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Abstract

Soil organic matter (SOM) supports the Earth’s ability to sustain terrestrial ecosys-

tems, provide food and fiber, and retains the largest pool of actively cycling carbon.

Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly
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affected by human land use. Large land areas have lost SOC as a result of land use

practices, yet there are compensatory opportunities to enhance productivity and

SOC storage in degraded lands through improved management practices. Large

areas with and without intentional management are also being subjected to rapid

changes in climate, making many SOC stocks vulnerable to losses by decomposition

or disturbance. In order to quantify potential SOC losses or sequestration at field,

regional, and global scales, measurements for detecting changes in SOC are needed.

Such measurements and soil-management best practices should be based on well

established and emerging scientific understanding of processes of C stabilization

and destabilization over various timescales, soil types, and spatial scales. As newly

engaged members of the International Soil Carbon Network, we have identified

gaps in data, modeling, and communication that underscore the need for an open,

shared network to frame and guide the study of SOM and SOC and their manage-

ment for sustained production and climate regulation.
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agricultural practices, C cycling, C sequestration, global CO2, network, soil, soil carbon, soil

management

1 | INTRODUCTION

Soil organic matter (SOM) governs many physical, chemical, and bio-

logical characteristics of soils, and is one determinant of a soil’s capac-

ity for fertility, ecosystem productivity, and CO2 sequestration. Thus

SOM, and its main constituent soil organic carbon (SOC), interacts

with several aspects of the Earth system and its services to society

(Banwart et al., 2014), including food, fiber, water, energy, cycling of

carbon (C) and nutrients, and biodiversity. Large land areas (up to 6 bil-

lion ha) are estimated to be in some state of soil degradation (Gibbs &

Salmon, 2015), associated in many cases with deficient stocks of

SOM. Increasing SOM content, and thus SOC storage, can improve

the state of soil and ecological sustainability, and because SOC stocks

are large globally, widespread adoption of sustainability can also con-

tribute to climate change mitigation by capturing atmospheric CO2.

SOM and SOC research has traditionally been dominated by at

least two scientific communities that have been publishing in rather

disparate types of journals (Supplemental Materials SM2a), one

focused on soil science/soil health, and the other focused on the ter-

restrial C cycle and global biogeochemistry. Soil health or quality is a

concept formalized in the 1990s to describe soil management prac-

tices that enhance the biological, chemical, and physical properties of

soil. Terrestrial C cycling typically refers to the exchange of land-based

C with atmospheric CO2 and CH4 although aquatic systems and flows

are closely intertwined as well. Owing to the very large and dynamic

stocks of soil C globally, the role of soils in climate regulation has been

increasingly studied in the context of ecological and geological per-

spectives that link organic matter processing to C, nutrients, produc-

tivity, hydrology, and landscape dynamics. As a result, conceptual

frameworks and simulation models have become quite elegant and

sophisticated in representing both site-based, land management

options and global scale syntheses. As the goals of these communities

converge, we are presented with an opportunity to combine and trans-

form our knowledge, databases, and mathematical frameworks for the

benefit of environmental health and humanity.

At the global scale, SOM is one of the largest and actively

cycling C reservoirs (Ciais et al., 2013; Jackson et al., 2017) and is

subjected to direct human activities impacting over 70% of C stocks

in the upper meter of soil. Globally soils store 1,300–1,500 Pg of C

in the top meter (Figure 1a). Much of this SOC is in lands, impacted

F IGURE 1 Soil organic carbon stocks and areas currently under land use practices. (a) Spatial variability of soil organic carbon (SOC) stocks in
the upper meter of soil (where 1 kg C m�2 = 10 Mg C ha�1), based on the WISE 3.1. database (Batjes, 2016). (b) Fractional human use of the land
surface through forestry, grazing and agricultural crops based on the data by Erb et al. (2007); grey areas represent unused land. (c) Global SOC
stocks (0–1 m) distributed under different land-use categories. (d) Potential opportunities for gross annual SOC sequestration in presently
managed forest, crop, and grazing lands (assuming average management C gains of 0.04 kg C m�2 year�1 with error bars showing the range of
0.01–0.07 kg C m�2 year�1; Minasny et al., 2017) could compensate for total emission projections from permafrost-C due to the climate
feedback (Koven et al., 2015; mean and range of projection until 2100 under RCP8.5) and the projected impact of “human land use,” defined as
land use change, agricultural representation, crop harvest, and management (Pugh et al., 2015; mean and ensemble range of projection until 2100
under RCP8.5). Note that harvest from forestry is not included in this last projection [Colour figure can be viewed at wileyonlinelibrary.com]
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directly by cropping, grazing, and forestry practices, with 30% resid-

ing in lands only indirectly impacted by human activities such as

peatlands and permafrost soils (Hugelius et al., 2014; K€ochy,

Hiederer, & Freibauer, 2015; Loisel et al., 2017). The distribution of

soils in managed lands follows the distribution of human land use

(Figure 1b,c) and overlaying the estimated SOC stocks with human

(a)

(b)

(c) (d)
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land use data shows that the majority of near-surface SOC stocks

are directly affected by human activities today (Figure 1c).

Efforts such as the “4-per-1000” program, a global initiative to

reduce atmospheric CO2 through soil C sequestration (Minasny

et al., 2017), demonstrate that many soils in managed systems could

offer an opportunity for climate regulation. While uncertainties are

very large, it is evident that land management practices can lead to

C gains from 0.01 to 0.07 kg C m�2 year�1 (Minasny et al., 2017;

Paustian et al., 2016; Smith, Martino, Cai, Gwary, Janzen, Kumar,

et al., 2007). If these numbers are applied across all Earth’s managed

lands, there is an opportunity to sequester several Pg C year�1 glob-

ally (Figure 1d). While not all lands are likely to be managed consis-

tently, this maximum estimate could potentially offset future C

emissions from permafrost (Koven et al., 2015) or the combined pro-

jected emissions from land use change and agricultural management

(Pugh et al., 2015; projected emissions in Figure 1d).

The ability to detect shifts in SOC and to potentially increase

SOC storage is important for scientific and societal challenges in the

face of rapidly changing terrestrial landscapes. However, detecting

changes in SOC is problematic owing to the complex temporal and

spatial scales at which we need to measure and predict change. For

example, estimates of future SOC dynamics range widely, and recent

compilations of soil radiocarbon suggest that global models underes-

timate the transit time of C in soil, biasing estimates for soil C

sequestration in future years (He et al., 2016). Meanwhile, concep-

tual frameworks for SOC stabilization are also changing, challenging

the science community to shift methods and measurements to test

alternative models. For example, paradigms and metrics of SOC sta-

bilization and destabilization (herein referred to as SOC (de)stabiliza-

tion) have been shifting (Lehmann & Kleber, 2015; Schmidt et al.,

2011). Emerging paradigms de-emphasize the chemical properties of

SOM and SOC and focus more on mechanisms that isolate or stabi-

lize C, such as sorption of biopolymers and their decomposition

products on mineral surfaces and the entrapment of organic matter

in aggregates. These and other recent developments call for model

development and new datasets to address aggregate dynamics, car-

bon use efficiency of microorganisms, the role of dissolved organic

matter, priming to enhance SOC decomposition, and mineral protec-

tion of organic matter.

We posit that there is a need and an opportunity for the scien-

tific community to: (1) better identify datasets to characterize

ecosystem and landscape properties, processes, and mechanisms that

dictate SOC storage and stabilization and their vulnerabilities to

change; (2) identify, rescue, and disseminate existing datasets; (3)

develop platforms for sharing data, models, and management prac-

tices for SOC science; and (4) improve the connection between glo-

bal C cycle and soil management research communities. The

International Soil Carbon Network (ISCN) is a community devoted to

open and shared rigorous science for characterizing the state, vulner-

abilities, and opportunities for managing SOM. To this end, the ISCN

targets SOM and SOC-related science questions in Section 2 that

are potentially actionable through good science and informed man-

agement. Challenges and strategies for the ISCN to function as a

community platform for communication, modeling, and data sharing,

as well as to increase interoperability among SOC-relevant networks,

are outlined in section 3.

2 | CHALLENGES FOR CHARACTERIZING
THE STATE, VULNERABILITIES, AND
MANAGEMENT OPPORTUNITIES OF SOM

Most needed from our community is detection of changes in SOM

and SOC, yet such changes vary spatially and temporally because of

the many processes that are linked to variations and changes in cli-

mate, land use, vegetation, topographic, and geologic factors. Broad-

scale ecosystem models generally build on mechanistic understand-

ing originating from much finer temporal or spatial scales. Upscaling

—the scaling or application of knowledge and data from finer to

broader scales or from shorter to longer timescales—requires insight,

data, and models at various scales, types, and complexity because

the responses of soil processes to forcing factors are typically differ-

ent on different spatial scales (O’Rourke, Angers, Holden, & McBrat-

ney, 2015). At fine scales, the response might be related to a

specific landscape or climate attribute. When aggregating over broad

spatial scales, however, information on the relationship between the

driver and the response may be lost or obscured. One such example

is the apparent control of temperature, rather than precipitation,

over tropical and global ecosystem fluxes (Cox et al., 2013; Wang

et al., 2013; Wang et al., 2014). The smaller apparent role of precipi-

tation globally or across the tropics results from large spatial hetero-

geneity in precipitation. Unusually, dry and wet regions cancel each

other out when averaged globally, which can obscure an often stron-

ger local/regional precipitation control of ecosystem fluxes (Ahlstr€om

et al., 2015; Jung et al., 2017).

Long-term changes in SOC are particularly difficult to capture

with measurements. Fluxes of heterotrophic respiration, for example,

can be measured only at fine spatial and temporal scales (Bond-

Lamberty et al., 2016) whereas observing short-term changes in

SOC pools is reduced to detecting small changes relative to a large

pool of bulk SOC (Stockmann et al., 2013). While radiocarbon mea-

surements suggest that the majority of bulk SOC is much older (He

et al., 2016), and hence, not very active, long-term changes in SOC

storage could be governed by processes other than those that deter-

mine short term fluxes. It is increasing clear that understanding

changes and variations in SOC requires a robust understanding of

processes and mechanisms that underlie stabilization, protection, and

destabilization of SOC.

2.1 | Understanding mechanisms underlying storage
and (de)stabilization of SOC

Changes in SOC are generally based on assessments of stocks and

some metric of turnover, residence, or transit time (He et al., 2016;

Sierra, M€uller, Metzler, Manzoni, & Trumbore, 2017). Assessments of

SOC stocks and transit times remain a critical constraint on the

e708 | HARDEN ET AL.



ability of models to predict CO2 exchanges and their responses to

environmental and land use pressures (Todd-Brown et al., 2013).

Advancements in measurements and numerical models must be

grounded in our best understanding of the processes controlling

SOC dynamics across scales (Hinckley, Wieder, Fierer, & Paul, 2014).

Currently, most global model frameworks rely on state-factor

theory (Campbell & Paustian, 2015), where soil properties are the

product of a suite of factors including climate, biota, topography,

parent material, and stage or age of pedogenesis (Jenny, 1941),

superimposed with major land uses such as deforestation or agricul-

ture (Amundson & Jenny, 1991). Under this framework, global-scale

spatial heterogeneity of SOC is a direct reflection of variation within

these factors and, accordingly, will vary with climate and land use

change. A quantitative and predictive understanding of how soil and

ecosystem properties interact to regulate SOC remains elusive due

to interactions and interdependencies of the state variables with

local-scale physicochemical and biological processes that also influ-

ence the (de)stabilization of SOC.

Mechanisms of C stabilization and destabilization are of particu-

lar importance for establishing a predictive understanding of SOC

dynamics because these same mechanisms presumably drive vulnera-

bilities (to emission) and opportunities (accumulation or sequestra-

tion) under changes in climate, management, or other disturbances.

A quantitative understanding of SOC pool dynamics requires a quan-

titative understanding of both processes and mechanisms leading to

(de)stabilization. A process represents a fundamental sequence of

actions or steps that leads to a particular outcome, whereas a mech-

anism reflects the combined interaction of processes (Figure 2). Pro-

cesses are often more directly measurable than mechanisms and,

therefore, a more fundamental construct for incorporation into mod-

els. We tend to classify mechanisms of SOC (de)stabilization as being

primarily biological, physical, or chemical (Six, Conant, Paul, & Paus-

tian, 2002; Figure 2), but many mechanisms cross these boundaries

due to interactions among processes. The past two decades brought

substantial advances in our conceptual understanding of mechanisms

of SOC (de)stabilization (Lehmann & Kleber, 2015 and Schmidt et al.,

2011). Yet, quantitative representations of these concepts in global

and regional models lags, due in part to a lack of data synthesis to

connect concepts and models, as well as a lack of incorporation of

local-scale understanding of SOC dynamics.

Understanding the mechanisms of SOC (de)stabilization, the

underlying processes driving soil change, and the relationships

between processes and drivers at various spatial scales is needed to

evaluate potential changes in SOC stocks. To address this need, an

emerging priority is to conduct and synthesize manipulative field,

greenhouse, and laboratory experiments that specifically target pro-

cesses and drivers at a variety of spatial and temporal scales (see

section 2.2. and Figure 3). Examples include experimental manipula-

tions that target specific processes, such as the Detritus Input and

Removal Treatments that manipulate organic inputs to soil (e.g.,

Lajtha, Bowden, & Nadelhoffer, 2014), the international Soil Experi-

mental Network that warms deep soil (Torn et al., 2015), Drought-

Net that manipulates precipitation as well as natural environmental

gradients of temperature and soil moisture (Giardina, Litton, Crow, &

Asner, 2014). By coupling broadly distributed and comparable

data synthesis efforts with process-based models, we have the

F IGURE 2 Processes controlling soil organic carbon (SOC) pools
and the mechanisms involved in stabilizing SOC. Isolation = physical
disconnection (e.g., Schimel & Schaeffer, 2012);
Cryo = cryopreservation; Pyrogenesis = fire residues;
Mineral = mineral interaction; Inputs = microbial and plant residues
that influence desirability or access to microbes (e.g., Kallenbach,
Frey, & Grandy, 2016; Nature Communications); Nitrogen = nitrogen
or other nutrient limitations (e.g., Averill, Turner, & Finzi, 2014)
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Example research questions and datasets useful for
investigating soil organic carbon (SOC) change at different
timescales. Blue lines indicate relevance of the topic and question to
the timescale of measurement. Colors for measures indicate status
of data archiving efforts. Measurements can be well aggregated in
centralized repositories (green), have had limited compilation
(yellow), or have had very limited compilation (red). RS, soil
respiration; RH, heterotrophic respiration; 13C n.a., 13C natural
abundance; TBCA, total belowground total allocation; POM,
particulate organic matter [Colour figure can be viewed at
wileyonlinelibrary.com]
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opportunity to capture mechanistic understanding and to constrain

the SOC storage and its sensitivity to disturbance.

2.2 | Prioritizing soil data to empower our science

There are many types of data, beyond SOC stock data, used to

investigate C dynamics at different spatial and temporal scales (Fig-

ure 3). Data consolidation and archiving efforts so far have focused

principally on SOC stocks (e.g., Batjes, Ribeiro, van Oostrum, Lee-

naars, & Mendes de Jesus, 2017; Scharlemann, Tanner, Hiederer, &

Kapos, 2014), but SOC stocks typically change slowly over time-

scales of decades to millennia, providing limited sensitivity for inves-

tigating shorter term processes such as land use and climate impacts

(Jastrow et al., 2005; Kravchenko & Robertson, 2011). At the same

time, technique advancements over the last several decades have

seen an escalation in methods pertinent for investigating SOC

change at shorter timescales (Figure 3). For instance, utilization of the

enriched atmospheric 14C signal (“bomb C”) has allowed tracing and

dating of SOC at annual timescales (Trumbore, 2000). Density and size

fractionation techniques have helped to distinguish more rapidly

cycled SOC from protected, less rapidly cycled C (Gregorich & Janzen,

1996; Jastrow, 1996; Kong, Six, Bryant, Denison, & van Kessel, 2005).

More recently, in situ chemistry techniques have been used to investi-

gate SOC transformation over timescales of hours to days (Hagerty

et al., 2014; Mackelprang, Saleska, Jacobsen, Jansson, & Tas�, 2016).
Many of the data types that are most relevant for measuring

SOC change at experimental timescales, however, have not been

consolidated and are generally not archived, thus impeding two of

the more important lines of inquiry in SOC science, namely (1) the

biochemical mechanisms of SOC (de)stabilization and (2) the antici-

pated impacts of changing climate and land use (see top panels of

Figure 3). Part of the challenge in assembling and archiving diverse

SOC data types is social—they are collected by different subcommu-

nities of soil science and microbiology, and part is logistical—the

data have different structures and storage formats (see Supplemental

Material SM4). Nevertheless, some of these data types have been

widely collected, and archiving efforts could open several novel

research opportunities.

For instance, the soil-to-atmosphere CO2 flux (soil respiration or

RS) is one data type that has been measured extensively and offers a

unique window into terrestrial carbon dynamics at fine temporal and

spatial resolution where questions about temperature, moisture sen-

sitivity, and respiratory pathways are addressed (Figure 3). The main

reason field RS is not used in model validation is because it spans

two sub models which are generally developed in isolation (vegeta-

tion and soil). Field-based, in-situ RS data provide an instantaneous

measurement of root respiration and soil metabolism, whereas, labo-

ratory incubations potentially can isolate soil metabolism from root

respiration. While a considerable effort has been made to synthesize

seasonal and annual averages for field-based RS fluxes (e.g., Bond-

Lamberty & Thomson, 2010), flux datasets including isotopic mea-

surements (isofluxes), time series, and experimental manipulations

that include soil moisture and laboratory-based incubation data are

only sparingly archived in centralized repositories (e.g., Kim, Vargas,

Bond-Lamberty, & Turetsky, 2012). Field-based RS data have been

used only sparsely for soil C model validation (Wang et al., 2014) or

model benchmarking (Shao, Zeng, Moore, & Zeng, 2013) despite

having characteristics ideal for these purposes; they reflect funda-

mental metabolic processes, are geographically widespread and do

not require extensive postobservational processing. High temporal

resolution RS data may also present unique possibilities for con-

straining and validating fluxes inferred from eddy covariance (Phillips,

Bond-Lamberty, et al., 2016; Phillips, Murphey, Lajtha, & Gregg,

2016) and spatiotemporal analyses (Lavoie, Phillips, & Risk, 2014;

Leon et al., 2014). Finally, because soil-to-atmosphere C fluxes (in

particular soil heterotrophic respiration) cannot be directly measured

at scales larger than ~1 m2 (Bond-Lamberty et al., 2016), data com-

pilations have enormous value for upscaling and for synthesizing our

understanding of soil metabolism. While RS is but one example of

data that will help meet challenges for characterizing SOM and SOC,

their relevance to mechanistic questions of SOC (de)stabilization has

the potential to address higher level questions related to land use

practices, policy, and long-term consequences of change (Figure 3).

2.3 | Land management and its potential to
increase SOC: An emerging priority

Increases in SOC play a key role in climate regulation through

sequestration of CO2, but there also co-benefits relevant to land

managers through increased land yield, soil water retention, resili-

ence to extreme weather, and nutrient retention. Land managers are

primary agents governing changes to SOM and SOC stocks, thus in

order for scientists to help shape and drive more successful and scal-

able practices, it is important to view SOC research as a social enter-

prise as well as a scientific enterprise.

Successful management of SOC requires collaboration among sci-

entists, land managers, landowners, and policymakers. A science-land

manager-policy partnership can be initiated at any stage of a prob-

lem, for example, as a science question or a land management chal-

lenge. One example (Figure 4) starts with a research question and

tethers field/lab experiments to ecological and social issues impor-

tant to land managers. Seeking feedback from stakeholders at each

phase of inquiry also generates new inquiries, which can be visual-

ized in Figure 4 as movement from right to left on the research-to-

policy progression. A cooperative research approach introduces more

sources of feedback and points of iteration than an isolated scientific

process but is instrumental for influencing SOM management prac-

tices.

Grazing lands (rangelands) represent a largely untapped global

potential for SOC sequestration as they occur across a wide range

of bioclimatic conditions, cover ca. 40% of ice-free land and store

ca. 30% of the terrestrial SOC pool to 1 m depth (Figure 1) The glo-

bal potential for rangeland C sequestration has been estimated to

range from 0.3 to as much as 1.6 Pg CO2-eq year�1 (Paustian et al.,

2016). Many grazing lands have degraded SOC stocks due to historic

poor management practices and changes in land use intensity. Stocks
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of SOC in grazing lands are vulnerable to losses through erosion,

compaction, and reductions in plant C inputs from plant community

shifts or overgrazing. Improved grazing, irrigation, plant species man-

agement, and the use of organic or inorganic fertilizers of these

lands can significantly increase soil C stocks (Conant, Cerri, Osborne,

& Paustian, 2017). Application of composted organic waste streams

has been demonstrated to be an economic and beneficial proactive

that contributes to both rangeland productivity and climate regula-

tion (Ryals & Silver, 2013; DeLonge, Ryals, & Silver, 2013; see SM5).

Lifecycle assessments, in which broader implications for land man-

agement are tracked (e.g., the waste management and energy sys-

tems; DeLonge et al., 2013) and other ecosystem services and

values (e.g., biodiversity or endemic plant impacts) are also important

issues that drive land management choices.

Forest SOC management often focuses on minimizing losses to

erosion and disturbance and less on building SOC through residue

and vegetation management, as is common in grazinglands and crop-

lands (Binkley & Fisher, 2013). While there are robust, broadly con-

sistent methods for accounting for and predicting future C stocks in

forest aboveground biomass, there is less consensus on methods for

assessing belowground SOC. Long-term monitoring (Johnson &

Todd, 1998; McLaughlin & Phillips, 2006), experimental manipulation

(Edwards & Ross-Todd, 1983; Gundale et al., 2005), expert review

(Jandl et al., 2007; Lal, 2005), quantitative synthesis (Laganiere,

Angers, & Pare, 2010; Nave, Vance, Swanston, & Curtis, 2010), and

ecosystem modeling (Kurz et al., 2009; Scheller, Hua, Bolstad, Bird-

sey, & Mladenoff, 2011) have all produced valuable insights into

forest management impacts on SOC. At the same time, the many

conflicting results of these studies raise the question of whether

responses of SOC to forest management can be generalized across

soil and ecosystem types. In addition, the lack of spatially explicit

assessments (e.g., maps, geostatistical models) of forest management

impacts on SOM highlights our challenge to quantify SOC stocks

and the complex spatiotemporal processes involved in scaling. Given

these limitations, methods of quantifying the spatial distribution and

controls on forest SOM across scales are needed for forest practices.

These applications may be aided by promising advances in digital soil

mapping (Mansuy et al., 2014; Mishra & Riley, 2015) and spatially

explicit soil carbon assessments (Domke et al., 2017; Soil Survey

Staff 2013).

Croplands have been managed for more than two decades in

ways that benefit soil conditions and reduce greenhouse gas emis-

sions (e.g., Paustian et al., 2016; Smith, Martino, Cai, Gwary, Janzen,

Kumar, et al., 2007). There are many practices influencing SOC

storage in croplands. These include tillage management (in some

cases, Powlson et al., 2014); crop rotations and cover crops (Poeplau

& Don, 2015); improving crop production through fertilization and

irrigation management; selection of high residue yielding crops; crop

intensification by removing bare fallow management in a cropping

system; application of silica residues to reduce greenhouse gas emis-

sions (Gutekunst, Vargas, & Seyfferth, 2017); and application of

organic amendments with manure or biochar.

Despite existing knowledge, there is a limited ability to accu-

rately estimate the changes in SOC, particularly at smaller scales

F IGURE 4 Creating conditions to optimize the effectiveness of land use to sequester soil organic carbon. Actors involved in managing
lands for soil management change in response to the scale and level of information needed. Evaluating and implementing practices (Y axis)
starts with scientists working with land managers and propagates through broader spatial scales and policies as goals are defined,
communicated, and met. Major actors can vary with each step, with activities shown in the gray boxes. Arrows represent flows of information.
In this example, the step-wise progress from local to more regional scales represent the increasing opportunity to impact both productivity and
CO2 sequestration through soil C sequestration
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(Ogle et al., 2010; Paustian et al., 2016). For example, mechanistic

understanding such as the effect of tillage management on aggre-

gate dynamics (Six, Elliott, & Paustian, 2000), has not been effec-

tively incorporated into modeling frameworks. Biochar amendments

have emerged as one of the most promising practices for sequester-

ing C in agricultural soils (Lehmann, 2007), but there are still ques-

tions about the impact of biochar on SOM dynamics (Knicker,

2011). Efforts to incorporate agricultural SOC sequestration into pol-

icy programs have been plagued by lack of understanding about the

longer term impacts of pervasive warming on SOC pools (Conant

et al., 2011), which could vary widely depending on the response of

microbial communities (Wieder, Cleveland, Smith, & Todd-Brown,

2015).

3 | THE ISCN AS A PLATFORM FOR
COMMUNICATION, MODELING, AND DATA

While science communities targeting soil health or climate regulation

are making great strides in the science of SOC, a combined and

coordinated effort could take advantage of technological and com-

munication advances to meet challenges discussed in section 2. The

ISCN along with partnering entities seeks to establish the basis (plat-

forms) by which we share openly our means of communication,

modeling, and data sharing.

Communication of our science starts with restructuring and

broadening the soil data that are shared within and by ISCN, allow-

ing for different types of data, and discovering new ways to share

data without compromising its attribution and credits. To increase

the potential impact of SOC science and to better impact land man-

agement practices, it also is beneficial to frame and disseminate our

information in the context of both soil health and climate regulation.

For example, given some knowledge of the dominant processes lead-

ing to C stability in a given soil (path A, Figure 5), one may evaluate

which disturbances may release SOC and what measurements would

mitigate SOC losses. Conversely, we may apply this framework in

the reverse direction. Given some ongoing or historical management

practices (path B, Figure 5), we can work inward and to assess what

processes could be most affected. Carbon cycle science can also be

reframed from the biological, chemical, and physical processes para-

digm presented in Figure 2 to a land management perspective

(Table 1). See Supplemental Materials SM2 for more precise defini-

tions and references.

Modeling with computational and conceptual paradigms is an

integral part of the scientific process that greatly enhances our abil-

ity to understand variations among spatial and temporal scales and

to precisely and accurately estimate and predict changes in SOC.

Conceptual paradigms that form the scientific basis for our computa-

tional models were initially based on “humification” processes

(Hedges, 1988; RothC model (Jenkinson & Rayner, 1977) and

F IGURE 5 An approach for applying
management options to the science of soil
organic carbon (de)stabilization. Three
general classes of soil carbon (de)
stabilization processes (biological, chemical
and physical) are fundamental to
understanding the susceptibility of soils to
disturbance (e.g., compaction and erosion,
etc.). As such, knowledge of
the relevant mechanism at play for a given
soil can inform key measurements needed
(e.g., soil infiltration and sediment
transport) and effective management
strategies (e.g., diversify vegetation/
minimize use and plant stabilizing
vegetation/control runoff) [Colour figure
can be viewed at wileyonlinelibrary.com]
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Century model (Parton, Schimel, Cole, & Ojima, 1987)). The commu-

nity is increasingly recognizing the role of microbial access to SOC

and its stabilization involving specific mechanisms described in Fig-

ure 2 (Averill et al., 2014; Cotrufo et al., 2015; Jastrow, 1996; Kaiser

& Kalbitz, 2012; Keiluweit et al., 2015; Lehmann & Kleber, 2015; Six

et al., 2000). Measurements used to drive and test these models

vary and are often not structured experimentally to test one model

over another. As discussed above in section 2, issues of spatiotempo-

ral scaling must address whether mechanisms and functions change

or vary between spatial and/or temporal scales. Thus, as models

increasingly incorporate these new ideas into mathematical frame-

works, new paradigms can emerge (e.g., Allison, Wallenstein, & Brad-

ford, 2010; Sulman, Phillips, Oishi, Shevliakova, & Pacala, 2014;

Wieder et al., 2015). Moreover, soil datasets and databases are

needed to evaluate models (Shao et al., 2013; Todd-Brown et al.,

2013). The ISCN strives to openly share modeling code and specific

parts of models along with data used to drive and test model perfor-

mance (Figure 6).

TABLE 1 Linkages between soil health indicators and soil organic carbon (SOC). Soil health indicators are readily measured soil properties
that are used to diagnose the ability of soil to provide services such as nutrient cycling, erosion mitigation, water storage, or microbial activity.
Many of these soil health indicators relate directly to SOC content, and many can be ameliorated through restorative practices that increase
soil organic matter (SOM) and SOC. For all examples listed, the practices that enhance soil health also restore (and enhance) SOM and SOC,
thus what is good for the goose (soil) is good for the gander (atmosphere). Based on these example, scientists and land managers can readily
agree that management practices that protect, promote, and conserve soil carbon are practices that prevent erosion, provide and preserve
water and nutrient capacity

Health indicators Functional problems Explanatory C variables Restorative practices

Physical

Microaggregate stability Erosion, compaction Root growth, fungal biomass,

biological crusts

Conservation tillage, “no-till”

Water infiltration rate Low infiltration, erosion SOM content High residue inputs, cover crops,

conservation tillage

Water holding capacity Arid region water management SOM content Organic matter additions

Chemical

Potentially mineralizable N Poor fertility Potentially mineralizable C Fertility management

Available P Poor fertility Applied organic matter Fertility and pH management

Biological

Microbial biomass C Limited soil life Applied organic matter, root biomass High residue inputs, conver crops,

conservation tillate, “no-till”

F IGURE 6 Examples of organizations,
groups or entities addressing data,
modeling and management relevance of
soil carbon. These currently disparate
niches need bridging to address complex
problems in soil C science. The soil
community is data- and knowledge-ready
for a platform like International Soil
Carbon Network that can bridge data,
tools, best management practices and
outreach. We propose a way forward to
improve soil C data curation with a focus
on process variables, which can be applied
into a community model framework and
actionable science that harnesses
mechanistic understanding to address
questions on soil health management
[Colour figure can be viewed at
wileyonlinelibrary.com]
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In addition to simply sharing model codes, it is also becoming clear

that a community-based model could emerge from the soils community.

In particular, modular frameworks with water, temperature, and plant

production modules would allow for “plug and play” with new SOC

modules that are under development. Plug and play modules would

not likely be the focus of development but are needed to realistically

simulate SOC dynamics from experiments and regional analyses. The

design of such supporting modules could be informed by or rely on

recent progress with multi-model comparative frameworks (e.g.,

PeCAN project http://pecanproject.github.io/index.html). As new

models are published and shown to work better than the existing SOC

community model, the community model would be replaced with

improved mathematical frameworks for SOC dynamics. In turn, scien-

tists and investigators evaluating SOC dynamics could incorporate

the latest science embodied in the SOC community model housed on

the platform into their assessments. ISCN would effectively encourage

the use of the latest science in national assessments such as evaluating

climate change impacts, greenhouse gas emissions, and soil health

(e.g., Ogle et al., 2014).

As soil or belowground datasets are collected, compiled, and

assembled for specific questions or assessments there is an emerging

opportunity for big soil data to be incorporated into a searchable data-

base for soil properties, and serve as a platform for syntheses of soil

dynamics and large spatial and temporal scales. Empirical models could

be structured from a searchable, robust database, but we could also

challenge our conceptual and computational models with robust data.

The ISCN network database (https://doi.org/10.17040/iscn/1305039

or https://ameriflux-data.lbl.gov:8080/iscn/doi.html.) afforded early

opportunities to design common data templates, promote data synthe-

sis, and generate publications. The ISCN-gen3 database (https://doi.

org/ameriflux-data.lbl.gov:8080/iscn/doi.html) is poised to move

beyond observational soil point data and associated drivers, and into

the realm of process-level attributes such as soil fractions and spectral

data. These data types have been envisioned and piloted since its earli-

est generations but have only recently gained attention and use

among the broader community of scientists interested in SOM.

Currently, the ISCN database has a mix of overlapping and

unique data as compared with other databases (Supplemental Mate-

rial SM1). For example, most closely aligned are the World Soil Infor-

mation Service (WoSIS) and ISCN, both of which report soil profile

data but for different attributes: The ISCN reports over 100 (carbon

plus other attributes) soil properties for ~70,000 profiles and their

constituent layers, whereas WoSIS reports 12 properties for over

150,000 profiles. ISCN currently hosts solid phase attributes for soil,

and the data are structured in a way compatible with ecosystem

CO2-land-atmosphere flux data served by the FLUXNET and Ameri-

Flux networks. Despite the large number of soil profiles included in

both WoSIS and ISCN, however, there remains an enormous amount

of un-archived soil data. Compiling and harmonizing these data could

help answer questions of C turnover; soil properties related to

mechanisms controlling SOC (de)stabilization; soil respiration fluxes

in context of soil and environmental measurements; and metrics of

pools or forms of bioavailable vs. nonavailable SOCC.

This so-called “long tail” of data has been identified in other

fields (Dietze et al., 2014) and represents data that have been col-

lected but, for one reason or another, are not easily available for

reanalysis or syntheses (Wolkovich, Regetz, & O’Connor, 2012). A

comparison of literature and data repository records suggested that

process and biological data are underrepresented in repositories, rel-

ative to descriptive, chemical, and physical data (Supplemental Mate-

rials—Figure SF1 and Methods in SM3). Comparison of the top

keywords in the literature to data repositories suggested that other

data types ripe for synthesis in context of SOC include soil incuba-

tion and temperature sensitivity, soil chronosequence studies, wild-

fire emissions/retention, nitrogen and phosphorus cycling, root and

fungal dynamics, and soil microbiology. For example, a soil carbon-

related data repository search suggests that only 1% of the entries

in the broader literature have been archived in data repositories

(Supplemental Materials SM3). Therefore, rescuing data from the lit-

erature and making them accessible and compatible with other con-

tributions and databases is a high priority and particularly important

given that climate change effectively makes older soil observations

irreproducible (Wolkovich et al., 2012).

Harmonizing disparate datasets poses unique challenges due to

the diversity in types of measurements and their associated meth-

ods, unlike larger national and regional survey campaigns which

operate under a single protocol. For example, the Biomass And

Allometry Database (BAAD) (Falster et al., 2015) has been a highly

successful example of a community-based data aggregation effort.

Public repositories, including Dryad, FigShare, and ORNL DAAC,

have emerged and enjoyed enthusiastic support. As these data

repositories have grown, issues around discoverability have emerged

such as getting people in a common community to agree on a

common technical vocabulary. Many efforts (e.g., DataONE) have

focused on semantics and linked many of these repositories in a

unified search framework. Finally, data harmonization is required not

only for typical data cleaning operations like correcting unit mis-

matches and transparent reproducibility but also to reconcile different

methods and evaluate reliability. This final step requires not only

computational skills but also domain expertise.

3.1 | Interoperability of ISCN

While these international efforts of the ISCN gain momentum, there

are parallel requirements to coordinate and share technology, data,

protocols, and experiences to maximize resources and generate

knowledge. Arguably, this can only be achieved by increasing inter-

operability within ISCN and among partner networks, organizations,

and members. Interoperability is broadly defined as the ability of a

system to work with or use the parts of another system (Chen,

Doumeingts, & Vernadat, 2008; Vargas et al., 2017).

Challenges related to conceptual barriers include syntactic and

semantic differences in the types of information (Madin, Bowers,

Schildhauer, & Jones, 2008); technological barriers such as incompat-

ibility of information technologies (e.g., methods to acquire, process,

store, exchange, and communicate data; Peters, Loescher,
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SanClements, & Havstad, 2014); organizational barriers related to

current institutional responsibility and authority such as with institu-

tions, networks, or governments (Supplemental Table S3); and cul-

tural barriers that can be country-specific but must be considered to

increase interoperability of networks (Vargas et al., 2017).

4 | CONCLUSIONS

Soils have entered an “anthropogenic state,” with most of the global

surface area either directly managed by humans or indirectly influ-

enced by human activities. As a result, soils globally have lost SOC

since at least the Industrial Revolution, with direct impacts on climate,

ecosystem productivity, and resilience to disturbance. There is a cru-

cial need to improve our science and to communicate our findings. In

this paper, we identified the following goals: (1) identify key data

needed to improve our detection of SOM and SOC trends using our

understanding of SOC stabilization and destabilization mechanisms, (2)

set up communication and sharing infrastructure to rescue, centralize,

and disseminate currently disparate soil datasets relevant to critical

soil processes, (3) develop a robust and modular modeling platform for

comparing process-based models that would move field data and

localized experiments into a framework to test Earth System processes

at local to broader scales, and (4) improve the connection between soil

C-cycle science and land management science and practices. These

goals can be achieved through improving the exchange of ideas, data,

modeling tools, and by sharing information and supporting other net-

works, organizations, and institutions.

Processes that influence changes in SOC have been defined and

quantified over the past several decades, and metrics for soil health,

degradation, and storage are beginning to reflect the interdisci-

plinary science needed to link soil/land/ecosystem/crop productivity

to CO2 budgets at various scales. Growing populations, increased

land use, and intensified land use compel us to merge the sciences

of soil health with SOC biogeochemistry. The current state of our

soils, as well as the opportunities and vulnerabilities that result from

different land management practices, are of particular importance. In

addition, quantifying the optimal SOC storage capacity of soils

would provide a benchmark to further assess human impact on soils

and help quantify potential benefits of altered soil management

practices.
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