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Abstract13

Quantitative assessment of modeling and forecasting of continuous quantities uses a vari-14

ety of approaches. We review existing literature describing metrics for forecast accuracy15

and bias, concentrating on those based on relative errors and percentage errors. Of these16

accuracy metrics, the mean absolute percentage error (MAPE) is one of the most com-17

mon across many fields and has been widely applied in recent space science literature and18

we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then19

introduce the log accuracy ratio, and derive from it two metrics: the median symmetric20

accuracy; and the symmetric signed percentage bias. Robust methods for estimating the21

spread of a multiplicative linear model using the log accuracy ratio are also presented.22

The developed metrics are shown to be easy to interpret, robust, and to mitigate the key23

drawbacks of their more widely-used counterparts based on relative errors and percentage24

errors. Their use is illustrated with radiation belt electron flux modeling examples.25

1 Introduction26

The utility, or value, of any forecast model is determined by how well the forecast27

predicts the quantities being modeled. There exists, however, a wide range of metrics to28

assess forecast quality and a similarly wide range of views on just what a “good” forecast29

is [see, e.g., Murphy, 1993; Thornes and Stephenson, 2001; Jolliffe and Stephenson, 2011].30

One key measure of the quality of a forecast is in how much it deviates from the observa-31

tion. Although a forecast is strictly a prediction of events that have not yet occurred, this32

work treats simulation results as a forecast, regardless of the time interval. For applica-33

tion to validation of a reanalysis model (“hindcasting”) the model output corresponds to34

the forecast and the validation data correspond to the observation [see, e.g., Jolliffe and35

Stephenson, 2011].36

Model validation in regimes where the data vary over a limited range typically uses37

metrics that have the same scale and units as the quantities being modeled. For example,38

Lundstedt et al. [2002] presented a forecast model for the Dst index and evaluated the per-39

formance of their model using distributions of the forecast error as well as examining the40

root mean squared error (RMSE). Another example applying this type of metric in model41

validation is that of Glocer et al. [2009], who evaluated the impact of including the Polar42

Wind Outflow Model in the Space Weather Modeling Framework by examining the RMSE43

of the magnetic field strength and elevation angle at geosynchronous orbit. One clear ben-44

efit of metrics that have the same units as the data is that they are easy to interpret.45

For data from different data sets or time periods, or that cover multiple scales, ac-46

curacy measures that are independent of the scale of the data (such as percentage errors)47

are often used. An example of such data is radiation belt electron fluxes. Although the48

variability in electron fluxes at a given location and energy can be large [e.g. Selesnick49

and Blake, 1997; Friedel et al., 2002], scale-dependent measures could still be appropriate.50

However, there can be several orders of magnitude difference between electron fluxes at51

L' 4 and geosynchronous orbit, with each location displaying different levels of variabil-52

ity [e.g. Li et al., 2005; Reeves et al., 2011; Morley et al., 2017]. Thus comparing scale-53

dependent accuracy measures can be problematic. Similarly, the measurements across a54

single orbit of a satellite in a highly-elliptical orbit cover regions that could be argued to55

be of different scale and dynamics [e.g. Reeves et al., 2013]. Throughout this manuscript56

we use examples from, or based on, radiation belt electron flux, but the presented work is57

applicable to any type of data where accuracy and bias measures that are independent of58

the scale of the data are desirable.59

One approach to giving more equal weight to errors across several orders of magni-60

tude is to use metrics that are based on relative errors [Subbotin and Shprits, 2009; Zhelavskaya61

et al., 2016] or are otherwise scaled to normalize the errors [Athanasiu et al., 2003; Welling,62

2010]. Alternatively, the data themselves can be transformed through the application of a63
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power function, such as taking logarithms or applying a Box-Cox transform [Wilks, 2006].64

By transforming the data this way [Francq and Menvielle, 1996; Osthus et al., 2014], the65

use of scale-dependent accuracy measures may be better justified, as well as application of66

methods that assume homoscedasticity (i.e., the variance does not depend on the indepen-67

dent variable) [Sheskin, 2007]. It is important to note that transforming the data alters the68

scale and may invalidate the assumptions behind other analyses.69

Estimates of accuracy and bias aim to describe aspects of forecast quality and no70

single metric of accuracy (or bias) is meaningful across all situations. How the metric pe-71

nalizes different magnitudes and directions of forecast error should be considered. Should72

errors of equal magnitude be penalized equally? Should an underestimate by a factor of73

two have the same penalty as an overestimate by a factor of two? How does the penalty74

implied by the metric scale with the size of the error? Finally, is the metric sensitive to75

assumptions about how the forecast error is distributed?76

This paper assumes a number of desirable properties for metrics of model perfor-77

mance: 1. The metrics must be meaningful for data that cover orders of magnitude; 2.78

Underprediction and overprediction by the same factor should be penalized equally; 3.79

The metrics should be easy to interpret; 4. The metrics should be robust to the presence80

of outliers and bad data. This list of desirable properties is not universal, but is likely to81

be relevant to a number of space weather applications.82

We will begin with a brief review of model performance metrics, before giving a83

more in-depth discussion of the mean absolute percentage error and some variants of that84

metric. We then introduce metrics based on the log of the accuracy ratio that satisfy the85

list of desirable properties: the median symmetric accuracy and the symmetric signed86

percentage bias. Through the use of simple examples, as well as a multiplicative linear87

model, we then illustrate the behavior and drawbacks of metrics based on the percentage88

error, as well as the new metrics described in this paper. We also demonstrate the use of89

the log accuracy ratio in robustly estimating the spread of the error distribution in a mul-90

tiplicative noise model. Finally, we show two illustrative examples of electron radiation91

belt prediction in which we discuss the application of both new and commonly used met-92

rics. The examples presented aim at characterizing the accuracy and bias for an end-user,93

or for tracking of overall model performance with time. Using accuracy and bias met-94

rics for understanding how well a particular model captures particular physical processes,95

for example, requires a different approach and we briefly discuss how model performance96

metrics might be used differently for this purpose.97

2 Measures of forecast quality98

Scalar accuracy measures describe the average correspondence between individual99

pairs of forecasts and observations [Murphy, 1993]. Various metrics can be used for this100

(e.g., mean squared error) [see, e.g., Walther and Moore, 2005; Wilks, 2006; Déqué, 2011]101

and a selection will be described later in this section and summarized in Table 1. Our102

discussion begins with the forecast error, ε103

ε = y − x (1)

where x denotes the observation and y denotes the predicted value. Thus the forecast er-104

ror is negative when the forecast under predicts and is positive for an overprediction. Usu-105

ally we have multiple (n) pairs of forecast and observation ((xi, yi), where i = 1, . . . , n) so106

it is helpful to aggregate these errors and present summary statistics (the summary statis-107

tics can be aggregated over subsets of the data, as well as the full set.)108

The forecast bias describes the difference between the average forecast and the aver-109

age observation [Murphy, 1993]. A standard measure of bias is the mean error (ME; cf.110

Table 1), defined as the arithmetic mean of the set of forecast errors. Forecasts that, on111
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average, over- or under-estimate the observed value display bias. A negative number in-112

dicates a systematic under-prediction, whereas a positive bias would indicate a systematic113

over-prediction.114

It is assumed throughout this paper that the quantity of interest is scalar. A number115

of approaches could be used to measure accuracy and bias for vector quantities such as116

the geomagnetic field [see also Wilks, 2006; Tsyganenko, 2013], but a simple and intuitive117

approach would be to calculate model performance metrics like those presented in this118

paper on the magnitudes of the quantity only. Additional metrics to quantify the angular119

difference would then be required [e.g. Brito and Morley, 2017].120

Forecast skill quantifies the accuracy of a set of model predictions relative to a ref-121

erence prediction [Wilks, 2006; Jolliffe and Stephenson, 2011]. One common reference122

is the accuracy of using the sample’s climatological mean. For the specific case of using123

the mean squared error (see section 2.1) as our accuracy metric and the sample mean as124

our reference, the skill score is typically called the prediction efficiency [e.g. Osthus et al.,125

2014]. Whie the skill score quantifies improvement over a reference model (in the chosen126

accuracy metric), and requires an accuracy metric be calculated, it does not convey infor-127

mation about the accuracy of any specific set of model predictions. In this paper we focus128

on quantifying accuracy and bias for a single set of model predictions and do not discuss129

model skill.130

2.1 Metrics based on scale-dependent errors131

Like the bias, accuracy measures typically begin with the forecast errors, εi , but132

then transform the data so that the direction of difference is removed. This is typically133

done by either squaring the forecast error or taking the absolute value of the forecast er-134

ror. The mean squared error (MSE; cf. Table 1) takes the former approach and it can be135

seen that the mean squared error is analogous to the variance penalizing large errors more136

heavily than small errors. Squaring the errors leads to the units and scale being different137

from the forecast quantity, which makes the MSE difficult to interpret. Transforming MSE138

back to the original scale by taking the square root then gives the root mean squared error139

(RMSE).140

As we are concerned with estimating the accuracy of a forecast the decision of which141

error metric should be used depends on the relative cost of different errors. For exam-142

ple, if the error doubles is this twice as bad, or is it more than twice as bad? Is an over-143

estimate worse than an underestimate of the same magnitude? If we wish to reduce the144

penalty on large errors we can use the mean absolute error (MAE). This is defined as the145

arithmetic mean of |εi |, as shown in Table 1. This metric is more resistant to outliers as146

it uses |ε | rather than ε2. It may, therefore, be more appropriate in cases where the errors147

are not normally distributed, where outliers are present, or where large forecast errors are148

not required to be weighted more heavily.149

Both the RMSE and MAE estimate the typical magnitude of error using the mean.150

As the mean is not a robust measure of central tendency, we can improve the robustness151

of our accuracy metric by using a common robust measure of location: the median. Ag-152

gregating over all i using the median function (M) gives us the median absolute error153

(MdAE; cf. Table 1).154

A good summary of scale-dependent measures of accuracy and bias can be found in155

Walther and Moore [2005]. As seen here, scale-dependent metrics imply that deviations of156

the same magnitude have equal importance at different magnitudes of the base quantity.157

For example, an error of ε = 100 is penalized equally at x = 103 and x = 106.158
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2.2 Metrics based on order-dependent errors159

When measuring the accuracy of a prediction in an order-dependent manner the160

magnitude of relative error (MRE) is often used; it is defined as the absolute value of the161

ratio of the error to the actual observed value. When multiplied by 100 this gives the ab-162

solute percentage error (APE). This measure is generally only used when the quantity of163

interest is strictly positive, and we make this assumption throughout.164

We first define the relative error, η:165

η =
y − x

x
=
ε

x
(2)

Following the discussion given in section 2.1 we then remove the direction of difference166

by taking |η |, the absolute relative error. Defining relative error with equation 2, we find167

the magnitude of relative error and convert to a percentage to obtain the absolute percent-168

age error. We then aggregate over multiple prediction-observation pairs using the mean,169

giving us the mean absolute percentage error (MAPE):170

M APE = 100
1
n

n∑
i=1
|ηi | (3)

To assess the bias using a percentage error we simply aggregate the relative errors using171

the mean and then convert to a percentage, giving us the mean percentage error (MPE; cf.172

Table 1). Other metrics based on the relative error or similar order-dependent errors are173

given in Table 1.174

As seen here, order-dependent metrics such as relative and percentage errors imply175

that deviations of the same order have equal importance at different magnitudes of the176

base quantity. For example, an error of ε = 100 where x = 103 has an equal penalty to an177

error ε = 1 where x = 10; both give a relative error of 0.1, and thus a percentage error of178

10%. Order-dependent metrics are meaningful for data that cover orders of magnitude and179

percentage errors are easy to interpret, so measures such as MAPE satisfy both the first180

and third desirable qualities for measures of model performance.181

3 Mean Absolute Percentage Error and variants182

MAPE is used in many different fields of research, from population research [e.g.183

Swanson et al., 2000] to business forecasting [e.g. Kohzadi et al., 1996], atmospheric sci-184

ence [e.g. Grillakis et al., 2013; Zheng and Rosenfeld, 2015] and space science [e.g. Reikard,185

2011; Zhelavskaya et al., 2016]. MAPE has also been used in validation of radiation belt186

models [Kim et al., 2012; Tu et al., 2013; Li et al., 2014], and these are discussed further187

in section 3.2. However, though meaningful in a wide range of situations and easy to in-188

terpret, MAPE is not without problems that may be important in any given application.189

3.1 Some problems with MAPE190

The following problems have been noted by various authors:191

1. MAPE becomes undefined when the true value is zero. [Hyndman and Koehler,192

2006]193

2. MAPE is asymmetric with respect to over- and under-forecasting. [Makridakis,194

1993; Hyndman and Koehler, 2006; Tofallis, 2015]195

3. APE is constrained to be positive, so its distribution is generally positively skewed.196

[Swanson et al., 2000; Hyndman and Koehler, 2006]197

4. MAPE is not resistant to outliers [Swanson et al., 2000; Tofallis, 2015].198

Due to the first point, unless a physically reasonable approach can be determined to199

work with cases where x = 0, MAPE is not an appropriate metric where the quantity be-200
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ing predicted is likely to be zero [e.g. Tofallis, 2015]. We also note that unless the data201

used are positive-valued ratio-level data (having a meaningful, non-arbitrary zero point)202

[Stevens, 1946; Sheskin, 2007], the APE has limited meaning [Hyndman and Anatha-203

sopoulos, 2014]. For example, radiation belt fluxes are constrained to lie in the interval204

[0,∞) and the units of flux have a true zero, therefore APE can be used for radiation belt205

flux predictions and model validation. Neither the Kp geomagnetic index [Menvielle and206

Berthelier, 1991] or the Celsius temperature scale are ratio level data [Stevens, 1946]207

(these are ordinal and interval data, respectively) and thus metrics based on relative errors208

should not be used. Further discussion of zeros and measurement backgrounds is given in209

Section 6.210

To elaborate on the second point, a prediction of 1000 where the observed value is211

500 gives a different magnitude of error (100%) than a prediction of 500 where the ob-212

served value is 1000 (50%). Under-prediction is therefore less heavily penalized than over-213

prediction, even if the order of the error is the same. Similarly, given x = 105 and two214

models y1 = 5 × 104 (a factor of 2 under prediction) and y2 = 1.75 × 105 (a factor of 1.75215

over-prediction), the APE for model 1 is 50% and the APE for model 2 is 75%; based on216

the APE, or for aggregated measurements the MAPE, model 1 is deemed to be more ac-217

curate yet in many applications we would not wish to penalize the over-prediction more218

heavily. MAPE, therefore, does not satisfy the second desirable property for a metric of219

model performance given earlier in this paper. Variants of MAPE have been proposed that220

mitigate this asymmetry [e.g. Flores, 1986; Makridakis, 1993] by normalizing the forecast221

error by the mean of x and y, e.g.222

sMAPE = 100
1
n

n∑
i=1

���� yi − xi
(xi + yi)/2

���� (4)

The unconventional normalization in the relative error makes the resulting percentage er-223

ror unintuitive in its interpretation, though this does address the cases where one of y or x224

are zero as well as mitigating the asymmetry of MAPE.225

Regarding the third point, given that APE have a lower bound of zero but have no226

upper bound they are likely to be skewed positive. Take a case where the forecast errors227

are distributed approximately normally, and are symmetric about the true value. By taking228

the absolute values the distribution of APE is now highly skewed. By subsequently using229

the arithmetic mean, which is a poor measure of central tendency in skewed distributions,230

MAPE is prone to overstating the error [Swanson et al., 2011].231

Finally, MAPE is easily affected by outliers as the mean has a breakdown point of232

zero [Hampel, 1974]. Given a set of predictions with APE of [5,3,10,2,5,120]%, MAPE233

takes the value 24.16%; reducing the error on the final prediction from 120% to 30% re-234

duces the MAPE to 9.17%. Therefore any large errors due to, e.g., bad data or late pre-235

diction of a large change, will be heavily penalized by taking the arithmetic mean. This236

means that MAPE also fails to satisfy the fourth desirable property (robustness) given237

above. Swanson et al. [2000] describe a method for reducing the impact of outliers in238

which the distribution of APE is symmetrized, using a modification of the Box-Cox trans-239

form [Wilks, 2006]. Specifically, they use [Swanson et al., 2000]:240

y(λ) = (xλ − λ)/λ when λ , 0 (5)
y(λ) = loge(x) when λ = 0 (6)

and the optimal value of λ is found using maximum likelihood estimation. After finding241

the optimal value of λ the absolute percentage errors are transformed using and mean242

of the transformed APEs (called MAPE-Transformed, or MAPE-T) is used in place of243

MAPE. Though mitigating the impact of skewed distributions and outliers in estimating244

the mean, the value of MAPE-T is difficult to interpret as it no longer represents a per-245

centage error. This was addressed by Coleman and Swanson [2007][see also Swanson246
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et al., 2011] in their presentation of MAPE-R (MAPE-Rescaled), where MAPE-T is re-247

expressed in the original scale of the data by applying the inverse of the modified Box-248

Cox transform to MAPE-T.249

3.2 Selected applications of MAPE and variants250

As mentioned above, MAPE is used widely for model validation in many fields, in-251

cluding the space sciences. To predict the effective dose of galactic cosmic radiation re-252

ceived on trans-polar aviation routes, Hwang et al. [2015] developed a model that forecasts253

the heliocentric potential (HCP) from a lagged time-series of monthly sunspot number.254

The HCP is a required input for the Federal Aviation Administration’s CARI-6M software255

for dose estimation. Zhelavskaya et al. [2016] have developed a neural network to predict256

the frequency of the upper-hybrid resonance to derive electron number densities in the in-257

ner magnetosphere, using Van Allen Probes electric field data. These authors used MAPE258

to assess the accuracy of their predictions, both in predicted frequency and predicted num-259

ber density. We note that the electron number density, like radiation belt electron flux,260

is constrained to be positive and has a physically meaningful zero. Further, the electron261

number density can vary by orders of magnitude over a single orbit as well as at a fixed262

location due to dynamical processes. Hwang et al. [2015] and Zhelavskaya et al. [2016]263

calculated MAPE directly, without first transforming the data, and their reported percent-264

age errors are therefore directly interpretable, though should still be interpreted keeping265

the drawbacks described in section 2.2 in mind. The effect of the asymmetry of MAPE is266

explored further in Section 5.1.267

Kim et al. [2012] used MAPE as the accuracy metric for comparing their model268

results with observations from the CRRES satellite. However, they defined MAPE us-269

ing log-transformed data. This approach was subsequently used by Tu et al. [2013] and270

Li et al. [2014]. In addition to the main drawbacks of MAPE described above, applying271

Equation 3 to log-transformed data can be demonstrated to be incorrect [see, e.g., Morley,272

2016]. Effectively, replacing xi and yi in Equation 3 with log10(xi) and log10(yi) means273

that the quantity being calculated is the arithmetic mean of | logxi
(yi/xi)|. This change of274

base renders the arithmetic mean meaningless, and if xi is large then the result will in-275

correctly be a very small error. It is worth noting that, for small errors, loge(yi/xi) is an276

approximation of the relative error. Thus when (yi/xi) is of order unity 100 loge(Q) gives277

an approximate percentage error. If all errors are small (i.e., all (yi/xi) ∼ 1) then aggregat-278

ing | loge(yi/xi)| using a mean is a good estimate of MAPE.279

Other measures similar to MAPE have been proposed and applied in radiation belt280

modeling. For example, Subbotin and Shprits [2009] used a set of metrics based on what281

they called the normalized difference. The normalized difference was calculated for 2D282

grids of simulation results. The equation can be given as [see Table 4 of Subbotin and283

Shprits, 2009]:284

NDi( f ) = 100
yi( f ) − xi( f )

max(yi( f ) + xi( f ))/2
(7)

where f denotes the additional dimension, and i indicates the primary index variable285

for consistency with the rest of this manuscript. The results were then aggregated using286

the mean of |NDi | to give the “average difference”, and using the maximum of |NDi | to287

give the “maximum difference”. These are seen to be similar in construction to sMAPE288

[Makridakis, 1993], but using the maximum value of the means of each (forecast, observa-289

tion) pair instead of simply using the mean of y and x. The “average difference” is iden-290

tical to sMAPE when yi and xi are uniform in f . When varying in f , the interpretation291

becomes more difficult as the forecast error is not normalized to either the forecast, the292

observation, or even the mean of (x,y). The normalized difference and average difference293

have subsequently been used by Drozdov et al. [2017] to examine differences between dif-294

ferent configurations of the Versatile Electron Radiation Belt model [Subbotin and Shprits,295

2009]. While Subbotin and Shprits [2009] provide descriptions of how to interpret these296
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metrics, and provide use cases for them on higher dimensionality data, they can not easily297

be interpreted as measures of accuracy (as defined in section 2).298

4 Introducing robust, symmetric measures based on the log accuracy ratio299

We now aim to describe two measures of model performance that satisfy the four300

desirable properties enumerated previously. We begin by defining the accuracy ratio, Q,301

as y/x; that is, the ratio of the predicted value to the observed value. The name “accuracy302

ratio” was coined by Tofallis [2015], who note that Q is the complement of the relative303

error (η = Q − 1) and so will have the same distribution as the relative error, but shifted304

by one unit. Tofallis [2015] also showed that loge(Q) is a superior accuracy measure to305

MAPE for data where the variance depends on the magnitude of the variable (as is of-306

ten the case with space physics data, such as radiation belt electron fluxes [e.g. Reeves307

et al., 2011; Morley et al., 2016]). The interested reader is also referred to Kitchenham308

et al. [2001] for a discussion of the accuracy ratio in measuring model performance. It is309

instructive to note that the log of the accuracy ratio is identical to the forecast error for310

log-transformed x and y.311

We note that previous work on radiation belt electron data has used ratios of the312

observed to predicted values. Chen et al. [2007] defined the “PSD matching ratio”, R, [see313

also Yu et al., 2014] as the ratio of phase space densities, where the denominator is always314

the smaller of the two values. Here we generalize this to our prediction-observation pair315

(x, y)316

x ′ = x if x < y else y

y′ = y if x < y else x

R =
y′

x ′
(8)

The matching ratio R can be alternatively expressed using the accuracy ratio. Specifically,317

we use the fact that log(x/y) = − log(y/x), and thus | log(x/y)| = | log(y/x)| = log(y′/x ′).318

To transform this back to the original units and scale we exponentiate:319

loge(R) = loge(y
′/x ′)

= | loge(y/x)|
= | loge(Q)|

R = exp(| loge(Q)|) (9)

Morley et al. [2016] used the accuracy ratio to compare electron fluxes computed320

from the Global Positioning System constellation with “gold standard” measurements from321

the Van Allen Probes mission. When presenting graphical summaries of these data, Mor-322

ley et al. [2016] showed log10(Q) “so that the ratios are symmetric both above and be-323

low 1.” Taking the logarithm ensures that a factor of 3 difference between x and y is the324

same magnitude of error, regardless of the direction of error. However, even though log-325

transforming the data will tend to symmetrize positively skewed distributions, the actual326

distributions of log10(Q) may not be symmetric. For this reason, Morley et al. [2016] used327

the median of log10(Q) as a measure of central tendency. This quantity also represents a328

robust measure of bias, though it suffers from a lack of intuitive interpretability. The ef-329

fect of the transformation does not depend on the base of logarithm used here, although330

the interpretation of the exact value does depend on the base used.331

4.1 Accuracy: Median Symmetric Accuracy332

We propose a measure of accuracy derived from logarithms of the accuracy ratio.333

The specific aim is to mitigate many of the problems inherent in using MAPE (see Sec-334
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tion 3.1), but that maintain the interpretability of MAPE and satisfy all the desirable prop-335

erties given at the end of section 1. Specifically, we follow the lead of Tofallis [2015] and336

Morley et al. [2016] in using log(Q), but modify our accuracy metric such that it is inter-337

pretable as a percentage error. We use the natural log in this presentation, but note that338

any base can be used as long as the antilog is found correctly. This metric was first sug-339

gested by Morley [2016], but we here expand on the derivation and meaning of this accu-340

racy metric before testing the behavior of this metric.341

We begin by taking the absolute values of loge(Q). This transformation ensures that342

the metric is symmetric in the sense that switching the values of the predicted and ob-343

served value give the same error (unlike MAPE). We then aggregate over all prediction-344

observation pairs using the median function and then exponentiate to return to the original345

units and scale.346

exp
(
M

(��loge(Qi)
��) ) (10)

As the median function is an order statistic, this is equivalent to the median matching ra-347

tio. The resulting value has a lower bound of 1, so we subtract one such that our metric348

lies in the range [0,∞). This subtraction allows the interpretation as an unsigned (symmet-349

ric) fractional error, and multiplying this by 100 yields an equivalent percentage error.350

ζ = 100
(
exp

(
M

(��loge(Qi)
��) ) − 1

)
(11)

This metric, ζ , is therefore named the median symmetric accuracy [cf. Morley, 2016].351

We can see that for two prediction-observation pairs, (1.7 × 105, 105) and (1.7 × 102,352

102), ζ is 70% in both cases; this is the same as the correct application of MAPE. Us-353

ing log-transformed data gives absolute percentage errors of [4.6, 11.5]% and an incorrect354

estimate of MAPE as 8.1%. The results from ζ are also symmetric with respect to the355

reversal of the predictions and observations, in contrast with MAPE.356

As noted previously, we specifically aim for a metric that is intuitive and can be in-357

terpreted as a percentage error. We now show that the median symmetric accuracy (ζ)358

is equivalent to the median percentage error, when the relative error is defined to always359

have the same direction.360

Taking our predicted and observed values to be y and x, as defined previously, we361

can define y′ to be the larger value and x ′ to be the smaller value. We now define a new362

“unsigned” forecast error, ε′ = y′ − x ′, and thus a new “unsigned” relative error363

η′ =
y′ − x ′

x ′
(12)

It can be seen that η′ is equal to R − 1 where R is the matching ratio defined in equa-364

tion 8. Using equation 9 along with the fact that quantiles are preserved under monotonic365

transformations, we see that366

ζ = 100
(
exp

(
M

(��loge(Qi)
��) ) − 1

)
= 100 (M (Ri − 1))
= 100

(
M

(
η′i

) )
(13)

Thus the median symmetric accuracy is equivalent to the median unsigned percentage er-367

ror. In practice this relationship is exact only when n is odd, or when n is large. In the368

case of even n the median in Equation 11 will give the geometric mean of the two cen-369

tral unsigned percentages, where Equation 13 will give the arithmetic mean. This effect370

will only impact very small, even-valued n, and since the geometric mean of a lognormal371

distribution is equal to the median, we recommend using ζ as defined in Equation 11.372

The median symmetric accuracy mitigates the problems with asymmetric penalty373

and effects of outliers (problems 2 and 4 described in Section 3.1), yet maintains inter-374

pretability. By using a robust and resistant measure of central tendency we minimize the375
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effect of the skewness of the distribution of absolute errors (problem 3). ζ therefore satis-376

fies all four desirable properties listed at the start of this paper, and mitigates several key377

problems of MAPE as an accuracy metric. We note that ζ is undefined when the smaller378

value in the forecast-observation pair is zero and return to this point in section 6. The in-379

terpretation of this metric is that 50% of the unsigned percentage errors are smaller than380

ζ . If we interpret the median as being an indicator of the “typical” value in a distribution,381

then we can further say that ζ represents the typical unsigned percentage error.382

4.2 Bias: Symmetric Signed Percentage Bias383

The bias (mean error; cf. Table 1) gives values smaller than 0 for a systematic un-384

derprediction, and values greater than 0 for a systematic overprediction. An order-dependent385

alternative should be interpretable in the same way. The physical meaning of the accuracy386

ratio is clear, making the median accuracy ratio an easily interpretable quantity [Morley387

et al., 2016; Rodriguez et al., 2017]. However, it is centered on 1 and is not symmetric.388

Assuming that symmetry is a desirable property for our bias metric then we can use the389

median log accuracy ratio [e.g. Morley et al., 2016; Morley, 2016] . Underprediction will390

give a negative value of M(log(Q)) and over-prediction will give a positive value; an un-391

biased forecast will yield M(log(Q)) = 0. This symmetry about zero then mirrors the392

more common measures of bias, the mean error and mean percentage error. Due to the393

log transform, the choice of base affects the result and will determine the level of inter-394

pretability for any given data set. We therefore present a new measure of bias based on395

the log accuracy ratio.396

Ideally our bias metric should have the same desirable properties given in section 1,397

including an interpretable scale. To achieve this we first estimate the magnitude of the398

bias by taking the absolute value of M(log(Q)) (we use natural logarithms here for ease399

of notation), taking the antilog, and subtracting 1 so that the lower limit is zero. We then400

find the direction of the bias using the signum function and multiply by 100 to express as401

a percentage.402

SSPB = 100 sgn(M(loge(Qi)))(exp(|M(loge(Qi))|) − 1) (14)

The Symmetric Signed Percentage Bias (SSPB) can therefore be interpreted similarly to403

a mean percentage error, but is not affected by the likely asymmetry in the distribution404

of percentage error and robustly estimates the central tendency of the error. As SSPB is405

based on relative errors, penalizes under- and over-prediction equally, is robust, and is in-406

terpretable as a percentage, it meets all of our stated desirable properties.407

5 Applications408

To illustrate the use of the metrics described above we generate a series of data,409

z, that we use as our ground truth. Figure 1a shows 80 keV electron flux data from the410

MagEIS instrument [Blake et al., 2013] on the Van Allen Probes mission [Mauk et al.,411

2013] as a function of time on 19-20 January 2014. We define a series, z, to approxi-412

mate these data using a model that varies cyclically between very small and very large413

values, varying over approximately 5 orders of magnitude. This is shown in Figure 1b,414

and is given by415

g = 10sin(i) + 10cos(2i)−sin(i)

z = 2g (15)

We also define a noisy series derived from z that we can use as our imperfect “model”.420

A multiplicative linear model is used here to compare several metrics. If we assume a421

counting process, such as measuring particle radiation, and ignore detection issues such422
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Figure 1. Panel (a) shows spin-averaged electron flux at 80 keV measured by the MagEIS instrument on
the Van Allen Probes (RBSP-A) satellite on 19-20 January 2014. Panel (b) shows a time series constructed
(equation 15) to approximate the electron flux data for the purpose of illustrating the application of the metrics
presented in this paper.

416

417

418

419

as instrument dead-time, then we can assume the process to be Poisson. As the mean of423

a Poisson process increases, so does the variance. That is, the error becomes larger as the424

expected value becomes larger. Note that as the mean of a Poisson distribution becomes425

large, the Poisson distribution can be well-approximated by a Gaussian distribution.426

An ordinary linear model has a number of assumptions, one of which is that the427

data are homoscedastic, i.e., the variance of the data is assumed to be constant. Particle428

fluxes are well known to display unequal variance. Specifically, the variance increases429

as the flux increases. The log transformation is variance stabilizing, so to ensure that the430

variance of our error term scales with the estimated flux value we assume a Gaussian er-431

ror distribution in log(flux). Then our estimate of the flux (ẑ) can be modeled as the true432

flux (z) plus an error term (Γ). This model is thus illustrative of the particle flux use-case.433

loge(ẑ) = loge(z) + Γ (16)
ẑ = z exp(Γ) (17)
ẑ = z exp(συ + ε) (18)

where Γ represents our error distribution, υ represents a random variate drawn from a434

standard normal distribution, σ is the standard deviation of the error distribution. To model435

a systematic bias in the error we include ε ; if ε = 0 then the Gaussian error is centered on436

log(z).437

5.1 Symmetry and robustness properties438

Taking our series z, we first apply simple noise models in which we apply a con-439

stant offset of a factor of 2; we use both 2z and z/2. We then derive a third noisy se-440

ries where each point i is randomly chosen to be either 2zi or zi/2. We then calculate441

MAPE, sMAPE and ζ . As expected, ζ gives the same answer (= 100%) in each of the442

three cases. By contrast, MAPE gives answers of 50% (2z), 100% (z/2), and 74.3% (ran-443

dom) and sMAPE gives answers of 66. Û6% in each case. While ζ and sMAPE both penal-444

ize over- and under-prediction equally, MAPE represents an equal order of error differently445

depending on the direction of the error. Of these metrics, only ζ consistently gives the446

intuitive answer that a factor of 2 difference is a 100% error.447

We now turn to the performance of each metric on a more realistic case, (x, y) =450

(z, ẑ). Series ẑ is described by Equation 18 and is displayed as a time series in the Fig-451
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ure 2a. These data are displayed versus z in Figure 2b. The inset panels show zoomed452

areas to illustrate the scale of the noise in ẑ.

Figure 2. Series ẑ plotted as (a) a function of index i; and (b) a scatter plot against z. Each panel has an
inset window expanding a small section of the displayed area to better show the scatter in the points.

448

449

453

Figure 3 shows probability distributions for different error estimates for the case457

of z as our observation and ẑ as our prediction. The vertical dashed lines mark the me-458

dian of each distribution and the vertical solid lines mark the arithmetic mean. Figure 3a459

shows the distribution of the percentage error. It can be seen clearly that this distribution460

is asymmetric. Taking the absolute values gives the distribution of APE, shown in Fig-461

ure 3b. The probability distribution of loge(Q) is shown in Figure 3c, and can be seen462

to be both centered near zero and symmetric. Taking the absolute values gives the dis-463

tribution of the symmetric accuracy (| loge(Q)|), which is shown in Figure 3d. The me-464

dian symmetric accuracy (ζ) is 22.71% and the MAPE is 24.33%. Taking the median of465

loge(Q) and applying equation 14 gives the Symmetric Signed Percentage Bias (SSPB)466

as −1.1%, while inspection of Figure 3a shows that the mean percentage error (MPE) is467

5.04%.468

We illustrate the "rescaled" MAPE of Swanson et al. [2011] in Figure 4. Figure 4a469

shows the distribution of APE: this panel is identical to Figure 3b. We then apply the470

modified Box-Cox transform of Swanson et al. [2000] to these data to get APE-Transformed.471

This distribution is shown in Figure 4b and MAPE-T is calculated as the mean of this472

symmetrized distribution of APEs. Finally we calculate MAPE-R by applying the inverse473

of the modified Box-Cox transform to MAPE-T [Coleman and Swanson, 2007; Swanson474

et al., 2011]:475

MAPE-R = ((λ) (MAPE-T + 1))
1
λ (19)

For this example we see that MAPE-R is calculated as 15.03%. This value depends crit-476

ically on λ, which will vary with the exact distribution of APE. The value is difficult to477

interpret as the rescaling effectively weights the different magnitudes of APE differently478

[see Swanson et al., 2011], and comparisons between models are not straightforward.479

We now increase the weight of the tails in our noise model. To do this we randomly488

select 10% of the indices, i, for series ẑ and recalculate ẑi with a value of σ that is 8489

times larger. Figure 5 shows results for the present case where ẑ has been contaminated by490

a much broader error distribution. Figure 5a shows the distribution of the percentage error.491

Comparing Figure 5a to Figure 3a shows that the distributions are visually very similar.492

The resulting distribution of APE is shown in Figure 5b. The probability distribution of493

loge(Q) for the contaminated series is shown in Figure 5c, and the distribution of absolute494
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Figure 3. Probability distributions of (a) percentage error, (b) absolute percentage error, (c) loge(Q) and
(d) symmetric accuracy for (x, y) = (z, ẑ). Mean values for the presented distributions are marked with solid
vertical lines and median values are indicated by dashed vertical lines.

454

455

456

values (| loge(Q)|) is shown in Figure 5d. In this case, ζ is almost unchanged at 22.79%495

and the MAPE is slightly different at 24.71%. The SSPB still estimates the bias as −1.1%496

and the MPE has increased very slightly to 5.32%.497

Having now added a contaminating distribution we recalculate MAPE-T and MAPE-498

R, shown in Figures 4c and 4d. The inclusion of outliers increases the weight of the tail499

of the distribution and hence the modified Box-Cox transform has a different λ. This leads500

to a different rescaling of APE, and in this case a MAPE-R (14.3%) that is lower than the501

case without outliers (15.05%). In this case the sensitivity of MAPE-R to the transform502

leads us to the incorrect conclusion that the error has decreased. This test clearly illus-503

trates that values of MAPE-R for different samples are not necessarily comparable in a504

meaningful way, and that interpreting MAPE-R is difficult, at best.505

5.2 Estimating σ for a multiplicative linear model506

Previous authors have also used errors based on the forecast errors in log flux [e.g.507

Weiss et al., 1997; O’Brien and McPherron, 2003; Ginet et al., 2013]. While this may sim-508

ply seem like a convenient transformation to make metrics like the RMSE scale-independent,509

it can be demonstrated to have a clear meaning. Specifically, in the case of an unbiased510

error distribution the RMSE is an estimator of the standard deviation of a Gaussian error511

distribution. The estimated standard deviation is defined as512

σ̂ =

√√√
1
N

N∑
i=1
(xi − x̄)2 (20)
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Figure 4. Probability distributions of (a and c) absolute percentage error (APE) and (b and d) Box-Cox
transformed APE. The vertical dashed lines on panels (a,c) and (b,d) represent MAPE and MAPE-T, re-
spectively. Panels (b and d) are annotated with the values of MAPE-R and the value of λ from the Box-Cox
transform. The top row (a and b) shows results using series (z, ẑ), where the bottom row (c and d) shows
results where 10% of the points in the Gaussian noise model have been replaced by outliers from a Gaussian
of standard deviation 8σ.

480

481

482

483

484

485

and can be compared to the root mean squared error(see Table 1). The RMSE of log flux513

therefore estimates the standard deviation for a multiplicative linear model in which the514

error is Gaussian in log space; we estimate σ for our multiplicative linear model using515

the RMSE where ε = loge(z) − loge(ẑ). Due to the log transformation, ε is now simply516

loge(Q).517

We can also estimate σ robustly using loge(Q). Calculating the median absolute er-518

ror of ε = loge(z) − loge(ẑ) is equivalent to calculating the median of | loge(Q)|. Above we519

estimate the standard deviation using the RMSE; similarly, we here estimate the median520

absolute deviation (MAD) using M(| loge(Q)|). The median absolute deviation provides a521

consistent estimator of the standard deviation by522

σ̂ = b MAD (21)

where b is a scale factor that is distribution-dependent. To scale MAD for consistency523

with σ for a Gaussian distribution, we set b = 1.4826 [e.g. Rousseeuw and Croux, 1993].524

An alternative measure for the spread of a distribution has been presented by Rousseeuw525

and Croux [1993]. Their Sn estimator has been shown to be very robust, among other de-526

sirable properties.527

Sn = c Mi(Mj(|xi − xj |)) (22)

where i = 1, . . . , n and j = 1, . . . , n. The outer median is defined to be the low median,528

given by the order statistic of rank (n + 1)/2, so that for an even number of data points529
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Figure 5. Same as Figure 3, where 10% of the points in the Gaussian noise model have been replaced by
outliers from a Gaussian of standard deviation 8σ.

486

487

the lower of the two central values is always taken. The inner median is defined to be530

the high median, given by the order statistic of rank (n/2) + 1, so in the case of an even531

number of data points the higher of the two central values is always taken. In the case of532

an odd number of data points the high and low medians are identical and in all cases the533

high and low medians are actual data points, whereas a standard median of an even-length534

series is given as the arithmetic mean of the two central values and is not guaranteed to535

be an actual value in the data set. Sn provides an unbiased estimate of σ for a Gaussian536

distribution when c = 1.1926 [Rousseeuw and Croux, 1993]. Sn is not referenced to a537

measure of location and is therefore suitable for use with asymmetric distributions. We538

will also estimate σ using Sn, where x is given by loge(Q).539

We generate a series ẑ for σ = (0, 6) in steps of 0.005. For each value of σ we es-545

timate it using each of the above methods. Figure 6 shows 2-D histograms of σ against:546

a) the RMSE of loge(Q); b) the MdAE of loge(Q); and c) the Sn of loge(Q). The color547

of each cell shows the density of points. The annotations give the slope, intercept and548

standard error of a linear fit to the data. For reference, each panel has a dashed black line549

marking y = x. In the case of a single Gaussian error distribution all the the metrics es-550

timate σ consistently. The standard error of the estimate using the median absolute error551

is slightly larger than the other two methods, with RMSE having the lowest standard error552

(the linear fit uses ordinary least squares, and hence will minimize this quantity). The Sn553

estimator provides the best estimate of σ. When we include additional noise, the perfor-554

mance of the RMSE is noticeably worsened, and Sn(loge(Q)) remains a good estimator of555

σ for the dominant noise model.556
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Figure 6. Two dimensional histograms of σ versus estimated σ. The left column shows the estimates using
the ẑ with a Gaussian error distribution. The right column shows the estimates where 10% of the points have
been replaced with ẑ with errors from a much broader Gaussian. Panels (a) and (b) show estimates of σ using
the RMS of loge(Q). Panels (c) and (d) show estimates using the median of | loge(Q)|. Panels (e) and (f)
show estimates using the Sn estimator. Each panel has a dashed black line marking y = x

540

541

542

543

544

6 Zero valued predictions or observations557

The metrics developed in this work have not addressed the problem that measures558

based on relative error become undefined when zeros are present. In practice we note that559

there is always a measurement threshold. In the radiation belts the measured electron flux560

at very high energies (several MeV) is typically near instrument background levels. If a561

count of zero is recorded in a detector, that does not mean zero flux. There remains a562

non-zero probability of a finite flux. A model predicting anywhere between zero and a563

defined threshold level should not be penalized. We propose that when the observed value,564

or the predicted value, falls below the defined measurement threshold for the predictand565

the value is fixed to the threshold. That is, a very low, but finite, model prediction (below566

the observable threshold) when the instrument count rate is zero does not get penalized.567

While other authors have used approaches like the sMAPE metric to address this, we aim568

to preserve the interpretability of the metrics while considering the physical meaning of569

a zero measurement or prediction. This approach will not be universally appropriate and570

other approaches to measuring accuracy (such as thresholding and applying categorical571

metrics) should be considered.572
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In the illustrative example above, which represents the electron flux measured at a573

satellite traversing the radiation belts (e.g. Van Allen Probes) at a relatively low energy,574

zero valued predictions or observations are likely to be rare and use of a lower threshold575

in calculating performance metrics is likely to be justified. A forecast or observation that576

is often zero raises the likelihood of overstating prediction quality by this method. For the577

case of measuring solar energetic protons of >10MeV the observations are typically at578

or near background. In this case, because the transient enhancements are relatively rare579

a constant prediction of zero (or of the background) would give an excellent accuracy,580

but fails to predict the event of interest. For assessing the accuracy and bias of models581

for rare events, different approaches should be considered. For example, the data could582

be converted to categorical forecasts and the accuracy and bias calculated from the con-583

tingency table [Wilks, 2006]. Probablistic approaches that account for the probability of584

observing a value above the observing threshold could also be used.585

7 Sample applications: Predicting electron flux and fluence586

Figure 7. Comparisons of model flux or fluence to observations. Panels (a) and (b) show a comparison of
omnidirectional electron flux from the MagEIS instrument on RBSP-A with predicted 1.07MeV electron flux
at that orbit from DREAM. Times where the Van Allen Probes orbit was outside the domain of the DREAM
run have been removed. Panel (a) shows the fluxes as a function of time. Panel (b) shows a scatter plot of the
DREAM fluxes and MagEIS fluxes, with y = x marked by a black dashed line. Panels (b) and (c) follow the
same format but show daily fluence at >2MeV from GOES compared with the 1-day ahead forecast from the
REFM model.

587

588

589

590

591

592

593

We illustrate the use of ζ and SSPB with two simple cases that are illustrative of594

possible space weather applications. We assume that a spacecraft operator (or stake-595

holder) is interested in predicting relativistic electron flux or fluence at a specific space-596

craft. First we present the case of predicting electron flux at a satellite in a highly ellipti-597

cal, near equatorial orbit, using a model that simulates a larger domain. The satellite orbit598
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thus represents a sparse trajectory through the model domain. We then present the case599

of predicting daily electron fluence at geosynchronous orbit, using a model that predicts600

exactly this quantity. It will be clear that no single metric captures the full relationship601

between model and observation. For predictands that vary over orders of magnitude, and602

where over- or under-prediction by the same factor should be penalized equally, ζ and603

SSPB give robust and easily interpretable results. Other commonly used metrics penalize604

the errors differently and can be hard to interpret. Full presentations of model validation605

are beyond the scope of this work and we use these examples as illustrative case studies.606

For rigorous model validation, much longer time periods should be used, covering a wide607

range of conditions, as well as performing quantitative comparison across the model do-608

main. Further comments on the use of summary metrics, especially for higher dimension-609

ality data, are given in section 8.610

7.1 Predicting electron flux along an orbit611

In this first simple case, we require a 1D time series of the electron flux at a given612

location and to quantify the model performance we are interested in summarizing the613

model accuracy and bias for the simulation interval. We use data from MagEIS as our614

observation and output from the Dynamic Radiation Environment Assimilation Model615

(DREAM) [Reeves, 2011; Reeves et al., 2012] as our prediction. The configuration of616

DREAM used for this simulation is a 1D radial diffusion model that uses an ensemble617

Kalman filter for data assimilation, with a source term whose amplitude is estimated as618

part of the assimilation process [see section 4.4 of Reeves et al., 2012]. As part of an on-619

going validation study of DREAM, the month of January 2014 was run with input data620

from the Synchronous Orbit Particle Analyzer [Belian et al., 1992] on three Los Alamos621

geosynchronous satellites (1994-084, LANL-01A and LANL-04A). A virtual satellite was622

flown through the model output along the trajectory of the Van Allen Probes RBSP-A623

satellite, where apogee is inside geosynchronous orbit, and the omnidirectional, differen-624

tial number flux at 1.07 MeV was calculated.625

Presenting only this short interval, with limited dynamics, ensures that the aspects626

of model performance displayed through this interval are not masked by a large number627

of data points, or varying model performance as time and conditions change. We first628

describe the model performance qualitatively and then calculate a range of metrics. The629

interpretation of these metrics will then be placed in the centext of the qualitative de-630

scription, so that the behavior of these metrics can be compared and discussed. Figure 7a631

shows the omnidirectional flux measured by MagEIS on RBSP-A (blue) and the flux at632

the same location predicted by DREAM (red). Times when the orbit of RBSP-A was out-633

side the model domain have been masked from both time series and removed from this634

analysis. It can be seen that the fluxes are qualitatively similar, and that variation in fluxes635

covers orders of magnitude. Figure 7b shows a scatter plot of the observed and predicted636

flux. The abscissa is the flux predicted by DREAM, and the ordinate is the flux observed637

by MagEIS. A dashed black line corresponding to y = x has been added to the plot.638

Inspection of figure 7a shows that at high fluxes, near the apogee of the Van Allen639

Probes orbit, the errors are typically smaller but DREAM tends to slightly over-predict.640

Due to the slower orbital speed near apogee, the majority of data points fall in this region.641

For this short time interval, DREAM consistently overestimates the flux as the satellite642

more rapidly moves between apogee and perigee. As the inner boundary of the model do-643

main is approached, the MagEIS flux reaches a point of inflection while the DREAM flux644

continues to fall thereby causing DREAM to underestimate the flux. During this interval645

there is minimal temporal variation throughout the radiation belt and the bulk of the vari-646

ation seen along the RBSP-A orbit is due to its sampling of a minimally-varying spatial647

structure of the radiation belt. Applying the metrics defined in this paper we calculate that648

ζ is 34.6% and the SSPB is 21.1%. The interpretation of these metrics is that half of the649
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forecast errors are smaller than a factor of 1.35, and that the median forecast error is an650

overestimate by 21.1%.651

For comparison, we have calculated the other accuracy and bias metrics discussed652

above. The MAPE is 65.59%, which is higher than ζ due to two main factors: the ten-653

dency of DREAM to overpredict the flux results in a larger penalty, although this by itself654

would tend to make MAPE similar to ζ rather than exceeding it; the mean error is much655

larger than the median due to the strongly asymmetric distribution of forecast errors. The656

same reasons lead to a mean percentage error of 50.7%. Calculating sMAPE gives 44.4%657

. Bearing the caveats of section 3.2 in mind, we also calculate the MAPE of the log-658

transformed flux. This results in an accuracy of 12.4%, and visual inspection of figure 7659

clearly shows that the typical forecast error is somewhat larger than this; the MAPE of log660

flux would also be much smaller if we converted to differential flux per MeV. We can also661

use scale dependent measures to assess the accuracy and bias. The RMSE for this pre-662

diction is 202 cm−2s−1sr−1keV−1 and the mean error is 111 cm−2s−1sr−1keV−1. While the663

RMSE and mean error are not incorrect they more heavily weight large magnitudes of de-664

viation, which are actually the smaller relative errors in this situation. The RMSE of log-665

transformed flux is 0.38, which is an estimate of σ for a Gaussian noise model, however666

it is clear that the errors are not normally distributed in log-space. The spread of the error667

distribution is robustly estimated as Sn(loge(Q)) = 0.21, which is significantly smaller than668

the estimate using RMSE of log flux.669

7.2 Predicting daily electron fluence at geosynchronous orbit670

For this example we show the daily >2MeV fluence from GOES and the prediction671

of that same quantity using the REFM model (based on Baker et al. [1990]), as reported672

by NOAA’s Space Weather Prediction Center. Figure 7c shows the daily >2MeV fluence673

measured by GOES (blue) and the prediction for that day from REFM (red). It can be674

seen that the fluences are qualitatively similar, and that variation in daily fluence covers675

orders of magnitude. Figure 7d shows a scatter plot of the observed and predicted flu-676

ence. Inspection of figure 7 shows that there is no clear systematic behaviour in the errors677

over this interval. The data files for the displayed interval has fill values for both the ob-678

served fluence and the predictions for 10-12 September 2017. These are excluded from the679

plotting and the analysis. In addition, the 1 day ahead prediction from 29 August 2017 is680

a significant overestimate and appears as a significant outlier in figure 7d. Applying the681

metrics defined in this paper we calculate that ζ is 180.4% and the SSPB is −11.6%. The682

interpretation of these metrics is that half of the forecast errors are smaller than a factor683

of 2.8, and that the median forecast error is an underestimate by 11.6%. The MAPE and684

MPE are dominated by the outlier, and are both about 2.63 × 105%. We therefore exclude685

this point from the rest of our analysis. On excluding the outlier we find that ζ and SSPB686

have changed only slightly, at 177.7% and -15.4% respectively.687

As above, we have again calculated a range of accuracy and bias metrics (after ex-688

cluding the fill values and the outlier). The MAPE is 276.1%, which is higher than ζ due689

to a few points with larger errors dominating the mean. For the same reason the mean690

percentage error is 210.5%, suggesting a mean overestimate of around a factor of 3. Note,691

however, that the SSPB is -15.4%, showing that most forecasts in this interval actually692

underpredict slightly. Looking at the other metrics we see that sMAPE= 94.9%, which693

would incorrectly imply that the typical error is less than a factor of 2. As before, we bear694

the caveats of section 3.2 in mind and calculate the MAPE of the log-transformed flux.695

This results in an accuracy of 6.7%, which is clearly not representative of the actual fore-696

cast errors. Looking at the scale dependent measures for accuracy and bias we see that the697

RMSE for this prediction is 1.20×109 cm−2sr−1 and the mean error is 1.66×108 cm−2sr−1.698

While not technically incorrect, these metrics do not clearly communicate how well the699

model actually performs. The RMSE of log-transformed flux is 0.66 and Sn(loge(Q)) =700

0.69 suggesting that the errors are close to normally distributed in log-space. We note that701
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we cannot compare any of these metrics to the performance statistics supplied by NOAA702

as they provide skill relative to three reference forecasts (sample mean, persistence, and703

recurrence) and do not explicitly give estimates of accuracy or bias.704

8 Quantifying and understanding model performance705

We note that for simplicity we have used 1D time series examples throughout, and706

that our example illustrates the use of accuracy and bias metrics to summarize model per-707

formance. Calculating summary metrics, aggregated across all data, is useful for the sce-708

narios described in section 7. This approach would not, however, allow a model developer709

to fully understand where or why their higher-dimensional model is inaccurate. For this710

use case, different approaches will likely be required.711

For example, Schiller et al. [2017] investigated the differences between two radiation712

belt simulations (where their output was PSD(µ=const,K=const,L*,t)) of the same inter-713

val using several methods; each method employed illustrates a different aspect of model714

performance. The difference between their two model runs was in the loss and transport715

terms: model 1 used event-specific terms and model 2 used statistical models to obtain the716

loss and transport terms. To understand where the model runs differ, and by how much,717

Schiller et al. [2017] present log10(Q) as a function of time and L* (see their Figure 8c).718

This visualizes the relative difference between the model runs in a 2D slice of their model719

domain, allowing them to diagnose where and when the models differ.720

Schiller et al. [2017] additionally quantify the performance of each model run by721

validating against phase space density measured at satellites from the Time History of722

Events and Macroscale Interactions during Substorms (THEMIS) mission. The THEMIS723

satellites trace trajectories through the model domain and hence only sample part of the724

model space. To quantify the accuracy of each of their model runs, as a function of time,725

they calculate RMSE (between model and THEMIS observation) aggregated over all L*726

and over 15 minute windows in time. Their model accuracy is then quantified by report-727

ing the RMSE as a function of time. This model validation approach mirrors the situation728

presented in section 7. The model performance over the full interval could be summarized729

using ζ and SSPB as described above, and could be displayed as a function of time by730

aggregating over subsets of the data similarly to Schiller et al. [2017].731

As mentioned previously, Subbotin and Shprits [2009] have developed metrics aimed732

at understanding where and when differences between models exist. These metrics are733

typically applied to subsets of the model domain. For example, to compare 2D slices of734

PSD( L*,t) at constant µ and K they use ND (cf. Equation 7). This metric is similar to735

sMAPE in that the normalization uses the mean of x and y, but the normalization factor736

is constant for any given time and is given by max(yi( f ) + xi( f ))/2 where the maximum737

value is taken over all L* at a given time. An additional example of the ND metric being738

applied to characterize model performance over a 2D domain was given by Drozdov et al.739

[2017], who compared Van Allen probes electron flux data (binned in L* and time) with740

simulation output. They note that they use ND for this as “[i]t emphasizes how well the741

simulation can reproduce the flux peaks and flux profiles around the maximum. In case of742

the comparison between two simulations, it indicates the difference in the heart of the ra-743

diation belt and excludes the areas of the low flux values, such as the slot region to avoid744

comparison of very small numbers.” Thus while the absolute value of ND may not be in-745

tuitive, it has demonstrated utility in understanding model performance from a physical746

perspective.747

The metrics presented in this paper can be applied to higher dimensional data by,748

for example, aggregating across particular dimensions of the data. For quantitative analysis749

of higher dimensional data other metrics for data-model comparison have been developed750

[see, e.g., Ch. 7 of Wilks, 2006] that have not been discussed in this paper. For properly751
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characterizing the performance of a model, the particular meaning of performance met-752

rics and the intended use (overall accuracy for customer, diagnosing deficiencies in model753

physics, etc.) should be considered. Derived quantities can also help understand model754

performance, such as the location of the peak in PSD in a radiation belt model. We re-755

iterate our earlier statement that no single metric captures the full relationship between756

model and observation. In the cases of comparing 2D (or higher dimensional) domains757

the metrics presented in this paper could be used, with appropriate aggregation over sub-758

sets of the domain, but may not be appropriate for answering the questions posed by the759

model developer. Summary metrics aggregated over all data may also be desirable in these760

cases so that overall model performance can be assessed in tandem with localization of761

any model errors.762

9 Summary763

In situations where observed (or modeled) data can vary over orders of magnitude,764

we identify four desirable properties for accuracy and bias metrics: 1. The metrics must765

be meaningful for data that cover orders of magnitude; 2. underprediction and overpre-766

diction by the same factor should be penalized equally; 3. The metrics should be easy to767

interpret; and 4. The metrics should be robust to the presence of outliers and bad data.768

We have reviewed a number of commonly-used model performance metrics, and have il-769

lustrated the ways in which these metrics do not display the given desirable properties.770

We have presented new measures of accuracy and bias and demonstrated that they satisfy771

all listed desirable properties. The metrics discussed in this paper are summarized in Ta-772

ble 1.773

The new metrics presented in this work are interpretable as percentages, but are de-777

signed to address known problems with standard metrics based on percentage errors. To778

address these drawbacks while still preserving the interpretability of MAPE we present779

an accuracy measure based on the logarithm of the accuracy ratio. This measure can be780

interpreted as a percentage error, but does not penalize over- and under-prediction differ-781

ently. This accuracy metric is called the median symmetric accuracy [cf. Morley, 2016],782

ζ , which is defined as783

ζ = 100 (exp (M (|log (Q)|)) − 1)

In this paper we have shown that ζ is equivalent to the median unsigned percentage er-784

ror and we have demonstrated its performance relative to other accuracy metrics similar785

to MAPE, showing that it satisfies the listed desirable properties. To provide a measure of786

bias that also satisfies the listed desirable properties we derive and describe the the Sym-787

metric Signed Percentage Bias (SSPB) which is also based on the log accuracy ratio.788

SSPB = 100 sgn(MdLQ)(exp(|MdLQ|) − 1)

Metrics based on ratios, including relative errors, can be undefined where zeros are789

present and we suggest that in some cases a threshold related to the limits of measurement790

capability could be applied to both prediction and observation for the purposes of assess-791

ing model accuracy and bias.792

We have also shown how the log accuracy ratio is related to the standard deviation793

of a multiplicative linear model and use robust estimators of the spread of log(Q) to es-794

timate σ in a multiplicative linear model We recommend the use of Sn(loge(Q)) for this795

purpose, where Sn is a robust measure of spread first described by Rousseeuw and Croux796

[1993].797

In cases where accuracy and bias metrics are required that equally penalize errors798

of the same order – typically predictands than span many orders of magnitude, such as799

radiation belt fluxes – we recommend the median symmetric accuracy and the symmetric800

signed percentage bias. These new metrics are easily interpreted and address some of the801
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Metric Definition Symmetry Scale/Order
Dependent

Comments

Error metrics
ε y − x Y Scale Forecast error
Q y/x N Order Ratio; Complement of

forecast relative error

Accuracy metrics

MSE

(
1
n

n∑
i=1

ε2
i

)
Y Scale Different units/scale;

Quadratic penalty

RMSE

√√√(
1
n

n∑
i=1

ε2
i

)
Y Scale Same units as x, y;

Quadratic penalty

MAE
1
n

n∑
i=1
|εi | Y Scale Same units as x, y;

Linear penalty
MdAE M |εi | Y Scale Same units as x, y; Lin-

ear penalty; Robust and
resistant

MAPE
100

n

n∑
i=1

����εixi

���� N Order Percentage; Penalizes
overprediction more
heavily

sMAPE 100
1
n

n∑
i=1

���� yi − xi
(xi + yi)/2

���� Y Order Percentage; Unintuitive
normalization; Handles
x = 0

ζ 100
(
e(M(|loge (Qi )|)) − 1

)
Y Order Percentage; Robust and

resistant

Bias metrics

ME
1
n

n∑
i=1

εi Y Scale Same units as x, y

MPE
100

n

n∑
i=1

εi
xi

N Order Percentage; Penalizes
overprediction more
heavily

MdLQ M loge(Qi) Y Order Different scale
SSPB 100 sgn(MdLQ)(e( |MdLQ |) − 1) Y Order Percentage; Robust and

resistant
Table 1. A summary of key metrics. The columns give, in order, the abbreviation or symbol of the metric
(as used in the text), the definition, whether the penalty is symmetric, whether the metric is scale or order
dependent, and selected attributes.

774

775

776
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known problems associated with more standard approaches based on relative errors and802

percentage errors. We have illustrated the use of these metrics with a simple example of803

predicting electron flux along a satellite orbit. We have discussed some additional consid-804

erations required for more complicated use cases.805
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