High fat diet-induced oxidative stress blocks hepatocyte nuclear factor 4α and leads to hepatic steatosis in mice

Running title: Oxidative stress blocks hepatocyte nucleus factor 4α

Dongsheng Yu^{1,#}, Gang Chen^{2,#}, Minglin Pan³, Jia Zhang¹, Wenping He¹, Yang Liu^{4,5}, Xue Nian¹, Liang Sheng^{1,*} and Bin Xu^{6,**}

¹Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China

²Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical

University, Wenzhou, Zhejiang 325000, China

³Department of endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Rd, Nanjing, Jiangsu 210011, China

⁴Department of Gastroenterology and Hepatology, Zhongda Hospital, Nanjing, Jiangsu 210009, China

⁵Institute of Gastroenterology and Hepatology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China

⁶Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48109-56788, USA

*Corresponding author. Liang Sheng, Ph.D.

Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Rd, Nanjing, Jiangsu 211166, China.

Phone: +86-13913007736; Fax: +86-25-83237637. Email: lgsheng@njmu.edu.cn (L. Sheng)

**Corresponding author. Bin Xu, Ph.D.

Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48109-56788, USA

Phone: 734-647-2883; Fax: 734-936-6684. Email: bxu@umich.edu (B.Xu)

Grant informations:

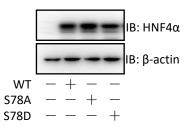
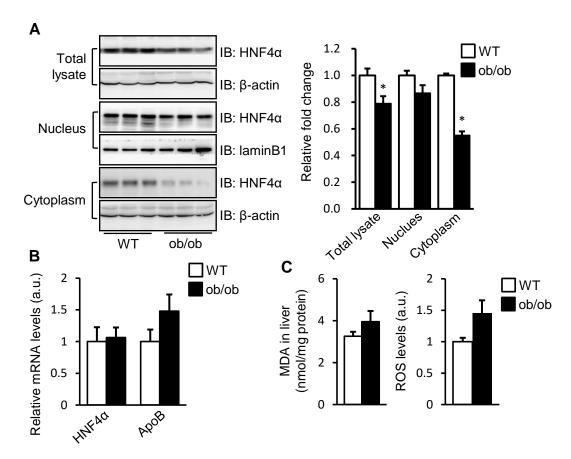

Contract grant sponsor: Natural Science Foundation of China; Contract grant number: 81400613. Contract grant sponsor: Natural Science Foundation of Jiangsu Province China; Contract grant number: BK20140901 and BK2015041792.

Table of contents


Supplemental Figure S1. The expression levels of exogenous WT HNF4 α , S78A and S78D compared to that of the endogenous HNF4 α in COS-7 cells.

Supplemental Figure S2. The regulation of HNF4α functions in ob/ob mice.

^{*}These authors contributed equally to this work.

Supplemental Figure S1. The expression levels of exogenous WT HNF4 α , S78A and S78D compared to that of the endogenous HNF4 α in COS-7 cells. COS-7 cells were transfected with expressing vectors of WT HNF4 α , S78A and S78D mutants. Cells were harvested after 24 h. Proteins from cell extracts were immunoblotted by antibodies of HNF4 α or β -actin.

Supplemental Figure S2. The regulation of HNF4 α functions in ob/ob mice. Male WT and ob/ob mice were fed with chow diet until 20 weeks old. (A) Proteins from nucleus, cytoplasm and liver extracts were immunoblotted by antibodies of HNF4 α , laminB1 or β-actin. (B) Total RNA was isolated from livers to detect mRNA level of HNF4 α by RT-qPCR and normalized to 36B4 mRNA level. Data are expressed as fold-change relative to the level of WT mice, n=6 per group. (C) MDA and ROS in liver were assayed (n=6 per group) with kit. The data are expressed as the mean ± S.E., *p < 0.05. a.u., arbitrary units.