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Summary. Treatment policies, also known as dynamic treatment regimes, are sequences of decision rules that link the
observed patient history with treatment recommendations. Multiple, plausible, treatment policies are frequently constructed
by researchers using expert opinion, theories, and reviews of the literature. Often these different policies represent competing
approaches to managing an illness. Here, we develop an “assisted estimator” that can be used to compare the mean outcome
of competing treatment policies. The term “assisted” refers to the fact estimators from the Structural Nested Mean Model,
a parametric model for the causal effect of treatment at each time point, are used in the process of estimating the mean
outcome. This work is motivated by our work on comparing the mean outcome of two competing treatment policies using
data from the ExTENd study in alcohol dependence.
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1. Introduction
In many areas of health, treatment response is heterogeneous
in which case clinicians will need to consider providing a
sequence of treatments in order to obtain sufficient treatment
response. Furthermore patients with chronic illnesses often
require changes in treatment, that is, sequences of treatments,
so as to maintain a good response. As a result clinical scien-
tists have become increasingly interested in, and active in, the
development of interventions that are composed of treatment
sequences (Lavori and Dawson, 2000) in various fields includ-
ing alcoholism (Oslin, 2005), substance abuse (Jones et al.,
2011; McKay, 2009), leukemia (Thall et al., 2002), and autism
spectrum disorder (Kasari, 2009). Ideally, the treatment se-
quences are adapted to accommodate treatment response het-
erogeneity and thus result in more efficacious and less burden-
some/costly treatment. Treatment policies (Lunceford et al.,
2002; Wahed and Tsiatis, 2004, 2006)—also called dynamic
treatment regimes (Robins, 1986; Murphy et al., 2001), adap-
tive treatment strategies (Lavori et al., 2000; Murphy, 2005),
or adaptive interventions (Nahum-Shani et al., 2012a,b)—
operationalize the dynamic adaption via a sequence of
decision rules, one for each stage in the treatment process;
the decision rule inputs measurements of patients’ time-
varying covariates and outputs recommended treatments.

Often scientists construct treatment policies that represent
competing approaches to managing an illness. For example in
the treatment of ADHD, the American Psychological Asso-
ciation recommends starting with behavioral treatment and
moving to a medication only if the behavioral treatment is not

effective (Brown et al., 2008), whereas the American Academy
of Child and Adolescent Psychiatry recommends starting with
medication (Pliszka and AACAP Work Group on Quality
Issues, 2007). Or one treatment policy might represent a least
intensive or least costly version, whereas another treatment
policy may represent a most intensive, most costly version.
For example, the Extending Treatment Effectiveness of
Naltrexone (ExTENd) trial of alcohol dependence treatments
(PI: Oslin; Oslin, 2005) involves multiple treatment policies,
of which one is the most intensive and another is the least
intensive.

A common approach to estimating and comparing the
mean outcomes of competing treatment policies, is to use a
nonparametric estimation procedure that involves inverse-
probability-weights (IPW), such as those described in Murphy
et al. (2001) and Zhang et al. (2013). These estimators are
nonparametric in the sense that they do not require models
that relate baseline or time-varying covariates with the out-
come. Robins and colleagues (Robins, 1997b; Orellana et al.,
2010) generalized the Murphy et al. (2001) methods by pa-
rameterizing mean outcomes with each value of the parameter
representing a different policy in a class of treatment policies.
In this manuscript, we develop an alternative approach for
comparing treatment policies. This approach combines the
nonparametric IPW estimators of the mean outcome with a
model-based approach based on Robins’ Structural Nested
Mean Model (SNMM; Robins, 1994). In the Structural Nested
Mean Model, intermediate treatment effect functions, also
called “treatment blips,” are parametrically modeled. The
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intermediate treatment effects isolate the causal effect of
treatment at each time point, conditional on baseline, and
time-varying covariate history up to that time point. The
resulting estimator is an “assisted” estimator in that the
model-based approach assists the nonparametric estimator
in estimating the mean outcomes of competing treatment
policies.

Throughout this article, we focus on the comparison of two-
stage treatment policies. The restriction to two-stage treat-
ment policies allows the main ideas to be presented and in
addition most sequentially randomized trials, aka Sequential
Multiple Assignment Randomized Trials (SMART) (Lavori
and Dawson, 2004; Murphy, 2005), concern two stages of
treatment. ExTENd is a two-stage SMART. In Section 2, we
formulate the estimand in a precise manner. In this section,
we provide a class of assisted estimators for the mean outcome
based on data from a SMART; theoretical properties of the
estimators are also provided. In Section 3, we briefly intro-
duce how these estimators can be used to compare treatment
policies and make inference. Simulation studies, in Section 4,
are used to investigate different aspects of the methodology,
including the performance of the proposed estimator under
various levels of misspecifying treatment effects. In Section 5,
the methodology is illustrated by an analysis of the ExTENd
data. Finally, a discussion of the article, including ideas for
future work, is presented in Section 6. Proofs of the theorems
and lemmas are relegated to Web Appendix A.

2. Assisted Estimator for Policy Value

A two-stage treatment policy consists of two decision
rules, d = (d1, d2). Each decision rule inputs available patient
information at the current stage and outputs a treatment rec-
ommendation. Denote the outcome by Y (Y may be observed
after the study or may be a function of the data collected
during the study). The value of a policy is the expectation
of Y that would result if the treatments were selected using
the treatment policy d. A useful way to define the value of a
policy is via the potential outcome framework (Neyman et al.,
1935; Rubin, 1978). For each variable and each treatment
sequence, we conceptualize a “potential outcome” that would
have been observed under that treatment sequence. Using Xj

to denote observations available prior to the j-th decision, the
potential outcomes are {X1, X2(a1), X3(a1, a2); for all possible
sequences of treatments (a1, a2)}. Here, X3 denotes obser-
vations after the second decision; the outcome Y(a1, a2) is a
known function of {X1, X2(a1), X3(a1, a2)}. The value of the
policy, d, is given by Vd = E

[
Y(a1, a2)|a2=d2(H2(a1)),a1=d1(H1)

]
where H2(a1) = (X1, a1, X2(a1)) and H1 = X1. Vd is the
marginal mean of Y under the policy d, after integrating out
H2(a1) and H1.

The value of a treatment policy d, can also be written as a
function of the intermediate treatment effects or “treatment
blip functions,” from Robins’ Structural Nested Mean Model
(Robins, 1994). We deviate briefly to define these interme-
diate treatment effects which we will use below; other types
of treatment blip functions can be found in Murphy (2003)
and Robins (2004). Corresponding to the two stages of treat-
ment, there are two intermediate treatment effects given by
μ2(h2, a2) = E[Y(a1, a2)|H2(a1) = h2] − E[Y(a1, 0) | H2(a1) =

h2] and μ1(h1, a1) = E[Y(a1, 0)|H1 = h1] − E[Y(0, 0)|H1 =
h1], where at = 0 is the coding for a reference treatment.
The intermediate treatment effect, μ2, quantifies the effect
of treatment a2 relative to the reference treatment at stage
two on the mean of Y , among individuals with history h2.
The intermediate treatment effect, μ1, quantifies the effect of
treatment a1 relative to the stage one reference treatment, if
always followed by the reference treatment at stage two, on
the mean of Y , among individuals with history h1 at stage one.

Consider randomized treatments in a randomized trial, de-
noted by capitalized letters, A1, A2, where the randomization
distribution of A1 given H1 = h1 is denoted by p1(·|h1) and
the randomization distribution of A2 given H2(A1) = h2 is de-
noted by p2(·|h2). Throughout this article, we implicitly make
all required measurability assumptions as well as existence of
regular conditional densities. We have the following lemma.

Lemma 1. Assume that (i) max{E|Y(a1, a2)|, E|μ1(H1,

a1)|, E|μ2(H2(a1), a2)|} < ∞ for any treatment sequence
(a1, a2) and (ii) for some δ > 0, mina1 p1(a1|H1) ≥ δ, a.s.,
then

Vd = E

[
Y(A1, A2) − μ2(H2(A1), A2)

− μ1(H1, A1) + μ1(H1, d1(H1))

+ μ2(H2(a1), d2(H2(a1)))|a1=d1(H1)

]

= E

[
Y(A1, A2) − μ2(H2(A1), A2)

− μ1(H1, A1) + μ1(H1, d1(H1))

+ I{A1 = d1(H1)}
p1(A1|H1)

μ2(H2(A1), d2(H2(A1)))
]
.

(1)

This representation of the value, Vd , will form the basis for
our method. The intuition behind this representation is that
the potential outcome of Y under treatment policy d can be
constructed or recovered from the potential outcome associ-
ated with the treatment sequence (A1, A2), by subtracting the
intermediate treatment effects due to the sequence (A1, A2)
and then adding in the intermediate treatment effects due to
the policy d. The fraction involving the randomization prob-
ability in the last term (1) is used to account for the fact that
the intermediate treatment effect of the second stage treat-
ment under policy d depends on H2(a1)|a1=d1(H1) (the covari-
ate history that would occur if the first stage treatment were
assigned according to policy d); that is, this fraction adjusts
for the fact that H2(A1) is not always equal to H2(d1(H1)).

2.1. The Data and the Estimation Method

The observed data on each participant in a two-stage SMART
are {X1, A1, X2, A2, X3} where Xt denotes covariates observed
prior to the t-th stage and At denotes the t-th stage random-
ized treatment. The primary outcome Y is a known function
of {X1, A1, X2, A2, X3}. Let H2 = (X1, A1, X2) and H1 = X1.
The randomization probability for an individual’s treatment
may be a function of the individual’s observed data (say
P [At = a|Ht ] = pt(a|Ht)). For example, in many SMARTs, in-
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cluding ExTENd, participants who respond to the first stage
treatment are randomized to different treatments from par-
ticipants who do not respond to the first stage treatment.
Thus, nonresponding participants have probability 0 of be-
ing assigned one of the treatments available for responders,
whereas responding participants have probability 0 of being
assigned one of the treatments available for nonresponders.

To express the intermediate effects and the value (1) in
terms of the observed data, we relate the observed data to the
potential outcomes. We assume (Rubin, 1986; Robins, 1997a;
Robins et al., 2008) (A1) Consistency: X2 = X2(A1), X3 =
X3(A1, A2) and (A2) Sequential Randomization: A1 is in-
dependent of all potential outcomes given observed X1; A2

is independent of all potential outcomes given observed
(X1, A1, X2). The consistency assumption states that the ob-
served covariates are identical to the potential outcomes of
the covariates evaluated at the observed treatment sequence.
In particular, this assumption implies that each subject’s
outcomes are uninfluenced by other subjects’ assigned treat-
ments. This assumption may be violated if, for example, treat-
ment is provided in a group setting (group counseling). The
sequential randomization assumption is valid in the setting of
SMART trials because the treatment is randomized.

The intermediate treatment effects and the value, Vd , can
be expressed in terms of the observed data as follows.

Lemma 2. Assume A1 and A2 and (i) max{E|Y |,
E|μ1(H1, a1)|, E|μ2(H2, a2)|} < ∞ for any treatment sequence
(a1, a2) and (ii) for some δ > 0, mina1 p1(a1|H1) ≥ δ, a.s.,
then

(a) μ2(h2, a2) = E[Y |H2 = h2, A2 = a2] − E[Y |H2 =
h2, A2 = 0],

(b) μ1(h1, a1) = E[E[Y |H2, A2 = 0]|H1 = h1, A1 =
a1] − E[E[Y |H2, A2 = 0]|H1 = h1, A1 = 0] and

(c) Vd = E

[
Y − μ2(H2, A2) − μ1(H1, A1) +

μ1(H1, d1(H1)) + I{A1=d1(H1)}
p1(A1|H1)

μ2(H2, d2(H2))
]
.

Suppose the intermediate treatment effects are known
up to a finite-dimensional parameter: μ1(h1, a1) = μ1(h1, a1;
β1), μ2(h2, a2) = μ2(h2, a2;β2). Robins (1994) provides a class
of “g-estimators” for the parameters, β = (β1, β2). Each mem-
ber in the class corresponds to a different choice of model
for each of several nuisance functions; consistency of the g-
estimators does not require correct models for the nuisance
functions (see Robins (1994) for a detailed discussion). Fur-
thermore, this class of estimators does not require knowledge
of the treatment policy, d. Thus, β can be estimated and then
used to form the estimators of the values of a variety of treat-
ment policies. In Web Appendix B, we review the class of
g-estimators. Each estimator in this class is consistent for the
true value β0 = (β10, β20) of β, and is asymptotically normally
distributed (assuming a correctly specified SNMM and some
finite moment conditions). Throughout the article, we implic-
itly assume consistency and asymptotic normality of β̂.

Then, given the results of Lemma 2 and estimators, β̂, a
natural assisted estimator of the value of the policy d, Vd is

as follows:

V̂0(d; β̂) = Pn

[
Y − μ2(H2, A2; β̂2) − μ1(H1, A1; β̂1)

+ μ1(H1, d1(H1); β̂1)

+ I{A1 = d1(H1)}
p1(A1|H1)

μ2(H2, d2(H2); β̂2)
]
,

(2)

where Pnf (X1, A1, X2, A2, X3) denotes a sample average.
This estimator belongs to a class of assisted estimators,

given by

V̂m(d; β̂) = Pn

[
Y − μ2(H2, A2; β̂2) − μ1(H1, A1; β̂1)

+ μ1(H1, d1(H1); β̂1)

+ I{A1 = d1(H1)}
p1(A1|H1)

{
μ2(H2, d2(H2); β̂2)

− m(H1, A1)
} + m(H1, d1(H1))

]
, (3)

indexed by the function m(h1, a1). Note the former assisted
estimator, V̂0(d; β̂), corresponds to setting m(h1, a1) ≡ 0. We
have the following lemma:

Lemma 3. Assume that the assumptions for Lemma 2
hold, then

(a) The estimating function in (3) is unbiased for any
choice of m that satisfies E|m(H1, a1)| < ∞ for any a1.

(b) Assume (i) E|Y |2 < ∞; (ii) μ̇1(h1, a1;β1) := ∂

∂β1
μ1(h1,

a1;β1) exists for all β1, a.s., and μ̇2(h2, a2;β2) :=
∂

∂β2
μ2(h2, a2;β2) exists for all β2, a.s.; and (iii) there

exists some δ > 0 such that
∑

a1
E sup‖β1−β10‖≤δ |μ1(H1,

a1;β1)|2+|μ̇1(H1,a1;β1)|2<∞, and
∑

a2
E sup‖β2−β20‖≤δ |

μ2(H2, a2;β2)|2 + |μ̇2(H2, a2;β2)|2 < ∞. Then, if β̂ be-
longs to a subclass B of g-estimators, the choice of
m resulting in the lowest variance for V̂m(d; β̂) sat-
isfies m(h1, d1(h1)) = E[μ2(H2, d2(H2))|H1 = h1, A1 =
d1(h1)].

The subclass B corresponds to g-estimators for which a
particular nuisance function is correctly modeled. This sub-
class is defined in Web Appendix B after a general review of
g-estimators; in particular, in the simulation section we use
an estimator β̂ based on a correctly specified model for the
nuisance function, thus β̂ ∈ B . In Web Appendix C, we pro-
vide additional simulation results when using a β̂ that does
not belong to B .

The lemma above provides a guide for the choice of m; in
practice m(h1, a1) in (3) can be replaced by a working es-
timator m̂(h1, a1) := m(h1, a1; α̂m) of E[μ2(H2, d2(H2))|H1 =
h1, A1 = a1], resulting in V̂m̂(d; β̂). Next, we provide consis-
tency and asymptotic normality results for the estimators of
the value. We assume A1 and A2; in addition, we assume that
μ1(h1, a1;β1) and μ2(h2, a2;β2) are functions that correctly
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specify the SNMM, with true parameter value β0 = (β10, β20).
In particular, Theorem 1 below implies that the assisted es-
timator is consistent regardless of the choice of function m

(indeed one can set m ≡ 0).

Theorem 1. Assume that the assumptions for Lemma 3
hold; moreover, assume: (1) α̂m converges in probability
to some limit α+

m; (2) there exists some δ > 0 such that∑
a1

E sup‖αm−α+
m‖≤δ |m(H1, a1;αm)| < ∞; and (3) ṁ(h1, a1;

αm) := ∂

∂αm
m(h1, a1;αm) exists for all αm, a.s. Then, V̂m̂(d; β̂)

is a consistent estimator for the policy value of d, Vd.

Theorem 2. Assume that the assumptions for Theorem 1
hold; moreover, assume: (1) there exists some δ > 0 such
that

∑
a1

E sup‖αm−α+
m‖≤δ |m(H1, a1;αm)|2 + |ṁ(H1, a1;αm)|2 <

∞ and (2)
√

n(α̂m − α+
m) = Op(1). Then,

√
n
(
V̂m̂(d; β̂) − Vd

)
is asymptotically normal.

The asymptotic variance of the limiting normal distribution
in Theorem 2 is provided in Web Appendix A. Recall that
if m(h1, a1;αm) is a correct model for E[μ2(H2, d2(H2))|H1 =
h1, A1 = a1], then this asymptotic variance achieves the lowest
value among all choices of m, provided that β̂ belongs to the
subclass B of g-estimators.

3. Comparison between Treatment Policies

Suppose, we are interested in comparing treatment policies
d = (d1, d2) and d̃ = (d̃1, d̃2). Then, given an estimator β̂ for
the intermediate treatment effects, we obtain the following
consistent estimator for the contrast between d and d̃, i.e.,
Vd̃ − Vd :

(V̂m
d̃
(d̃; β̂) − V̂md

(d; β̂)) = Pn

[
μ1(H1, d̃1(H1); β̂1)

− μ1(H1, d1(H1); β̂1) + I{A1 = d̃1(H1)}
p1(A1|H1)

×{
μ2(H2, d̃2(H2); β̂2)−md̃(H1, A1)

} − I{A1 = d1(H1)}
p1(A1|H1)

×{
μ2(H2, d2(H2); β̂2) − md(H1, A1)

}+md̃(H1, d̃1(H1))

− md(H1, d1(H1))
]
, (4)

where the function m(h1, a1) is now subscripted by the policy
d, to reflect that a good choice of function m varies with d

(see the following lemma).
For ease of notation, define �d(h1, a1) = md(h1, a1) −

E[μ2(H2, d2(H2))|H1 = h1, A1 = a1].

Lemma 4. Assume that the conditions for Lemma 3 are
satisfied; in particular, assume that β̂ belongs to the subclass
B of g-estimators. Then, the choice of md and md̃ resulting in
the lowest asymptotic variance for

√
n(V̂m

d̃
(d̃; β̂) − V̂md

(d; β̂)),
among the class of estimators in (4) with md and md̃ being
arbitrary functions of (h1, a1), satisfy: (1) for h1 such that
d1(h1) 
= d̃1(h1), �d̃(h1, d̃1(h1)) = �d(h1, d1(h1)) = 0; (2) for
h1 such that d1(h1) = d̃1(h1), �d̃(h1, d̃1(h1)) = �d(h1, d1(h1)).

Lemma 4 implies that, for the purpose of estimating the
policy contrast, it is reasonable to replace md(h1, a1) with
a working estimate md(h1, a1; α̂m) of E[μ2(H2, d2(H2))|H1 =
h1, A1 = a1]. Then, we have the following lemma concerning
the estimator of the contrast in (4) with md(h1, a1) replaced
by md(h1, a1; α̂m). We will also refer to this estimator as an
“assisted estimator.”This lemma assumes that md(h1, a1; α̂m)
is modeled via a linear model DT

mαm where Dm is a function
of (H1, A1) and αm is estimated via least squares.

Lemma 5. Assume that the conditions for Theorem 1 and
2 are satisfied; then

√
n
(
(V̂m̂

d̃
(d̃; β̂) − V̂m̂d

(d; β̂)) − (Vd̃ − Vd)
)

converges in distribution to a normal distribution with mean
zero and var-covariance matrix, ��. The plug-in estimator
�̂� is a consistent estimator of ��.

The formulae for �� and �̂� are provided in Web Appendix
A.

4. Simulation Studies

All simulation experiments are based on generative models
mimicking the Extending Treatment Effectiveness of Naltrex-
one (ExTENd) trial, a SMART trial of alcohol dependence
treatment (PI: Oslin; see Figure 1). In this trial, the first-stage
randomization is between two different criteria for early non-
response to Naltrexone (NTX): the stringent definition (two
or more heavy drinking days) or the lenient definition (five or
more heavy drinking days). Participants were assessed weekly
for nonresponse; as soon as a participant met the nonresponse
criterion, he/she was rerandomized to either switch to com-
bined behavioral interventions (CBI) or to a combination of
CBI and Naltrexone. If the participant did not meet his/her
assigned nonresponse criterion by the end of two months, then
the participant was rerandomized to one of two relapse pre-
vention options: usual care (UC) or telephone disease man-
agement (TDM).

The structure of the simulated data is as follows:
(X1, A1, X2, R, A2, Y). X1 is a three-dimension baseline co-
variate simulating the distribution of {baseline percent days
heavy drinking, baseline craving score, baseline mental com-
posite score}, A1 is the binary indicator of the randomized
nonresponse criterion, X2 is a two-dimension covariate simu-
lating the distribution of {stage 1 duration, stage 1 percent
days drinking}, R is the binary indicator of early response,
A2 is the rerandomized binary treatment at the second stage.
Y is a primary outcome simulating the distribution of the
end-of-study craving score (lower values are better). We will
study various simulation scenarios that are all based on the
following Y :

Y = η0(X1) + A1(1, XT
1)β1 + η1(X1, A1, X2)

+ A2(1, XT
2 , A1, R, RXT

2 , RA1)β2 + ε. (5)

in which the terms involving β’s are the intermediate treat-
ment effects and η0(·), η1(·), and ε are other components in
the distribution of Y that correspond to the main effect of
X1, the effect of X2 conditional on (X1, A1), and the error
term, respectively. We use estimates of η0(·) and η1(·) that
are by-products of estimating an SNMM with the ExTENd
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R

Stringent Defini�on of 
Non-response  
(2 heavy drinking days) 

Responders 

Non-Responders R

Lenient Defini�on of 
Non-response  
(5 heavy drinking days) 

R
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NTX prescrip�on 

Responders 

Non-Responders R
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CBI + MM 
+ NTX 

CBI + MM 
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TDM +  
NTX prescrip�on 

UC +  
NTX prescrip�on 
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+ NTX 

CBI + MM 
+ Placebo 

Figure 1. ExTENd SMART design for the treatment of alcohol dependence. “R” stands for (re)randomization. TDM =
Telephone Disease Management, UC = Usual Care, NTX = Naltrexone, CBI = Combined Behavioral Intervention, MM =
Medical Management.

data; the by-products of the estimation of SNMM also in-
clude an estimate of the variance of the error term, and we
use that variance estimate to generate ε in our simulations.
More details are provided in Web Appendix C.

We create nine simulation scenarios by varying β1, β2 in
the generating model for Y . This procedure alters the mag-
nitude of the main effects of the treatments at both stages
and also the extent to which there are treatment by co-
variate interactions. In particular, the first coordinates in
β1 and β2 reflect the main effects of A1 and A2, and the
remaining coordinates reflect the interactions of A1 and
A2 with covariates. We adopt the following definition of
standardized effect size of a coordinate in βj by slightly
modifying Cohen’s d measure to the following: SES(βjk) =
βjk/

√
Var(η0(X1)) + Var(η1(X1, A1, X2)) + Var(ε). We adopt

this definition of standardized effect size because η0(X1),
η1(X1, A1, X2), and ε are uncorrelated components in the gen-
erative model of primary outcome Y , and the sum of their
variances contributes to the majority of the variance in Y .
Note that to ensure that this definition of standardized effect
size is meaningful, we will use standardized covariates (each
covariate in X1, X2 is standardized to come from a population
with mean 0 and standard deviation equal to 1). The nine sim-
ulation scenarios correspond to combinations of no treatment
effect, low treatment effect, and medium treatment effect at
both stages. We define no Aj treatment effect (j = 1, 2) as
βj = 0, define low Aj treatment effect as setting all coordi-

nates in βj to have SES equal to 0.2, and define medium Aj

treatment effect as setting the first two coordinates in βj to
have SES equal to 0.5 (i.e., main effect and interaction effect
with Xj1), and the other coordinates in βj to have SES equal
to 0.2. The rationale for only one medium level interaction in
medium Aj treatment effect case is that it is unlikely (in real
data) for the treatment to interact with many covariates at
medium level. The sign of each coordinate in βj is determined
by a preliminary fit to the ExTENd data. In each simulation
scenario, we generate 1000 simulated data sets.

Throughout β̂ in the assisted estimator is one of Robins’
g-estimators (β̂ is the solution to a series of least squares
problems; indeed if, as discussed above a particular nuisance
function is correctly modeled, then this least squares solution
will belong to B ). In Web Appendix C, we provide results
when β̂ does not belong to B ; the simulation results are sim-
ilar. Also throughout, m̂d is estimated via least squares with
(1, X1, A1) as predictors.

Let the triple (c1, c2, c3) denote a policy in which c1 is the
assigned nonresponse criterion, c2 is the assigned binary treat-
ment for early responders at the second stage, and c3 is the
assigned binary treatment for early nonresponders at the sec-
ond stage. To investigate different aspects of the proposed
methodology, we perform two sets of simulation experiments:
the first set studies the bias and MSE of the assisted estima-
tors of the difference in values of the most intensive policy,
(1,1,1) and the least intensive policy, (0,0,0). The second set
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Table 1
Simulation 1: Statistical properties of the assisted estimators of the contrast between values of policies (1,1,1) and (0,0,0).

Oracle = contrast estimator based on V̂md
(d; β̂) with the true optimal md. Assist = contrast estimator based on V̂m̂d

(d; β̂) with

a working estimate of the optimal md. Assist (md = 0) = contrast estimator based on V̂0(d; β̂). The displayed numbers for
confidence interval coverage are the coverage proportion × 100. An asterisk indicates that the MSE of Oracle or Assist

(md = 0) is significantly different from MSE of Assist (at 0.05 level).

N = 100

Bias/SD MSE ASE coverage

Scenario True value Oracle Assist Assist (md = 0) Oracle Assist Assist (md = 0) Assist Assist (md = 0)

(None,none) 0 0.04 0.04 0.04 3.51∗ 3.46 3.51∗ 95.7 95.4
(none,low) −2.4 0.01 0.01 0.01 4.26 4.26 4.31 95.1 95.6
(None,med) −5.2 0.03 0.03 0.01 3.94 3.93 4.3∗ 95.2 95.4
(Low,none) −1.4 −0.01 −0.01 −0.01 3.31 3.3 3.31 95.5 96.3
(Low,low) −3.8 0 0 0 4.08 4.14 4.12 95.5 95.9
(Low,med) −6.6 0.04 0.04 0.04 4.09 4.1 4.25∗ 95.6 96.3
(Med,none) −3.6 0.03 0.03 0.03 3.96 3.93 3.96 95.9 95.4
(Med,low) −6.0 −0.01 −0.01 −0.01 4.33 4.36 4.38 95.2 95.5
(Med,med) −8.8 0.01 0.01 0 4.02 4.04 4.24∗ 95 95.7

illustrates the efficiency gain of using the assisted estimator,
compared with a nonparametric policy value estimator that
is based on the marginal mean model (Murphy et al., 2001;
Zhang et al., 2013).

Simulation 1: Here, we compare bias and MSE for
three types of assisted estimators for difference in value.
We use the assisted estimator, V̂m̂d

(d; β̂) with m̂d , an es-

timator of E[μ2(H2, d2(H2))|H1, A1], and V̂0(d; β̂), to esti-
mate the contrast between policies (1, 1, 1) and (0, 0, 0).
We also consider V̂md

(d; β̂) in which md is the unknown
E[μ2(H2, d2(H2))|H1, A1]; we call this an “oracle” assisted es-
timator, because in practice the optimal md will be unknown.
The coverage of confidence intervals based on the asymptotic
standard errors of each of the two nonoracle estimators is also
provided in Table 1.

The simulation results with N = 100 are shown in Table 1
(results for N = 250 are shown in Web Appendix C). Based
on the ratio of bias and standard deviation, we conclude that,
as expected, the assisted estimators provide an unbiased esti-
mate of the contrast between policies. The MSEs of all the
three estimators are similar; V̂m̂d

(d; β̂) tends to be slightly

more efficient than V̂0(d; β̂). The coverage of the confidence
intervals based on the asymptotic standard errors is close to
95% in all cases.

In Web Appendix C, we provide additional simulations;
these simulations illustrate that V̂m̂d

(d; β̂) will provide a no-

ticeable efficiency improvement over V̂0(d; β̂) in some extreme
settings. However, we found that in most practical scenarios,
a sophisticated chosen md does not substantially improve the
efficiency over md ≡ 0; therefore for simplicity, we recommend
using the assisted estimator with md ≡ 0.

Simulation 2: Here, we assess the robustness via the
bias, MSE, and confidence interval coverage provided by the
assisted estimators to misspecification of the SNMM. As a
comparison, we consider estimators from the marginal mean
model (Murphy et al., 2001) as these estimators do not re-
quire the SNMM. The marginal mean models are estimated
via a nonparametric inverse-weighted estimator. More de-

tails about the implementation of the marginal-mean-models-
based estimator in this simulation study can be found in Web
Appendix B. We also present there some discussions about the
equivalency between the estimators proposed in Zhang et al.
(2013) and in Murphy et al. (2001). Note that when the goal is
to evaluate the difference between two policies, the estimators
in Orellana et al. (2010) under particular choices of nuisance
functions reduce to the marginal mean model estimators.

V̂m̂d
(d; β̂) is estimated with two differently misspecified

SNMMs in addition to the correctly specified SNMM. The
true SNMM is implied by the generative model in (5),

i.e., μ1(H1, A1) = A1(1, XT
1)β1, μ2(H2, A2) = A2(1, XT

2 , A1, R,

RXT
2 , RA2)β2. The first misspecification of the SNMM

excludes X11 from the model for μ1(H1, A1) and excludes
X21, RX21 from the model for μ2(H2, A2) (denoted as Assist2
in Table 2). The second misspecification models μ1(H1, A1) as

A1(1, X∗T
1 )β1 and models μ2(H2, A2) as A2(1, X∗T

2 )β2, where
X∗

1 and X∗
2 are three-dimensional and seven-dimensional

covariates (denoted as Assist3 in Table 2). The dimensions
of X∗

1 and X∗
2 are chosen so that the model complexity is

the same as in the correctly specified SNMM; X∗
1 and X∗

2

generated independently of all the other covariates.
We focus on the estimation of two contrasts: the first is

the contrast between the policies (1,1,1) and (0,0,0), and the
second is the contrast between a “tailored” treatment policy
and the policy (0, 0, 0). This tailored treatment policy assigns
a1 = 1 if X13 > 0; a2 = 1 to all early responders, and a2 = 1
to early nonresponders if X21 < 0. In each of the nine simu-
lation scenarios, we compare the marginal-mean-model-based
estimator with the assisted estimators for three differently
specified SNMMs.

The experiment results when N = 100 are shown in Table 2
(results for N = 250 are shown in Web Appendix C). Instead
of the MSE of the estimators, we present the relative MSE of
the assisted estimators, with the MSE of the marginal-mean-
model-based estimator (MM) as the reference. We found that,
for the comparison between policies (1,1,1) and (0,0,0), the as-
sisted estimators with correctly specified SNMM outperform
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Table 2
Simulation 2: Comparison between the marginal-mean-model-based estimators and the assisted estimators, with respect to the

performance in estimating the policy contrasts. MM = Marginal-mean-model-based estimator. Assist1 =
Assisted estimator with correctly specified SNMM. Assist2 = Assisted estimator with misspecified SNMM that excludes
X11, X21, RX21. Assist3 = Assisted estimator with misspecified SNMM that excludes all the covariates interacting with

treatments. Bias significantly different from 0, and coverage proportion significantly different from 95%, are marked with an
asterisk. Relative MSE is calculated as the ratio of MSE with that of MM.

N = 100

Estimation of the first contrast,(1, 1, 1) vs (0,0,0)

Bias × 100 Coverage of 95% CI × 100 Relative MSE

Scenario True value MM Assist1 Assist2 Assist3 MM Assist1 Assist2 Assist3 Assist1 Assist2 Assist3

(None,none) 0 2.4 4.9 5.2 4.9 95.2 96.2 96 96.1 0.94 0.93 0.99
(None,low) −2.4 5.8 4.6 4.7 6 94.5 96 95.4 95.2 0.95 0.94 1.04
(None,med) −5.2 12 −6.8 −6.8 −2.6 93.6∗ 93.9 93.6∗ 94.6 0.95 0.95 1.01
(Low,none) −1.4 −1.9 2.5 1.7 4.8 95.6 94.6 94 95 1.01 1.01 1.09
(Low,low) −3.8 −12.5 −10.8 −11 −10.3 94.3 94.5 93.5∗ 94.6 0.92 0.92 0.97
(Low,med) −6.6 11 −9.9 −10.4 −5.8 93.9 94.8 94.7 95.5 0.84 0.84 0.93
(Med,none) −3.6 8.9 4.2 5.4 3.4 95.5 95.9 95.3 96.2 0.89 0.87 0.89
(Med,low) −6.0 9.7 −1.9 −2.7 −7.1 94.3 94.8 94.1 94.9 0.85 0.85 0.93
(Med,med) −8.8 28.9∗ 4.2 5.4 4.7 93.7 94.9 95.2 94.9 0.8 0.79 0.85

Estimation of the second contrast, the tailored policy vs (0,0,0)

Bias × 100 Coverage of 95% CI × 100 Relative MSE

Scenario True value MM Assist1 Assist2 Assist3 MM Assist1 Assist2 Assist3 Assist1 Assist2 Assist3

(None,none) 0 6 1 2.4 2.3 96.2 97∗ 96.6∗ 96.1 0.78 0.76 0.57
(None,low) −2.2 6.4 4.8 −2.8 16.7∗ 95.6 96 95.7 94.7 0.79 0.77 0.59
(None,med) −3.9 11.5 −2.8 −22.1∗ −43.9∗ 94.9 95.8 95.1 94.4 0.78 0.77 0.67
(Low,none) −1.1 5.3 11.2∗ 9.7 42.9∗ 95.5 95.3 94.8 93.8 0.81 0.8 0.69
(Low,low) −3.3 −7.3 −6.3 −15.1∗ 46.3∗ 93.9 95.3 93.9 95 0.77 0.74 0.59
(Low,med) −5 6.7 −1.8 −23.6∗ −2.8 94 96.3 94.9 95.7 0.7 0.69 0.5
(Med,none) −2.3 9.3 8 9.1 50∗ 95.9 96.5∗ 95.8 95.4 0.76 0.74 0.57
(Med,low) −4.4 13.7∗ 9.4 −0.3 53.3∗ 93.2∗ 95 95.2 94.1 0.7 0.67 0.57
(Med,med) −6.2 24.7∗ 5.2 −15.1∗ 9.9∗ 93.1∗ 95.5 95.3 95.6 0.66 0.64 0.49

MM in terms of the MSE in most cases; misspecifying the
SNMM does not seem to introduce bias, but severe misspec-
ification (Assist3 in the Table) can lead to lower efficiency,
and sometimes can even cause the assisted estimators to have
a larger MSE than MM. For the comparison between the tai-
lored policy and policy (0,0,0), the assisted estimators with
correctly specified SNMM outperform MM in terms of the
MSE, and the advantage is greater than that of the first con-
trast. Misspecifying the SNMM introduces bias; in particular,
severe misspecification (Assist3) leads to considerable bias.
However, this bias does not seem to greatly impact the per-
formance of the confidence interval. Interestingly, for the es-
timation of this contrast, misspecifying the SNMM may even
result in a smaller MSE despite of the bias, due to a smaller
standard deviation in the estimate.

5. Data Analysis Example: ExTENd

The ExTENd study (see Figure 1) includes 302 participants,
with 49 participants dropping out prior to experiencing two
heavy drinking days. These participants are removed from our
analysis as they did not experience the first randomization

and both they and the clinicians were blind to this random-
ization. Only three participants dropped out during the first
treatment stage after experiencing two heavy drinking days.
The data from these participants are also removed for sim-
plicity. Thus, the data we analyze have a sample size of 250.

We use both the marginal-mean-model-based estimator
and the assisted estimator to compare the most intensive ver-
sus the least intensive policies. Treatment policy (1,1,1) rep-
resents the most intensive policy in the SMART, in which the
early nonresponse is deemed to occur if and when there are
five or more heavy drinking days in the first 8 weeks, in which
early responders are provided TDM and in which early non-
responders are provided NTX+CBI. Treatment policy (0,0,0)
represents the least intensive policy, in which early nonre-
sponse is deemed to occur if and when there are two or more
heavy drinking days in the first 8 weeks, in which early re-
sponders are provided UC and in which early nonresponders
are provided CBI only.

Besides the two treatment policies above, we will also com-
pare a more “deeply tailored” policy versus the policy (0, 0, 0).
At stage one, this tailored policy assigns the five or more
heavy drinking days definition of nonresponse to participants
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Table 3
Illustrative data analysis results with the ExTENd data. Evaluate the policy contrasts of both the policy (1, 1, 1) and the

proposed tailored policy, in relation to the policy (0, 0, 0), with respect to PACS. MM = Marginal-mean-model-based
estimator. Assist1 = Assisted estimator with a parsimonious SNMM. Assist2 = Assisted estimator with a complex SNMM.

(1,1,1) vs (0,0,0) Tailored vs (0,0,0)

Est (s.e.) Lower bound Upper bound Est (s.e.) Lower bound Upper bound

PACS MM 2.98 (1.30) 0.44 5.52 0.21 (1.05) −1.85 2.27
Assist1 2.83 (1.44) 0.00 5.66 0.91 (0.99) −1.02 2.85
Assist2 2.95 (1.48) 0.04 5.85 1.25 (1.05) −0.80 3.31

for whom the standardized pretreatment mental score is
above zero and the two or more heavy drinking days definition
of nonresponse to participants with a pretreatment mental
score below zero. Among early responders this policy assigns
TDM if they have at least one heavy drinking day during
stage one and assigns UC otherwise. Among early nonrespon-
ders, this policy assigns NTX+CBI if their stage one duration
is shorter than 49 days and otherwise assigns CBI only. The
justification of this treatment policy comes from the belief
that participants who were in worse mental health condition
(indicated by a lower mental composite score) at baseline
should proceed to stage two earlier to receive more intensive
treatments. Moreover, it is considered that responders and
nonresponders who performed worse in stage one (i.e.,
responders who experienced at least one heavy drinking day
and nonresponders who transitioned to stage two sooner)
should receive more intensive intervention in stage two.

We compare the treatment policies in terms of the Penn
Alcohol Craving Scale (PACS). Here, we reverse code this
scale such that higher values imply less craving thus are more
favorable. PACS is collected every two months during stage
two. The outcome Y is the average of the measurement at two
months and four months after entry into stage two. Among the
250 participants in our data set, 46 participants are missing Y .
We deal with this missingness in the outcome, Y , by adopting
a slightly adjusted assisted estimator that handles missingness
via inverse-probability-weights (see Robins et al. (1995) for
example). The adjustment requires an estimator of the condi-
tional probability of missing the outcome. This adjustment is
briefly reviewed in Web Appendix B. In particular, we make
the assumption that the missing Y ’s are missing at random
(Rubin, 1976). The marginal-mean-model-based estimator is
also adjusted similarly to accommodate for missingness.

In the analysis model, we choose to include the following
covariates: X1 is a 10-dimensional baseline covariate includ-
ing mean-centered versions of {gender, age, years of alco-
hol use, indicator of drug abuse, pretreatment percent days
heavy drinking, indicator of being married, years of alcohol
intoxication, pretreatment alcohol intoxication days within 30
days, pretreatment percent days drinking, pretreatment men-
tal composite score}; X2 is five-dimensional covariate mea-
sured prior to rerandomization, including {duration of the
first stage, number of heavy drinking days during the first
stage, percent days drinking during the first stage, percent
days heavy drinking during the first stage, average number of
pills taken per day during the first stage}. Moreover, A1 indi-
cates whether (A1 = 1) or not (A1 = 0) a patient is random-

ized to the lenient definition (i.e., five or more heavy drinking
days) of nonresponse as opposed to the stringent definition
(i.e., two or more heavy drinking days); R is the indicator
of being an early responder; A2 indicates whether (A2 = 1) or
not (A2 = 0) a responder is rerandomized to TDM as opposed
to UC, or whether or not a nonresponder is rerandomized to
NTX+CBI as opposed to Placebo+CBI.

We run two sets of analysis with the assisted estimators,
under two different SNMMs: in the first analysis, we adopt
a parsimonious model for SNMM by assuming μ1(H1, A1) =
A1(1, X̃T

1)β1 and μ2(H2, A2) = A2(1, X̃T
2 , A1, R, RX̃T

2 , RA1)β2,
where X̃1 is the first five dimensions in X1 and X̃2 is the first
three dimensions in X2; in the second analysis, we adopt a
more complex model for SNMM by assuming μ1(H1, A1) =
A1(1, XT

1)β1 and μ2(H2, A2) = A2(1, XT
2 , A1, R, RXT

2 , RA1)β2.
Asymptotic standard errors of the policy contrast estimates
are calculated and used to construct the 95% confidence in-
tervals for the policy contrasts. Table 3 presents the analysis
results.

The three estimators (including two assisted estimators
with different SNMMs) produce similar estimates, consider-
ing the relatively large standard errors. The analyses suggest
that the most intensive (1,1,1) policy is estimated to approx-
imately lower PACS by three on average compared to the
least intensive, (0,0,0) policy, and this difference is significant
at 0.05 level, across all three estimators. The proposed more
tailored policy, on the other hand, does not significantly differ
from the (0,0,0) policy. Note that the marginal-mean-model
based estimator has standard error no greater than that of the
assisted estimators; this might be due to either small treat-
ment effects in the ExTENd data, or the variance due to the
considerable amount of missingness in the data.

6. Discussion

Our simulations indicate that the MSE performance of the as-
sisted estimators is robust to misspecification of the model for
the intermediate treatment effects. Nonetheless to reduce bias,
efforts should be made to ensure good model fit in estimat-
ing the intermediate treatment effects. Data analysts should
make efforts to collect all the time-varying covariates that
may moderate the effect of treatment at each stage on the
primary outcome and include them in the treatment effects
models. Specific subject knowledge, and possibly results from
past studies, may provide valuable information for choosing
the models.

In this manuscript, we did not derive the semiparametri-
cally efficient estimator for policy value and/or policy con-
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trast. To obtain the most efficient estimator of the policy
contrast, one needs to subtract from the influence function
of the assisted estimator its projection on all tangent spaces
that are orthogonal to the tangent space associated to the pol-
icy contrast; this appears difficult because the policy contrast
is a functional of a collection of finite or infinite dimensional
parameters in the data distribution and the functional is de-
pendent on the specific policies being studied. We plan to
investigate this efficiency problem in future research.

In this article, we focused on the comparison of two-stage
treatment policies. When there are more than two treatment
stages at which (re)randomization may happen, similar as-
sisted estimators can be constructed. For example, for a three-
stage treatment policy d = (d1, d2, d3), the assisted estimator
requires additional terms characterizing the effect of d3 when
(d1, d2) were followed at earlier stages. This would involve
inverse-probability-weights from more than one stage.

The methodology proposed in this article is only applicable
when a few candidate treatment policies have been prespec-
ified. When there are more than a few candidate treatment
policies, usually one of the candidate treatment policies can
be considered as a reference policy, and comparison can be
made between any of the remaining policies and this refer-
ence policy. In future work, we will also consider a multiple
comparison procedure for many treatment policies.

The assisted estimators are based upon the structural
nested mean models for continuous primary outcomes. Multi-
plicative structural mean models (Robins, 1997a) and general-
ized structural mean models (Vansteelandt and Goetghebeur,
2003) have been proposed to deal with noncontinuous primary
outcomes and nonlinear treatment effects. We expect that the
assisted estimators can also be extended to deal with more
complicated primary outcomes and more complicated under-
lying interaction between treatments and covariates, with the
assistance of these more recent variations of SNMMs.

7. Supplementary Materials

Web Appendices referenced in Sections 2, 3, 4, 5, and the R
script to obtain the proposed estimators and generate the
simulative data sets are available with this paper at the
Biometrics website on Wiley Online Library.
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