Fluctuations of TASEP on a Ring in Relaxation Time Scale

JINHO BAIK
University of Michigan

ZHIPENG LIU
New York University

Abstract

We consider the totally asymmetric simple exclusion process on a ring with flat
and step initial conditions. We assume that the size of the ring and the number
of particles tend to infinity proportionally and evaluate the fluctuations of tagged
particles and currents. The crossover from the KPZ dynamics to the equilibrium
dynamics occurs when the time is proportional to the 3/2 power of the ring size.
We compute the limiting distributions in this relaxation time scale. The analysis
is based on an explicit formula of the finite-time one-point distribution obtained
from the coordinate Bethe ansatz method. © 2017 Wiley Periodicals, Inc.

1 Introduction

Consider interacting particle systems in one dimension in the KPZ universality
class such as the asymmetric simple exclusion processes. The one-point fluctua-
tions (of the location of a particle or the integrated current at a site, say) in large
time ¢ are of order 71/3 if the system size is infinite and converge typically to the
Tracy-Widom distributions. These are proved for the totally asymmetric simple
exclusion process (TASEP), the asymmetric simple exclusion process (ASEP), and
a few other related integrable models for a few choices of initial conditions (see,
for example, [1},/11}/22,39]; see also [14] for a survey). On the other hand, if the
system size is finite, then the system eventually reaches an equilibrium and hence
the one-point fluctuations follow the t1/2 scale and the Gaussian distribution. In
this paper we assume that the system size L grows with time ¢ and consider the
crossover regime from the KPZ dynamics to the equilibrium dynamics. In the KPZ
regime, the spatial correlations are of order 12/3. Hence if the system size L is of
order £2/3 then all of the particles in the system are correlated. This suggests that
the transition, or the relaxation, occurs when ¢ = O(L3/2) [12l[16]20,21,24.[30].

We focus on one particular model: the TASEP on a ring. A ring of size L is
identified as Z;, = 7Z/L, which can be represented by the set {0, 1,...,L — 1}.
The point L is identified with 0. We assume that there are N particles, and they
travel to the right following the usual TASEP rules, but a particle at site L — 1 can
jump to the right if the site 0 is empty, and once it jumps, then it moves to the site 0.
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The TASEP on a ring is equivalent to the periodic TASEP. In the periodic TASEP,
the particles are on Z such that if a particle is at site i, then there are particles at sites
i +nlL forall n € Z, and if a particle at site i jumps to the right, then the particles
at sites i + nL, n € 7, all jump to the right. A particle in the TASEP on a ring
is in correspondence with infinitely many particles of the periodic TASEP, each of
which encodes a winding number around the ring of the particle on the ring. We
also note that if we only consider the particles in one period in the periodic TASEP,
then their dynamics are equivalent to the TASEP in the configuration space

1.1y Xn(L):={(x1,Xx2,...,XN) eZN ixj<xp<--<xy<x + L}.

The difference is that there are N particles in the TASEP in X' (L) while the
periodic TASEP has infinitely many particles. We use three systems, the TASEP
on a ring, the periodic TASEP, and the TASEP in Xy (L), interchangeably and
make comments only if a distinction is needed.

As for the initial conditions, we consider the flat and step initial conditions.
The number of particles in the ring of size L is denoted by N where N < L.
We consider the limit as N, L — oo proportionally and time ¢ = O(L3/?), and
prove limit theorems for the fluctuations of the location of a tagged particle in the
periodic TASEP and also the integrated current of a fixed site. We show that the
order of the fluctuations is still 1/3 as in the KPZ universality class but the limiting
distributions are changed, which we compute explicitly. The limiting distributions
depend continuously on the rescaled time parameter t, which is proportional to
tL73/2,

For the step initial condition, the limiting distribution depends on one more pa-
rameter. Due to the ring geometry, the rightmost particle eventually meets up with
the leftmost particle, which is in a high-density profile due to the step initial condi-
tion, and therefore there is a shock. The shock travels with speed 1 —2p on average
where p = N/L is the average density of particles, while the particles travel with
speed asymptotically equal to 1 — p on average. Hence due to the ring geometry,
a particle meets up with the shock once every O(L) time. For ¢t < L3/2 the
fluctuations of the number of jumps by a particle are distributed asymptotically as
the GUE Tracy-Widom distribution Fgyg, as in the L = oo case, if the particle
is away from the shock. However, if the particle is at the same location as the
shock at the same time, the fluctuations are given by (Fgug)?. (To be precise, for
t = O(L), they are given by Fgyug(x) Fgue(cx) for some positive constant ¢ that
dependsont/L. For L <t < L3/2 the constant ¢ is 1.) The change from Fgug
to (Fgug)? at the shock is a similar phenomenon to the anomalous shock fluctua-
tions studied by Ferrari and Nejjar [17]] for the TASEP on the infinite lattice Z (see
also Section [2| below.). In the relaxation time scale 1 = O(L3/2), the effect of the
shock becomes continuous in the following sense. If we introduce a parameter y
to measure the scaled distance of a tagged particle to the shock, or equivalently
the scaled time until the next encounter with the shock, then the fluctuations of the
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location of a tagged particle converge to a two-parameter family of limiting distri-
butions depending continuously on 7 and y. The limiting distribution for the flat
initial condition in the relaxation time scale, on the other hand, depends only on .

In order to prove the asymptotic result, we first obtain an explicit formula for
the finite-time distribution function for the location of a particle in the TASEP in
Xy (L) by using the coordinate Bethe ansatz method [7,[21}36}38|]. Namely, we
first solve the Kolmogorov equation explicitly and obtain the transition probability
by solving the free evolution equation with appropriate boundary conditions and
initial condition. The condition xy < x; + L gives an extra boundary condition
compared with the TASEP on Z. We then sum over all but one particle to obtain a
formula for the finite-time distribution function for one particle for general initial
condition. This formula can be further simplified for the flat and the step initial
conditions that are suitable for asymptotic analysis. The final formula for the finite-
time distribution functions is given in terms of an integral involving a Fredholm
determinant on a finite discrete set (see Section [7]below). If we take L, N — oo
while fixing 7 and the other parameters, the discrete set becomes a continuous
contour, and we recover the Fredholm determinant formulas for the TASEP on Z
for the step and flat initial conditions [9,|11},22].

We only discuss the relaxation time scale in this paper. The results for sub-
relaxation time scale, < L3/2, are discussed in a separate paper [3], and those
for super-relaxation time scale, t > L3/2, will appear in an upcoming paper.

The TASEP on a ring was studied in several physics papers. The relaxation time
scale 1 = O(L3/?) was first studied by Gwa and Spohn [21]. They considered
the eigenvalues of the generator of the system using the Bethe ansatz method, and
argued through numerics that the spectral gap is of order L~3/2_ This can be in-
terpreted as an indication that the relaxation scale is 1 = O(L3/2). The spectral
gap was further studied in [18,[19]. The method of [21]] was extended by Der-
rida and Lebowitz [16] to compute the large deviations for the total current by
all particles in the super-relaxation scale 1 > L3/2 (see also [15,37] for surveys).
The finite-time transition probabilities for general initial conditions were computed
by Priezzhev [29] by adapting the coordinate Bethe ansatz of Schiitz [36] for the
TASEP on Z. The result was given in terms of a certain series, and it was further
refined in [27]]. A different approach to finding the transition probability was also
presented in [28]]. However, the asymptotic results for currents and particle loca-
tions in the relaxation time scale were not obtained from the finite-time transition
probability formulas. Some other heuristic arguments and nonrigorous asymptotic
results can be found in [[12}20,24,30].

More recently, Prolhac studied the bulk Bethe eigenvalues, not only the spectral
gap, in detail in the thermodynamic limit [31], and also in the scale L73/2 the
same scale as the spectral gap [32,33]]. Using these calculations, and assuming
that (a) the eigenfunctions obtained in [[31-33]] form a complete basis and (b) all
the eigenstates of order L~3/2 are generated from excitations at a finite distance
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from the stationary eigenstate, he computed the limiting distributions for the cur-
rent fluctuations in the relaxation time scale [|34]]. The assumptions are not proved
and the analysis of [34] is not rigorous. (The completeness is proved, however,
for discrete-time TASEP [28] and also for ASEP for generic asymmetric hopping
rate 0 < p < % [13[].) Prolhac obtained the results for flat, step, and stationary
initial conditions when L = 2N. In this paper, we consider the flat and step initial
conditions for more general L and N, and obtain rigorous limit theorems for the
tagged particles and the currents. The stationary initial condition can also be stud-
ied by the method in this paper, and it is discussed in a separate paper [25]. Even
though our paper also uses the Bethe ansatz method, the approach is different: Pro-
lhac computed the eigenfunctions of the generator and diagonalized the generator
while we compute the transition probabilities using coordinate Bethe ansatz and
compute the finite-time one-point distribution explicitly. The formulas of the lim-
iting distributions obtained in this paper and Prolhac’s share many similar features
(compare and below with equation (10) of [34]]), and the numerical
plots show that the functions do agree. However, it is still yet to be checked that
these functions are indeed the same. We point out that our work was done inde-
pendently from and at the same time as Prolhac’s paper; we had obtained all the
algebraic results and the asymptotic results for the step conditions by the time when
Prolhac’s paper appeared.

Before we present the main results, we discuss a heuristic argument about the
relaxation time scale in terms of a periodic directed last passage percolation in
Section 2] However, the materials in Section [2] are not used in the rest of the
paper. The main asymptotic results of this paper are presented in Section [3| and
the limiting distributions are described in Section @ The finite-time formulas are
given in Section [5for the transition probability and in Section [6] for the one-point
distribution function for general initial conditions, respectively. The last formula is
further simplified in Section [7] for the flat and step initial conditions. In Section [§]
we analyze the formulas in Section [/|asymptotically and prove the main theorems
in Section [3] Some technical lemmas for the asymptotic analysis are proved in
Section [9] Finally, Theorem [3.5] for the current for the step initial condition is
proved in Section[I0}

2 Periodic DLPP

There is a natural map between the TASEP and the directed last passage perco-
lation (DLPP) model (see, for example, [22]]). We do not use this correspondence
in the rest of the paper. However, the DLPP model provides a heuristic way to
understand the relaxation time scale t = 0(L3/ 2) and the fluctuations, and we
discuss them in this section. Some of the following arguments, especially for the
limit theorems for the sub-relaxation time scale, can be proved rigorously. See [3]]
for more details.



TASEP ON A RING 751

DLPP models are defined by the weights w(p) on the lattice points p € Z?2. We
assume that the weights are independent exponential random variables of mean 1.
For two points ¢ and p in Z? where c is to the left of and below p, the point-to-
point last passage energy from ¢ to p is defined as G.(p) := max, E(7), where
the maximum is taken over the weakly up/right paths 7 from ¢ to p, and the energy
of path = is defined by E(7) = qun w(q). Note that G.(p) has the same
distribution as Go(p — ¢) by translation. We use the notation p = (py, p2) = 0©
to mean p; — oo and p» — oo. A fundamental result for the point-to-point
last-passage energy for the exponential weights is that [|22]]

Go(p) —d(p)
s(p)

in distribution as p — oo where ygug is a GUE Tracy-Widom random variable
and the term d(p) is given by

2.2) d(p) = (JP1+ vP2)*>. P = (p1.p2),

which implies that d(p) = O(|p]). The other term s(p) satisfies O(|p|'/3), im-
plying that the “shape fluctuations” of Go(p) are of order O(|p|'/?). Moreover,
the maximal path & for Go(p) is concentrated about the straight line from 0 to p
within the order O(|p|?/3) [2,6L[23]. We call this deviation of the maximal path
from the straight line the transversal fluctuations.

Now consider the periodic TASEP. In the map between the TASEP and the
DLPP, the weight w(p) for DLPP at p = (p1, p2) represents the time for the
particle p, to make a jump from site p; — p» to p; — p» + 1 once it becomes
empty. Hence the DLPP corresponding to the periodic TASEP has the periodic
structure

(2.3) w(p) =w(q) if p—q=(L—N,—N).

The initial condition for the periodic TASEP is mapped to a boundary condition for
the periodic DLPP. Among the two initial conditions, we consider the step initial
condition for the periodic TASEP in detail since it gives a richer structure. Assume
that the initial condition of the periodic TASEP is of type
..,1,1,1,0,0,1,1,1,0,0,1,1,1,0,0,...
L L L

in which N consecutive particles are followed by L — N empty sites. Then the
boundary of the DLPP model is of staircase shape as shown in Figure 2.1] The
weights are O to the left of this boundary. The nonzero weights satisfy the peri-
odic structure (2.3)), or otherwise are independent exponential random variables of
mean 1. See Figure [2.1]

Let H(p) denote the last passage energy to the lattice point p (from any point
on the boundary). Then H(p) is related to the current of the periodic TASEP: If
we set the corner ¢ in Figure[2.1|as the point (1, 1), then the x; (¢) — x;(0) > j if
andonlyif H(j, N —i +1) <t forl <i < N. We now assume that N, L — oo

2.1 = XGUE
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Figure 2.2. The maximal path stays
within the dashed lines with high prob-
ability. Note that the parts of the two
blocks with number 2 within the dashed
lines do not overlap if we translate one
block to another. Therefore the weights
in the dashed lines are independent.

Figure 2.1. A part of the periodic DLPP
with step initial condition for L = 7,
N = 3. The blocks with the same num-
ber are identical copies of each other. On
the other hand, the blocks with different
numbers are independent.

proportionally and consider H(p) as p — oo. The limit p — oo is closely related
to the limit as time t — oo for the periodic TASEP.

Due to the boundary shape, we see that H(p) = max, H.(p) where H.(p)
denotes the point-to-point last passage energy from ¢ to p in the periodic DLPP
and the maximum is taken over all bottom-left corners ¢ of the boundary stair-
case. See Figure Consider a corner c¢. Note that |p — c¢| = O(|p|). Due
to the periodicity of the weights, H.(p) is different from G.(p) for which all
weights are independent. However, the transversal fluctuation for G.(p) has or-
der O(|p — ¢|*/?) = O(|p|*/?), and if L > |p|?/3, then the weights in the
O(| p|?/?)-neighborhood of the straight line from ¢ to p for the periodic DLPP are
independent. See Figure This suggests that He(p) ~ G.(p) if L > |p|*/3,
and hence H(p) =~ max. G¢(p). From (2.2), it is direct to check that the set
x = (x1,x2) € Ri satisfying d(x) < r is a strict convex set for every r > 0.
This implies that, due to the geometry of the staircase boundary, max. d(p — ¢) is
attained either at a single corner or at two corners. See Figure[2.3] The thick diag-
onal curves in Figure[2.3are the set of points p at which max. d(p — ¢) is attained
at two corners. Explicitly, they are the curves given by (/X —c1 + /¥y — )? =
(vVx—c} + /y —c})?* where ¢ = (c1,¢2) and ¢’ = (c},cb) are neighboring
corners. These curves are asymptotically straight lines of slope (p/(1 — p))?. In
the periodic TASEP, these curves correspond to the trajectory of the shocks in the
space-time coordinate system. We call these curves the shock curves for the peri-
odic DLPP.

If max. d(p — c) is attained at a single corner ¢, then H(p) ~ G¢,(p). More-
over, it is easy to check from (2.2)) that for a neighboring corner ¢, d(p — co) —
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Figure 2.3. The thick diagonal curves are
the shock curves. They are only asymp-
totically straight lines. In the left pic-
ture, p is not on the shock curve and
d(p—c) > d(p—c’). In the right picture,
p is on the shock curve and d(p — ¢) =

Figure 2.4. For |p| = O(L*?), H(p) =
max, H.(p) is a maximum of correlated
random variables H.(p). The fluctua-
tions depend on the relative distance of p

d(p—1<c). to the shock curves.

d(p —c¢) = O(L?/|p|), which is greater than the order |p|!/? of the shape fluc-
tuations of G.,(p) if L > | p|?/3. Hence our heuristic argument implies that
H(p) ~ d(p —co) + s(p — co) xue when L > |p|2/3.

On the other hand, if max, d(p — c¢) is attained at two corners, then H(p) is
the maximum of two essentially independent random variables and hence we find
H(p) ~ d(p — co) + s(p — co) xgugz Where yyp2 is the maximum of two
independent GUE Tracy-Widom random variables with different variances.

The above heuristic argument is made under the assumption that |p|%/3 « L,
which corresponds to the condition L > 12/3 in terms of the periodic TASEP. It is
possible to make the above argument rigorous. See [3|] for more details.

Now for |p|?/3 = O(L), it is no longer true that H.(p) ~ G.(p) for each ¢
since the maximal path is not necessarily concentrated in a domain where the
weights are independent. This also implies that H.(p) and H./(p) for neighboring
corners ¢, ¢’ are not essentially independent. Moreover, even if max. d(p — ¢) is
attained at a single corner cq, we have d(p — co) —d(p —c¢) = O(L?/|p|) =
O(|p|'/3) for a neighboring corner ¢, and this is the same order of the shape fluc-
tuations of G, (p). Hence we expect that H(p) = max. H.(p) results from the
contribution from an O(1)-number of the corners ¢ near c¢o. Furthermore, the fluc-
tuation of H(p) depends on the relative location of p from the shock curves: see
Figure[2.4] Indeed, the main result of this paper in the next section (written for the
periodic TASEP) shows that the fluctuations of H(p) depend on two parameters in
the limit p = O(L3/2) — oo. The first one is p/L3/2, which corresponds to
in the main theorems and measures the location of p in the (1, 1)-direction: If this
parameter is larger, then the maximal path deviates more and the correlation be-
tween H.(p) and H./ (p) is stronger. The second parameter is the relative distance
of p to the shock curves, which corresponds to the parameter y — % in the main
theorem and measures the location of p in the (1, —1)-direction. From Figure 2.4}
the distribution should be symmetric under y — —y and y — y + 1.
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For the flat initial condition, there are no shock curves and there is no depen-
dence on y. The fluctuation depends only on 7.

3 Limit Theorems

Now we present our main asymptotic results.

3.1 Tagged Particle for the Flat Case

We consider the TASEP on aring of size L with N particles. The particles jump
to the right. Fix d € Z>». Let L and N be integers and satisfy d N = L. Assume
that the particles are located initially at

3.1) xj(0)=jd, j=1.2,....N.

Hence d denotes the initial distance between two neighboring particles. We extend
the TASEP on a ring to the periodic TASEP on Z by setting

3.2) xj(t) =xj4n@)+ L, jeL.
We also denote by
(3.3) p = yol

L d

the average density of particles. Then we have the following limit theorem in the
relaxation scale.

THEOREM 3.1. Fix d € Z>> and set p = 1/d. Consider L € dZ and set
N =pL =1L/d. Set

(3.4) f= L 132

Vol —p)

where T € R~ is a fixed constant denoting the rescaled time. Then the periodic
TASEP associated to the TASEP on a ring of size L with the flat initial condi-
tion (3.1) satisfies, for an arbitrary sequence k = ky, satisfying 1 <kp <N,
(1) = (0) = (A —p)t _
0~ 1/3(1 — p)2/3¢1/3 =

Here F1(x; 1) is the distribution function defined in (4.2)) below.

L—>o0

(3.5) lim IP’( x) = Fl(rl/3x;r), x € R.

In terms of the TASEP on a ring, xz (#) — x£(0) in (3.3) represents the number
of jumps the particle with index k made through time ¢.

The scaling in (3.3) is the same as the sub-relaxation time scale and also as the
TASEP on Z. See, for example, (1.3) of [11]] for the p = % case (there is a small
typo in [11]]; the inequality should be reversed).

Remark 3.2. Theoremholds forany fixed p € {d~! :d = 2,3,...}. However,
by applying the duality of particles and empty sites in the periodic TASEP, it is easy
to check that the theorem also holds for p € {1 — d1:d =2,3,... }.
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3.2 Current for the Flat Case

Let J; (¢) denote the number of particles that had passed the interval (i,i 4+ 1), or
the (time-integrated) current at site i. Due to the flat initial condition, it is enough
to consider the current at one site, say ati = 0.

THEOREM 3.3. Fixd € Z 5 and let p be either d ' or 1 —d~'. Consider L € d7.
and set N = pL. Set

(3.6) f=—— 3

Vel —p)
where t is a fixed positive number. Then for the TASEP on the ring of size L with
flat initial condition of average density p,

( Jo() —p(1 —p)t —x) = Fi(t"?x;7), xeR.

3.7) lim P 23 (1 — p2/31/3

L—>oo

Here the flat initial condition means (3.1)) when p < % For p > 1, it means that
initially the sites jd, j = 1,2,..., N, are empty and the other L — N sites are
occupied by particles.

For p € {d~! : d = 2,3,...}, the above result follows immediately from
Theorem [3.1] by using the simple relation

(3.8) Pxg (@) = €L +1) =P(Jo(r) 24N —k + 1)

foralll <k <Nand¢ =0,1,.... Theresultforpe {1 —d~':d =2,3,...}
follows by noting that Jy(¢) is symmetric under the change of the particles to the
empty sites.

3.3 Tagged Particle for the Step Case
Consider the TASEP on a ring of size L with the step initial condition
3.9 xj0)==-N+j, j=12,...,N.

Here we represent the ring as {—N + 1,—N + 2,...,L — N}. We define the
periodic TASEP by setting x; () = x; n(t) + L, j € Z, as before.
The notation [y] denotes the largest integer that is less than or equal to y.

THEOREM 3.4. Fix two constants ¢ and c; satisfying 0 < ¢y < ¢ < 1 and set
(3.10) B(ci.c2) :={(N.L) € Z%, : c1L < N < c3L}.

Let (Ny, Ly) be an increasing sequence of points in B(c1, ¢2) that tends to infinity,
ie., Ny, — 00, L, —> coasn — 0o. Set

(3.11) pn = Np/Lnp,

which satisfies pn € [c1,c2] by the definition of B(c1, ¢2). Fix y € R and let y, be
a sequence of real numbers satisfying

(3.12) yn =y + O(L;"?).
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Set
Ly t/pn 1/2 L, Ly, ky
(3.13) t :_[—L 4+ 21 -2
" Pn LA/1 = pn " n v Pn Ny,

where T € R is a fixed constant. Then the periodic TASEP associated to the
TASEP on a ring of size Ly with the step initial condition (3.9) satisfies, for an
arbitrary sequence of integers ky, satisfying 1 < k, < Np,

: (x n(tn)_x n(O))_(I_Pn)tn+(1_Pn)Ln(1_kn/Nn)
G19 hmn_moP( : : o '3 (1—pn)2/31,"3 = —x)

= F2(t1/3x;f, Y),

forevery fixed x € R. Here F(x; t,y) is the distribution function defined in (4.10)
below. It satisfies F>(x;t,y) = Fa(x;t,y + 1) and Fa(x;t,—y) = Fa(x; 1, y).

The term (1 — pp) Ly (1 —kn/Ny) = ;1 (1 — pn)(Ny — k) in (3.14) is due to
the delay of the start time of the particle indexed by ky: the particle with smaller
index starts to jump (due to the initial traffic jam) at a later time, and hence the
number of jumps, xg, (t,) — Xk, (0), through the same time #, is smaller, as we see
in (3.14).

The scaling (3.13) of time has the following interpretation. The shocks for
the periodic TASEP with step initial condition are generated at a certain time,
max{L,/4pn, L,/4(1 — py)} on average, and then move with speed 1 — 2p, on
average to the right. This can be seen either from the periodic DLPP in Section[2]or
by solving the Burgers equation. On the other hand, the particles move to the right
with a speed that is asymptotically equal to 1 — p, on average, which can be seen,
for example, from the leading term (1 — p, )¢, in (3.14). Since the relative speed of
a particle to the shocks is py, a particle has encountered the shocks p,t, /L, times
on average after time 7. Let us write as

Pnin T/ Pn 1/2 ky
3.15 = L oy, + 1=,
and consider its integer part and the fractional part. The above theorem shows that
the limit is the same if y, is shifted by integers. Hence we may take y, so that
Yn + 1 —kn/Ny € (=%, 1]. Then

[ T/ Pn 11 /2:|

N

is the integer part of (3.15)), and it represents the number of encounters with shocks
by time #,. This depends on t but not on y,,. The fractional part y, + 1 — k,;/ Ny,
on the other hand, represents the relative time remaining until the next encounter
with a shock. Here the term 1 —k,, /Ny, is again due to the time delay by the particle
indexed by k.
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3.4 Current for the Step Case

THEOREM 3.5. Fix two constants ¢1 and ¢y satisfying 0 < ¢1 < ¢ < 1, and
let (Ny, Ly) be an increasing sequence of points in B(cy, c2) that tends to infinity.
Set pn := Ny /Ly. Then the TASEP on a ring of size Ly with step initial condi-
tion (3.9) satisfies the following results where t € R~g, y € R, and x € R are
fixed constants.

(a) Suppose pp = % + O(L,Y). Let
(3.16) mn = [yLal, v € (-%.3]
and set
(3.17) tn = 27132,

Then we have

Jmp (tn) — tn /4 2
mnz(/r;) n/ + |n1773|/ > —X) — F2(11/3x;‘17, J/).
pn’” (1= pn)?/31,

(b) Suppose |pn — 1/2| = |Ny/Ln — 1/2| > ¢ for a constant ¢ > 0 for all n.
Let my, be an arbitrary sequence of integers satisfying —N, + 1 < m, <
L, — Ny, and set

_ Ly |: |1 —2pa|T L1/2j| _ YLn n mpy
11 —2pn] VPl = pn) " 1—=2pp 1—=2py
fory € R. Then we have
Im, (tn) — pn(1 = pp)tn + |mp|/2 — (1 = 2pp)1y, /2 > _x)
pr (1= pa)?31,"° B

n—oo

(3.18) lim IP’(

(3.19) t

(3.20) lim IP’(
n—>oo
= F2(r1/3x;t, y).

The proof is given in Section[I0]

In the above, we have a different parametrization of time from (3.13). This is
because the site is fixed, and hence the shock, which travels with speed 1 — 2p;,,
arrives at the given site once every L, /|1 — 2p,| units of time on average if p, #
%. If pp = %, the shock stays at the same site for all time on average.

4 The Limiting Distribution Functions
In this section we describe the limiting distribution functions that appeared in
the main theorems in the previous section. Throughout the paper, log denotes the
usual logarithm function with branch cut R<g. Let Lig(z) be the polylogarithm
function. It is defined by Lis(z) := > peg ,ZC—]; for |z] < 1, s € C, and has an
analytical continuation

@.1) Lis(z) = %/0

X

s—1
ox de, ZE(C\Rzl,
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4t

Figure 4.1. Picture of S, ief; (points with negative real part) and Sy rone (points with
positive real part) when z = 0.5¢".

if Re(s) > 0.

4.1 The Flat Case
The limiting distribution for the flat case is defined by, for > 0,
(4.2) Fi(x;7) = ¢exAl(Z)+TA2(Z)+A3(Z)+B(Z) det(] _ ]C(l))d_Z x € R.
’  Mmiz’
The contour of integration is any simple closed contour in |z| < 1 that contains the

origin inside. The terms involved in the formula are defined as follows.
Set

1 1
A = — Li , A = — Li ,
ws) 1(2) Ner i3/2(2) 2(2) N i5/2(2)
As() =~ log(1 —2),
and
Z (Li 2
@.4) BG) = / Lhp Oy,
T Jo y

The integral for B(z) is taken over any curve in C \ R>;. These four functions are
analyticin z € C \ R>;.

The operator ICgl) acts on £2(S 7.left) Where Sy jef; is the discrete set defined by
(4.5) Seaen = {§ € C1e™¥/2 = 7 Re(§) < 0},

See Figure@for a picture. Itis easy to check that Sy e is contained in the sector
arg(¢§) € (37/4,5m/4) in the complex plane and has the asymptotes arg(§) =
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+i37/4. In order to define the kernel of the operator ICS), we first introduce the
function

1 L S
\DZ(S;X, T) = —5‘553 + Xf — E/ Lll/z(e @ /z)da),
—0o0

arg(§) € (37 /4,57/4).
Here —oo denotes —oco + i0 and the integration is taken along a contour from —oo
to &, which lies in the sector arg(w) € (37/4,5m/4). Note that e=@?/2 ¢ R
for w in this sector, and hence Li; /z(e_“’z/ 2) is defined for such w. Also, note
that from the definition of the polylogarithm function, Li; /5 (s) = O(s) as s — 0.
Therefore, the integral in (4.6)) is convergent. We finally define the kernel of ICS)
by

(4.6)

KV (Er.62) = KD G1b2ix. 1)
4.7) oYz (X, D)+ W (£25x,7)
= o E1,62 € Sz ket
§1(61 +52) o
To show that ICgl) is a bounded operator and its Fredholm determinant is well-
defined for |z| < 1, it is enough check that e¥=¥?) _ ( exponentially fast as
|&] — oo on the set Sy jefi. Since the asymptotes of the set Sz i are the lines
arg(§) = £i3x/4, we see that Re(—%té 3 + x£) — —oo like a cubic polynomial
in the limit. On the other hand, the integral term in the formula of W, (§; x, 7) is of
order O(£§71) since
1 §
48) ——= [ Lija(e®?)do =

A/ 2 —00
/ log (1 - z¢*”/2) dw
Re(w)=0

, edsS .
©— E i é z,left
Here and in the rest of this paper, the orientation for the line Re(w) = 0 in the
integral fRe(a))zo is from 0 — ooi to 0 + ooi. The above identity (4.8)) can be
checked by using the power series expansions of the integrands and noting that

202
1 /u o2y, :/ )
V2 J—co Re(w)=0 w—u 27i

for all u satisfying arg(u) € (37/4,5m/4). Tt is also easy to see that the Fredholm

determinant det(/ — ICS)) is uniformly bounded for all z in a compact subset of
|z| < 1, and it is analytic in |z| < 1 since the set Sy jeft depends on z analytically.
We therefore conclude that F(x; t) in (@.2)) is well-defined and is independent of
the choice of the contour.

As mentioned in Section |1} the distribution function Fj(x;t) agrees well with
Prolhac’s formula (10) in [34] if we evaluate the functions numerically. However,
the rigorous proof that they are the same is still missing.
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Figure 4.2. Top: The three dashed curves are the density functions of Fy(z!/3x; 1) for

7 =1,0.5,0.1 from left to right. The solid curve is the density function of Fgog(22/3x).
zl/4 _1/2
I—1

2

Bottom: The dashed curves are the density functions of Fj(—t + x; 1) for

T = 0.1,0.5,2.5 from left to right. The solid curve is the standard Gaussian density
function.

The function Fj(x; ) satisfies the following properties:

(a) Foreach t > 0, Fy(x; 1) is a distribution function. It is also a continuous
function of 7 > 0.

The only nontrivial part is to show that F;(x;7) — 0 as x — —oo, and this can
be proved by comparing the periodic TASEP with the TASEP on Z and using the
known properties for the latter. A proof for the stationary initial condition is given
in the appendix of [25]]. The flat and step initial condition cases are similar.
In addition, a formal calculation using the explicit formula of F; indicates that

the following is true:

(b) Foreach x € R, lim;—.o F; (t1/3x; T) = FGOE(22/3x).

(c) Foreach x € R,

Tl/4 1 X 2
(4.9) lim Fy (—r + —tl/zx;r) = —/ eV 2 dy.
T—>00 V2 21 J—o00

These are consistent with the cases of the sub-relaxation scale ¢ <« L3/2 and the
super-relaxation scale ¢ > L3/2. These properties will be discussed in a later
paper [4]. See Figure 4.2

The one-parameter family of distribution functions, Fi(z"/°x; 1), interpolates
Fsore and the Gaussian distribution function. There are other examples of such
families of distribution functions in different contexts such as the DLPP model
with a symmetry [5] and the spiked random matrix models [8}26]. However, the
distribution functions Fj (t'/3x;7) seem to be new.

1/3
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4.2 The Step Case
The limiting distribution function for the step case is defined by, for r > 0 and
y € R,
dz

—, x eR.
21z

4.10) Fa(x;t,y) = ggexf‘l(z)“f‘z(mw(z) det(I — £?)

The integral is over any simple closed contour in |z| < 1 that contains the origin
inside. The functions A1(z), A2(z), and B(z) are same as the flat case. The
operator IC?) acts on the same space £2(Sz jef;) as in the flat case, and its kernel is
given by
K& (E1.62) = K (16202, 1)

Z e Pz 1ix, D+ @ (5x,1)+ 5 (€7 —n?)

NESZ left éln(gl + n)(n + §2)

4.11)

forall &1,&> € Sz lefi, Where

1 2 (& _
(412) @(Eix.7) = — T3 4 xE— ,/;/ Liy2(e™?)do, £ € Sy e
—00

The function ®,(§; x, 7) is the same as the function W, (&; x, 7) for the flat case
except that the coefficient of the integral part is doubled. As before, the operator
and its Fredholm determinant are well-defined. The function F,(x; 7, y) is well-
defined as well and is independent of the contour.

The function F>(x; 7, y) satisfies the following properties:

(a) For fixed 7 and y, F>(x;t,y) is a distribution function. It is a continuous
function of t > O and y € R.

(b) Fa(x;t,y)isperiodiciny: Fa(x;t,y) = Fa(x; 7,y + 1).

©) Fa(x;t,y) = Fa(x;t,—y).
Property (a) is similar to the flat case. For properties (b) and (c), note that y appears
only as eZET—1?) ip IC?) in the formula of F>(x;7,y). Since e~£1/2 = 7 and
e~ /2 = 7 for §1 € Sz,efc and n € Sy right, We obtain property (b). On the other
hand, property (c) follows by observing that ICZ2 is the product of two operators
and then using the identity det(/ — AB) = det(/ — BA).

It is believed that the following additional properties hold. See Figure
(d) For each fixed x €e Rand y € R,

1
2 Foue(x), ——<y<z,
13 lim Fz(r1/3x _ Z—;T, y) _ 2 2
T—> T
(Foue(x))?, y =

where Fgug is the Tracy-Widom GUE distribution.
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Figure 4.3. Top: The dashed curves are the density functions of F(7'/°x — g; 7, y) for
fixed T = 0.1 and three different values of y = 0.2, 0.4, 0.5 from left to right. There are

two solid curves. They are the density functions of Fgug(x) (left) and Fgyug (x)? (right).

1/3

Bottom: The dashed curves are the density functions of F»(—t + L/;l’l/ 2x: 1, y) for

fixed y = 0.2 and three values of T = 0.05, 0.25, 1 from left to right. The solid curve is
the standard Gaussian density function.

(e) For each fixed x € Rand y € R,

T 1/2. ) 1 /x —y2/2
xt /T, = —— e dy.
\/E v 27 J—o0 Y

The limit (Fgug)? in @.13) when y = % + Z is due to the fact that in the large

sub-relaxation time scale L < 1 < L3/2, the limiting distribution is (Fgug)? if
the tagged particle and the shock are at the same location (see Section [2).

1/4

(4.14) lim F> (—t +
T—>00

5 Transition Probability for TASEP in Xy (L)

As mentioned in the Introduction, if we only consider the particles in one period
in the periodic TASEP, their dynamics are equivalent to the dynamics of the TASEP
(with N particles) in the configuration space

5.1 Xy(L) ={(x1,x2,...,XN) e 7N X <Xy <. <XN <X1+ L}

In this section we compute the transition probability for the TASEP in Xy (L) ex-
plicitly for general initial condition. As in [35[36L/38]], we solve the Kolmogorov
equation by solving the free evolution equation with appropriate boundary condi-
tions, which arise from the noncolliding conditions in the Kolmogorov equation
and an initial condition. The change of the TASEP on Z to the TASEP in the con-
figuration space Xy (L) is an additional noncolliding condition xy < x; + L.
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This results in an extra boundary condition for the free evolution equation and in-
troduces a new feature to the solution.

Let Py (X;t), for X,Y € Xn(L), denote the transition probability that the
configuration at time ¢ is X given that the initial configuration is Y. We have the
following result.

PROPOSITION 5.1. For z € C, define the polynomial of degree L,

(5.2) q;(w) = wV (w + DEN 7L,
and denote the set of the roots by
5.3) R, ={w e C :g;(w) =0}.

Then, for X = (x1,x2,...,xN) € Xn(L)and Y = (y1,y2....,yN) € Xn (L),
(5.4 Py(X:t) =

1 j—i+1 1 —Xxi+y;j+i—j tw N d
L

WER;

The integral is over any simple closed contour in |z| > 0 that contains 0 inside and
p:=N/L.

Let us check that the integral does not depend on the contour. Since g, (0) =
gz(—=1) = —z% # 0, the points 0 and —1 are not in the set R, for every z # 0.
Moreover, for |z| # p?(1 — p)!™”, we see that —p ¢ R,. Therefore, the entries in
the determinant in (5.4) are well-defined for z # 0 satisfying |z| # p?(1 — p)' 7.
Note that since g, (w) = L(w + p)w¥ 1w + 1)E=N=1_all roots of ¢, (w) are
simple for z # 0 satisfying |z| # p”(1—p)' . Hence R consists of L points for
such z. We now show that the entries in the determinant have analytic continuations
across |z| = p°(1 — p)!~°. The entries are of form

1 w—N+1(w + 1)—L+N+1F(w) B F(w)
L 2 w+p =2 g (w)

(5.5)

wWER, wWER;

where
(5.6) F(w):= wl TN (w + 1)—xl~+yj Fi—j+L=N-1,tw

The function F(w) is analytic for w € C \ {—1} since j —i + N > 0 for all
1 <i,j < N.Since w = —1 is not a zero of g, (w) for every z # 0, we obtain by
the residue theorem

5.7) Z F(w) _% F(w) dw % F(w) dw

S ) Rui=r 42 0) 271 Jjwstj=e 4z (@) 27

where R is large and € is small so that all roots of g, (w) lie inside the annulus
€ < |w + 1] < R. Since we may take R arbitrarily large and € arbitrarily small,
we find that the right-hand side of (5.7) is analytic in |z] > 0. Therefore the
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entries in the determinant in (5.4) have analytic continuations in |z| > 0, and the
formula (5.4)) does not depend on the contour.

Remark 5.2. The formula is reduced to the transition probability for the usual
TASEPon Z if L > xy—y1+2. Inthis case, —x; +y; +i—j+L—N—1 > 0 forall
i, J,and hence F(w) in (5.6) above is entire. Thus, the integral over |w + 1| = €
in (5.7) is 0. On the other hand, the first integral is, for a fixed R, analytic for
|z] < r since as z — 0, the roots of g (w) converge to 0 and —1. Here r is any
fixed positive constant such that rZ < mMaX|y41|=R |lw™ (w+1)L=N|. Thus by the
residue theorem the integral over z in (5.4) is the same as the integrand evaluated
at z = 0, and hence (5.4) becomes

. o dw 1V
(5.8) detBﬁ w/ (w4 1) gt —w_] .
lw|=R 2mi ij=1
After the change of variables w + 1 = 1/£, we find that (5.4)) becomes
iy 1o dE Y
(5.9 det|:¢ (1 — )/ —igXi=y) elE =D J i| .
|E|=€’ 2mi& ij=1

This is same as the formula for the transition probability of the TASEP on Z ob-
tained in [36,/38]].

PROOF OF PROPOSITION[S.Il. For an N-tuple X = (x1,x2,...,xy) € ZV,
set
Xi = (x1,x2,...,Xi—1,xi — L, Xj41,...,xn), 1=<i<N.
The transition probability Py (X; ¢) is the solution to the Kolmogorov equation
N

d
(5.10) SRy (X0 =3 Py (Xit) = Py (X:0)bx,exy )
i=1

with the initial condition Py (X;0) = §y (X).

Following the idea of Schiitz, and Tracy and Widom, we consider the function
u(X;t) on ZN x R>¢ (instead of Xn (L) x Rx¢) satisfying the new equations
(called the free evolution equation)

N

d N
5.11 —u(X;t) = u(X;;t)—u(X;t)), XeZ”V,
(5.11) dt();u,)())
together with the boundary conditions
(5.12) u(x1, ..., Xi—1,xi—1 + Lxig1,...,xN3t) =

U(XT, .oy Xim 15 Xie 15 Xi1s - - XN T)

fori =2,3,...,N,and

(5.13) u(x1,x2,....xy—1,x1 + L —1;1) =
ulxy —1,x2,...,xNy—1, XNy = x1+ L —1;1),
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and the initial condition
(5.14) u(X;0) =6y(X) when X,Y € Xn(L).

Then Py (X;¢t) = u(X;t) for X,Y € Xn(L). The change from the TASEP on Z
to the TASEP in Xy (L) is the extra boundary condition (5.13).
We now show that the solution is given by

(5.15) u(X;t) = ¢ det|:— Z fl] (Xz)] Z ’
|z|=r L w+p ;= 2mwiz

WER;

where
(5.16) fij (i) i= w! 7w 4 D)X T W

Here we suppress the dependence on w, ¢, and y;. We need to check that (5.13)
satisfies (a) the free evolution equation (5.11)), (b) the boundary conditions (5.12),
(c) the boundary condition (5.13)), and (d) the initial condition (5.14).

(a) To show that satisfies the free evolution equation (5.11)), it is enough
to show that the determinant satisfies the same equation. The derivative of
the determinant in ¢ is equal to the sum of N determinants of the matrices,
each of which is obtained by taking the derivative of one of the rows. But

d
(5.17) Efij(xi) =wfij(xi) = ((w+ 1) —=1)fij(xi) = fij(xi — 1) = fij (xi).

Hence we find that (5.11)) is satisfied.
(b) To prove (5.12)), we replace x; by x;—1 + 1 and add the (i — 1) row to the

i row. But
1 w
518) Jij(xior + D) + fic1,j(xi-1) = o lfij(xi—l) + w—_Hﬁj(Xi—1)
= fij(xi—1).
This implies (5.12).

(c) To prove (5.13), we set xy = x1 + L — 1, and we multiply the N th row
by z% and add it to the first row. But since z& = w (w + 1)L~ for all
w € Ry,

b e+ L=1) + fij(x1)
(5.19) = wNw+ DIV fy;(xp + L= 1) + fi(x1)
= f1j(x1 — D).

Hence (5.13)) is satisfied.
(d) It remains to check the initial condition (5.14)), i.e., for X, Y € X'n (L)

wj—i+1(w+1)—xi+y_i+i—j N dz
> ]

1
(5.20) det[— =8y (X).
el=r LL k. i.j=1 2712
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By (5.7), the entries of the determinant are
?S F(w) dw gg F(w) dw
lw+1]=R 4z(W) 271 Jjwt1]=e gz(w) 27i

F(w) — wj—i+N(w + l)—x,-+yj+i—j+L—N—1etw.

where

Here R is large and € is small so that all roots of
gz(w) = w @ + DI -2t
lie inside the annulus € < |w + 1| < R. Writing

L w NN

1+z for |lw + 1| = R,
wN(w + l)L_N 1— sz_N(w + 1)—L+N | |
gz(w) wN (w + LN
—L —
-z [ LwN(w § LN for |lw + 1| =€,
the left-hand side of (5.20) can be expressed as
¢ det|:¢ wj—i(w + 1)—xi+Yj+i—j—1ﬂ
5.21) |z|=r lw+1|=R 2mi
' Nodz

+zLEG ) + z_LEz(i,j)] .
i,j=1 27T1Z

where

o wj—i—N(w + 1)—xi+yj+i—j—L+N—l dw
El(l’f)zgg Ly—N —L+N Y
|lw+1|=R 1—ztwN(w+1) 2

and

o w/ N (w 41 =Xi+yj+i—j+L-N—1 g,
62 Eai)) = Clt) B i )
lw1|=e l—z7*fwV(w+1) 2mi

Note that X, Y € Xy (L) implies

XN—L+i<xi<xy—N+i, yn—L+j=yj<yn—N+/,

fori,j = 1,2,...,N. Now we use these inequalities to simplify (5.21).
We consider two cases separetely.

Case 1. Assume that x; > yn. Then
—xi+yj+i—j—L+N—-1=<-xy+yn—1=-1

Also note that j —i — N < —1. These two inequalities imply that
Ei(i,j) = O(R™')as R — oo. Since E1(i, j) is independent of R
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for all R > Ry for some Ry = Ro(|z|), we find that £ (7, j) = O for all
1 <i,j < N and all large enough R. Hence we find that (5.21)) becomes

¢ det[% wj—i(w + 1)—x,-+yj+i—j—1d_w.
lzl=r lw|=R 21

—L .o N dz
(5.23) + 2L Ey . ) :
i,j=127T1Z
N
= det|:¢ w/ 7w + 1)T¥ TV +i_j_1d—w,:|

where in the second equation we take
|z| =r - +o00 and Z_LEz(i,j) — 0.

We now note that (5.23)) is exactly the initial condition for the TASEP on Z
(see (5.8) and (5.9) when r = 0). Hence it is equal to dy (X).

Case 2. Assume that x; < yy. Then
—xj+yj+i—j+L-N-1>yy—xy—1=0.

Here the integrand of (5.22)) is analytic at —1, and hence E»(i, j) = 0. On
the other hand, as |z| = 7 — 0, zL'E; (i, j) — 0. Hence (5.21)) becomes

¢ det[¢ w! 7 (w + 1)_xi+y/+"_j_1d—w,
lzl=r wi=R 2mi

N
.. dz
+zLE1(l,J)] .
i’j=127T1Z
N
= det[¢ w/ 7w + 1)_x"+y-"+i_j_1d—w,] .
|lw|=R 2mi ij=1

This is equal to §y (X) as discussed in the first case.
Hence the initial condition (5.20) is satisfied. O

6 One-Point Distribution for TASEP in Xy (L)
with the General Initial Condition

We now derive a formula for the distribution function of a tagged particle from
the transition probability for an arbitrary initial condition.

PROPOSITION 6.1. Let Y = (y1,¥2,...,YN) € XN (L) be the initial config-
uration of the TASEP in Xy (L). Let X(t) = (x1(2), (x2(¢),...,x5(t)) be the
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configuration at time t. For every1 <k < N,

(_1)(k—1)(N+1)
6.1) Py(xx(t) = a) = B yer—
1

1 j—i+1-k 1)Yi—J—a+k+1,tw N dz
-9§det[— Z . (D - ] l—kZ—IL
L w+p i, j=12' 76D

wWER;

for every integer a. The integral is over any simple closed contour in |z| > 0 that
contains 0 inside. The set Ry is same as in Proposition[5.1} and p = N/L.

We prove Proposition[6.T|using the following lemma, whose proof is given after
the proof of the proposition.

LEMMA 6.2. Let w; € R; for j = 1,2,..., N. Then, for every integer a,

—i —x:+i1N
(6.2) > detfw; (wy + 1) =
XeXxXy(L)
Xi=a

N
(_1)(k—l)(N+l)Z(k—l)L (1 _ H(wj + 1)—1)
j=1

N
—k —a+k+1 —i N
1w + det[w;"];" ;.
j=1

PROOF OF PROPOSITION[6.1l. Lemma implies that for w;, € Rz, j =
1,2,...,N,

i i tilN
(6.3) Yo detfwiwy + DTN = fl@) - fla+ 1)
XeXxy (L)
Xk =a
where

N

N

Jj=1

If lwj + 1| > 1forall j =1,2,..., N, then f(a) — 0asa — +o0, and hence
by telescoping series, we obtain

Z det[U)j_i (UJJ + 1)_Xi+i]£’j=1 = f(a)

XeXy(L)
X =a

(6.5)
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Now since Py (xg (t) > a) = Y xexy ) Pr(X;1), we find from (5.4) that

Xk =>a
Py (5c(0) 2 @)
1
DRI DY

XeXn (L) wWER;
Xr=>a

66 =¢ ¥ 3 dafuyian+ 0 Y

wi,...WNER; XeX (L)
Xp=a

w/ i (w + 1)—xi+yj‘+i—jetwi|N dz

w+p i,j=127iz

IH (w4 1T etwi g,

N
.H% _
el L(w; + p) 2mwiz

By Rouché’s theorem, the equation w (w 4+ 1)L~V — zZ = 0 has no zeros in

w + 1| < 11if |z] is large enough. Thus we can find a contour large enough so that
1 1if |z]is1 h. Th find 1 h so th
|lw + 1| > 1 for all w € R for z on the contour, and apply (6.5)) to obtain
(_1)(k—1)(N+1)

Py (xx > a;t) = 7

]+1_k(U)J + l)yj—j—a+k+letwj

N w
J
(6.7) 5’5 2l L(wj + p)

wi,....WNER; j=1

N dz

'det[wj_i]i,j=1zl—(k—1)L‘

After simplifying the integrand by using the linearity of the determinant on col-
umns, we find

Py (xg > a;t)
(_1)(k—1)(N+1)
6.8) - 27

1 wl—itl=k o, 1 1)Yi—i—atk+1tw N d
'ygde’t[_ Z wtD ] 1—(kZ—1)L'
L w+p i,j=1%2

WER;

The last formula again does not depend on the contour (cf. (53.7)), and we obtain
the proposition. U

Now we prove Lemma|[6.2]

PROOF OF LEMMA [6.2] Set
A0 j) = {

This is the (i, j ) entry of the determinant on the left-hand side of (6.2) after we set
Xr = a. We proceed by taking the sum of the determinant of A© in the following

u)]._i(wj + )=+t fori #k,
wik(wj + )74 fori = k.
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order: Xg41,Xg+2,--->XN,X1,X2,...Xk—1. The summation domain is
a <Xyl < Xgga <.+ <Xy <x1+L
(6.9)
<xp+L<:---<xp_1+L<a+ L.
First fix x1,x2,...,X; and Xg4o, Xk 43, ...,XN, and take the sum over x;4; =
a+1,a+2,... x40 — 1. Since xg; is present only on the (k + 1) row, it is
enough to consider the (k + 1)™ row:
Xr4+2—1
Yo AQ%k +1.))
Xp+1=a+1
Xg+2—1
_ —k—1 —Xp1+k+1
= Z w; (wj + 1)~ ¥+
Xr+1=a+1

— wj—k—Z(wj + 1)—a+k+1 _ wj—k—Z(wj + 1)—xk+2+k+2

— wj—k—Z(wj + 1)—a+k+1 _ A(O)(k + 2’1)
for j = 1,2,..., N. By adding the (k 4+ 2)"™ row to the (k 4+ 1)™ row, we find that

Xk+42—1

Yo det A Yoy = detl A6 I,

Xp4+1=Xr+1

where
—k— — .
AN ) = w; 2(wj + 1) atk+1l fori =k + 1,
AOG fori # k + 1.
Note that the entries of A1) in row k and k + 1 contain a while that in row i
k,k + 1 contain only x;. Similarly, summing over xg 4> = a + 2,...,Xg+3 — 1,
we have
Xk+4+3—1
Yo AWk 42, ) = wiF By + DT AWk 43, )
Xx42=a+2

for j =1,2,..., N, and we find that

Xk+3—1  Xp42—1

Z Z det[A(O)(i,j)]ij=1 = det[A(z)(i,j)]ij=1
Xk42=a+2xr41=a+1

where
wit T wy + DR fori =k + 1,k 42,

AP, j) =
AOG, ) fori #k+ 1,k +2.
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We repeat this process to sum over X 41, Xk 42, - - -, XN, and then xy, x2, ..., Xg_1,
and find that

S detfAO G Yy = def ANV N,

XeXxy (L)
Xip=a

where
wj—i—l(wj + l)—a+k+L—N+l if 1 < i < k — 1’
ANV jy = 3493, j) = wikw; + DR ifi =k,
wy T (wy 4+ DTatk! ifk+1<i<N.
Note the difference of the formula fori < k — 1 and fori > k + 1. This is due to
the summation condition (6.9).
Now since the k' row satisfies

A(N—l)(k’]) — wj—k—l(wj + 1)—a+k+1 . wj_k_l(wj + 1)—a+k’
we have
6.10) det{ANVG, )Yy = det[ AN @, HIY; 2y — det[ AN G HIY

i,j=1°
where
w.—i—l wi +1 —a+k+L—-N+1 ifl<i<k— 1,
AN, j) = f_,._l( i+ b o
w; (wj + 1) ifk <i <N,
and
wj—i—l(wj + 1)—a+k+L—N+1 ifl1<i< k — 1,
AN, j) = Jwi " (wy + etk ifi =k,

wi i (w; 4+ 1)TatkH! ifk+1<i<N.

So far we did not use the condition that w; € R;. We now use this condition to
simplify (6.10). For w; € R, we have w]N(wj + 1)E=N = 7L and hence

w;i—l(wj+1)—a+k+L—N+l — wj—i—l—N(wj_i_l)—a-i-k-l-lZL, 1 <i Sk—l

After row exchanges we obtain, setting # := (k — 1)(N —k + 1),

.o — —i— - N
6.11) detfAM G, HIN,_; = (DF2* DL det{w; " F (w;+1) a+k+1]i’j=1.
Similarly,

detfAM (i, Y,y = (=) 2 DL detfwri () 4 1) k15 0)]

N
i,j=1 ;

i,j=1
where § is the delta function. Noting the factorization of the matrix as

—j— _ _8. N
[wjl k(w] +1) a+k+1 8,(k):|i,j=1 —

N

[8:() + 8 + DI _y[wy F(wy + 17 Y

ij=1’
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we find that

“(N)/: - - i —a+k1N
6.12)  detfAM @, HIN._) = (=D 2* DL detw; F (w; + 1) “+k]i’j:1.
We can evaluate the determinants in (6.11) and (6.12)) in terms of Vandermonde
determinants, and from this we obtain (6.2)). O

Remark 6.3. If we take L large enough in the formula (6.1)), we recover a formula
for TASEP on Z. More precisely, assume that
L>max{a —yg,(a—y1+1—-k)/2}+ N ifk>2

and L > a — y; + N if k = 1. Then it is possible to show that formula (6.1))
becomes

y ) dw 1V
(6.13) det[§£ w7 w + 1)y-f—f—a+ketw_w.] .
lw|=R 2mi ij=k

This is the probability that the k™ particle is located on the right of or exactly at

site a for the TASEP on Z with initial configuration Y = (y1, y2,..., Yn). See,
for example, [35]] for the formula when Y is the step initial condition.

7 Simplification of the One-Point Distribution
for Flat and Step Initial Conditions

The formula (6.1) we obtained in Proposition [6.1]is not easy to analyze asymp-
totically. In this section, we simplify the formula for the flat and step initial condi-
tions, which are well suited for asymptotic analysis.

Before we state the results, we first discuss the set

(7.1) R, ={w e C:q;(w) =0} whereqg;(w) =w™w+ HEN -z,
introduced in (5.3)). This is a discrete subset of

(7.2) Yi={weC:|wPlw+1'*=|z]}.
It is straightforward to check that for z satisfying
(7.3) 0 < z| <ro:=p?(1—p)'7"

the set 3 consists of two nonintersecting simple closed contours, which enclose
—1 and 0, respectively. Indeed, if we fix 6 and write w = r’e'?, it is easy to check
that |w|°|w + 1|17 is increasing as a function of 7’ in the interval 7’ € [0, p] and
is equal to O when r’ = O Similarly, if we write w 4+ 1 = r”e'?, |w|P|w + 1|1~°

UFor all #/ < p, we have

d ’ 1-— P ’ 2 2 2 _

= plogr’ + — log((1 + r'cos )* + r'*sin” 6) | =

.

20
(o—=r"(1—=7r")+2r'(1 + p)cos* 5

> 0.
¥ (1472 +2r' cos §)
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o

Figure 7.1. Illustration of X (the left
contour), Xygh (the right contour), Ry jef
(the points on the left contour), and
R; signe (the points on the right contour)

Figure 7.2. Illustration of Zief, Ziights
R jefi» and Ry rigy with L = 24, N = 8,

. 2/3 .
with L =24, N = 8, and z = 0.5¢71/27. and 7z = roem/27 — 23 ™27 Note
Note that p = % _ % . and the two thallt the contours intersect at w = —p =
contours are on either side of the line ~ 3°

Re(w) = —p = —%.

is increasing as a function of r” in the interval r” € [0,1 — p] and is equal to 0
when r” = 0. From this we find that when |z| is small enough, X consists of
two contours, one containing 0 inside and the other —1 inside. As |z| — 0, these
contours shrink to the points —1 and 0, respectively. As |z| increases from O to rg,
these two contours become larger but do not intersect, and when |z| = ry, they
intersect at w = —p. We can also check that for |z| < rg, the two disjoint contours
are in the half-planes Re(w) < —p and Re(w) > —p, respectively. Let us denote
them by Xiere and Xyiene, respectively. Thus, for 0 < |z| < rg, the set Ry is the

union of two disjoint sets, R; = Ry jeft U Rz right, Where
(7.4) Rz et := Rz N{w € C : Re(w) < —p},
' R right := Rz N{w € C : Re(w) > —p}.

Note that when z = 0, L — N roots of g;(w) are at w = —1 and N roots are at
w = 0. Since the roots, after appropriate labeling, are continuous functions of z,
the set Ry e consists of L — N points, and the set Rz ign consists of N points.
See Figure As a comparison, see Figure [7.2]for a case when |z| = ro.

We also define two monic polynomials of degree L — N and N,

(7.5) Geien) = [ w—w), geugnw):= [] @-v).

UERZ et VERZ right
Note that gz left (W) gz right (W) = gz (w).

7.1 Flat Initial Condition
Fix an integer d > 2. We consider the TASEP in X'y (L) with the flat initial
condition where

(7.6) L = Nd.
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The average density of the particles is denoted by p = N/L = 1/d.

We assume that 0 < |z| < rp as in (7.3). The set Ry it consists of L — N =
(d — 1)N points and the set R sgn consists of N points. Note that the union
R; = Rz et U Ry righe 18 the set of the roots of the polynomial

g:(w) = wV w + DEN =2k = (ww + DITHN — 24N,
which is the same as the union of N sets
Di={weC:ww+ 141 =z4e2k/Ny | =0,1,...,N -1,

of d elements. For each k, there are d roots of the equation w(w + 1)¢~! =
z8e27k/N “and it is easy to check that one of them satisfies Re(w) > —p and
hence is in Rz ;gni, and the remaining d — 1 roots satisfy Re(w) < —p and hence
are in Ry jef. This defines a (d — 1)-to-1 map from Ry jefi to Ry righi. Therefore,
for any u € Ry lefr, the set

a.7) V(u) := {v € Ry right - v(v + l)d_1 =u(u+ l)d_l}

consists of one point.
For z satistying (7.3)), define the function

[Toer. qan (U T 1)~e+kd+L=-N=d/24+1(g(y 4 p))~1/2¢"

1_IvERZ,right l_[ueRZ,lcft v v—u ’

where /w is the usual square root function with branch cut R.q, and w2 =

(4/w)" for all n € Z. Also, define the operator Kél) acting on £2(R; jef) by the
kernel

78) V(@)=

S1(u)
=) fiv)’
where v’ is the unique element in V' (u’), and the function f; : R, — C is defined
by

(7.9) KD,y = u,u' € Ry e,

Qz,right(w)w_N_k"'z(w + 1)_a+k+p_letw
w+ p o WeE Rz,left,
(7.10) fi(w) := )
q; right(w)w_N_k+2(w + )matktoT! prw
| w+ p , WE Rz,right-

THEOREM 7.1. Fix an integer d > 2. Consider the TASEP in Xy (L) where
L = Nd with the flat initial condition

(7.11) (x1(0), x2(0),...,xn(0)) = (d,2d,...,Nd) € Xn(L).
Then for every k € {1,2,...,N}, t > 0, and integer a,

dz

(7.12) P (xk(t) > a) = §£Cz(vl)(z) det(l + KP) 5o
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where the contour is over any simple closed contour that contains 0 and lies in the
annulus 0 < |z| < ro := p(1 — p)1=~.

PROOF. When y; = x;(0) = jd, j = 1,2,..., N, (6.I) becomes, after re-
ordering the rows i > N —i + 1,

P(xp(t) = a) =

Cl i—1 d—1yj—1 dz
i det[ 2}; w T (ww+ D) T A (w)] 1Z1—(T1)L’
weR;
where
(_1)(k—1)(N+1)+N(N—1)/2
C, =
LN
and
—N—k+2 —a+k+d tw
~ w w+1 e
fl(w):: (w+[)) s wGRZ.
By the Cauchy-Binet/Andreief formula,
P(xx () = a)
G
ZmN'
(7.13) 515 > [T wi—wp)(wiCwi + D —wjw; + D7)

W1 yeeny WNER; 1<i<j<N

Uf(wfm

Since the summand contains the factors w; (w; +1)2~1 — wj(wj + )41 we only
need to consider the cases when w; (w; + 1)1 are all distinct. We now take the
contour to be in 0 < |z| < p?(1 — p)' 7. Let us denote the elements of R right as
Rz right = {V1,V2,...,vn}, and define

(7.14) Uvy) = {u € Ry et s u(u + 1471 = vj(v; + D471}
for each vj € Ry sighi, j = 1,2,..., N. The set U(v;) consists of d — 1 elements
(see the discussion above (7.7)). By the symmetry of the integrand in (7.13)), we

may replace the sum by N! times the sum of the terms with

(7.15) wj €{vjyUUW;), j=12,....,N.
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Hence,
P(xg > a't)
= ff _ (vi(vi + -1 — vj(v; + l)d_l)
Z r
(7.16) 1<’<’ =N
N dz
2 [T @i—wp [T hew) =z
w;€{v; }UU(v;) 1<i<j=<N j=1
j=1.2,...,.N

Now we reassemble the terms with respect to the number of roots chosen from
Rz ett- Suppose [ is the index set such that w; € U(v;) fori € I and w; = v;
forj e J ={1,2,...,N}\ I. For notational convenience we write w; = u; for
i € I;henceu; € U(v;). Then

(7.17) [T i-w)=

1<i<j<N
1,J . . . . . )
0" ED TT i —wi) [T @i—viy ] @ui—vp)
_ig/i’ ji<j’ iel,jeJ
ii'el Jj.jled

where n(I, J) is the number of pairs (i, j) € I x J such thati > j. We now
express (7.17) in such a way that the indices of the products are only chosen from 7.
Recall the function gy sign(w) = [] (w — v) defined in (7.5). We can
directly check that

UERZ,righl

(7.18) 1_[ (u; —vj) = Hiel qz,right(U;)
iel,jel [licr [Tires (i —viv)

and

1_[ (vj —vjr)

Jj<i’
J.j'eJ

(_1)n(1’J) n15i<j§N (vi —vj)
Hif‘ﬁg[ (vi — vir) Hie],jej(vi —vj)
(—)r@-D+IITI=1)/2 [Ti<icj<n@i—v)) ]—[i,-f/gl (vi —vjr)
[Tier q;,right(vi) '
Combining (7.17)), (7.18)), and (7.19)), and using

Hmw—ﬂmmﬂﬁw

iel jeJ

(7.19) =
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we obtain

N
[T i—w)[] i)

1<i<j<N j=1
N ~
= OIIEDETT Ay [T @i-vy)
j=1 1<i<j<N
7 Az atar) 52, s i (v = ve)
ier J1DG] g (Vi) [lier [Tirer (i —vir)
N ~
_ Vo siont (14 1
=[[A@) ] @-v) S1041) gz righ (1) det[ ]
=1 Ui = Vi i irer

=N .
1<i<j<N iel N (vl)qz,right(vl)

where in the last equation we applied the Cauchy identity

]l _ [Ti<i<j<i(xi = x7)(vi — )

(7.20) det|:
i,j=1 Hlfi,jgl(xi +yj)

xXi +yj

_Forw € Reje, f1(w) = J1(W)qz igh(w), and for w € R sigh, f1(w) =
fi (w)q;’right(w). Therefore we obtain

N
a2 ] wi—w) [ A =

1<i<j<N j=1

N
1_[ J?I(Uj) 1_[ (vi —vj) det[Kél)(u,-, ui/)]i,i’el'
j=1

1<i<j<N

Taking the sum over all subsets / of {1,2,..., N} we find

N
(7.22) > [T @i-w)]]Aw)=

w;€{v;}UU(v;) 1<i<j=<N j=1
j=12,...,N

N
[[A@) [ @ —v)det(r + kD).
j=1

1<i<j<N
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Plugging this into (7.16)) and comparing the result with (7.12), it remains to show
that

N
¢y @ = Crz®VETT fiwy)
(7.23) j=1
[] @i—v)i@+D" v+ D).
1<i<j<N

From the formula of C; and £}, the right-hand side of (7:23) is

(vj)vj—N—k+2(vj + 1)—a+k+detvj

N /
(=) =D+ (=DL 1—[ 97 right

e L(vj +p)
(7.24) 4 4
1—[ vi(vi + D471 —vj(v; + 1)47!
Vi — Vj ’

1<i<j<N

Now we simplify this expression.
First, noting that g right(W)qz ler(w) = gz (w) = wh (w + DEN — 2L we
find
q;(v)
4z left(v)
LvN—l(U + l)L_N_l(l) + ,0)

= for v € Ry 1ion
518 >
qz,1eft(V)

q;,right(v) =
(7.25)

because ¢z righ(v) = 0 for such v.

Second, we then use the fact that v; (v; + 1)471

are the roots of the equation

wV — zL = 0, obtaining
N
(7.26) [[vii + D4 =Nttt
j=1

And third, we have, fori # j,

(- d—1 _ ) . (4. d—1
(7.27) Vj (vl + 1) Vj (Uj + 1) _ 1_[ (vi _ M)

Vj — Uy
! J uel(v;)

since both sides are monic polynomials of v; of degree d — 1 whose roots are the
elements of U(v;). Since the left-hand side of (7.23)) is symmetric in i and j, we
obtain an identity

(7.28) [[] wi—w= ] -w.

uel(v;) uelU(v;)
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We claim that
(7.29) [T I] vwi—e=[] [] vo—=
i<jueU(v;) i<juel(v;)

Indeed, noting that v; € Ry jee and hence Re(v;) > —p while any u € U(v;) C
R ler satisfies Re(u) < —p, we find that both sides of (7.29)) are analytic in z for
lz| < ro = p?(1 — p)A~P). In addition, both sides converge to 1 as z — 0 since
when z = 0, v; = 0 and U(v;) = {—1}. Since the square of the two sides are the

same due to (7.28), we obtain (7.29). Now from (7.27) and (7.29), we find

(19: 1 d—1 _ . .(s. 1 d—1
i —Vj

1<i<j<N
m I vw-=

UERZ..right uERz,right\U(v)
Finally, we have, for all v € Ry ign,
(7.31) [[ 0-w=dw+p@+1??
ueU(v)

since U(v) U {v} is the set of all the roots of w(w + 1)¢~! = v(v + 1)¢~1. By
using an argument similar to (7.29), we have

(7.32) [[ vv—u=Vdw+p-v+1)472

ueU(v)
By using (7:26)), (7.23)), (7-:30), and (7.32) we find that (7.24)) is equal to
ﬁ (UJ + 1)—d+kd+L—Nel‘Uj l—IUERzJighI nueRz,right vU—U
o qz1efc (V) [Toer. s VAW +p) (Vv + 1)472

Since gz 1t (vj) = [[,e R. (Vi — u) by definition, we find that the above expres-

sion is same as Cl(\})(z). O

Remark 7.2. If we fix all other parameters and take . = d N — o0, the TASEP on
a ring of size L with flat initial condition converges to the TASEP on Z with flat
periodic initial condition

..,1,0,0,0,1,0,0,0,....
—_——— ——
d d
It is possible to show that in this limit, the formula (7.12) becomes
(7.33) Pz (X (t) > a) = det(/ + KD)

where KM is the operator defined on the space L2(Zief, du/27mi) with kernel
B (u + 1)—a+kdetu 1

) !
(7.34) K u) = ek g =y




780 J. BAIK AND Z. LIU

Here v/ = v'(u') € Zign is uniquely determined, for given u’ € Xif, from
the equation u’(u’ + 1)4~1 = v/(v/ + 1)4~1. The contours e and Yright, Te-
spectively, are the parts of the contour |u(u + )41 = r for any fixed 0 <
r < p(1 — p)?~1 satisfying Re(u) < —p and Re(u) > p where p = 1/d.
The contour X5 is oriented counterclockwise. By the analyticity, we may de-
form Xj.q to any small, simple, closed counterclockwise contour containing the

Py %, we see that KM (u,u’) =

—Y ez, A, y)B(y,u') where A(u, y) = (u+1)" kd=1e! and B(y,u’) =
(v + 1)Y~kd =1 Using the identity det(/ — AB) = det(I — BA), we find that
Pz fiat(xk () > a) = det(] — LD) for the kernel

point —1 inside. Writing 1, = — )"

—kd
(U + l)x t(u—v)d_u.’ X,y € Z<a’

7.35 LOx,y)y=@ —————
(7.39) (x-7) (v + l)y—kd"‘le 27i

where the contour is any small enough simple, closed counterclockwise contour
containing the point —1 inside and v = wv(u) is, for given u on the contour, the
unique point v in Re(v) > —p satisfying the equation v(v+1)4 =1 = u(u+1)4-1.
Whend =2,v=—u—1and becomes

—2k
(—u)*~2 et(2u+1)d_u

7.36 LY, yy=Q ———— ,
( ) (x. ) (u + 1)y—2k+1 27

X,V € Li<g.

This is the same kernel as the one in theorem 2.2 (with n; = n, = —k and the
change of variables u = —v — 1) of [11]] for the TASEP on Z with period d = 2
flat initial condition. For period d flat initial condition, a kernel similar to is
obtained for the discrete-time TASEP on Z in [[10].

Remark 7.3. We assumed that L = d N for the flat initial condition such as

1,0,0,1,0,0.
~————
L

More general flat conditions may have L. = £m and N = nm for integers £ > n
and m. For example,
1,1,1,0,0,1,1,1,0,0
L

corresponds to the case with £ = 5, n = 3, and m = 2. In this general case, the
(d — 1)-to-1 map from Ry jef; to Ry righe described above equation becomes
an ({ — n)-to-n map. This makes the computation complicated, and we do not
have a result for the general flat initial conditions. The situation is the same for the
TASEP on Z: the L = dN case was computed in [10,|11]], but the general case has
not yet been obtained.
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7.2 Step Initial Condition

We now consider the step initial condition. In this case L > N are arbitrary
positive integers and we do not assume that L /N is an integer.
For z satisfying (7.3), 0 < |z| < r¢, define the function

k=1 —a+L—-2N+k ,t
HueRz,leﬂ(_u) nveRz.right (U + 1) a et

2
737 D) =
! uEIEZ,left HveRz,right(v u)

and the operator K éz) acting on EZ(R z.left) With kernel

(738) K@) = frlu) ) ( 1

u—v)u —v v)’
veRegan )( ) f2(v)

where f> : R; — C is defined by

/
U, U € Ry jert,

(qz,right(w))2w_N_k+2(w + ])_a_N+k+letw

) w e RZ,]Gﬂ?
w—+p

)Zw—N—k-‘rZ(w + l)—a—N+k+letw

(7.39)  fo(w) :=

’
qz,right(w)

. W € Ry right
w—+p £

THEOREM 7.4. Consider the TASEP in Xy (L) with the step initial condition
(7.40)  (x1(0), x2(0),...,xy(0) =(—N +1,-N +2,...,0) € Xy (L).
Then for every k € {1,2,...,N}, t > 0, and integer a,

dz
(7.41) P(xx(t) > a) = 95 CP(z) - det(I + K§2>)E,

where the contour is over any simple closed contour that contains 0 and lies in the
annulus 0 < |z| < ro := p(1 — p)1=~.

PROOF. The proof is similar to that of Theorem but there are two main
differences. One is the structure of the Vandermonde determinant in the formula
due to a different initial condition. The other is that we do not have the (d — 1)-to-
1 correspondence between the Ry jefc and R; igh Since L/N is not necessarily an
integer. We use a duality between “particles” and “holes” for the step case.

Setting y; = x;(0) = —N + j, the equation (6.1) becomes

_ G i+j—2 F N dz
(7.42) P(xg(t) 2 a) = % ¢ det[ ; w fz(w)]i,j=1zl—(T1)L’
WERZ
where
(_1)(k—1)(N+1)+N(N—1)/2
(7.43) C, = N
and

_ —N—k+2 1)y"a—N+k+1,tw
144 Hw) =2 w+1) . weR,.
w+p
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From the Caucy-Binnet/Andreief formula, we have

(7.45) det[ Y witi=? j;(w)]

N
ij=1
WER; J

N
D DI b TR § FAT
| 1

Wi,...WNER; 1<i<j<N

By considering how many of the points wy, w2, ..., wn are in Ry jefe OF Ry right,
we find that is the same as

N N
(7.46) ;m > [T @i—-w)*] .

wly--'aw/ERZ.left 151<J5N -]=1
W/ 1500 WN ERZ right

Note that we may assume in the sum that wy, w,, ..., wy are all distinct since the
summand is 0 otherwise. Consider a term in the above sum. Fix / distinct points
W1, W2, ..., W in Ry jef and N —[ distinct points w41, W42, ..., WN in Rz rgn.
Observe that since | Ry sigh¢| = N, there are [ points v1, v, ..., V7 in Ry en SO that
the union of {vy,va,..., v/} U w41, Wiga, ..., WN} = Ry iighe. We may think
of W41, Wr42,..., wy as “particles” and vy, va, ..., v; as “holes” on the nodes
R right. We now express the sum in in terms of / points wi, wa, ..., w; in
R jefc and [ points vy, v2, ..., V7 in Ry riene. Note that all (N —/)! permutations of
Wi41, Wi42, ..., WN give rise to the same set of holes. Also note that the / holes
can be labeled in /! different ways. Hence becomes

N N
1 ~
2

a4 D aE o [T @i—w)? ] fatwp)

1=0 © 7 Wi, W ER; e 1<i<j<N j=1

V1,0,V €RZ right

where we assume that vy, va, ..., v; are distinct, and w; 41, Wy43, ..., Wy are any
points such that {v{,v2, ..., v} U{wj4q1, Wi42. ..., WN} = Ry sighi. Note that

748)  [] wi-w)*=

1<i<j<N
I N
1_[ (wi — wj)? 1_[ (wi—wj)zl_[ 1_[ (wi — wj)>.
1<i<j<l I+1<i<j<N i=1j=[+1

Similarly to and (7.19), we also have

[Toer. o 92 signi (V)
[T (wi—w)? = (VOO gRemm 0S4 ;2

l ’ )2
I4+1<i<j<N [Ti=1(a7 sign (Vi) 1<i<j<
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and

l N l ' "2
(7.49) T TT wi—w)?= [Ti =1 (@zsign (wi))

1 1 '
i=1j=I+1 l_li=11_[,-=1(wi _Uj)2

Therefore, is equal to

l_[1<t< <t (Wi — w]) (vi — 1)J) qaz right(Wi)
7.50 H¥NW-1/2 i< 2
( b Hz 11_[, 1 (wi —vj)? 1_[ (qZ right(V ;)2 l_[ qz right (V)

Note that f>(w) defined in is given by fr(w) = qg’right(w)f;(w) for
W € Ry e and fo(w) = q;,ﬁght(w)zﬁ(w) for w € Ry righi. We have

UERZ right

N
@51 [] i—w)?[] w) =

1<i<j<N j=1

)N(N 1)/2H1<1<]<l(wl wJ) (vi _U])2

Hl—l n]—l(wl vj)?

l
T1260 T Gwesan

v ERZ right

(—1

We fix wy, wa, ..., w; and take the sum over all possible vy, v, ..., v; in Ry right.
Using the Cauchy determinant identity (7.20), we find

5 [h<i<j<t Wi —wj)? (i —vj)? li[ fo(w;)

I 1 .
01091 Re i [Tizi [Tj=1 (wi —vj)? L f2(vi)
Nl -1/
Y w[Re] e
(7.52) Vlseti € R 0T Vidij=1 Wj = Vi ljj=1
o det[ y A0 Ao }’
VER right (wi B v)(wj B v) ij=1

=1!- det[K(z)(w,,wj)]l =1
Plugging (7.31)) and (7.52) into (7-47) and then checking (7.42)), we obtain
P(xx = ast)
Co(—1)NN-D)/2
(7.53) - 2

'9|§z,| , [T (2O, g det(1+K<2>)Tl)L

v GRZ right
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Comparing this and (7.41), it remains to show

(7.54)  Co(-DNWV=D/26=DL TT (£ 0)g} g () = CF (2).

UGRz,right

This equation, after inserting (7.43), (7.44), and (7.37), is equivalent to
(~)EDEDEDETT (g @) [T @-w)

VER: iight UER et

— 1_[ Mk_l l_[ L(U +,O)UN+k_2(U + l)L—N—l'

UER et VER: iight

(7.55)

Using (7.25)), this equation is further reduced to

(7.56) (—1)*=DE+D  G=DL _ 1—[ k=1 1—[ k1,

UERZ left VER; right

which follows easily by noting that Ry jeft U Ry rignt 18 the set of the roots of
wN (w4 NE=N — zL =0, and hence

w¥(w+ DEN L = 1_[ (w—u) l_[ (u —v). O

ueRz,leﬂ UERZ,right

Remark 7.5. If we replace k by N —k and let L and N go to infinity (proportionally,
for a technical reason), the formula becomes the one-point distribution for
TASEP on Z with step initial condition. Denoting by X; the k' particle from the
right, we find

(7.57) P2 qep(Fk (1) = @) = det(I + K®)

where K® is an operator on L2(I'_y, du/27i) with kernel

k —a—k+1 ,tu

+ 1) e dv
758 K(z) i N — ¢ u (u —.
(7.58) (.20 To vk (v + 1)7a Kk letv(u — v)(u’ — v) 27

The contour I'g is any simple closed contour with the point O inside but the point
—1 outside, and I'_; is any simple closed contour with —1 inside and O outside.
We assume that I'g and I'_; do not intersect. Writing

(CE VI SR

W s

n<a

and using the identity det(/ + AB) = det({ + BA), we can see that this is equiv-
alent to the formula, for example, in proposition 3.4 in [9] with a(¢) = t and
b(t) = 0.
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8 Proofs of Theorems 3.1 and 3.4

In this section, we prove Theorems [3.1] and [3.4] by computing the limits of the

formulas (7.12) and (7.41) at the relaxation scale. These formulas are of form
; oy dz

8.1 (@) - det(l + KD)—. =12,
.1 P -deulr + k)7
where we used the variable z instead of z, and the contour is any simple closed
contour in the annulus 0 < |z| < ro := p°(1 — p)! ™" that contains the point 0
inside. It turns out that we need to scale the contour in such a way that |z| — r¢ at

a particular rate in order to make both terms Cj(é) (z) and det(! + Kz(i)) converge.
The correct scaling is the following: we set

(8.2) b = (—1)Nrfz.
The integral involves the sets (7.4):

R,={weC:w¥w+ 1IN —zL =0,
(8.3) Ryjett = R, N {w € C : Re(w) < —p},
Rz,right = R, N{w € C : Re(w) > —p},

and these sets are invariant under the change z to ze'?”™ /L From this we find that
the integrand in (8.1) is invariant under the same change, and hence (8.1) is equal
to

(8.4) 950}@’@) - det(I + Kz(l));r_ziz’ i=1,2,
where for z, z = z(z) is any number determined by (8.2). The contour is any
simple closed contour that contains O and lies in the annulus 0 < |z] < 1. We
compute the limits of C](\l]) (z) and det(/ + Kz(l)) under the condition (8.2) for each
fixed z satisfying 0 < |z| < 1 where other parameters are adjusted according to
the flat and step initial conditions.

In order to make the notation simpler, we will suppress the subscript n in Ny,
Ly, and p; for the step case and write N, L, and p instead, unless there would
be any confusion. Now we consider the asymptotics of (8.4) as L, N — oo (or
equivalently, n — oo in the step case). Some parts in the formula are the same
fori = 1 (flat) and i = 2 (step), and we will consider the asymptotics of these
parts first and then consider the remaining parts separately for i = 1,2. Among
the large parameters L and N (and n), we use N to express the error terms.

We first consider the sets Ry jef and Ry rigne in the large-N limit. Under the
scale (8.2), we have |z] — rp, and then these two sets become close at the point
w = —p (see Figure when |z| = rg). As Figure suggests, the spacings
between the neighboring points of Ry jef; and Ry signe are of order O(N _1) (since
there are O(N) points on a contour of finite size), but the spacings of the points
near the special point —p are larger. Indeed, it is possible to check that the spacings
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near —p are of order O(N ~1/2). We first show that, assuming (.2),

N 1/2
(8.5) N?(Rz left + 0) ~ Sz, left
for the points near —p, where the set Sy jer; is defined in (4.5)):
_£2
(8.6) Szger = (€1 e75/2 =z, Re(£) < 0},

There is also a similar statement for Ry sgn.. The precise statement is given in the
following lemma, whose proof is postponed to Section[9.1]

LEMMA 8.1. Let z be aﬁxed number sansfymg 0 < |z| < 1, and let € be a real
constant satisfying 0 < € < 5 Setzl = (— 1)N11° Z where rg = pP(1 — p)!=P.

Define the map M jefi from Ry jere N {w = |w + p| < p/T— pN/*712} 10 S, g
by

8.7 Mper(w) = &,

N1/2(w + /0) < N3€/4 1/2
CpT=p
Then for large enough N we have the following:
(a) M jefi is well-defined.
(b) M eft is injective.
(c) The following relations hold:

(8.8) SNV f(Mpger) € SO,

z,left Z,left

where (M jer) := Mnteft( Ry N{w : [w+p| < p/T— pN/471/2}),
the image of the map M jeri, and Sz(fl)eﬁ = Szert N{E 1 |E] < ¢} forall
c>0.

where & € Sy jefi and |& — log N.

If we define the mapping M sign in the same way but replace Ry e and Sz jefe by
Ry right and Sz righi, respectively, the same results hold for My rign-

In the next lemma, we consider the products

9y Ll w-w [[ @-u. [ ][] e-w.

UER, 1t VE R, right VER, right UE Ry 1eft

in the large- N limit. These factors appear in both C](\? (z) and Kz(i) (see (7.9)). The
limits are given in terms of the functions

—£ 2_ .2
(8.10) Dre (£, 2) := _J—_ _Lin 2(ze€ 772y, Re(®) > 0,

and

BI1)  brign(£.2) = — Liy2(ze®/2)dy,  Re(€) <0,
o0

1
2 J-
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where the integral contour from —oo to F£ is taken to be (—oo, Re(F§)]U[Re(F£),
F&]. Along such a contour |Ze(§2—y2)/2| < 1, and hence Lil/z(ze(gz_yz)/z) is
well-defined. Furthermore, note Li; /5 (w) ~ @ as @ — 0. Thus the integrals are
well-defined. We remark that

(8.12) Bietc(§, 2) = brigni(—§,2)  for Re(§) > 0.
We also note that for § € Sy jcf;, we have €12 = z, and hence
1 § 2
Bgn(£,2) = === [ Liyj2(e™"%)dy  for such .

which is the integral in the definition of W, (&;x, ) in (.6) and also @, (&; x, 1)
in (@.12)), up to a constant factor.

LEMMA 8.2. Suppose z, z, and € satisfy the conditions in Lemma (8.1}
(a) For complex number &, setwy = wn (€) = —p+p/T— pEN"Y2. Then

(8.13) l_[ Juy —u = (Vwy + I)L—Ne%meft(s,z)(l + O(Ne—l/z))

MERz,leﬂ
for each fixed & € C satisfying Re§ > 0, and
(8.14) 1_[ JU—WN = ( —wpy Ne%hright(gaz)(l + O(NE—I/Z))
veRz,righl

for each fixed & € C satisfying Re§ < 0. Moreover, for every w € C
that is an O(1)-distance away from Zie U Ziigne for all n (note that the
contours depend on n), we have

[[ vo—u=w+DENa+0W2), if Re(w) > —p.

UER, lefe
(8.15) )
[T vomw=W=mVa+0W"2), i Re(w) < —p,
UGRz,righl
as N — oc.

(b) Fix ¢ > 0. The estimate [§13) in (a) holds uniformly for |E| < N€/*
satisfying Re § > c after we change the error term to

(8.16) O(N¢"210g N).

The estimate (8.14) also holds uniformly for |€| < N€/* satisfying Re £ <
—c after the same change of the error term.
(c) For large enough N, we have

HuERz.leﬁ( v _u)N HUERz,right( v + l)L_N
HUGRz,rigm l_[ueRz,lefl vvu—u

. 2
where B(z) = ﬁ foz W dy is defined in (@.4).

(817) — eB(Z)(l + O(NG—I/Z))
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We point out that throughout the section, all error terms O(-) depend only on
|z|, not the argument of z.
The proof of Lemma|[8.2]is given in Section[9.2]

8.1 Flat Initial Condition

We prove Theorem[3.1] Note that in this flat initial condition we always assume
that p = d ! for some fixed d € Z>».
We apply Theorem [7.1| with

1

k=ky, t=—5————1tN2
p*VT—=p
(8.18) a= (1—p)l+kNd—xp_1/3(l—p)2/3tl/3
1—
= (1= p)t +kyd = X—L B3N,
p

where 1 < ky < N,and 7 € R-¢ and x € R are both fixed constants. Here we
assume that a € Z. However, the argument still goes through if a is not an integer
except that the error term in Lemma|8.3|should be replaced by O(N€~1/2) due to
the O(1) perturbation on a. This change does not affect the proof.

Asymptotics of CS) (z)

Recall the definition of CI(\})(Z) in and rewrite it as the product of three
terms

C(l) (Z) _ HuERZ.left( v _u)N HveRz,right( VU + l)L_N
M Hvestright l_[ueRz,lefl vu—u ’
1

8.19)  CYh(2) =

HveRz,right \/d(l) + p)(\/v + 1)d—2’
i@ =[] =™ [] o+nl-N-2at2kem,

uERz,leﬂ veRz,right
Using Lemma [8.2](c), we find that
(8.20) c](\;’)l (@) = BD(1 + O(N1/2))

where € € (0, %) is an arbitrary constant defined at the beginning of Lemma
On the other hand, by using (8.14)) with £ = 0 (and hence wy = —p) and (8.15)
with w = —1, we obtain

(821) C](Vl)z(z) — e_%hright(O,Z)(l + O(NG—I/Z))'

We can directly check that bign(0,2) = %log(l —2z) = —2A43(z2) (see @.3)).
Hence we find

(822) C](\;,)Z(Z) — €A3(Z)(1 + O(NE—I/Z))'
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Finally, we have the following result for Cz(\})s (z). Its proof is given in Sec-
tion[0.3]

LEMMA 8.3. Suppose z, z, and € satisfy the same conditions in Lemma([8.1} and a,
t, and k satisfy (8.18). Then for large enough N, we have

(8.23) (@) = o7 @@ (1 4 (N2,
Combining this with and (8.22), we obtain the asymptotics of CI(\}) (z):

(8.24) CV(z) = o7 F@+TADFL@+ER) (] 4 o(NE1/2)),

where A;(z) and B(z) are defined in and (4.4).

Asymptotics of det(/ + Kz(l))

Recall that

8.25 KOy = — 1

(82 o 00 = e =)

where v' € Ry igne is uniquely determined from u” € R, jef¢ by the equation

(8.26) W+ D4 =00+ )4

and the function f; is given by
21 (W) Gz right(w)
ﬁ, W € Ry jetr,

(8.27) Siw) =4 _ ,
g1 (U))qz,right(UJ)
W, w e Rz,righh

with g1 (w) == w k2w + 1)~9Tk+r" ot Using (826), the Fredholm deter-
minant of Kz(l) is equal to det(/ + Izz(l)) where
hy(u)

(1) N _
K ) = =)

with
gl(w)qz,right(w)’ W € Ry lett,
(w + pywV |
(8.28) h(w) = '
81(W) Gy igh (W)
(w + p)ywh W € Rarigh
and

71 ()wkHEN 2 IVT=0] (4 4 1)@d=DEAHEN2//T=p])
T1(=p)(—p)kTIIN32/JT=p](—p 4 1)d=D)(k+[N32/JT=p])’

The proof of the following lemma is given in Section (9.4

(829) g1(w) =

LEMMA 84. Let0 <€ < % be a fixed constant. We have the following estimates:
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(a) Foru € Ry et satisfying |u + p| < p/1 — p N€/4—1/2)

N1/2 , 1. £3,.1/3 1/2
(8.30)  hi(u) = mehngm(S,z)—grS +z xé(l + O(N€™ / log N))
where £ = %J%f’) and Yiigni(§, 2) is defined in (8:I1). The error term

O(N€~Y/21og N) does not depend on u or &.
(b) For v € Ryignt satisfying [v + p| < p/T— pN€/4=1/2,

2
(8.31) @ __PF (IN_ p)ehleﬂ(f,z)+%r§3—rl/3x§(1 + O(Ne_l/zlogN))
1(v

where { = N;/Z—gx/%f) and Yier (8, 2) is defined in 810). The error term

O(N€~V/21og N) does not depend on v or .
(c) Forw € R, satisfying lw + p| > p/T— pN€/471/2,

(8.32) hiw) = 0 M), w e Rypen.
and
1 _ €/
(8.33) = 0 CN**) " W € Ryrigh.

—CN3

/4 .
Here both error terms O (e ) are independent of w.

Lemma [8.4]implies that

834) KW,y =
f)rigm(f,Z)-f'bleﬁ(f,Z)—%T§'3+Tl/3XE+%t§3—rl/3x§
¢ e—1/2
- EE—0) (14+O(N log N))

for all u, 1’ € Ry e satisfying |u + p|, [u’ 4 p| < po/T— pN€/*, where

N'2(u + p) N2 + p)
fr=——— " and (= ——— =
pN1—p pv1—p

with v/ € Ry ign defined by u'(u’ + )41 = v/(v' + 1)¢~1. Note that & =
—n+ O(N3€/471/2) where ) := %\/4?’) since [u’ + p| < p/T— pN€/*. This
implies, by using hiei (¢, 2) = Bright(—¢, 2) from (€.12), that (8.34) equals

835 KW u,u')=

o Diient (6,2)Fbrign (1,2)— 3783+ Bxé— T3+ 3y 12
- T (1+ O(N€ log N)).
On the other hand, we also have Ez(l)(u,u’) = O(e_CNkM) when |u + p| >
p/T—pN€/* or [u' + p| > p/T—pN€/*. Hence, together with Lemma (8.1
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which claims that the {& : —p + p/T— pEN"1/2 ¢ Ryjery N{E @ €] < Ne€/4)
converge to the set Sz e, We expect that

(8.36) Jim_det(7 + KD) = det(1 — £V)

where ICgl) is the operator defined on Sy je¢ with kernel

Prignt (6,2) Fbrign (1,2)— 3 T&3+713xg—Jen3+c13xy

(8.37) KM (& n) =
¢ EE+n)
Since e=§7/2 = z for &€ € Sz jert, We have
Brn(6.2) = ——— [ Livjale™"/dy for such
u 7)) = — i1/5 (e or such &,
ght \/ﬂ - 1/2 y

and hence the kernel ICQ) is the same as with x replaced by 71/3x.
In order to complete the proof of (8.36), it is enough to prove the following two
lemmas.

LEMMA 8.5. For every integer I, we have
(8.38) lim Tr((KV)) = Tr((-kL))).

N—o0
LEMMA 8.6. There exists a constant C that does not depend on z such that for all
| € Z>1 we have

(8.39) Z {det[gz(l)(wi, wj)]i,j=1‘ <c’.

W1sees W € Ry eft
Assuming that Lemma 8.5]is true, we have

. 2OV —
Jim oy de KD i wp)]; o =
Wi,...,W; ERG et /

> e[k,
15,61 €Sz lert
for any fixed /. Then by applying Lemma and the dominated convergence
theorem, we obtain (8.36).
It remains to prove Lemmas|[8.5]and [8.6]

PROOF OF LEMMA We only prove the lemma when / = 1; the case when
[ > 1 is similar. Fix € such that 0 < ¢ < 2/5. The upper bound 2/5 is related
to the number of terms in the summation (see (8.41)) and (8.45) below) and hence
needs to be modified accordingly if [ > 1.

Note that Lemma implies that for any u € Ry e satisfying |u + p| <
p/T— pN€/4, there exists a unique § = M (u) € Sz 1efe such that

NP D] paeair
pv1—p
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We have
d
8.40 KWE )|, |—=
(8.40) KPEDL
uniformly for all £ satisfying dist(&, Sz teft)) < N 3¢/4=1/2 1o N'; this follows from
the exponential decay of the kernel along the Sy i Here dist(w, A) denotes the
distance from point w to set A. Thus we obtain

N2 +p) N'Y2(u + p)
D SR AW S o)
UERy jent pyI=p pyI=p EcI(MN er)
[u+pl<p/T—pN</*
< CN*/* 2 I (M en)],
where /(M y er) is the image of the mapping M y jefc defined in Lemma By
using the upper bound of /(M p jeft) in Lemma c), all the points in /(M n jef)

satisfy || < N€/* 4 1. Thus we have [T My er)| < CN</2. The lower bound of
I(Mp jeft) in the same lemma also implies imy o0 [ (M N 1eft) = Sz lefi. Since

KkM(E 8| < C,

(8.41)

(8.42) Y. KMEo|<c
£€S7 et
we obtain
NY2@w +p) NV2(u + p)
(8.43) IC(”( , ) N
=z, (R
lu+pl<p/T—pN€/4
> kPE§)

EESZ left

where we also used the upper bound of €, which gives 5¢/4 — 1/2 < 0.
Now for each u = —p 4 p+/1 — p§ € Ry jer; satisfying |§] < N€/* by applying
Lemma[8.4[a) and (b) we have

(8.44) KW (u,u) =
_,C(l)(Nl/z(quP) NY2(u + p)
S\ pvT=p = pJ/T=p

where the error term O(N€~1/2log N) is independent of u. Therefore we have

= N2+ p) N'V2(u+ p)
> Rww+ Y ’CE"( A s )’
weR pv1I—p pv1I—p

7, left UE Ry jeft

[u+pl<p/T—pN /4 [u-+p|<p/T—pN</4
< CN>/*1/210g N.

)(1 L O(N10g NY)

(8.45)

The last estimate we need is

Z I?z(l)(u, u) — Z I?z(l)(u, u)

uERz,lcft UER, lefe
lu+pl<p/T—pN€/*

(8.46) < CLe™CN**,
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which follows from Lemma[8.4(c) and the fact that there are at most L — N points
in the summation. By combining (8.43)), (8.43]), and (8.46)), we have

(847) Jim 30 KPPy =- 30 K66 0

UER, Jeft EES; left

PROOF OF LEMMA First we have the following inequality:

(8.48) o Y K wwpr<c

UERz 1t | W ERZ Lent

where C is a constant that is independent of z. This follows from the fact that the
left-hand side converges to

(8.49) > Y kPeEer

E€Szer | E'E€Sz kent

as N — oo, which can be shown by using Lemma(8.4] Since the argument of this
convergence is almost the same as the proof of Lemma [8.5] we omit the details.
The above limit is bounded and hence (8.48) holds.

Now we prove the lemma. By Hadamard’s inequality, we have

1
|det[1€z(l)(wi,wj)]5’j:1| s 1_[ Z ‘Ez(l)(wi,wj)‘z

i=1\1<j<li
(8.50) ;
~ 2
<I1./ > | KL (wi. )|
i=1 u/ERz,]cft
for all distinct w, wa, ..., w; € Ry jefi. As aresult,
> |det[ K )(wi’wf)]i,j=1|

W] yeens WIERz,left

l
(8.51) <= > TI1) X & )

wly---’wIERz,]cft i=1 u/ERz,Icft

-(x [ X <1’<'z‘”<u,u/>\2)l,

MERz,left uIERZ,left

and (8.39) follows immediately. O

PROOF OF THEOREM 3.1l In summary, under the scaling (8.18)), we have (8.24)
and (836). These two imply that (8.I) with i = 1 converges to Fy(t'/3x; 1),
where F(x; 1) is defined in (4.2). This proves Theorem 3.1 O
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8.2 Step Initial Condition

We now prove Theorem [3.4]
We apply Theorem [7.4] with
pn = Nn/Ln,
(8.52) N,,[ r /2] 1 1
= — | —N + < VnNp + (N — ky),
T lvT=p " pp e

and
(8.53) an = (1 = pn)tn — Py "Ny — kn) — p 3 (1 = pp)?3x1)/3,

where p, € (c1,c2) with fixed constants ¢y, ¢ satisfying 0 < ¢; < ¢ < 1, and

Yo =y + OWN, v 2) for fixed y € R. As we mentioned before, we suppress
the subscript n for notational convenience, but we still write y, to distinguish it
from y, which is a fixed constant.

We also assume @ = a, given in (8.53) is an integer so that Theorem[7.4]applies.

Asymptotics of CJ(\%) (z)

Recall the definition of CJ(\%) (z) in (7.37) and rewrite it as the product of the two
terms

HuERz,]cft(_u)N HUERz'rigm(v + I)L_N

1_[ueRz,lefl 1_[veRz.righl(v - U)
C](\i)z(z) — 1_[ (_u)k—N—l l_[ (v + 1)—a—N+ketU'

UER, et UERz.right

CP)\ (@) =

’

(8.54)

By applying Lemma 8.2]c), we have
(8.55) @, @) = 2BO1 4+ O(NY?)),

On the other hand, for Cz(\?)z (z), we have the following result, which is analogous
to Lemmal[8.3]

LEMMA 8.7. Suppose z, z, and € satisfy the same conditions in Lemma 8.1 and
a,t satisfy (8.52) and (8.53) with 1 < k < N. Then for large enough N, we have
£1/3

(8.56) ) (2) = oF P HA@HQ (| 4 o(NV2),

Combining this lemma with (8.55)) we obtain

(857) CI(\?)(Z) — erl/3xA1(Z)+‘EA2(Z)+ZB(1)(1 + O(Ns_l/z)).
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Asymptotics of det(/ + Kz(z))

Recall that
1
8.58) K@ = . uu' € Ryt
(8.58) (u,u') = fz(u)veRZ o= hm WY € Reen
z,right
where f5 is given by
22(w)(Gzright(w))?

(w +Zpr;g;'0t2N ) w e Rz,left’
(8.59) pwy=4_ "~ " ,

(w + p)sz ) w e RZ,I‘ight’

with g2 (w) := wN *+2(w 4 1)a~N+k+1,1w Note that w™ (w + 1)L~V = 2L
for all w € R,. Thus the Fredholm determinant of KZ(Z) is equal to det(! + Ez(z))

where
1

8.60) KO =h . u.’ € Ryjents
(8.60) (') = ha(0) UE; =) = v)ha(v) . et
z,right
where
g2(w)(quight(w))2

(w n p)sz , WE Rz,lefta
(8.61) ha(w) = , R

w+ p)sz , WeE Rz,right,
with

Ez(w)wN[%pN”z]( 1[N

#a(=p)(—p) M7= (1 = W]

Similarly to Lemma [8.4] we have the following asymptotics for s(w). See
Section 9] for the proof.

(8.62) g2(w) =

LEMMA 8.8. Let0 <€ < % be a fixed constant.
(a) Whenu € Ry jefi and lu + p| < p/1 — pN€/4=1/2 e have

1/2 1 ¢34 _1/3 1,62
(8.63) ha(u) = o p2bhgm(2)—3TE T P xE 45 vE 1+ 0(N€—1/2 log N)),
p/1— p§
_ N'2@u+4p) ) . .
where § = 7y @nd Biigh is defined in @TI). The error term

O(N€Y/21og N) is independent of u and &.
(b) When v € Ry sigh and [v + p| < p/1 — oN€/4=1/2 \we have

3 3/2
®64) 3 1( 5=° (;11\;373 P @ el P dr e (1 o(ve g ),
2(V
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where { = N;/2+«/UT—|;)) and Biege is defined in B.10). The error term

O(N€~V/2log N) is independent of v and .
(c) When w € Ry and |w + p| = p/T— pN/4=1/2 we have
_ 3e/4
(8.65) ha(w) = 0(e™ N7, w € Rypere
1 _CN3€/4
(8.66) ) = O™ N, w e Ryyigh.
2

_CN3e/4 .
Here both error terms O(e~SN """ are independent of w.

From Lemma 8.8 and Lemma [8.1] we expect, as in the flat case, that
. S 2
(8.67) ££;¢ﬂ1+K§U=de—KQ)

where ICEZ) is an operator defined on Sy jee with kernel
e @ ET P, )+ @ (17 2x, 1)+ Ly (6] —n?)

Einr + 2 +n)

8.68)  KP(ELE)= )
”GSZ.lefl

and

1
CDZ(%-;TI/E;X, ‘E) = —51'%'3 + T1/3Xé

[2 ¢ . —w?
— —[ L11/2(€ @ /z)dw, éj‘ € Sz,lefta
T J-co

is defined in (@.12)). The rigorous proof is similar to that of (8:36), and we omit the
details.

Proof of Theorem 3.4

In summary, under the scaling (8:52) and (8:33), we have (8:57) and (8.67).

These imply that (8I)) with i = 2 converges to F»(t!/3x; 1, ), where Fy(x;,)
is defined in (.10). This proves Theorem[3.4]

9 Proofs of Lemmas 8.1} [8.2} (8.3} [8.4}, 8.7, and [8.§]
9.1 Proof of Lemmal8.1]
We prove the results for My ;. The proof for My rign is similar.

(8.69)

(a) Let w be an arbitrary point in the domain of My jerr. We first show that
there exists a § in Sy jef satisfying

N'2(w + p)
o1 —p

when N is sufficiently large. Write w := —p+p~/T — ppN ~V/2 where || < N¢/*
and Ren < 0. Since w € Ry jef, it satisfies g;(w) = 0 and hence we have

(—p+o/T=pnN VN = p + p/T— ppNVHEN =28 = (—1)Nrf .

S N3€/4—1/2 IOgN



TASEP ON A RING 797

Since rg = p°(1 — p)1=°, 11“0L =N - p)L~V and

L—-N
- p -1/2
9.1) (1—1—pnN 1/2)N(1+—nN ) = z.
vI—=p
When n N ~1/2 is small and N is large, the Taylor expansion yields that
9.2) e—n2/2+EN m — ,

where E (1) is the error term satisfying En (1) = O(n3N_1/2). Note that

9.3) En(n) = O(N3¢/*71/2)  uniformly for || < N€/4,
hence uniformly for w in the domain of My jei. The above calculation implies
that n?/2 — En(n) = —log|z| + if for some 6§ € R. Note that since z is a

constant satisfying 0 < |z| < 1, we have Re(—1log|z|) > 0, and hence there is a
constant ¢ > 0 such that Re n < —c for all  satisfying (9.2) and || < N /4 Now
let £ be the point satisfying Re £ < 0 and £2/2 = —log|z| + if. Then & € Sz jest
and 2/2 — En(n) = £2/2, which implies that [n? — £2| = O(N3¢/471/2). Note
that Re§ < —c for some (possibly different) constant ¢ > 0. Hence |n + &| >
|[Re(n + £)| = c¢ for a positive constant uniformly for 7 and £. There we find that
|n — €| = O(N3€/41/2)_This proves the existence of £.

We now show the uniqueness of such £. Suppose that there are two different
points £ and £’ in S jef satisfying |€ — |, |&' — 5| < N3¢/471/21og N. From the
fact that e=§7/2 = ¢=§"%/2 we have |€2 — £2| > 4. On the other hand,

E—&'| < |E—nl+|& —nl <2N3/4"1/210g N
and
&+ & < |E—nl + 18 —nl+2[n| <3N

These two estimates imply that |2 — £2| < 6N€~1/2]og N. This contradicts the
previous lower bound 4. Thus for sufficiently large N, there is aunique § € Sz jeft
satisfying |€ — | < N3€/4=1/2]og N. The map M N jefr 18 thus well-defined.

(b) We now show that M y 1.f; is injective. If w := —p + p/T — pnN~/? and
w' = —p + p/T— py’ N~1/2 are two different points in the domain, then £ =
My seie(w) and & = My e (w’) are different. Note that ||, |n'| < N€/*. Since
w and w’ are solutions of the polynomial equation wh (1 —w)l=N = (-1t 11“OL Z,
by noting (9.1)) and (9.2) in (a), we find that

9.4) —n?*/2+4 En(n) =log|z| +i61, —(n)*/2+ En(n') = log|z| + 16>,

for some real numbers 6; and @, such that |§; — 62| > 2. Now |2 — (§/)?] >
In? — (')?| = 1€2 = ? = |(€)? — ()?. Since |§ — | < N3¢/471/21og N by the
definition of £ (see (8-7)), and we have |£[, |n] < N/*, we find that |2 — n?| =
O(N<~1/2 log N). We have the same estimate for |(§')? — (1’)?|. On the other
hand, from ©2), 12— (1')2| = 47 ~2|Ex (9)|~2| En ()] = 4w~ O(N3</4-1/2)
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from (9.3). Therefore, we see that |§2 — (§')2| > 47 — O(N€~1/21og N). Taking
N — oo, we find that £2 and (£’)? are different, and hence £ and £’ are different.

(c) The definition of M p jef already gives

Ne/4+N35/4—l/2 logN N€/4+1
I(Mnjert) S Sz,left < Sz,]eft
for sufficiently large N. To prove the other inclusion property, it is enough to show
4 . . . —
that for every & € SZN;; ~1_ there exists 7 satisfying |§ — n| < N3€/471/2]og N

and (0.1). Indeed, if such 7 exists, then w := —p 4+ p/T— ppN~"1/2 lies in
Ryjeic N {w : |[w + p| < p/T— pN/4=1/2} since

In| < |n—¢&| + €] < N/* — 1 N3/4712 100 y < N/

and is satisfied. Now, in order to show that there is such an 7, it is enough to
show that, by using e§/2 = 7 and taking the logarithm of (9.1)), the function

P(1) := Nlog(1 — y/T— ppN~/?)

-1 _ BT EEYE O
+ N(p l)log(l+ mnN )+ >
has a zero inside the disk |p — £] < N3¢/4=1/21og N. Since nN~1/2 is small,
we have (see 92)) P(n) = —n?/2 + En(n) + £2/2 for 5 in the disk. The
function Q(n) = —n?/2 + £2/2 clearly has a zero in the disk and |Q(n)| =
In—&|ln + &€]/2 = ¢N3€/41/21og N on the circle |n — &] = N3€/471/2]og N.
Here we used that Re £ > —c for some positive constant ¢ and hence 7 satisfies the
same bound for a different constant. Since |En (n)| < O(N3€/471/2) (see ©.3)).
we find that |Ex ()| < |Q(n)| on the circle, and hence by Rouché’s theorem, we
find that P (1) has a zero in the disk. This proves S%, Wi C I(Mp jefr)-

z,left

9.5)

9.2 Proof of Lemma(8.2]
We use the following simple identities in the proof.

LEMMA 9.1. Let Ziefi,our be a simple closed contour in the left half-plane Re z <
—p that encloses Tiere = {u : [ulPlu + 1|17 = |z|,Reu < —p} inside so that
Yieft,out encloses all points in Ry et inside. Then for every function p(z) that is
analytic inside Ziefi,oue and is continuous up to the boundary,

9.6) Z pu) = (L—N)p(-1) + LzL§£ p)(u +p) du

u€Rz,1cﬂ Zleft,uut u(u + l)qz(u) 27[1

where q,(u) = uN(u + I)L_N — 7L Similarly, let Ziignt,out be a simple closed
contour in the left half-plane Re z > —p enclosing Zyigne = {u : [u|Plu + 1|17 =
|z|,Reu > —p} so that Zigni,ou encloses all points in Ry sign. Then for every
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function p(z) that is analytic inside Ziigh,ou and is continuous up to the boundary,

©.7) > p<v>=Np<o>+LzL9§ PO +p) dv

UERz,righ[ Z:right,out U(v + l)ql(v) 27-[1

In particular, when p(z) = 1, we find that

u+p du ¢ v+p dv
0= ———————— and 0= - F -7
9.8) élemm u(u + 1)g,(u) 2mi Sright.out v(v + 1)gz(v) 27i

q,w) _ (N | L-N\g(w)+z~ _ L(w+p) L
PROOF. Note thatm = (E"' w+1) ) = w(wH)(l—i-qu(w)). Hence

by the residue theorem,

> p(u)=§6E P0g ) du

UE R, Lot left,out qz (M) 271
i PWEp g ) b
Zleft, out u(u+1) 2mi Sron W+ 1)gz(u) i
O

We now prove Lemma 8.2
(a) Applying the identity (9.6) to the function p(u) = log(wy — u) and using

@), we obtain
9.9) S log(wy —u) = (L — N)log(wy + 1) + Iy

UE R, left

where

1/2 _
(910) Iy = LZL ¢ log(N (wN u)) u-+p du
Zleft‘uut

pVT=p  Julu+ Dgy(u) 2ni’
It is now enough to prove that if Re £ > 0, then
.11 In = bier(z.£)(1 + O(N71/2)).
For this purpose, let
9.12) pa=p—apy/T—pN~'/?

for some real constant a satisfying a?/2 < —log|z| and a < Re £. By Lemma
we can deform the contour Xjefi,out t0 —pq + 1R:

—pPat+ico N1/2 o d
9.13) Iy = LzL/ log( (wy ”)) utp
—pa—ioco pv1—p u(u + 1)gz(u) 27i

We then split the integral into two parts, [Imu| < p/T— pN</3~1/2 and [Imu| >
p/1—pN €/3=1/2 where e is the fixed parameter satisfying 0 < € < % as defined
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in Lemma|8.1] and estimate them separately. For the first part, note that if u + p —
0as N — oo, then

gu(u) =u (1 + )N — (N (1 = )t~z

N L—N
9.14) = (=p)N(1 - P)L_N[(l - P) (1 e p) —Z]
p 1—p

2L 1
= —(e 202(1—p)

N@u+p)?>+O(Nu+p)*) z)
Z

since N/L = p. Hence by changing the variables u = —p + p/1 — /077N_1/2 we
get that the first part of (9.13) for [Imu| < p/T — pN</371/2 i5 equal to

a+iN€/3 0 dn
015 -z / log(§ — 1) ——t——(1 + O(N<1/2)) SL _
a—iN€/3 e—n*/2 _ z 2mi

f T e - m— I (14 oveir2y)
) BTV S oa '

)L™V and note that for

To compute the second part, recall that r({J = opV(1 -
U = —pg + iy with |y| > p/T— pN¢/371/2,
uN(u + l)L_N ‘

L
L)

_ AN = pot N (1 N y_Z)N/Z (1 L )(L‘”’/Z
(9.16) pN (1 —p)L=N rz (1 — pa)?
2 N/2 2 (L-N)/2
a2 (e )
paz (1— Pu)2
> C1€C2N2€/3y2
for some positive constants C; and C5. Since the last bound in the above estimate
is >2 for all large enough N, we find that

MN(M + l)L_N
7L

q2(u)

CoN?/3 2
zL ’ Y

.17)

1
—1‘ > —Cie
2

for the same u. Also, since
WN —U = (S—a)N_l/zp\/l —p+iy and Re(f—a)>0,

we find that [wy —u| < CN~Y2 4 |y| < 2|y| for all large enough N and
lwy —u| > Re(§ —a)N~Y2p/T=p > CN~1/2, and hence there is a constant
C3 such that

1
9.18) [log(wy —u)| < ElogN + C3 + log|y|
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for all large enough N. Also, noting the trivial bound |u + p| < |u(u + 1)| for
such u, the absolute value of the second part of the integral of (9.13)) satisfying
[Imu| > p/T— pN€/371/2 is bounded above by

‘ log N + Cs +1
(9.19) CuLV/2e=C2N? /3/ gV + Cs + gyl .
YER;|y|=N¢€/3 y
CN2¢/

. . _ 3 .
for some positive constants Cy, Cs. This is bounded by C’e for some posi-

tive constants C, C’. By combining (9.9), (9:13), (9.15), and (9.19)), and comparing
the result with (8.13), it remains to show that

a-+ioco
nlog(§ —n) dn
9.20 en(§,2) = — /2 _ 5 27i’
(9.20) Brest (€, 2) Z/u_ioo /2 _ ; 2mi
1.€.,
e . "% nlog(§ —n) d
( ) 21w J—o00 1/2( )y a—ioo e—n2/2_z 2mi

To prove (9.21)), it is sufficient to show that the coefficient of z/ matches on both
sides for all j > 1. Therefore (9.21) is reduced to the following identity (after
absorbing 4/ into & and y):

1 2 N 2 2/, dn
02 = e | Mog(s —me /2L
N2 —00 Re(n)=c<Re(s) 2mi

Note that the right-hand side of (9.22), after integration by parts, equals

e772/2 dr’
(9.23) .
Re(n)=c<Re(s) § — 1 271

which is the integral representation of the Faddeeva function and hence matches
the left-hand side of (9.22).
We finished the proof of (8.13). The proofs of (8.14) and (8.13) are similar.

(b) Consider the estimates (9.13)) and (9.19) in the proof of (a). We set a = 0.
Note that in the proof of (a), we chose a so that ¢ < Re &, and this condition is
satisfied since we assume that Re§ > ¢ > 0. Equation (9.15)) remains the same:

iN€/3 d

(9.24) —z / log(§ — N ————(1 + O(N<1/2) =L
—iN€/3 e~ 1 /2 _ z 2mwi

Since ¢ < |&§ — | < 2N€/3, we find that the above is equal to

9.25) bieri(§,2) + O(N~/?log ).

On the other hand, (9.18) is unchanged since CN /2 < |wy — u| < 2|y| for all
large enough N as before. The other case is similar.
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(c) We first find an integral representation of the logarithm of the left-hand side.
By using with p(v) = log(v — u),

Z log(v —u) =

UeRz,right

UER, cfi L (v + p)log(v—u) dv )
Nlog(—u) + Lz ¢ — .
Z g( ) z:right,oul U(U + l)qz(v) 2]-[1

UER, left

Exchanging the sum and the integral, applying (9.6) with p(u) = log(v — u), and
then using the residue theorem, the above becomes

Z log(v — u)

UERz,righl
uERz,left
(9.26) =N > log(-u)+(L-N) > log(v+1)
UERy et veRLright
+L2z2L¢ (v+p) (95 (u+p)10g(v—u)d_u)d_v
2:right.oul U(U + 1)qz(v) Elel‘l.out M(M + 1)91(”) 2NI 2’7-[1

Hence is obtained if we prove that the last double integral term is equal to
—2B(z)(1 + O(N<~'/2)). By using (0.8) and replacing the contours to vertical
lines, it is enough to prove that

LZZZL//IOg(N“z(v—u)) W+p@+p)  dudv

o/1—p Jv(w+ Dg(v)u(u + 1)g,(u) 271 27i
= 2B(z)(1 + O(N<"1/2))

where the contours are appropriate vertical lines, which we choose as follows.
Note that the sign is changed since we orient the vertical lines from bottom to
top. Fix two real numbers a < b in the interval (—+/—log |z|, y/—log |z]). We
take the line —p + ap+/T — pN /2 4+ iR as the contour for u and the line —p +
bp/T— pN~12 4 iR as the contour for v. The double integral is similar to the
integral (9.13) considered in (b). We estimate the double integral similarly as in
the proof of (b). We change the variables as u = —p + p/T— ppN /2 and
v = —p + p/T— ptN 12 and split the integral into two parts: the part in the
region {(1,¢) : |n| < N€/3,|¢| < N</3} and the part in the region {(1,¢) : || >
N€/3 or |¢] = N€/3}. Asin (b), it is easy to check (see (9.14)) that the integral for
first part is equal to

» n¢log(¢ —n) dn d¢ —1/2
< // (e_nz/z_z)(e_EZ/z_Z)ﬁ%(l + O(N ).

Here the contours for 1 and ¢ are Re(n) = a and Re(¢) = b, respectively. The

. _ 2¢/3 . . . ..
second part is O(e~CN “7). We skip the details here since the analysis is an easy
modification of the estimate (9.19).
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Now it remains to prove

B n¢ log(¢ —n) dp dZ
9.27) 2B(Z) - ZZ // (e_n2/2 . Z)(e—;‘2/2 Z) 27'[1 27‘[1

i.e., to prove the identity

 (Liy /z(y)) n¢log(& —n) dn dg
©.28) E [ y // (e -n2/2 _ Z)(e_tz/z — Z) 27‘[1 27'[1.

By comparing the coefficient of z

k+1 on both sides, it is sufficient to show

n¢log(¢ — n)e(kn2+l§2)/2d_nd_§

9.29
( ) 2mi 2wl

s i Ml

for all k,/ > 1. In fact, after integrating by parts (with respect to dn and d§), we
have

k +1) // 1 log(c — metr+sd/2 41 40

2mwi2mi

030) = // SN CETO VLU S f/ N eragy2 dn A6
= amidmi * J) n—¢ 2mi 2

_ // Jkn+igy2 dn 4 1
2mi2mi 2kl

9.3 Proofs of Lemmas[8.3/and [8.7]
First consider Lemma From the definition, log(Cl(\})3 (z)) is equal to

9.31) —% > log(—u)+ Y ((L;N—a+kp_1)log(v+1)+tv)

ueRz,left UERz.right

plus an integer times 27i. Using (9.6) with p(u) = log(—u), using twice with
p(v) = log(v + 1) and p(v) = v, using (9.8), and then changing the contours to
a common vertical line, we find that

— % Z log(—u) + Z ((L ; N —a+ k,o_l) log(v + 1) + Zv)

ueRz,left VERz,right

(G1(w) — G1(—p))

= Ll / o _ wtp  dw
—p—ioo w(w + gz (w) 2mi’

where

032) Giw) =~ log(-w) + (_

- N
+a— k,o_l) log(w + 1) — tw.

Note that the part of the integral involving G (—p) is 0 due to (9.8) and hence it is
free to add it here. We change the variables as w = —p + p/1 — ,OEN_l/Z. As
in the proof of Lemma ua) we split the integral into two parts: |£| < N€/* and

|E] > N€/* where 0 < € < l is a fixed real number. The second part is almost the
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same as the case of Lemma a), and we obtain the estimate O(e~ ¢V 6/2). We
do not provide the details. However, the analysis of the first part is more delicate
and requires higher-order expansions and the symmetry of the integrand.

A tedious calculation using Taylor expansion and (8.18) shows that for w =
—p + 8§ with § = O(N</471/2),

Gi(w) —Gi1(—p)
/ 1 17 2 1 " 3
= Gy(—p)é + 56 (=p)8~ + EG (=p)d

+ E1N3/284 + O(N3/255)

9.33 1/3yN1/2 N 2
(9.33) _ '« 54— (1_ TN1/2)82
p/1—p 4p*(1 —p) Vvi-p
‘L'N3/2

+ W53 +Ei/N1/282 + EgN53 +EgN3/284

+ 0(N56/4—1)

where E, E{, EJ, and Ef are independent of § and all bounded uniformly on N.
Hence we find that for w = —p + p/T — pEN /2 with |§] < N€/4,

G1(w) — G1(=p)

+ EIN—I/Zi:Z + E2N_1/2£:3 + E3N_1/2€:4 + 0(N5€/4—1)

where E; is independent of & and uniformly on N for alli = 1,2,3. A careful

1_12_”p, which is the only E; term that makes a

6/1—p
nonzero contribution to the O(N ~'/2) in the integral (9.38).

We also have, after calculating the next order term in (9.14)), forz = —p + §
with § € iR,

calculation shows that £, =

L _
z — 1 2 2p—1 3 I NS4 5

(935) qz(u)) = —[6’ sz(l—p)N8 +3p3(1—p)2N8 +E4N8 +O(NS )_Z]-

<

Hence for w = —p + p/T — pEN"1/2 with & € iR satisfying |£] < N4,

g (w) 1 -
L Z°
=82 _ 7 20—1 e §/2

= 1

+ E4S4N_1 + O(NSE/4_3/2)).

%Ez-i-3201__1p§'3N_1/2+EX§4N_1+0(N5€/4_3/2) 1

E3N_1/2
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It is easy to check that for the same w,

Lw+p 1 EN1/2 1-2p
—p

ww+1)  pJld (1+«/1—p
+ ESSZN_1+0(N3E/4_3/2)).

%—N—I/Z
9.37)

We now evaluate the first part of the integral using the above estimates. Noting
that the integration domain is symmetric about the origin and hence the integral of
an odd function is 0, we obtain

—p+ip/T—pN€/4 Lew+ pyi du
Gi(w) =G1(=P)—F——— 5
—p—ip/T—pN€/4 w(w + 1)gz(w) 2mi
i €/4
(9.38) _ / N rl/3x§2 n (3—8,0)154 z E
= . .
—iN€/4 6(1—p) e—§%12 — 7 27
iN€/4 _£2
(U=2p (s TR EGﬁ + O(N?*71
6(1—p) Joiners (e7€7/2 —7)2° 2mi :

Here the error term would be O(N3€/271/2) if we estimated natively. However,
using the symmetry of the domain, the leading error term is given by

N—1/2/iN€/4 (12 ze®2 o 11-2 2 »
Sivera\ 12T=p (e /2 —2)2” 4 T—pe /2
dg
(9.39) g = 4\ d&
2€_§2/2 — Zg i
iNe/4
— 11— 2p Z B /2
=N/ 5 — 0(e= SN,
12«/1 - p (6_52/2 _ ZS —iN€/4 (e )

where we used the formula of £, and an integration by parts.
After integrating by parts the last integral, we find that (9.38)) is equal to

iN€/4
(9.40) f (11/3)(52 _ %zs“) e Ay,

—iN€/4 e_gz/z —z i
A direct calculation shows that
Z d¢ 1
(9.41) / ST S DRI
Re(&):og e—€2/2 _ 7 2mi NeT 3/2(2) 1(2)
and
z dé 3
(9.42) / ST S B
Re(’§')=0s =812 _ 727 \2; 5/2(2) 2(2)

Thus the lemma is proved.
The proof of Lemma([8.7]is similar. The only difference is that if we define

(9.43) Ga(w) = (k—N —1)log(—w) + (a + N —k)log(w + 1) — tw,
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we should have
Ga2(w) — Ga(—p)

_ _152 T Nl/2
(9.44) 27 |JT—0p
1
+ (—rl/3x§ — 5)/5;‘2 + 3(1pi p)é3) + error terms,

which replaces the G (w) estimate in (9.33). Other estimates are the same. We
omit the details. In the final formula, the error term is slightly different from
Lemma This is due to the O(1) perturbations of the coefficient and the in-
teger part appeared in 7.

9.4 Proofs of Lemmas 8.4 and
Consider Lemma [8.4] first.
(a) By using Lemma(8.2b), we find that

qz,right (u) _

uN ehright(ZaS)(l + O([Ve_l/2 lOg N))

uniformly in || < N€/4. Thus we only need to show
(9.45) gi(u) = e~ 3T xE (L O(NT 2108 N))

for all u € Ry jefe such that |u + p| < pﬂNG/“_l/z,
By taking the logarithm, it is sufficient to show that

( ) 5 TN3/2 1 u

tu+p +( +[—]) og(—)
vi-p —p

o (e [ ()
+((d 1)(k+|:\/1TP +k+p a | log 5

1
— _5153 +t'3xE + O(N210g N),

which is further reduced to, after inserting (8.18) and also dropping the O(1) con-
stants 2 and p~! and the notation [-] in the coefficients that only give an O(N€/4~1/2)
error,

1 TN3/2 u
—‘EN3/2(M +p) + log(—)
p*/T—p VI=p

—p
3/2 1T _
(9.47) + (_%mﬂ/z + ﬂfl/sxl\,l/z) log(L;—H)
P I -p

1
= —§r$3 + rl/3xé + O(Ne_l/2 log N).
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Similarly to (9.34) (without the E; terms), this equation can be checked directly
by using Taylor expansions. We omit the details here. This completes the proof of

Lemma [8.4(a).
(b) The proof is the same as part (a) except for the part q;’right(v) /v, where
we use the identity (see (7.23))
Qg @) vE™N L(v 4 p)
vV guien(v) v(v + 1)
and then apply Lemma[8.2[b). This proves Lemma 8.4(b).

(c) Suppose thatu € Ry e and satisfies |u + p| > p/1 — PN /4112 We first
estimate the following term:

j—2 1\/@-D—a+k+1)d
(9.49) g1(u) = (i) (” + ) o (tp)

(9.48)

—p l—p
where j = [tN3/2//T = p]. We have the following claim.

Claim. Let T be the contour |u|?|u 4+ 1|'=° = constant. Let ¢ be a real constant
such that 0 < ¢ < 1 — p. Then the function |u + 1|7¢eR®¥ increases as Reu
increases and u stayson I', u € T". For ¢ > 1 — p, the same holds for the part of I"
such that [u + p|? > p(c — 1 + p).

PROOF OF CLAIM. Write u = x + iy, x,y € R. Since |[u|?ju + 1|'7Pis a
constant, we have

px (1-p)(x+1)
(x2 R R yz)dx

©-30) Py (1-p)y
dy = 0.
- (x2+y2 * (x+1)2+y2) Y
Now
_ cx+1) cy
dlog(|u + 1|7 €eReu =(1— )dx— dy.
e(l | ) (x + 1)2 + y2 (x 4+ 1)2 + y2 Y

Inserting (9.50), we can remove the dy-term and find, after direct calculations, that

d 2 1—p— 2
—log(lu + 1|—ceReu) :(x + pz + P( 1Y C)2+ y )
dx X“4+2px+p+y

It is easy to check that the derivative is nonnegative under the conditions of the

claim. O

Taking the absolute value of (9.49), and noting that u||u+1|(!=#)/? is a constant
since u € Ry et (recall that N/L = p = d '), we find, after substituting (8.18),
that the absolute value of (9.49) is

— —(1— 1/3,, ~/1=0 Ar1/2
C|u+1|3d 2|u+l| (1—p)t+t'/°x o N etReu
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for some constant C > 0. Since Ry jer; is bounded, |u + 1|3"1_2 is bounded. On
the other hand, since tN ! = O(N!/2), the above is bounded by

(9.51) C(ju + 1|_(1—,0)+0(N_1)eReu)t

for a different constant C. Applying the claim with ¢ = (1—p)+ O(N '), we find
that for u € Ry ef satisfying |u + p| > p/T— pN</#71/2 ([©31) is the largest
when |u + p| = p/T— pN/*~1/2. Hence the absolute value of (9.49) for the
same range of u is bounded above by the value when |u +p| = p/T — pN¢/4-1/2,
Now for u € Ry et With |u + p| = p/T— pN¢/#71/2_ we had proved the as-

ymptotic formula (9.43). Noting that £ here is given by & = %J“T‘;m. Then

|E| = N€/4, and it is also easy to check that Re(§3) > 0 since u € Ry left and u is
close to —p: see Figure [4.] for the limiting curve of R,. Hence we find that
is bounded by O(e~CN>'*).

We now consider the term ¢y, ign(u)/u® in :28). We apply to p(v) =
log(—u + v), where the branch cut is defined as before, i.e., along the nonpositive
real axis so that p(v) is analytic for v such that Re(v) > —p, in particular, for v
inside Xyight,ou- Then

9.52) Y~ log(—u +v)— (L — N)log(—u) =

UERz.right
i /—p+ioolog(u—w) (w+ p) d_w
oo \u+ p ) ww F Dgg(w) 27

where the minus sign in front of the integral is due to the orientation change
when we deform the contour from Xyighoue t0 —p + iR. Similar to the proof
of Lemma|[8.2(a), we split the integration contour into two parts,

Imw| < py/1 —/ONG/S_I/2 and |Imw| > pﬂNG/S_I/Z,

In order to evaluate the first part, we set £ = (u + p)N/2/p/T— p. Then || >
N€/*. We change the variables 7 = (w + p)N/2/p/T — p. For this first part, we
have || < N€/5, and hence (9.36) and can be applied. Then the first part is
equal to

iN€/5 0 nz d}’)
1 1= )1 ——= (1 0 N3€/5—1/2 =
/—iNe/S og( é)e—nz/z—z( +O( ))2711

where the error term is uniform in 7. Since |5|/|€] < N~¢/2°, we may apply Tay-

lor’s theorem to the logarithm and find that the above integral is of order O(1/|&|)
and hence is bounded by O(N —¢/ 4). On the other hand, in the second part, we
use the same change of variables n = (w + p)N 1/2 /p+/1 — p and the integral
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becomes

—iN€/3 ico L
w—u\ z n dn
9.53 —p(1— +/ ) lo ( ) o
©-53) p(L=p) (/_ioo iNe€/s g U+ p)g(w)ww + 1) 2mi

where w = w(n) = —p + VT — ppN~1/2,

We now estimate the integrand. First we need a lower bound for |Re(u) + p|.
Since Ry efi is contained in the contour ey = {u : |uN(u + I)L_N| = |z|L}, we
will find the lower bound for u € e satisfying [u + p| > p/T— pN€/4=1/2,
It is now straightforward to check that the contour X ¢ intersects any vertical line
Re u = constant at most twice. In addition, we know from Lemma 8.1]that the part
of Ry et in |u 4 p| < p/T— pN/4~1/2 converges, after a rescaling, to a part of
Sz lefi. From this and the estimates in Lemma @ we can see that the part of the
contour Yje satisfying |u + p| > p/T = pN/471/2 is on the left of the vertical
line Rez = —p with distance at least CN</4~1/2 for some positive constant C.
Hence for u € T satisfying |u + p| = N€/4~1/2 we have |[Re(u) + p| >
CN€/4=1/2_Thijs fact together with the trivial bound |u| < C imply

- lw+p|+C
= CNe/4-1/2

U—w
u-+p
for all w satisfying Re w = —p. Thus we find

i (u — w)
0 —
& u—+p
We also recall the estimate we did in (9.17)), which gives

zL

gz(w)
Note that the exponent here is slightly different from that of since we have
a different € here. By plugging in both estimates and and also the
trivial bound |w(w 4 1)| > C in (9.53), we get an upper bounded e~V >3 of
(©.53). Together with the bound for the integral on the first part of the contour, we
immediately obtain that

9.54) CNE/41/2 <

(9.55) < Cloglw + p| + Clog N < Clog|n| + C log N.

— 2¢/5, _
(9.56) e N 12,

<C

quight(u)
uL—N
Combining this and the bound of (9.49) we obtained before, and the trivial
bound |u 4+ p|”™! < CN 1/2—€/4 we have (8.32). The case of Ry right is similar.
This proves Lemma [8.4fc). We thus complete the proof of Lemma 8.4

9.57) — 0N,

The proof of Lemma [8.8|is similar. For (a), note that

9.58) Nlog(i) (L —N)log( utl ) _
—p —p+1

2 20-1
— E— + '0—$3N_1/2 + error terms.

2 " 3/T—p
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This implies

T 1/2 i _ u—+ 1 )) _
9.59) [—MN :|(N log(_p) + (L N)log(_lo+1

1 2p—1
_ _52[ 1t NI/Z} + p—rg3 + error terms.
P

2 - 3(1-p)
Also note that
(9.60) M — ¢~ G2)+G2(=p)+error terms
g2(—p)

where G is the function defined in (9.43). By combining (9.44), (9.59), and (9.60),
we obtain

9.61) gz(U)) = e_%ff3+fl/3x$+%y‘;‘2+errorterm‘

Then we apply Lemma [8.2a) and obtain (8.63). The rest of the arguments are
similar to those of Lemma[8.4l We omit the details.

10 Proof of Theorem 3.3

This theorem follows easily from Theorem [3.4] We only prove part (b). Part (a)
is similar and easier.

To simplify notation, we omit the subscript n except for y;,.

We write ¢ defined in (3.19) as

(10.1) z—N[ ‘ N1/2}+1yN+1(N k)
' P*LJT=p P> " p? ’

where k = kj, is an integer sequence such that 1 < k < N and y, is a sequence
given by
(10.2) Yn=y+J+ xp2/3(1 — ,0)2/3t1/3N_1 + NP4 eNTd

with some integer j = j, and an error term € = ¢, satisfying 0 < € < 1.
Note that j and € are uniquely determined from equation (10.T)). Furthermore, by
comparing (3.19) and (10.1)), we see that j is uniformly bounded, and

(10.3) Ya =7y +j+ON"2).

Note the following equivalence between the particle location (in the periodic
TASEP) and the time-integrated current:

(104) xx(t) =iL+m+1 < Jp(t)=iN+ (N +1—k)+mymeo

foralli > 1 and all k such that x; (0) < iL + m.
It is easy to check that

xe(0) + (1= p)t —p~ ' (1 = p)(N — k)

(10.5)
o 3A = )23 =L 1+ ep)
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with the integer i given by

. I1—2p|t 1/2] [ T 1/2] ~
10.6 = 1—-2p)| ——L + | —==N + J.

Theorem [3.4]implies that

lim P(xg(t) =il +m—+1) = B 3x;1.y + )
(10.7) L—ooo
= K Px:y).

Therefore, by the equivalence relation (10.4)), we obtain
(10.8)  lim P(J(t) 2 iN + (N +1=k) + mym=o) = F (' Px:ty).
—>00
It remains to show that

(10.9) iN + (N +1—k) +mymeo =
p(1—p)t — |m|/2+ (1 =2p)m/2 — p*>(1 = p)*/x1'/3 + 0(1).

(More precisely, O(1) is equal to 1 —p—e.) This follows by multiplying both sides
of (10.5) by p.
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