factors, climate is thought to be one of the most important determinants of species occurrence and key to the formation, maintenance and evolution of species distributions (Darwin, 1859; Sexton et al., 2009; Araújo \& Peterson, 2012). Climate may affect species directly via constraints in physiological tolerances, indirectly via its influence on community assemblages and habitats, or by complex interactions of both (Menge \& Olson, 1990). Understanding when and where climate constrains species' occurrence is useful in predicting future responses, conserving and managing species in the face of ongoing global climate change (Pearson \& Dawson, 2003; Araújo \& Peterson, 2012) and
identifying areas where other factors aside from climate are more strongly influencing distributions (e.g., biotic interactions; Urban et al., 2013).

Attempts to quantify the role climate plays in shaping species distributions frequently rely on the correlation between species occurrence and climate (i.e., a species' bioclimatic envelope; Araújo \& Peterson, 2012) to characterize current and to predict future range dynamics. These static distribution modeling approaches are used to identify broad-seale patterns contributing to range limits (Pearson \& Dawson, 2003; Hijmans \& Graham, 2006) and to predict range-wide effects of climate change on species distributions (Pearson \& Dawson, 2003; Araújo et al., 2005; Thuiller et al., 2005). Under bioclimatic envelope models, climatic conditions where a species is not observed are assumed to prevent establishment of viable populations and thus are the environmental conditions that set range limits (Araújo \& Peterson, 2012). However, these phenomenological models assume (1) species' ranges are in equilibrium with climate conditions and (2) species responses are static across the range (Hijmans \& Graham, 2006; Franklin, 2010). These assumptions do not realistically represent the dynamic nature of the physical environment and the species themselves, especially for broadly distributed species (Zurell et al., 2009). Static models of species responses to climate are insufficient to understand the effect annual climate variation can have on population persistence (Zurell et al., 2009; Franklin, 2010). Furthermore, the focus on species occurrence data ignores the temporal variation in species responses and the demographic processes that determine how a species will respond to climatic shifts (Merow et al., 2014; Thuiller et al., 2014).

If climate shapes species distributions, changes in climate should have the greatest effect on populations occurring near the climatic extremes (e.g., increased temperature will have the greatest effect on populations in the warmest part of the range; MacArthur, 1972; Hoffman \& Parsons, 1997; Parmesan et al., 2000). We test this by measuring sensitivity of demographic responses to climatic variation across the range of the wood frog (Lithobates sylvaticus). Specifically, we define sensitivity as the expected change in annual population growth rate (r) with respect to change in an annual climatic measure (e.g., summer extreme heat). We expect range contractions to occur when populations are lost because growth rate is negative for an extended period of time. Similarly, range
expansions may occur when populations are gained because growth rate is positive for an extended period of time. Measuring sensitivity tells us how much growth rate is expected to change with a change in average annual conditions and thus how likely population declines (or expansions) are to occur. We test whether sensitivity of population growth rates to year-to-year variation in climate is stronger at the climatic extremes than at the climatic center of a species range (i.e., the bioclimatic envelope prediction; MacArthur, 1972; Hoffman \& Parsons, 1997; Parmesan et al., 2000). Failure to find evidence to support this hypothesis could result from processes such as local adaptation, biotic interactions, and other abiotic variables leading to different patterns in sensitivity to change. Testing this hypothesis requires an understanding of how life history is impacted and thus how demographic rates respond to climatic variation (e.g., the relationship between population growth rate and temporal variation in environmental conditions; Normand et al., 2014; Ross et al., 2015). This approach captures more of the process underlying range shifts rather than simply the observed pattern that previous correlative approaches have used to predict range shifts.

Amphibians make an interesting focal taxon to test the importance of populationlevel sensitivity to climate variation in range dynamics. Amphibians are expected to be particularly sensitive to the effects of climate due to their physiology and life history (Hutchinson \& Dupré, 1992; Duellman, 1999), generally limited dispersal abilities (Beebee, 1996, but see Smith \& Green, 2005), and reliance on seasonal precipitation and temperature patterns to create breeding habitats and facilitate movement (Pechmann et al., 1989; Rittenhouse \& Semlitsch, 2007; Urban et al., 2014). Their ecological importance as a link between terrestrial and aquatic systems (Ranvestel et al., 2004; Earl \& Semlitsch, 2012) and the decline of even common species (Stuart et al., 2004; Adams et al., 2013; Grant et al., 2016) make understanding the importance of climate in influencing population level dynamics important for forecasting future extinction risk. Here we foeus on the demographic responses to climate for a species of pond-breeding frog, the wood frog, whose range extends across much of northern North America (Fig. 1).

Using a spatially and temporally rich dataset, we tested the prediction that wood frog populations are most sensitive to annual climatic variation at sites near the climatic
extremes of their distribution (Fig. 2) and that the species distribution is shaped by the interaction of long-term and annual climate conditions on population growth rates. Population growth rates at sites may have three predicted responses based on their range position. For example, if sensitivity of wood frog populations to variation in temperature differs across the range, we predicted that 1) populations in the colder portion of the range (blue; Fig. 2a) would be positively affected by warmer than average annual temperatures, meaning that if warming occurred this could lead to more frequent years of high population growth rates and potential range expansion; 2) populations in the warmer portion of the range (red; Fig. 2a) would be negatively affected by warmer than average annual temperatures, meaning that if warming occurred this would lead to more frequent years of low population growth rates and potential range contraction; and 3) populations in the middle of the range (black; Fig. 2a) are far from climate extremes (Fig. 2b) and annual temperatures would not strongly affect population growth rates. By fitting dynamic models that estimate annual changes in abundance in relation to long-term climate, we can better understand which populations within a species' range are most likely to respond to changing climate.
Study System and Methods
We build on previous static approaches to model bioclimatic determinants of species distributions (e.g., Guisan \& Zimmerman, 2000; Hijmans \& Graham, 2006) by measuring local demographic responses of populations using a dynamic species distribution model (DSDM). The DSDM approach allowed us to test the importance of range position in determining responses to climate by measuring local sensitivity of population growth rate to annual variation in climate covariates. Our model takes the form of a hierarchical state-space model (SSM; De Valpine \& Hastings, 2002; Buckland et al., 2004; Kéry \& Schaub, 2012; Ross et al. 2015), allowing us to link annual population dynamics across different sites and study areas to annual variation in climatic variables. The results provide a measure of climate sensitivity (i.e., the expected change in mean population growth rates in response to changes in mean climate; Thuiller et al., 2005; Thomas, 2010; Burrows et al., 2014).
Study System and Life History

Wood frogs occupy an extensive range, occurring from northern Alaska to Canada and south to the south central United States (USGS National Amphibian Atlas, 2014; Fig. 1), spanning a large gradient of climatic conditions (Fig. 1). Specific elements of the wood frog life history potentially make them sensitive to changes in local climate. Breeding normally occurs in early spring when rising temperatures rouse animals and warm spring rains facilitate movement into breeding ponds. Adult frogs show high fidelity to breeding sites (Berven \& Grudzien, 1990; Green \& Bailey 2015). Breeding generally occurs in a short window of time, anywhere from a few consecutive evenings to a few weeks in length depending on location (Authors, pers. observations; Crouch \& Paton, 2000). Female wood frogs become sexually mature between two and four years of age and males between one and three years of age (Berven, 1982a; Berven, 2009; Green \& Bailey 2015), and both can live up to six years (Redmer \& Trauth, 2005). Females typically lay one egg mass during each breeding season, and these egg masses are visually distinct and easy to locate and count (Crouch \& Paton, 2000; Grant et al., 2005; Green et al., 2013). Comparison of census methods show that counts of total egg masses seen per season serves as a suitable proxy for total breeding females per season in a pond (Crouch \& Paton, 2000).

Field sampling

We used egg mass counts from 746 sites within 27 study areas across the wood frog range (Fig. 1; Table S1). A site consisted of a pond or wetland (area ≤ 0.10 ha to 5.24 ha) that was visually sampled for wood frog egg masses during the peak of each breeding season and where wood frog egg masses were observed at least once during years when surveys occurred. Study areas designate geographic clusters of sites that occurred within relatively close proximity (e.g., within a single national park). Sites were surveyed in multiple years (range $=3-22$ years, mean $=10$ years; Table S1) with most, but not all, sites being surveyed multiple times within each year. Surveys occurred during or right after peak breeding based on the lack of calling adults and/or no additional egg masses during subsequent surveys, and a maximum count at a site was recorded each breeding season and used as the response variable in analyses. Wood frog egg masses are conspicuous and detection probability is high ($\mathrm{p}=0.96 \pm 0.02$ to 0.95 ± 0.01; Grant et al., 2005).

Climate covariates
We tested specific predictions with each model about the variation in sensitivity of population growth rates to four climate covariates (Table 1, 2; Fig. S1): 1) spring precipitation (Precip), 2) summer water availability (Hydro), 3) summer extreme heat (Heat), and 4) winter severity (Cold; Table 1). As our sites cover a broad geographic space, wood frog breeding was not synchronous across all study areas. Months used to calculate Precip and Hydro were benchmarked to average breeding dates in each study area, refleeting differences in seasonality across the wood frog range (Table S1).

We obtained global climate normal (~1960-1990, 2.5 arc-minutes resolution) rasters from WorldClim (Hijmans et al., 2005) and created 30-year climate normal maps of North America in program R (R Core Team, 2016). We determined 30-year mean annual temperature and precipitation values across North America and within the recorded range of wood frog occurrence (IUCN, 2015) to determine where the species occurs within the broader North American climate space (Fig. 3). These values were used to depict the climate space of wood frogs and our sampled populations in Figure 3 but were not used in SSMs. Using PRISM (Daly et al., 2002) model output for the US and weather station data for Canada (Environment Canada, 2015), we calculated annual climate values for Precip, Hydro, Heat, and Cold at every site every year for SSMs (Table 1). To model differences in long-term climate, we determined 30-year climate normal (average) values (Hijmans et al., 2005) at every site over the same seasonal periods as our annual climate covariates for SSMs (Table 2; nmPrecip, nmHydro, nmHeat, and nmCold). For example, at northern sites we calculated total precipitation values each year for February, March, and April, due to their importance in timing wood frog migrations and pond filling, and averaged them for an annual spring precipitation value (Precip). We then averaged total precipitation values over the same months across 30 years to get a long-term climate normal value (nmPrecip) that varied across but not within sites. Annual climate values were standardized by 33-year (1981-2013) mean and standard deviations at a site. Climate normals were standardized using the mean and standard deviation from the entire extent of the wood frog range.

Data analysis

We used SSMs to estimate the effect of annual variation on population growth rate (De Valpine \& Hastings, 2002; Buckland et al., 2004; Kéry \& Schaub, 2011; Ross et al. 2015). Models were fit in JAGS (Plummer 2003) and implemented in program R via the R2jags package (Su \& Yajima, 2012; see Appendix S1 for JAGS code). The hierarchical model allows for estimation of latent state and observation processes characterizing sampled populations while simultaneously accounting for process variation and observation error (Buckland et al., 2004; Kéry \& Schaub, 2011). We were interested in understanding how these latent processes were affected by annual climate variation across the range. At the same time, the modeling framework allowed us to account for observation error in counts (e.g., through variable detection, field conditions, variable observer expertise) that was unrelated to the underlying population processes (MacKenzie et al., 2006).

We described changes in wood frog population size (as based on egg mass counts that serve as a proxy for number of breeding females in a season) using an exponential population growth model

$$
\begin{equation*}
\mathrm{N}_{\mathrm{t}+1}=\mathrm{N}_{\mathrm{t}} * \mathrm{e}^{\mathrm{r}} \tag{1}
\end{equation*}
$$

where population size $\mathrm{N}_{\mathrm{t}+1}$ is a function of the previous population size N_{t} (from the previous year) and the per capita annual growth rate (r , the exponent of the instantaneous growth rate). Using this as a starting point, we estimated regression coefficients characterizing the relationship between annual weather and the realized growth rate $\left(\mathrm{r}_{\mathrm{ti}}\right)$ for a given year (t) and a given site (i) for each climate hypothesis.

To fit the model, we reformulated Eq. 1 by taking the natural logarithm of each side of the equation and indexing all parameters by year (t) and site (i) to capture annual and site-specific variation in the climate covariates and population responses. We added one to all observations to accommodate zeros in the data prior to log transformation.

$$
\begin{equation*}
\log \left(\mathrm{N}_{\mathrm{t}+1, \mathrm{i}}\right)=\log \left(\mathrm{N}_{\mathrm{ti}}\right)+\mathrm{r}_{\mathrm{ti}} \tag{2}
\end{equation*}
$$

The now additive growth rate r_{ti} was modified to include the effects of climate covariates and unexplained annual variation captured using random-error terms. Our goal was to estimate the effect of annual variation in each of our four climate covariates and how those effects differed across the range. We estimated these relationships using a
linear model that included the main effects of annual climate values and the climate normal along with the interaction of the two (Table 3). The model took the form of:

$$
\begin{array}{r}
\mathrm{r}_{\mathrm{ti}}=\beta_{1} * \text { Annual Climate }{ }_{\mathrm{ti}}+\beta_{2} * \text { Climate Normal }_{\mathrm{i}}+ \tag{3}\\
\beta_{3} * \text { Annual Climate }_{\mathrm{ti}} * \text { Climate Normal }_{\mathrm{i}}+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}}
\end{array}
$$

The model allowed us to determine sensitivity, defined as the expected change in annual population growth rate (r) for a one standard deviation increase in annual conditions, to long-term climate normal conditions. Specifically, the interaction term allowed us to quantify the amount of change in population growth rates given an annual shift in climate in respect to the climatic range position in which a population exists. We included a randomeffect for site level differences, $\delta_{\mathrm{i}} \sim \operatorname{Normal}\left(0, \sigma_{\text {Site }}^{2}\right)$. This effect served as the local site-level intercept for growth rate, which we expected to vary around a mean value of 0 . We included a second random error component for additional annual variation in growth rate not explained by the climate covariates, $\varepsilon_{\mathrm{ti}} \sim \operatorname{Normal}\left(0, \sigma_{\text {proc }}^{2}\right)$. To account for observation error in counts that was not explained by the population level state processes, we assumed that the log observed count of egg masses for that site and year, y_{ti}, is given by $\mathrm{y}_{\mathrm{ti}} \sim \operatorname{Normal}\left(\log \left[\mathrm{N}_{\mathrm{ti}}\right], \sigma_{\text {obs }}^{2}\right)$. It was also necessary to estimate a starting population size for each site. We used a prior value of $\log \left(\mathrm{N}_{\mathrm{li}}\right) \sim \operatorname{Normal}(0,100)$.

We used vague priors for random effect variance components ($\left.\sigma^{2}{ }_{\text {obs }}, \sigma^{2}{ }_{\text {proc }}\right)$ with uniform distributions bounded between 0 and 5. For σ^{2} site we used a uniform prior bounded between 0 and 0.2 to facilitate convergence. Priors for all regression coefficients were $\beta_{\mathrm{k}} \sim \operatorname{Normal}(0,100)$. We ran three parallel chains for 50,000 iterations each and discarded the first 1000 iterations as burn-in to allow for model convergence. Model convergence was determined visually from traceplots and Gelman Rubin statistics ($\hat{R}<$ 1.05; Gelman \& Rubin 1992).

We predicted that climate covariates could have both immediate and lagged effects on annual growth rate ($\mathrm{r}_{\mathrm{t}} ;$ Fig. S1). We predicted that covariates that disproportionately impact adult survival and season-to-season variation in breeding would lead to changes in growth rate in the same year. In the case where we expected a covariate to impact the survival of eggs and tadpoles in a wetland and thus the number of potential recruits from a cohort, these were predicted to lead to changes in growth rates after a 2-year lag. Female wood frogs take approximately two years to reach sexual
maturity in our study sites (e.g., lowland populations; Berven, 1982a, 2009; Green \& Bailey 2015). Therefore the effects of reproductive failure (e.g., desiccation of tadpoles in a dry year) on growth rates would not be evident in counts of egg masses in the year immediately following these suboptimal conditions. We hypothesized that annual Precip values affect movement of adult animals and the opportunity for successful oviposition (i.e., pond filling), with low Precip values resulting in fewer egg masses laid and thus reduced recruitment two years later. Hydro values reflect desiccation risk for developing tadpoles (realized as altered recruitment two years later) and also drier summer conditions that can decrease adult survival during foraging or return to overwintering sites. Heat and Cold values reflect late summer dryness and overwintering cold stress expected to impact adults. While any number of time lag combinations and effects are possible, we fit the model (Eq. 3) focusing on these key periods due to their biological importance and support in the literature (Table 1).

We were also interested in how water availability and temperature may interact to explain variation in climate sensitivity. We expected that years of low precipitation (Precip) would have a greater negative effect in sites with higher mean annual summer temperatures (e.g., hotter areas; nmHeat) as increased water on the landscape may help keep permeable amphibian skin moist and lessen desiccation risk (Rittenhouse et al., 2009; Köhler et al., 2011). Similarly, we expected reduced winter severity (Cold) and its indirect effect on water availability and pond filling in the spring to be greater in areas that receive less spring precipitation (e.g., drier areas; nmPrecip). We tested for these effects by including the interaction of different annual and long-term climate covariates (e.g., Precip*nmCold, Hydro*nmHeat; Table 3). Annual covariates included the same time lags as previously discussed. Models with both temperature and precipitation included all annual and long-term covariates for each climate measure and an additional two interaction terms allowing annual and long-term covariates to interact (Table 3). This means a total of eight models testing climate hypotheses (Table 1 and 2) were run. None of the selected climate covariates were strongly correlated ($|r|<0.4$).

When fitting models, we tested for goodness of fit using a posterior predictive check to test whether observed variability in counts was consistent with expected variation. We calculated observed variance in our data for each of the sites and
determined if on average variance was less than or greater than the predicted variance of simulated data based on our model. We report the proportion of the time that the observed variance was greater than the predicted variance, with the expectation that if the model fits the data well we expect this proportion to be 0.5 .

Additionally, we were interested in estimating the overall expected rate of change in wood frog population growth rates, $\mathrm{dr} / \mathrm{dt}$, based on our estimated climate relationships. Expected change is a function of the local sensitivity to each of our climate covariates, $\mathrm{dr} / \mathrm{dX}$, as measured in our models as well as the rate of change in mean climate over that time period, $\mathrm{dX} / \mathrm{dt}$, where:

$$
\frac{d r}{d t}=\frac{d r}{d X} \frac{d X}{d t}
$$

We calculated rate of change in each of our climate variables at each of our sites using linear regression where year was the predictor variable and annual values of each of our climate variables over a 30-year period from 1984 to 2013 were our response variables. We mapped these to geographic and climate space to highlight areas where climate may currently be altering the wood frog distribution.

Results

Sites spanned a >23 degree range in latitude and >50 degree range in longitude from North Carolina to Jasper National Park, Alberta, Canada. Study areas fell into 16 different states, one administrative subdivision (Washington D.C.) and one Canadian province (Alberta) (Fig.1). Our data show good geographic coverage along the wood frog's southern and easternmost range limit but are restricted in geographic coverage in the northern and westernmost portions of the wood frog range. This was reflected in our coverage in climate space (Fig. 3), with best coverage in the portion of the range with warmer temperatures and higher precipitation. Therefore, we limit the presentation of results and their interpretation to only the sampled portion of the wood frog range. Additionally, support for models was judged by whether or not credible intervals of parameter estimates overlapped zero, and we have limited our presentation of results to those models with the strongest support and thus credible intervals for interaction terms that did not overlap. Our posterior-predictive check values for each of our models were
between 0.493 and 0.541 , indicating that our models did a good job of capturing actual variation in growth rates.

Our first three models tested the effect of moisture on population growth rates, with the first focused on spring precipitation and the second on late summer water availability. Contrary to our predictions, we found a negative relationship between Precip and wood frog population growth rates across all areas two years later (Table 4; Fig. 4a; Fig. S2). The relationship of increased annual Hydro values to wood frog population growth rates differed depending on if a time lag was incorporated (Table 4; Fig. 4b,c; Fig. S2). The same-year effect of Hydro was dependent on long-term climate, with populations in wetter areas responding most positively to wetter annual conditions as compared to those in drier areas (Fig. 4b). When incorporating a two-year time lag, increased values of Hydro were positively associated with growth rates only in drier areas (Fig. 4c; Table 4), agreeing with our bioclimatic envelope predictions of increased sensitivity to water availability in drier portions of the range.

Our next two models focused on the effect of extreme heat and cold severity on population growth rates. The relationship between increased values of Heat and wood frog population growth rates (Table 4) depended upon long-term climate. Years with hotter summer temperatures had higher population growth rates in areas with cooler summer climates. However, there was a negative association between warmer summers and population growth in areas with hotter summer climates (Fig. 4d; Fig. S2). This agrees with our bioclimatic envelope prediction, where we expect population growth rate to be most sensitive to warming in the warmest portion of the range. The relationship of Cold to population growth rates showed increased growth rates associated with milder winters across all areas (Table 4) with the most positive association in areas with milder winter climates (Fig 4e; Fig. S2).

Finally we examined how precipitation and temperature interacted to affect population growth rates. We found that the two-year lag effect of annual variation in spring precipitation did not depend on long-term winter climate (Precip*nmCold; Table 5; Fig. 5a; Fig. S2), and the effect of annual variation in winter severity did not vary significantly by long-term spring precipitation (Cold*nmPrecip; Table 5; Fig. S2).

We found that the effect of summer water availability in the current year did not differ by long-term summer heat (Hydro*nmHeat; Table 6; Fig. 5c; Fig. S2). However, the effect of warmer summers differed between drier and wetter areas. Hotter summer temperatures had a positive relationship to population growth rates in wetter areas but negatively impacted growth rates in drier areas (Heat*nmHydro; Fig. 5d; Fig. S2). We found a positive relationship between increased summer water availability and wood frog growth rates two years later in areas with cooler summer temperatures but a negative relationship in areas with hotter summer temperatures (Table 6; Fig. 5e; Fig. S2). The interaction of increased summer temperatures had a similar impact on population growth rates as the summer water availability model with no time lag, with a positive effect of increased summer heat in wetter versus drier areas (Table 6).

Expected rate of change in population growth rates over the previous 30 years that could be attributed to changes in climate showed few major increases or decreases across the wood frog range (Fig. S3, S4). The biggest changes in population growth rates were estimated to have occurred for variables related to temperature. These suggest some reductions in growth rates in the southern portion of the wood frog range due to changes in heat and cold (Fig. S3d,e; S4d,e).

Discussion

We tested the prediction that the effect of climate on population growth rates varies in a predictable pattern based on local, long-term climate (i.e., bioclimatic envelope prediction; MacArthur, 1972; Hoffman \& Parsons, 1997; Parmesan et al., 2000). Populations near the climatic extremes of the species range were predicted to be the most sensitive to annual variation in climate. Our use of hierarchical SSMs (De Valpine \& Hastings, 2002; Kéry \& Schaub, 2012) allowed us test this broad-scale prediction by simultaneously linking climate directly to demographic rates at the temporal- (short-term variation in weather) and spatial- (individual populations) scales at which climate acts to affect species distributions. We acknowledge that our sampled sites are only a portion of the wood frog range and thus limit the interpretation of our results to conditions represented in this study. Our results provided mixed evidence to support this prediction, with differences in climate sensitivity often occurring in the opposite direction of this prediction. For example, the effect of summer temperature was consistent with our
prediction - warmer summers had a more detrimental effect in the warmest part of the range. The effect of summer water availability was also consistent with this prediction, where increased moisture had a positive effect two years later in drier areas. On the other hand, variation in spring precipitation, summer water availability in the current year, and winter severity did not conform to predictions based on position within the range.

We also tested the climate sensitivity of populations to interactions of temperature and precipitation. We again predicted that population growth rates would be most sensitive to annual variation in one factor (e.g., increased summer heat) as they approached climate extremes of the other (e.g., drier areas). Again, we found mixed support for this prediction. Hotter summers had a positive effect on wood frog growth rates in wetter areas but a negative effect in drier areas as predicted. However, we found a contradictory positive effect of increased summer water availability two years later in cooler areas and no significant association of spring precipitation and winter severity to wood frog population growth rates. This suggests that expected shifts due to changing climate for wood frogs may not be strongest at the climatic extremes of the range or easily predicted solely by climate, which is surprising given the expected sensitivity of amphibians to abiotic conditions.

Many of the metabolic, reproductive and phenological processes in amphibians are strongly linked to temperature (Berven, 1982a,b; Beebee, 1996; Gibbs \& Breisch, 2001) and can be of key importance in structuring species distributions (Tingley et al., 2009; Cahill et al., 2014). This may explain why bioclimatic envelope model predictions regarding temperature, specifically heat, were better supported in our models. Temperature may have a more uniform effect across the landscape and may be better represented by coarse measures. Alternatively, precipitation largely acts through its effect on hydrological processes during the reproductive phase and interactions between water, soil, and vegetation during non-breeding periods (Drexler et al., 2004; Bauder, 2005; Davis et al., in prep). Hydrologic deficits (Brooks, 2004), landscape topography (Boswell \& Olyphant, 2007), pond-selection by breeding animals (Pechmann et al., 1989; Skidds et al., 2007; Amburgey et al., 2014), and plasticity in development (Relyea, 2002; Amburgey et al., 2012) are among the many factors that may attenuate the relationships between water availability and amphibian population growth rates. Our inferences are
also limited to the study area that we were able to sample. Limited sampling of the colder and drier edge of climate space (Fig. 3) may restrict our ability to detect relationships occurring at those extremes. Our study did, however, provide good coverage at the warm and wet edge of the wood frog range, which is most susceptible to the effects of climate change (Corn 2005; Meehl et al., 2007).

A multitude of other factors (e.g., local adaptation, biotic interactions, and other abiotic variables) can affect populations and lead to patterns contradictory to bioclimatic envelope predictions of climate sensitivity (HilleRisLambers et al., 2013; Urban et al., 2013). The effect of moisture on the landscape likely depends on the form and the timing of precipitation and can also impact biotic factors that likewise contribute to heterogeneity in population growth rates. Increased spring precipitation may come as early spring snow and ice storms that can increase adult mortality through reduced freeze tolerance (Costanzo \& Lee Jr., 1992) or truncate the breeding season (Berven, 1982b). Increased moisture on the landscape may increase the probability of egg mass or tadpole stranding in temporary flooded areas or facilitate colonization or persistence of predators in ponds (Werner et al., 2009). Local adaptation to annual climate variation may alter climate sensitivity, with populations nearer to climate extremes accustomed to increased annual variation while populations farther away from extremes are not (e.g., Berven, 1982a, Laugen et al., 2003; Amburgey et al., 2012), though we cannot test this directly with our approach. Local dynamics may also vary spatially, where populations near climate extremes are at low enough densities that they are unable to respond to the benefits of years with more suitable climate conditions.

Species biology may additionally structure population responses to climate and result in deviations from bioclimatic envelope predictions. Wood frogs are freeze tolerant (Storey \& Storey, 1986; Costanzo \& Lee Jr., 1992) though extended or extreme periods of freezing temperatures can impact overwintering survival (Costanzo et al., 1991; O’Connor \& Rittenhouse, 2016). In a portion of the range that encompassed our study areas, no differentiation in wood frog thermal tolerance was found (Manis \& Claussen, 1986); however, far northern populations in Alaska have shown increased cold tolerance (Larson et al., 2014). However, mild winters in colder areas may result in freeze-thaw cycles that rouse animals from torpor, resulting in increased energetic demands (Storey,
1987), mating behavior impairment (Costanzo et al., 1997), and reduced fecundity (Benard, 2015). Additionally, the life stage on which climate most strongly acts may influence the population response. In amphibians, the aquatic larval stage already experiences heightened mortality, and climate conditions that affects tadpole survival may not lead to differential climate sensitivity at the population level as much as those factors that influence terrestrial juvenile and adult survival (Biek et al., 2002; Harper et al., 2008).

Currently, species distributions and range dynamics are frequently modeled using static approaches that treat climate and species responses as fixed across space and time (Hijmans \& Graham, 2006; Franklin, 2010). However, species responses to climate are spatially complex, especially for those with multistage life histories. Climate shifts will likely alter species distributions by acting on demographic processes where sensitivity to change is greatest. Combining estimates of climate sensitivity with data about observed or predicted changes in climate allows for predictions about local changes in population growth rate to be made. We did this for the last 30-year period, highlighting the variability in population response across the range (Fig. S3, S4). Demographic response for some climate variables fit predictions (e.g., negative responses to warming in the warmest regions). However, estimated demographic changes related to water availability and interactions with temperature follow much less clear patterns, which would not easily be predicted using static modeling approaches. Our results demonstrate that focusing on demographic processes provides insights for understanding how species distributions may respond to change not possible with presence-absence correlative models focused on pattern (Normand et al., 2014; Ross et al., 2015). Correlative approaches based on a static snapshot of species distribution do not measure the actual mechanistic processes impacting populations (Dormann et al., 2012; Cahill et al., 2014) and do not estimate rates of change that demographic models can incorporate (Normand et al., 2014). Thus, correlations may break down with no-analogue climates (Williams \& Jackson, 2007) and lack the predictive power explicit estimates of climate-demography relationships can offer (Normand et al., 2014). While our model is still correlative in relating demographic rates to climatic variation, it provides a finer scale approach that provides insights to potential mechanisms while also explaining broader patterns. Bioclimatic envelope
modeling does not include other potentially important factors (e.g., biotic interactions, genetic differentiation, and geographical barriers) that may set species range limits alone or in concert with climate (HilleRisLambers et al., 2013; Urban et al., 2013). However, such demographic models can be modified to include such information and better inform our understanding of species range dynamics.

A demographic understanding of species distributions is essential to evaluating and understanding range limits, forecasting range shifts and stability, and managing species and conserving habitats. These aims will be critical in the context of changing climate. By pairing large-scale modeling studies with targeted experimental or demographic studies, we can better understand the way these broad-scale measures are realized on the landscape and influence local populations (Merow et al., 2014; Normand et al., 2014). In the future, all species are likely to experience some change to their current distributions, whether through range contractions (via altered habitat suitability through changing climate) or expansions (via altered climate facilitating colonization of new habitats; Thuiller et al., 2008). With increasingly limited conservation resources, identification and prioritization of critical areas where species are most sensitive to changing climate (Beissinger \& Westphal, 1998; Keith et al., 2008) and where range shifts may occur (Thuiller et al., 2008) will allow for more efficient and effective conservation management.

Acknowledgements

We are thankful to J. Petranka for contributed data. This work was conducted as part of the Amphibian Decline Working Group supported by the USGS John Wesley Powell Center for Analysis and Synthesis, funded by the US Geological Survey. This manuscript is contribution \#592 of the USGS Amphibian Research and Monitoring Initiative. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Adams MJ, Miller DAW, Muths E et al. (2013) Trends in amphibian occupancy in the United States. PLoS ONE, 8, e64347.

Amburgey S, Funk WC, Murphy M, Muths E (2012) Effects of hydroperiod duration on survival, developmental rate, and size at metamorphosis in boreal chorus frog tadpoles (Pseudacris maculata). Herpetologica, 68, 456-467.

Amburgey SA, Bailey LL, Murphy M, Muths E, Funk WC (2014) The effects of hydropattern and predator communities on amphibian occupancy. Canadian Journal of Zoology, 92, 927-937.

Anders AD, Post E (2006) Distribution-wide effects of climate on population densities of a declining migratory landbird. Journal of Animal Ecology, 75, 221-227.

Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate
impact models under climate change. Global Change Biology, 11, 1-10.
Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539.
Bauder ET (2005) The effects of an unpredictable precipitation regime on vernal pool hydrology. Freshwater Ecology, 50, 2129-2135.

Beebee TJC (1996) Ecology and conservation of amphibians. Chapman and Hall, London, UK.
Beissinger SR, Westphal MI (1998) On the use of demographic models of population viability in endangered species management. The Journal of Wildlife Management, 62, 821-841.
BenardMF (2015) Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing. Global Change Biology, 21, 1058-1065.
Berven KA (1982a) The genetic basis of altitudinal variation in the wood frog Rana sylvatica. II. An experimental analysis of life history traits. Evolution, 36, 962983.

Berven KA (1982b) The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution, 36, 962983.

Berven KA, Grudzien TA (1990) Dispersal in the wood frog (Rana sylvatica): implications for genetic population structure. Evolution, 44, 2047-2056.

Berven KA (2009) Density dependence in the terrestrial stage of wood frogs: evidence from a 21-year population study. Copeia, 2, 328-338.

Biek R, Funk WC, Maxell BA, Mills LS (2002) What is missing in amphibian decline research: insights from ecological sensitivity analysis. Conservation Biology, 16, 728-734.

Boswell JS, Olyphant GA (2007) Modeling the hydrologic response of groundwater
dominated wetlands to transient boundary conditions: Implications for wetland restoration. Journal of Hydrology, 332, 467-476.

Brooks RT (2004) Weather-related effects on woodland vernal pool hydrology and hydroperiod. Wetlands, 24, 104-114.

Buckland ST, Newman KB, Thomas L, Koesters NB (2004) State-space models for the dynamics of wild animal populations. Ecological Modelling, 171, 157-175.

Burrows MT, Schoeman DS, Richardson AJ et al. (2014) Geographical limits to speciesrange shifts are suggested by climate velocity. Nature, 507, 492-507.

Cahill AE, Aiello-Lammens ME, Fisher-Reid MC et al. (2014) Causes of warm-edge range limits: systematic review, proximate factors and implications for climate
change. Journal of Biogeography, 41, 429-442.
Corn PS (2005) Climate change and amphibians. Animal Biodiversity and Conservation, 28, 59-67.

Costanzo JP, Lee Jr. RE, Wright MF (1991) Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica. Journal of Comparative Physiology, 161, 225229.

Costanzo JP, Lee Jr. RE (1992) Cryoprotectant production capacity of freeze-tolerant wood frog, Rana sylvatica. Canadian Journal of Zoology, 71, 71-75.

Costanzo JP, Irwin JT, Lee Jr. RE (1997) Freezing impairment of male reproductive behaviors of the freeze-tolerant wood frog, Rana sylvatica. Physiological Zoology, 70, 158-166.

Crouch WB, Paton PWC (2000) Using egg-mass counts to monitor wood frog populations. Wildlife Society Bulletin, 28, 895-901.

Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Climate Research, 22, 99-113.

Darwin CR (1859) On the Origin of Species By Means of Natural Selection, or the Preservation of Favoured Races in the Struggle For Life. John Murray, London, UK.

De Valpine P, Hastings A (2002) Fitting population models incorporating process noise and observation error. Ecological Monographs, 72, 57-76.
Dormann CF, Schymanski SJ, Cabral J et al. (2012) Correlation and process in species

- distribution models: bridging a dichotomy. Journal of Biogeography, 39, 21192131.

Drexler JZ, Synder RL, Spano D, Paw U KT (2004) A review of models and micrometerological methods used to estimate wetland evapotranspiration. Hydrological Processes, 18, 2071-2101.

Duellman WE, ed (1999) Patterns of distribution of amphibians. Johns Hopkins University Press, Baltimore, MD.

Earl JE, Semlitsch RD (2012) Reciprocal subsidies in ponds: does leaf input increase frog biomass export? Oecologia, 170, 1077-1087.
Environment Canada (2014) Canadian monthly climate data.
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html. Accessed 19 June 2015.

Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions, 16, 321-330.

Gaston KJ (2009) Geographic range limits: achieving synthesis. Proceedings of the Royal Society B: Biological Society, 276, 1395-1406.
Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511.
Gibbs JP, Breisch AR (2001) Climate warming and calling phenology of frogs near
Ithaca, New York, 1990-1999. Conservation Biology, 15, 1175-1178.
Grant EHC, Miller DAW, Schmidt BR, Adams MJ, Amburgey SM, Chambert T, Cruickshank SS, Fisher RN, Green DM, Hossack BR, Johnson PTJ, Joseph MB, Rittenhouse TAG, Ryan ME, Waddle JH, Walls SC, Bailey LL, Fellers GM, Gorman TA, Ray AM, Pilliod DS, Price SJ, Saenz D, Sadinski W, Muths E
(2016) Quantitative evidence for the effects of multiple drivers on continentalscale amphibian declines. Scientific Reports, 6, 25626.

Grant EHC, Jung RE, Nichols JD, Hines JE (2005) Double-observer approach to estimating egg mass abundance of pool-breeding amphibians. Wetlands Ecology and Management, 13, 305-320.
Green AW, Bailey LL (2015) Reproductive strategy and carry-over effects for species

- with complex life histories. Population Ecology, 57, 175-184.

Green AW, Hooten MB, Grant EHC, Bailey LL (2013) Evaluating breeding and metamorph occupancy and vernal pool management effects for wood frogs using a hierarchical model. Journal of Animal Ecology, 50, 1116-1123.

Grinnell J (1917) The niche-relationships of the California Thrasher. The Auk, 34, 427433.

Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modeling, 135, 147-186.

Guo Q, Taper M, Schoeneberger MM, Brandle JR (2005) Spatial-temporal population dynamics across species range: from centre to margin. Oikos, 108, 47-57.
Harper EB, Rittenhouse TAG, Semlitsch RD (2008) Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: predicting extinction risks associated with inadequate size of buffer zones. Conservation Biology, 22, 12051215.

Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.

HilleRisLambers J, Harsch MA, Ettinger AK, Ford KR, Theobald EJ (2013) How will biotic interactions influence climate change-induced range shifts? Annals of the New York Academy of Sciences, 1297, 112-125.

Hoffman AA, Parsons PA (1997) Extreme Environmental Change and Evolution. Cambridge University Press, Cambridge, UK.

Hutchinson VH, Dupré K (1992) Thermoregulation. In: Environmental Physiology of the
Amphibia (eds Feder ME and Burggren WW), PP. 206-249. University of Chicago Press, Chicago, OH.

IUCN (International Union for Conservation of Nature) (2015) Lithobates sylvaticus. The
IUCN Red List of Threatened Species. Version 3.1. http://www.iucnredlist.org. Downloaded on 6 October 2015.
Keith DA, Akçakaya HR, Thuiller W et al. (2008) Predicting extinction risks under elimate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 4, 560-563.
Kéry M, Schaub M. 2012. Chapter 5 - State Space Models for Population Counts. In:
Bayesian Population Analysis using WinBUGS: A hierarchical perspective, PP.
115-132. Academic Press Waltham, MA, USA.
Köhler A, Sadowska J, Olszewska J, Trzeciak P, Berger-Tal O, Tracy CR (2011) Staying warm or moist? Operative temperature and thermal preferences of common frogs (Rana temporaria), and effects on locomotion. Herpetological Journal, 21, 17-26.
Larson DJ, Middle L, Vu H, Zhang W, Serianni AS, Duman J, Barnes BM (2014) Wood
frog adaptations to overwintering in Alaska: new limits to freezing tolerance. The Journal of Experimental Biology, 217, 2193-2200.
Laugen AT, Laurila A, Räsänen K, Merilä J (2003) Latitudinal countergradient variation in the common frog (Rana temporaria) development rate - evidence for local adaptation. Journal of Evolutionary Biology, 16, 996-1005.
Lawton JH (1995) Population dynamic principles. In: Extinction
Rates (eds Lawton JH, May RM), PP. 147-163. Oxford University
Press, Oxford, UK.
MacArthur RH (1972) Geographical ecology: patterns in the distribution of species.
Harper and Row, New York, NY.
MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006)
Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, Burlington, MA, USA.
Manis ML, Claussen DL (1986) Environmental and genetic influences on the physiology of Rana sylvatica. Journal of Thermal Biology, 11, 31-36.

Meehl GA, Stocker TF, Collins WD, et al. (2007) Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL). Cambridge University Press, Cambridge, UK and New York, NY, USA.

Menge BA, Olson AM (1990) Role of scale and environmental factors in regulation of community structure. Trends in Ecology and Evolution, 5, 52-57.
Merow C, Latimer AM, Wilson AM, McMahon SM, Rebelo AG, Silander Jr JA (2014)
On using integral projection models to generate demographically driven predictions of species' distributions: Development and validation using sparse data. Ecography, 37, 1167-1183.

Normand S, Zimmermann NE, Schurr FM, Lischke H (2014) Demography as the basis for understanding and predicting range dynamics. Ecography, 37, 1149-1154.

O'Connor JH, Rittenhouse TAG (2016) Snow cover and late fall movement influence
wood frog survival during an unusually cold winter. Oecologia, 181, 635-644.
Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society, 81, 443-450.
Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimatic envelope models useful? Global Ecology and Biogeography, 12, 361-371.
Pechmann JHK, Scott DE, Gibbons JW, Semlitsch RD (1989) Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians. Wetlands Ecology and Management, 1, 3-11.
Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna, Austria.
R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available at http://www.R-project.org.

Ranvestel AW, Lips KR, Pringle CM, Whiles MR, Bixby RJ (2004) Neotropical tadpoles influence stream benthos: evidence for the ecological consequences of decline in amphibian populations. Freshwater Biology, 49, 274-285.

Redmer M, Trauth SE (2005) Rana sylvatica LeConte, 1825. Wood frog. In: Amphibian declines: the conservation status of United States species (eds Lannoo M). PP. 590-593. University of California Press, Berkeley and Los Angeles, CA, USA.

Relyea RA (2002) Costs of phenotypic plasticity. American Naturalist, 159, 272-282.
Rittenhouse TAG, Semlitsch RD (2007) Postbreeding habitat use of wood frogs in a Missouri forest. Journal of Herpetology, 41, 645-653.

Rittenhouse TAG, Semlitsch RD, Thompson III FR (2009) Survival costs associated with wood frog breeding migrations: effects of timber harvest and drought. Ecology, 90, 1620-1630.

Ross BE, Hooten MB, DeVink J, Koons DN (2015) Combined effects of climate, predation, and density dependence on Greater and Lesser Scaup population dynamics. Ecological Applications, 25, 1606-1617.

Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and Ecology of Species Range Limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415436.

Skidds DE, Golet FC, Paton PWC, Mitchell JC (2007) Habitat correlates of reproductive effort in wood frogs and spotted salamanders in an urbanizing watershed. Journal of Herpetology, 41, 439-450.
Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations?

Ecography, 28, 110-128.
Storey KB (1987) Organ-specific metabolism during freezing and thawing in a freezetolerant frog. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 253, R292-R297.
Storey KB, Storey JM (1986) Freeze tolerance and intolerance as strategies of winter survival in terrestrially-hibernating amphibians. Comparative Biochemistry and Physiology, 83A, 613-617.

Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DI, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.

Su Y, Yajima M (2015) R2jags: Using R to Run 'JAGS'. R package version 0.5-7. Available at https://CRAN.R-project.org/package=R2jags.

Thomas CD (2010) Climate, climate change and range boundaries. Diversity and

- Distributions, 16, 488-495.

Thuiller W, Lavorel S, Araújo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 14, 347-357.

Thuiller W, Albert C, Araújo MB et al. (2008) Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution, Systematics, 9, 137-152.
Thuiller W, Münkemüller T, Schiffers KH et al. (2014) Does probability of occurrence relate to population dynamics? Ecography, 37, 1155-1166.

Tingley MW, Monahan WB, Beissinger SR, Moritz C (2009) Birds track their Grinellian
niche throughout a century of climate change. Proceedings of the National Academy of the Sciences USA, 106, 19637:19643.

United State Geological Survey (USGS) National Amphibian Atlas (2014) Wood frog (Lithobates sylvaticus). Version Number 3.0 USGS Patuxent Wildlife Research Center, Laurel, Maryland. Available at www.pwrc.usgs.gov/naa.
Urban MC, Zarnetske PL, Skelly DK (2013) Moving forward: dispersal and species interactions determine biotic responses to climate change. Annals of the New York Academy of Sciences, 1297, 44-60.

Urban MC, Richardson JL, Freidenfelds NA (2014) Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evolutionary Applications, 7, 88-103.

Werner EE, Relyea RA, Yurewicz KL, Skelly DK, Davis CJ (2009) Comparative landscape dynamics of two anuran species: climate-driven interaction of local and regional processes. Ecological Monographs, 79, 503-523.

Williams J, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5, 475-482.
Zurell D, Jeltsch F, Dormann CF, Schröder B (2009) Static species distribution models in dynamically changing systems: how good can predictions really be? Ecography,

Figure 1. The wood frog is a broadly distributed species that spans most of the northeastern United States into Canada and Alaska. Red dots indicate sites where egg mass counts were obtained. Thirty-year annual (a) precipitation and (b) temperature (Hijmans et al. 2005) maps show the broad range of climate conditions this species experiences across its range (IUCN 2014).

Figure 2. (a) The wood frog range (light grey) with an example of a northern (blue), central (black), and southern (red) population. (b) These populations come from different long-term climate normals (e.g., colder to warmer represented by mean 30-year temperature). If wood frog responses are consistent with bioclimatic envelope predictions, the probability of occurrence of wood frogs peaks at some optimal temperature and declines in more extreme conditions. (c) Sensitivity of wood frog population growth rates to annual climate variation is predicted to vary by long-term climate (shaded regions are 95% credible intervals). Sensitivity is the expected change in annual population growth rate (r) for a one standard deviation increase in annual conditions. We predict 1) populations in colder areas (blue) will be sensitive to warmer than average annual temperatures, leading to higher population growth rates (positive values); 2) populations in hotter areas (red) will be sensitive to warmer than average annual temperatures, leading to lower population growth rates (negative values); and 3) populations in areas far from climate extremes (black) will not be strongly affected by year to year deviations in temperature, leading to fairly consistent population growth rates (values around zero).

Figure 3. The climate space [based on 30 -year mean annual temperature $\left({ }^{\circ} \mathrm{C}^{*} 10\right)$ and precipitation values (mm)] that encompasses North America (dark blue), the wood frog
range (light green), and our sites (red). Points on the scatterplot represent all temperature by precipitation raster cell values where wood frogs occur (light green) and do not occur (dark blue), with our sites in red. Precipitation values were truncated at 3500 mm for visualization purposes. Histograms represent frequencies of these same 30-year annual precipitation (top) and temperature (right) values in just the wood frog range. Boxplots of precipitation and temperature values from our sites show the minimum, median, maximum and 25th and 75th quartiles (box).

Figure 4. We estimated how sensitivity of wood frog population growth rates to annual climate variation changed with respect to long-term climate differences (shaded regions are 95% credible intervals). Sensitivity is the expected change in annual population growth rate (r) for a one standard deviation increase in annual conditions (y -axis). Longterm differences in mean climate are calculated using 30-year climate normals for conditions during the same portion of the year that annual covariates are measured (x axis; see Tables 1 and 2) at our sampled sites. (a) Annual wood frog population growth rate two years later responded negatively to spring precipitation (PRECIP lag) across all areas, (b) annual wood frog population growth rate responded positively to years with more summer water availability (HYDRO) in areas where long-term average summer precipitation was higher ($>50 \mathrm{~mm}$), (c) annual wood frog population growth rate two years later responded negatively to years with more summer water availability (HYDRO lag) in areas where long-term average summer precipitation was higher ($>105 \mathrm{~mm}$) and positively in years where long-term averages were lower ($<105 \mathrm{~mm}$), (d) annual wood frog population growth rate responded negatively to extreme summer temperatures (HEAT) in areas where long-term average extreme temperature was higher $\left(>24^{\circ} \mathrm{C}\right)$ and positively where long-term averages were lower $\left(<24^{\circ} \mathrm{C}\right)$, (e) annual wood frog population growth rate responded positively to increased winter severity (COLD) in areas where long-term average minimum temperature was milder (>-6.25 ${ }^{\circ} \mathrm{C}$) and negatively where long-term averages were colder $\left(<-6.25^{\circ} \mathrm{C}\right)$.

Figure 5. We estimated how sensitivity of wood frog population growth rates to annual climate variation changed with respect to long-term climate differences (shaded regions
are 95% credible intervals). Sensitivity is the expected change in annual population growth rate (r) for a one standard deviation increase in annual conditions (y -axis). Longterm differences in mean climate are calculated using 30-year climate normals for conditions during the same portion of the year that annual covariates are measured (x axis; see Tables 1 and 2) at our sampled sites. (a) Annual wood frog population growth rate two years later did not significantly respond to spring precipitation (PRECIP lag) regardless of long-term winter severity, (b) annual wood frog population growth rate did not signifieantly respond to winter severity (COLD) regardless of long-term spring precipitation, (c) annual wood frog population growth rate did not significantly respond to summer water availability (HYDRO) regardless of long-term extreme summer heat, (d) annual wood frog population growth rate responded positively to years with more extreme summer temperatures (HYDRO lag) in areas where long-term average summer precipitation was higher ($>20 \mathrm{~mm}$), (e) annual wood frog population growth rate two years later responded negatively to increased summer water availability (HYDRO lag) in areas where long-term average extreme temperature was higher $\left(>26.25^{\circ} \mathrm{C}\right)$ and positively where long-term averages were lower $\left(<26.25^{\circ} \mathrm{C}\right)$.

Table 1. Annual climate covariates selected for state space models based on their potential importance in wood frog breeding and survival. Annual values at each site were used in modeling the effect of annual climate variation on wood frog population growth rates.

This article is protected by copyright. All rights reserved

1 Table 2. Thirty-year normal climate covariates selected for state space models to account for long-term effects of climate at a site (i.e., in sensitivity across the range. The predicted relationship of the interaction between annual and long-term climate covariates to population growth rates across the wood frog range represent hypotheses from the bioclimatic envelope model.

Covariate	Definition	Ecological Importance	Predicted Annual and Long-term Interaction (Bioclimatic Envelope Model)
$\text { nmPrecip }=$	30-year mean monthly	Measure of precipitation and water availability	Precip * nmPrecip
Precip Normal ${ }^{8}$	precipitation over same 3month period as SPI3	during spring breeding, long term moisture dynamics of areas	Negative impact of drier years in drier areas
$\mathrm{nmHydro}=$	30-year mean monthly	Measure of precipitation and water availability	Hydro * nmHydro
Hydroperiod Normal ${ }^{8}$ \square	precipitation over same 3month period as SPEI3	during tadpole development, long term moisture dynamics of areas	Negative impact of drier years in drier areas
$\text { nmHeat }=$	30-year maximum monthly	Measure of extreme heat patterns occurring during	Heat * nmHeat
Heat Normal ${ }^{8}$	temperature over similar late summer period as EHI	the late summer, long term heat regime	Negative impact of hotter years in hotter areas
nmCold $=$	30-year minimum monthly	Measure of winter severity patterns, long term cold	Cold * nmCold
Cold Normal ${ }^{8}$	temperature over similar midwinter period as AFI	regime	Negative impact of colder years in colder areas

5

[^0]This article is protected by copyright. All rights reserved

Table 3. All candidate state space models investigated for modeling wood frog egg mass counts. Each main model consists of the annual climate covariate (Precip, Hydro, Heat, Cold), the respective long-term climate normal (nmPrecip, nmHydro, nmHeat, nmCold), and the interaction between each annual and long-term covariate. Combination models are those with additional crossed interactions between annual climate covariates and long-term climate normals representing a different climate component (e.g., Hydro*nmHeat investigates the interaction between annual summer precipitation by long-term late summer maximum temperatures). The random effects of site (δ_{i}) and observation error $\left(\varepsilon_{\mathrm{ti}}\right)$ were included in all models.

Model Name	Parameters
Precip (2-yr lag)	$\beta_{1}\left(\operatorname{Precip}_{2 \mathrm{yr}}\right)+\beta_{2}(\mathrm{nmPrecip})+\beta_{3}\left(\operatorname{Precip}_{2 \mathrm{yr}} * \mathrm{nmPrecip}\right)+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}}$
Hydro	$\beta_{1}($ Hydro $)+\beta_{2}(\mathrm{nmHydro})+\beta_{3}($ Hydro $* \mathrm{nmHydro})+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}}$
Hydro (2-yr lag)	$\beta_{1}\left(\mathrm{Hydro}_{2 \mathrm{yr}}\right)+\beta_{2}(\mathrm{nmHydro})+\beta_{3}\left(\right.$ Hydro $\left._{2 \mathrm{yr}} * \mathrm{nmHydro}\right)+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}}$
Heat	$\beta_{1}($ Heat $)+\beta_{2}(\mathrm{nmHeat})+\beta_{3}($ Heat $* \mathrm{nmHeat})+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}}$
Cold	$\beta_{1}($ Cold $)+\beta_{2}(\mathrm{nmCold})+\beta_{3}($ Cold $*$ nmCold $)+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}}$
Precip (2-yr lag) and Cold by long-term climate	$\begin{gathered} \beta_{1}\left(\text { Precip }_{2 \mathrm{yr}}\right)+\beta_{2}(\mathrm{nmPrecip})+\beta_{3}\left(\text { Precip }_{2 \mathrm{yr}} * \mathrm{nmPrecip}\right)+\beta_{4}(\text { Cold })+\beta_{5}(\mathrm{nmCold})+\beta_{6}(\text { Cold } * \mathrm{nmCold})+ \\ \beta_{7}\left(\text { Precip }_{2 \mathrm{yr}} * \mathrm{nmCold}\right)+\beta_{8}(\text { Cold } * \mathrm{nmPrecip})+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}} \end{gathered}$
Hydro and Heat by longterm climate	$\begin{gathered} \beta_{1}(\text { Hydro })+\beta_{2}(\mathrm{nmHydro})+\beta_{3}(\text { Hydro } * \mathrm{nmHydro})+\beta_{4}(\text { Heat })+\beta_{5}(\mathrm{nmHeat})+\beta_{6}(\text { Heat } * \mathrm{nmHeat})+ \\ \beta_{7}(\text { Hydro } * \mathrm{nmHeat})+\beta_{8}(\text { Heat } * \mathrm{nmHydro})+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}} \end{gathered}$
Hydro (2-yr lag) and Heat by long-term climate	$\begin{gathered} \beta_{1}\left(\text { Hydro }_{2 \mathrm{yr}}\right)+\beta_{2}(\mathrm{nmHydro})+\beta_{3}\left(\text { Hydro }_{2 \mathrm{yr}} * \mathrm{nmHydro}\right)+\beta_{4}(\text { Heat })+\beta_{5}(\mathrm{nmHeat})+\beta_{6}(\text { Heat } * \mathrm{nmHeat})+ \\ \beta_{7}\left(\text { Hydro }_{2 \mathrm{yr}} * \mathrm{nmHeat}\right)+\beta_{8}(\text { Heat } * \mathrm{nmHydro})+\delta_{\mathrm{i}}+\varepsilon_{\mathrm{ti}} \end{gathered}$

This article is protected by copyright. All rights reserved

1 Table 4. Parameter estimates from the four main climate covariate models. Precip, Hydro, Heat, 2 and Cold represent annual climate values. nmPrecip, nmHydro, nmHeat, and nmCold are the 3 long-term (~ 30 year) climate normal values. Interaction terms of annual and normal values (e.g.,
4 Precip*nmPrecip) represent the effect of an annual climate value by different long-term climate.
5 SD is the standard deviation of a parameter estimate, and $q_{0.025-0.975}$ represent $2.5^{\text {th }}, 50^{\text {th }}$, and
$6 \quad 97.5^{\text {th }}$ quartile values.

Model: Precip					
Parameter	Mean	SD	$\mathbf{q}_{0.025}$	$\mathbf{q}_{0.500}$	$\mathbf{q}_{0.975}$
Precip (2-yr lag)	-0.0840	0.0370	-0.155	-0.0840	-0.0120
nmPrecip	$4.00 \mathrm{e}-03$	$4.00 \mathrm{e}-03$	$-4.00 \mathrm{e}-03$	$4.00 \mathrm{e}-03$	0.0130
Precip (2-yr lag)*	$4.00 \mathrm{e}-03$	0.0140	-0.0240	$4.00 \mathrm{e}-04$	0.0320
nmPrecip					

Model: Hydro					
Hydro	0.0533	0.0387	-0.0229	0.0534	0.129
nmHydro	-0.0137	$5.44 \mathrm{e}-03$	-0.0243	-0.0137	$-2.98 \mathrm{e}-03$
Hydro* nmHydro	0.0732	0.0244	0.0255	0.0732	0.121
Hydro (2-yr lag)	0.0925	0.0415	0.0111	0.0924	0.174
nmHydro	$-7.21 \mathrm{e}-03$	$5.47 \mathrm{e}-03$	-0.0179	$-7.22 \mathrm{e}-03$	$3.57 \mathrm{e}-03$
Hydro (2-yr lag)*	-0.0605	0.0253	-0.110	-0.0605	-0.0109
nmHydro					
Model: Heat					
Heat	0.340	0.0670	0.208	0.340	0.471
nmHeat	-0.266	0.0383	-0.341	-0.266	-0.191
Heat* nmHeat					
Model: Cold	-0.438	0.117	-0.666	-0.438	-0.209
Cold	0.0115	$4.81 \mathrm{e}-03$	$2.09 \mathrm{e}-03$	0.0115	0.0210
nmCold	0.258	0.0580	0.145	0.259	0.372
Cold* nmCold					

1 Table 5. Parameter estimates from the interaction model of spring precipitation and winter 2 severity. Precip and Cold represent annual climate values. nmPrecip and nmCold are the long3 term (~ 30 year) climate normal values. Interaction terms of annual and normal values (e.g.,

4 Precip*nmPrecip) represent the effect of an annual climate value by different long-term climate.
5 SD is the standard deviation of a parameter estimate, and $q_{0.025-0.975}$ represent $2.5^{\text {th }}, 50^{\text {th }}$, and
$6 \quad 97.5^{\text {th }}$ quartile values.
Model: Precip (2-yr lag) and Cold by long-term climate conditions

Parameter	Mean	SD	$\mathbf{q}_{0.025}$	$\mathbf{q}_{0.500}$	$\mathbf{q}_{0.975}$
Precip (2-yr lag)	-0.192	0.126	-0.439	-0.192	0.055
nmPrecip	$-8.00 \mathrm{e}-03$	0.0110	-0.0300	$-8.00 \mathrm{e}-03$	0.0140
Precip (2-yr lag)*	$9.00 \mathrm{e}-03$	0.0170	-0.0240	$9.00 \mathrm{e}-03$	0.0420

nmPrecip

Cold	-0.398	0.125	-0.644	-0.398	-0.152
nmCold	0.0210	0.0130	$-4.00 \mathrm{e}-03$	0.0210	0.0460
Cold* nmCold	0.220	0.0630	0.0970	0.220	0.344
Precip (2-yr lag)*	0.0620	0.0700	-0.0760	0.0620	0.200
nmCold					
Cold*nmPrecip	0.0150	0.0240	-0.0320	0.0150	0.0630

7

1 Table 6. Parameter estimates from the interaction model of summer water availability and 2 extreme heat. Hydro and Heat represent annual climate values. nmHydro and nmHeat are the 3 long-term (~ 30 year) climate normal values. Interaction terms of annual and normal values (e.g.,
4 Hydro*nmHydro) represent the effect of an annual climate value by different long-term climate.
5 SD is the standard deviation of a parameter estimate, and $q_{0.025-0.975}$ represent $2.5^{\text {th }}, 50^{\text {th }}$, and
$6 \quad 97.5^{\text {th }}$ quartile values.

Model: Hydro and Heat by long-term climate conditions					
Parameter	Mean	SD	$\mathbf{q}_{0.025}$	$\mathbf{q}_{0.500}$	$\mathbf{q}_{0.975}$
Hydro	-0.0153	0.0701	-0.152	-0.0155	$1.22 \mathrm{e}-01$
nmHydro	-0.0404	0.0117	-0.0634	-0.0405	$-1.74 \mathrm{e}-02$
Hydro*nmHydro	0.0736	0.0267	0.0210	0.0736	$1.26 \mathrm{e}-01$
Heat	0.202	0.0741	0.0562	0.202	$3.47 \mathrm{e}-01$
nmHeat	0.0383	0.0117	0.0153	0.0383	$6.12 \mathrm{e}-02$
Heat*nmHeat	-0.259	0.0415	-0.340	-0.259	$-1.77 \mathrm{e}-01$
Hydro*nmHeat	0.0191	0.0474	-0.0742	0.0191	$1.11 \mathrm{e}-01$
Heat*nmHydro	0.0913	0.0269	0.0384	0.0914	$1.44 \mathrm{e}-01$

Model: Hydro (2-yr lag) and Heat by long-term climate conditions					
Hydro (2-yr lag)	0.333	0.0787	0.179	0.333	0.487
nmHydro	-0.0354	0.0118	-0.0585	-0.0354	-0.0122
Hydro (2-yr lag)*	-0.0120	0.0263	-0.0635	-0.0120	0.0393
nmHydro					
Heat	0.252	0.0722	0.111	0.252	0.393
nmHeat	0.0399	0.0117	0.0169	0.0399	0.0628
Heat*nmHeat	-0.300	0.0390	-0.377	-0.300	-0.224
Hydro (2-yr lag)*	-0.198	0.0475	-0.291	-0.198	-0.106
nmHeat					
Heat*nmHydro	0.0913	0.0267	0.0389	0.0914	0.144

This article is protected by copyright. All rights reserved

[^0]: ${ }^{8}$ WorldClim; Hijmans et al. (2005)

