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Abstract Most forest ecosystems are simultaneously affdzyezbncurrent global change

drivers However, when assessing these effesttalies havenainly focugdon the responses to
single factors and have raradyaluatedhejoined effects othe multiple aspects of

environmental changélere we analyzed the combined effectsaothropogenic nitrogen (N)
deposition analimatic conditionson the radial growth oAcer saccharunga dominant tree

species ireasterriNorth American forestdNe capialized on a londermN deposition study,
replicated along a latitudinal gradietitat has been taking place for more thalyedrs We

analyzed tree‘radial growth as a function of anthropogenic N deposition (ambient and
experimental addition) and eiimmer temperature and soil water conditi@s. resultgeveal
thatexperimentaN deposition enhances radial growth ag#peciesan effectthatwas
accentuatedstemperature increased aswil waterbecane more limiing. The spatial and

temporal extent,of our data also allowed us to assert that the positive effgobwing under
theexperimentaN deposition are likely due to changes in the physiological performance of this
speciesand notdue to the positive correlation between soil N and soil water holding capacity, as
has been previously speculateatherstudies. Our simulations of tree growth under forecasted
climate scenarios specifior this region also revealed thdth@ugh anthropogenic N deposition
may enhance tree growth under a large array of environmental conditions, it will not enitigat
expected.effects of growing under the considerdhbr conditions caracteristic of oumost

extreme climatic scenario.

Key wordss/Acer. saccharundiameter growth; drought; fertilization effect; global warming; lag

effects;Northern hardwood foresphysiological responsesugar maple

Introduction
The widespread increase in nitrod®) deposition from anthropogenic activities has exposed
forests warldwiddo levels ofN unprecedented in the evolutionary historjarést plants
(Vitousek and'Howarth 1991, Chadwick et al. 198#cause plant specibave adapted to deal
with a chronig,scarcity of this resour@nd to rapidly respond to changes in Bbdvailability,
the impacts oainthropogenic N on plant performance are far reaching (Xia and Wan 2008,
LeBauer and Treseder 2Q@obbink et al. 2010Furthermorganthropogenic N deposition is

not taking place in isolatiorthanges inemperature angrecipitationarealsoimpactingforest
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ecosystemandare likely to interact witlthe effectsof anthropogenic N deposition dorest
growth (Ollinger et al. 2002, Suddick et al. 2013, Kobe et al. 20i4garticular,warmng
temperatures andgreater likelihood of extended drougtwp major forest stresssiin the near
future (Vose et al. 2016, Hember et al. 201will likely interact with the effects of N deposition
on plant speciesiowever we have conflicting knowledge about how these combfaetbrs
might affect the functioning of forest ecosystems (Solberg et al. 2009, De MarcaGtAl. In
order to'thenasseshe future impact of anthropogenic N deposition and climate change on tree
species we investigate how trees exposadt@0 years oéxperimental N depositiaesponded
to varying environmental conditions.

Anthropogenic N emissions to the atmospheceeased the availability of this growth
limiting nutrient'in forest ecosysterasross the EartfVitousek et al. 1997Talhelm et al.
2012). Althoughsome of these emissions (Nhave declined during the last few decades,
emissions of non-regulatéadrms (NHs) have been increasing (Li et al. 2016). Therefore,
ecosystemsvill continue to be exposed toparalleledevels of N availability which could
plausibly elicithoth positive and negative effects on foreSksgative tregrowth responses to
increasing N'deposition are mostly associated gidiatersoil acidityas well as théeaching of
phosphoreus and base cations (Izuta et al. 2004, Perakis et al. 2006, Zaccherio and Finzi 2007).
In contrastyanthropogenic N deposition oftas kfertilization effecton tree specieand
positivdy affectsgrowth (e.g., Spinnler et al. 2003, Solberg et al. 2009, Vicca et al. 2012,
Ferretti et'al. 2014)ynaximum tree height (Ibafez et al. 20168)waell ascarbonstorage irtrees
and soils (exgmPregitzer et al. 2008, Hyvoen et al 2008, Thomas et gl. 20d@ver, his
fertilizationeffectappearsto be mediatethy other environmental factors (Magnani et al. 2007
For example, in a tree growth study across an environmental gradient, Bedison anld McNei
(2009) speculate that temperatudesaturation, soil aciditandozone, could beffsetting some
of the growth-enhancingffect of anthropogenid\.

Temperate forests will also experienwearming andagreaterincidence of drought the
near futurellos et al. 209, Clark et al. 2016Lienard et al. 2016 Althoughtree speciesary
in their responsesadial grovth appearso behighly sensitiveto water limitation(e.g.,Adams
and Kolb 2005Jumpet al. 2006, Brzostek et al. 201#).the case of isohydric species, likeer
saccharumthe most immediate response to low soil water availability is the closure of stomata
to better maintain a constant level of leaf turddaxizoni et al. 2013 If droughtremains for
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long periods of time, the majeffectis decreaseghotosyntheti@assimilationandreducedadial
growth Bahari et al. 1986In extreme casedyis couldthenlead to carbon starvation and
increased risk of défa(McDowell et al. 2008). Thus, understandinge specieperformance
underwarmer andiryer conditionsbecome®ssential for forecasting productivity in forests
the future.

Most gudies investigating the combined effects of anthropogemeposition andoil water
availability'on‘tree growth have followed one of two approaches. Experimental studies, mainly
conducted'with"seedlings and saplings undetrotied conditions in greenhousagport a
detrimental effect of great®& availability when plants argrown under watelimitedconditions
(DeVisser et ak, 1996, Dziedek et al. 2016). The mechanism behind this reispreseer leaf
areapromotedby higiN availability that cannot be sustained under sioyl conditions (Nilsen
1995). Incontrast observational studies, mainly foeaon adult tree growth along
environmental gradients gbil N and water availabilityreport gpositive relationship between
increased N availality and resilience to drought (Martin Benito et al. 2004l et al. 2015).
Some of thegstudies attribute this pattern to the positive association between more fartile soll
(i.e., highermsoil*N availability) and higher water holding capacity of the soil (i.e., due to higher
organic matter content) that would buffer plants from the negative effegtewing during a
drought eventl{(évesqueet al. 2016). This dichotomy of respongksstratesour lack of a
thorough understanding ¢row multiple agents oflobal changenay interactand affect future
productivity offorest ecosystems

To betterunderstartibw the effects oenvironmental conditions arahthropogenic N
depositiommayrinteracto influencetree growth and thus forest productivitye analyze@0
years of radiagrowth incremergfrom a dominant tree species in eastern North American
forests,Acer saccharunMarsh. Tree growth data were collected as partlohgterm
experiment.in.which anthropogenic N deposition was increased anaosilssa latitudinal
gradient.Specifically we askedl1) what are the optimal temperature and soil water conditions
for tree growth, and do these differ between N treatf@@)tSo the effects of the experimental
N depositionon.tree growtldepend on the environmental conditions trees are growingu8der
Will these effectshange under the climate scenarios forecdsteithe regionAnswers to these
guestions will position us to better assess the implicaf@mrferests growing under the
combined effects ahultiple global change drivers.
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M ethods
Study sites and experimental desigro-addres our research questionge capitalized on the
tree growth data collected as partadbngterm Ndepositionexperiment thaivas initiated in
1994acrosghe uppelGreat Lakes Region, USA(rton et al. 1991). This study providesay
to identify the.combined, but not confoundedifects of N ane&nvironmental conditionsn tree
growth. Four gperimental sites, naturally regenerated foregése distributed along a
temperature gradieeihcompassing most of the latitudinal range of the Northern Hardwood
forests in eastern North America (Table Sifes were similar in age, soil properties and forest
compositiondifferences among sites arise from temperature and ambient N deposition levels
(Table 1).At each sitesix 30x30 m plots were dakatedand in 1994 half of the plots started
receiving N“additionsimilar to thosebserved at the time in some parts of Europe and eastern
USA (Bredemeier et al. 1998, Fenn et al. 1998). Nitrogen additions af B@K-N ha'yr’
aboveambient were applieth six even applications (5 kg fyr™) over the growing season as
solid NaN@.

TreeGrowth= At the beginning of the experiment, all individual trees with a diameter at breast
height (dbh; 1.37 m} 5 cm weradentifiedand numbereth each plotThereafterdbh was

measured every year the autumrollowing leaf fall using tapes. &nted marksvere placed at

1.37 mabove,the soil surface on each tree, ensuring all annual measurements were made at the
same |gation along the tree bo{dbh data are availabtmline'). Thespecies we used in our
analysisvasAcer saccharumthe dominant overstory tree in all study sifdss is ahighly
shadetolerant and slovgrowing specieghat mainlyoccurs orfertile, moist and welbrained

soils and has been characterized as highly susceptible to water limit&tgstra6d Pregitzer

1991). Annual tee radial growth was estimated as the difference in dbh between two consecutive
years, forlindividuai in yeart annual growttwas:G;; = dbh -dbh 1. To avoidmortality driven

growth declines (Wyckoff and Clark 2002), we only included trees that were alive during the
entire periodmortality largely occurred ithe smaller size classésto 10 cm dbh)We hal

records for a total of 1016 individuals collectmaer 20 years (1994-2013stimateshatwere

zero or negat@were discardednd were considered measurement sriic@ ensure we were not

biasing theanalysiswe confirmed that the number of discarded data points was similar among

1 http://forest.mtu.edu/research/michigangradient/data.htm
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treatments anthat they did not show stromglationshipswith theenvironmentatlata(see

Appendix S1).

Environmental data At the center of each plot, air temperature andmsatric potential were
collected during, the study period. Temperature was measured at 2 m above the ground using
thermistorsfedel ESO60-SW, Wescor Inc., Logan, UT, USA); measurements were taken

every 30 minutesSoil matric potential was recorded at gftheof 15 cm using gypsum soil

moisture blocks (Model 5201, Soilmoisture Equipment Corporation, Goleta, Ca, USA). Soill
moisture blockresistance values (ohms, recorded every 30 minutes and averaged every three
hours) were converted to matric potential (MBsing relationships developed for each site from
intact soil eores equilibrated with soil moisture plates (Burton et al. 2004). We included
temperature and soil matric potential in our analysis because both variables determine the water
status of the plas. Temperature regulates water demand through its control on vapor pressure
deficit, whereas soil matric potential provides a measurement of plant available water (Lambers
et al. 2008). Prior to our analyses, we extensively explored the data to sejeetitius of time

for which environmental variables had the highest correlations with growth. Teorpesad

matric potential during the summer (June, July and August) had the strongestiassoeith

growth; thusjn the analysisve used monthlyaverage from those months.

Analysis and.#ulations- We estimated the effects of temperature andnsaific potentiabn
tree radial growthlusing the approach developed by Canham and Thomas (2&r@)we
present an‘overvievdetailed explanations are provided in Apperg2xWe used our 20 years
of individual treedata to identify the maximum growth rate observed for each@ex°*s
averagenmaximum growth ratedifferedbetween sites and treatments, Tab)lenk then

analyzed each yeéargrowth (i) as a deviation from thadividual maximumas being

mediated. by.theffects E) of the temperature and sailatric potentialBecause growth in

previous years.can affect current yegrowth (lag effects; Bishop et al. 20Pltier et al.

2016), ve alsoincluded an effecassociated witlgrowth duringeach othe previous four years.
Thus, ouranalyses begin in year five after the initiation of the experiment in 199 arairaed
through 2@3. nwpreliminary analyses (not shown) we also considered other variables that could
be affecting growh, e.g., growing season length dedf are indexL(Al ). Becausdhey did not

improve the fit of the analysis, we opted for the most parsimonious model, shown below.
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We considered the true maximum growth potential of each@reex/™¢, to be a latent
variable estimated from the dqtanax??S; which varied betweef.05 and 1.4 cm),
Gmax{"™¢~Normal(Gmax?",1). Estimating maximum growth rafer each individual tree
allowed us to reflect individual variability in growth rates due to tree size, site charactarstics
any other individuatlifferences nbconsidered (e.g., competitive environment, genetic
differences)Annual gowth dataG, werethen analyzed as a function of this true estimate,
GmaxX"¢, and the effects of temperature, soil moisture and previous years' growth, with
likelihood:

Gi,t"‘Normal(Gmi,t' Utzreatment(i))
and process/madel:
CMygpe= Gmax]Te - TemperatureE ¢ treatment (i)
- Soil MoistureE; i rrearment(i) - PreviousGrowthE; ¢ ireatment(i)
Under optimal conditiongffects areequal to oneE = 1) and trees would reach their maximum
growth rate Gmax). If conditions deviate from their optima, then the effects decreased
following a Gaussian curve (E<1) and the individual tree wouldeaxh its maximum growth
rate (see"Appendi82for detailed description of how the effects were estimated

Because growth in a particular year can be affected by environmental conditinggtake
in previous years (Bauce and Allen 1991, Bishop et al. 20i&gftect of temperature and soil
moisture,TemperatureEandSoilMoistureE were estimatetbr the currentyear,as wellas a
function of theprevious two yearsf environmental data. To assess which month and which year
of environmental data wasost influential weveighed the contribution of easimmemmonth
and year followingOgle et al(2015) (see Appendi83for detailed description about the
estimation-of-the weights). Thafluence of each of thiaur previous yearsf growth,
PreviousGrowthEon current ye& growth,G;, was alsaveighed using the same method
(AppendixS3). We assessed the effects of the N deposition treatment wthdog estimating
effect sizes (ES: In[N deposition/ambierdf)the combined temperature and soil moisture effects
(Gmax TemperatureESoilMoistureB.

In addition, $sing parameter estimates, posterior means, vasamcecovariances, we
simulated growth rates for each tree under two cbree¢narioglevelopedspecificallyfor the

region(as part of a Forest Vulnerability Assessment, Handler et al. 2014). The first scenario (S1)
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accounts for moderate changes {Q.Temperature rise and 28% precipitation increase in the
summer), driven by a decline in G@missions (PCMB1). The second, magtremescenario

(S2; 5.7C temperature increase and 40% precipitation decrease in the summer) is based on
current emissions that are maintained into the future (GFDLA1F1). Simulations wene thu
same tree data, stagiim year one of the analysfsy the same number of years we analyzed
We modifiedthe recorde@nvironmental data according to the projections from the climate
scenariogincreasing temperaturé(] and increasing atecreasingoil water MP4], for latest
estimates weised the same relationships developed for each site [Burton et. al. 2004]); thus,
simulations.incarporate the yeto-year variability documented in the data. We then compared
average site @and treatment growth estimates with those ghath ice., current conditions).

All model parameters were estimated following a Bayesian approach fromfoamative
distributions (Appendid&4). Model runs were carried out in OpenBUGS (Thomas et al. 2006;
see Appendissfor model codg We ran three different chains for 30,000 iteratiddgrameter
valuesand-effeet sizes were estimated after convergence ohties.

Results
For the final analysis, we had a total of 11,@8fimates ofree growthwhich varied
substantially=ever the 20-year period usedun analyseg¢see Appendis6for graphical
summayries of the dataFurther air temperature and soil matric potential exhibitedsiderable
variability amongsites and across yeadsppendixS6). The fit of the radial growth submodel
(G, R for predictedvs observed radial growth) was 0.54, and for the maximum growth submodel

(Gmay it was 0:87. All model parameters are reported in Appefdix

Effects of temperature arswil water - The temperature and sailatric potentiafor optimal

growth were similar for the ambient aadperimentaN deposition treatmen(§ig. 1). Growth

rates peaked-at ~16 temperature (mean+SD: 16.3+0.12 ambient and 15.8+0.28 N deposition,
these are the cambined estimates of Jdlutg-August averages during current and previous two
years), a slightly cooler temperature than the average in the dat&);-aid at a matric
potential.of -0.45 MPa (meanzSD: -0.45+0.05 ambient and -0.46+0.06 N deposition), also a
slightly lower value than the data avgea0.35 MPa)However, growth estimates differed
between treatments and these differences increased as cordkfiamisd from the optima (95%
predicted growth intervals do not overlap; Fig. 1), with growth decline Iséingerunder

experimentaN deposition.The variances for the temperature effect for ambient and N
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deposition were 7.98+1.06 and 15.03+3.58 respectively, for the soil moisture effect were
0.32+0.1 ambient and 0.48+0.17 N depositMeight estimates indicate that the temperature
regime taking place during the previous yedl)( and, in particular, temperature during the
month of Jungin every year)were most influential on curregeartree grow (see Append&7

for estimates)., The soil matric potential values that most influenced growth were those taken
place two years previous to currénR), specificallyduring the month of August (Appends?).

Effects of previous years' growdfThe effect of previous yesigrowth on current year growth
wassimilar_between treatments and peaked beyond the range of your data dptima at
2.28+0.29 ¢m.yf for ambient and 3.31+0.4 cmy/for N deposition, and variances 4.01+1.18 in
ambient and/8.08+2.15 in N deposifjofihe most influentialag effects opastgrowth on
currentyearwere those from three years bef@&, AppendixS7).

Effect of N depasition treatmeunhder varyingenvironmental conditionsin general, tree

growth rates'weralways higher under the N depositimeatment (positivand statistically
significantESwvaluesin Fig. 2). And, as conditions deviated from optinteinperature or soil
moisture thedifferences between the two treatmesdsalatedbeinggreatesunder the most

negative matric potentiglghis wasaccentuated by increasing temperat(Fag. 2).

Changes in the'effects of N deposition treatment under the forecasted elfmadéctions of
average radial growtfor each site and N depositiseatmenunder current and forecasted
conditionsrevealgrowth rates consistently higher unégperimentaN deposition, and in most
caseghis difference was significariFig. 3comparisons between black and red symbgais
predictions move through the climatic scenarios, growth wouklidpetly negativelyaffected
under S1, gpeecially in thavarmersouthern sites. Comparisons with the S2 predictiensala
largeandeonsistently significant decreasegrowth across sites and tteeents (Fig. 3
comparisens'within symbols of the same color).

Discussion
To betterunderstand the concurrent effect of changing environmental conditiorfistarerates
of anthropogenic N deposition eree growth, v analyzed two decades of growth daban a
dominant tree species in eastern North American fré&sie environmental variability of the
data, bottspatially and temporallygs well aghe designof our replicatecexperimentcross a
region, allowed us to quantify the longrm effects ofinthropogenic N deposition on tree
growth under a wide array of growing conditiortere, we demonstragelult tree growth rates
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are always higher, and mostly significardly underexperimentaN depositionFurthermore

our analysis revealed that the optimal conditionsgriEegrowthweresimilar betweermmbient

and experimentall depositionHowever as temperature increased aod matric potential
declined, tree growttlecreaseffom its maximum potentiat a slower pace under experimental
N deposition=Growth predictachder the forecasted climatic scenarios revealstiong decline
under the most extreme forecabhus, evetif elevatedN depositiorhas an ameliorating effect
under lessfavorable environmental conditions diaereasén tree growthdue to climate change
will not befully“lessenedy growing under anthropogeritdepositionevels.

1) What are the optimal temperature and soil water conditions for tree growth, and do these
differ between=N treatmentdfumerous tree species are adapted to grow under a wide range of
environmentalconditions, whichieflected in their large distributional rangéstt{e 1971).
However their functional performance does vary alatigatic gradientsand determines tire
competitive abilityat any given siteMarcora et al. 2008, Garcia et 2000). Understanding
these differences, and quantifying how growth and fecumadlity deviate frontheir optima,
becomes gritical for forecasting future performance undergihg conditions (Valladares et al.
2014).Thetemporal and spatial extef our study enableds to estimatéhe optimaklimatic
conditionssunder which growth &f. saccharumvas maximizedn this region Optimal
temperature ansoil water availabilitywere similarunder ambient and experimental N
deposition. inportantly what diffeedbetween treatments was the deparftom thar optimal
conditions (Fig. 1).

Negative growthresponsgeto warmer temperatuseand drier soils & been previously
documentedsik. saccharunfe.g., Gavin et al. 2008, Bishop et al. 201®mperature has a
myriad ofeffects orthe physiological processes that undgulent growth €.g.,affects
respiration, photosynthesis, transpiration, storage). Among these, one of the most effiestznt
for plant performance is related to how tergiure regulates water demand gitle strong
relationship between temperature and vapor pressure deficit, which inaepsesntiallywith
temperaturei(Lambers et 2008). Thus, under warmer conditions plants experience a higher
demand forwater that may not imet, causingstomatal absure and reduced photosynthetic
assimilation Bahari et al. 1985). Overall, otgsultsindicatethatas water demanidcreass
under warmer conditionspil water, even if it remains the same, might nosuffécient to

sustain growthThis agrees witlprevious work on this drought intolerant species, in which
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reductions in photosynthetic and growth performance have been linked to soil watdiolmita
(Peltier and Ibafiez 2015, Gunderson et al. 2000, Walters and Reich 1997). In duelfiact, t
that previous years' performance also had an effect on growth illustrates hefiebieof

adverse conditioni; one particular yeazould have repercussions on plant performance over
subsequengears (Peltier et al. 2016)

2) Do the effects of the N addition treatment on tree growth vary as a function of the
environmental‘conditions trees are growing under@d studies analyzing tree growth in
response to'droughtivealso reported higher resilience to drought under higher levelsildf
availability (Lévesqueet al. 201%. However, tlesebeneficial effect wereattributed to the
greatemwater helding capacity of fertile soildye to their higher organic matter content
(Baribault'et'ali 2010). With our experimendi@sign we were able tgeparateéheeffect of
growing under ambient and experimental N deposition from those imposed by temperature and
soil water availability During our 20yearstudy periodat each sitesoil waterpotential did not
differ between N deposition treatments (see Appe8aifor data and analysighus the
beneficial effect oanthropogenic N deposition dreegrowthis not related to any difference in
soil water availabilitypetween treatmentkeaf production, measured LAl (Table 1), was
slightly higher, but not sigficantly sq under experimental N depositiadhgreforeit is unlikely
that thesesmall ecologicatlifferences would account for tindigher growth rateespecially
during adverse environmental conditions. Maggard et al. (2016) observed that fiertilafat
Pinus taedaeduced stomatal conductanbet nd photosynthesisf this were tobe the case

with our studysspecies, it would explain taeger differences in growtperformance under dry
soil conditiensHowever, Talhalem et al. (2011) did not observed differences in photesynthe
between treatmentt one of our sitegAnother mechanisrplausibly explaining our results could
be related.to tree conduit architectubemetaanalysis assessing the effecaathropogenid\
deposition.on. growth of several tree species in Europe (includiAgenfound that N
availability might facilitate the construction of a xylestructure(moreconduits per unit area)
that ismoreefficient for water transport under wet conditions and more restbeembolism
under drought.conditions (Borghetti et al. 2018)ch responseould account for higher growth
ratesunder experimental N deposition in both wet and dry conditimmsthiswould need to be

confirmed by direct observation of tree wood anatomy. Also, higher nutrient availdoilibg

This article is protected by copyright. All rights reserved



drought has been associated with higher water use efficiency and lower riskarf searvation
(Gessler et al. 2017), and thus, higher growth.

Our analyses revealdbat growthdifferencesdbetween N deposition treatments were
accentuated under more adverse conditagdriemperature and soil water availabiliiig. 2).
Several field.studies hawlcumented that the enhancement of tree growth by anthropogenic N
depositionimay be ameliorated when plants are growing under suboptimal environmental
conditions(Magnani et al. 2007, Bedison and McNeil 2009). However, in these studiest
entirely possible tgeparate the effects ahthropogenic N deposition from other facttirat
alsoinfluence tree growth. The unique characteristiocsurexperimentatiesign data from trees
growing underthe same environmental conditions under ambient and experihdepasition,
allowed us'to isolate the effectsarfthropogenic N depositidrom other limiting factors.

3) Will the effect of growing under N addition treatment change under the predictedeclimat
scenarios for the region®/hen we predicted growth ratesder current and forecasted
scenarios,\we were able to assess the magnitude of the N depimsatment on growth.
Predictionssunder S1, moderate scenario, differ little framdhecorded in the data (Fig. 3
However, under the S2 scenario growth rates could decrease by three-fold amargisites
treatments«(Fi1g3; decreases ranged between 2.73 and 3.98 tifitdkXhe positiveeffect of
anthropogenic N deposition on tree growth appears to be sustained evethigndest extreme
scenaridFig. 3). For example fiect sizesamong sites averadémeartSD) 0.12+0.07 under
current conditionsndtheyincreased t®.34+0.03 under the S2 scenario; thus, ghewth
enhancing’effect of experimental N deposition appacsntinueunder adverse condition®ur
resultscontradictfindingsfrom seeling and saling experiments, in whicthe plants most
affectedby water limitatiorwere those growing under conditions of high soil N availability
(Nagakura et alz 2008, Vandereeden et al. 199#)se discrepancies are likelue to the
ontogenetiesstages considerdtht is, the growth response of young seedlings to that of mature
adult treesin-aspreviousnalysis of the same ddtharez et al. 2016), we documedboth

higher mertalityand higher relative growth rate among the sesditeesize classeander
experimental’N,deposition. Although not implicit in that analysis, these trends wouldaatiree
the reported negative effects of experimehtalepositiorunder adverse conditions when
considering early ontogenetic stagésunger trees, ~5 cm dbh, grew faster uredgrerimental

N deposition and that excess growth could have become detrimental during adverse conditions
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(i.e., higher maintenance costs to support a greater biomass under the forest caswdpgy) in
higher mortalityin dry years(Rose et al. 200Kobe 2008, while mature trees could have
accessed deeper water sources due to a more extensive root $istefiore, any assessment of
the combined effects @inthropogenic N deposition and water limitation should consider
potential variability of responses across oetogfic stagesf tree development.
Conclusions
Forest tree"species are simultaneously exposed to the influence of several interactive aspects of
global change;, understanding thategrateceffects on tree growth becomes essential to reliably
predict forest functioning into the future (Loehle et al. 2016, Hungate et al. 2003.
experimentwewere able tseparatéhe effects ointhropogenic N deposition on tree growth
from those'associated with temperature aader limitation which enabled us to asséssv the
effects of temperature and swiater availabilityvaried with Ndepositiontreatments well as
how N deposition may affettee growth under the forecasted climate scen&iahe region. In
addition, our results sheight into thecontradictory growtlesponsegseported inother studies,
in which anthrapogenibl deposition has elicited botieneficial (natural field gradients) and
detrimental (controlled seedling and sapling experimeaxitsits on treeOur results indicate
that,at least.for adult tree stagegowing under anthropogenic N deposition may ameliorate
some of the'negativefetts of water limitationHowever, @spte the positive effect of N
deposition on radial growth, and the increase of this effect under more adverseosnditi
anthropogenid\ depositionwill not fully compensate for the negative effects of growing under
the forecastediclimatdhus, we should expect a decreasa.isaccharungrowthacross the
geographicsrange of our study, in whiwhterdemandmayincrease and soil water may become
a limiting resourcas the Earth’s climate continues to change intdéutiee
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Table 1. Mean. (+SD) climatic, edaphic and ecological characteristics of four study sites

distributed aross a climate gradient across Michigan’s Upper and Lower Peninsulas. BA: basal

area, LAI: leaf area index.

Sitevariables Site A SiteB SiteC SiteD
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(most northern) (northern) (southern) (most southern)

Location 46°52'N 45°33'N 44°23'N 43°40'N
88°53'W 84°52'W 85°50'W 86°09'W
Temperature 4.8°C 6.°C 6.9C 7.6C
Precipitation 821 mm 828 mm 856 mm 793 mm
tOzone 88+14.1 ppb 80.41+7.73 ppb
Age 107 yr 101 yr 102 yr 105 yr
"Soil sand 85% 89% 89% 87%
"Soil pH 4.83 5.03 4.47 4.66
"Soil orgafic/C) 19.0mg Clg 19.4 mg Cl/g 15.4 mg C/g 18.4 mg C/g
” Soil ca* 31 g/nf 140 g/nt 45 g/nf 53 g/nf
"N deposition | 0.68 g nfyr 0.91 g nfyr™ 1.17 g nifyr! 1.18 g nifyr?!
AcerBA 32.6 cmim™ 29.4 cnim 26.5 cnim’ 25.1 cnim’
Total BA 36.6 cnim™® 33.9 cnim’® 34.8 cnim’® 39.1 cnim’®
" LA ambiént 5.96+0.58 6.67+1.28 7.59+1 7.8+0.78
™" LAI N deposition 6.17+0.58 7.08+1.28 7.24+0.84 8.2620.09
GMaXambient 0.32+0.19 cm 0.34+0.16 cm 0.31+0.17 cm 0.33+0.20 cm

tOzone levels are based on the highest 8 hr of ozone concentratiorted at the two monitoring stations closest
to the sites, Seney,(sites A and B), and Houghton Lake Gitgeml D). Values were available for the period 2002
2013.

"Values at the beginning of the experiment, 183 onet al. 199).

“ Exchangeables@&Base saturation in surface soils ranged from 70 to 96%.

™ LAl data.was.estimated from litterap collections, see Burton et al. 1991.

Figure 1. Effect,oftemperatue, soil moisture and previous years' growth on tree radial growth,
shown asGnax - Effect(Gmax Values were average across sites for eadepdsition treatment).
Circles represent growth data associated with the effect of each vaciatvlesindicate the
average respons¥ertical dashed lines show the values of temperature and soil moisture at

which optimal growth is reached.
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Figure 2. Effect size of the combined effects of temperature and soil meistugrowth

(expressed as ES:fBfowth NdepositionGrowth Ambiert]; Growth:

Gmax TemperatureESoilMoistureE for this calculatiorGnaxWas average across sites for each N
deposition treatmehtFor clarity only average values are plotted, all ES values were positive and

statistically_significant, the 95%CI did not include zero.

Figure 3. Average growth estimates (means+95% predicted interval) for each site and treatment
combination‘under current environmental conditions (C, based on collected environmental data
during the study period) and under the two climate scenarios forecasted for the region, S
(moderate.changes) and S2 (more extreme changes). Asterisks indicate N treatments are
significantlydifferent, 95% PI do not overlap; within each treatment, i.e., salor different

letters betweeniclimatic scenarios reflect statistically significant differences.
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