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Abstract 

 

In the present study, we investigate whether individual variability in the rate of 

visuomotor adaptation and multi-day savings is associated with differences in regional 

gray matter volume and resting state functional connectivity. Thirty-four participants 

performed a manual adaptation task during two separate test sessions, on average 9 days 

apart. Functional connectivity strength between sensorimotor, dorsal cingulate, and 

temporoparietal regions of the brain was found to predict the rate of learning during the 

early phase of the adaptation task. In contrast, default mode network connectivity 

strength was found to predict both the rate of learning during the late adaptation phase as 

well as savings. As for structural predictors, greater gray matter volume in 

temporoparietal and occipital regions predicted faster early learning, whereas greater gray 

matter volume in superior posterior regions of the cerebellum predicted faster late 

learning. These findings suggest that the offline neural predictors of early adaptation may 

facilitate the cognitive aspects of sensorimotor adaptation, supported by the involvement 

of temporoparietal and cingulate networks. The offline neural predictors of late 

adaptation and savings, including the default mode network and the cerebellum, likely 

support the storage and modification of newly acquired sensorimotor representations.  

 

Keywords: functional connectivity, gray matter volume, neural predictors, savings, 

sensorimotor adaptation 
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Introduction 

 

Sensorimotor adaptation is a gradual process of adjusting motor representations to 

remain engaged in goal-directed behavior following changes in the environment, sensory 

inputs, or body physical characteristics. Such adaptation has been studied by having 

participants adapt movements to, for example, visual perturbations (Bock 1992; Clower 

et al. 1996; Pine et al. 1996; Bock and Burghoff 1997; Inoue et al. 1997; Ghilardi et al. 

2000; Imamizu et al. 2000; Krakauer et al. 2000) or force field perturbations (Shadmehr 

and Mussa-Ivaldi 1994; Shadmehr and Holcomb 1997). The early phase of sensorimotor 

adaptation is thought to rely mainly on cognitive processes, such as working memory, 

error detection and correction, and attention (Anguera et al. 2010; Taylor et al. 2014). In 

contrast, the later phase of adaptation is assumed to primarily involve slower and more 

implicit procedural processes (Seidler et al. 2006; Smith et al. 2006). 

Previous studies have shown that individual differences in the rate of 

sensorimotor adaptation are associated with variability in task-based brain activation 

patterns. Specifically, faster learning during the early adaptation phase has been 

associated with greater activation in the right dorsolateral prefrontal cortex (Anguera et 

al. 2011), as well as greater activation in cingulate, visual, and parietal cortices (Seidler et 

al. 2006). In addition to such functional, online predictors of adaptability, offline brain 

structural properties have also been linked to individual variation in sensorimotor 

adaptation. Della-Maggiore et al. (2009) found that the rate of visuomotor adaptation was 

positively correlated with fractional anisotropy in white-matter tracts connecting the 

cerebellum with motor and premotor cortices. These studies suggest that individual 
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differences in both functional and structural neural characteristics could serve as 

predictors of adaptability, and help to identify brain networks involved in adaptation. 

 The adjustment of motor representations following adaptation can lead to motor 

memories that outlast the training session, as evidenced by observations that participants 

adapt faster when they have been previously exposed to the same perturbation. Such 

savings of adaptation have been observed immediately following initial learning (Seidler 

and Noll 2008; Bédard and Sanes 2011; Villalta et al. 2015), one month later (Della-

Magiore and McIntosh 2005), and even one year after initial learning (Landi et al. 2011). 

To date, only few studies have investigated the neural mechanisms underlying multi-day 

savings of adaptation. Landi et al. (2011) explored how structural brain changes 

contributed to long-term memory of a visuomotor adaptation task. They found that a 

single week of adaptation training led to an increase in gray matter volume in 

contralateral primary motor cortex. Interestingly, the extent of this increase was found to 

predict long-term savings: participants who exhibited a larger increase in gray matter 

volume after one week of training showed more savings one year later. Della-Maggiore et 

al. (2015) found that resting-state functional connectivity within a sensorimotor network, 

including motor, premotor, and posterior parietal cortices, in addition to cerebellum and 

putamen, increased after a visuomotor adaptation task. Further, the magnitude of the 

connectivity increase within this network was found to predict savings 24 hours after 

initial learning. These studies provide evidence that structural and functional changes 

induced by visuomotor adaptation may have a long-term impact on behavior.  

In the present study, we evaluated whether offline functional connectivity and 

structural neural characteristics can serve as predictors of adaptability and multi-day 
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savings. In particular, we investigated whether individual differences in the rate of 

visuomotor adaptation and savings of adaptation over time are associated with 

differences in resting state functional connectivity (rs-fcMRI) and regional gray matter 

volume (using voxel-based morphometry; VBM). Participants performed a manual 

adaptation task in which they used a joystick to hit targets presented on a screen. After 

first performing the task under normal visual feedback, they then adapted to 45˚ 

clockwise-rotated feedback. Participants performed the task during two separate test 

sessions, on average 9 days apart.  

We hypothesized that faster learning during the early phase of adaptation would 

be predicted by stronger functional connectivity strength between sensorimotor areas 

within other frontal and parietal regions of the brain (including dorsolarteral prefrontal 

cortex (DLPFC), anterior cingulate cortex (ACC) insula and precuneus cortex) as task-

based activation in these regions has previously been shown to predict adaptability (Di 

Martino et al. 2008; Anguera et al. 2010; Anguera et al. 2011). Given the contribution of 

the superior posterior fissure region of the cerebellum during the late adaptation phase 

(Flament 1996; Imamizu et al. 2000; Seidler and Noll 2008), we further expected that 

faster learners during this stage would show stronger baseline connectivity between this 

cerebellar region with motor cortical areas. Based on previously reported associations 

between structural brain properties and sensorimotor adaptability (Della-Maggiore 2009), 

we expected that faster learning during the early adaptation phase would be associated 

with larger gray matter volume in sensorimotor cortical areas and frontoparietal regions 

(including DLPFC, ACC, insula and precuneus cortex). In contrast, we predicted that 
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faster learning during the late adaptation phase would be associated with larger gray 

matter volume in superior posterior regions of the cerebellum and motor cortical areas.  

With respect to multi-day savings we were interested in identifying networks in 

which connectivity strength was correlated with individual differences in the extent of 

savings, as well as areas in which gray matter volume was correlated with such 

differences. Based on the findings from previous studies investigating the neural 

mechanisms underlying savings (Seidler and Noll 2008; Landi et al. 2011; Della-

Maggiorre et al., 2015), we hypothesized that more savings would be predicted by 

stronger functional connectivity strength between superior posterior regions of the 

cerebellum with motor cortical areas and larger gray matter volume in these same regions 

(i.e., overlapping neural predictors between late learning and savings). However, as 

behavioral evidence has shown that savings is associated with early learning processes 

(Morehead et al. 2015; Haith et al. 2015), we may alternatively observe overlapping 

neural predictors between early learning and savings.  

 

Materials and Methods 

 

Participants 

 

 The present study included 34 healthy participants (30 male, 4 female; age 35.4 ± 

8.1 years) who each performed a visuomotor adaptation task at two separate test sessions, 

completed on average 9.3 ± 6.5 days apart. As 14 participants completed a different 

experimental protocol during the second session, their data were not included in the 
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analyses that involved savings of adaptation from session 1 to session 2. The analyses for 

test session 2 were thus based on data from 20 participants (16 male, 4 female, age 36.3 ± 

9.2). All participants were recruited via the Test Subject Facility at NASA Johnson 

Space Center and passed a modified Air Force class III physical. The Test Subject 

Facility at NASA Johnson Space Center (JSC) provides qualified test subjects for 

ground-based research or microgravity studies. The Test Subject Screening 

personnel at JSC recruit subjects that include employees from JSC and from 

outside of JSC. The facility does not select a particular type of subject population; 

subjects are only required to pass the physical. The modified class III physical is a 

medical examination that is required to enter the Air Force. All participants at the 

Test Subject Facility at NASA Johnson Space Center must pass this examination in 

order to participate in the study. All except four participants were right-handed. They 

reported average gaming experiences of 1.09 with 0 indicating “none at all” and 4 

indicating “extreme” experience. A detailed explanation of the current study was 

provided to the participants, and all gave written informed consent. The study was 

approved by the Institutional Review Boards of the University of Michigan, the 

University of Texas – Medical Brach (UTMB), and NASA Johnson Space Center.  

 

Experimental Design and Procedure 

 

 The manual sensorimotor adaptation task employed in the current study has been 

used extensively in previous work from our lab and others (e.g., Krakauer et al. 2000; 

Seidler et al. 2006; Anguera et al. 2007). For this task, participants lay supine in the MRI 
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scanner and controlled a custom-built MRI-compatible dual axis joystick with the thumb 

and index finger of their right hand to hit targets presented on a screen (viewed via a 

mirror). Real-time feedback of the joystick location was presented as a cursor on the 

screen, using a scaling factor of 1. Each movement was initiated from the central position 

on the screen. A target was presented every 2.5s, either 4.8cm to the right, left, above, or 

below the central position.  

Participants were instructed to move the cursor to the target as quickly as possible 

by moving the joystick, and to hold the cursor within the target until it disappeared. They 

were then instructed to release the joystick handle after target disappearance, allowing the 

spring-loaded joystick to re-center for the next trial. Participants performed four runs of 

experimental trials. The first run included two baseline blocks (B1 and B2) of 16 trials 

each under normal visual feedback. The next two runs included four blocks of 16 trials 

each under 45° clockwise rotated feedback (blocks A1 – A8). The final run (blocks B3 

and B4) was identical to the first run, which allowed us to calculate the aftereffects of 

adaptation, or ‘readaptation’. Each 16-trial block alternated with 20s of visual fixation. 

This block design was repeated at two different test dates, allowing us to evaluate early 

and late adaptation, the aftereffects of adaptation, and savings of adaptation across days 

(see Figure 1). The second session was completed on average 9.3 ± 6.5 days after the 

initial session.   

 

(Enter Figure 1 here) 

 

Resting state fMRI data acquisition 
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 For 18 of the participants, multi-sequence MRI was acquired using a 3.0 T 

Siemens Magnetom skyra MRI scanner located at UTMB at Galveston. We used a 3D T1 

sagittal MP-RAGE sequence with the following parameters: (TR=1900 MS, TE=2.49 

MS, flip angle=9°, FOV=270×270 mm, slice thickness=0.9 mm, 192 slices; 

matrix=288×288, voxel size=0.94×0.94 mm, duration=~4 minutes). For rs-fcMRI, we 

used a single-shot gradient-echo (GRE) echo planar imaging (EPI) sequence to acquire 

164 T2*-weighted BOLD images (TR=3660 MS, TE=39 MS, flip angle=90°, 

FOV=240×240 mm, slice thickness of 4 mm, 1 mm slice gap, matrix=94×94, voxel 

size=2.55×2.55×5.0 mm, 36 axial slices, duration=~10 minutes).  

For 16 of the participants, fMRI data were collected on a 3.0 T Siemens 

Magnetom Verio, located at UTMB Victory Lakes. For these participants, we used a 3D 

T1 sagittal MP-RAGE sequence with the following parameters: (TR=1900 ms, TE=2.32 

ms, flip angle=9°, FOV=250×250 mm, slice thickness=0.9 mm, 192 slices; 

matrix=512×512, voxel size=0.49×0.49 mm, duration=~4 minute). For T1 pre-

processing, the in-plane resolution was down sampled to 0.94x0.94mm. For rs-fcMRI, we 

used a single-shot gradient-echo (GRE) echo planar imaging (EPI) sequence to acquire 

164 T2*-weighted BOLD images (TR=3660 MS, TE=39 MS, flip angle=90°, 

FOV=250×250 mm, slice thickness of 4 mm, 1 mm slice gap, matrix=94×94, voxel 

size=2.66×2.66×5.0 mm, 36 axial slices, duration=~10 minutes). All participants were 

instructed to keep their eyes open, to remain awake, and to look at a fixation point while 

not thinking about anything in particular during the resting state fMRI acquisition. Due to 

differential MRI scanners, scanner sequences and staff, scanner site was used as a 
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covariate in all analyses. 

 

Behavioral data processing and analyses 

 

Direction error (DE) was measured in order to examine performance during 

adaptation. This was defined as the angle between the line connecting the start and target 

positions (in joystick coordinates) and the line connecting the start with the spatial 

location of the joystick at the time of peak velocity (see Figure 2). Trials for which DE 

deviated more than 2.5 standard deviations from the mean across a test session were 

replaced by the mean of the directly preceding and succeeding trials. This was computed 

separately for each of the two sessions per participants and resulted in the replacement of 

2.38% of the trials overall. Movement time (MT) and reaction time (RT) were also 

measured for each trial. MT was defined as the time it took for participants to move the 

cursor from the start to the target position, whereas RT was defined as the time it took for 

participants to begin moving the cursor once a new trial began. 

 

(Enter Figure 2 here) 

 

 A repeated measures analysis of variance (ANOVA) was performed on each 

outcome measure with session (2), block (12), and trial (16) defined as the within-subject 

variables. As aforementioned this analysis was performed on the data from the 20 

participants that completed identical protocols on both test sessions. For all ANOVAs, 
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the Huynh-Feldt correction (Huynh and Feldt, 1970) was applied when the assumption of 

sphericity was not met. The threshold for statistical significance was set at p<0.05.  

 Each participant’s rate of learning during the first test session was determined by 

computing the exponential decay constant across adaptation trials. We used MATLAB’s 

fit function to fit a single-term exponential model to early learning and late learning data 

for all participants, with the initial value specified as “[0,0]”. All other parameters were 

default to the function. This decay constant was used as the primary outcome measure for 

examining functional connectivity predictors of sensorimotor adaptation, with more 

negative values reflecting faster adaptation. Several previous studies have demonstrated 

that visuomotor adaptation data are generally well-characterized by exponential decay 

functions (Flanagan et al., 1999; Krakauer et al., 2000; Krakauer et al., 2005; Burge, 

2008; King et al., 2009). To confirm that such exponential functions better characterized 

the present data for early and late learning than linear functions, we measured the R2 fits 

using both approaches. Indeed, we found that exponential functions provide significantly 

better fits than linear functions, for both early and late learning (early: t=6.20, p<.001; 

late: t=5.99, p<.001).  Example single subject DE data and exponential decay fits are 

illustrated in Figure S1 (in the supplementary materials).  

We differentiated the rate of learning during the early, late, and post adaptation 

phases by assigning adaptation blocks A1-A4 as “early”, adaptation blocks A5-A8 as 

“late”, and “post adaptation” baseline blocks as B3 and B4. Finally, to assess multi-day 

savings, we computed individual savings scores. Specifically, savings was measured as 

the difference between a participant’s mean DE in the first adaptation block (i.e., the first 

16 trials with rotated feedback) on the first test session and the mean DE in that block on 
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the second test session. It should be noted that learning rates and savings scores thus were 

calculated on an individual basis. 

 Subsets of these data have already been published in part by Ruitenberg et al. 

(2017) in a comparison of manual and locomotor adaptation. Here, we present the manual 

adaptation results for a larger group of participants, and for the first time focus on 

associations between behavior and rs-fcMRI as well as VBM measures.  

 

Resting state fMRI data preprocessing 

 

 Rs-fcMRI data were first corrected for slice timing using sinc interpolation and 

then realigned for head motion correction using statistical parametric mapping software 

(SPM8, Welcome Department of Imaging Neuroscience, Institute of Neurology, London, 

United Kingdom). To examine outliers due to spiking and movement, we used the 

Artifact Detection Tool (ART) software package (Whitfield-Gabrieli 2009). Next, whole 

brain rs-fcMRI images were normalized to MNI152 space using a multi-step procedure. 

First, the T1 image was corrected for field inhomogeneities using N4ITK within an 

intracranial mask that was obtained using FSL's brain extraction tool (BET; Tustison et 

al. 2010). The bias field corrected and averaged image was skull stripped using FSL's 

BET using robust brain center estimation and a fractional intensity threshold of 0.1.  

 SPM8 was used to coregister the skull stripped bias field corrected T1 image to 

the mean rs-fMRI EPI. The co-registered images were normalized to MNI152 common 

space using advanced normalization tools (ANTs) with cross correlation as the similarity 

metric and symmetric normalization as the transformation model (Avants et al. 2011). 
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The resulting warp parameters were applied to the 4D EPI images that were subsequently 

smoothed with a Gaussian kernel of 4 mm sigma (~9.4mm FWHM). To maximize 

cerebellar normalization accuracy, we isolated the cerebellum using the SUIT toolbox 

and registered the isolated cerebellum to the MNI152 cerebellum that was normalized to 

SUIT space (Diedrichsen 2006). The normalization steps for the cerebellum were then 

identical to the ones for the whole brain described above. 

Functional connectivity analyses 

 Functional connectivity MRI (fcMRI) analyses were performed using the CONN 

toolbox (Whitfield-Gabrieli and Nieto-Castanon 2012). The rs-fcMRI data were filtered 

using a temporal band-pass filter of .008 to .09 Hz in order to examine the frequency 

band of interest and to exclude higher frequency sources of noises such as heart rate and 

respiration. Linear detrending was used to remove any linear trends within each 

functional run. For noise reduction, we used an anatomical component-based noise 

correction method called aCompCor, which models the influence of noise as a voxel-

specific linear trend combination of multiple empirically estimated noise sources by 

extracting principal components from noise regions of interest (ROIs) and including them 

as nuisance parameters in the general linear models (Behzadi et al. 2007).  

Specifically, the anatomical images for each participant were segmented into 

white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) masks using the 

default parameters of the SPM8 Segment function (Ashburner and Friston, 2005). These 

parameters include a nonlinear deformation estimated field that best overlays the tissue 

probability maps on each participants’ image. The model is further refined by allowing 

tissue probability maps to be deformed based on a set of estimated parameters. This 
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allows spatial normalization and segmentation to be combined into the same model. This 

procedure uses a low-dimensional approach, which parameterizes the deformations by a 

linear combination of about one thousand cosine transform bases.  

To reduce partial voluming with GM, the WM and CSF masks were eroded by 

one voxel. The eroded WM and CSF masks were then used as noise ROIs. Time courses 

from all ROIs were extracted from the unsmoothed functional volumes to avoid risk of 

potential “spillage” of the BOLD signal from nearby regions. Residual head motion 

parameters (three rotations and three translations, in addition to six parameters that 

represent their first-order temporal derivatives) and signals from WM and CSF were 

regressed out during the computation of functional connectivity maps.  

 For statistical analyses, we performed both hypothesis driven (seed-to-voxel) and 

hypothesis-free (voxel-to-voxel) approaches. For the first-level seed-to-voxel analysis, 

we selected ten ROIs to examine for brain-behavior associations. These ROIs were based 

on results from previous studies investigating associations between brain activation and 

early/late adaptation and savings (see Table 1). Cortical ROIs were defined as 6mm-

radius spheres and subcortical ROIs as 4mm-radius spheres, centered on peak coordinates 

taken from the literature. The mean time series of each ROI was obtained by averaging 

the time series of all voxels within that region. Next, Pearson’s correlation coefficients 

were computed between the mean time series of each ROI and the time series of each 

voxel in an a standard a priori brain mask. This mask refers to a standard MNI-space 

brain mask used for voxel-based analyses only, and limits analyses only to voxels within 

the mask.  
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First-level voxel-to-voxel analysis included the calculation of voxel-to-voxel 

functional correlation matrices for each participant. From the residual BOLD time series 

at each voxel with an a priori brain mask, the matrix of voxel-to-voxel bivariate 

correlation coefficients was computed. From this correlation matrix, the intrinsic 

connectivity contrast defining the overall strength of the global connectivity patterns 

(Martuzzi et al. 2011) was computed between each voxel and all other voxels in the 

brain. This approach was employed to assess network changes that may not have been 

identified with our hypothesized ROIs. For both seed-to-voxel and voxel-to-voxel 

analyses, the correlation coefficients were converted into z-values using Fisher’s r-to-z 

transformation in order to improve their normality.  

 

(Enter Table 1 here) 

 

 Positive and negative associations between voxel-to-voxel fcMRI and behavioral 

performance were examined using one-sample t-tests in SPM8. In this model, first level 

beta maps were included as the main variables of interest. Each participant’s rate of early 

and late learning as well as aftereffects and savings were included as covariates. 

Statistical significance was determined with a cluster-level FDR p<0.05 to correct for 

multiple comparisons. For the seed-to-voxel second level analysis, one subject-averaged 

mask was created for the regions correlated with each ROI during session 1 (using a 

cluster-level FDR p<0.05 to correct for multiple comparisons). From these masks, one 

average functional connectivity measure was extracted for each network and each 

participant. To examine the relationship between these fcMRI measures and performance, 
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Pearson’s correlation coefficient was computed across each participant’s average fcMRI 

measure and their rates of early and late learning, aftereffects and savings.  

 

Voxel-based morphometry 

 

Whole-brain VBM analyses were performed using the VBM8 toolbox for SPM8 

(http://dbm.neuro.uni-jena.de/vbm.html). Cortical thickness analysis can provide 

additional information to a VBM analysis, and these different measures can be sensitive 

to different pathologies. However, these measures are correlated (Hutton et al., 2009), 

which is why we chose to report on only one of these two measures. VBM reflects 

cortical thickness, cortical surface area, and gyral folding, whereas cortical thickness only 

reflects the thickness (Hutton et al., 2009). Furthermore, cortical thickness analysis 

excludes the deep gray matter areas, which are important in sensorimotor learning. For 

these reasons, we selected VBM over cortical thickness analysis.  

High-resolution T1-weighted anatomical images were segmented, modulated 

using the non-linear DARTEL warping parameters from the normalization results, and 

then smoothed with a standard deviation of 8 mm full width at half maximum. Positive 

and negative associations between gray matter volume and sensorimotor adaptation 

metrics were evaluated by performing one-sample t-tests in SPM8. Preprocessed gray 

matter images were included as the main variables of interest, and the various adaptation 

performance measures were included as covariates. Voxels with an intensity value of less 

than 0.1 were excluded from the analysis to account for edge effects. Statistical 
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significance was determined by using a cluster-level FDR p<0.05 to correct for multiple 

comparisons.  

 

Results 

 

Behavioral results 

 

For the manual adaptation task, the repeated measures ANOVA on DE yielded a 

significant main effect of Block, F(11, 209)=122.89, p<.001, ηp
2=.87. As Figure 3a and 

Table 2 demonstrate, performance decreased when the rotated feedback was introduced 

in block A1, and participants gradually adapted to this rotated feedback across the 

following blocks. When the rotated feedback was removed in block B3, participants had 

to re-adapt to the normal feedback. The results also yielded a significant Block x Trial 

interaction, F(165, 3135)=2.19, p<.01, ηp
2=.10. Post-hoc analyses revealed that DE 

significantly decreased across trials in blocks A1-B3, Fs>1.82, ps<.05, ηp
2
s>.088, 

indicating within-block performance improvements. Additionally, the results revealed a 

significant Session x Block interaction, F(11, 209)=4.91, p<.001, ηp
2=.21. Post-hoc 

analyses demonstrated that DE differed significantly across sessions 1 and 2 in blocks 

A1-A3, Fs>9.51, ps<.01, ηp
2
s>.33, supporting that savings occurred from session 1 to 

session 2.  

For RT, results revealed a significant main effect of Block, F(11, 

209)=11.22, p<.001, ηp
2=.37, as well as a significant Block x Trial interaction, F(165, 

3135)=1.56, p<.01, ηp
2=.076 (see Figure 3b and Table 2). However, this interaction was 
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no longer significant after excluding the first block from the analysis (p=.08), indicating 

that RTs decreased more quickly in the first block of the adaptation task than in the 

remaining blocks. Results also showed a significant Session x Trial interaction, F(15, 

285)=3.70, p<.001, ηp
2=.16. However, this interaction was no longer significant after 

excluding the first trial from each block (p=.23).  

The results for MT yielded significant main effects of Session, F(1, 

19)=27.90, p<.001, ηp
2=.60, Block, F(11, 209)=35.21, p<.001, ηp

2=.65, and Trial, F(15, 

285)=12.29, p<.001, ηp
2=.39 (see Figure 3c and Table 2). Additionally, there was a 

significant Session x Block interaction, F(11, 209)=9.08, p<.001, ηp
2=.32. Post-hoc 

analyses demonstrated that MT differed significantly between sessions 1 and 2 within 

blocks B1-A3, and A5 and A7, Fs>5.67, ps<.05, ηp
2
s>.23, suggesting that savings across 

the two sessions is also reflected in MT in addition to DE.  

To examine how well participants remembered the adaptation task from session 1 

to session 2, we calculated individual saving scores. This score was defined as the 

difference between a participant’s mean DE in the first adaptation block (i.e., the first 16 

trials with rotated feedback) on the first session and the mean DE in that block on the 

second session. Savings scores ranged from -35.58 to 6.53 degrees, with more negative 

scores reflecting more savings. To determine whether saving scores were significantly 

different from zero, we performed a one-sample t-test. The results showed that overall 

participants had significant savings, with a mean score of -8.73, t(19) = -3.69, p<.01. Our 

individual differences measure of savings could comprise both retention and savings 

effects. To investigate this, we performed a linear contrast to evaluate whether 

performance changes across trials in block A1 were different for the two test 
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sessions. As illustrated in Figure 3d, results revealed that DE improved significantly 

faster across trials in the second compared to the first test session, F(1,19)=5.26, 

p<.05, ηp
2
=.22. It is clear from the figure that performance is essentially identical 

across the first few trials of block A1 for both Sessions 1 and 2, supporting that the 

session difference in A1 average direction error is based on savings (rate of 

adaptation) and not retention. However, it is difficult to disentangle the effects of 

retention from savings; this issue should thus be investigated in future studies. 

 

(Enter Figure 3 and Table 2 here) 

 

Functional connectivity results 

 

 For the seed-to-voxel analyses, results revealed that functional connectivity 

among the left dorsal anterior cingulate cortex (dACC) seed region with supplementary 

motor area (SMA), bilateral insula, putamen and thalamus and left cerebellar lobule V 

was predictive of the rate of early adaptation, such that faster learners exhibited greater 

connectivity strength within this network. In addition, connectivity between left posterior 

cingulate cortex seed region with precuneus cortex, bilateral occipital cortices, and 

superior frontal gyrus (comprising the default mode network; DMN) was associated 

with the rate of late adaptation and savings scores. Specifically, we observed that DMN 

connectivity was stronger in participants who adapted faster during the late phase of the 

visuomotor adaptation task and for those who showed better savings in the second test 

session (see Figures 4 and 5).  The DMN is a set of brain areas that exhibit higher 
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metabolic activity at rest than during performance of externally-directed tasks. 

Important functions attributed to this network are the support of internally directed 

mental activity (Gusnard et al. 2001; Mason et al. 2007) and memory consolidation 

(Miall and Robertson 2006). 

 

(Enter Figures 4 and 5 here) 

 

Voxel-to-voxel analyses also revealed significant associations between the rate of 

learning in the early adaptation phase as well as aftereffects with functional connectivity. 

Specifically, left insular cortex connectivity was correlated with the rate of early 

adaptation, such that faster learners exhibited greater connectivity strength between left 

insular cortex with the rest of the brain. Furthermore, we found that connectivity strength 

between right operculum cortex with the rest of the brain was stronger in individuals who 

adapted faster to the removal of rotated feedback during the post adaptation blocks (see 

Table 2 and Figure 6). Thus, for both seed-to-voxel and voxel-to-voxel approaches, 

stronger functional connectivity was always associated with better performance. 

 

(Enter Table 2 and Figure 6 here) 

 

Voxel-based morphometry results 

 

 The VBM results showed significant correlations between the rates of early and 

late adaptation and gray matter volume. Specifically, participants who had faster rates of 

adaptation during the early phase of the visuomotor adaptation task showed larger gray 
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matter volume in left central operculum cortex, precuneus cortex, and left postcentral 

gyrus. In contrast, participants who adapted faster during the late phase of the adaptation 

task had larger gray matter volume in a cluster including vermis VI and right crus I of the 

cerebellum (see Table 3 and Figure 7). There was no association between gray matter 

volume and aftereffects or savings. Thus, larger gray matter volume was always 

associated with better performance. 

 

(Enter Table 3 and Figure 7 here) 

 

Relationship between connectivity strength and GM volume 

 

 In order to explore the relationship between GM volume and fcMRI in the 

overlapping brain regions that showed associations with behavior, we first 

correlated the neural measures (fcMRI and GM volume) in left temporoparietal 

cortex (region associated with early adaptation). We found a significant positive 

relationship between GM volume and fcMRI in this region (r=0.71; p<0.0001). Next, 

we correlated each participant’s average DMN connectivity measure and GM 

volume in Vermis VI of the cerebellum (regions associated with late adaptation), but 

this relationship was not significant (r=-0.20; p=.26). 

 In order to more fully investigate the potential role of fcMRI as a 

mechanistic link between GM volume and the rate of early/late adaptation, we 

applied mediation analyses  to the VBM, fcMRI, and behavioral data. Mediation 

analyses examine the mechanism by which two variables are related, and is 
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appropriate when the mediator (M) is the logical effect of one variable (X), and the 

logical cause of another variable (Y). In this study, fcMRI is the logical effect of GM 

volume (X) and the logical cause of differences in adaptation rate (Y).  

We performed a first mediation analysis using GM volume is 

temporoparietal cortex as the independent variable (X), fcMRI in temporoparietal 

cortex as the mediator (M) and early adaptation rate as the outcome variable (Y). In 

step 1 of the mediation model, the regression of GM volume on early adaptability, 

ignoring the mediator (fcMRI) was significant, b=-.0001, t(32)=-4.09, p<.001. Step 2 

showed that the regression of GM volume on the mediator, fcMRI, was also 

significant, b=.0032, t(32)=5.69, p<.0001. Step 3 of the mediation process showed 

that the mediator (fcMRI), controlling for GM volume, was not significant, b=-.02, 

t(31)=-1.91, p=.07. Step 4 of the analyses revealed that, controlling for the mediator 

(fcMRI), GM volume was not a significant predictor of early adaptability, b=-.0001, 

t(31)=-1.65, p=.11. A Sobel test was then conducted which yielded a non-significant 

mediation in the model (z=-1.78, p=.07). Thus, fcMRI did not fully mediate the 

relationship between GM volume and early adaptability. 

We performed a second mediation analysis using GM volume in Vermis VI 

of the cerebellum as the independent variable (X), fcMRI in DMN as the mediator 

(M) and late adaptation rate as the outcome variable (Y). Here, too, results showed 

that the regression of GM volume on late adaptability, ignoring the mediator 

(fcMRI) was significant, b=-.001, t(32)=-3.93, p<.001, while the regression of GM 

volume on fcMRI was not significant, b=-.0002, t(32)=-1.16, p=.26. Step 3 of the 

mediation process showed that the mediator (fcMRI), controlling for GM volume, 
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was significant, b=-.84, t(31)=-4.17, p<.001. Step 4 of the analyses revealed that, 

controlling for the mediator (fcMRI), GM volume was a significant predictor of late 

adaptability, b=-.0013, t(31)=-5.57, p<.0001. A Sobel test was then conducted which 

yielded a non-significant mediation in the model (z=1.09, p=.28). Thus, like above 

this, analysis showed no indications that fcMRI fully mediated the relationship 

between GM volume and late adaptability. 

 

Discussion 

 

In the present study we evaluated whether individual differences in the rate of 

visuomotor adaptation and savings magnitude are associated with differences in offline 

measures of brain structural and functional properties. We observed that specific patterns 

of resting state functional connectivity strength and gray matter volume were associated 

with individual variability in learning rates and multi-day savings, suggesting that these 

patterns represent neural predictors of sensorimotor adaptability and savings. Below, we 

will first elaborate on our findings regarding predictors of learning rate and then discuss 

our findings related to multi-day savings in sensorimotor adaptation. 

 

Predictors of adaptability 

 

While previous investigations have reported associations between the rate of 

learning during the early adaptation phase and brain structural and online functional 

measures, the present study is the first to demonstrate that resting state functional 

connectivity strength and gray matter volume are associated with the rate of learning 
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during different phases of visuomotor adaptation. For the early phase of adaptation - 

which we defined here as the first 64 trials with rotated feedback - faster adapters 

exhibited stronger functional connectivity between dACC, SMA, bilateral insula, 

putamen and thalamus and left cerebellar lobule V. In terms of structural predictors, 

faster adapters exhibited larger gray matter volume in temporoparietal and occipital 

regions, partially overlapping with findings from the connectivity analyses. For the late 

adaptation phase – i.e., the final 64 trials with rotated feedback – faster adapters showed 

greater connectivity strength between DMN regions and larger gray matter volume in 

superior posterior regions of the cerebellum. These findings support the existence of 

differential learning processes contributing to sensorimotor adaptation (Smith et al. 2006; 

Heuer et al. 2015), with fast explicit, strategic and slower implicit, automated processes 

jointly contributing to performance throughout the task but dominating at different time 

courses (Taylor et al. 2014).  

Consistent with our hypotheses, participants with stronger resting state functional 

connectivity between dACC seed region with SMA, insula, putamen, thalamus and 

cerebellum adapted faster during the early phase of the adaptation task. Neuroimaging 

studies suggest that the dACC plays a critical role in the cognitive aspect of movement 

generation, i.e., intentional motor control (Hoffstaedter et al. 2013, 2014). In particular, 

this region is known to be involved in evaluating and assigning values to actions based on 

relevant feedback (Ridderinkhof et al. 2004; Ullsperger and von Cramon 2003). 

According to this view, successful movements (i.e., those that are correct for 

counteracting the perturbation in a sensorimotor adaptation task) get assigned higher 

value and thus are more likely to be repeated than unsuccessful ones.  
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In addition, our previous work has found an association between functional 

activity in the dorsal ACC and conditions of high task difficulty, in which motor errors 

were relatively large and movements were slow (Seidler et al. 2004). This suggests that 

participants who are better at error detection and correction may garner their advantage at 

skill learning by utilizing the dACC network during the early phase of adaptation. 

Functional neuroimaging evidence links the dACC with prefrontal, premotor, parietal and 

insular regions as well as the basal ganglia, thalamus, and cerebellum forming a core 

network for the internal generation of movement (Hoffstaedter et al. 2014). One 

interpretation of our results is that high functional connectivity at rest within this network 

may facilitate the early, more cognitively demanding phase of sensorimotor adaptation. 

Also consistent with our hypotheses, faster adapters during the early phase of the 

task showed greater functional connectivity strength between left insular cortex with the 

rest of the brain. Furthermore, connectivity strength between right insular cortex with the 

rest of the brain was stronger in participants who re-adapted to the normal feedback 

faster. The insular cortex plays an important role in the integration of multimodal 

sensorimotor and cognitive functions such as error detection, salience, attention to 

behaviorally relevant stimuli, anticipation, and decision making (Taylor et al., 2009). 

Previous studies using resting state fMRI have identified this region as part of an intrinsic 

task-positive network or “salience network” along with other areas such as DLPFC, 

SMA, inferior parietal sulcus and frontal eye fields (Fox et al., 2005; Taylor et al., 2009). 

This intrinsic network could thus be a general salience and action system involved in 

environmental monitoring, response selection, and other attentional processes required 

during visuomotor adaptation.  
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Interestingly, we observed converging results between functional connectivity and 

gray matter volume as neural predictors of sensorimotor adaptation. Both analyses 

indicated a prominent role of left temporoparietal regions in explaining individual 

variation in early adaptability to the visuomotor task. These findings are in line with 

previous studies that have explored the neural correlates of sensorimotor adaptation. For 

instance, Mutha et al. (2013) reported that left parietal regions are crucial for adaptive 

visuomotor control. They proposed that this region is important for forming and 

maintaining internal representations of the relationship between motor commands and 

limb and environmental state. Additionally, Danckert et al. (2008) used event-related 

fMRI to examine the dynamic effects of prisms lenses on manual pointing. Their results 

demonstrated that activity in anterior cingulate and intraparietal regions were higher 

during early compared to late adaptation, suggesting that an extensive network of 

cingulate and temporoparietal regions is involved in recalibrating visuomotor commands 

in the face of perturbed visual input.  

Another converging finding from multiple imaging modalities within this study 

was the role of the posterior region of the cerebellum in explaining individual variability 

in late adaptation. According to the functional network parcellation of the cerebellum, 

this region is located within the DMN area of the cerebellum (Buckner 2012). Results 

from both our functional connectivity and VBM analyses indicate that this network can 

be considered a neural predictor of late adaptation. Overall, these results demonstrate that 

both temporoparietal and cerebellar regions are associated with faster initial adaptation, 

whereas only the cerebellum is associated with faster adaptation during the late phase. 

Results of our mediation analyses showed no significant indications that gray volume and 
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connectivity strength jointly contribute to individual differences in adaptability. Future 

studies should aim to investigate the relationship between measures from multiple 

imaging modalities and sensorimotor adaptability and savings. 

 

Predictors of savings 

 

We found behavioral evidence for multi-day savings in sensorimotor adaptation 

from the first to the second test session. Participants were less perturbed when the rotated 

feedback was introduced during the second test session compared to the first, indicating 

that they showed savings of what they learned during their previous experience with the 

task. At the neural level, we observed that the amount of savings was associated with the 

degree of resting state functional connectivity among default mode regions of the brain. 

Specifically, stronger DMN connectivity was associated with more savings. Consistent 

with some previous studies, these results also demonstrate that the neural correlates 

associated with savings are similar to those for late learning (Kojima et al. 2004; Medina 

et al. 2001; Smith et al. 2006; Seidler and Noll 2008). For instance, Seidler and Noll 

(2008) found that better generalization of adaptation was correlated with higher activity 

in brain regions that play a role in late adaptation, including the superior posterior fissure 

of the cerebellum. These findings suggest that savings is less cognitively demanding than 

acquisition, and further, that stronger DMN resting state connectivity may facilitate the 

later, more procedural stages of sensorimotor adaptation as well as better savings of the 

task.  

Page 27 of 56

John Wiley & Sons, Inc.

Human Brain Mapping

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t

 28

Although we found evidence for overlapping neural processes between late 

adaptation and savings, there are reports in the literature supporting that savings is more 

associated with early learning cognitive / strategic processes (Haith et al. 2015; Morehead 

et al. 2015; Seidler et al. 2017). One potential explanation for these differential findings 

is that these previous studies were based on behavioral measures of adaptation (Morehead 

et al. 2015; Haith et al. 2015; Seidler et al. 2017). In contrast, the present study examined 

offline neural predictors of performance, or the baseline state that participants bring to the 

adaptation process. In particular, offline neural predictors reveal individual differences in 

system configuration that are more likely to facilitate subsequent dynamic states.   

A novel and somewhat unexpected finding of the current study is the association 

between DMN connectivity strength with learning rate during the late adaptation phase 

and with savings from the first to the second test session. The DMN consists of a set of 

brain areas that show highly correlated activity and high metabolic demands at rest 

(Raichle et al. 2001). An important function of this network is to support internally 

directed mental activity (Gusnard et al. 2001; Mason et al. 2007). The DMN may also 

make a crucial contribution to the offline processing and consolidation of memories 

(Miall and Robertson 2006). Memory consolidation can be defined behaviorally as 

performance becoming less susceptible to interference (Brashers-Krug et al. 1996) 

or as performance that improves over time in the absence of further practice 

(Robertson et al. 2004a; Robertson et al. 2004b). Thus, the DMN may play a role in 

the reprocessing of past experiences to support memory consolidation during the 

late phase of sensorimotor adaptation, as well as savings of the task. The DMN is 

considered to be anti-correlated with brain regions involved in cognitive control (Seely et 
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al. 2007) such as the dACC network, which we found to be associated with early 

adaptation. The dynamic opposition between these two networks may therefore be 

important for regulating attentional and goal-directed demands, and potentially 

coordinating the interplay between internally and externally directed thought (Raichle 

2010). Our results demonstrate that DMN functional connectivity strength is a predictor 

of the later, more procedural stages of sensorimotor adaptation and savings, potentially 

allowing better consolidation of the adapted state.  

 

Limitations 

 

One limitation of the present study is that neuroimaging data were collected on 

different scanners at different sites (i.e., different scanner sequences and staff), which 

may have affected the results. However, we used scanner site as a nuisance covariate in 

all analyses to control for this potential confound. Another limitation is that in contrast to 

the voxel-to-voxel functional connectivity analyses, seed-to-voxel analyses were not 

corrected for the number of correlations performed, and therefore should be interpreted 

with caution. However, the magnitude of these correlations is still moderate and therefore 

provides useful information about the neural predictors of sensorimotor adaptability and 

savings. It should further be noted that the subject-averaged mask created during the 

seed-to-voxel analyses was corrected for multiple comparisons.  

Lastly, the present study is limited by the unequal distribution of males and 

females (30 males; 4 females). Men and women differ in many sensory systems, neural 

anatomy, and functional responses (Mark et al., 2014). For instance, Moreno-Briseño et 
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al. (2010) investigated gender differences in a prism adaptation throwing task. They 

found that males had significantly higher throwing accuracies, although there were no 

adaptation differences between genders. In contrast, females showed significantly larger 

negative aftereffects, which could be explained by a larger contribution of spatial 

alignment. The unequal gender distribution in the present study may thus have prevented 

us from identifying additional brain-behavior associations. Using gender as a covariate 

yielded very similar results for our brain-behavior analyses; however, the association 

between GM volume in the cerebellum and late adaptation was no longer significant 

(p=0.12) and the association between voxel-to-voxel functional connectivity in right 

central operculum cortex and the behavioral aftereffects was no longer significant 

(p=0.07). With our current sample size it is difficult to say whether this should be 

interpreted as evidence for gender differences in adaptability, or simply as a reduction of 

power due to the addition of gender as a covariate in the model. Future studies should 

aim to include equal distributions of males and females in order to test this hypothesis 

and to be more representative of the population.  

 

Conclusion 

 

To summarize, we found that functional connectivity strength within a salience 

network is predictive of the rate of learning during the early phase of a sensorimotor 

adaptation task. In contrast, DMN functional connectivity strength predicts late learning 

and multi-day savings, such that faster learners during the late phase and individuals with 

better savings of the task showed greater connectivity strength within this network.  
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In terms of structural predictors, gray matter volume in temporoparietal regions 

was correlated with the rate of early adaptation, whereas gray matter volume in superior 

posterior cerebellum was associated with the rate of learning during the late phase of the 

visuomotor task. We propose that the functional and structural correlates of early 

adaptation likely support cognitive components of the visuomotor task, such as working 

memory, error detection and correction, and attention. In contrast, the neural correlates of 

late performance likely support the storage and modification of newly acquired 

sensorimotor representations.  

Better multi-day savings was associated with stronger resting state functional 

connectivity in the same network involved in late adaptation, suggesting overlapping 

neural processes between these two phases of sensorimotor adaptation. Ultimately, being 

able to identify people who are slower adapters could have important implications for 

developing targeted training programs that enhance adaptation learning, for example with 

respect to spaceflight (Bloomberg et al., 2015; Seidler et al., 2015) or rehabilitation 

(Bastian, 2008). 
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Figure Legends 

 

Figure 1. Experimental design. Participants completed the manual adaptation task while 

lying supine in the MRI scanner on two separate test sessions (top row). The task 

consisted of 12 blocks of 16 trials each. B refers to baseline blocks involving normal 

feedback; A refers to adaptation blocks in which feedback was rotated 45° clockwise.  

 

Figure 2. Illustration of the visuomotor adaptation task and calculation of direction error 

(DE). a) DE was calculated as the angle between the line connecting the start and target 

positions (in joystick coordinates) and the line connecting the start with the spatial 

location of the joystick at the time of peak velocity. b) Illustration of example cursor 

movement during early phase of adaptation task. c) Illustration of example cursor 

movement during late phase of adaptation task.  

 

Figure 3. Mean (a) DE, (b) RT, and (c) MT as a function of block within the 

adaptation task. (d) Mean DE as a function of trial within block A1. Blue lines 

represent the data from session 1; red lines represent the data from session 2. 

 

Figure 4. Top row: Greater functional connectivity strength among left dACC seed 

region (in blue) with SMA, bilateral insula, putamen and thalamus, and left cerebellar 

lobule V was associated with faster early adaptation. Bottom row: Greater functional 

connectivity strength between left posterior cingulate cortex seed region (in blue) with 
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precuneus cortex, bilateral occipital cortices, and superior frontal gyrus (comprising the 

DMN) was associated with faster late adaptation and more savings. 

 

Figure 5. Scatterplots illustrating the relationship between dACC network functional 

connectivity strength and early adaptation rate (top row), DMN connectivity strength and 

late adaptation rate (middle row), and DMN connectivity strength and savings scores 

(bottom row). Note that more negative values reflect faster adaptation / more savings. 

 

Figure 6. Left insular cortex functional connectivity was correlated with the rate of early 

adaptation, such that faster learners showed greater connectivity strength between left 

insular cortex with the rest of the brain than slower learners (top row). Functional 

connectivity strength between right central operculum cortex with the rest of the brain 

was stronger in individuals who re-adapted to the visuomotor task faster (bottom row). 

 

Figure 7 Gray matter volume in left central operculum cortex (first row), precuneus 

cortex (second row), and left postcentral gyrus (third row) was correlated with the rate of 

early adaptation, in which faster learners exhibited higher gray matter volume in these 

regions than slower learners. Gray matter volume in vermis VI and right crus I of the 

cerebellum (fourth row) was higher in participants that showed faster rates of adaptation 

during the late phase of the task.   
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Figure 1. Experimental design. Participants completed the manual adaptation task while lying supine in the 
MRI scanner on two separate test sessions (top row). The task consisted of 12 blocks of 16 trials each. B 
refers to baseline blocks involving normal feedback; A refers to adaptation blocks in which feedback was 

rotated 45° clockwise.  
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Figure 2. Illustration of the visuomotor adaptation task and calculation of direction error (DE). a) DE was 
calculated as the angle between the line connecting the start and target positions (in joystick coordinates) 
and the line connecting the start with the spatial location of the joystick at the time of peak velocity. b) 

Illustration of example cursor movement during early phase of adaptation task. c) Illustration of example 
cursor movement during late phase of adaptation task.  
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Figure 3. Mean (a) DE, (b) RT, and (c) MT as a function of block within the adaptation task. (d) Mean DE as 
a function of trial within block A1. Blue lines represent the data from session 1; red lines represent the data 

from session 2.  
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Figure 4. Top row: Greater functional connectivity strength among left dACC seed region (in blue) with SMA, 
bilateral insula, putamen and thalamus, and left cerebellar lobule V was associated with faster early 

adaptation. Bottom row: Greater functional connectivity strength between left posterior cingulate cortex 
seed region (in blue) with precuneus cortex, bilateral occipital cortices, and superior frontal gyrus 

(comprising the DMN) was associated with faster late adaptation and more savings.  
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Figure 5. Scatterplots illustrating the relationship between d¬ACC network functional connectivity strength 
and early adaptation rate (top row), DMN connectivity strength and late adaptation rate (middle row), and 
DMN connectivity strength and savings scores (bottom row). Note that more negative values reflect faster 

adaptation / more savings.  
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Figure 6. Left insular cortex functional connectivity was correlated with the rate of early adaptation, such 
that faster learners showed greater connectivity strength between left insular cortex with the rest of the 
brain than slower learners (top row). Functional connectivity strength between right central operculum 

cortex with the rest of the brain was stronger in individuals who re-adapted to the visuomotor task faster 
(bottom row).  
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Figure 7 Gray matter volume in left central operculum cortex (first row), precuneus cortex (second row), 
and left postcentral gyrus (third row) was correlated with the rate of early adaptation, in which faster 

learners exhibited higher gray matter volume in these regions than slower learners. Gray matter volume in 

vermis VI and right crus I of the cerebellum (fourth row) was higher in participants that showed faster rates 
of adaptation during the late phase of the task.    
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connectivity analyses. Cortical ROIs were defined as 6mm-radius spheres, and subcortical ROIs 

were defined as 4mm-radius spheres around peak coordinates. 

 

Seed region MNI coordinates (x,y,z) Reference 

R Middle frontal gyrus 44, 14, 36 Anguera et al. (2011) 

R Inferior parietal lobule 48, -40, 44 Anguera et al. (2010) 

L Putamen 26, 6, 0 Di Martino et al. (2008) 

L Superior temporal gyrus -46, -34, 14 Anguera et al. (2010) 

L Middle temporal gyrus -48, -48, 6 Anguera et al. (2010) 

R Globus pallidus 20, -6, 0 Della-Maggiore et al. (2005) 

L Anterior cingulate cortex -7, 9, 40 Seidler and Noll (2008) 

L Cerebellum lobule V -11, -56, -13 Seidler and Noll (2008) 

L Cerebellum lobule VI -26, -62, -20 Seidler and Noll (2008) 

L Posterior cingulate cortex -12, -47, 32 Greicius et al. (2003) 
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movement time (MT) and reaction time (RT) per block during Sessions 1 and 2.  

Session Block DE Mean DE SEM MT Mean MT SEM RT Mean RT SEM 

1 B1 2.29 0.99 1091 41 316 14 

B2 1.88 1.11 911 41 272 9 

A1 -36.55 1.12 1340 18 272 12 

A2 -25.16 1.88 1228 25 262 11 

A3 -15.49 1.55 1172 27 252 9 

A4 -10.15 2.03 1091 31 256 11 

A5 -12.51 1.82 1139 22 252 11 

A6 -4.74 1.90 1054 30 245 8 

A7 -5.64 1.54 1049 27 240 7 

A8 -4.83 2.08 1028 26 241 7 

B3 15.14 1.98 1082 35 242 11 

B4 5.96 1.27 946 42 252 9 

2 B1 2.29 0.85 893 42 283 11 

B2 1.68 1.09 812 35 274 10 

A1 -27.51 2.25 1259 23 252 12 

A2 -16.84 2.00 1097 22 241 10 

A3 -9.76 1.80 1078 26 245 10 

A4 -8.13 1.75 1087 27 241 8 

A5 -13.27 1.55 1083 28 249 6 

A6 -7.75 1.13 1046 31 245 8 

A7 -7.34 1.13 975 28 256 9 

A8 -5.56 0.78 1006 36 247 10 

B3 17.05 2.01 1100 39 242 9 

  B4 7.62 2.18 979 38 248 9 
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across participants between the intrinsic connectivity contrast and adaptation rate. In the direction 

column, – denotes that a more negative decay constant (i.e, faster adaptation) was associated with 

stronger connectivity between the suprathreshold cluster with the rest of the brain. 

Phase Anatomic location Direction Coordinates of peak T-value  Cluster size 

Early adaptation L insular cortex – -36, -12, 10 5.21 153 

Aftereffects R central operculum – 48, -6, 8 4.47 96 
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tTable IV. MNI coordinates of the suprathreshold clusters showing a significant correlation across 

participants between the gray matter volume and adaptation rate. In the direction column,  – 

denotes that a more negative decay constant (i.e, faster adaptation) was associated with larger 

gray matter volume in the suprathreshold clusters. 

Phase Anatomic location Direction Coordinates of peak T-value  Cluster size 

Early adaptation L central operculum – -45, -16, 18 6.43 2135 

Precuneus cortex – -4, -79, 39 5.06 1136 

L postcentral gyrus – -36, -37, 48 4.65 696 

Late adaptation Cerebellum vermis VI – -3, -79, -17 5.30 863 
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