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ABSTRACT  34 

1. Pollinator conservation is of increasing interest in light of managed honeybee (Apis 35 

mellifera) declines, and declines in some species of wild bees. Much work has gone into 36 

understanding the effects of habitat enhancements in agricultural systems on wild bee 37 

abundance, richness, and pollination services. However, the effects of ecological restoration 38 

targeting “natural” ecological endpoints (e.g., restoring former agricultural fields to historic 39 

vegetation types or improving degraded natural lands) on wild bees have received relatively 40 

little attention, despite their potential importance for countering habitat loss.  41 

2. We conducted a meta-analysis to evaluate the effects of ecological restoration on wild bee 42 

abundance and richness, focusing on unmanaged bee communities in lands restored and 43 

managed to increase habitat availability and quality. Specifically, we assessed bee abundance 44 

and/or richness across studies comparing restored vs. unrestored treatments and studies 45 

investigating effects of specific habitat restoration techniques, such as burning, grazing, 46 

invasive plant removal and seeding.  47 

3. We analysed 28 studies that met our selection criteria: these represented 11 habitat types and 48 

7 restoration techniques. Nearly all restorations associated with these studies were performed 49 

without explicit consideration of habitat needs for bees or other pollinators. The majority of 50 

restorations targeted plant community goals, which could potentially have ancillary benefits 51 

for bees.  52 

4. Restoration had overall positive effects on wild bee abundance and richness across multiple 53 

habitat types. Specific restoration actions, tested independently, also tended to have positive 54 

effects on wild bee richness and abundance.  55 

5. Synthesis and applications.  We found strong evidence that ecological restoration advances 56 

wild bee conservation. This is important given that habitat loss is recognized as a leading 57 

factor in pollinator decline. Pollinator responses to land management are rarely evaluated in 58 

non-agricultural settings and so support for wild bees may be an underappreciated benefit of 59 

botanically focused management. Future restoration projects that explicitly consider the 60 
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needs of wild bees could be more effective at providing nesting, foraging and other habitat 61 

resources. We encourage land managers to design and evaluate restoration projects with the 62 

habitat needs of wild bee species in mind.   63 

 64 

Keywords  65 

Abundance, bees, burning, conservation, grazing, habitat, land management, pollinators, 66 

restoration, species richness 67 

Introduction  68 

Bees are arguably the most important pollinators worldwide (Buchmann and Nabhan 1996), 69 

responsible for the majority of pollination in agricultural and natural systems (National Research 70 

Council 2007). Recent declines in bee species, and their importance as ecosystem service 71 

providers, have brought bees to the forefront of conservation efforts. For bee species with 72 

documented losses and in geographic regions with historic bee community data available, habitat 73 

loss is a frequently cited factor in bee declines (Grixti et al. 2009, Winfree et al. 2009, Cameron 74 

et al. 2011). To combat habitat loss, there has been considerable research evaluating the 75 

effectiveness of habitat enhancements for wild bees in otherwise developed landscapes, such as 76 

agricultural systems or cities (Shepherd et al. 2003, Vaughan 2008, Grixti et al. 2009, Pawelek et 77 

al. 2009, Dicks et al. 2010, MacIvor and Packer 2015, Hall et al. 2016).  78 

To date, most bee conservation efforts have focused on providing resources for wild bees 79 

(e.g., nesting and foraging resources) within otherwise human-dominated land uses (Shepherd et 80 

al. 2003, Batáry et al. 2010). In a recent meta-analysis, habitat enhancements for wild bees were 81 

found to be effective in agricultural systems (Scheper et al. 2013). For example, addition of 82 

native hedgerows or planting of wildflowers in field margins can provide consistent foraging 83 

opportunities, leading to greater wild bee diversity and abundance (Pywell et al. 2005, Haaland 84 

et al. 2011, Pywell et al. 2012). Likewise, installing nesting boxes or maintaining patches of 85 

bare, untilled ground have been found to provide nesting habitat (Wesserling and Tscharntke 86 

1995, Severns 2004, Dicks et al. 2010). In residential and urban areas, similar habitat 87 

enhancements can provide nesting and foraging resources for wild bees (Shepherd et al. 2003, 88 

but see MacIvor and Packer 2015). These enhancements have led to greater bee abundance and 89 

diversity relative to unmanipulated control sites in city parks and residential neighbourhoods 90 

(Frankie et al. 2009, Hernandez et al. 2009, Pawelek et al. 2009), yet the extent to which habitat 91 
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enhancements provide resources for a functionally diverse suite of wild bees remains uncertain 92 

(Woodcock et al. 2014a).  93 

On a larger scale, ecological restoration of undeveloped lands (e.g., degraded natural 94 

areas or restoration of former working lands, such as agricultural fields, back to pre-settlement 95 

habitats) of may be an effective conservation tool to counter the effects of habitat loss on wild 96 

bees. Through restoration, practitioners assist the recovery of an ecosystem that has been 97 

degraded, damaged or destroyed (SER 2004). Historically, habitat restoration has focused on 98 

plant community outcomes, and restoration management techniques frequently involve direct 99 

manipulation of the plant community (Young 2000). Typical restoration actions include removal 100 

of invasive plant species, seeding and planting of native flora, reinstating historic fire regimes, 101 

reintroducing grazers, and other regionally habitat-specific management actions.  102 

Theoretically, restoration could be a ‘tide that raises all ships,’ improving habitat quality 103 

by directly altering plant communities. For example, vegetation dominated by a single invasive 104 

plant species provides little diversity in floral resources or bloom times, limiting the portfolio of 105 

bees that can be supported (M’Gonigle et al. 2016). In such cases, increased plant diversity 106 

associated with invasive species management and subsequent restoration of a desirable botanical 107 

community could increase foraging opportunities for bees. These actions could lead to increases 108 

in bee abundance and richness, similar to habitat augmentations in agricultural areas (Scheper et 109 

al. 2013). Unlike small-scale enhancements of otherwise developed sites, restoration of natural 110 

areas can also return larger areas of contiguous habitat for native bees, returning landscape-level 111 

and metacommunity processes (Montoya et al. 2012). 112 

However, there is also potential for actions associated with restoration to act as 113 

disturbances to wild bees (Moretti et al. 2009, Williams et al. 2010). For example, removal of 114 

invasive species and burning or mowing without immediate replacement of mature plants may 115 

reduce foraging opportunities available to bees. Prescribed burning is commonly used in 116 

restoration to alter habitat structure and clear invasive or undesired vegetation; early in a 117 

restoration project, fire frequency may exceed that of the historic burn cycle (Packard 1997). 118 

While burning could reveal more bare ground for soil nesters through removal of herbaceous 119 

litter, burning also removes standing dead material, such as the pithy stems and dead wood that 120 

many species require for nests (Michener 2000). Burning and other disturbances are likely to 121 
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differentially affect bees representing different nesting guilds, or even those of similar guilds 122 

found across different habitats (Moretti et al. 2009). 123 

We conducted a meta-analysis to evaluate the overall impact of habitat restoration on 124 

wild bees, and the relative impact of specific management techniques (i.e., burning, grazing, 125 

overall restoration, ecological compensation meadows, invasive plant removal, mowing and 126 

seeding). Through meta-analysis we could calculate the relative and overall effect sizes of each 127 

restoration action and for restoration overall, while incorporating study size and replication into 128 

the strength of each response. We considered wild bee richness and/or abundance as responses 129 

and restricted our analysis to restorations targeting “natural” end-points, e.g., grasslands or 130 

forests, but not anthropogenic or novel habitats like farms, housing developments or urban 131 

gardens. We retained studies of ecological compensation meadows, which are large-scale (i.e., 132 

multiple hectare) efforts to convert land used for hay production or pasturing to closer 133 

approximations of wild habitats. While these lands have an agricultural component, we 134 

considered them more comparable to grassland restorations than to crop production systems; as 135 

livestock grazing is a recognized tool for restoring grasslands in both Europe and North America 136 

(Hayes and Holl 2003, Dostálek and Frantík 2008).  137 

We hypothesized that (1) habitat restoration would have generally positive effects on 138 

wild bee abundance and richness, (2) overall restoration would have a greater positive impact on 139 

wild bee abundance or richness than any one restoration action tested independently and (3) 140 

some specific restoration actions would function as disturbances, with negative effects on bee 141 

abundance or richness. 142 

 143 

Materials and Methods 144 

Literature search 145 

To identify relevant studies we searched Web of Science (Clarviate Analytics 2015) using the 146 

following term combinations “bee AND (restor* OR habitat manag* OR habitat enhanc*)” with 147 

topic filters of “ecology” and “biodiversity conservation” on December 6, 2016. This search 148 

yielded 412 papers.  149 

From this point, we individually examined studies and excluded those that took place 150 

within production agricultural settings (e.g., pollinator-friendly hedgerows around tomato fields) 151 

or focused on managed bees such as honeybees (Apis mellifera). We included studies that 152 
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evaluated the effects of restoration overall (e.g., restored vs. unrestored comparisons) and studies 153 

of specific management actions frequently implemented in restoration (e.g., mowing, grazing 154 

and burning) that took place in degraded lands and former agricultural lands that were converted 155 

to pre-settlement conditions. We did not evaluate the effects of habitat remediation in lands that 156 

had been structurally transformed and/or polluted by human activities (e.g., strip mines, landfills, 157 

or quarries). After identifying a total of 38 papers that met our criteria, we searched within the 158 

references in these papers for additional suitable studies. This yielded an additional 9 papers, for 159 

a total of 47.   160 

 161 

Calculation of effect sizes 162 

Of the 47 studies, 28 contained data suitable for analysis, i.e., bee abundance and/or species 163 

richness were reported before and after restoration treatments or compared between restored vs. 164 

unrestored treatments in the article itself, in supplemental information, or in communications 165 

with the authors (see Table S1 in Supporting Information). For the 19 excluded studies, data 166 

were not reported in a way that allowed us to calculate bee richness or abundance (e.g., authors 167 

reported total number of insects and insect species) and raw data were either unavailable or did 168 

not provide the necessary information (e.g., only insect counts were reported, not bees 169 

specifically). From the final 28 studies, we extracted a total of 70 data points for inclusion in the 170 

meta-analyses. For studies with multiple categorical treatments, we extracted multiple data 171 

points comparing each test variable (e.g., low-intensity grazing and high-intensity grazing) to the 172 

control or reference condition, as described in Koricheva et al. (2013). For 14 papers, both wild 173 

bee abundance and richness were reported as response variables to restoration or management 174 

actions. 175 

 We calculated Hedge’s d, an unbiased standardized mean difference corrected for small 176 

sample size, which is suitable for meta-analyses with few studies (Hedges and Olkin 1985, 177 

Koricheva et al. 2013). The effect size d can be interpreted here as the inverse-variance-weighted 178 

difference in abundance or richness of bees between restored and unrestored or reference 179 

conditions, measured in units of standard deviation. Large effect sizes can result from a large 180 

difference in mean bee abundance or diversity between treatments or from a small estimate of 181 

the pooled variance between treatments.   182 
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Whenever possible, we calculated effect size based on reported sample size, mean and 183 

standard deviation values of bee abundance or richness for each treatment (Koricheva et al. 184 

2013). If data were not available, we emailed the corresponding author requesting these data. For 185 

studies where the author did not respond or necessary data were not available, we calculated an 186 

effect size based on a reported F-test or using mean and standard deviation values extracted from 187 

figures using Web Plot Digitizer (Rohatgi 2015). For studies with a continuous design (e.g., bee 188 

response to grazing intensity), we ran a Fischer’s z transformation on the correlation coefficient r 189 

to calculate an effect size and then converted this value to Hedge’s d using the metafor package 190 

(Viechtbauer 2010) in R version 3.3.3 (R Development Core Team 2015).  191 

In our calculations of Hedge’s d we were not able to account for variance arising from 192 

measurement error in the underlying studies. Measurement error could arise from factors such as 193 

misidentification of specimens, differences in identification skill or data-entry errors. As articles 194 

included in this meta-analysis did not report measurement errors, we were unable to perform 195 

study-level corrections or attempt to calculate an average error correction term. That said, 196 

ecologists do increasingly attempt to estimate measurement error, as reviewed by Morrison  197 

(2016), and its incorporation into ecological meta-analyses may become more common – as is 198 

the case, for example, in medical research (Schmidt and Hunter 2015).   199 

 200 

Analyses of effect size and heterogeneity 201 

All statistical analyses were performed in R version 3.3.3 (R Development Core Team 2015) 202 

using the package metaphor (Viechtbauer 2010). For each response variable (bee abundance or 203 

richness), we created a random effects model with study and restoration action (burning, grazing, 204 

overall restoration, ecological compensation meadows, invasive plant removal, mowing and 205 

seeding) as random factors to account for non-independence between different treatments within 206 

the same study or of responses to the same treatment across studies. Models were fitted using 207 

restricted maximum-likelihood estimation (Koricheva et al. 2013).  208 

We grouped studies by restoration action (Table 1) and constructed models within each 209 

of these categories with study as a random factor to account for non-independence. To determine 210 

if effect sizes across studies were similar, we calculated heterogeneity (Q) within each 211 

restoration category and for all studies combined. 212 

 213 
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Publication bias and sensitivity analyses 214 

To explore the possibility of publication bias we constructed funnel plots – scatter plots of effect 215 

sizes against a measure of their variance – to determine if reported studies were unbalanced, as 216 

recommended by Koricheva et al. (2013). A publication bias toward significant results would 217 

create an asymmetrical funnel, typically missing small studies with non-significant effects. 218 

Having found funnel asymmetry, we used trim-and-fill plot s to estimate “missing” studies. We 219 

then updated mean effect sizes with imputed missing studies, and compared original and updated 220 

mean effect sizes using t-tests. Finally, we calculated Rosenberg’s weighted fail-safe number 221 

(Rosenberg 2005), an estimate of the number of unpublished studies with an effect size of zero 222 

that would need to be added to make the observed effect size non-significant (p > 0.05). 223 

 224 

Results 225 

Overall, restoration in general and specific restoration actions had positive effects on bee 226 

abundance (d = 1.49, 95% CI = 0.92, 2.06, p < 0.0001, Fig. 1) and richness (d = 1.01, 95% CI = 227 

0.65, 1.38, p < 0.0001, Fig. 2). Effects of restoration and management differed by study and were 228 

heterogeneous for bee abundance (Q = 637.50, d.f. = 38, p < 0.0001, Figure 1) and richness (Q = 229 

117.88, d.f. = 31, p < 0.0001, Fig. 2). 230 

Of the 70 data points identified, 39 reported wild bee abundance and 31 reported wild bee 231 

richness (see Table S1). The majority of studies were conducted in Europe (n = 17) and North 232 

America (n = 10 United States, n = 1 Canada) with 2 additional studies conducted, at least 233 

partially, in Israel. These included studies that evaluated the effects of restoration in general and 234 

creation of ecological compensation meadows, as well as mowing, burning, grazing, invasive 235 

plant removal and seeding (Table S1). 236 

 237 

Mean effect sizes of restoration and heterogeneity among studies: Bee abundance 238 

All restoration categories had positive mean effect sizes for bee abundance (Fig. 1). The greatest 239 

effect size was attributed to a removal and mulching treatment of the invasive plant Chinese 240 

privet (Ligustrum sinense) in a woodland (Hanula and Horn 2011). Invasive plant removal had 241 

the greatest positive effect on bee abundance (d = 4.84, 95% CI = 3.59, 6.09, p < 0.0001, Fig. 1). 242 

Negative effects of restoration on bee abundance were found in two mowing studies and one 243 

grazing study (Fig. 1). Bee abundance outcomes were significantly heterogeneous within 244 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

mowing and grazing categories, respectively (Q = 500.41, d.f. = 4, p < 0.0001 and Q = 29.32, d.f. 245 

= 12, p < 0.003, Table 1); other restoration actions did not exhibit significant heterogeneity 246 

between individual study results (Table 1).  247 

 248 

Mean effect sizes of restoration and heterogeneity among studies: Bee richness 249 

With the exception of mowing, all restoration actions had significant positive effects on bee 250 

richness (Fig. 2). Invasive plant removal had the greatest positive effect on richness (d = 6.38, 251 

95% CI = 2.55, 10.20, p = 0.001, Fig. 2), though studies within this category were heterogeneous 252 

with respect to their individual effect sizes (Q = 32.81, d.f. = 4, p < 0.0001, Table 1). Two 253 

individual studies found negative effects on bee richness; Russel et al. (2005) reported a negative 254 

effect of continuous mowing of powerline strips relative to unmown controls, and Potts et al. 255 

(2006) found fewer species of bees in pine forests that had been burned for 10 or more years 256 

compared to unburned controls. Grazing, ecological compensation meadows, and invasive plant 257 

removal groups were all heterogeneous in effect sizes (Q = 11.29, d.f. = 4, p < 0.02;  Q = 19.02, 258 

d.f. = 3, p < 0.001; Q = 32.81, d.f. = 4, p < 0.0001, respectively   Table 1); other restoration 259 

actions did not exhibit significant heterogeneity.  260 

 261 

Evidence of publication bias 262 

Asymmetrical funnel plots indicated potential publication bias, specifically that studies with low 263 

effect sizes and high standard errors (located in the lower left quadrant) were “missing”. Trim 264 

and fill analysis estimated zero missing studies for abundance (SI Fig. 1a), but four missing 265 

studies for richness (SI Fig. 1b). Inclusion of these missing studies would slightly decrease 266 

effect-size estimates but still maintain a significant positive effect of restoration on bee richness 267 

(d = 0.84, 95% CI [0.31, 1.37], p = 0.002).  268 

Calculation of Rosenberg’s fail-safe number indicated that 1,299 studies with null results 269 

for effects of restoration on bee richness would be needed to make the observed effect non-270 

significant (p > 0.05); 3,103 such studies would be needed to make the effect of restoration on 271 

bee abundance non-significant. These results provide robust evidence of significant, positive 272 

effects of restoration on wild bee abundance and species richness.  273 

 274 

Discussion 275 
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Overall, ecological restoration had a positive effect on wild bee abundance and richness across 276 

multiple studies, habitat types, and geographic regions. With the exception of mowing, all 277 

restoration categories had net positive effects on bee abundance and bee richness (Figs. 1 & 2). 278 

The effects of restoration on bee abundance and richness ranged from nearly 10-fold increases 279 

(Fielder et al. 2012) to non-significant effects; no restoration categories were found to have 280 

negative mean effects (d). 281 

 Of the 28 studies evaluated in this meta-analysis, only 5 stated that bee habitat support 282 

and conservation were explicit goals of restoration efforts. Restorations tend to be completed 283 

with plant community outcomes in mind (Young 2000), with reference plant communities in 284 

high-quality remnant sites as ideal targets. Bees and other pollinators have frequently fallen 285 

under the “Field of Dreams” hypothesis: “if we build it, they will come” (Hilderbrand 2005), as 286 

opposed to having habitats explicitly designed and managed for their needs. If restorations are 287 

producing positive effects on wild bee abundance and richness without explicit consideration of 288 

their habitat needs, perhaps incorporating bee considerations into restoration planning and design 289 

could further increase the benefits provided to bees by ecological restoration, as has been 290 

demonstrated in enhanced agricultural systems (Scheper et al. 2013). 291 

Restoration or management techniques could be directly or indirectly affecting bee 292 

abundance or richness. For example, grazing and burning commonly employed in grassland 293 

restoration can stimulate floral blooming (Packard 1997), leading to more potential foraging sites 294 

for bees. However, techniques such as burning could also directly impact bee abundance and 295 

richness via the physical disturbance itself, e.g., by destroying overwintering larvae in stem or 296 

twig nests. Overall, as most of the restoration techniques evaluated in this meta-analysis were 297 

focused on plant-community outcomes, the indirect benefits of a “higher-quality” plant 298 

community are the most likely drivers of patterns in bee abundance and richness. 299 

 300 

Identifying gaps and future research opportunities 301 

Over 90% of the studies that fit our selection criteria were performed in North America or 302 

Europe, which also means the restoration techniques examined here may not be representative of 303 

global restoration efforts. Studies tended to be from grasslands (e.g., prairie and savanna) and 304 

forests, on lands that had been heavily impacted by invasive plant species, were former 305 

agricultural fields, or were being used as “working” grasslands for grazing or hay production. As 306 
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demonstrated by Moretti et al. (2009), the response of bees to restoration actions cannot be 307 

assumed to be the same across habitat types or regions. Though a strength of a meta-analytical 308 

approach is to synthesize effect sizes across studies, this approach is sensitive to the size and 309 

diversity of the pool of available studies. Further research addressing bee responses to restoration 310 

in more parts of the world, in more habitat types, and with respect to more management actions 311 

is needed to gain a deeper understanding of the benefits of restoration to bees.  312 

It is important to note that data on community composition of bees were not available for 313 

most studies, thus we were unable to perform analyses of how different types of bees responded 314 

to restoration (e.g., cavity-dwelling vs. soil-dwelling bees). For example, evidence from 315 

agricultural systems suggests habitat enhancements promote increased functional redundancy in 316 

bee communities (Woodcock et al. 2014a). Williams et al. (2010) found that bees’ responses to 317 

disturbance were mediated by their traits, and Tonietto et al. (2017) found that bee functional 318 

trait composition varied among restorations of different age. As species lists are more commonly 319 

published and archived, functional analysis of wild bee species’ responses to restoration will 320 

become possible.   321 

 322 

Conservation implications and recommendations for management 323 

Habitat restoration can help to counteract habitat loss, the greatest threat to wild bee abundance 324 

and richness (Winfree et al. 2009). Here, we document an overall positive effect of habitat 325 

restoration on wild bee abundance and richness, even when restoration planning and goalsetting 326 

did not explicitly consider the habitat needs of wild bees. This is important, considering a recent 327 

survey found that only 11% of grassland managers in the Midwestern USA considered the 328 

habitat needs of wild bees during the restoration process (Harmon-Threatt and Chin 2016).  329 

To better support wild pollinators, recent studies have documented the importance of 330 

designing restoration seed mixes for forbs with overlapping bloom times and multiple floral 331 

morphologies (Harmon-Threatt and Hendrix 2014, Havens and Vitt 2016, M’Gonigle et al. 332 

2016). For many localities, pollinator friendly plant species lists have already been developed 333 

(e.g., Mader 2010) for use in managed lands or residential gardens. Our findings raise the 334 

possibility that still greater conservation results for bees could be achieved were land managers 335 

to take the additional step of incorporating bee foraging and nesting needs as design 336 

considerations (e.g., Shepherd 2002, Shepherd et al. 2003, Shepherd et al. 2008, Vaughan 2008). 337 
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Table 1.  Heterogeneity of effect sizes (Q) between studies within restoration categories for the 366 

response variables wild bee abundance and species richness.  367 
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Restoration category d.f. Q p d.f. Q p

Restoration 4 3.87 0.42 4 4.89 0.28

Ecological compensation 
meadows

3 19.02 0.0003

Burning 6 10.98 0.08 6 8.26 0.21

Grazing 12 29.32 0.003 4 11.29 0.02

Invasive plant removal 4 2.89 0.57 4 32.81 <0.0001

Mowing 5 537.78 <0.0001 3 7.19 0.06

Seeding 2 1.94 0.37

RichnessAbundance

 368 
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 369 

Figure 1 The effects of habitat restoration on wild bee abundance. Forest plot showing effect 370 

size (Hedge’s d) and 95% C.I. calculated for each study. The diamond below each category 371 

represents the mean effect size for all studies within the group based on a random effects model. 372 

The random effects model encompassing all studies from all subgroups is reported at the bottom 373 
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of the forest plot. The dotted line represents an effect size of zero.  374 

 375 

Figure 2 The effects of habitat restoration on wild bee richness. Forest plot showing effect size 376 

(Hedge’s d) and 95% C.I. calculated for each study. The diamond below each category 377 

represents the mean effect size for all studies within the group based on a random effects model. 378 
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The random effects model encompassing all studies from all subgroups is reported at the bottom 379 

of the forest plot. The dotted line represents an effect size of zero. 380 
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