lame	Description	# Data source(#	Other data	URL I	input Structure	Input notes	Output Structure	Output notes	Data policy URL	parameters	Comments						
SCN	point data for	tens: NRCS, USI	25, multi-instit	solicarb ne/t	tierarchical sis template- metadata, site, profile, layer, fraction,	template is large, not easy to add new vars	STATIC: als files- profiles, layers (sliced into subsets), contributed	contributed templates are piling up and not integra	http://ison fluxdata.org/data/dataset-information/v	150-250							
NoSIS	point data for	National resource	WaSIS point d	http://www.i	vierarchical xis template- dataset, metadata, profile, horizon	template is small, allows user to easily add new vars	STATIC: perioidically updated delimited txt files- profile, layer, att	Sayer dataset is 663M8- crashed my laptop	http://www.isric.org/data/data-policy	Db, Cfrags, IC, OC, Ctot, CEC, EC, Pui, PSD, pH, tax							
SDAC	3 EU-level soil	European Natio	SDAC archive	http://esds//	VA: this is a top-down repository; does not accept data contribu	ions.	dataset downloads and map-based interface	login required to access some datasets	could not find- create username to look more	focused on fundamental soil properties: Db, Cfrags, IC,	OC, EC, CEC, p	pH, PSD, etc.					
ZchemD0	point data for	13 students/p/s	minor amt. of	http://www.	deep, hierarchical xis template- site, location, profile type, samp	template is large and complex, many vars and options	Access DB	database is structured nicely from a data hierarchy	http://criticaloone.org/national/data/dataset/2609	elemental concentration data (geochemistry)	difficult to fin	nd this datab	ase Several	ournal artic	les describe (ZchemD8 as a	120-1
20 Data	web clearingh	11 datasets or p	portal links to	http://critik	contributor-defined and formatted spreadsheets	little standardization across datasets	web link to an existing dataset	web page is large and text heavy, but clear and eav	http://criticaloone.org/national/data/czo-data-polic	INTC	very differen	t approach t	o data input	output: cle	ringhouse ap	proach is used	
layad	web clearingh	hundreds or the	all kinds of sck	http://dataja	not investigated; username required. Appears that any format is	accepted	web server hosts datasets provided by individual investigators an	d teams	http://datadryad.org/pages/policies	INTO							
DataOne	web clearingh	tens to hundre	all kinds of ear	https://ww/	varies by member node. Appears that providers define their own	structure and format	node system hosts datasets provided by individual investigators a	and teams	https://www.dataone.org/use-data	INTO	this is an initi	al phase of t	the NSF Data	Nets progra			
GEE Arctic	web clearingh	tens of NGEE (a	many types of	http://ngee.e	not investigated; username required. Appears that any format is	accepted	web server hosts datasets provided by individual investigators an	d teams	http://ngee-arctic.orni.gov/sites/default/files/page	INTC							
lerraC	stalled effort t	<10	anclear	http://terris	my contributor-defined hierarchical relational format, row-and-	column, contributor provides the template		login required	http://terrac.ifas.ufl.edu/documentation.asp	similar to ISCN							
arthChem	NA- geochemi	stry of rocks and	minerals, no	http://www	earthchem.org/												
4ESMC	non-public dat	tens of individu	al investigator	http://www	uvm.edu/*nesmc/		non-functional map-based data retrieval			soil profile and characterization data	ongoing proje	ect with no p	public UI				
Umer Flux	site-level soil o	tens a	other site-leve	http://artiels	elational xis templates	template is large, not easy to add new vars	static DL of site-level datasets		http://ameriflux.lbl.gov/data/data-policy/	geared towards cross-site work: not much detail on sol	h l						
URCS NCSS Sc	profile and chi	NSSC, state la(d	VRCS toll char	https://ncsis	only available to cooperators		static DL of entire Access DB, custom DL of up to 200 pedons, ma	p-based retrieval of individual pedons	https://ncsslabdatamart.sc.egov.usda.gov/datause.	hundreds; soil profile and characterization data							
TERnet	web clearingh	hundreds or the	all kinds of ear	https://porb	contributor-defined and formatted spreadsheets		web server hosts datasets provided by individual investigators an	d teams	https://iternet.edu/policies/data-access	INTO							
angaea	web clearingh	hundreds or the	all kinds of ear	https://www	contributor-defined and formatted spreadsheets		web server hosts datasets provided by individual investigators an	d teams	https://www.pangaea.de/about/	INTO							
DRNLDAAC	web clearingh	just a few acts	all kinds of big	https://daa	contributor-defined datasets and data produtos	open to NASA-funded researchers; others subject to r	web server hosts datasets provided by individual investigators an	d teams	undear								

SM1

SM2a. Example of number of papers published (documents) in soil health and carbon cycle related journals. Soil and Tillage Research and Forest Ecology and Management are examples of soil health and management journals while Soil Biology and Biogeochemistry and Plant and Soil are examples of journals with articles that focus on carbon cycle processes. Both sets of journals have slightly varying trends since 1952 in number of articles and there are generally higher number of documents in the carbon cycle related journals. Figure generated in SCOPUS.

Furthermore, analyses of the top keywords in an article search of 'soil carbon management' and global carbon cycle' revealed that while the two fields have several overlapping keywords, there are still keywords critical to our understanding of soil processes (example, isotopes) that are missing from 'soil carbon management' literature. SM2b.

Category	Soil Health Indicator	Related functional problem	Carbon explanatory variable	References		
	Macroaggregate Stability	Erosion, compaction	Growth of roots and mycorrhizae, fungal biomass, biological soil crusts	Jastrow (1996), Gupta and Germida (1988)		
Physical	Bulk Density	Compaction, low infiltration	Organic matter content	Saxton and Rawls (2006), Abdel (2016)		
	Water Infiltration rate	Low infiltration, erosion	Organic matter content	Franzluebber s (2002)		
	Available Water Capacity	Arid region water management	Organic matter content	Gupta and Larson (1979)		
Biological	Microbial Biomass Carbon	Limited soil life	Applied organic matter, root biomass	Sparling (1992), Powlson and Brooks (1987), Helal and Sauerbeck (1986); Fu and Cheng (2002)		
Chemical	Potentially Mineralizable N	Poor fertility	Potentially mineralizable C	Franzluebber s et al. (1998)		
	Soil test P	Poor fertility	Applied organic matter	Sharpley et al. (2003)		

SM3. Example comparison of soil carbon literature and data repositories

A comparison of a keyword-based search of soil carbon literature (in Scopus) and data repositories (in DataONE) illustrates the long tail of data potentially missing from databases. We searched the literature for 'soil carbon' and refined the most frequent keywords within these papers to ones that would relate to a mineable variable. Of the 100 most frequent keywords found in 85,000 papers that come up in a literature search of 'soil carbon', only 22 keywords existed in repositories of soil carbon data. On average, for these 22 keywords, repositories contained 1% of the number of records in the literature. Process and descriptive keywords were equally underrepresented in repositories. However, number of records for process keywords were 40% of the descriptive keywords in both literature and repositories, suggesting a lower amount of process data in databases, in general. Biological data were underrepresented in repositories relative to chemical and physical data (Figure SF2). In part, the discrepancy between literature and repository records is because not all literature records represent minable data. Repository searches are also likely underestimated due to variable technical vocabulary and therefore diminished data discoverability. Regardless of the caveats of comparing literature and repository records, our analysis suggest a considerable long tail of data missing from repositories.

Average number of records for biological, chemical and physical keywords in the literature and data repositories, suggesting more chemical data in general relative to physical and biological, but lowest representation of biological data in repositories.

SM4 . Institutions, networks and working groups with potential datasets to contribute to a consolidated database and to community soil models

ISM4 Collaborative Institudions

Institution/Network URL ISRIC - International Soil Reference and Information Centre http://www.isric.org Critical Zone Observatories http://criticalzone.org International Soil Modeling Consortium https://soil-modeling.org www.lternet.edu/ LTER - Long Term Ecological Network AmeriFlux http://ameriflux.lbl.gov **Biosphere Atmosphere Stable Isotope Network** basin.yolasite.com/ Fluxnet http://fluxnet.fluxdata.org IPA - International Permafrost Association http://ipa.arcticportal.org IUSS - International Union of Soil Sciences http://www.iuss.org NPN - USA-National Phenology Network www.usanpn.org NTSG - Numerical Terradynamic Simulation Group www.ntsg.umt.edu/ NutNet - Nutrient Network www.nutnet.org/ Permafrost Carbon Network http://www.permafrostcarbon.org/ USDA - US Department of Agriculture https://www.usda.gov USGS - US Geological Survey https://www.usgs.gov Climate Hub https://www.climatehubs.oce.usda.gov/ LTAR https://ltar.nal.usda.gov/

Case Study: Compost amendments to grazing lands

The Marin Carbon Project is a partnership among multiple stakeholders - scientists, land owners, dairy farmers, policy experts, environmental managers - with the goal of identifying rangeland C sequestration practices that are scientifically sound, feasible, and can be scaled to greater regions of California. After assessing existing data on soil C pools on rangelands¹ and talking to ranchers about existing practices, several controls field experiments were established to answer the question: Can the use of compost increase storage capacity of C? Composted was added in two bioclimatic regions as 1.3 cm thick layer to the surface. After 3 years, total soil C stocks increased significantly(not including the compost addition)². About $\frac{1}{2}$ of the new C was physically protected in aggregates³. Net primary production increased after the one-time application and were sustained for several years⁴. Modeling suggests that compost provides a slow release of nutrients to maintain C sequesteration for about 30 years⁵. A life cycle model identified large greenhouse gas savings from diversions of organic waste streams⁶. On-going research is aimed at quantifying greenhouse gas emissions from the composting process using earth system models to quantify the global potential of C sequestration practices. These promising results have let to the establishment of a C offset protocol (ACT 2105) and 17 new demonstration sites to further test C storage potentials and feasibility of the practice.

 ISilver et a, 2010; 2 Ryals et al, 2013; 3. Ryals et al, 2014; 4. Ryals et al, 2016;

 5. Ryals et al, 2015; 6. DeLonge et al, 2013 7. Ryals and Silver, 2013

Changes to C fluxes in two sites - a valley (top values) and coastal (bottom, bold) grassland - after 3 years since a one-time amendment of compost. Changes to C storage are a net result of aboveground primary production (ANPP), belowground primary production (BNP P), heterotrophic respiration (Rh) from de composition in the organic amendment (Roa). Changes are relative to control plots with no compost. Adapted from^{7,3}

Extra Reading

Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J.G., Friedlingstein, P., Jain, A.K., Kato, E., Poulter, B., Sitch, S., Stocker, B.D., Viovy, N., Wang, Y.P., Wiltshire, A., Zaehle, S. & Zeng, N. 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348, 895-899.

Arshad, M. A. and Martin, S.2002 Identifying critical limits for soil quality indicators in agroecosystems, Agric. Ecosyst. Environ., 88(2), 153–160, 2002/2.

Buell, G.R., Markewich, H.W., Kulisek, R. Pollard, S., and Cook, T.T. 2004. Site-Specific Soil-Carbon (S3C) Database for Mineral Soils of the Mississippi River Basin, USA. USGS Open File Report 2004-1227.

Castellano, M.J., Mueller, K.E., Olk, D.C., Sawyer, J.E., and Six, J. 2015. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept, Global Change Biology, 21, 3200-3209

Chen, S., Zou, J., Hu, Z., Chen, H. and Lu, Y. 2014. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data, Agric. For. Meteorol., 198-199, 335–346.

Cole, J A, Johnson, K D, Birdsey, R A, Pan, Y, Wayson, C A, McCollough, K, Hoover, C M, Hollinger, D Y, Bradford, J B, Ryan, M G, Kolka, R K, Weishampel, P, Clark, K L, Skowronski¬¬¬¬ N S, Hom, J, Ollinger, S V, McNulty, S G, Gavazzi, M J. 2013. Database for Landscape-scale Carbon Monitoring Sites. Gen. Tech. Rep. U.S. Department of Agriculture, Forest Service, Northern Research Station. GTR-NRS-119

Cox, P.M., Pearson, D., Booth, B.B., Friedlingstein, P., Huntingford, C., Jones, C.D. & Luke, C.M. (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341-344.

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E. G., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M. and Bradford, M. A. 2016. Quantifying global soil carbon losses in response to warming, Nature, 540(7631), 104–108.

Ding J., Chen L., Ji C., Hugelius G., Li Y., Liu L., Qin S., Zhang B., Yang G, Li F., Fang K., Chen Y., Peng Y., Zhao X., He H., Smith P., Fang J., and Yang Y. 2017 Decadal soil carbon accumulation across Tibetan permafrost regions, Nature Geoscience, in press, manuscript number NGS-2016-10-02098B

Drewniak B.A., U. Mishra, J. Song, J. Prell, and V. R. Kotamarthi. 2015. Modeling the impact of agricultural land use and management on US carbon budgets. Biogeosciences 12: 2119-2129

Fröberg M, Hanson PJ, Todd DE, and DW Johnson. 2008. Evaluation of Effects of Sustained Decadal Precipitation Manipulations on Soil Carbon Stocks. Biogeochemistry 89: 151-161

Harden JW, Koven CD, Ping C, Hugelius G, McGuire AD, Camill P, Jorgenson T, Kuhry P, Michaelson GJ, O'Donnell JA, Schuur EAG, Tarnocai C, Johnson KD, Grosse G. 2012. Field information links permafrost carbon to physical vulnerabilities of thawing, Geophys. Res. Lett., 39, L15704, doi:10.1029/2012GL051958.

Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K. and Reichstein, M. 2015. Global spatiotemporal distribution of soil respiration modeled using a global database, Biogeosciences, 12, 4121–4132

Heidorn, P. B. 2008. Shedding Light on the Dark Data in the Long Tail of Science, Libr. Trends, 57(2), 280–299

Hibbard, K. A., Law, B. E. and Sulzman, J. 2005. An analysis of soil respiration across northern hemisphere temperate ecosystems, Biogeochemistry, 73(1), 29–70.

Hoffman, F. M., C. D. Koven, G. Keppel-Aleks, D. M. Lawrence, W. J. Riley, J. T. Randerson, A. Ahlström, G. Abramowitz, D. D. Baldocchi, M. Best, B. Bond-Lamberty, M. De Kauwe, A. S. Denning, A. Desai, V. Eyring, R. Fisher, P. J. Gleckler, M. Huang, G. Hugelius, A. K. Jain, N. Y. Kiang, H. Kim, R. D. Koster, S. V. Kumar, H. Li, Y. Luo, J. Mao, N. G. McDowell, U. Mishra, P. Moorcroft, G. S. H. Pau, D. M. Ricciuto, K. Schaefer, C. R. Schwalm, S. Serbin, E. Shevliakova, A. G. Slater, J. Tang, M. Williams, J. Xia, C. Xu, R. Joseph, and D. Koch. 2016, International Land Model Benchmarking (ILAMB) 2016 Workshop Report, DOE/SC-0186, U.S. Department of Energy, Office of Science, Germantown, Maryland, USA, doi:10.2172/1330803.

Hursh, A., Ballantyne, A. P., Cooper, L., Maneta, M., Kimball, J. S. and Watts, J. 2016. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale, Glob. Chang. Biol., in press, doi:10.1111/gcb.13489.

Iversen, C. M. 2010.Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems, New Phytol., 186(2), 346–357

Johnson, D.W., D.E. Todd, Jr., and V.R. Tolbert. 2003. Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years. Soil Sci. Soc. Amer. J. 67: 1594-1601.

Johnson, K.D., J. Harden. 2009. An Alaska Soil Carbon Database: Database Collaborator's Meeting; Fairbanks, Alaska, 4 March 2009. EOS 90: 184. DOI: 10.1029/2009EO210005

Johnson, K. D., J. Harden, A. D. McGuire, N. B. Bliss, J. G. Bockheim, M. Clark, T. Nettleton-Hollingsworth, M. T. Jorgenson, E. S. Kane, M. Mack, J. O'Donnell, C.-L. Ping, E. A. G. Schuur, M. R. Turetsky, and D. W. Valentine. 2011. Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma 167-168: 71-84. Jung, M., Reichstein, M., Schwalm, C.R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A.K., Kato, E., Papale, D., Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P., Weber, U., Zaehle, S. & Zeng, N. 2017. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541.

Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S. I., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J. and Zaehle, S. 2016. Global Carbon Budget 2016, Earth Syst. Sci. Data, 8(2), 605–649

Liang, C., Cheng, G., Wixon, D.L., and Balser, T.C. 2011. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization, Biogeochemistry, 106, 303-309

Liang, D., Fisher, R. A. and Wardle, D. A.: Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change, Biogeosciences, 8, 2047–2061, 2011.

Mishra U., J.D. Jastrow, R. Matamala, G. Hugelius, C.D. Koven, J.W. Harden, C.L. Ping, G.J. Michaelson, Z. Fan, R.M. Miller, A.D. McGuire, C. Tarnocai, P. Kuhry, W.J. Riley, K. Schaefer, E.A.G. Schuur, M.T. Jorgenson, and L.D. Hinzman. 2013. Environmental Research Letters 8. DOI: 10.1088/1748-9326/8/3/035020

Nave L.E., Swanston C.W., Mishra U., Nadelhoffer K.J. 2013. Afforestation effects on soil carbon storage in the United States: a synthesis. Soil Science Society of America Journal 77: 1035-1047.

O'Neill, R. V., D. DeAngelis, J. B. Waide and T. F. H. Allen. 1986. A Hierarchical Concept of Ecosystems. Princeton University Press, Princeton.

Raich, J. W. and Schlesinger, W. H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus B Chem. Phys. Meteorol., 44(2), 81–99.

Rose K.C., Graves R.A., Hansen W.D., Harvey B.J., Qiu J, Wood S.A., Ziter C., Turner M.G. 2017. Historical foundations and future directions in macrosystems ecology. Ecology Letters, 20: 147–157

Ryals, R., Kaiser, M., Torn, M.S., Berhe, A.A., Silver, W.L. 2014. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils, Soil Biology and Biochemistry, 68, 52-61, doi: 10.1016/j.soilbio.2013.09.011.

Ryals, R., Hartman, M.D., Parton, W.J., DeLonge, M.S., Silver, W.L. 2015. Long-term climate change mitigation potential with organic matter management on grasslands. Ecological Applications 25:531-545.

Ryals, R., Eviner, V., Stein, C.E., Silver, W.L. 2016. Grassland compost amendments increase forage production without changing plant communities. Ecosphere. 7:e01270.

Soil Survey Staff, 2014. National Cooperative Soil Characterization Data. Soil Survey Laboratory, National Soil Survey Center, USDA-Natural Resources Conservation Service, Lincoln, NE. http://ssldata.nrcs.usda.gov. Accessed 9 September 2014.

Stewart, C.E., Plante, A.F., Paustian, K., Conant, R.T., and Six, J. 2008. Soil carbon saturation: linking concept and measurable carbon pools, Soil Sci. Soc. Am. J., 72, 379-392.

Trumbore, Susan E., Oliver A. Chadwick, and Ronald Amundson. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272.5260

Vines, T. H., Albert, A. Y. K., Andrew, R. L., Débarre, F., Bock, D. G., Franklin, M. T., Gilbert, K. J., Moore, J.-S., Renaut, S. and Rennison, D. J. 2014. The availability of research data declines rapidly with article age, Curr. Biol., 24(1), 94–97

Wang, W., Ciais, P., Nemani, R.R., Canadell, J.G., Piao, S., Sitch, S., White, M.A., Hashimoto, H., Milesi, C. & Myneni, R.B. (2013) Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proceedings of the National Academy of Sciences, 110, 13061-13066.