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Abstract 56 

Species’ distributions will respond to climate change based on the relationship between 57 

local demographic processes and climate and how this relationship varies based on range 58 

position. A rarely tested demographic prediction is that populations at the extremes of a 59 

species’ climate envelope (e.g., populations in areas with the highest mean annual 60 

temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested 61 

this prediction using a dynamic species distribution model linking demographic rates to 62 

variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North 63 

America. Using long-term monitoring data from 746 populations in 27 study areas, we 64 

determined how climatic variation affected population growth rates and how these 65 
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relationships varied with respect to long-term climate. Some models supported the 66 

predicted pattern, with negative effects of extreme summer temperatures in hotter areas 67 

and positive effects on recruitment for summer water availability in drier areas. We also 68 

found evidence of interacting temperature and precipitation influencing population size, 69 

such as extreme heat having less of a negative effect in wetter areas. Other results were 70 

contrary to predictions, such as positive effects of summer water availability in wetter 71 

parts of the range and positive responses to winter warming especially in milder areas. In 72 

general we found wood frogs were more sensitive to changes in temperature or 73 

temperature interacting with precipitation than to changes in precipitation alone. Our 74 

results suggest that sensitivity to changes in climate cannot be predicted simply by 75 

knowing locations within the species’ climate envelope. Many climate processes did not 76 

affect population growth rates in the predicted direction based on range position. 77 

Processes such as species-interactions, local adaptation, and interactions with the physical 78 

landscape likely affect the responses we observed. Our work highlights the need to 79 

measure demographic responses to changing climate. 80 

 81 

Introduction 82 

A persistent theme in ecology is the need to understand the factors that shape and 83 

describe species distributions (Grinnell, 1917; MacArthur, 1972; Gaston, 2009; Sexton et 84 

al., 2009). These factors have been touted as a means to understand the conditions that 85 

facilitate sustainable populations currently and in the future (Sexton et al., 2009). Species 86 

distributions are determined by a spectrum of biotic and abiotic factors that act across 87 

varying spatial and temporal scales (Anders & Post, 2006; Sexton et al., 2009). Among 88 

abiotic factors, climate is thought to be one of the most important determinants of species 89 

occurrence and key to the formation, maintenance and evolution of species distributions 90 

(Darwin, 1859; Sexton et al., 2009; Araújo & Peterson, 2012). Climate may affect 91 

species directly via constraints in physiological tolerances, indirectly via its influence on 92 

community assemblages and habitats, or by complex interactions of both (Menge & 93 

Olson, 1990). Understanding when and where climate constrains species’ occurrence is 94 

useful in predicting future responses, conserving and managing species in the face of 95 

ongoing global climate change (Pearson & Dawson, 2003; Araújo & Peterson, 2012) and 96 
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identifying areas where other factors aside from climate are more strongly influencing 97 

distributions (e.g., biotic interactions; Urban et al., 2013). 98 

Attempts to quantify the role climate plays in shaping species distributions 99 

frequently rely on the correlation between species occurrence and climate (i.e., a species’ 100 

bioclimatic envelope; Araújo & Peterson, 2012) to characterize current and to predict 101 

future range dynamics. These static distribution modeling approaches are used to identify 102 

broad-scale patterns contributing to range limits (Pearson & Dawson, 2003; Hijmans & 103 

Graham, 2006) and to predict range-wide effects of climate change on species 104 

distributions (Pearson & Dawson, 2003; Araújo et al., 2005; Thuiller et al., 2005). Under 105 

bioclimatic envelope models, climatic conditions where a species is not observed are 106 

assumed to prevent establishment of viable populations and thus are the environmental 107 

conditions that set range limits (Araújo & Peterson, 2012). However, these 108 

phenomenological models assume (1) species’ ranges are in equilibrium with climate 109 

conditions and (2) species responses are static across the range (Hijmans & Graham, 110 

2006; Franklin, 2010). These assumptions do not realistically represent the dynamic 111 

nature of the physical environment and the species themselves, especially for broadly 112 

distributed species (Zurell et al., 2009). Static models of species responses to climate are 113 

insufficient to understand the effect annual climate variation can have on population 114 

persistence (Zurell et al., 2009; Franklin, 2010). Furthermore, the focus on species 115 

occurrence data ignores the temporal variation in species responses and the demographic 116 

processes that determine how a species will respond to climatic shifts (Merow et al., 117 

2014; Thuiller et al., 2014). 118 

If climate shapes species distributions, changes in climate should have the greatest 119 

effect on populations occurring near the climatic extremes (e.g., increased temperature 120 

will have the greatest effect on populations in the warmest part of the range; MacArthur, 121 

1972; Hoffman & Parsons, 1997; Parmesan et al., 2000). We test this by measuring 122 

sensitivity of demographic responses to climatic variation across the range of the wood 123 

frog (Lithobates sylvaticus). Specifically, we define sensitivity as the expected change in 124 

annual population growth rate (r) with respect to change in an annual climatic measure 125 

(e.g., summer extreme heat). We expect range contractions to occur when populations are 126 

lost because growth rate is negative for an extended period of time. Similarly, range 127 
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expansions may occur when populations are gained because growth rate is positive for an 128 

extended period of time. Measuring sensitivity tells us how much growth rate is expected 129 

to change with a change in average annual conditions and thus how likely population 130 

declines (or expansions) are to occur. We test whether sensitivity of population growth 131 

rates to year-to-year variation in climate is stronger at the climatic extremes than at the 132 

climatic center of a species range (i.e., the bioclimatic envelope prediction; MacArthur, 133 

1972; Hoffman & Parsons, 1997; Parmesan et al., 2000). Failure to find evidence to 134 

support this hypothesis could result from processes such as local adaptation, biotic 135 

interactions, and other abiotic variables leading to different patterns in sensitivity to 136 

change. Testing this hypothesis requires an understanding of how life history is impacted 137 

and thus how demographic rates respond to climatic variation (e.g., the relationship 138 

between population growth rate and temporal variation in environmental conditions; 139 

Normand et al., 2014; Ross et al., 2015). This approach captures more of the process 140 

underlying range shifts rather than simply the observed pattern that previous correlative 141 

approaches have used to predict range shifts. 142 

Amphibians make an interesting focal taxon to test the importance of population-143 

level sensitivity to climate variation in range dynamics. Amphibians are expected to be 144 

particularly sensitive to the effects of climate due to their physiology and life history 145 

(Hutchinson & Dupré, 1992; Duellman, 1999), generally limited dispersal abilities 146 

(Beebee, 1996, but see Smith & Green, 2005), and reliance on seasonal precipitation and 147 

temperature patterns to create breeding habitats and facilitate movement (Pechmann et 148 

al., 1989; Rittenhouse & Semlitsch, 2007; Urban et al., 2014). Their ecological 149 

importance as a link between terrestrial and aquatic systems (Ranvestel et al., 2004; Earl 150 

& Semlitsch, 2012) and the decline of even common species (Stuart et al., 2004; Adams 151 

et al., 2013; Grant et al., 2016) make understanding the importance of climate in 152 

influencing population level dynamics important for forecasting future extinction risk. 153 

Here we focus on the demographic responses to climate for a species of pond-breeding 154 

frog, the wood frog, whose range extends across much of northern North America (Fig. 155 

1). 156 

Using a spatially and temporally rich dataset, we tested the prediction that wood 157 

frog populations are most sensitive to annual climatic variation at sites near the climatic 158 
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extremes of their distribution (Fig. 2) and that the species distribution is shaped by the 159 

interaction of long-term and annual climate conditions on population growth rates. 160 

Population growth rates at sites may have three predicted responses based on their range 161 

position. For example, if  sensitivity of wood frog populations to variation in temperature 162 

differs across the range, we predicted that 1) populations in the colder portion of the 163 

range (blue; Fig. 2a) would be positively affected by warmer than average annual 164 

temperatures, meaning that if warming occurred this could lead to more frequent years of 165 

high population growth rates and potential range expansion; 2) populations in the warmer 166 

portion of the range (red; Fig. 2a) would be negatively affected by warmer than average 167 

annual temperatures, meaning that if warming occurred this would lead to more frequent 168 

years of low population growth rates and potential range contraction; and 3) populations 169 

in the middle of the range (black; Fig. 2a) are far from climate extremes (Fig. 2b) and 170 

annual temperatures would not strongly affect population growth rates. By fitting 171 

dynamic models that estimate annual changes in abundance in relation to long-term 172 

climate, we can better understand which populations within a species’ range are most 173 

likely to respond to changing climate.  174 

Study System and Methods 175 

We build on previous static approaches to model bioclimatic determinants of 176 

species distributions (e.g., Guisan & Zimmerman, 2000; Hijmans & Graham, 2006) by 177 

measuring local demographic responses of populations using a dynamic species 178 

distribution model (DSDM). The DSDM approach allowed us to test the importance of 179 

range position in determining responses to climate by measuring local sensitivity of 180 

population growth rate to annual variation in climate covariates. Our model takes the 181 

form of a hierarchical state-space model (SSM; De Valpine & Hastings, 2002; Buckland 182 

et al., 2004; Kéry & Schaub, 2012; Ross et al. 2015), allowing us to link annual 183 

population dynamics across different sites and study areas to annual variation in climatic 184 

variables. The results provide a measure of climate sensitivity (i.e., the expected change 185 

in mean population growth rates in response to changes in mean climate; Thuiller et al., 186 

2005; Thomas, 2010; Burrows et al., 2014). 187 

Study System and Life History 188 
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Wood frogs occupy an extensive range, occurring from northern Alaska to 189 

Canada and south to the south central United States (USGS National Amphibian Atlas, 190 

2014; Fig. 1), spanning a large gradient of climatic conditions (Fig. 1). Specific elements 191 

of the wood frog life history potentially make them sensitive to changes in local climate. 192 

Breeding normally occurs in early spring when rising temperatures rouse animals and 193 

warm spring rains facilitate movement into breeding ponds. Adult frogs show high 194 

fidelity to breeding sites (Berven & Grudzien, 1990; Green & Bailey 2015). Breeding 195 

generally occurs in a short window of time, anywhere from a few consecutive evenings to 196 

a few weeks in length depending on location (Authors, pers. observations; Crouch & 197 

Paton, 2000). Female wood frogs become sexually mature between two and four years of 198 

age and males between one and three years of age (Berven, 1982a; Berven, 2009; Green 199 

& Bailey 2015), and both can live up to six years (Redmer & Trauth, 2005). Females 200 

typically lay one egg mass during each breeding season, and these egg masses are 201 

visually distinct and easy to locate and count (Crouch & Paton, 2000; Grant et al., 2005; 202 

Green et al., 2013). Comparison of census methods show that counts of total egg masses 203 

seen per season serves as a suitable proxy for total breeding females per season in a pond 204 

(Crouch & Paton, 2000). 205 

Field sampling 206 

We used egg mass counts from 746 sites within 27 study areas across the wood 207 

frog range (Fig. 1; Table S1). A site consisted of a pond or wetland (area ≤ 0.10 ha to 208 

5.24 ha) that was visually sampled for wood frog egg masses during the peak of each 209 

breeding season and where wood frog egg masses were observed at least once during 210 

years when surveys occurred. Study areas designate geographic clusters of sites that 211 

occurred within relatively close proximity (e.g., within a single national park). Sites were 212 

surveyed in multiple years (range = 3-22 years, mean = 10 years; Table S1) with most, 213 

but not all, sites being surveyed multiple times within each year. Surveys occurred during 214 

or right after peak breeding based on the lack of calling adults and/or no additional egg 215 

masses during subsequent surveys, and a maximum count at a site was recorded each 216 

breeding season and used as the response variable in analyses. Wood frog egg masses are 217 

conspicuous and detection probability is high (p = 0.96 ± 0.02 to 0.95 ± 0.01; Grant et al., 218 

2005). 219 
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Climate covariates 220 

We tested specific predictions with each model about the variation in sensitivity 221 

of population growth rates to four climate covariates (Table 1, 2; Fig. S1): 1) spring 222 

precipitation (Precip), 2) summer water availability (Hydro), 3) summer extreme heat 223 

(Heat), and 4) winter severity (Cold; Table 1). As our sites cover a broad geographic 224 

space, wood frog breeding was not synchronous across all study areas. Months used to 225 

calculate Precip and Hydro were benchmarked to average breeding dates in each study 226 

area, reflecting differences in seasonality across the wood frog range (Table S1). 227 

 We obtained global climate normal (~1960-1990, 2.5 arc-minutes resolution) 228 

rasters from WorldClim (Hijmans et al., 2005) and created 30-year climate normal maps 229 

of North America in program R (R Core Team, 2016). We determined 30-year mean 230 

annual temperature and precipitation values across North America and within the 231 

recorded range of wood frog occurrence (IUCN, 2015) to determine where the species 232 

occurs within the broader North American climate space (Fig. 3). These values were used 233 

to depict the climate space of wood frogs and our sampled populations in Figure 3 but 234 

were not used in SSMs. Using PRISM (Daly et al., 2002) model output for the US and 235 

weather station data for Canada (Environment Canada, 2015), we calculated annual 236 

climate values for Precip, Hydro, Heat, and Cold at every site every year for SSMs 237 

(Table 1). To model differences in long-term climate, we determined 30-year climate 238 

normal (average) values (Hijmans et al., 2005) at every site over the same seasonal 239 

periods as our annual climate covariates for SSMs (Table 2; nmPrecip, nmHydro, 240 

nmHeat, and nmCold). For example, at northern sites we calculated total precipitation 241 

values each year for February, March, and April, due to their importance in timing wood 242 

frog migrations and pond filling, and averaged them for an annual spring precipitation 243 

value (Precip). We then averaged total precipitation values over the same months across 244 

30 years to get a long-term climate normal value (nmPrecip) that varied across but not 245 

within sites. Annual climate values were standardized by 33-year (1981-2013) mean and 246 

standard deviations at a site. Climate normals were standardized using the mean and 247 

standard deviation from the entire extent of the wood frog range. 248 

Data analysis 249 
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We used SSMs to estimate the effect of annual variation on population growth 250 

rate (De Valpine & Hastings, 2002; Buckland et al., 2004; Kéry & Schaub, 2011; Ross et 251 

al. 2015). Models were fit in JAGS (Plummer 2003) and implemented in program R via 252 

the R2jags package (Su & Yajima, 2012; see Appendix S1 for JAGS code). The 253 

hierarchical model allows for estimation of latent state and observation processes 254 

characterizing sampled populations while simultaneously accounting for process 255 

variation and observation error (Buckland et al., 2004; Kéry & Schaub, 2011). We were 256 

interested in understanding how these latent processes were affected by annual climate 257 

variation across the range. At the same time, the modeling framework allowed us to 258 

account for observation error in counts (e.g., through variable detection, field conditions, 259 

variable observer expertise) that was unrelated to the underlying population processes 260 

(MacKenzie et al., 2006). 261 

We described changes in wood frog population size (as based on egg mass counts 262 

that serve as a proxy for number of breeding females in a season) using an exponential 263 

population growth model 264 

       Nt+1 =  Nt * e
r           (1) 265 

where population size Nt+1 is a function of the previous population size Nt (from the 266 

previous year) and the per capita annual growth rate (r, the exponent of the instantaneous 267 

growth rate). Using this as a starting point, we estimated regression coefficients 268 

characterizing the relationship between annual weather and the realized growth rate (rti) 269 

for a given year (t) and a given site (i) for each climate hypothesis. 270 

To fit the model, we reformulated Eq. 1 by taking the natural logarithm of each 271 

side of the equation and indexing all parameters by year (t) and site (i) to capture annual 272 

and site-specific variation in the climate covariates and population responses. We added 273 

one to all observations to accommodate zeros in the data prior to log transformation. 274 

      log(Nt+1, i) = log(Nti) +  rti                       (2) 275 

The now additive growth rate rti was modified to include the effects of climate 276 

covariates and unexplained annual variation captured using random-error terms. Our goal 277 

was to estimate the effect of annual variation in each of our four climate covariates and 278 

how those effects differed across the range. We estimated these relationships using a 279 
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linear model that included the main effects of annual climate values and the climate 280 

normal along with the interaction of the two (Table 3). The model took the form of: 281 

   rti = β1 * Annual Climateti + β2 * Climate Normali +     (3) 282 

β3 * Annual Climateti * Climate Normali + hi + iti                    283 

The model allowed us to determine sensitivity, defined as the expected change in annual 284 

population growth rate (r) for a one standard deviation increase in annual conditions, to 285 

long-term climate normal conditions. Specifically, the interaction term allowed us to 286 

quantify the amount of change in population growth rates given an annual shift in climate 287 

in respect to the climatic range position in which a population exists. We included a 288 

random effect for site level differences, hi  ~ Normal (0 , σ2
Site). This effect served as the 289 

local site-level intercept for growth rate, which we expected to vary around a mean value 290 

of 0. We included a second random error component for additional annual variation in 291 

growth rate not explained by the climate covariates, iti  ~ Normal (0 , σ2
proc). To account 292 

for observation error in counts that was not explained by the population level state 293 

processes, we assumed that the log observed count of egg masses for that site and year, 294 

yti, is given by yti  ~ Normal (log[Nti] , σ2
obs). It was also necessary to estimate a starting 295 

population size for each site. We used a prior value of log (N1i) ~ Normal (0, 100). 296 

We used vague priors for random effect variance components (σ2
obs, σ2

proc) with 297 

uniform distributions bounded between 0 and 5. For σ2
Site we used a uniform prior 298 

bounded between 0 and 0.2 to facilitate convergence. Priors for all regression coefficients 299 

were βk ~ Normal(0 , 100). We ran three parallel chains for 50,000 iterations each and 300 

discarded the first 1000 iterations as burn-in to allow for model convergence. Model 301 

convergence was determined visually from traceplots and Gelman Rubin statistics (   < 302 

1.05; Gelman & Rubin 1992). 303 

We predicted that climate covariates could have both immediate and lagged 304 

effects on annual growth rate (rti; Fig. S1). We predicted that covariates that 305 

disproportionately impact adult survival and season-to-season variation in breeding 306 

would lead to changes in growth rate in the same year. In the case where we expected a 307 

covariate to impact the survival of eggs and tadpoles in a wetland and thus the number of 308 

potential recruits from a cohort, these were predicted to lead to changes in growth rates 309 

after a 2-year lag. Female wood frogs take approximately two years to reach sexual 310 
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maturity in our study sites (e.g., lowland populations; Berven, 1982a, 2009; Green & 311 

Bailey 2015). Therefore the effects of reproductive failure (e.g., desiccation of tadpoles in 312 

a dry year) on growth rates would not be evident in counts of egg masses in the year 313 

immediately following these suboptimal conditions. We hypothesized that annual Precip 314 

values affect movement of adult animals and the opportunity for successful oviposition 315 

(i.e., pond filling), with low Precip values resulting in fewer egg masses laid and thus 316 

reduced recruitment two years later. Hydro values reflect desiccation risk for developing 317 

tadpoles (realized as altered recruitment two years later) and also drier summer 318 

conditions that can decrease adult survival during foraging or return to overwintering 319 

sites. Heat and Cold values reflect late summer dryness and overwintering cold stress 320 

expected to impact adults. While any number of time lag combinations and effects are 321 

possible, we fit the model (Eq. 3) focusing on these key periods due to their biological 322 

importance and support in the literature (Table 1). 323 

We were also interested in how water availability and temperature may interact to 324 

explain variation in climate sensitivity. We expected that years of low precipitation 325 

(Precip) would have a greater negative effect in sites with higher mean annual summer 326 

temperatures (e.g., hotter areas; nmHeat) as increased water on the landscape may help 327 

keep permeable amphibian skin moist and lessen desiccation risk (Rittenhouse et al., 328 

2009; Köhler et al., 2011). Similarly, we expected reduced winter severity (Cold) and its 329 

indirect effect on water availability and pond filling in the spring to be greater in areas 330 

that receive less spring precipitation (e.g., drier areas; nmPrecip). We tested for these 331 

effects by including the interaction of different annual and long-term climate covariates 332 

(e.g., Precip*nmCold, Hydro*nmHeat; Table 3). Annual covariates included the same 333 

time lags as previously discussed. Models with both temperature and precipitation 334 

included all annual and long-term covariates for each climate measure and an additional 335 

two interaction terms allowing annual and long-term covariates to interact (Table 3). This 336 

means a total of eight models testing climate hypotheses (Table 1 and 2) were run. None 337 

of the selected climate covariates were strongly correlated (|r| < 0.4). 338 

When fitting models, we tested for goodness of fit using a posterior predictive 339 

check to test whether observed variability in counts was consistent with expected 340 

variation. We calculated observed variance in our data for each of the sites and 341 
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determined if on average variance was less than or greater than the predicted variance of 342 

simulated data based on our model. We report the proportion of the time that the 343 

observed variance was greater than the predicted variance, with the expectation that if the 344 

model fits the data well we expect this proportion to be 0.5. 345 

Additionally, we were interested in estimating the overall expected rate of change 346 

in wood frog population growth rates, dr/dt, based on our estimated climate relationships. 347 

Expected change is a function of the local sensitivity to each of our climate covariates, 348 

dr/dX, as measured in our models as well as the rate of change in mean climate over that 349 

time period, dX/dt, where: 350                

We calculated rate of change in each of our climate variables at each of our sites 351 

using linear regression where year was the predictor variable and annual values of each of 352 

our climate variables over a 30-year period from 1984 to 2013 were our response 353 

variables. We mapped these to geographic and climate space to highlight areas where 354 

climate may currently be altering the wood frog distribution. 355 

Results 356 

Sites spanned a >23 degree range in latitude and >50 degree range in longitude from 357 

North Carolina to Jasper National Park, Alberta, Canada. Study areas fell into 16 358 

different states, one administrative subdivision (Washington D.C.) and one Canadian 359 

province (Alberta) (Fig.1). Our data show good geographic coverage along the wood 360 

frog’s southern and easternmost range limit but are restricted in geographic coverage in 361 

the northern and westernmost portions of the wood frog range. This was reflected in our 362 

coverage in climate space (Fig. 3), with best coverage in the portion of the range with 363 

warmer temperatures and higher precipitation. Therefore, we limit the presentation of 364 

results and their interpretation to only the sampled portion of the wood frog range. 365 

Additionally, support for models was judged by whether or not credible intervals of 366 

parameter estimates overlapped zero, and we have limited our presentation of results to 367 

those models with the strongest support and thus credible intervals for interaction terms 368 

that did not overlap. Our posterior-predictive check values for each of our models were 369 
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between 0.493 and 0.541, indicating that our models did a good job of capturing actual 370 

variation in growth rates. 371 

Our first three models tested the effect of moisture on population growth rates, 372 

with the first focused on spring precipitation and the second on late summer water 373 

availability. Contrary to our predictions, we found a negative relationship between Precip 374 

and wood frog population growth rates across all areas two years later (Table 4; Fig. 4a; 375 

Fig. S2). The relationship of increased annual Hydro values to wood frog population 376 

growth rates differed depending on if a time lag was incorporated (Table 4; Fig. 4b,c; Fig. 377 

S2). The same-year effect of Hydro was dependent on long-term climate, with 378 

populations in wetter areas responding most positively to wetter annual conditions as 379 

compared to those in drier areas (Fig. 4b). When incorporating a two-year time lag, 380 

increased values of Hydro were positively associated with growth rates only in drier areas 381 

(Fig. 4c; Table 4), agreeing with our bioclimatic envelope predictions of increased 382 

sensitivity to water availability in drier portions of the range. 383 

Our next two models focused on the effect of extreme heat and cold severity on 384 

population growth rates. The relationship between increased values of Heat and wood 385 

frog population growth rates (Table 4) depended upon long-term climate. Years with 386 

hotter summer temperatures had higher population growth rates in areas with cooler 387 

summer climates. However, there was a negative association between warmer summers 388 

and population growth in areas with hotter summer climates (Fig. 4d; Fig. S2). This 389 

agrees with our bioclimatic envelope prediction, where we expect population growth rate 390 

to be most sensitive to warming in the warmest portion of the range. The relationship of 391 

Cold to population growth rates showed increased growth rates associated with milder 392 

winters across all areas (Table 4) with the most positive association in areas with milder 393 

winter climates (Fig 4e; Fig. S2). 394 

 Finally we examined how precipitation and temperature interacted to affect 395 

population growth rates. We found that the two-year lag effect of annual variation in 396 

spring precipitation did not depend on long-term winter climate (Precip*nmCold; Table 397 

5; Fig. 5a; Fig. S2), and the effect of annual variation in winter severity did not vary 398 

significantly by long-term spring precipitation (Cold*nmPrecip; Table 5; Fig. S2).  399 
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We found that the effect of summer water availability in the current year did not 400 

differ by long-term summer heat (Hydro*nmHeat; Table 6; Fig. 5c; Fig. S2). However, 401 

the effect of warmer summers differed between drier and wetter areas. Hotter summer 402 

temperatures had a positive relationship to population growth rates in wetter areas but 403 

negatively impacted growth rates in drier areas (Heat*nmHydro; Fig. 5d; Fig. S2). We 404 

found a positive relationship between increased summer water availability and wood frog 405 

growth rates two years later in areas with cooler summer temperatures but a negative 406 

relationship in areas with hotter summer temperatures (Table 6; Fig. 5e; Fig. S2). The 407 

interaction of increased summer temperatures had a similar impact on population growth 408 

rates as the summer water availability model with no time lag, with a positive effect of 409 

increased summer heat in wetter versus drier areas (Table 6). 410 

Expected rate of change in population growth rates over the previous 30 years that 411 

could be attributed to changes in climate showed few major increases or decreases across 412 

the wood frog range (Fig. S3, S4). The biggest changes in population growth rates were 413 

estimated to have occurred for variables related to temperature. These suggest some 414 

reductions in growth rates in the southern portion of the wood frog range due to changes 415 

in heat and cold (Fig. S3d,e; S4d,e). 416 

Discussion 417 

We tested the prediction that the effect of climate on population growth rates 418 

varies in a predictable pattern based on local, long-term climate (i.e., bioclimatic 419 

envelope prediction; MacArthur, 1972; Hoffman & Parsons, 1997; Parmesan et al., 420 

2000). Populations near the climatic extremes of the species range were predicted to be 421 

the most sensitive to annual variation in climate. Our use of hierarchical SSMs (De 422 

Valpine & Hastings, 2002; Kéry & Schaub, 2012) allowed us test this broad-scale 423 

prediction by simultaneously linking climate directly to demographic rates at the 424 

temporal- (short-term variation in weather) and spatial- (individual populations) scales at 425 

which climate acts to affect species distributions. We acknowledge that our sampled sites 426 

are only a portion of the wood frog range and thus limit the interpretation of our results to 427 

conditions represented in this study. Our results provided mixed evidence to support this 428 

prediction, with differences in climate sensitivity often occurring in the opposite direction 429 

of this prediction. For example, the effect of summer temperature was consistent with our 430 
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prediction – warmer summers had a more detrimental effect in the warmest part of the 431 

range. The effect of summer water availability was also consistent with this prediction, 432 

where increased moisture had a positive effect two years later in drier areas. On the other 433 

hand, variation in spring precipitation, summer water availability in the current year, and 434 

winter severity did not conform to predictions based on position within the range. 435 

We also tested the climate sensitivity of populations to interactions of temperature 436 

and precipitation. We again predicted that population growth rates would be most 437 

sensitive to annual variation in one factor (e.g., increased summer heat) as they 438 

approached climate extremes of the other (e.g., drier areas). Again, we found mixed 439 

support for this prediction. Hotter summers had a positive effect on wood frog growth 440 

rates in wetter areas but a negative effect in drier areas as predicted. However, we found a 441 

contradictory positive effect of increased summer water availability two years later in 442 

cooler areas and no significant association of spring precipitation and winter severity to 443 

wood frog population growth rates. This suggests that expected shifts due to changing 444 

climate for wood frogs may not be strongest at the climatic extremes of the range or 445 

easily predicted solely by climate, which is surprising given the expected sensitivity of 446 

amphibians to abiotic conditions. 447 

Many of the metabolic, reproductive and phenological processes in amphibians 448 

are strongly linked to temperature (Berven, 1982a,b; Beebee, 1996; Gibbs & Breisch, 449 

2001) and can be of key importance in structuring species distributions (Tingley et al., 450 

2009; Cahill et al., 2014). This may explain why bioclimatic envelope model predictions 451 

regarding temperature, specifically heat, were better supported in our models. 452 

Temperature may have a more uniform effect across the landscape and may be better 453 

represented by coarse measures. Alternatively, precipitation largely acts through its effect 454 

on hydrological processes during the reproductive phase and interactions between water, 455 

soil, and vegetation during non-breeding periods (Drexler et al., 2004; Bauder, 2005; 456 

Davis et al., in prep). Hydrologic deficits (Brooks, 2004), landscape topography (Boswell 457 

& Olyphant, 2007), pond-selection by breeding animals (Pechmann et al., 1989; Skidds 458 

et al., 2007; Amburgey et al., 2014), and plasticity in development (Relyea, 2002; 459 

Amburgey et al., 2012) are among the many factors that may attenuate the relationships 460 

between water availability and amphibian population growth rates. Our inferences are 461 
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also limited to the study area that we were able to sample. Limited sampling of the colder 462 

and drier edge of climate space (Fig. 3) may restrict our ability to detect relationships 463 

occurring at those extremes. Our study did, however, provide good coverage at the warm 464 

and wet edge of the wood frog range, which is most susceptible to the effects of climate 465 

change (Corn 2005; Meehl et al., 2007).  466 

A multitude of other factors (e.g., local adaptation, biotic interactions, and other 467 

abiotic variables) can affect populations and lead to patterns contradictory to bioclimatic 468 

envelope predictions of climate sensitivity (HilleRisLambers et al., 2013; Urban et al., 469 

2013). The effect of moisture on the landscape likely depends on the form and the timing 470 

of precipitation and can also impact biotic factors that likewise contribute to 471 

heterogeneity in population growth rates. Increased spring precipitation may come as 472 

early spring snow and ice storms that can increase adult mortality through reduced freeze 473 

tolerance (Costanzo & Lee Jr., 1992) or truncate the breeding season (Berven, 1982b). 474 

Increased moisture on the landscape may increase the probability of egg mass or tadpole 475 

stranding in temporary flooded areas or facilitate colonization or persistence of predators 476 

in ponds (Werner et al., 2009). Local adaptation to annual climate variation may alter 477 

climate sensitivity, with populations nearer to climate extremes accustomed to increased 478 

annual variation while populations farther away from extremes are not (e.g., Berven, 479 

1982a, Laugen et al., 2003; Amburgey et al., 2012), though we cannot test this directly 480 

with our approach. Local dynamics may also vary spatially, where populations near 481 

climate extremes are at low enough densities that they are unable to respond to the 482 

benefits of years with more suitable climate conditions. 483 

Species biology may additionally structure population responses to climate and 484 

result in deviations from bioclimatic envelope predictions. Wood frogs are freeze tolerant 485 

(Storey & Storey, 1986; Costanzo & Lee Jr., 1992) though extended or extreme periods 486 

of freezing temperatures can impact overwintering survival (Costanzo et al., 1991; 487 

O’Connor & Rittenhouse, 2016). In a portion of the range that encompassed our study 488 

areas, no differentiation in wood frog thermal tolerance was found (Manis & Claussen, 489 

1986); however, far northern populations in Alaska have shown increased cold tolerance 490 

(Larson et al., 2014). However, mild winters in colder areas may result in freeze-thaw 491 

cycles that rouse animals from torpor, resulting in increased energetic demands (Storey, 492 
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1987), mating behavior impairment (Costanzo et al., 1997), and reduced fecundity 493 

(Benard, 2015). Additionally, the life stage on which climate most strongly acts may 494 

influence the population response. In amphibians, the aquatic larval stage already 495 

experiences heightened mortality, and climate conditions that affects tadpole survival 496 

may not lead to differential climate sensitivity at the population level as much as those 497 

factors that influence terrestrial juvenile and adult survival (Biek et al., 2002; Harper et 498 

al., 2008). 499 

Currently, species distributions and range dynamics are frequently modeled using 500 

static approaches that treat climate and species responses as fixed across space and time 501 

(Hijmans & Graham, 2006; Franklin, 2010). However, species responses to climate are 502 

spatially complex, especially for those with multistage life histories. Climate shifts will 503 

likely alter species distributions by acting on demographic processes where sensitivity to 504 

change is greatest. Combining estimates of climate sensitivity with data about observed 505 

or predicted changes in climate allows for predictions about local changes in population 506 

growth rate to be made. We did this for the last 30-year period, highlighting the 507 

variability in population response across the range (Fig. S3, S4). Demographic response 508 

for some climate variables fit predictions (e.g., negative responses to warming in the 509 

warmest regions). However, estimated demographic changes related to water availability 510 

and interactions with temperature follow much less clear patterns, which would not easily 511 

be predicted using static modeling approaches. Our results demonstrate that focusing on 512 

demographic processes provides insights for understanding how species distributions 513 

may respond to change not possible with presence-absence correlative models focused on 514 

pattern (Normand et al., 2014; Ross et al., 2015). Correlative approaches based on a 515 

static snapshot of species distribution do not measure the actual mechanistic processes 516 

impacting populations (Dormann et al., 2012; Cahill et al., 2014) and do not estimate 517 

rates of change that demographic models can incorporate (Normand et al., 2014). Thus, 518 

correlations may break down with no-analogue climates (Williams & Jackson, 2007) and 519 

lack the predictive power explicit estimates of climate-demography relationships can 520 

offer (Normand et al., 2014). While our model is still correlative in relating demographic 521 

rates to climatic variation, it provides a finer scale approach that provides insights to 522 

potential mechanisms while also explaining broader patterns. Bioclimatic envelope 523 
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modeling does not include other potentially important factors (e.g., biotic interactions, 524 

genetic differentiation, and geographical barriers) that may set species range limits alone 525 

or in concert with climate (HilleRisLambers et al., 2013; Urban et al., 2013). However, 526 

such demographic models can be modified to include such information and better inform 527 

our understanding of species range dynamics.  528 

A demographic understanding of species distributions is essential to evaluating 529 

and understanding range limits, forecasting range shifts and stability, and managing 530 

species and conserving habitats. These aims will be critical in the context of changing 531 

climate. By pairing large-scale modeling studies with targeted experimental or 532 

demographic studies, we can better understand the way these broad-scale measures are 533 

realized on the landscape and influence local populations (Merow et al., 2014; Normand 534 

et al., 2014). In the future, all species are likely to experience some change to their 535 

current distributions, whether through range contractions (via altered habitat suitability 536 

through changing climate) or expansions (via altered climate facilitating colonization of 537 

new habitats; Thuiller et al., 2008). With increasingly limited conservation resources, 538 

identification and prioritization of critical areas where species are most sensitive to 539 

changing climate (Beissinger & Westphal, 1998; Keith et al., 2008) and where range 540 

shifts may occur (Thuiller et al., 2008) will allow for more efficient and effective 541 

conservation management. 542 
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 800 

Figure 1. The wood frog is a broadly distributed species that spans most of the 801 

northeastern United States into Canada and Alaska. Red dots indicate sites where egg 802 

mass counts were obtained. Thirty-year annual (a) precipitation and (b) temperature 803 

(Hijmans et al. 2005) maps show the broad range of climate conditions this species 804 

experiences across its range (IUCN 2014). 805 

 806 

Figure 2. (a) The wood frog range (light grey) with an example of a northern (blue), 807 

central (black), and southern (red) population. (b) These populations come from different 808 

long-term climate normals (e.g., colder to warmer represented by mean 30-year 809 

temperature). If wood frog responses are consistent with bioclimatic envelope 810 

predictions, the probability of occurrence of wood frogs peaks at some optimal 811 

temperature and declines in more extreme conditions. (c) Sensitivity of wood frog 812 

population growth rates to annual climate variation is predicted to vary by long-term 813 

climate (shaded regions are 95% credible intervals). Sensitivity is the expected change in 814 

annual population growth rate (r) for a one standard deviation increase in annual 815 

conditions. We predict 1) populations in colder areas (blue) will be sensitive to warmer 816 

than average annual temperatures, leading to higher population growth rates (positive 817 

values); 2) populations in hotter areas (red) will be sensitive to warmer than average 818 

annual temperatures, leading to lower population growth rates (negative values); and 3) 819 

populations in areas far from climate extremes (black) will not be strongly affected by 820 

year to year deviations in temperature, leading to fairly consistent population growth 821 

rates (values around zero). 822 

 823 

Figure 3. The climate space [based on 30-year mean annual temperature (oC*10) and 824 

precipitation values (mm)] that encompasses North America (dark blue), the wood frog 825 
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range (light green), and our sites (red). Points on the scatterplot represent all temperature 826 

by precipitation raster cell values where wood frogs occur (light green) and do not occur 827 

(dark blue), with our sites in red. Precipitation values were truncated at 3500 mm for 828 

visualization purposes. Histograms represent frequencies of these same 30-year annual 829 

precipitation (top) and temperature (right) values in just the wood frog range. Boxplots of 830 

precipitation and temperature values from our sites show the minimum, median, 831 

maximum and 25th and 75th quartiles (box). 832 

 833 

Figure 4. We estimated how sensitivity of wood frog population growth rates to annual 834 

climate variation changed with respect to long-term climate differences (shaded regions 835 

are 95% credible intervals). Sensitivity is the expected change in annual population 836 

growth rate (r) for a one standard deviation increase in annual conditions (y-axis). Long-837 

term differences in mean climate are calculated using 30-year climate normals for 838 

conditions during the same portion of the year that annual covariates are measured (x-839 

axis; see Tables 1 and 2) at our sampled sites. (a) Annual wood frog population growth 840 

rate two years later responded negatively to spring precipitation (PRECIP lag) across all 841 

areas, (b) annual wood frog population growth rate responded positively to years with 842 

more summer water availability (HYDRO) in areas where long-term average summer 843 

precipitation was higher (>50 mm), (c) annual wood frog population growth rate two 844 

years later responded negatively to years with more summer water availability (HYDRO 845 

lag) in areas where long-term average summer precipitation was higher (>105 mm) and 846 

positively in years where long-term averages were lower (<105 mm), (d) annual wood 847 

frog population growth rate responded negatively to extreme summer temperatures 848 

(HEAT) in areas where long-term average extreme temperature was higher (>24°C) and 849 

positively where long-term averages were lower (<24°C), (e) annual wood frog 850 

population growth rate responded positively to increased winter severity (COLD) in areas 851 

where long-term average minimum temperature was milder (>-6.25°C) and negatively 852 

where long-term averages were colder (<-6.25°C). 853 

 854 

Figure 5. We estimated how sensitivity of wood frog population growth rates to annual 855 

climate variation changed with respect to long-term climate differences (shaded regions 856 
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are 95% credible intervals). Sensitivity is the expected change in annual population 857 

growth rate (r) for a one standard deviation increase in annual conditions (y-axis). Long-858 

term differences in mean climate are calculated using 30-year climate normals for 859 

conditions during the same portion of the year that annual covariates are measured (x-860 

axis; see Tables 1 and 2) at our sampled sites. (a) Annual wood frog population growth 861 

rate two years later did not significantly respond to spring precipitation (PRECIP lag) 862 

regardless of long-term winter severity, (b) annual wood frog population growth rate did 863 

not significantly respond to winter severity (COLD) regardless of long-term spring 864 

precipitation, (c) annual wood frog population growth rate did not significantly respond 865 

to summer water availability (HYDRO) regardless of long-term extreme summer heat, 866 

(d) annual wood frog population growth rate responded positively to years with more 867 

extreme summer temperatures (HYDRO lag) in areas where long-term average summer 868 

precipitation was higher (>20 mm), (e) annual wood frog population growth rate two 869 

years later responded negatively to increased summer water availability (HYDRO lag) in 870 

areas where long-term average extreme temperature was higher (>26.25°C) and 871 

positively where long-term averages were lower (<26.25°C). 872 
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Table 1. Annual climate covariates selected for state space models based on their potential importance in wood frog breeding and survival. Annual 1 

values at each site were used in modeling the effect of annual climate variation on wood frog population growth rates. 2 

Covariate Definition Ecological Importance 

Precip = 

Standardized Precipitation 

Index 3-month (SPI3)1 

Deviation of the observed precipitation value 

from the estimated median for an area 

calculated over a 3-month period, uses only 

precipitation values (only inputs to the system) 

Values represent the wetness of an area during the start of spring 

breeding (e.g., Feb-Apr) such that a more positive value indicates more 

precipitation than predicted. Spring precipitation is important as a cue for 

breeding adults to migrate to ponds and for filling ephemeral ponds2,3 

Hydro =  

Standardized Precipitation 

Evapotranspiration Index 3-

month (SPEI3)4 

Deviation of the observed precipitation value 

from the estimated median for an area 

calculated over a 3-month period, uses 

precipitation and evapotranspiration values 

(inputs and outputs to the system) 

Similar to SPI3 but includes the effect of temperature on 

evapotranspiration rates, considers the way these rates will influence 

drought severity and can be used as a measure of water available on the 

landscape, calculated during summer (e.g., May-July) to get at pond 

drying. Hydroperiod impacts desiccation risk of tadpoles and can 

approximate dry summers that increase desiccation risk of adults 5 

Heat =  

Extreme Heat Index (EHI)4  

Hottest 10-day average temperature, falls in the 

late summer for North America 

Periods of intense heat increase the risk of heat stress and desiccation 

while moving between sites3,5 

Cold =  

Air Freezing Index (AFI)4 

Cumulative index of freeze severity and frost 

depth that factors in magnitude and duration of 

below freezing air temperatures6 

Though freeze tolerance has been demonstrated in this species7, extreme 

cold temperatures and long durations of cold temperatures may reduce 

overwinter survival of juveniles and adults8 

1 National Climatic Data Center, NOAA (2015) 
2 Rittenhouse et al. (2009) 
3 Davis et al. (in prep) 
4 Daly et al. (2002)  

5 Brooks (2004) 
6 Bilotta et al. (2015) 
7 Storey and Storey (1986) 
8 O’Connor and Rittenhouse (2016)
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Table 2. Thirty-year normal climate covariates selected for state space models to account for long-term effects of climate at a site (i.e., 1 

values are constant over time). Their interaction with annual climate covariate values (Table 1) indicated if population growth rates differ 2 

in sensitivity across the range. The predicted relationship of the interaction between annual and long-term climate covariates to population 3 

growth rates across the wood frog range represent hypotheses from the bioclimatic envelope model. 4 

Covariate Definition Ecological Importance 
Predicted Annual and Long-term 

Interaction (Bioclimatic Envelope Model) 

nmPrecip =  

Precip Normal8 

30-year mean monthly 

precipitation over same 3-

month period as SPI3 

Measure of precipitation and water availability 

during spring breeding, long term moisture 

dynamics of areas 

Precip * nmPrecip 

Negative impact of drier years in drier areas 

nmHydro =  

Hydroperiod Normal8 

30-year mean monthly 

precipitation over same 3-

month period as SPEI3 

Measure of precipitation and water availability 

during tadpole development, long term moisture 

dynamics of areas 

Hydro * nmHydro 

Negative impact of drier years in drier areas 

nmHeat =  

Heat Normal8 

30-year maximum monthly 

temperature over similar late 

summer period as EHI 

Measure of extreme heat patterns occurring during 

the late summer, long term heat regime 

Heat * nmHeat 

Negative impact of hotter years in hotter 

areas 

nmCold =  

Cold Normal8 

30-year minimum monthly 

temperature over similar mid-

winter period as AFI 

Measure of winter severity patterns, long term cold 

regime 

Cold * nmCold 

Negative impact of colder years in colder 

areas 
8 WorldClim; Hijmans et al. (2005) 5 
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Table 3. All candidate state space models investigated for modeling wood frog egg mass counts. Each main model consists of the annual 1 

climate covariate (Precip, Hydro, Heat, Cold), the respective long-term climate normal (nmPrecip, nmHydro, nmHeat, nmCold), and the 2 

interaction between each annual and long-term covariate. Combination models are those with additional crossed interactions between 3 

annual climate covariates and long-term climate normals representing a different climate component (e.g., Hydro*nmHeat investigates the 4 

interaction between annual summer precipitation by long-term late summer maximum temperatures). The random effects of site (hi) and 5 

observation error (iti) were included in all models. 6 

Model Name Parameters 

Precip (2-yr lag) β1(Precip2yr) + β2(nmPrecip) + β3(Precip2yr * nmPrecip) + hi + iti 

Hydro β1(Hydro) + β2(nmHydro) + β3(Hydro * nmHydro) + hi + iti 

Hydro (2-yr lag) β1(Hydro2yr) + β2(nmHydro) + β3(Hydro2yr * nmHydro) + hi + iti 

Heat β1(Heat) + β2(nmHeat) + β3(Heat * nmHeat) + hi + iti 

Cold β1(Cold) + β2(nmCold) + β3(Cold * nmCold) + hi + iti 

Precip (2-yr lag) and Cold 

by long-term climate 

β1(Precip2yr) + β2(nmPrecip) + β3(Precip2yr * nmPrecip) + β4(Cold) + β5(nmCold) + β6(Cold * nmCold) + 

β7(Precip2yr* nmCold) + β8(Cold * nmPrecip) + hi + iti 

Hydro and Heat by long-

term climate 

β1(Hydro) + β2(nmHydro) + β3(Hydro * nmHydro) + β4(Heat) + β5(nmHeat) + β6(Heat * nmHeat) + 

β7(Hydro * nmHeat) + β8(Heat * nmHydro) + hi + iti 

Hydro (2-yr lag) and Heat 

by long-term climate 

β1(Hydro2yr) + β2(nmHydro) + β3(Hydro2yr * nmHydro) + β4(Heat) + β5(nmHeat) + β6(Heat * nmHeat) + 

β7(Hydro2yr * nmHeat) + β8(Heat * nmHydro) + hi + iti 
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Table 4. Parameter estimates from the four main climate covariate models. Precip, Hydro, Heat, 1 

and Cold represent annual climate values. nmPrecip, nmHydro, nmHeat, and nmCold are the 2 

long-term (~30 year) climate normal values. Interaction terms of annual and normal values (e.g., 3 

Precip*nmPrecip) represent the effect of an annual climate value by different long-term climate. 4 

SD is the standard deviation of a parameter estimate, and q0.025-0.975 represent 2.5th, 50th, and 5 

97.5th quartile values. 6 

Model: Precip 

Parameter Mean SD q0.025 q0.500 q0.975 

Precip (2-yr lag) -0.0840 0.0370 -0.155 -0.0840 -0.0120 

nmPrecip 4.00e-03 4.00e-03 -4.00e-03 4.00e-03 0.0130 

Precip (2-yr lag)* 

nmPrecip 

4.00e-03 0.0140 -0.0240 4.00e-04 0.0320 

Model: Hydro 

Hydro 0.0533 0.0387 -0.0229 0.0534 0.129 

nmHydro -0.0137 5.44e-03 -0.0243 -0.0137 -2.98e-03 

Hydro* nmHydro 0.0732 0.0244 0.0255 0.0732 0.121 

Hydro (2-yr lag) 0.0925 0.0415 0.0111 0.0924 0.174 

nmHydro -7.21e-03 5.47e-03 -0.0179 -7.22e-03 3.57e-03 

Hydro (2-yr lag)* 

nmHydro 

-0.0605 0.0253 -0.110 -0.0605 -0.0109 

Model: Heat  

Heat 0.340 0.0670 0.208 0.340 0.471 

nmHeat 7.50e-03 5.46e-03 -3.12e-03 7.51e-03 0.0183 

Heat* nmHeat -0.266 0.0383 -0.341 -0.266 -0.191 

Model: Cold 

Cold -0.438 0.117 -0.666 -0.438 -0.209 

nmCold 0.0115 4.81e-03 2.09e-03 0.0115 0.0210 

Cold* nmCold 0.258 0.0580 0.145 0.259 0.372 
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Table 5. Parameter estimates from the interaction model of spring precipitation and winter 1 

severity. Precip and Cold represent annual climate values. nmPrecip and nmCold are the long-2 

term (~30 year) climate normal values. Interaction terms of annual and normal values (e.g., 3 

Precip*nmPrecip) represent the effect of an annual climate value by different long-term climate. 4 

SD is the standard deviation of a parameter estimate, and q0.025-0.975 represent 2.5th, 50th, and 5 

97.5th quartile values. 6 

Model: Precip (2-yr lag) and Cold by long-term climate conditions 

Parameter Mean SD q0.025 q0.500 q0.975 

Precip (2-yr lag) -0.192 0.126 -0.439 -0.192 0.055 

nmPrecip -8.00e-03 0.0110 -0.0300 -8.00e-03 0.0140 

Precip (2-yr lag)* 

nmPrecip 

9.00e-03 0.0170 -0.0240 9.00e-03 0.0420 

Cold -0.398 0.125 -0.644 -0.398 -0.152 

nmCold 0.0210 0.0130 -4.00e-03 0.0210 0.0460 

Cold* nmCold 0.220 0.0630 0.0970 0.220 0.344 

Precip (2-yr lag)* 

nmCold 

0.0620 0.0700 -0.0760 0.0620 0.200 

Cold*nmPrecip 0.0150 0.0240 -0.0320 0.0150 0.0630 
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Table 6. Parameter estimates from the interaction model of summer water availability and 1 

extreme heat. Hydro and Heat represent annual climate values. nmHydro and nmHeat are the 2 

long-term (~30 year) climate normal values. Interaction terms of annual and normal values (e.g., 3 

Hydro*nmHydro) represent the effect of an annual climate value by different long-term climate. 4 

SD is the standard deviation of a parameter estimate, and q0.025-0.975 represent 2.5th, 50th, and 5 

97.5th quartile values. 6 

Model: Hydro and Heat by long-term climate conditions 

Parameter Mean SD q0.025 q0.500 q0.975 

Hydro -0.0153 0.0701 -0.152 -0.0155 1.22e-01 

nmHydro -0.0404 0.0117 -0.0634 -0.0405 -1.74e-02 

Hydro*nmHydro 0.0736 0.0267 0.0210 0.0736 1.26e-01 

Heat 0.202 0.0741 0.0562 0.202 3.47e-01 

nmHeat 0.0383 0.0117 0.0153 0.0383 6.12e-02 

Heat*nmHeat -0.259 0.0415 -0.340 -0.259 -1.77e-01 

Hydro*nmHeat 0.0191 0.0474 -0.0742 0.0191 1.11e-01 

Heat*nmHydro 0.0913 0.0269 0.0384 0.0914 1.44e-01 

Model: Hydro (2-yr lag) and Heat by long-term climate conditions 

Hydro (2-yr lag) 0.333 0.0787 0.179 0.333 0.487 

nmHydro -0.0354 0.0118 -0.0585 -0.0354 -0.0122 

Hydro (2-yr lag)* 

nmHydro 

-0.0120 0.0263 -0.0635 -0.0120 0.0393 

Heat 0.252 0.0722 0.111 0.252 0.393 

nmHeat 0.0399 0.0117 0.0169 0.0399 0.0628 

Heat*nmHeat -0.300 0.0390 -0.377 -0.300 -0.224 

Hydro (2-yr lag)* 

nmHeat 

-0.198 0.0475 -0.291 -0.198 -0.106 

Heat*nmHydro 0.0913 0.0267 0.0389 0.0914 0.144 
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