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Abstract

Background: Genotype-phenotype association has been one of the long-standing problems in bioinformatics.
Identifying both the marginal and epistatic effects among genetic markers, such as Single Nucleotide Polymorphisms
(SNPs), has been extensively integrated in Genome-Wide Association Studies (GWAS) to help derive “causal” genetic
risk factors and their interactions, which play critical roles in life and disease systems. Identifying “synergistic”
interactions with respect to the outcome of interest can help accurate phenotypic prediction and understand the
underlying mechanism of system behavior. Many statistical measures for estimating synergistic interactions have
been proposed in the literature for such a purpose. However, except for empirical performance, there is still no
theoretical analysis on the power and limitation of these synergistic interaction measures.

Results: In this paper, it is shown that the existing information-theoretic multivariate synergy depends on a small
subset of the interaction parameters in the model, sometimes on only one interaction parameter. In addition, an
adjusted version of multivariate synergy is proposed as a new measure to estimate the interactive effects, with
experiments conducted over both simulated data sets and a real-world GWAS data set to show the effectiveness.

Conclusions: We provide rigorous theoretical analysis and empirical evidence on why the information-theoretic
multivariate synergy helps with identifying genetic risk factors via synergistic interactions. We further establish the
rigorous sample complexity analysis on detecting interactive effects, confirmed by both simulated and real-world
data sets.

Keywords: Genotype-phenotype association, Feature selection, Genome-wide association study, Synergistic
interaction, Mutual information

Background
With the outburst of high-throughput omics data [1–7],
there is a pressing need for big data analytics to develop
statistical learning algorithms to derive reproducible
research findings from extremely high-dimensional data,
such that we can better understand complex life and
disease systems. Among many analytic problems for
big biomedical data, understanding genotype-phenotype
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relationships is one of the most critical problems to
help identify “causal” risk factors and/or biomarkers, fur-
ther develop accurate phenotypic prediction models, and
derive effective therapeutic strategies. In statistical learn-
ing, risk factor or biomarker identification problems can
be formulated as feature selection or feature screening
[8–10] to identify a subset of profiled variables or features
that are significantly associated with the system behavior
of interest in a statistical sense. Mathematically, given a
set of d profiled variables, denoted by X1, X2, . . . , Xd, we
search for a subset of them that are statistically associated
(based on N sample measurements) with the outcome
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variable Y, which denotes certain systems behavior, such
as disease status and treatment response in biomedicine.

Due to the extremely high dimension in modern big
data applications, most of the existing feature selection
approaches focus on univariate analysis to screen fea-
tures based on the estimated “individual” or “marginal”
effects on the outcome of interest, for example, when
looking for genetic risk factors from Single Nucleotide
Polymorphisms (SNPs) in many Genome-Wide Asso-
ciation Studies (GWAS) [11]. However, these analyses
focusing on individual effects may not be sufficient as
real-world systems often manifest complex behaviors aris-
ing from highly coordinated interactions among systems
components [11–15]. For example, many complex dis-
eases, such as cancer and diabetes, are conjectured to have
complicated underlying disease mechanisms, which are
neither static nor linear [12–20]. Multiple candidate risk
factors, either genetic or environmental, along with their
interactions have been considered to play critical roles in
triggering and determining the development of diseases
[12–20]. Identifying interactive effects among profiled
variables not only helps more accurate identification of
critical risk factors or biomarkers for outcome prediction,
but also helps reveal functional interactions and under-
stand aberrant system changes that are specifically related
to the outcome for effective system intervention.

To find important features considering interactive
effects, one possible solution is to derive a full Logis-
tic Regression model that incorporates the interactive
effects as feature multiplication terms [21]. However,
the model complexity can increase exponentially and
hence requires a large number of samples to generate
reproducible results. Even with the sparse regulariza-
tion penalty [21], model learning can be computationally
expensive when considering interaction terms. Recently,
in [22], the authors studied the pairwise interaction in
logistic regression models, and establish a rigorous theo-
retical analysis about how to detect all pairwise interac-
tions. However, they can only deal with the cases when
all profiled variables are uniformly distributed, and all
pairwise interactions form an acyclic interaction graph.

Due to the prohibitive sample complexity and computa-
tional cost when considering the full model with different
orders of interactions, most of the existing biomarker
identification approaches take a two-step procedure: 1)
First, some heuristic measures based on correlation,
mutual information, or simplified regression models, are
adopted to estimate the statistical association among pairs
of features and the outcome [13–20, 23, 24]; 2) Then,
some optimization algorithms including greedy ranking
algorithms [18–20, 23, 25, 26] are implemented to select
“important” features based on various criteria. Due to dif-
ferent possible ad-hoc choices in these methods, it is quite
vague which essential information or interaction among

features can be captured. The existing literature mostly
provides only empirical performance evaluation of these
methods without solid theoretical guarantees.

The primary goal of this work is to establish rigorous
mathematical theories for feature screening and selection
approaches with the consideration of interactive effects
under a specific system model based on logistic regres-
sion [9, 10], which has been arguably the most popu-
lar model for biomarker identification and phenotypic
classification, for example, in GWAS. We study the def-
initions of mutual-information-based synergistic effect
measures and try to understand why these measures work
under specific model assumptions. We specifically look
for interactive effects that are contributing multiplication
terms among variables in logistic regression, considered
as “cooperative interactions”. We derive a family of interac-
tive measures that can provide accurate detection of such
cooperative interactions. We theoretically prove that such
interactive measures can indeed be approximately written
as quadratic functions of the parameters of the cooper-
ative interactions in logistic regression. In addition, we
provide a rigorous theoretical sample complexity analy-
sis on such interactive measures. The two-step procedure
with these information-theoretic synergistic interaction
measures can accurately and robustly identify risk factors
with interactive effects without learning the expensive full
logistic regression model. Finally, we apply our results in
both simulated data sets and a real-world GWAS data
set to demonstrate the effectiveness of these information
theoretic measures.

Methods
System model
Consider d independent binary profiled variables
X1, X2, . . . , Xd and a binary outcome variable Y. The
profiled variables are assumed to have the probability
distribution Pr(Xi = +1) = pi and Pr(Xi = −1) = qi with
pi, qi > 0, pi + qi = 1 for 1 ≤ i ≤ d, and the conditional
probability of the outcome variable Y is assumed to take
the following form:

Pr(Y = 1|X1, X2, . . . , Xd)

= σ

⎛
⎝β∅ +

∑
∅⊂S⊆{1,2,...,d}

βS
∏
i∈S

Xi

⎞
⎠ ,

(1)

Pr(Y = −1|X1, X2, . . . , Xd)

= 1 − Pr(Y = 1|X1, X2, . . . , Xd),
(2)

where σ(x) := 1/
(
1 + e−x) is the sigmoid function and

{βS : S ⊆ {1, 2, . . . , d}} is a family of real parameters. For
any subset S of {1, 2, . . . , d}, parameter βS measures the
amount of the cooperative interaction among the vari-
ables Xi’s (i ∈ S). We call this model as the “full” model.
Assume that all parameters βS are bounded, i.e., |βS| <
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C for all S ⊆ {1, 2, . . . , d}. It is a highly generic model
based on the classical logistic regression model, since
it incorporates the cooperative interaction of any subset
of profiled variables X1, X2, . . . , Xd. We can estimate the
cooperative interactions among candidates Xi’s and Y via
the help of multivariate information measures, which are
suggested to quantify the correlation among two or more
random variables. Such measures include multivariate
mutual information [27–32], Pearson’s correlation coef-
ficients [33], and maximal information coefficient [34].
Multivariate mutual information, an information theoretical
[35, 36] tool, has a variety of definitions, such as mul-
tivariate synergy [13, 14, 37], McGill’s mutual informa-
tion [27], Watanabe’s total correlation [28], Gács-Körner
common information [29], Han’s dual total correlation
[30], and Wyner’s common information [31]. In [32],
the authors compared the mathematical and information-
theoretical properties among many existing multivariate
mutual information measures and suggested a new one
inspired by multi-terminal secret-key agreement [38].

In this paper, we mainly focus on the multivariate
synergy, first suggested in [37] (where a different nota-
tion “RSN |N−1” was used) and recently proposed for
interaction and association studies in bioinformatics by
Anastassiou [13]. Precisely, for any n random variables
Z1, Z2, . . . , Zn, the multivariate synergy S of these vari-
ables is defined to be

S (Z1; Z2; . . . ; Zn)

�
∑

∅⊂T⊆{Z1,Z2,...,Zn}
(−1)n+|T |+1H(T)

= (−1)n
∑

1≤i≤n
H(Zi) + (−1)n−1

∑
1≤i<j≤n

H(Zi, Zj)

+ · · · + (−1)H(Z1, Z2, . . . , Zn),

where H is the Shannon entropy [35, 36]. Notice that when
n = 2, the multivariate synergy S (Z1; Z2) is in fact the
mutual information of Z1 and Z2 [35], a measure of the
dependence between Z1 and Z2 in information theory.

In the following, we first connect the defined multivari-
ate synergies with cooperative interactions manifested as
the coefficients of the corresponding interaction terms in
the full logistic regression model.

The main theoretical result that we establish is to show
why such a multivariate synergy can help risk factor
identification with interactions. Based on the connection
between multivariate synergy and the interaction terms in
the logistic regression model, we further derive the sample
complexity for accurate interaction estimation.

Estimation of interaction parameters by multivariate
synergies
We first establish the main theorem, which shows that
for any subset S of {1, 2, . . . , d}, the multivariate synergy

of XS � {Xi : i ∈ S} and Y is approaching a quadratic
function over parameter βS of the cooperative interaction
corresponding to S.

Theorem 1 For any subset S ⊆ {1, 2, . . . , d},

S (XS; Y ) = 1
8

(∏
i∈S

4piqi

)

·
⎡
⎣βS +

∑
S⊂G⊆I

⎛
⎝βG

∏
i∈G\S

(pi − qi)

⎞
⎠

⎤
⎦

2

+ O
(
C4) .

Proof See the proof in Additional file 1.

The above theorem shows that the multivariate syn-
ergy depends only on the interaction parameters βG for
G ⊇ S approximately, when C is small enough. For the
special case when all profiled variables Xi’s are uniformly
distributed, the theorem has a cleaner form as follows.

Corollary 2 Assume that each profiled variable Xi is
uniformly distributed. For any set S ⊆ {1, 2, . . . , d}, we
have

S (XS; Y ) = 1
8
β2

S + O
(
C4) .

Proof It quickly follows from Theorem 1 with pi = qi =
1/2 for i ∈ G \ S.

From this corollary, it is clear that the multivariate syn-
ergy mainly depends on βS when C is small enough.
Hence, estimating the multivariate synergy can help iden-
tify interactions without inferring the full logistic regres-
sion model.

For the interactions of the highest order, we have
another result in a clean form.

Corollary 3 Assume that there is no interaction of orders
higher than m, i.e., βG = 0 if |G| > m. For any set S ⊆
{1, 2, . . . , d} with order m, we have

S (XS; Y ) =
(

1
8

∏
i∈S

4piqi

)
β2

S + O
(
C4) .

Proof This follows from Theorem 1 with βG = 0 for
G ⊃ S.

This result tells us that the highest-order multivariate
synergy mainly depends on βS when C is small enough.
This indeed guarantees that when the sample size is large
enough, we can correctly estimate the highest-order inter-
actions in logistic regression without actually learning the
full model.
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Based on the above results, we find that the multivariate
synergy has a monotonic relationship with the magni-
tude of the interactive effects in the full logistic regression
model, which explains the past empirical results show-
ing that they indeed work in GWAS. In addition, we
also notice that such a monotonic relationship can be
interfered by the common factor 1

8
∏

i∈S 4piqi, dependent
on the distributions of Xi in S. To alleviate such inter-
ference, we propose an adjusted multivariate synergy,
which directly reflects the interactive effect in the logistic
regression model with the normalization to adjust for the
interference:

Definition 4 Adjusted Multivariate Synergy:

Sadj(XS; Y ) � 8S (XS; Y )∏
i∈S 4piqi

. (3)

In the experiments, we will demonstrate that this new
proposed measure can accurately and robustly identify
interactions from both simulated and real-world GWAS
data.

Number of samples needed for estimation
In this section, we provide the lower bound of the
number of samples that we need to ensure the small
estimation error of the multivariate synergy. For any
variables Z1, Z2, . . . , Zt on {1, −1}, the plug-in estimate
ĤN (Z1, Z2, . . . , Zt) of the entropy H(Z1, Z2, . . . , Zt) is
defined as [39]:

ĤN (Z1, Z2, . . . , Zt)

= −
∑

z1,z2,...,zt∈{1,−1}
p̂z1,z2,...,zt log p̂z1,z2,...,zt ,

where p̂z1,z2,...,zt is the empirical probability of {Z1 =
z1, Z2 = z2, . . . , Zt = zt}. By Lemma 6 in Additional
file 1, the plug-in estimate ŜN (XS; Y ) of S (XS; Y ) can be
written as

ŜN (XS; Y ) �
∑

∅⊆T⊆S
(−1)|S|+|T |+1ĤN (XT , Y )

+ 1|S|=1ĤN (XS).

Then we establish the following theorem about the
sample complexity for estimation of S (XS; Y ).

Theorem 5 For 0 < ε, δ < 1, choose

N ≥ e2

(e − 2)2 Ñ(ε, δ)
[
log Ñ(ε, δ)

]2 ,

where e is the base of the natural logarithm and

Ñ(ε, δ) = 22|S|+3

δ2 log
max

{
2|S|+1, 6

}

ε
,

then we have

Pr
(∣∣∣ŜN (XS; Y ) − S (XS; Y )

∣∣∣ > δ
)

≤ ε.

Proof See the proof in Additional file 1.

We note that the sample complexity is exponential over
the interaction order to detect.

Results
With these established theoretical results, we now empir-
ically test the effectiveness of the information-theoretic
synergistic interaction measures, including our proposed
adjusted multivariate synergy defined in (3).

Simulated data
We randomly generate 1000 logistic regression models.
Each model contains 50 features. We randomly choose
3 features and 3 interacting pairs as contributing terms
to the outcome for this model, and randomly assign
a parameter drawn from a uniform distribution over
[1, 2] quantifying the effect size for each of these fea-
tures and pairs. For each logistic regression model,
we generate random training sets of 500, 1000, 1500,
2000, 2500, and 3000 samples. Each training sample
consists of an observation of each covariate Xi drawn
from a two-point distribution (Pr(Xi = 1) = pi and
Pr(Xi = −1) = 1 − pi), for 1 ≤ i ≤ 50, and a
binary outcome from the conditional distributions (1),
(2), where pi is randomly drawn from a uniform dis-
tribution over {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. With
these randomly generated training samples of different
sizes, we detect the three chosen pairs in the logistic
regression model using six different information-theoretic
measures: 1) multivariate synergy [13, 37], 2) adjusted
multivariate synergy, 3) Schneidman’s normalized synergy
[40], 4) Ignac’s normalized mutual information [41], 5)
Watabene’s total correlation [28], and 6) Han’s dual total
correlation [30].

For each measure, we consider the three pairs with the
largest estimated values of this measure as the interact-
ing pairs, and evaluate the detection correctness. Figure 1
shows that the methods based on multivariate synergy,
adjusted multivariate synergy, and Ignac’s normalized
mutual information highly outperform the other three
methods based on Watabene’s total correlation, Han’s dual
total correlation, and Schneidman’s normalized synergy.
Furthermore, the algorithm based on the multivariate
synergy or Ignac’s normalized mutual information per-
forms the best when the number of samples is at most
1000, while the method of ranking the adjusted mul-
tivariate synergies achieves a roughly 5% higher accu-
racy than that of ranking the multivariate synergies or
Schneidman’s normalized synergies when the number of
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Fig. 1 Detection accuracies of interactive effects by the methods
based on six information-theoretic measures (with 50 features)

the samples are 1500, 2000, 2500, and 3000. By the inde-
pendent two-sample t-test, the corresponding p-value is
less than 10−5, which shows the statistically significant
difference between the detection accuracies. The adjusted
multivariate synergy is directly related to the interaction
parameter according to Corollary 3. Thus it can well cap-
ture the interactive effect via the normalization. It needs
a little more samples to get a relatively accurate esti-
mate (both its numerator and denominator need to be
estimated) compared to multivariate synergy. We conjec-
ture that the combination of these two measures probably
could serve as a more useful tool for interaction detec-
tion. The other methods based on Schneidman’s normal-
ized synergy, Watabene’s total correlation, or Han’s dual
total correlation have inferior performance when identi-
fying the interactions, since these measures have no clear
relationships with the interaction parameters in logistic
regression models.

We further study the relationship between the sam-
ple number and the detection accuracy of the interactive
effects. It is observed that the curves obtained by both
the multivariate synergy and the adjusted multivariate
synergy fit very well with a logarithmic relation: i.e.,

sample number N ∝ log(1/detection error rate ε),

closely matching the derived theoretical bound on sample
complexity in Theorem 5.

Here we remark that the same conclusion can be drawn
with different settings on the number of features in the
model. We also generate 1000 logistic regression models,
each of which contains 20 features. In each model, we ran-
domly generate 200, 400, 600, 800, 1000, 1200, 1400, 1600,
1800, and 2000 samples by the same way as in the previous
simulation. Figure 2 illustrates the prediction accuracies
of the models based on the six aforementioned theoretic

Fig. 2 Detection accuracies of the methods based on six
information-theoretic measures (with 20 features)

measures. The same trends as discussed earlier can be
observed in the figure.

Although we derive the theoretical results with the
assumption that the features are independent of each
other, the multivariate synergy and the adjusted multivari-
ate synergy can still serve as good measures of interactions
for the cases when the features are weakly dependent
in practice. We further simulate such weakly dependent
cases to empirically evaluate their interaction detection
performance. In each simulated full logistic regression
model, we first randomly choose K from a uniform dis-
tribution on {1, −1}, and then each covariate Xi is drawn
from a conditional probability Pr(Xi = 1|K) = pi + μK
and Pr(Xi = −1|K) = qi − μK , for 1 ≤ i ≤ 50, with
μ controlling the dependency among covariates. Here,

Fig. 3 Detection accuracies of the interactive effects by the methods
based on multivariate synergy and adjusted multivariate synergy with
different μ



Xu et al. BMC Genomics 2018, 19(Suppl 4):170 Page 22 of 25

pi is randomly chosen from a uniform distribution over
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} as in the previous
simulations. The output Y is generated by the conditional
probability (1) and (2). Straightforward calculation shows
that each pair of features are dependent with covariance
4μ2 and coefficient correlation ρ ∈ [

4μ2, 100μ2/9
]
, when

μ �= 0. Figure 3 plots the detection accuracies of the
methods based on multivariate synergy or adjusted mul-
tivariate synergy with different μ (μ = 0, 0.05, 0.08, or
0.1). The trends are clear that these measures still can help
accurately identify the interactions even when all pairs
of features are weakly dependent, especially when μ is
small (< 0.1). The relationship between the sample com-
plexity and detection error rate still follows the derived
logarithmic relationship with weakly dependent features.

Real-world GWAS data
Type 1 Diabetes (T1D), previously known as Insulin-
Dependent Diabetes Mellitus (IDDM), is an autoimmune
disease resulting from the deficiency of insulin. This dis-
ease is conjectured to be caused by both genetic and envi-
ronmental factors and has attracted tremendous research
interests, especially in detecting pairwise or high-order
genome-wide interactions for T1D [42–46]. Here, we
apply our proposed adjusted multivariate synergy to the
case-control data extracted from the Wellcome Trust Case
Control Consortium (WTCCC) [47]. The WTCCC T1D
data set includes 2000 case samples and 1500 control sam-
ples, each of which contains around 500,000 SNPs. In [42],
the BOOST method, a two-stage (screening and testing)
search method, selects the pairs without significant main

Table 1 The top 15 pairs with the largest adjusted multivariate
synergy estimates

SNP A SNP B Adjusted multivariate synergy estimates

rs2516486 rs6919798 0.4558286

rs2516486 rs9276448 0.4544231

rs2516486 rs5014418 0.4513707

rs2894180 rs5014418 0.4274221

rs2894180 rs9276448 0.4218615

rs2894180 rs6919798 0.4181264

rs2516486 rs9276299 0.3801617

rs2516486 rs9276227 0.3781777

rs707937 rs6919798 0.3558587

rs3095250 rs5014418 0.3259175

rs3095250 rs9276448 0.3182534

rs3873385 rs5014418 0.3153821

rs3873385 rs9276448 0.3150227

rs2894180 rs427037 0.3145728

rs2853934 rs9276448 0.3091304

Table 2 Associated genes with the SNPs in the top 15
interacting pairs

SNP Gene Associations

rs2516486 MCCD1, RPL15P4, DASS-161H22.6,

ATP6V1G2-DDX39B, DDX39B

rs6919798 HLA-DQB2

rs9276448 HLA-DQA2

rs5014418 HLA-DQB2, HLA-DQA2

rs2894180 HCG27, XXbac-BPG299F13.14

rs9276299 HLA-DQB3, HLA-DQA2

rs9276227 HLA-DQB3, HLA-DQA2

rs707937 MSH5, SAPCD1, MSH5-SAPCD1,

Xbac-BPG32J3.18, VWA7

rs3095250 HCG27,HLA-C

rs3873385 HLA-B, XXbac-BPG248L24.13

rs427037 none

rs2853934 WASF5P, HLA-B, RPL3P2

effects and with significant interactions. They listed all 91
such pairs in Table S6 of [42] (referred as “Table W” in this
paper), each of which satisfies that the genome distance
between the two SNPs’ chromosomal positions is at least
1Mb. To make the comparison between our method and

Table 3 Gene ontology enrichment analysis

Ontology Gene ontology class p-value

Cellular component 1. MHC protein complex 1.32E-06

2. Integral component of lumenal
side of ER membrane

1.52E-06

3. Lumenal side of ER membrane 1.52E-06

4. ER to Golgi transport vesicle
membrane

2.09E-05

5. ER to Golgi transport vesicle 7.44E-05

Molecular function 1. Peptide antigen binding 1.50E-03

2. TAP binding 1.58E-02

3. MHC class II receptor activity 3.91E-02

4. Antigen binding 4.95E-01

5. Peptide binding 6.13E-01

Biological process 1. Interferon-gamma-mediated
signaling pathway

3.49E-04

2. Cellular response to
interferon-gamma

3.30E-03

3. Response to interferon-gamma 6.28E-03

4. Antigen processing and
presentation of endogenous peptide
antigen via MHC class I via ER
pathway, TAP-independent

9.23E-03

5. Antigen processing and
presentation of endogenous peptide
antigen via MHC class I via ER
pathway

9.23E-03
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theirs, we pick 73 SNPs mentioned in the table, and run
our algorithm on the part of the data containing the infor-
mation related to these SNPs. We estimate the adjusted
multivariate synergy for each pair of these SNPs. The pairs
with the 15 largest estimates are shown in Table 1.

Fisher’s exact test [48] has been carried out for enrich-
ment analysis [49] of the SNPs ranked on top using our
adjusted multivariate synergy estimates and the SNPs in
the listed pairs in Table W. Notice that all the 15 interact-
ing pairs in Table 1 are listed in Table W, with a significant
p-value 1.467 × 10−18. Also, the pairs with the 681 largest
estimates selected by our algorithm cover all 91 pairs in
Table W, giving a p-value 1.044 × 10−27. Further, Table
W contains 17 pairs (respectively, 13 pairs) with the low-
est PLINK p-value [50] (respectively, BOOST p-value)
1.100 × 10−16, and they are included in the set of the pairs
with the 76 (respectively, 103) largest estimates selected
by our algorithm. The corresponding p-values in Fisher’s
exact tests are 1.678 × 10−22 and 2.268 × 10−15, respec-
tively. These significant p-values shows the highly signifi-
cant overlap between the interacting SNP pairs found by
our algorithm and those by BOOST and PLINK.

We further check the biological interpretation of the top
ranked SNPs with significant interactions. The associated
genes with the SNPs in the top 15 interacting pairs are

listed in Table 2. Gene ontology enrichment analysis is
implemented via the Gene Ontology Database for Homo
sapiens [51]. In Table 3, we list the gene ontology classes
with the five smallest p-values in terms of their associated
cellular components, molecular functions, and biological
processes, respectively. Observe that for each root cate-
gory of the gene ontology terms, at least one of top 5
classes is related to the Major Histocompatibility Complex
(MHC) with p-values less than 0.05. Note that in the T1D
literature [52–55], MHC has already been proved to have
strong association with T1D development.

Genome mapping of SNPs is further illustrated in Fig. 4,
where we also visualize the identified top interacting SNP
pairs given in Table 1. We notice that the corresponding
genes to which these SNPs are mapped to are interact-
ing with each other. For example, the interaction between
MSH5 and the genes encoding MHC class II molecules
has been reported in [56, 57], conjecturing that they play
synergistic roles in T1D development.

Discussions
As discussed in previous simulation and real-world data
experiments, multivariate synergy measures are effec-
tive in identifying interactions among candidate risk
factors for genotype-phenotype association studies. This

Scale
chr6:

500 kb hg19

31,500,000 32,000,000 32,500,000
Basic Gene Annotation Set from GENCODE Version 19

Simple Nucleotide Polymorphisms (dbSNP)

HCG27
XXbac-BPG299F13.14

HLA-C
RPL3P2

WASF5P
XXbac-BPG248L24.13

HLA-B
RPL15P4

MCCD1
ATP6V1G2-DDX39B

DDX39B
MSH5

MSH5-SAPCD1
SAPCD1

VWA7
HLA-DQB3
HLA-DQA2
HLA-DQB2

rs2894180
rs3095250
rs2853934
rs3873385
rs2516486
rs707937
rs427037

rs9276227
rs9276299
rs9276448
rs5014418
rs6919798

Fig. 4 Genome mapping of SNPs
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is expected from our derived theoretical connection
between synergy and interaction parameters in logistic
regression modeling of genotype-phenotype relation-
ships. On the other hand, accurate and reproducible iden-
tification of interactive factors requires that the number of
samples grows exponentially with the order of interactions
to detect. Based on the given number of samples, iden-
tified interactions should be thoroughly validated with
caution.

Conclusions
In this paper, we study why the multivariate synergy can
serve as a measure to quantify the interaction among
multiple factors for feature selection with interactions.
We further have established the theoretical analysis on
sample complexity, which is general for feature selection
when considering interactions. For risk factor identifica-
tion in GWAS, when the genotype-phenotype associa-
tion is modeled by logistic regression, we show that the
multivariate synergies have a close relationship with the
corresponding multiplication parameters capturing the
interactive effects among features. Based on such derived
relationships, we have proposed an “adjusted multivariate
synergy” as a new interaction measure. The experiments
showed the adjusted multivariate synergy achieves an
excellent empirical performance in risk factor identifica-
tion with interactions over both simulated and real-world
T1D GWAS data.
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