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A Additional Theoretical Results

A.1 Detailed Proofs

This subsection contains detailed proofs of the asymptotic properties of the proposed pair-

wise likelihood augmented Cox (PLAC) estimator. The proofs are provided under the

following regularity conditions which hold in most practical scenarios, such as in the RRI-

CKD study demonstrated in Section 4.

(C1) The true regression coefficient vector β0 lies in the interior of a compact set B ⊂ Rp.

The true cumulative baseline hazard function Λ0(t) is continuously differentiable and

strictly increasing on [0, τ ], and satisfies Λ0(0) = 0.

(C2) The vector Z is bounded almost surely. If there exist a deterministic function γ0(t)

and a vector γ ∈ Rp, such that γ0(t) + γTZ = 0 with probability one, then γ0(t) = 0

and γ = 0.

(C3) With probability one, there exists a constant δ1 > 0 such that pr(A∗ 6 T ∗ | Z∗) > δ1,

pr(A + C > τ | Z) > δ1, and pr(Ȳ (τ) = 1 | Z) > δ1, where Ȳ (τ) = 1 implies that

Y (t) = 1 for all t ∈ [A, τ ].
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(C4) Let b ∈ Rp, and h be a function with bounded total variation on [0, τ ], then the in-

formation operator corresponding to the conditional likelihood evaluated at (β0, Λ0),

JC0 (b, h) =
 lim
n→∞

∂UC(β,Λ)
∂(β,Λ)

∣∣∣∣∣
β=β0,Λ=Λ0

 (b, h),

is invertible.

Conditions (C1)-(C4) are standard assumptions for the Cox model under left-truncation

that are necessary to prove the identifiability of the parameters as well as the existence and

uniqueness of the PLAC estimator. The continuity of Λ0(t) facilitates proving the uniform

convergence of Λ̂(t), and the strictly monotonicity suggests that events can happen at any

time during the study period. The boundedness assumption in (C2) is important for the

uniform convergence of the function classes involved, and the second assumption ensures

the covariates are not degenerate and that the parameters are identifiable. Condition (C3)

implies that there is a positive probability that events are observable during the study

period, and that there is a positive probability that some subjects are still at risk at the

end of the follow-up. Condition (C4), which is used to show the root of the composite score

equations is unique, is adapted from the classic weak convergence proof for the Cox model

(see Andersen et al., 1993, Condition VII2.1(e)). In addition, if the probability of occurring

(T ∗ < A∗ | Z∗) is positive, then LPn is non-degenerate, so that we can attain efficiency gain

beyond the conditional approach. When this condition does not hold, LPn is zero, and thus

the PLAC estimator becomes identical to the conditional approach estimator.

We use Ω to denote the set of all possible observations. For convenience, we adopt

the de Finetti’s linear functional notations (Pollard, 2002), where Pn denotes the empirical

measure of the observations Oi, i = 1, . . . , n, P0 denotes the true probability measure on

Ω, and Un,2 is the empirical measure of pairs (Oi,Oj) such that 1 6 i < j 6 n.
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A.1.1 Strong Consistency

The PLAC estimator falls in the category of Z-estimators. To follow the consistency proof

for general Z-estimators, a complication brought by the pairwise structure is to show the

uniform convergence of the involved bivariate function classes. We tackle this difficulty

through bounding the bracketing numbers (entropies) of these function classes using the

U -processes theory (see De la Peña and Giné, 1999, Chapter 5). For k = 0, 1, 2, the

function classes {(z1, z2) 7→ z⊗k1 ez
T
1 β − z⊗k2 ez

T
2 β : z1, z2 ∈ Rp; β ∈ B} are Euclidean (Nolan

and Pollard, 1987); thus, their bracketing numbers in L1(P 2) are finite, where P 2 ≡ P ⊗P ,

and P is any probability measure. Bounds for classes only consisting of indicator functions

can be shown using the Vapnik-Chervonenkis theory (see De la Peña and Giné, 1999,

Section 5.2). Denoting the class of cumulative baseline hazard functions satisfying (C1) as

HΛ, then

Lemma 1. The bivariate function class HD
Λ = {(s, t) 7→ Λ(s)− Λ(t) : s, t ∈ [0, τ ]; Λ ∈ HΛ}

has finite bracketing numbers in L1(P 2) for all ε > 0.

Proof. To avoid technicality, we assume all bivariate function classes involved in this and

the following proofs are measurable (see De la Peña and Giné, 1999, Section 3.5). Theorem

2.7.5 of van der Vaart and Wellner (1996) indicates that for a fixed ε > 0, there exists a

constant K1 such that the bracketing entropy

logN[](ε,HΛ, L1(P )) < K1

ε
<∞

for any probability measure P . For a given Λ ∈ HΛ, suppose an ε-bracket containing it in

L1(P ) is (Λl,Λu); thus, we have Λl(t) < Λ(t) < Λu(t), ∀t ∈ [0, τ ] and that

ˆ
|Λu(s)− Λl(s)| dP < ε,

where the integral without limits here and below are taken from 0 to τ . Then for the
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corresponding bivariate function in HD
Λ , we have

Λl(s)− Λu(t) < Λ(s)− Λ(t) < Λu(s)− Λl(t), ∀s, t ∈ [0, τ ] .

By triangle inequality,

¨
|Λu(s)− Λl(t)− Λl(s) + Λu(t)| dP 2

6
ˆ ˆ

|Λu(s)− Λl(s)| dPdP +
ˆ ˆ

|Λu(t)− Λl(s)| dPdP

=
ˆ
|Λu(s)− Λl(s)| dP +

ˆ
|Λu(t)− Λl(s)| dP < 2ε.

Therefore, (Λl(s) − Λu(t), Λu(s) − Λl(t)) is a (2ε)-bracket for Λ(s) − Λ(t) in L1(P 2), thus

there is a constant K2 > 0 such that the bracketing entropy

logN[](ε,HD
Λ , L1(P 2)) < K2

ε
<∞.

Since ε is arbitrary, the class HD
Λ has finite bracketing numbers in L1(P 2).

Remark 1. By Corollary 5.2.5 of De la Peña and Giné (1999), the finite bracketing numbers

imply the corresponding function class satisfies the uniform law of large numbers of U -

process. The uniform law of large numbers for UP (β,Λ) and its derivatives then follows,

because they are Lipschitz functions of the component functions with finite bracketing

numbers (van der Vaart and Wellner, 1996).

Proof of Theorem 1. We first re-write the modified composite log-likelihood (2) and the

composite score functions using the linear functional notations. Let Ni(s) = ∆iI(Xi 6 s)

be the observed event counting process for subject i, then (2) can be written as

`cn(β,Λ) = Pn
ˆ τ

0

{
(log Λ{s}+ ZTβ)dN(s)− Y (s)eZTβdΛ(s)

}
−Un,2 log(1 +R(β,Λ)).
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Differentiating it with respect to β yields the composite score function for β:

Uβ(β,Λ) = Pn
ˆ τ

0
Z
{
dN(s)− Y (s)eZTβdΛ(s)

}
−Un,2

{
R(β,Λ)

1 +R(β,Λ)

ˆ τ

0
Q(1)(s; β)dΛ(s)

}
.

For 0 6 t 6 τ and h(·) = I( · 6 t), define a perturbation of Λ by dΛε = (1 + εh)dΛ.

The derivative of `cn(β,Λε) with respect to ε evaluated at ε = 0 yields the composite score

function for Λ in the direction of h:

UΛ(β,Λ)(h) = Pn
ˆ τ

0
h(s)

{
dN(s)− Y (s)eZTβdΛ(s)

}
−Un,2

{
R(β,Λ)

1 +R(β,Λ)

ˆ τ

0
Q(0)(s; β)h(s)dΛ(s)

}
.

As in Section 2.3, we can write the composite score function

U(β,Λ) =

 Uβ(β,Λ)

UΛ(β,Λ)(h)



as the summation of UC(β,Λ) and UP (β,Λ); the former is the conditional approach score

function and has expectation zero. We can also show that E0{UP (β0,Λ0)} = 0, since the

summand of UP satisfies E0{UP
ij (β0,Λ0)} = 0, 1 6 i < j 6 n. To see this, note that the

pair (Ai, Aj) has a binary distribution after conditioning on (Zi, Zj) and the order statistics

of (Ai, Aj); thus, by double expectation, we have

E0{UP
ij (β,Λ)} = E0


1

1 +R−1
ij (β,Λ)

· 1
1 +Rij(β0,Λ0)


´
Q(1)(s; β)dΛ(s)

´
h(s)Q(0)(s; β)dΛ(s)



− 1
1 +Rij(β,Λ) ·

1
1 +R−1

ij (β0,Λ0)


´
Q(1)(s; β)dΛ(s)

´
h(s)Q(0)(s; β)dΛ(s)


 .(A.1)
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The two terms in the bracket cancel if and only if β = β0 and Λ = Λ0 by the identifiability

of the parameters. Specifically, outside a set with zero probability, by Condition (C1), for

almost every pair of (z1, z2) in the support of the density of the covariates and every pair

of (A1, A2) such that Λ0(A1)− Λ0(A2) > 0, we have from Rij(β,Λ) = Rij(β0,Λ0) that

Λ(A1)− Λ(A2)
Λ0(A1)− Λ0(A2) = ez

T
1 β0 − ezT

2 β0

ez
T
1 β − ezT

2 β
. (A.2)

Note that (A.2) implies the ratios on both sides are the same constant c. By Condition

(C1), the left-hand side then gives Λ(t) = cΛ0(t) for t in the support of A. On the other

hand, the right-hand side is degenerate if it equals c when z1 and z2 vary, this again implies

β = β0 thus c = 1.

Since logLPn is always negative, by the similar arguments as in Zeng and Lin (2006), we

can show that the PLAC estimator has finite jump sizes, and that Λ̂(τ) is bounded almost

surely when n→∞. Because `cn(β,Λ) is maximized at the PLAC estimator (β̂, Λ̂) over the

whole model, it is certainly maximized along the parametric sub-model (β̂,Λε) at ε = 0.

Thus by the regularity conditions, the PLAC estimator is the solution to the composite

score equations Uβ(β,Λ) = 0 and UΛ(β,Λ)(h) = 0. Interchanging the summations and

integrals in the second equation and rearranging the resulting terms, we have

Pn
ˆ τ

0
h(s)dN(s) =

ˆ τ

0
h(s)

PnY (s)eZTβ̂ + Un,2
R(β̂, Λ̂)

1 +R(β̂, Λ̂)
Q(0)(s; β̂)

 dΛ̂(s). (A.3)

Let

Mn(s; β̂, Λ̂) = PnY (s)eZTβ̂ + Un,2
R(β̂, Λ̂)

1 +R(β̂, Λ̂)
Q(0)(s; β̂)

denote the random function in the brackets. Replacing h(s) with h(s)/Mn(s; β̂, Λ̂) on both

sides of (A.3) yields the self-consistency solution of Λ:

Λ̂(t) = Pn
ˆ t

0

dN(s)
Mn(s; β̂, Λ̂)

.
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The rest of the proof follows closely to Murphy et al. (1997), yet the technical details

are different due to the pairwise likelihood. Inspired by the form of Λ̂, we define another

random step function

Λ̃(t) = Pn
ˆ t

0

dN(s)
Mn(s; β0,Λ0) .

Let M0(s; β0,Λ0) = P0{Y (s)eZTβ0}. Since E0{U(β0,Λ0)} = 0 and E0{UP (β0,Λ0)} = 0, the

same algebra as we used to get Λ̂ yields

Λ0(t) = P0

ˆ t

0

dN(s)
M0(s; β0,Λ0) .

Under the regularity conditions (C2)-(C3), by Lemma 1, and the double expectation ar-

gument as we used in (A.1), s 7→ Mn(s; β0,Λ0) is uniformly bounded away from zero and

infinity, and is of uniformly bounded variation when n is sufficiently large. Therefore, by

the Glivenko-Cantelli theorem and Remark 1, we have

‖Mn(s; β0,Λ0)−M0(s; β0,Λ0)‖L∞[0,τ ]
a.s.→ 0

and ∥∥∥∥∥Pn
ˆ t

0

dN(s)
Mn(s; β0,Λ0) − P0

ˆ t

0

dN(s)
Mn(s; β0,Λ0)

∥∥∥∥∥
L∞[0,τ ]

a.s.→ 0,

where ‖·‖L∞[0,τ ] is the supreme norm on [0, τ ]. These results combined with the dominated

convergence theorem yield ∥∥∥Λ̃(t)− Λ0(t)
∥∥∥
L∞[0,τ ]

a.s.→ 0.

By the definition of the PLAC estimator, the composite log-likelihood evaluated at
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(β̂, Λ̂) is greater than that evaluated at (β0, Λ̃):

Pn
ˆ τ

0

log Λ̂
Λ̃
{s}+ ZT(β̂ − β0)

 dN(s)

−Pn
{
eZ

Tβ̂

ˆ τ

0
Y (s)dΛ̂(s)− eZTβ0

ˆ τ

0
Y (s)dΛ̃(s)

}
− Un,2 log 1 +R(β̂, Λ̂)

1 +R(β0, Λ̃)
> 0.

By assumption, β is in a compact set, and that Λ̂(t) 6 Λ̂(τ) is bounded for t ∈ [0, τ ]

with probability one. Thus, by the Bolzano–Weierstrass theorem and the Helly’s selection

lemma, for every subsequence of (β̂, Λ̂), we can find a further subsequence (still denoted as

(β̂, Λ̂)) along which β̂ → β∗ for some β∗ and Λ̂(t) → Λ∗(t), ∀t ∈ [0, τ ] for some monotone

function Λ∗ almost surely.

Note that Λ̂(t) is absolutely continuous with respect to Λ̃(t). Let η(t) = limn→∞ dΛ̂/dΛ̃

be a bounded measurable function, then Λ∗(t) =
´ t

0 η(s)dΛ0(s) (Zeng and Lin, 2006). By

(C1), Λ∗(t) is absolutely continuous with respect to the Lebesgue measure and we denote its

derivative as λ∗(t). Thus we have the ratio dΛ̂/dΛ̃ converges to η(t) = λ∗(t)/λ0(t). Again,

by the Glivenko-Cantelli theorem, Lemma 1, Remark 1 and the dominant convergence

theorem, the difference of the composite log-likelihoods converges to

P0

ˆ τ

0

{
log λ

∗

λ0
(s) + ZT(β∗ − β0)

}
dN(s) (A.4)

−P0

{
eZ

Tβ∗
ˆ τ

0
Y (s)dΛ∗(s)− eZTβ0

ˆ τ

0
Y (s)dΛ0(s)

}
− P0 log 1 +R(β∗,Λ∗)

1 +R(β0,Λ0) > 0.

The left-hand side of (A.4) is the composite Kullback–Leibler divergence of the composite

likelihood associated with the density indexed by (β∗,Λ∗) from the composite likelihood

associated with the true density indexed by (β0,Λ0) (Varin and Vidoni, 2005), which is the

summation of

P0

ˆ τ

0

{
log λ

∗

λ0
(s) + ZT(β∗ − β0)

}
dN(s)−P0

{
eZ

Tβ∗
ˆ τ

0
Y (s)dΛ∗(s)− eZTβ0

ˆ τ

0
Y (s)dΛ0(s)

}
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and

−P0 log 1 +R(β∗,Λ∗)
1 +R(β0,Λ0) .

Both terms are strictly negative unless the corresponding likelihoods are exactly the same.

The former can be shown using Jasen’s inequality on the density of (X,∆) given (A,Z). For

the later, we use the similar double expectation approach in (A.1) as follows. Note the inner

expectation is taken on the Bernoulli distribution of a pair (A1, A2) conditional on their

order statistics and the covariates. The inequity is from Jasen’s inequality applied to the

same binary probability mass functions, with the equality holds only when the probability

mass functions under different parameters are the same with probability one.

− P0 log 1 +R(β∗,Λ∗)
1 +R(β0,Λ0)

= E
[
E
{

log 1 +R(β0,Λ0)
1 +R(β∗,Λ∗)

}]

6 E
[
log E

{
1 +R(β0,Λ0)
1 +R(β∗,Λ∗)

}]

= E
[
log

{
1

1 +R(β0,Λ0) ·
1 +R(β0,Λ0)
1 +R(β∗,Λ∗) + 1

1 +R−1(β0,Λ0) ·
1 +R−1(β0,Λ0)
1 +R−1(β∗,Λ∗)

}]

= E
[
log

{
1

1 +R(β∗,Λ∗) + 1
1 +R−1(β∗,Λ∗)

}]

= 0.

By the negativity of the Kullback–Leibler divergence and (A.4), we have that for a pair

of subjects, the composite log-likelihood function `c1,2(β∗,Λ∗) = `c1,2(β0,Λ0) with probably

one under P0, where the composite log-likelihood for a pair of subjects is defined by setting
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n = 2 in the expression of `cn(β,Λ), i.e.,

`c1,2(β,Λ|O1,O2) =
2∑
i=1

[
∆i{log λ(Xi) + ZT

i β} − eZ
T
i β

ˆ ∞
0

Yi(t)λ(t)dt
]

− 2 log
[
1 + exp{(eZT

1 β − eZT
2 β)(Λ(A1)− Λ(A2))}

]
,

(A.5)

where Oi = {Ai, Xi,∆i, Zi}. Thus, by the Lemma 2 (identifiability) proved below, we

have β∗ = β0 and Λ∗ = Λ0. Since every subsequence of (β̂, Λ̂) has a further subsequence

converging to (β0,Λ0), we have the convergence of the entire sequence to the same limit.

Finally, the uniform convergence of Λ̂(t) to Λ0(t) over [0, τ ] follows from the continuity of

Λ0.

Lemma 2. Under Conditions (C1)-(C3), both β0 and Λ0 are identifiable. Specifically, if

there exist parameters (β∗, Λ∗) such that Λ∗ is absolutely continuous with respect to Λ0,

and `c1,2(β∗,Λ∗) = `c1,2(β0,Λ0) with probability one under P0, then we have β∗ = β0 and

Λ∗ = Λ0, where `c1,2 is the composite log-likelihood function for a pair of subjects as defined

in (A.5).

Proof. Suppose the composite log-likelihood of (β∗,Λ∗) is the same as that of the true

parameter (β0,Λ0). That is, from (A.5) we have

2∑
i=1

[
∆i{log λ∗(Xi) + ZT

i β
∗} − eZT

i β
∗
ˆ ∞

0
Yi(t)λ∗(t)dt

]

− 2 log
[
1 + exp{(eZT

1 β
∗ − eZT

2 β
∗)(Λ∗(A1)− Λ∗(A2))}

]
=

2∑
i=1

[
∆i{log λ0(Xi) + ZT

i β0} − eZ
T
i β0

ˆ ∞
0

Yi(t)λ0(t)dt
]

− 2 log
[
1 + exp{(eZT

1 β0 − eZT
2 β0)(Λ0(A1)− Λ0(A2))}

]
,

(A.6)

almost surely. Similar to the argument in Zeng and Lin (2006), Condition (C3) implies that,

with positive probability, there exists at least one subject with (∆1 = 1, X1 = τ, A1 = a1)

when A1 + C1 > τ , Ȳ1(τ) = 1, N1(τ−) = 0, and N1(τ) = 1. In addition, another subject
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exists either with

1) (∆2 = 1, X2 = τ, A2 = a2), when A2+C2 > τ , Ȳ2(τ) = 1, N2(τ−) = 0, and N2(τ) = 1;

or

2) (∆2 = 0, X2 = τ, A2 = a2), when A2 + C2 > τ , Ȳ2(τ) = 1, N2(τ) = 0.

Note that the equality (A.6) holds for the both cases. By taking the difference between the

equalities (A.6) under Case 1) and Case 2), we obtain

log λ∗(τ) + ZT
2 β
∗ = log λ0(τ) + ZT

2 β0,

which by Condition (C2) implies λ∗ = λ0 and β∗ = β0.

It is worth noting that Λ0(t) is not identifiable for 0 < t < w1 (Wang et al., 1993).

However, since we assume that the minimum support of A∗ contains or is close to zero, a

w1 close to zero is observable by Condition (C3); thus, the identifiability issue is less likely

to occur.

A.1.2 Asymptotic Normality

We first establish a lemma on the
√
n-uniform convergence rate and asymptotic normality

of the log-generalized odds ratio. This is achieved by the projection of the U -process.

Lemma 3. Under Conditions (C1)-(C3), the class of the log-generalized odds ratios

R = {(Oi,Oj) 7→ rij(β,Λ) : Oi,Oj ∈ Ω, β ∈ B,Λ ∈ HΛ} ,

where rij(β,Λ) = (eZT
i β − eZT

j β)(Λ(Ai)−Λ(Aj)), satisfies the uniform central limit theorem

for U-processes:
√
n(Un,2r(β,Λ)− P 2

0 r(β,Λ)) Gr,

where Gr is a tight mean-zero Gaussian process.
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Proof. To establish the weak convergence, we first show that

∥∥∥Un,2r(β,Λ)− P 2
0 r(β,Λ)− Ûn,2r(β,Λ)

∥∥∥
β,Λ

= op(n−1/2),

where

Ûn,2r(β,Λ) =
n∑
i=1

E
(
Un,2r(β,Λ)− P 2

0 r(β,Λ)|Oi
)

is the Hájek projection of Un,2r(β,Λ)− P 2
0 r(β,Λ) (van der Vaart, 2000), and ‖·‖β,Λ is the

supreme norm on the parameter space.

It can be verified that P 2
0 r(β,Λ) = 2Cov(eZTβ,Λ(A)). Moreover, since the pair Oi and

Oj are i.i.d.,

E ( rij(β,Λ) | Oi) = E{(eZT
i β − eZT

j β)(Λ(Ai)− Λ(Aj)) | Ai, Zi}

= eZ
T
i βΛ(Ai)− Λ(Ai)EeZ

T
i β − eZT

i βEΛ(Ai) + E(eZT
i βΛ(Ai)).

Thus we have

Ûn,2r(β,Λ) =
n∑
i=1

E


(
n

2

)−1 ∑
j<k

rjk(β,Λ)− P 2
0 r(β,Λ)

∣∣∣∣∣∣ Oi


= 2
n

n∑
i=1

{
eZ

T
i βΛ(Ai)− Λ(Ai)EeZ

T
i β − eZT

i βEΛ(Ai) + E(eZT
i βΛ(Ai))

}
− 4Cov(eZTβ,Λ(A)).

Direct calculation gives

Ũn,2 ≡ Un,2r(β,Λ)− P 2r(β,Λ)− Ûn,2r(β,Λ) = 1(
n
2

) ∑
i<j

Ũ(i,j)
n,2 .
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The summand of Ũn,2 is given by

Ũ(i,j)
n,2 = eZ

T
i βΛ(Ai)− eZ

T
j βΛ(Ai)− eZ

T
i βΛ(Aj) + eZ

T
j βΛ(Aj)− 2Cov(eZTβ,Λ(A))

−
{
eZ

T
i βΛ(Ai)− Λ(Ai)EeZ

T
i β − eZT

i βEΛ(Ai) + E(eZT
i βΛ(Ai))

}
−
{
eZ

T
j βΛ(Aj)− Λ(Aj)EeZ

T
j β − eZT

j βEΛ(Aj) + E(eZT
j βΛ(Aj))

}
+ 4Cov(eZTβ,Λ(A))

= −(eZT
i β − EeZT

i β) (Λ(Aj)− EΛ(Aj))− (eZT
j β − EeZT

j β) (Λ(Ai)− EΛ(Ai)) ,

where the second equality holds by the definition of the covariance and the i.i.d. property

of the observations. Therefore, we have

Ũn,2 = − 1(
n
2

) n∑
i=1

n∑
j=1

(eZT
i β − EeZT

i β) (Λ(Aj)− EΛ(Aj))

� −2 · 1
n

n∑
i=1

(eZT
i β − EeZT

i β) · 1
n

n∑
j=1

(Λ(Aj)− EΛ(Aj)) ,

where � denotes asymptotically equivalent. Since both summations in the last line are

empirical processes of Donsker classes, we have

∥∥∥Ũn,2

∥∥∥
β,Λ
.
∥∥∥n−1/2Gne

ZTβ
∥∥∥
β
·
∥∥∥n−1/2GnΛ

∥∥∥
Λ

= Op(n−1/2)Op(n−1/2) = op(n−1/2),

where . means the inequality holds up to a multiplicative constant, and Gn =
√
n(Pn−P0).

Therefore, Un,2r(β,Λ) − P 2
0 r(β,Λ) is equivalent to its projection Ûn,2r(β,Λ) up to a

term of op(n−1/2). The weak convergence of Ûn,2r(β,Λ) can be established by the empirical

process theory. Combining these results leads to the weak convergence of Un,2r(β,Λ).

Proof of Theorem 2. Let θ denote the parameters (β,Λ). We proceed by checking the four

conditions in Theorem 3.3.1 of van der Vaart and Wellner (1996). Note that
√
nU(θ0) can

be decomposed into
√
nUC(θ0)+

√
nUP (θ0). Following the martingale theory, the first term

13



converges weakly to a mean-zero Gaussian process GUC , and the linear functional

√
n
{
bT

1U
C
β (θ0) + UC

Λ (θ0)(h)
}

converges weakly to a mean-zero normal random variable with variance that can be con-

sistently estimated by bTV̂ Cb, where b is defined as in Section 2.3. By Lemma 3, the

preservation theorem of Lipschitz functions and Theorem 5.3.1 of De la Peña and Giné

(1999), the second term also converges weakly to a mean-zero Gaussian process GUP , and

the linear functional
√
n
{
bT

1U
P
β (θ0) + UP

Λ (θ0)(h)
}

converges weakly to a mean-zero normal random variable with variance that can be con-

sistently estimated by bTV̂ P b. Note also that given {(Ai, Zi)}ni=1, UC(θ0) is a martingale,

whereas UP (θ0) is a function of Ai and Zi only, thus by double expectation

E0{UC(θ0) · UP (θ0)} = E0
{

E0
(
UC(θ0)

∣∣∣ (Ai, Zi), i = 1, . . . , n
)
· UP (θ0)

}
= E0{0 · UP (θ0)} = 0,

where · denotes the inner product of the underlying space. This indicates that UC(θ0)

and UP (θ0) are asymptotically independent (van der Vaart and Wellner, 1996, Example

1.4.6) at θ0. Therefore,
√
nU(θ0) converges weakly to a mean-zero Gaussian process GU .

In addition,
√
n {bT

1Uβ(θ0) + UΛ(θ0)(h)} converges weakly to a mean-zero normal random

variable with asymptotic variance that can be consistently estimated by bT(V̂ C + V̂ P ) b.

Thus, the two stochastic conditions are satisfied by the consistency of θ̂, Lemma 3 and

Lemma 3.3.5 of van der Vaart and Wellner (1996). The fourth condition holds since θ̂ is a

zero of U(θ) and that u(θ0) ≡ E0U(θ0) = 0 by the arguments in the consistency proof.

To complete the proof, we only need to verify the Fréchet derivative of u at θ0 exists

and is continuously invertible. The Fréchet differentiability can be check directly. For the

14



continuous invertibility, note that J ≡ −∂u(θ)/∂θ|θ=θ0 can be decomposed into JC and

JP corresponding to the conditional and the pairwise likelihoods. By (C4) and the classic

Cox model results, JC is continuously invertible. Thus, it suffices to show JP is a compact

operator and that J is one-to-one by the Fredholm theory.

Following Example 3.3.10 of van der Vaart and Wellner (1996), we find the derivate JP

has the form β − β0

Λ− Λ0

 7→
JPββ JPβΛ

JPΛβ JPΛΛ


β − β0

Λ− Λ0

 ,
where

JPββ(β − β0) = P0

R0(
´
Q

(1)
0 dΛ0)(

´
Q

(1)
0 dΛ0)T

(1 +R0)2 + R0(
´
Q

(2)
0 dΛ0)

1 +R0

 (β − β0)

JPβΛ(Λ− Λ0) = P0

R0(
´
Q

(1)
0 dΛ0)

´
Q

(0)
0 d(Λ− Λ0)

(1 +R0)2


JPΛβ(β − β0)h = P0

R0(
´
Q

(1)
0 dΛ0)T

´
Q

(0)
0 hdΛ0

(1 +R0)2

 (β − β0)

JPΛΛ(Λ− Λ0)h = P0

R0
´
Q

(0)
0 hdΛ0 ·

´
Q

(0)
0 hd(Λ− Λ0)

(1 +R0)2 + R0
´
Q

(0)
0 hd(Λ− Λ0)
1 +R0

 ,
where the functions with subscript zero are evaluated at the true parameter θ0. Note

that for JPββ and JPΛΛ, the second terms in the brackets have expectation zero, by the

similar double expectation argument as in (A.1). Since bounded linear operators with

finite dimensional ranges are compact, we only need to show the compactness of JPΛβ and

JPΛΛ. That is to say, for a sequence of functions hn in the unit ball, JPΛβ(β − β0)hn and

JPΛΛ(Λ − Λ0)hn have convergent subsequences. In fact, by (C1)-(C2) and the bounded

variation property of the functions involved, the convergent subsequences can be selected

using the Helly’s lemma. Therefore, the operator JP is compact.

We now show J is one-to-one. For (γ, h) ∈ Rp ×BV [0, τ ], we need to show J(γ, h) = 0

implies γ = 0 and h(t) = 0. Similar to the arguments in Zeng and Lin (2006), some algebra

15



gives

J(γ, h) = P0


(
γT

ˆ τ

0
Z(dN − Y eZTβ0dΛ0) +

ˆ τ

0
hdN −

ˆ τ

0
Y eZ

Tβ0hdΛ0

)2

+ 1
R0

{
R0

1 +R0
γT

ˆ τ

0
Q

(1)
0 dΛ0 + R0

1 +R0

ˆ τ

0
Q

(0)
0 hdΛ0

)2
 .

Comparing the expressions of JC and JP with V C and V P , we note that although the

second Bartlett equality for the pairwise likelihood does not hold (Varin et al., 2011),

the non-negativity of quadratic functions and R0 indicate that, with probability one, the

conditional score along the path (β0 + γ,Λ0 + ε
´
hdΛ0)

γT

ˆ τ

0
Z{dN(s)− Y (s)eZTβ0dΛ0(s)}+

ˆ τ

0
h(s)dN(s)−

ˆ τ

0
Y (s)eZTβ0h(s)dΛ0(s) = 0.

By (C1) and (C3), considering the case where N(τ) = 0 and A+C > τ and the case where

N(t) = I(t > t0) for some t0 ∈ [0, τ ] and A + C > τ , we obtain two equalities. Taking

difference, we have

ˆ τ

0
(γTZ + h(s)) eZTβ0dΛ0(s) + γTZ + h(t0) = 0.

The only solution to the above equations is trivial, thus

γTZ + h(t) = 0, ∀t ∈ [0, τ ].

It follows from the identifiability condition (C2) that γ = 0 and h(t) = 0.

With all four conditions verified, by Theorem 3.3.1 of van der Vaart and Wellner (1996),

we have
√
n(θ̂ − θ0) J−1GU ,

where GU is a mean-zero Gaussian process. Since linear maps preserve the Gaussian prop-
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erty,
√
n(θ̂−θ0) also converges weakly to a mean-zero Gaussian process J−1GU . In addition,

the linear functional (7) converges weakly to a mean-zero Gaussian random variable with

a variance estimator given by (8). The matrices ĴC and ĴP are given by

ĴC = − 1
n

n∑
i=1

∂UC
i (β,λ)/∂(βT,λT)

∣∣∣
β=β̂,λ=λ̂

,

ĴP = − 1
n(n− 1)

∑
i 6=j

∂UP
ij (β,λ)/∂(βT,λT)

∣∣∣
β=β̂,λ=λ̂

.

The summands of the above matrices ∂UC
i (β,λ)/∂(βT,λT) and ∂UP

ij (β,λ)/∂(βT,λT) take

the forms

−



Z⊗2
i eZ

T
i β
∑m
k=1 λkYi(wk) Zie

ZT
i βYi(w1) · · · Zie

ZT
i βYi(wm)

ZT
i e

ZT
i βYi(w1) I(Xi = w1)∆i/λ

2
1 · · · 0

... ... . . . ...

ZT
i e

ZT
i βYi(wm) 0 · · · I(Xi = wm)∆i/λ

2
m



and

−Rij



(
Λ(Q(1)

ij )
)⊗2

(1+Rij)2 + Λ(Q(2)
ij )

(1+Rij)
Q

(0)
ij (w1)Λ(Q(1)

ij )
(1+Rij)2 + Q

(1)
ij (w1)

(1+Rij) · · · Q
(0)
ij (wm)Λ(Q(1)

ij )
(1+Rij)2 + Q

(1)
ij (wm)

(1+Rij){
Q

(0)
ij (w1)Λ(Q(1)

ij )
(1+Rij)2 + Q

(1)
ij (w1)

(1+Rij)

}T
(
Q

(0)
ij (w1)

)2

(1+Rij)2 · · · Q
(0)
ij (w1)Q(0)

ij (wm)
(1+Rij)2

... ... . . . ...{
Q

(0)
ij (wm)Λ(Q(1)

ij )
(1+Rij)2 + Q

(1)
ij (wm)

(1+Rij)

}T
Q

(0)
ij (w1)Q(0)

ij (wm)
(1+Rij)2 · · ·

(
Q

(0)
ij (wm)

)2

(1+Rij)2


,

respectively, where

Λ(Q(l)
ij ) =

m∑
k=1

λkQ
(l)
ij (wk), l = 1, 2.

The consistency of variance estimator (8) follows from the Glivenkon-Cantelli theorem and

Remark 1.
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A.2 Comparison of Variances: An Example

In this subsection, we calculate the variances of the conditional approach estimator and

the PLAC estimator for a specific Cox model under a simple truncation scenario. Suppose

there is only one binary covariate Z∗ such that pr(Z∗ = 1) = p, and the failure time

distribution T ∗|Z∗ follows the Cox model with constant baseline hazard λ(t) = 1, i.e.,

λ(t|Z∗) = exp(βZ∗). We assume there is no censoring. The truncation time A∗ is assumed

to be binary with pr(A∗ = 1) = pr(A∗ = 0) = 1/2. It means half of the target population

were enrolled into the study immediately after their disease onset, whereas the other half

would be delayed for one time unit. To make the explicit calculation simpler, we let

β = log 2.

It is worth noting that all expectations and probabilities should be calculated taking

into consideration the biased sampling (T ∗ > A∗). From the independence between T ∗ and

A∗ given Z∗

pr(T ∗ > A∗ | Z∗ = 1) = 1
2(1 + e−2); pr(T ∗ > A∗ | Z∗ = 0) = 1

2(1 + e−1).

by Bayes’ rule,

p̃ = pr(Z = 1) = pr(Z∗ = 1 | T ∗ > A∗) = p(1 + e−2)
1 + pe−2 + (1− p)e−1 ;

and

pr(A = 1 | Z = 1) = pr(A∗ = 1 | T ∗ > A∗, Z∗ = 1) = e−2

e−2 + 1

pr(A = 1 | Z = 0) = pr(A∗ = 1 | T ∗ > A∗, Z∗ = 0) = e−1

e−1 + 1 .

Note that A∗ ⊥ Z∗, whereas A 6⊥ Z (see Section 2.1).
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For the conditional likelihood LCn , under the simplified model, we have

`Cn =
n∑
i=1
{Ziβ − (Ti − Ai)eZiβ},

∂`Cn
∂β

=
n∑
i=1
{Zi − (Ti − Ai)ZieZiβ},

∂2`Cn
∂β2 = −

n∑
i=1
{(Ti − Ai)Z2

i e
Ziβ}.

By the law of large numbers, V C = E{Z − (T − A)ZeZβ}2 and JC = E{(T − A)Z2eZβ}.

Let V = T − A, which is T ∗ − A∗|T ∗ ≥ A∗. To calculate these expectations, we first

obtain the distribution of V |(A,Z). Using a variable transformation, we can show that the

conditional distribution of V given (A,Z) follows an exponential distribution with mean

exp(βZ). Next, by double expectations, we have

V C = E{Z − (T − A)ZeZβ}2 = p̃E{1− 2(T − A)}2 = p̃E{1− 2T ∗}2 = p̃;

JC = E{(T − A)Z2eZβ} = p̃E{(T − A)eβ} = p̃× 2ET ∗ = p̃.

For the pairwise likelihood LPn , under the simplified model, we have

`Pn = −
∑
i<j

log(1 +Rij),

∂`Pn
∂β

= −
∑
i<j

Rij

1 +Rij

(Ai − Aj)(ZieZiβ − ZjeZjβ),

∂2`Pn
∂β2 = −

∑
i<j

1
(1 +Rij)2

{
Rij(Ai − Aj)2(ZieZiβ − ZjeZjβ)2

+(1 +Rij)Rij(Ai − Aj)(Z2
i e
Ziβ − Z2

j e
Zjβ)

}
.
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By the U -statistic asymptotic properties and double expectation, we have

V P = 4E
{

R12

1 +R12
(A1 − A2)(Z1e

Z1β − Z2e
Z2β)× R13

1 +R13
(A1 − A3)(Z1e

Z1β − Z3e
Z3β)

}
= pr(Z1 = 1, Z2 = Z3 = 0)× 4× E

{
2 eA1−A2

1 + eA1−A2
(A1 − A2)× 2 eA1−A3

1 + eA1−A3
(A1 − A3)

}

+ pr(Z1 = 0, Z2 = Z3 = 1)× 4× E
{

2 eA2−A1

1 + eA2−A1
(A2 − A1)× 2 eA3−A1

1 + eA3−A1
(A3 − A1)

}

= p̃(1− p̃)2 × 4×
{

e−2

1 + e−2 ×
1

1 + e−1 ×
1

1 + e−1 ×
e

1 + e
× 2× e

1 + e
× 2

+ 1
1 + e−2 ×

e−1

1 + e−1 ×
e−1

1 + e−1 ×
e−1

1 + e−1 × (−2)× e−1

1 + e−1 × (−2)
}

+ p̃2(1− p̃)× 4×
{

e−1

1 + e−1 ×
1

1 + e−2 ×
1

1 + e−2 ×
e−1

1 + e−1 × 2× e−1

1 + e−1 × 2

+ 1
1 + e−1 ×

e−2

1 + e−2 ×
e−2

1 + e−2 ×
e

1 + e
× (−2)× e

1 + e
× (−2)

}

= 16p̃(1− p̃)2 e2

(1 + e)4 + 16p̃2(1− p̃) e3

(1 + e)2(1 + e2)2 ;

JP = E
{

1
(1 +R12)2{R12(A1 − A2)2(Z1e

Z1β − Z2e
Z2β)2 + (1 +R12)R12(A1 − A2)(Z2

1e
Z1β − Z2

2e
Z2β)}

}

= pr(Z1 = 1, Z2 = 0)× E
{

4 eA1−A2

(1 + eA1−A2)2 (A1 − A2)2 + 2 eA1−A2

1 + eA1−A2
(A1 − A2)

}

+ pr(Z1 = 0, Z2 = Z3 = 1)× E
{

4 eA2−A1

(1 + eA2−A1)2 (A2 − A1)2 + 2 eA2−A1

1 + eA2−A1
(A2 − A1)

}

= 2p̃(1− p̃)
{

e−2

1 + e−2 ×
1

1 + e−1 ×
[

4e
(1 + e)2 + 2e

1 + e

]

+ 1
1 + e−2 ×

e−1

1 + e−1 ×
[

4e−1

(1 + e−1)2 −
2e−1

1 + e−1

]}

= 8e2

(1 + e2)(1 + e)2 .

The asymptotic variance for the conditional approach estimator is the inverse Fisher infor-

mation of the conditional likelihood (V C)−1 = (JC)−1 = 1/p̃ ≈ 2.20, whereas the variance

for the PLAC estimator is the inverse Godambe information of the composite likelihood

(V C + V P )/(JC + JP )2 ≈ 1.71. Thus, in this simplified example, we will have about 30%

improvement of estimation efficiency for the regression coefficient.
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B Additional Simulation Results

This section contains some additional simulation results comparing the proposed method

with the competitors.

Table B.1 displays the results under the same setup as in Section 3 with n = 200. Note

that the SEs for PLAC in this table are about twice of those in Table 1 with n = 800.

Table B.1: Summary of simulation with n = 200 and various censoring rates. PC: censoring
percentage; True: true values; Bias, SE, SEE and CP: empirical bias (×103), standard
error (×103), standard error estimate (×103) and 95% coverage probability; RE: relative
efficiency with respect to the conditional approach estimator (ratio of the mean squared
errors). The estimate of Λ̂ (t) is evaluated at the 30% and 60% percentiles (τ30 and τ60) of
the observed survival times.

PC Conditional LBML PLAC

True Bias SE Bias SE RE Bias SE SEE CP RE

Case 1: length-biased sampling

50 β̂1 1 15 233 −58 160 1.87 17 184 177 94 1.60
β̂2 1 3 211 −68 155 1.56 10 173 160 94 1.48

Λ̂τ30 0.212 1 61 22 53 1.12 −1 56 54 93 1.18
Λ̂τ60 0.546 5 121 56 101 1.10 0 112 111 94 1.18

80 β̂1 1 43 407 −88 198 3.57 48 257 238 95 2.46
β̂2 1 22 360 −99 188 2.89 47 251 218 92 1.99

Λ̂τ30 0.103 1 56 36 46 0.93 −4 47 42 87 1.41
Λ̂τ60 0.329 4 136 60 94 1.50 −6 114 106 90 1.43

Case 2: non-length-biased sampling

50 β̂1 1 8 218 −251 141 0.57 17 186 182 96 1.37
β̂2 1 7 224 −246 148 0.61 20 191 183 94 1.36

Λ̂τ30 0.207 −2 59 103 70 0.22 −4 57 53 92 1.06
Λ̂τ60 0.538 −7 91 232 108 0.13 −9 89 90 94 1.02

80 β̂1 1 43 403 −388 170 0.92 59 303 264 92 1.73
β̂2 1 61 400 −382 162 0.95 71 296 265 92 1.76

Λ̂τ30 0.099 −5 46 107 65 0.14 −7 44 41 85 1.07
Λ̂τ60 0.270 −10 86 215 105 0.13 −12 83 80 90 1.06
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We also investigated the transformation approach for the non-length-biased case (Case

2), and compare its performance with the proposed method (Huang and Qin, 2012). Specif-

ically, we first transformed the survival and truncation times using the distribution function

of exponential(1), and then used the EM algorithm proposed by Qin et al. (2011) on the

transformed data. The simulation with n = 400 and censoring rates 20%, 50% and 80%

are reported in Table B.2.

Table B.2: Summary of simulation using transformation approach suggested in Huang and
Qin (2012). PC: censoring percentage; True: true values; Bias, SE, SEE and CP: empirical
bias (×103), standard error (×103), standard error estimate (×103) and 95% coverage
probability; RE: relative efficiency with respect to the conditional approach estimator (ratio
of the mean squared errors). The estimate of Λ̂ (t) is evaluated at the 30% and 60%
percentiles (τ30 and τ60) of the observed survival times.

PC Conditional LBML-trans PLAC

True Bias SE Bias SE RE Bias SE SEE CP RE

20 β̂1 1 9 117 −10 103 1.29 7 105 104 95 1.25
β̂2 1 10 117 −8 104 1.26 8 107 104 94 1.19

Λ̂τ30 0.298 0 43 4 39 1.19 −1 42 42 94 1.04
Λ̂τ60 0.764 3 70 9 64 1.16 2 68 69 95 1.04

50 β̂1 1 9 152 −51 122 1.33 14 129 129 95 1.38
β̂2 1 7 148 −55 124 1.21 11 130 129 94 1.29

Λ̂τ30 0.207 −2 39 13 37 0.99 −3 38 38 94 1.04
Λ̂τ60 0.538 −1 68 25 64 0.97 −3 67 64 93 1.03

80 β̂1 1 3 260 −121 158 1.71 26 191 181 93 1.83
β̂2 1 2 262 −127 160 1.65 22 194 182 95 1.82

Λ̂τ30 0.099 −1 34 26 36 0.57 −2 33 31 90 1.05
Λ̂τ60 0.270 −5 60 46 59 0.64 −7 59 58 92 1.03
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Lastly, we studied the performance of Λ̂ at the right tail. Specifically, we checked the

performance at the 90%, 95%, 97.5%, and 99% percentiles of the observed survival times

X = min(T,A+C). The censoring rate was set at 50%, and two sample sizes (n = 200, 800)

were considered. The summary statistics and the median numbers of observed events after

the corresponding percentiles are provided in Table B.3

Table B.3: Simulation results for Λ(t) estimation at the right tail. The estimates of Λ̂ (t)
at t ∈ {τ90, τ95, τ97.5, τ99}, where τp denotes the p% percentile of the observed survival times
X, are reported. Simulations under 50% of censoring and various sample sizes (n) were
considered. True: true values; nevent: number of events (the median of 1000 datasets); Bias,
SE, SEE and CP: empirical bias, standard error, standard error estimate and 95% coverage
probability; RE: relative efficiency with respect to the conditional approach estimator (ratio
of mean squared errors).

n True nevent
Conditional LBML PLAC

Bias SE Bias SE RE Bias SE SEE CP RE

Case 1: length-biased sampling

200 Λ̂τ90 1.722 9 0.013 0.344 0.107 0.253 1.57 0.009 0.321 0.303 94 1.15
Λ̂τ95 2.545 5 0.037 0.610 0.137 0.414 1.97 0.034 0.561 0.471 91 1.19
Λ̂τ97.5 3.498 2 0.035 0.952 0.222 0.667 1.84 0.035 0.876 0.665 87 1.18
Λ̂τ99 4.892 1 −0.240 1.427 0.261 1.029 1.86 −0.230 1.361 0.840 74 1.10

800 Λ̂τ90 1.722 17 −0.005 0.160 0.078 0.131 1.11 −0.004 0.148 0.153 95 1.17
Λ̂τ95 2.545 11 −0.003 0.258 0.100 0.204 1.29 0.000 0.243 0.243 94 1.13
Λ̂τ97.5 3.498 5 −0.021 0.435 0.076 0.308 1.89 −0.016 0.406 0.381 94 1.15
Λ̂τ99 4.892 2 −0.045 0.804 0.104 0.573 1.91 −0.037 0.761 0.647 88 1.12

Case 2: non-length-biased sampling

200 Λ̂τ90 1.453 10 −0.007 0.221 0.546 0.227 0.14 −0.002 0.217 0.206 94 1.04
Λ̂τ95 2.048 5 −0.003 0.350 0.735 0.328 0.19 0.009 0.336 0.315 93 1.08
Λ̂τ97.5 2.704 3 0.008 0.578 1.013 0.514 0.26 0.033 0.555 0.470 91 1.08
Λ̂τ99 3.673 1 0.028 1.032 1.544 0.934 0.33 0.065 0.962 0.749 88 1.15

800 Λ̂τ90 1.453 23 0.002 0.108 0.544 0.117 0.04 0.001 0.104 0.103 94 1.08
Λ̂τ95 2.048 12 −0.002 0.168 0.749 0.170 0.05 −0.002 0.159 0.158 94 1.11
Λ̂τ97.5 2.704 5 −0.000 0.261 0.969 0.243 0.07 0.002 0.244 0.241 94 1.14
Λ̂τ99 3.673 2 0.013 0.468 1.314 0.411 0.12 0.018 0.434 0.406 92 1.16
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C Additional Data Analysis Results

Graphical check of the uniform truncation assumption The significant test result

in Section 4 for the uniform truncation assumption was confirmed by the graphical checking

method proposed by Asgharian et al. (2006). When the assumption holds, the estimated

survival functions of A and V should coincide. However, as shown in Figure C.1, the

estimated survival curve of V is above that of A throughout, and the point-wise confidence

intervals for A always stay beyond those of V . This means that in the RRI-CKD dataset,

the uniform truncation assumption is violated.
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Figure C.1: Estimated survival curves for the truncation time A (solid) and the residual
survival time V (dashed) of the RRI-CKD data. The 95% point-wise confidence intervals
are shown as dashed or dotted lines around the estimates.

Regression coefficients estimates compared with the competitors A forest plot

of the hazards ratios of the risk factors is shown in Figure C.2 to visualize the accuracy,

precision and significance of the estimates. All coefficients have similar point estimates,
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including the diabetes status and the CKD stage. However, the proposed estimator esti-

mates all coefficients with improved precision indicated by narrower confidence intervals.

The point estimates and confidence intervals using the full maximum likelihood estimator

by Qin et al. (2011) are also displayed in the plot. We can see the point estimates for Male

and CKD stage using the LBML estimator are quite different from those of the other two

estimators.
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Conditional
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Figure C.2: Estimated hazards ratios of the covariates in the RRI-CKD data. The squares,
triangles and dots represent the estimates using the conditional approach, the EM algorithm
in Qin et al. (2011), and the proposed method (PLAC), respectively. The horizontal lines
around the points represent the corresponding 95% confidence intervals.

Graphical check of the independence between A∗ and Z∗ We developed a graphical

tool to check the independence assumption between the underlying truncation time A∗ and

the covariates Z∗. To be specific, we estimate the unbiased truncation distribution G for

each level of the covariate under investigation. The estimation of G follows closely to

the inverse-probability weighted estimator proposed in Wang (1991) and Huang and Qin
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(2013). First, we calculate the right-truncation probability for observed Ai’s using the

survival probability the fitted Cox model with the conditional approach, and then use their

reciprocals as the weights to estimate G using a weighted empirical cumulative distribution

function.
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Figure C.3: Estimated Ĝ for each level of the covariates included in the RRI-CKD data
analysis. The solid lines are the estimates, and the dashed lines in the same colors are the
corresponding 95% point-wise confidence intervals.
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