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Abstract19

The frequencies and amplitudes of inner magnetosphere Pi2 waves are affected by the ra-20

dial plasma density profile. Variable geomagnetic activity and external driving conditions21

can affect both wave properties and density profiles simultaneously. When interpreting ob-22

servations, this can lead to ambiguity about whether changing wave properties are due to23

changing external conditions, density profiles, or a combination of factors. We present24

a case study using multi-point ground-based and in situ measurements to examine Pi225

wave properties during a period of variable geomagnetic activity. Multiple satellite passes26

demonstrate the density profile and plasmapause location is stable for at least two hours27

over a wide range of MLT. This stability allows us to examine how factors besides the28

radial density profile affect Pi2 wave properties. We find evidence for Pi2 waves with a29

broadband frequency spectrum as well as a discrete frequency plasmaspheric virtual reso-30

nance (PVR) that is observed at low, mid, and high-latitudes and both inside and outside31

the plasmapause. The PVR is excited in repeated bursts before, during and after (1) the32

development of a substorm, (2) several auroral intensifications, (3) the development of33

Sub-Auroral Polarization Stream (SAPS) flows/electric fields/conductivities, and (4) vari-34

able Interplanetary Magnetic Field (IMF) conditions. Through all these changes the PVR35

frequency remains remarkably stable (8.2 +/− 0.53 mHz, based on low latitude ground36

magnetometer observations), suggesting these variations have little effect on the frequency.37

This is consistent with PVR model predictions for a stationary plasmapause.38

1 Introduction39

Ultra Low Frequency (ULF) waves in the Earth’s magnetosphere are classified ac-40

cording to their frequencies and durations [Jacobs et al., 1964]. Pi2 waves have periods of41

40-150 s (7-25 mHz) and occur during events lasting roughly 10-15 minutes; they are pri-42

marily a nightside phenomena [Keiling and Takahashi, 2011]. Models of Pi2 waves often43

describe wave dynamics using a magnetohydrodynamic (MHD) approximation [e.g., Lee44

and Kim, 1999; Fujita and Tanaka, 2013; Lysak et al., 2015; Ream et al., 2015].45

Models and observations show that many ULF wave modes are strongly affected by46

the radial Alfvén speed profile [e.g., Kivelson et al., 1984; Hartinger et al., 2010; Archer47

et al., 2015, 2017]. In the inner magnetosphere, variations in the total magnetic field are48

often small compared to background values while density variations can be significant;49

thus, when considering Alfvén speed variations and ULF wave properties in the inner50

magnetosphere, constraining the radial density profile is crucial.51

The plasmasphere - a region of cold, dense plasma in the inner magnetosphere - of-52

ten creates conditions favorable for the trapping of MHD wave energy. Several Pi2 models53

predict eigenmodes similar to radially standing MHD fast mode waves with frequencies54

primarily determined by the radial density and Alfvén speed profiles [e.g., Lee and Kim,55

1999]. For example, plasmaspheric virtual resonances (PVR) have similar polarizations to56

radially standing fast mode waves (i.e., azimuthal electric field and field-aligned magnetic57

field 90 degrees out of phase), radially distributed nodes and anti-nodes, and stable fre-58

quencies over a wide range of latitudes (L values) and longitudes. In many cases, signals59

measured at widely separated latitudes and longitudes exhibit little or no phase shift, indi-60

cating globally coherent wave activity with very small azimuthal wave numbers [Li et al.,61

1998; Nosé et al., 2006]. PVR can also have finite wave amplitudes both inside and out-62

side the plasmasphere [Lee and Kim, 1999]. Observational studies have confirmed the ex-63

istence of PVR, and they have frequencies in the Pi2 range [Takahashi et al., 2009; Nosé,64

2010; Luo et al., 2011; Teramoto et al., 2011; Ghamry et al., 2015; Shi et al., 2017]; they65

may also be classified as Pc4 waves [e.g., Takahashi et al., 2005].66

Multiple factors affect inner magnetosphere Pi2 wave frequencies, particularly during67

geomagnetically active conditions. During the course of a substorm, sources for Pi2 wave68

frequencies may include Bursty Bulk Flows [BBFs Kepko et al., 2001], PVR [Lee and69
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Kim, 1999], Alfvén waves standing along the magnetic field, plasmapause surface waves,70

and other mechanisms [Keiling and Takahashi, 2011]. Each mechanism has a unique fre-71

quency dependence on plasma mass density, ionospheric conductivity, and other factors72

that can change with time during the substorm. Thus, one may not expect observed Pi273

wave frequencies to remain stable before, during, and after a substorm or during other ge-74

omagnetically active periods.75

For example, the plasmasphere is generally expected to erode during substorms and76

periods with southward Interplanetary Magnetic Field (IMF). Though erosion may not oc-77

cur on timescales comparable to Pi2 event timescales, substantial erosion may well occur78

between Pi2 events altering the Pi2 wave frequency from one event to the next. At the79

same time ionospheric parameters such as density and conductivity may change rapidly80

associated with the development of Sub-Auroral Polarization Streams (SAPS) [Anderson81

et al., 1993]. SAPS are large, westward ionospheric flows observed during geomagneti-82

cally active periods with peak flow speeds equatorward of the electron plasma sheet (en-83

ergies on the order of one keV) precipitation boundary [Foster and Vo, 2002]. Ionospheric84

density and conductivity variations due to SAPS and other phenomena may also affect the85

properties of Pi2 waves [e.g., Ream et al., 2015].86

The interpretation of observations in the context of one or more Pi2 wave models is87

complicated by uncertainty about whether changing wave properties are due to changing88

external conditions, density profiles, or a combination of the two. This study addresses89

this complication by examining a two hour period with stationary plasmapause and vari-90

able geomagnetic activity. This is made possible by a favorable satellite conjunction: (1)91

multiple plasmapause crossings in the pre-midnight sector made by probes on similar or-92

bits, (2) multiple plasmapause crossings in the pre-dawn sector made by probes on sim-93

ilar orbits, (3) crossings overlap the region of wave activity and substorm/SAPS activity,94

both spatially and temporally. As we shall show, a discrete frequency PVR is excited mul-95

tiple times with a stable frequency before, during, and after a substorm. The substorm96

and other geomagnetic activity have no effect on the PVR frequency due to the stationary97

plasmapause, though they affect the spatial and temporal variation of wave amplitude.98

2 Instrumentation and Signal Processing99

In situ measurements of ULF waves and electron density are obtained from the Van100

Allen Probes mission (also referred to as Radiation Belt Storm Probes, or RBSP). RBSP101

is a two satellite constellation designed to study many aspects of radiation belt dynam-102

ics [Mauk et al., 2012]. These probes have low inclination, elliptical orbits with geocen-103

tric apogee near 5.8 RE and nominal spin periods of roughly 11 seconds. The spin axis104

nominally points towards the Sun. We use the Electric and Magnetic Field Instrument105

Suite and Integrated Science [EMFISIS, Kletzing et al., 2013] high frequency plasma wave106

measurement (measurements of a single electric field component from 10 to 500 kHz)107

to determine the upper hybrid frequency and infer the electron density using the tech-108

nique discussed by Kurth et al. [2015]. For ULF wave measurements, we examine spinfit109

electric fields using the RBSP Electric Field and Waves instrument [EFW, Wygant et al.,110

2013] spin plane booms. For the intervals examined in this study, the angle between the111

spin axis and the background magnetic field is typically larger than 80 degrees, so it is112

not generally possible to obtain the spin axis component of the electric field using the113

®E · ®B = 0 approximation. We examined the electric field measured directly by the spin114

axis boom, but it is affected by contamination in the DC and ULF frequency ranges due to115

its short length/proximity to spacecraft. Additionally, the DC/ULF electric field from the116

spin-axis boom measurement and ®E · ®B = 0 do not agree during the period of interest.117

Thus, we shall focus solely on the two spin plane measurements.118

In addition to RBSP, we use Geostationary Operational Environmental Satellites119

(GOES) and Time History of Events and Macroscale Interactions during Substorms (THEMIS)120

–3–This article is protected by copyright. All rights reserved.



Table 1. Ground magnetometer locations in geographic and corrected geomagnetic (CGM) coordinates.
PGEO, UKIA, and CCNV are from the THEMIS array. FTN and FSJ are from the STEP array. VIC is from
the CANMON array. FRN, BSL and FRD are from the USGS array. FSIM is from the CARISMA array.
Geographic coordinates were obtained from the respective array websites or instrument papers, while CGM
coordinates were obtained using the NASA Virtual Ionosphere, Thermosphere, Mesosphere Observatory
via the online OMNIWeb interface by specifying each station’s geographic position, the 2010 version of the
IGRF model modified slightly with predictive terms appropriate for 2013, and an altitude of 0 km. These
coordinates may differ slightly from those reported elsewhere when using a different version of IGRF. Figure
3 shows the map of geographic locations.
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Station Name Geo
Lat

Geo
Lon

CGM
Lat

CGM
Lon

PGEO Prince
George

53.82 237.2 59.04 297.0

UKIA Ukiah 45.14 241.1 51.15 304.0
CCNV Carson City 39.19 240.2 44.99 304.5
FTN Fort Nelson 58.90 237.2 64.09 295.1
FSJ Fort Saint

John
56.20 239.1 61.80 298.4

VIC Victoria 48.52 236.6 53.61 298.0
FRN Fresno 37.09 240.3 42.89 305.1
BSL Stennis 30.35 270.4 40.73 342.1
FRD Fredericksburg 38.20 282.6 48.04 359.4
FSIM Fort Simpson 61.76 238.8 67.18 295.6

satellites for in situ measurements of ULF waves, particle injections, and densities at larger121

L shell. In particular, we use GOES satellite fluxgate magnetometers [Singer et al., 1996]122

and electron detectors [Onsager et al., 1996], specifically the magnetospheric electron de-123

tector (MAGED) telescope mounted at 0 degrees from the anti-Earthward direction [Ro-124

driguez, 2014; Redmon et al., 2015], though other MAGED detectors yield qualitatively125

similar results for the purpose of this study. We also use observations of spacecraft poten-126

tial from the THEMIS satellites, which can be used to infer electron density [McFadden127

et al., 2008; Sibeck and Angelopoulos, 2008].128

For ground-based wave observations, we use magnetometer data from the THEMIS138

ground-based network [Russell et al., 2008], Canadian Array for Realtime InvestigationS139

of Magnetic Activity (CARISMA) [Mann et al., 2008], Canadian Magnetic Observatory140

Network (CANMON), Solar-Terrestrial Energy Program (STEP) polar network, and United141

States Geological Survey (USGS) [Love and Finn, 2011]. Table 1 shows the magnetic and142

geographic coordinates of each station. Data links with additional information about these143

stations are provided in the Acknowledgements.144

For additional context on overall geomagnetic activity, ionospheric plasma flows,145

and wave activity, we use geomagnetic activity indices and propagated solar wind obser-146

vations, all-sky imagers, and mid-latitude high-frequency radars in the Super Dual Auroral147

Radar Network (SuperDARN). Geomagnetic activity indices and solar wind observations148

(propagated to the Earth’s bow shock) are obtained from the NASA Space Physics Data149

Facility OMNIWeb interface at http://omniweb.gsfc.nasa.gov. All sky imager (ASI) ob-150

servations are taken from the Fort Simpson (FSIM), Fort Smith (FSMI), Gillam (GILL),151

Fort Yukon (FYKN), and Sanikiluaq (SNKQ) stations in the THEMIS array via the pub-152

lic THEMIS database [Mende et al., 2008]. SuperDARN measurements are taken from153

a public database at Virginia Tech. These radars measure the line-of-sight (LOS) veloc-154
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ity component of the ionospheric plasma drift in the F-region. Multiple radars can be155

used together to derive global maps of the electric potential and flow patterns in the iono-156

sphere using standard tools available on the Virginia Tech website [Ruohoniemi and Baker,157

1998]. Most radars operate in a mode that sweeps the radar field of view every 1-2 min-158

utes. However, special modes are available at higher resolution. In this study, we show159

measurements from the Fort Hays West (FHW) and Christmas Valley East (CVE) radars160

when operating in the RBSP mode, with select beams sampling at 19s cadence.161

For wave analysis in the frequency domain, we examine dynamic power spectra of162

the magnetic and electric field, where all signals are first interpolated to have the same163

11s time resolution (the lowest resolution across all measurements that were analyzed in164

the frequency domain) using the nearest neighbor technique. Throughout the manuscript,165

dynamic power spectra are obtained using a running 128 point (23.5 minute) Discrete166

Fourier Transform (DFT) with 94% window overlap. Prior to taking the DFT, a line is fit167

to the data in the 23.5 minute window and subtracted from the original data to obtain per-168

turbation fields, and a Hanning window is applied to reduce spectral leakage. The power169

spectrum is then computed using a three point smooth over frequency to improve the sig-170

nal to noise ratio of the coherent ULF pulsation over the incoherent background noise. In171

Figures 6 and 9 we also examine normalized dynamic power spectra to focus on the time172

evolution of spectral features; these are obtained by dividing the power in each frequency173

bin by the maximum power in the 5-20 mHz frequency band at each time step. Finally, in174

the bottom panel of Figure 6 and bottom right of Figure 7, we high-pass filter time series175

using a 5 mHz cutoff to more easily examine amplitude and phase differences between176

signals.177

The DFT frequency bin width is 2.13 mHz when using the 128 point window and178

3-point smoothing. Thus, when we identify frequencies based on a power spectrum peak,179

there is an uncertainty of roughly +/- 1.1 mHz. To better assess the wave frequency sta-180

bility, we use a longer 256 point DFT window with 3-point smoothing in panel 8 of Fig-181

ure 6, increasing the frequency resolution by a factor of two at the expense of capturing182

some temporal variations. Generally, when we refer to a discrete frequency of 8 mHz in183

this study, it should be understood there is some uncertainty in the frequency determi-184

nation, either +/- 1.1 mHz or +/- 0.53 mHz depending on the DFT window length, and185

that the peak frequency may vary slightly depending on the choice of DFT window length186

and amount of smoothing in frequency domain. For example, the frequency bin with peak187

PVR power is 7.8 mHz when using the 128 point window with 3-point smooth, while it is188

8.2 mHz when using the 256 point window with 3-point smooth. To avoid confusion, we189

simply refer to this as an 8 mHz signal throughout. The only exception occurs when dis-190

cussing the stability of the PVR frequency; in that discussion, we shall directly reference191

this uncertainty as 8.2 mHz +/- 0.53 mHz, based on the lower and upper bounds of the192

frequency bin corresponding to the power spectrum peak observed by low latitude ground193

magnetometers, when using the 256 point DFT window.194

Finally, we note that when comparing dynamic power spectra constructed using the195

interpolated 11s ground magnetometer time series and the original 1s time series, there196

were no significant differences in the frequency band of interest, 5-20 mHz. This suggests197

that 11s samples (Nyquist frequency 45 mHz) are sufficient to capture the wave activity of198

interest.199

3 Observations200

3.1 Solar wind and geomagnetic activity overview201

The ULF wave event occurred on 16 March 2013, with the period of interest 0630-211

0830 UT. Figure 1 shows an overview of the interplanetary magnetic field (IMF) and ge-212

omagnetic activity during 0000-0900 UT, with the interval of interest for Pi2 wave activ-213
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40 keV
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150 keV
275 keV

z
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Figure 1. Top: From top to bottom, (1) OMNIWeb Interplanetary Magnetic Field in GSM coordinates
and propagated from measurement location to the Earth’s bow shock, (2) AL index, (3) electron energy flux
measurements from GOES-15 MAGED detector oriented at 0 degrees from the anti-Earthward direction with
different energy channels center energies indicated by color, (4) Fort Simpson (FSIM) all sky imager keogram
showing intensity in color. Two pink lines indicate the interval of interest for Pi2 wave activity, while three
gray lines indicate times corresponding to flow patterns shown in Figure 2.
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ity marked by pink lines. The top panel shows the time shifted (to bow shock nose) IMF214

measurement in GSM coordinates from OMNIWeb. The IMF is southward for much of215

the day, but it turns northward at 0630 UT. A southward turning of the IMF occurs be-216

tween 0700 and 0710 UT, after which the z component remains negative for roughly the217

next 40 minutes. During this period, the solar wind flow speed and dynamic pressure (not218

shown) are mostly steady at roughly 450 km/s and 1.7 nPa, respectively. There are some219

small variations in speed and pressure prior to 0700 UT, though these do not appear to220

have a direct impact on Pi2 wave properties in the magnetosphere thus will not be dis-221

cussed further.222

The second panel in Figure 1 is for the AL index obtained from OMNIWeb. For223

much of the early part of the day, AL is below -200 nT with several sharp decreases to224

lower values, such as the period just before 0400 UT. At the beginning of the 0630-0830225

UT period of interest, AL is closer to 0 indicating quiet conditions. A rapid decrease in226

AL at 0720 UT is associated with substorm activity, with substorm onset at 0716 UT227

within the THEMIS FSIM ASI field-of-view (fourth panel). This is consistent with ener-228

getic electron measurements from the GOES-15 satellite. In particular, differential electron229

fluxes from the GOES-15 MAGED detector oriented at 0 degrees from the anti-Earthward230

direction are shown in the third panel of Figure 1, with energy labels corresponding to231

the center energies of different channels. These data indicate that GOES-15, located at232

geostationary orbit near 22 MLT, observes an electron injection at the onset time; note233

that the other GOES-15 MAGED telescopes as well as GOES-15 proton detectors observe234

the same injection timing and qualitatively similar results for the purpose of this study235

(not shown). Finally, the rapid decrease in AL is also consistent with the keogram gener-236

ated using measurements from the FSIM ASI in the fourth panel of Figure 1; FSIM is at237

a similar MLT as the GOES spacecraft, and it observes the westward traveling surge about238
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Figure 2. Global maps of the ionospheric electric potential and flow pattern derived from fits to measure-
ments from multiple SuperDARN radars at 0720 UT, 0730 UT, and 0740 UT (times indicated by gray lines in
Figure 1).

208

209

210

–7–This article is protected by copyright. All rights reserved.



one minute after the initial onset at FSIM (see panel 2 of Figure 6 for more detail with239

shorter time range).240

Figure 2 shows ionospheric flows associated with the substorm activity at 0720,241

0730, and 0740 U (times indicated in Figure 1 by gray lines). Flow directions are indi-242

cated by dots and lines where the base of the vector is the dot, and velocity magnitude243

is indicated by both color and the length of the line. These figures were generated by a244

spherical harmonic regression mapping procedure using LOS velocity measurements from245

all the SuperDARN radars in the northern hemisphere [Ruohoniemi and Baker, 1998]. A246

large, westward directed flow develops at 0720 UT near 21-22 MLT, as indicated by the247

flow pattern on the top. It intensifies by 0730, with flows reaching 800 km/s, as indicated248

by the middle flow pattern figure. The region with the large westward flow also spreads249

eastward. Finally, the flow pattern at 0740 UT (bottom) indicates that the region with250

large flows continues to spread eastward, but the flows begin to weaken.251

In summary, Figure 1 indicates southward IMF and several sharp decreases in AL252

for much of the early part of the day, then relatively quiet conditions in the nightside mag-253

netosphere at the beginning of the interval of interest, 0630 UT, until roughly 0716 UT254

when a substorm occurs. Following this, a region of large, westward flow intensifies and255

spreads in the mid-latitude ionosphere, as shown in Figure 2. These observations are con-256

sistent with the definition of SAPS [Foster and Vo, 2002] and the SAPS evolution after257

substorm onset [Zou et al., 2009a,b, 2012]. Zou et al. [2009a,b] showed that SAPS in-258

creased equatorward of the auroral onset as a consequence of field-aligned current clo-259

sure. In this case, auroral onset is initiated close to FSIM, with SAPS initially developing260

equatorward of FSIM and spreading eastward at later times.261

3.2 Plasmapause Location262

In this section we identify the location of the plasmapause in electron density data263

and show where in situ and ground-based observations are located relative to the plasma-264

pause. Figure 3A is for the satellite orbits in the GSM xy plane from 06:30-08:30 UT.265

Figure 3B is for the ground station positions (green diamonds) and locations of Super-266

DARN beams that will be analyzed in a later figure (white lines). Using the IGRF model267

combined with the Tsyganenko [1989] external magnetic field model (results are similar268

when using other external models), we map nightside satellite locations from the magne-269

tosphere to the ground: RBSP-A (pink crosses), RBSP-B (black crosses), GOES-13 (light270

blue diamond), and GOES-15 (dark blue diamond). For global context a solid green line271

indicates the plasmapause location at L ∼ 4.4RE , determined using analysis in the next272

Figure. Additional context is provided by all sky images taken from FYKN, FSIM, FSMI,273

GILL, and SNKQ at 0718 UT, i.e., roughly two minutes after the substorm onset; these274

show the location of a large auroral arc associated with the substorm mentioned in the275

previous section (note that mid-latitude stations in North America were affected by cloud276

cover during this event). Finally, LOS velocities measured using the FHW SuperDARN277

radar are shown in color, also from 0718 UT. Larger flows are generally seen adjacent and278

just poleward of the plasmapause footprint, consistent with the SAPS flows observed in279

the SuperDARN data. Note that the most westward beams are more closely aligned with280

the SAPS flow direction, and that color variations are due to both spatially varying flows281

and spatially varying beam directions.282

Figure 4 shows electron density measurements from five different satellites during301

periods when each satellite was closest to the plasmapause. From top to bottom, Figure302

4A shows electron density time series for RBSP-B, RBSP-A, THEMIS-D, THEMIS-E,303

and THEMIS-A. Figure 4B shows the satellite trajectories during the periods when these304

measurements were taken: RBSP-B from 0630-0845 UT (solid black line), RBSP-A from305

0745-1030 UT (solid pink line), THEMIS-D from 0400-0600 UT (dashed black line),306

THEMIS-E from 0630-0830 UT (dashed blue line) and THEMIS-A from 1115-1315 UT307
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A B

Figure 3. A: GSM xy view of satellite trajectories from 0630-0830 UT. Lines with different color indi-
cate different satellites and the plasmapause location (green line) determined from RBSP electron denisty
measurements. Crosses mark the start of the spacecraft trajectories at 0630 UT. B: Map showing the ge-
ographic position of ground magnetometer stations as green diamonds and the Fort Hays West/Christmas
Valley East SuperDARN radars as white triangles, the ground track of RBSP-B (black crosses), RBSP-A (pink
crosses), GOES-15 (dark blue diamond) and GOES-13 (light blue diamond) from 0630-0830 UT, with col-
ors consistent with panel A. Two SuperDARN beams selected for analysis are marked with white lines. The
plasmapause location derived from RBSP measurements is shown as a green line. Snapshots at 0718 UT of
the FYKN, FSIM, FSMI, GILL, and SNKQ all sky camera images (whiter color indicates stronger intensity)
and Fort Hays West radar line of sight velocities (colorscale at right) are overplotted on the map.
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(dashed pink line). Both RBSP spacecraft are in the pre-midnight sector on similar orbits,308

while the three THEMIS spacecraft are near the dawn sector on similar orbits.309

Figure 4C shows electron density measurements binned according to dipole L from310

the five spacecraft, with line styles consistent with panel B; measurements from the pre-311

midnight sector are solid lines while dawn sector measurements are dashed lines. We312

identify the plasmapause location as the location of sharpest density gradient. The radial313

density profile evolves little in the pre-midnight sector between the RBSP-B (0630-0845314

UT) and RBSP-A (0745-1030 UT) outbound passes, as indicated by the solid black and315

pink lines lying nearly on top of each other. Moreover, the plasmapause location does not316

change between subsequent crossings at 0750 UT (RBSP-B) and 0920 UT (RBSP-A). In317

the dawn sector, the plasmapause moves inward from the location where THEMIS-D first318

measures it at 0430 UT (dashed black line) to the location where THEMIS-E observes319

it at 0655 UT (dashed light blue line). At 1145 UT, THEMIS-A observes it in the same320

location (dashed pink line), suggesting that the plasmapause remained stationary for ∼5321

hours.322

Note that THEMIS densities are inferred from spacecraft potential, and the tech-323

nique to obtain the density is significantly less accurate in high-density regions [Kwon324

et al., 2015] depending on several factors [Laakso and Pedersen, 1998]. Thus, though the325

plasmapause identification using THEMIS satellites is reliable, the absolute accuracy of326

densities at low L is not particularly reliable and we do not stress comparisons between327

satellites at low L values.328

We estimate the plasmapause location (sharpest gradient) to be at L∼4.4 in the pre-329

midnight sector and L∼4.0 in the pre-dawn sector during the period of interest. Figure 4B330

shows the plasmapause location in the pre-midnight sector inferred from the RBSP ob-331
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A B

C

Figure 4. A) Electron density measurements from five different satellite trajectories (from top to bottom):
RBSP-B from 0630-0845 UT, RBSP-A from 0745-1030 UT, THEMIS-D from 0400-0600 UT, THEMIS-E
from 0630-0830 UT and THEMIS-A from 1115-1315 UT. B) Orbital trajectories for each spacecraft cor-
responding to times shown in panel A: RBSP-B (solid black line), RBSP-A (solid pink line), THEMIS-D
(dashed black line), THEMIS-E (dashed blue line) and THEMIS-A (dashed pink line). The approximate
plasmapause location from RBSP observations in the pre-midnight sector is shown as a solid green line, while
the location based on THEMIS observations near dawn is shown as a dashed green line. C) Electron density
versus L using the same data as in panel A and the same linestyles as in panel B.
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servations as a solid green line, while the dawn sector plasmapause from THEMIS-A and332

THEMIS-E is a dashed green line. Figure 3A and 3B also show the plasmapause location333

in the pre-midnight sector as a solid green line. These figures show that the two GOES334

spacecraft are located outside the plasmasphere and GOES-15 maps near the region of the335

auroral intensification at 0722 UT. In contrast, the two RBSP spacecraft are mostly inside336

the plasmasphere until the end of the interval, when RBSP-B crosses outside the plasmas-337

phere.338

There are many factors that control the plasmapause location in a given local time339

sector, including the current and previous convection electric field, refilling rates, and the340

previous history of the plasmasphere in other local time sectors. The observations sug-341

gest that in this particular event, the balance between all of these factors led to a stable342

plasmapause location between 0630-0830 UT. There are several lines of evidence from343

Figures 1 and 4 to support this claim:344

1. Multiple THEMIS satellite passes demonstrate the plasmapause location evolved345

between 0430 and 0655 UT in the pre-dawn sector, but it did not change substan-346

tially between 0655 UT and 1145 UT. If the primary cause of erosion and plasma-347

pause motion is changes to the global convection electric field caused by southward348

IMF, one would expect changes to plasmapause location to be global in nature; if349

the plasmapause is stationary near dawn, it will be stationary near midnight.350

2. Multiple RBSP satellite passes are consistent with (1), indicating no significant351

change in plasmapause location in the pre-midnight sector between 0750 UT and352

0920 UT. The only difference between the plasmapause locations near midnight and353

dawn is due to the expected inward motion of cold plasma as it ®E × ®B drifts east-354

ward.355

3. Plasmapause motion observed by THEMIS satellites between 0430 UT and 0655356

UT likely concluded before 0630 UT. Before 0600 UT, geomagnetic activity levels357

were decreasing and the north-south component of the IMF was close to 0 (Figure358

1). Since the typical timescale for the plasmapause to move in response to IMF359

variations is 10-30 minutes [Murakami et al., 2007], plasmapause motion should360

have concluded by 0630 UT.361

4. There is no indication of local plasmapause structures [Goldstein et al., 2005] in362

either the THEMIS or RBSP density profiles.363

Thus, geomagnetic activity and periods of southward IMF during the 0630-0830 UT pe-364

riod may have led to changes in the convection electric field, but these variations did not365

cause significant plasmapause motion. For global context and as a final confirmation of366

this scenario, we examined Plasmapause Test Particle (PTP) simulations that have been367

shown to closely reproduce RBSP plasmapause observations [Goldstein et al., 2014]. The368

time varying plasmapause location is obtained using an ensemble of cold test particles that369

®E × ®B drift, where the convection electric field is obtained from solar wind measurements370

and the Kp index. Figure 5 shows output of the simulation at four times before, during371

and after the Pi2 wave analysis interval. Confirming the interpretation of the satellite mea-372

surements, there is an erosion event during the first few hours of 16 Mar 2013 (panels a373

and b), followed by relatively stable nightside plasmapause location during the wave analy-374

sis period 0630-0830 UT (panels c and d).375

3.3 Pi2 wave activity before, during, and after substorm380

Having examined overall geomagnetic activity and plasmapause location, we next390

examine the spatial and temporal evolution of wave properties. Figure 6 examines the time391

evolution of wave activity and relationship to potential driving mechanisms. The top two392

panels are identical to panels 1 and 4 of Figure 1 but for the shorter 0630-0830 UT period393

of interest; they are provided for context on the times of different auroral activations and394
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Figure 5. Each panel shows the plasmasphere in green, based on output from the PTP simulations. The
location and orbits of the RBSP-A (blue) and RBSP-B (red) satellites are also shown. Each panel is for a
different time, with the last two panels (third and fourth from left) corresponding to the beginning and end of
the Pi2 wave analysis interval.

376

377

378

379

Figure 6. From top to bottom: (1) OMNIWeb IMF in GSM coordinates (same as Figure 1), (2) keogram
from Fort Simpson all sky imager (same as Figure 1), (3) line-of-sight velocity measured by the SuperDARN
Christmas Valley East radar at beam 2 and gate 24, (4) the same for the Fort Hays West radar at beam 9 and
gate 40 (note that these beams and gates correspond to the location where the two radar beams overlap in
Figure 3), (5) north-south component of magnetic field, BX, measured by FRN ground station, (6) dynamic
power spectrum for BX at FRN, (7) normalized BX power spectrum at FRN, where the power spectrum at
each time step is normalized to the maximum power in the 5-20 mHz frequency band, (8) the same as 7, but
using a DFT window that is twice as long (256 compared to 128 point, or 47.0 minutes compared to 23.5
minutes), (9) high-pass filtered BX at FRN with 5 mHz cutoff.
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solar wind driving conditions. The third and fourth panels are for line-of-sight velocities395

measured by the SuperDARN Christmas Valley East (CVE) radar at beam 2 and range396

gate 24 and Fort Hays West (FHW) radar at beam 9 and range gate 40. These beams and397

range gates correspond to the location where the two radar beams overlap in Figure 3B,398

in the region of intense SAPS flows. Note that while neither beam is exactly aligned with399

the SAPS flow direction, the FHW beam is more closely aligned with the flows while the400

CVE beam is nearly orthogonal to them (see Figures 2 and 3B). This is consistent with401

the LOS flow measurements in panels 3 and 4 of Figure 6. While the CVE measurement402

shows fairly stable 50 m/s flows throughout the interval (panel 3), the FHW beam shows a403

rapidly changing background flow, starting at -100 m/s at 0700 UT and decreasing to -600404

m/s by 0730 UT (panel 4). Since the FHW beam is most closely aligned with the SAPS405

flow direction, this trend is indicative of the increasing SAPS flows.406

ULF perturbations with frequencies in the Pi2 range are also seen throughout the407

interval in both radars, though the signal is sometimes obscured by the time varying back-408

ground SAPS flows. The fifth panel of Figure 6 is for the north-south magnetic field (BX)409

measured by the FRN ground magnetometer station (daily average subtracted), while the410

sixth panel is for the corresponding dynamic power spectrum; this station is located equa-411

torward of the SuperDARN LOS flow measurement locations (see Figure 3B and Table 1412

for location). As shown in the sixth panel, several intensifications in wave power are ob-413

served at 8 mHz, in some cases accompanied by intensifications at other wave frequencies.414

For example, during the auroral intensification at the beginning of the substorm at 0720415

UT, wave power is largest at 8 mHz (dark red color) but the power spectrum has a broad416

peak with wave power at other higher and lower frequencies (lighter red colors above and417

below 8 mHz). To more clearly examine the time evolution of wave spectral features, the418

power spectrum at each time step is normalized to the maximum power in the 5-20 mHz419

frequency band in the seventh panel of Figure 6. As evidenced by the dark red band ex-420

tending across nearly the entire figure, the dominant spectral feature occurs at 8 mHz. In421

other words, there is a peak in the power spectrum at 8 mHz for the majority of the two422

hour interval. However, we note that there are several intervals where the peak frequency423

is lower (e.g., red line at 6 mHz at 0800 UT). These correspond to periods where the 8424

mHz signal weakens relative to other wave activity and may not be detectable (panel 6).425

We return to this point in section 4.426

To better resolve the frequency of these waves and assess the stability of the 8 mHz427

signal during the period of interest, we doubled the DFT window length (256 point, 47428

minutes) in panel 8 of Figure 6. Recall from section 2 that this increases the frequency429

resolution by a factor of two. The results are similar to panel 7 with a more narrow red430

line that extends across the Figure. Based on these results and the width of the DFT fre-431

quency bins, we conclude that the dominant spectral feature observed at FRN occurs at432

a frequency of 8.2 +/- 0.53 mHz during most of the two hour interval. In a future study,433

more sophisticated signal processing tools could be used to better resolve the frequency.434

In the present study, we can at least say the frequency was stable in the range of 8.2 +/-435

0.53 mHz through multiple intensification during the two hour interval (note the 47 minute436

DFT windows near the beginning of the two hour interval do not overlap with those at the437

end).438

Finally, the ninth panel shows high-pass filtered BX time series at FRN to more di-439

rectly compare with SuperDARN LOS flow time series in panels 3 and 4. Intensifications440

in 8 mHz wave activity occur at 0700 and 0720 UT in all three time series.441

More information about the global extent of wave activity observed at low latitudes442

is shown in Figure 7. The top three panels are for the BX dynamic power spectrum at the443

FRN (same as panel 6 in Figure 6), BSL, and FRD stations, respectively. These stations444

extend across roughly 55 degrees magnetic longitude (roughly 3.5 hours MLT) and 5 de-445

grees magnetic latitude. Despite their spatial separation, they observe similar temporal446

evolution of the wave power spectrum, though FRN tends to observe slightly larger wave447
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Figure 7. Top: From top to bottom, BX dynamic power spectrum at the FRN, BSL, and FRD ground mag-
netometers. Solid lines mark the time interval analyzed in the bottom of the figure. Bottom Left: From top
to bottom, the original (apart from daily average subtraction) north-south magnetic field measurement at the
FRN, BSL, and FRD stations between 0635-0650 UT. Though small compared to background trends, there
are noticeable pertubations with roughly 2 minute periodicity. Bottom right: The same as bottom left, but
with background trends removed using a high-pass filter with 5 mHz cutoff. Though separated by several
degrees in magnetic latitude and longitude, all three stations observe similar perturbations with very small
time lags.
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powers likely due to its proximity to the most intense auroral intensification (Figure 3B),448

consistent with previous studies of Pi2 waves [Nosé et al., 2006].449

The bottom of Figure 7 illustrates the similarities in wave activity at these three sta-458

tions by examining the relatively quiet 0635-0650 UT interval. The bottom left shows the459

original (apart from daily average subtraction) north-south magnetic field measurement at460

FRN, BSL, and FRD. Though the background trend is larger than the perturbation ampli-461

tudes, perturbations with similar periods can still be seen at all stations. The bottom right462

further illustrates the similarities in wave activity by showing the signal with background463

trend removed using a high-pass filter with 5 mHz cutoff. During this 15 minute interval,464

8 mHz fluctuations with similar amplitude are seen at all stations with almost no time lag.465

Given the roughly 3.5 hour MLT and 5 degrees latitude separation of these stations, this466

similarity suggests the waves are globally coherent with negligible frequency change ver-467

sus latitude or longitude. Note that the perturbation amplitudes are roughly 10 times larger468
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than the sensitivities of the USGS magnetometers [0.01 to 0.02 nT, Worthington et al.,469

2009].470

We next examine how wave properties vary with magnetic latitude. Figure 8 shows475

dynamic power spectra from ground magnetometer stations along a similar meridian in476

western Canada and the United States (Figure 3B). Stations are ordered from highest lati-477

tude on top to lowest latitude at the bottom: FSIM, FTN, FSJ, PGEO, VIC, UKIA, CCNV,478

FRN. Recall from Figure 3B that PGEO and FSJ are closest to the plasmapause and that479

FSJ, FTN, and FSIM all map to locations outside the plasmapause. All dynamic power480

spectra are plotted using the same scale. The lowest latitude FRN, CCNV, UKIA, and481

VIC stations tend to observe the smallest wave amplitudes (blue-green colors at most482

frequencies/times), PGEO, FSJ, and FTN observe intermediate amplitudes (green colors483

at most frequencies and times), while FSIM observes significantly larger wave ampli-484

tudes (yellow and red colors at most frequencies/times). The 8 mHz signal seen in ear-485

lier figures appears most clearly at the lower latitude stations, though all stations observe486

it during periods when other wave activity with more broadband frequency spectra is not487

present, such as the 0635-0650 UT interval.488

Figure 9 is the same as Figure 8, except the power spectra have been normalized489

in the same manner as in Figure 6, panel 7. The 8 mHz signal dominates the normalized490

spectra throughout the two hour interval for stations at latitudes below 60 degrees, as in-491

dicated by the solid red band across the bottom five panels at 8 mHz. At higher latitudes,492

the 8 mHz signal is also present for at least part of the interval, but as discussed above it493

is less often the dominant spectral feature. For example, there are intervals where the peak494

frequency is lower (i.e., red line at 6 mHz for most of the interval in the top three panels).495

The disappearance of the red band at 8 mHz does not necessarily indicate that the original496

8 mHz wave activity has damped out. Instead, these monochromatic waves may be ob-497

scured by larger amplitude wave activity with a more broadband frequency spectrum that498

overlaps 8 mHz. We return to this point in section 4.499

We next turn our attention to in situ GOES-15 and GOES-13 satellite measurements503

of wave activity outside the plasmapause. The first and fourth panels of Figure 10 are for504

the three components of the magnetic field in GSM coordinates measured by GOES-15505

and GOES-13, respectively. When compared to GOES-13, the GOES-15 magnetic field506

experiences a much larger deflection near 0718 UT, accompanied by larger fluctuations.507

This is roughly the time the particle injection was observed by GOES-15 (Figure 1) and508

when the large auroral arc was observed near the footpoint of GOES-15 (fourth panel of509

Figure 1 and Figure 3B). These observations indicate the largest disturbances associated510

with the substorm are in the pre-midnight sector near the GOES-15 satellite location. This511

is also reflected in the second and fifth panels, showing total magnetic field measured by512

GOES-15 and GOES-13, respectively. Noting the y-axis scale difference, GOES-15 ob-513

serves generally larger total magnetic field perturbations than GOES-13.514

The third and sixth panels of Figure 10 are for the dynamic power spectrum of the518

total magnetic field observed by GOES-15 and GOES-13, respectively. GOES-15 ob-519

serves systematically larger amplitude fluctuations at most frequencies and times. Given520

the spacecraft positions (Figure 3A), this suggests wave activity outside the plasmasphere521

is more intense pre-midnight when compared to post-midnight. Generally, compressional522

wave activity observed by both GOES probes has a broader frequency spectrum than wave523

activity observed on the ground, with the frequency range of enhanced wave power includ-524

ing, but not necessarily peaking at, 8 mHz.525

Finally, we examine in situ wave activity inside and immediately outside the plasma-526

sphere using RBSP-B observations in Figure 11. During the period of interest, the RBSP-527

B satellite was moving away from the Earth in the pre-midnight sector, at a similar lo-528

cal time to the GOES-15 satellite (Figure 3A). The top panel of Figure 11 shows electron529

density measured by RBSP-B as a black line, indicating that it crossed out of the high530
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Figure 8. Dynamic power spectra for BX measured at several ground magnetometer stations, all on the
same scale and ordered according to magnetic latitude, with highest latitude at the top: FSIM, FTN, FSJ,
PGEO, VIC, UKIA, CCNV, and FRN. The geomagnetic latitude for each station is indicated on the x-axis
label.
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Figure 9. The same as Figure 8 but for normalized dynamic power spectra to emphasize spectral features.
At each time step, all power values from Figure 8 are divided all by the maximum power in the frequency
range from 5 to 20 mHz. The geomagnetic latitude for each station is indicated on the x-axis label.
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Figure 10. From top to bottom: (1) magnetic field measurement from GOES-15 in GSM coordinates, (2)
total magnetic field measured by GOES-15, (3) dynamic power spectrum of GOES-15 total magnetic field
perturbations, (4-6) the same as panels 1-3, but for GOES-13.
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density plasmasphere at roughly 0750 UT. This panel also shows the unfiltered y (green)531

and z (red) Modified Geocentric Solar Ecliptic (MGSE) components of the electric field.532

In MGSE coordinates, xMGSE points along the spacecraft spin axis and is usually close533

to the xGSE direction (Earth-Sun line), yMGSE points along zGSE x xMGSE (in the spin534

plane and ecliptic plane, close to the yGSE /duskward direction), and zMGSE completes535

the right-handed orthogonal set, in the spin plane and close to the normal to the ecliptic536

plane. The second panel of Figure 11 shows the dynamic power spectrum for the MGSE y537

component of the electric field, while the third panel is for the z component. Both panels538

indicate several periods with discrete frequency 8 mHz wave activity (e.g., 0640-0700 UT)539

and periods with intensification of more broadband frequency wave activity that includes540

8 mHz but peaks at other frequencies (e.g., 0720 UT). Upon crossing the plasmapause,541

larger amplitude fluctuations are seen with a broader frequency spectrum, consistent with542

GOES observations (Figure 10).543

We also examined RBSP total magnetic field perturbations (not shown), finding544

small amplitude perturbations and signals with 8 mHz frequency most clear during the545

early part of the interval when RBSP is at lower L. If the 8 mHz signal is associated with546

a PVR, the fact that it is most clear at low L may be related to the presence of a node547

in magnetic field perturbations at spatial locations near the plasmapause, as reported in548

previous PVR studies [Takahashi et al., 2010]. Magnetic field perturbations in different549

components also had small amplitudes and were dominated by the presence of an artificial550

5-minute nutation signal (result of removing star tracker from spacecraft) during part of551

the interval.552

4 Discussion556

In the previous section, we presented several observations of nightside Pi2 wave557

properties during an extended period with stable plasmapause location and variable geo-558

magnetic wave activity. To summarize observations from 0630-0830 UT on 16 Mar 2013:559

1. Solar wind and geomagnetic activity: southward IMF and several sharp decreases560

in AL for much of the early part of the day, then relatively quiet conditions in the561

nightside magnetosphere at the beginning of the interval of interest until roughly562

0716 UT when a substorm occurs and SAPS flows as large as 800 m/s develop.563

2. Plasmapause location: Multiple satellite passes suggest the plasmapause location564

does not change between 0630 and 0830 UT. The radial density profile also changes565

little in the pre-midnight sector between the RBSP-B (0630-0845 UT) and RBSP-A566

(0745-1030 UT) outbound passes. PTP simulations based on solar wind observa-567

tions and the Kp index confirm this scenario.568

3. Pi2 wave activity, latitudinal extent: 8 mHz signal is observed clearly by the RBSP-569

B satellite when inside the plasmasphere. It is also observed by ground-based mag-570

netometers at magnetic latitudes ranging from 41 to 67 degrees (L=1.8 to 6.6),571

mapping to locations both inside and outside the plasmapause. Outside the plasma-572

sphere, the 8 mHz signal may be obscured by larger amplitude wave activity with573

a broadband frequency spectrum; for example, both RBSP-B and GOES satellites574

observe Pi2 wave activity with a broader frequency spectrum outside the plasmas-575

phere, and the highest latitude FSIM ground station observes similar features during576

later parts of the 0630-0830 UT interval.577

4. Pi2 wave activity, longitudinal extent: Low latitude stations separated by 3.5 hours578

MLT observe very similar 8 mHz wave forms with negligible time lags.579

5. Pi2 wave activity, time evolution: 8 mHz signal is observed throughout the 0630-580

0830 UT interval before, during, and after (1) the substorm, (2) other auroral inten-581

sifications, (3) the development of SAPS flows, and (4) variations in the IMF. Wave582

amplitudes vary in time at all locations and are strongest at the beginning of the583

substorm.584
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Figure 11. From top to bottom: (1) RBSP-B electron density (black) and y (green) and z (red) compo-
nents of the electric field in MGSE coordinates, (2) dynamic power spectrum for the electric field MGSE y
component, (3) the same as 2 for the z component.
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The 8 mHz wave observations are consistent with models of radially standing MHD fast585

mode waves such as PVR: same frequency observed across a wide range of latitude/longitude,586

frequency does not change through multiple intensifications as long as the radial den-587

sity/Alfvén speed profile does not change, very small time lags between signals observed588

at stations separated by 3.5 hours MLT suggest globally coherent wave activity with very589

small (∼0) azimuthal wave number, strong in situ electric field perturbations in conjunc-590

tion with weak total magnetic field perturbations suggest nodal structure [Li et al., 1998;591

Nosé et al., 2006; Keiling and Takahashi, 2011]. Phase differences between in situ electric592

field and ground-based observations were also consistent with PVR during periods when593

the RBSP-B electric field MGSE measurement was roughly aligned with the east-west di-594

rection, and in situ and ground-based measurements had a high degree of coherence, con-595

sistent with previous studies [Takahashi et al., 2009]; for brevity sake we have not shown596

these observations. We shall refer to these waves as a PVR rather than another standing597

fast mode wave (e.g., plasmaspheric cavity mode) primarily due to observations in Figures598

8 and 9 indicating the presence of monochromatic wave activity at latitudes mapping out-599

side the plasmapause, particularly before 0700 UT. However, the distinction between PVR600

and other standing fast mode waves is not important to the conclusions of this study, since601

all such waves are sensitive to the radial density profile and plasmapause location.602

Taken as a whole, the 8 mHz wave observations summarized above are also incon-603

sistent with other Pi2 wave models. For example, Alfvén waves standing along the back-604

ground magnetic field could not produce the same discrete frequency wave activity at dif-605

ferent latitudes with no observable time lags (Figures 7 and 8). BBFs could not continu-606

ously generate the same frequency wave activity throughout the entire two hour interval,607

during both active and quiet conditions. However, with regard to the more broadband fre-608

quency wave activity observed at higher latitudes, BBFs/plasma sheet flow bursts are a609

plausible generation mechanism [e.g., Nishimura et al., 2012; Ream et al., 2015]. Finally,610

the PGEO ground station close to the plasmapause (Figure 3B) observes locally enhanced611

power at 8 mHz when compared to adjacent stations, suggestive of a plasmapause surface612

wave. However, we can discard the plasmapause surface wave explanation in this study613

based on the small phase differences between 8 mHz signals measured at longitudinally614

separated stations (Figure 7), since such waves are expected to have large azimuthal wave615

numbers [Chen and Hasegawa, 1974]. Instead, this feature may relate to (1) radial PVR616

structure or field line resonances associated with radial density gradients at the plasma-617

pause, (2) latitudinal ionospheric conductivity variations, or (3) a combination of (1) and618

(2) [e.g., Takahashi et al., 2003; Keiling and Takahashi, 2011; Lysak et al., 2015; Shi et al.,619

2017]. Identifying the source(s) of features such as these requires detailed comparisons620

with numerical simulations and is thus an important topic for future work, and this study621

provides important constraints for such simulations, including the radial density profile.622

The stable radial plasma density profile and plasmapause location during variable623

geomagnetic activity is a unique feature of this event. Since PVR properties depend strongly624

on these factors, this event presents an opportunity to examine how other factors, such as625

time variable external driving conditions (IMF, multiple BBFs, substorm) and ionospheric626

boundary conditions (e.g., SAPS flows and accompanying conductivity variations) affect627

PVR properties. In this event, we find that these other factors do not affect the PVR fre-628

quency, as the 8 mHz signal is stable throughout the interval. By “stable” we mean that629

the frequency of wave activity does not change from one wave intensification to the next,630

within the accuracy of the DFT analysis. More specifically, the 256 point DFT analysis631

shown in Figure 6, panel 8 indicates a persistent spectral feature with a frequency of 8.2632

+/- 0.53 mHz. The DFT window is 47 minutes long while the interval is two hours; thus,633

the frequency of this feature obtained from DFT windows at the beginning of the interval634

is the same as the frequency at the end of the interval, to within the frequency uncertainty635

of the DFT analysis (see section 2 for more discussion of uncertainty). There are locations636

and times when the 8.2 mHz signal is either not present or not detectable due to low am-637
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plitudes or the presence of other waves, but subsequent intensifications indicate a natural638

response frequency of the plasmasphere that does not change.639

However, (external driving conditions and/or ionospheric variability) must play a640

role in the temporal and spatial variability of the PVR amplitude. These factors also af-641

fect other types of ULF wave activity that are important to the generation and detection of642

PVR. For example, waves with broadband frequency spectrum and large amplitudes were643

observed outside the plasmasphere in this study. These waves may be an energy source644

for the PVR while also obscuring the PVR from detection. In particular, the FSIM sta-645

tion observes significantly larger amplitude perturbations than other stations, and these646

perturbations tend to have a broadband frequency spectrum (Figure 8, panel 1). There647

are a few explanations for these features, not mutually exclusive: (1) radial PVR struc-648

ture determined by the radial density profile, (2) high-latitude Pi2 waves that may act as649

an energy source of the PVR, such as flow bursts and related Alfvén waves occurring out-650

side the plasmapause (see Keiling and Takahashi [2011] for additional high-latitude Pi2651

models), (3) latitudinal variations in ionospheric conductivity that affect the amplitude of652

ground magnetic perturbations and the closure of magnetospheric currents. 1-3 could in-653

dependently, or together, result in the differences seen at FSIM, and it is possible for a654

both PVR and other types of Pi2 waves to be observed simultaneously at FSIM’s high-655

latitude location. Numerical simulations are beginning to resolve this type of ambiguity656

[e.g., Lysak et al., 2015], but fully explaining the features seen at FSIM in the context of657

1-3 is outside the scope of the present study.658

Finally, we note that if we had only considered observations during a narrow time659

range near substorm onset or a limited spatial range (e.g., near SAPS flows or plasma-660

pause location), we may well have associated the 8 mHz wave activity with BBFs, plasma-661

pause surface waves, or another Pi2 model. This demonstrates the need for globally dis-662

tributed observations and extended analysis periods when associating Pi2 wave observa-663

tions with different wave sources, as noted by Keiling and Takahashi [2011].664

5 Summary665

The frequencies and amplitudes of Pi2 waves such as PVR are strongly affected by666

the plasmapause location. The present study extends previous work relating Pi2 wave ac-667

tivity to plasmapause location [e.g., Takahashi et al., 2003, 2005; Ghamry et al., 2015; Shi668

et al., 2017] by examining wave activity during an extended interval with stable plasma-669

pause location and variable geomagnetic activity. To summarize our key findings:670

1. Multiple satellite passes and PTP simulations indicate the plasmapause location is671

stable for at least two hours over a wide range of MLT. This stability allows us to672

examine how other factors affect Pi2 wave properties.673

2. Both in situ and ground-based measurements indicate multiple intensifications of a674

PVR through a period of variable geomagnetic activity. Other wave activity with675

a more broadband frequency spectrum also occurs, primarily outside the plasma-676

pause.677

3. PVR wave amplitudes vary spatially and temporally while frequency remains sta-678

ble at 8.2 +/- 0.53 mHz, based on low latitude ground magnetometer observations.679

The frequency is stable throughout multiple wave intensifications that occur before,680

during, and after (1) a substorm, (2) multiple auroral intensifications, (3) the devel-681

opment of SAPS flows and associated ionospheric conductivity variations, and (4)682

variations in the IMF. The stable frequency is consistent with PVR model predic-683

tions - and other standing fast mode wave model predictions - for a stable plasma-684

pause location.685

Stable plasmapause locations are necessary for stable PVR frequencies. In this study,686

we found that a stationary plasmapause before, during, and after a substorm was likely687
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caused by a prolonged period of southward IMF preceding the interval of interest, during688

which the plasmapause location changed and erosion occurred. We speculate that con-689

ditions similar to those found in the present study - i.e., periods with substorms or other690

Pi2 energy sources occurring after a significant erosion event - may be favorable for stable691

PVR frequencies due to stable density conditions.692

To better understand the spatial and temporal variability of Pi2 wave activity during693

geomagnetically active periods, more work is needed to examine how wave properties vary694

during periods with relatively stable plasmapause locations such as the one in the present695

study. In particular, observational comparisons with global numerical simulations [e.g.,696

Lysak et al., 2015; Ream et al., 2015; Claudepierre et al., 2016] during periods with stable697

plasmapause location are needed to better characterize the role of other factors (e.g., spa-698

tially varying ionospheric conductivity, time varying driving conditions) besides the radial699

density profile in determining wave properties and understanding why PVR are excited700

during some periods but not others [e.g., Osaki et al., 1998; Nishimura et al., 2012].701
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